
Premiere Issue 

THE 
July 1990 52.00 , 

ER® 
Nevvs and Views in the World of OS~/68000 and 6809 ;r ~\ 
•A TALE OF TWO COMPUTERS ~{ \ \ 
•DOING WINDOWS ~ ) l 
•GOTO SHELL ~iJ / /' 
•uMACS PRIMER --.. _.,. 
•PLAYING CHESS IN ''C" 

\\ I I 
r ~ 



Owner 

Editor 
OSKer 
Bug 
Editor 
Editor 
Editor 
Editor 
Editor 
Editor 
Editor 
Editor 
OSKer 
Editor 

Directory of /dd/OSKer/Jul90 10:02:46 
Last modified Attributes Sector Bytecount Name 

90!07!09 0935 --·-r-wr 3 11550 A_Tale_Of_Two_Computers 
90!07!09 0756 --·-r-wr 5 9204 Doctor_OSKer 
90!07!09 0446 ----r-wr 7 22826 Doing_Windows 
90!07!09 0757 -- ·- r-wr 9 3127 Editors_Ramblings 
90/07/09 0757 ---- r-wr 10 5844 Flame_ON 
90!07!09 0757 ----r-wr 13 2798 Goto_Shell 
90!07/09 0757 ---- r-wr 14 3061 Hacker_Contest 
90!07!09 0332 ----r-wr 14 41602 Kevin_Darling_Speaks 
90!07!09 0737 ---- r·wr 20 4524 OSK_for_OS9ers 
90!07!09 0935 ----r-wr 21 3398 Origins_of_OSKer 
90/07/09 0641 ------wr 25 9670 Playing_Chess_in_C 
90/07/09 0935 ----r-wr 22 2386 Software_List 
90!07!09 0959 ----r-wr 22 5190 uMacs_Primer 

the OSKer 
Don •t miss an issue! 

12 Months for only $12! 
($15 in Canada, $20 overseas) 

N~e __________________________ _ 

Addr~·--------------------·------

City, etc. --------------

Send to: 
the OSKer 

P.O. Box 24285 
Speedway IN 46224 

Sector 2 

"the OSKer" is published monthly by: 

StG Computers inc. 
P.O. Box 24285 
Speedway IN 46224 

President: Scott Griepentrog (Editor) 
Vice-Pres: Jim Hutchins 
Secretary: Chris Swinefurth 
Treasurer: Dave Henk 

Cover Art: Alan Sheltra 

Subscriptions to the OSKer are $12 per 
year in the U.S., $15 in Canada, and 
$20 overseas. 

Advertising Rates: 
4/4 Page 7.5"w X 10.0"h $ 100 
3/4 Page 7.5"w X 7.5"h $ 80 
1!2 Page 7.5"w X 5.0"h $ 60 
1!2 Page 3.5"w X 10.0"h $ 60 
1/4 Page 3.5"w X 5.0"h $ 40 
1/8 Page 3.5"w X 2.5"h $ 20 

Pre-pay for two issues, get one free. 
Ad copy must be received before last 
day of month previous to issue for in­
clusion. 

Editing for the OSKer was done on an 
Atari Mega 2 ST running OSK, using 
Umacs. PageMaker on a PC (ugh) was 
used to lay out the pages. Address 
labels were printed with 089 under OSK. 

As soon as a good DTP becomes available 
under OSK, (even if I have to write one 
myself!), all processing will be done 
using OSK. 

All Submissions must be in the Public 
Domain to be considered for publica­
tion. Persons who are selected for 
publication will be given the following 
6 months of the OSKer for free, in 
addition to any paid-up subscription. 

StG Computers inc., as publisher of the 
OSKer and having ownership of software, 
will not directly advertise in it nor 
will the editor use the OSKer to 
promote his products. 



FILE DESCRIPTOR: A_Tale_Of_Two_Computers 
~NER: Scott Griepentrog 
ATTRIBUTES: Editor, OS9 Freak 
ALLOCATION MAP: Sysop@Root (StG-Net), 72427,335@CIS, 
StG@hummer.iupui.edu 

I don't think anybody will argue that the PC machines are 
starting to look good to even the most die hard CoCo3/0S9 
enthusiast. The cost of a base model XT is actually 
starting to drop below what it costs to put together a 
comparable OS9 system. Even without the multi-tasking/user 
features of OS9, a lot of people are finding it hard to 
resist using what is really an inferior operating system. 

As a result of this, a lot of people have been clammoring 
for newer hardware to bring OS9 into the 90's. Enter FHL 
(Frank Hogg Labs) and IMS <Interactive Media Systems, 
formerly Kenneth-Leigh Enterprises), and their new machines, 
the Tomcat series and MM1. 

Going in alphabetical order, I chatted with both camps in an 
attempt to get some insight on the backgrounds behind the 
people behind the machines, in addition to the details about 
what we can expect from the new machines. I think my 
english teacher just rolled over ••• 

Frank Hogg, from Frank Hogg Labs (FHL) 

Frank Hogg is what most people would call a real character. 
The first thing that struck me is his habit of speaking his 
mind. He'll tell you what he thinks- if you wanted to know 
or not. But he's no stranger to the CoCo, OS9, and OSK 
markets, having sold hardware and software for all. So one 
is reminded to listen up- he'll give you good tips from his 
experience - even if you're going to compete against him. 

Frank started his business back in 1976 - at first as a 
dental lab. He got involved in microcomputers first with 
the KIM1, a 6802 machine. In '79 he got into the software 
business, and the following year came out with four packages 
for the FLEX operatin g system. He was also approached at 
that time by Ken Caplan to support 059 - then level 1, full 
of bugs, and had no software. 

In '82 came a big break with Frank's nephew Rich Hogg 
discovering how to upgrade the new 32K CoCo to 64k just by 
adding four wires. This allowed the several hundred FLEX 
packages to work on it, and brought him into the CoCo 
market. Then at the 1984 Ft Worth Rainbowfest the newly 
ported Level 1 059 was being sold for the CoCo, and Frank 
showed off his O-Pak utilties (also done by Rich). They 
used the graphics mode to add lower case characters and more 
than 32 columns to 059. 

In the same year, Frank started selling his first QT 
computer, a single board 68008 (8 bit bus equivalent to 
68000). He subsequently came out with 68000 and '020 models 
of the QT. But he ran into a problem with the QT line. 
Upgrading to a faster model required replacing the entire 
board, which was costly. In •88, he solved this problem by 
creating the K-Bus system. Although Frank's idea, it was 
designed by Mike Smith and Dave Bridger at Hazelwood 
Computers, who also did the very first port of OSK back in 
'83 and made the QT motherboards. 

The K-Bus is a 16 bit bus, that can address up to 16 meg. 
Having been around for a few years already, has many cards 
for it already, including math coprocessors, ram, clock/dma/ 
printer, SCSI, Floppy, serial, and a 68030 board. Frank 
claims that it is catching on to the point that other 

manufacturers are starting to build K-Bus cards. 

And now, finally, to the new Tomcat line. The TC9 looks at 
first glance like it should be a CoCo3. It is actually a 
6803 running at 3mhz with a CoCo3 GIME, AT keyboard, 8-bit 
sound, and other improved features. It has a CoCo bus, so 
all CoCo hardware will work with it, and fits into the K-Bus 
for connecting to the 68k world. The board was designed by 
Bob Puppo, creator of the PC keyboard adapter for the CoCo. 

The TC9 can interact with other K-Bus cards, but it must 
have a 68k processor (a 68000, 130, or TC70 will do) in the 
bus to handle requests for it. The TC9 can't directly 
access the K·Bus, although a 68k processor on the bus can 
access all of the TC9's memory, and can be triggered to do 
so via an interrupt. For example, a memory move can be 
handled a lot faster as the 68k processor has access to the 
entire TC9's ram without going through the OAT (address 
translator that allows the 6809 processor to hand le more 
than 64k). 

Frank also points out that more than one TC9 board can be in 
the bus at the same time. Just think, a whole bank of 
CoCo's in one box, with OSK running at the same time! Too 
bad it can't handle multiple 68k processors ..• 

The other member of the Tomcat family is the TC70. It is a 
68070 processor, with VSC graphics chip, ram, and serial 
ports. Although it resembles the MM1 in many ways, Frank 
claims that the design had been in the works even before the 
advent of the MM1. It is an alternate 68k processor for the 
K-bus, with lots of extra features. 

Interestingly enough the TC70 board was also made so that it 
could used as a replacement for the older QT motherboards, 
and can be mounted on a floppy drive, handy for industrial 
applications. 

As we finished, Frank related a few stories to me. It seems 
that Paul Ward (IM5) had an advertisement in the Rainbow for 
three months straight. Then when he skipped a month, Frank 
happened to put in an ad for the TC9, and a lot of people 
(without reading the ad?) thought that the TC9 was from 
Paul ••. 

Frank also says he's working on having the capability to run 
RSDOS on the TC9, and is seriously thinking about doing a 
MAC emulator for the TC70. And he doesn't miss a chance to 
remind me that his port of OSK is more stable, as he puts 
it. Lots of extra features, like a dmode command that 
allows you to just say 'dmode !dO -coco' to read a CoCo 
format disk. 

Before I got off the phone with him (several hours later), 
he said some things about OS9 in general I thought very 
important to relay. He spoke about the usefulness of Level 
1 OS9, ''The ability was there, but nobody wrote the 
software ... Like having a car that can do 500 mph but no 
roads that fast''· With Level 2 on the CoCo3, things were 
better, but he said, ''mundane everyday appliations [still) 
have to be done ... Bouncing balls are not going to cut 
it II • 

He stressed that 05K developers should Look at the 
phenominal opportunity before them, because ''the first 
software [is] going to make all the money, [and] everybody 
else is going to play catch-up''. It's a wide open market 
with these new machines, as he pointed out, ''everybody who 
is interested in OSK has to participate''· Finally he 
convinced me that ''being first is more important than 

Sector 3 



everything else ••• when the heat of competion comes on, 
anounce a new version and add features''· 

Paul ~ard, from Interactive Media Systems 

Paul got his first CoCo back in '82. He did programming on 
it, PC's and Mac's. In •84 he picked up OS9 Level 1, and 
fell in love with it immediately. He had trouble with the 
Rainbow guide to OS9 though. He thought it allowed too many 
opportunities for user error and decided to write a new one. 
In •86 he started ''Start OS9, an enjoyable hands-on guid to 
OS9 Lv2 on the CoCo3' ', which took about a year to complete. 
The biggest incentive was his feeling that 059 would be 
responsible for the longevity of the CoCo. In his book he 
has an essay on COl, the future of the CoCo, and interviews 
with Microware staff. 

The MM1 machine started with Kevin Pease, Kevin Darling, and 
Paul talking about the 'CoCo4' back in September of last 
year. Pease, who did the design for the machine, is a top 
R&D hardware designer for Rand McNally, and Paul claims he 
works very fast. ··~e had drawings worked up by the end of 
January, with the specs nailed down by surveys on what 
people wanted and our own design goals''· Four prototypes 
were done by April, in time for the Chicago Rainbowfest. 
''It was actually a lot of fun because our room was packed 
full with a lot of computer cases and boards'', said Paul. 
··~e were soldering and putting together systems the 
thursday night before the fest''· 

Paul related how they had some good demos to start off the 
weekend with, and Kevin Darling was working back in North 
Carolina uploading new ones each night. Because he was 
busy, Kevin couldn't lead the seminar on OS9 he was 
scheduled for. Dale Puckett took over and invited the three 
attending hardware people for demos and Q/A. All who 
attended will not soon forget watching Paul and Frank chide 
each other about the differences between their machines. 

Paul says that ''the system that people get in August will 
be the 3rd version of the board' 1 • He also talks about 
already having orders from 3 universities for music, multi· 
media, and porting stuff from Unix. ''We're very agressive 
about getting software on the MM1", says Paul. ''The only 
way to survive for ten years is to come out with better 
technology''· Pease actually suggested the chips selected 
for use in the MM1 - the 68070 and the VSC, both used in CD! 
player designs. ''We designed the system to be very 
affordable by making the cpu board as minimal a computer as 
possible while still keeping it really sexy.'' 

Paul also talks about being very commited to OSK and found 
that Microware was ''very profesional and cooperative''· 
He's going after the big fish, trying to compete with the 
PC, Mac, and Amiga because ''that's where the true 
competition lies• '· His plans include ''coming up with 
mainstream software, permiting mainstream hardware add-ens 
and still doing something different and better than the 
other systems• '· He also has plans to go after university 
students. 

Rather boldly Paul told me, ··~e are going national with 
this computer (and our next computer) - whoose details are 
completely under wraps''· I asked what the story was with 
the MM1's bus. He says that people fear that there will be 
no more add-on cards. On the drawing board he claims are a 
digitizer, network (ethernet), serial i/o, and tape backup. 
It is a 32 bit bus, derived from VME to make adaptation of 
VME cards to the MM1 bus very easy. He even talks about 
being able to use PC 16-bit add-on cards in the future. 

Finally, I asked him to define Multi-Media, which forms part 
of the name of his new machine. It simply means that the 
computer has interactive text, graphics, animation, and 
sound capabilities. I can just see an MM1 being used as a 
watchdog- listening for unfamiliar sounds and animating a 
dog jumping at the door while barking loudly •.• 

So, to sum up ... 

~e've got two new machines. Most people would say think 
that these two guys are playing a game of dueling computers, 
trying to outperform each other. It's been very interesting 
so far this year, and it's only going to get better. But I 
don't see this as a war at all. It's natural for a little 
friction to heat things up when two very determined people 
have two very different ideas about how to do things. What 
is really happening is that these two people have (possibly 
without realizing it) given us a choice. 

~e don't have the much awaited for ·coCo4' machine, the 
fabled machine that would solve all our problems, we 
actually have two real machines that give us totally 
different options, run the same operating system, and will 
even have compatible windows! We may be sitting back and 
shaking our heads at these two guys thinking, why? Why 
couldn't they get together instead of battling it out! But 
realize that we, the OS9 public, are benefiting from this. 
Let's just hope they can keep it up eh? Wish them both good 
luck next time you talk to them, and no matter which one you 
decide to go with, Keep On OSK'ing! 

zogs~cavern BBS 
(213)461·3872 

2400/1200/300 8/N/1 
Mon. thru Sat. 7pm. to 7am., All day Sunday 

Features NetMail, On-Line Games 
OS9 & Coco SIGs & File Transfer 

Discussion Boards ... 
Your Late Night Meeting Place! 

SysOp: Alan Sheltra (ZOG the Monster) 
CoSyOp: Valerie Tare's (Cookie) 

Sector 4 



FILE DESCRIPTOR: Doctor_OSKer 
OWNER: John Doe 
ATTRIBUTES: Question Answerer, Identity Unknown 
ALLOCATION MAP: none as yet 

In this regular section, our mythical Doctor OSKer will 
answer any and all questions about Life, the Universe, and 
Everything about 059. Of course, don't expect reasonable 
answers on the first two. But we are assembling a panel of 
experts to field those really oddball questions, as well as 
the just plain ordinary ones. 

If you have a question or wish to be on our panel of 
experts, you can write, call, e-mail, etc., any of the 
addresses below: 

Doctor OSKer 
P.O. Box 24285 
Speedway IN 46224 

(317) 241-6401 
Sysop@ROOT (StG-Net); 72427,335 (CIS); StG@hummer.iupui.edu 

Now that that's out of the way, let's get on with the 
questions ••• What? No questions? Oh, I forgot, this is the 
first issue. Nobody knows I exist. Let's see, if nobody 
knows that I exist, does that mean that I don't? Like that 
tree that can't fall because nobody is there to hear it. Or 
is my existence relative to my own perception of whether I 
exist or not ... 

Anyways, before the good Doctor imagines he's god and takes 
over the world, let's replace him with some Q's and A's 
about the new machines. Large portions of this have been 
derived from Frank Hogg's question and answer sheet (Thanks 
Frank!), plus conversations with both camps and other 
unassorted sources. 

Q: Will the TC9 be compatible with the MM1? 

A: Not really. This is like asking if a CoCo (6809) and a 
68K processor are compatible. The TC9 has a 6809 compatible 
CPU, and a CoCo3 GIME chip, so it's graphics capabilities 
are the same as the CoCo. The MM1 uses a VSC chip for 
graphics, which has more resolution and colors. But then 
the TC9's brother, the TC70, also has a VSC chip and uses 
the same CPU as the MM1. Comparing the TC9 and the MM1 is 
like comparing apples and oranges - but the TC70 is close 
enough to the MM1 to be called compatible, just like the TC9 
is close enough to a CoCo to be called compatible. But it 
is also interesting to note that the TC9 and the TC70 can 
exist in the same bus. Even though they are not directly 
compatible, then can share and talk between themselves, thus 
bridging the gap between 6809 and 68k. The MM1 will also 
have a CoCo ·gateway', which can plug into existing CoCo. 

Q: What is the difference between the MM1 and the TC70? 

A: The biggest difference is that the TC70 is a card for the 
K-bus, allowing it to use other cards for interfacing to the 
real world, whereas the MM1 has a lot of built in features 
between its two boards. The MM1 is expected to cost less 
than a comparable TC70 setup, but it is not upgradable as 
yet. The base MM1 (both boards) has 1M ram, 3 serial ports, 
Stereo sound In/Out, CoCo compatible joystick, hi-res mouse 
inputs, and an XT keyboard, whereas the TC70 has 1.5M ram, 2 
serial ports, Mono sound In/Out, and an AT keyboard. 
Otherwise they are practically the same, with the exception 
that the MM1 will run faster when expanded to 3M ram. 

Q: Will I be able to just unplug the Multi-pak from my CoCo 
3, with Disto II floppy controller, Burke & Burke HD 
interface & RS232 pak and just plug the works into the TC9? 

A: Yes, because the TC9 has a CoCo Bus everything will work 
except ROM cartridge games. You may not need the RS-232 pak 
though because the TC9 has 2 RS232 style ports on it. 

Q: Do I still need the multi-pak, or can I connect my 
existing drives some other way? 

A: The TC9 should run 2 Paks on just a cable. The CoCo Bus 
on the TC9 is via a header rather than a card edge 
connector. This was done to make it easier to cable the 
paks in the case. We also put 12 volts back on the bus for 
things like the Burke & Burke Interface. 

Q: Can I mount my floppies and hard drives in the TC9 case? 

A: Yes, and there is a 200 watt power supply to handle it. 

Q: Do the new computers have a built in mouse interface? 

A: The TC9 and the MM1 have a 8 bit joystick port, which can 
be used with the Tandy joysticks and mice. Both machines 
can use a serial port for a PC type mouse that has better 
resolution. 

Q: Will the Tandy Hi-Res interface work with the TC9? 

A: No, it doesn't have a cassette port. But the MM1 has a 
built in hi-res interface. 

Q: What software is included with the TC9? 

A: All the details are not available yet, but it should have 
a version of Tandy's OS9, modified to work with the hardware 
differences. 

Q: What software is included with the MM1? 

A: OS9/68000 V2.3, C Compiler, Basic, graphics editor, text 
editor, tape backup sw, print spooler, PC file manager, and 
other to be announced. 

Q: What about MSDOS compatibility? 

A: Emulating an MSDOS environment on a 68k processor would 
be too slow, and adding a 'x86 processor would probably turn 
out to be more expensive than purchasing a clone and using 
it as a terminal to OSK when not running MSDOS. Paul says 
the MM1 is ''MSDOS friendly'', as it can use DOS disks and 
will have many MSDOS applications ported to it. 

Q: What about Mac compatibility? 

A: The Mac uses 68k and hardware that is very similar to the 
TC70 and MM1. With the addition of a Macintosh ROM set and 
some interfacing (like that currently available for the 
Atari ST), both machines should be able to run Mac software. 
Frank is known to be looking at this closely. 

Q: Is the TC9 completely CoCo compatible? Will RS BASIC 
software work with the TC9? 

A: Frank is working on RS-BASIC compatibility, but warns 
that it may be a while before it is ready and fully 
debugged. Because of a number of hardware differences, some 
poorly written or highly protected progarms may not work at 
all. However, all 059 software will run on it. 

Sector 5 



Q: What about power on the CoCo bus of the TC9? 

A: The TC9 can handle more power than the CoCo3 could, 
because it feeds on a 200W power supply. This allows any 
amount of power consumption from the CoCo bus. Also, 12 
volts has been wired, which is needed for the Burke and 
Burke interface. 

Q: How about streaming tape backup? 

A: The K-bus 68k processors have it available through the 
SCSI interface. The MM1's tape backup has yet to be 
decided. 

Q: If I have a hard drive on the TC9 will the tape backup 
system for 68K back it up? 

A: Yes, in theory at least. You would need to have OS9/68K 
running on a 68k procesor in the K-bus, but it could work. 
Software will have to be written for this to work. 

Q: Will my (Disto, Hemphill etc etc) 512K upgrade work in 
the TC9? 

A: Yes, both plug·in upgrades and plug·in chips can be used. 

Q: Do I need OS9/68K to make use of the 68000 with the TC9? 

A: No, the 68000 CPU is used by OS9/LII as a speed up device 
besides being used for OSK. You can get faster LII without 
OSK by just having a 68000 CPU. 

Q: How is the 1 meg Disto upgrade installed in the TC9? 

A: Just plug it in, no soldering required. We provided a 
header for this. 

Q: Can I use the new style keyboards that have built in 
trackballs with the TC9? 

A: Yes, the trackball would be connected to a serial port 
and used like a serial mouse. 

Q: Can I use my (CM8, Magnavox) monitor with the new 
computers? 

A: Yes, both the TC9/70 and MM1 support existing RGB analog 
monitors. 

Q: Can I use K·Bus cards without a 68k card? Wil the TC9 
work on the K-Bus without a CPU on the bus? 

A: No. The TC9 cannot directly access anything on the K­
Bus. It has to ask the 68k processor to do its work for it. 
The TC9 1 s memory (CoCo memory) is the only thing that the 
68k sees. They use an interrupt protocol to talk to each 
other. 

Q: Can I run the TC70 without the TC9? 

A: Yes, the TC70 is a fully functional 68K color graphics 
computer with 68K etc etc. 

Q: Will the TC70 or MM1 run OS9/LII software? 

A: Yes. A 6809 emulator program exists that will run 059 
modules. It may not run them much faster than on the CoCo 
though, possibly even slower. And there will always be 
those few programs that don't quite work right with it. 

Q: Can the TC9 use more than 1 CoCo cartridge at a time? 

A: The CoCo bus on the TC9 is just like the CoCo with the 
same restrictions. You can use 2 or more with a Y cable 
like the CoCo, or you can use one of the multi-pak like 
devices sold for the CoCo (Howard and Orion should work OK) 

Q: Will the TC9 autoboot OS9? 

A: Yes. 

Q: Is the K-bus only 16 bits? Are there any plans to upgrade 
it to 32 bits? 

A: The K-Bus is 16 bits data and 16 meg memory map. The 
68000 and 1 70 are also only 16 bit, so the only reason to 
change it would be for the '30 and '40. It has been found, 
however, that the drop in speed by putting a '30 on a 16 bit 
bus is not substantial · unless you're doing nothing but 32 
bit data moves. 

Q: How about 1.2/1.4 Meg floppies? 

A: The TC70's floppy controller supports all densities 
including 1.2/1.4 Meg. The MM1 comes with a 1.4 Meg floppy. 

Q: I don't have a hard drive now, would it be better for me 
to get a hard drive that is SCSI compatible for future use 
with 68K? 

A: Yes, although all hard drive systems for the CoCo will 
work with the TC9, a SCSI hard drive would work better. The 
MM1 has a SCSI interface, so trying to use an existing CoCo 
hard drive (unless SCSI) would require a SCSI controller, 
and would work slower than a new drive. 

·ORDER NOW NiJ.)e thru ZogSCaveJ 

Central. 
LA's Outlet for 059/0SK !!! 

Products Available: 

• StG Login Package BBS V3.0 ···················-····-················ $49.95 
Featuring: StG Network Access & lntemet! 

• MVCanvas Paint Program V2.0 ...................................... $49.95 
Hyper-Tech's Software's Best Seller! 

• MemMatchV2.0--------------------· $14.95 
New! From Anlmajik Productions 

(All above n:qulre 15121< and OS9 L2. MVC&nYU requires MulU-Vue) 

Wanted: Softwan: for OS9 or OSK I lf you'n: developing any program for 059/0SK. 
and an: looking for new outlets for your products, give U5 a caDI 

Orders: Call (818) 753-9864 (Voice) lOam. to 4pm. (PST) 
or (213) 461-3872 (BBS) 7pm. to 7am. (PST) 

Place your order on-line in the "Nine Central SIG" 
or leave E--Mail to Wayne@ZOG 

Checks, Money Orders or C.O.D. 
(Sorry. no C.O.D.'• out side U.S .. U.S. Curn:ncy only) 
[Pie:a.se Include $3.00 S&H. $2.00 e:rtra for COD) 
(Allow 2-4 Weeks for delivery) 

Make Payable to: Wayne Campbell 
P.O. Bo.J: 85043 
Los Angeles, Ca. 90072 

Sector 6 



FILE DESCRIPTOR: Doing_Windows 
OWNER: Chris 'The Bug• Swinefurth 
ATTRIBUTES: Student, Human, Hacker 
ALLOCATION MAP: bug@root (StG·Net) 

Window? What is a window? Well, most IBM users will say it 
is something you throw your computer through! As OSK/OS9 
users we have the POWER to use windows. Most ''messy•' DOS 
users do not! We can play chess in one window while 
downloading the daily news in another and even yet in 
another window something else and so forth. The 
possiblities of windows are endless! It doesn't matter what 
you use computers for, windows will prove addicting! ''But 
how do you make and use windows?'' 

In OS9 level 2 running on the CoCo3 making windows is easy, 
but in OSK windows have not yet been widely standardized. 

We do have a form of windows in OSK, but they don't have all 
the graphics support as OS9 Level 2 coco windows. There is 
hope · even as I type Kevin Darling is busy hacking away at 
his keyboard writing new window drivers for OSK! We're all 
rooting (and waiting) for you Kevin!!! 

In the meantime I'll explain OS9 Level 2 CoCo 3 Windows. It 
is very easy to make a window! Anybody can do it. All you 
have to do is tell OS9 to attach and set the window. There 
are two main ways to begin: (1) Attach the window, via the 
!$attach call in assembly or the Iniz command from shell, to 
the active window queue, a list of all the active windows. 
Or, (2) Open a path to the window, via the !$Open call. 

After you open the window either by ''inizing'' it or 
opening a path to it, you make the window custom or use the 
window data in the device descriptor. If you want to use 
the data in the device descriptor all you have to do is send 
the OS9 Select codes to the window. You can do this by 
typing ''Display 18 21'' from shell or writing $1B $21 to 
the window via the OS9 ISWrite call. You can also write 
anything out to the window, but most people just send 
select. 

If you want a custom window you need to send the DWSet OS9 
display codes to the window. The parameters for DWSet are 
as follows: 

DWSet:= 1B 20 typ lex ley szx szy forclr bakclr brdclr 

Type, called the window type, is the kind of window OS9 will 
make. Seven different kinds of windows are described in the 
following list: 

Window Type Numbers for OS-9 Level 2 CoCo 3 

No. Cots. Rows. Colrs. Graph. Res. M~. 

1 40 24 16 ·· Text ·· 2K 
2 80 24 16 ·· Text ·· 4K 
5 80 24 02 640x192 16K 
6 40 24 04 320x192 16K 
7 80 24 04 640x192 32K 
8 40 24 16 320x192 32K 

In addition, one more window type, VDG, exists. Look in 
upcoming issues of the OSKer for an article explaining in 
more detail VDG windows. The lex and Icy args are the X and 
Y coordinates, in chars, for the upper left corner of the 
screen. Lex is the number, from the upper left corner, of 
chars across, the columns, of the window. Ley is the number 
of lines down, rows. The window CANNOT be bigger than the 
screen. Also, make sure that windows do not overlap. There 

is a way to overlap windows, but that will be in a future 
article. 

The forclr, bakclr, and brdclr are the colors of the window 
(foreground, background, and border) the window originally 
begins with. The last step is to write something out to the 
window. Usually you will send the Select call ($1B $21) so 
the window you just created will become the active window. 

The Select call is like the CLEAR key • it makes the window 
that it was written out to the current active window, but 
only if Stdln is the current active window. For example, if 
I have a program running on /Term, open up a path to /W1, 
and I write the Select call on that path, W1 would ''pop'' 
up on my screen. This way Pop can make the window it just 
made come up on the users screen · instead of having the 
user press CLEAR until they got to the new window. 

The program 'Pop' is a utility that enables you to make a 
window of any kind you want. 'Pop' makes all of its windows 
full size acording to their window type number. The user 
tells 'Pop' what window type he want and gets the next 
available window and DWSets and Selects the window. Finally 
it chains a process (or if no name was specified, a shell) 
to the window. 

First, 'Pop' figures out what type of window the user wants. 
Then, 'Pop' opens a path to the next available window, via 
the wild card window. Opening a path to the wild card 
window, /W, tells OS9 to get the next window not currently 
being used. Pop then writes the DWSet call out to the new 
window. Next, Pop sends the Select call to the window. So, 
the new window ''pops'' up on the users screen. Pop, then, 
forks label. Finally Pop chains to the command that the 
user specified, or Shell if no command was given. 

Before 'Pop' chains the process it tries to fork a program 
named 'label'. label is a program that ''steals'' the top 
line of the window for a label and prints the name of window 
on it. Label is not required for 'Pop' · if it is not found 
'Pop' will just go on. Label will be printed in an upcoming 
issue. 

Using Pop is easy. The options are all preceded by a dash. 
The options are: ·l ·c ·#. The ·l option tells Pop not to 
fork Label before chaining. The ·c option tells Pop to 
''pop'' the current window instead of grabing a new one. 
Pop does this by DWEnding the window before DWSetting it 
back. The ·# option is the number of the window type the 
user wants Pop to make. If this is omitted Pop defaults to 
2, an 80x24 full size screen. The options can come one 
right after the other or be preceded by their own dash; Pop 
does not care. The last thing on the command line is the 
optional name of another command to chain to besides Shell. 
If running Pop from a Shell you need to put an"&' after all 
the arguments. This is because Shell does a wait call after 
it forks a process and Pop does not return to its parent 
until the program it chained to dies. 

The program 'Type' that appeared in the June 1990 issue of 
the Rainbow page 36 was written by me also, and has a bug. 
The bug was NOT part of the code I submitted, but inside a 
modification the Rainbow did to my code prior to printing. 
The bug is on page 38, in the first and only while loop in 
the program. The line looks like this: 

while(·argc > 0 && (*++argv)[OJ == '·') { 

The bug is in the ·argc part of the line. It should read: 

Sector 7 



while(--argc && (*++)argv[O] == ·-•) ( 

The bug is probably a typesetting error 
and not the Rainbow's fault. Also, as 
any experienced programer can tell you 
the '> o• part of the code is 
unnecessary, it will work just as well 
without it. 

Another version of Pop comes with the 
StG Login package. I rewrote 'Pop' to 
include the -c option, to fix the bug in 
Pop that only allowed windows W1-W9, and 
added better command line argument 
processing. One more version of Pop 
exists that I have not released, but 
hope to soon. This version supports the 
Popping of a VDG window! There are still 
a few bugs in it, and the size of it 
made it unprintable, but if anyone wants 
it drop me a line at root or, after 
Febuary 1991, at Mainline. 

(Editor's note: Chris is reachable as 
Bug@Root, which is the main node of StG­
net. Chris will be putting his own 
system online soon, at which point he 
will be reachable as Sysop@Mailline.) 

'Pop' is well commented and has no 
documented errors. Just type it in and 
assemble it with ·asm pop o•. You don't 
need any special files (except the 
OS9Defs file> to assemble 'Pop', and the 
source code makes good reading for the 
best programmer or just a starting 
novice. After all I always say good 
source code is better reading than a 
good book anyway <grin>. You should be 
able to read the comments and figure out 
what is going on in the program. Look 
forward to seeing many programs and 
articles in OSKer from me, The Bug. 

* Pop - Make/Change a window and possibly fork a process to it 
* By: The Bug 1990 
* R.R. 3 Box 321 
* 
* 
* 
* 
* 
• 
• 

Elwood, IN 46036 
Bug@Root 
Voice: 317-552-5707 

Public Domain 1990, By: Chris Swinefurth 

* USAGE: 
* Pop (·cl#} {command ••• } 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

·c = remake current window 
-l = no label 
-# = window type (1-8) def=2 

default command is shell 

-c will make Pop destroy and recreate the current window 
-l will tell Pop NOT to fork Label before chaining to command 
·# is the window type that the user wants Pop to make or change 

the current type to. Pop will default to type 2 if not specified 
Pop will chain to command after making the window and optionaly 

forking Label. Shell will be forked if no other command is 
specified. Command MUST come after all other parameters on the 
command l i ne. 

nam Pop 
ttl Make/Change a window and possibly fork a process to it 

ifp1 
use /dd/defs/OS9Defs 
endc 

* module header 
mod modend,modnam,typlng,attrev,start,datsiz 

typing set Prgrm+Objct 
attrev set ReEnt+1 

* Data Space 
cllcod rmb 
wintyp rmb 
wnlocx rmb 
wnlocy rmb 
wnsizx rmb 
wnsizy rmb 
forclr rmb 
bakclr rmb 
brdclr rmb 

2 this is a wild card varible for os9 display codes 
1 this is the varible that holds the window type that pop makes 

this is the location of the upper left corner - x cordinate 
· y cordinate 

this holds the number of columns the window has 
this holds the number of row in the window 
this holds the foreground color of the window - pop uses white 

·· background color of the window- pop user black 
•• border color of the window 

* Pop uses the last char in the name of the window minus 48 for the border 
*color. i.e. window=W2; border color is 2 

lblflg rmb 
curwin rmb 

this is a flag that tells pop whether or not to fork label 
this flag tells pop whether or not to pop the current window 

cmdadr rmb 2 this is the address of the command pop will chain to 

plymem rmb 128 this is play mem. that pop uses for the ss.devnam call 
stkmem rmb 255 stack memory 

datsiz equ 

modnam fcs 
feb 

Size in bytes of the data space; for the module header 

/Pop/ 
S04 

module name 
edition number 

* Help message (Pop -?) 
hlpmsg fcc /Pop (-cl#} (command ••• }/ 

feb SOD 
fcc 1 ·c = change the current window/ 
feb SOD 

Sector 8 



fcc I -L =no label/ 
feb SOD 
fcc 1 -# = window type (1-8) def=2/ 
feb SOD 
fcc I default command is Shell/ 
feb SOD 
feb SOD 
fcc /PO 1990 By Chris Swinefurth/ 
feb SOD 
feb SOO 

* Bad window type message (Pop -3 I Pop -4) 
badmsg fcc /Pop:nonexistant window type/ 

feb SOD 

defcmd fcc /Shell/ Name of the default command 
feb SOD 

lblcmd fcc /Label/ Name of the Label command 
feb SOD 

defwin fcc '/W' Name of the default window descriptor 
feb SOD 

* Start of Pop 
start clra clear A 

inca set A to 
sta lblflg pop defaults to forking label 
inca Set A to 2 
sta wintyp pop has a default window type of 2 
clr curwin clear flag to change the current window; default is off 

bra getarg branch to get first byte of the parameter string 

* pop branches past the gnxarg to getarg to avoid addvancing the pointer of X 
* if the pointer was advanced and the user gave pop a command then pop would 
*chain to the second char on of the command string. i.e. Pop Dir 
*would make pop chain to ''ir''; by branching past the Ida ,x+ pop avoids this 

gnxarg lda ,x+ just advance X 
getarg lda ,x load A with the byte pointed to by X 

crnpa #SOD test for end of line 
lbeq ldxcmd if eol there nust not be a command so, branch an load shell 

cmpa #$20 test A for space 
beq gnxarg if A is a space get next arg 

crnpa #'- test A for a dash 
bne mainlp if a is not a dash then it MUST be the first char of command 

lda ,x+ load A with char at X and advance X 

* I threw away one copy of A, because it contained dash; 
* this is so I can get past the dash an get the option after the dash 
nxtarg lda ,x+ 

crnpa #$20 test A for space and if it's space get the byte 
beq getarg 
cmpa #SOD test for end of line 
beq ldxcmd if end of line default command is shell 

crnpa #'? test for '-?' 
beq helpme if user wants help message; give it to them 

* I or'ed the byte in A by S20 because that will clear the 6th bit and 
* the sixth bit is always set for a number and lower case letter 
* this way I won't have to test each char for upper and lower case 

ora #$20 A now has a lower case letter or number in it 

cmpa #'l test for ·-l'; -l tells pop not to fork label 

Sector 9 

FILE DESCRIPTOR: Editors_Ramblings 
OWNER: Scott Griepentrog 
ATTRIBUTES: Editor, OS9 Freak 
ALLOCATION MAP: Sysop@Root (StG-Net), 
72427,335QCIS, StG@hummer.iupui.edu 

Welcome to the first issue of this new 
monthly magazine for OSK (059/68000) and 
059 users. Because 059 and OSK are 
essentially the same operating system, 
just on different processors, I will tend 
to use OSK (as it is more powerful) to 
represent both. 

This is a very exciting time for 
everybody! With new computers and software 
being produced, the OSK market is about to 
take a flying leap over some tall 
expectations - and I think I speak for the 
majority when I say it's about time. 
Everyone who I've ever met that has gotten 
into OSK has gotten behind it. In fact, 
most 05K'ers (I say ·oscars') have a dim 
view of M5D05, going as far as comparing 
it to RSD05 on the CoCo. 

Let's face it, we have in 05K the best 
_designed_ operating system- although not 
the most supported, or even recognized. 
It's got all the multi-tasking and multi­
user (and now nulti-media) capabilities of 
Unix, which the so-called experts say that 
the software industry is going to move to 
eventually, but 05K has several major 
advantages. It is faster and more 
effecient (being written in assembly) and 
has built-in record locking and other 
real-time processing features. I mean, we 
already have what the rest of the world is 
trying to do with the likes of OS/2. 

Hey, it's our little secret- but not for 
long. Comparing 05K to Unix, MSDOS, OS/2 
<he-he), etc., one can only conclude that 
once we have a sufficient software base to 
attract the average user, 05K is going to 
take over as the new "standard' simply 
because it's best. When they where 
looking for an operating system for CD-I 
(Compact Disk Interactive), they had some 
very strict requirements - all of which 
05K met easily. I take this as a sign 
that the inevitable is already happening -
and I think that the reason CD-I hasn't 
taken off nuch as yet is because of it's 
high price tag. 

So it is up to us - the developers, the 
midnight hackers, the weekend programmers, 
the students, and everybody else who 
believes in OSK to band together to push 
it to the top. Create new hardware, new 
software, and a new set of standards for 
the rest of the industry to gawk at. We 
have the technology, we have some of the 
best brains, and we have the operating 
system. Go forth ye programs and 
nul tiply ••• 

And that, my friends, is the reason this 



magazine was created. 

But it was also created to spread the news 
to those who have not yet become 
believers, and also to keep information 
flowing from the developers to the end 
users. To spread the latest and greatest 
happenings in our corner of the universe 
throughout the known galaxy of computing 
stardom •.• 

Hey, have I started rambling yet? 

p.s. pardon the abundunce of articles 
written by yours truly, but we gotta start 
somewhere. Get your articles in Con any 
subject, OS9 or OSK) and see if you can 
drown me out eh? See your name up in 
lights ••. well, black ink anyways. Plus, 
get six months of the OSKer for free if we 
print your article or program! 

FILE DESCRIPTOR: Flame_ON 
OWNER: Scott Griepentrog 
ATTRIBUTES: Editor, Publicly Executable 
ALLOCATION MAP: Sysop@Root (StG-Net), 
72427,335iCIS, StGQhummer.iupui.edu 

Somebody got a match? 

In this regular section, readers are 
welcome to flame on (or off) about 
something they take exception to. To 
start it off, I present something that 
really ticks me off. As with all posted 
smoking allowed areas, all statements are 
op1n1ons of the individual doing the 
smoking, and should be taken as such. 

Like Unix, we have in OS9 and OSK the 
capability to tag each stored file with 
what person is responsible for it. In 
the case where only one person is using 
the system, this features doesn't have 
much use. But if you allow someone else 
access to your machine, and you want that 
person to access only certain files and 
commands, it becomes a very powerful 
feature indeed. Just ask somebody who 
runs a login system (BBS) with several 
hundered users. 

When they (Microware) created OSK in the 
image of OS9, they left the filesystem 
(the way files are stored on disk> alone. 
This way, all OS9 systems can read OSK 
disks, and all OSK systems can read 059 
disks (provided the disk formats are 
compatible). That was a really good idea 
to keep compatibility with the old 
format. 

But they did change user numbers in OSK -
in the process descriptor that is. The 
process descriptor contains information 
controlling every program running in the 
system (see the command procs). Each 
process has a user number, which is 
attached to each file it creates. This 

bne arg.c if not -l branch over the clear label flag 
clr lblflg user doesn't want Pop to call label; clear label flag 

arg.c cmpa #'c test for -c; -c tells pop to DWEnd the window and remake it 
bne arg.1 if not -c branch to the next test 
inc curwin set current window flag 

*setting curwin tells pop not open a new window, and to OWEnd the current one 

arg.1 cmpa #'1 test for -1; pop needs to see if the arg is a number or what 
bcs nxtarg if lower get next arg; this arg is bogus; no error 
cmpa #'8 top boundry for number is 8 
bhi nxtarg if higher get next erg; bogus arg; no error 

* since 059 has no window for types 3 and 4 test for them and print help 
*message and exit if user tells pop to make type 3 or 4 window. The program 
* Type that appeared in the June 1990 issue of the Rainbow supported type 3&4 
* windows; type 3 was a 38 column window and type 4 was a 106 column window 
* Type 3 was made by setting wnlocx to 2 instead of zero. Type 4 was made 
*by using the small graphics font on a type 7 window. 

cmpa #'3 test for -3 
beq bdtype 
cmpa # 14 test for -4 
beq bdtype 

suba #$30 make ascii number a number value 
sta wintyp user wants a window type other than 2; store it in wintyp 
bra nxtarg get the next arg 

* Help Message Routine 
helpme leax hlpmsg,pcr load X with address of the help message 
getchr lda ,x load A with char at X 

lbeq gdexit if A=zero do an exit with no error 
* zero marks the end of the help message 

*Write Line stops writting when it reaches SOD or the amount of chars to write 
*the amount of chars to write is always 80 because no one line of the help 
* message is longer than 80 chars 

ldy #$0050 load X with 80; max number of chars to write 
Ida #$02 load A with StdErr - perfered over StdOut for help message 
os9 iSwritln write a line of the help message 
lbcs bdexit if an error occurs while writing exit with error 

*this routine advances past the end of line char 
nxtchr Ida ,x+ load A with the char in X 

cmpa #SOD Test A for End Of Line Char 
bne nxtchr if not End Of Line get the next char 
bra getchr do routine over aagain 

* this routine prints the message that the user gave type a bad window number 
bdtype leax badmsg,pcr load X with address of bad option message 

ldy #$0050 load Y with 80 
Ida #$02 load A with StdErr 
os9 i$writln write the string 
lbcs bdexit if error writting error string; exit with error 
bra helpme print user help message 

* this is the DWEnd routine 
endwin ldd #S1824 load D with DWEnd codes 

std cllcod storeD in cllcod varible 

leax ,u load X with address of varibles; cllcod is the first varible 
ldy #$0002 load Y with number ot bytes to write 
lda #$01 write DWEnd to StdOut 
os9 iSwrite with DWEnd to window; this will destroy current window 
rts return to routine that DWSets window 

* Main Routine 
ldxcmd leax defcmd,pcr load X with address of the default command; Shell 
mainlp stx cmdadr store the address of the command to chain to in cmdadr 

Sector 10 



*If the user wants to ''pop'' the current window don't close StdOut, and 
* branch to routine to get window name. 

lda curwin load A with current window flag 
bne getnam if curwin flag is set branch to getnam 

*Pop closes StdOut and opens a path to the wild card window. Since OS9 
* assignes the lowest path number available when it opens a path StdOut 
* is now an open path to the next available window. later Pop will dup 
* StdOut to Stdln and StdErr. 

lda #$01 load A with StdOut 
os9 iSclose close StdOut 
lbcs bdexit if error in closing StdOut exit with error 
leax defwin,pcr load X with address of default window desriptor name 
lda #$03 load A with read/write attr's for Open call 
os9 iSopen open next available window as StdOut 
lbcs bdexit if error opening window; exit with error 

* Pop needs the name of the window so it can make the window border the proper 
* color. 
getnam leax plymem,u load X with address of the play memory 

lda #$01 load A with StdOut 
ldb #SOE load B with SS.DevNm code 
os9 iSgetstt get the current window name in plymem 
lbcs bdexit if error pulling name exit with error 

* Pop usses the last char in the name of the window to determine the border 
* color. So, this next routine finds the last char of the name. The last char 
* has the high order bit set. Since Pop uses the last char if the window name 
* is W1 then the border color will be 1, and if the window name is W27 then the 
*border color will be 7 not 27. An intresting thing is some window have less 
* than 16 colors, but the border can be any one of the 16 palletes. This allows 
* a two color window, such as window type 5 to have 3 colors on the screen. 
pulchr lda ,x+ load A with char at X 

bpl pulchr if char at A isn't negative get next char 
anda #S7F make A a positive 
suba #$30 make char in A a number 
sta brdclr store window number for border color 

* If the curwin flag is set then the user wants to pop the current window. 
* So, branch to the subroutine that DWEnds the window. 

lda curwin load A with flag for current window 
bsr endwin if current window flag is set; destory current window 

* This routine sets the vribles according to the window type the user set. 
* Then it makes the window on the path 5td0ut. If the DWSet routine has been 
* called via the curwin flag being set this routine remakes the window. 

ldd #$1820 load D with DWSet and store codes in cllcod 
std cllcod 
clr wnlocx 
clr wnlocy 
lda #$50 load A with 80 and store 80 in wnsizx 
sta wnsizx 
lda #$18 load A with 24; Pop only supports 24 lines screens 
sta wnsizy 
clr forclr set the foreground color to white 
lda #$02 load A with 2 to set bacrground color to black 
sta bakclr 

* These next routines set 40 columns for window types 1,6,and 8 
ldb #$28 load B with 40; some windows use 40 columns instead of 80 
lda wintyp load A with the window type number 
Cqla #$01 
bne Cql.6 
stb wnsizx 

Cql. 6 Cqla #$06 
bne Cql.8 
stb wnsizx 

Sector 11 

is how you can tell if Joe Hacker created 
that oddly named file in your cmds 
directory •••. 

The user number in 059 is 2 bytes long 
(0-65535). It is stored that way in the 
process descriptor, and the same way in 
the file descriptor segment for each 
file. In fact, there is only space on 
disk for the two bytes · it cannot be 
expanded without departing from the 
standard set forth by 059. 

The user number in OSK is 4 bytes long. 
That's nearly half a billion different 
combinations! Which is an iqlrovement, 
right? But how do you fit those 4 bytes 
into the 2 byte space on disk? How do you 
fit 4,294,967,296 into 65,536? When a 
user creates a file, how do you keep 
track of which user created it! 

To solve this problem, and help keep 
track of so many different user numbers, 
the 4-byte user number format in OSK was 
split into two 2-byte numbers. The first 
one is the GROUP m.1rlber, and the second 
the USER number. In the password file 
they are separated by a dot, so that 
Group 1, User 1 is specified as 1.1. 

Okay, this is cool. So you take the USER 
number and use it to tag files when they 
are created, but you also allow that user 
to access files owned by the GROUP 
number. This way the same old user 
number format (0-65535) is retained, 
while ·adding a pretty darn nice feature. 
You can have a particular user number 
which is really a set of files for a 
group of people to access (like working 
on the same project). You can add any 
person to the group at any time - just 
change their group number. Hey, this is 
great! A really useful, neat feature! 

But that's not what they did. 

When converting the 4-byte user number 
attached to the process into the 2·byte 
space on disk, they take the lower byte 
from the GROUP and the USER numbers and 
stick it together to form the user number 
on disk. The higher byte of each is 
thrown away. 

let's take a closer look at this shall 
we? Group 1, User 1 becomes the user 
number 257 on disk (and to OS9! ). But, 
Group 1, User 257 also becomes number 
257! These two users might as well be the 
same! The higher byte is dropped -
meaning that there are really only 256 
distinct user numbers. But the same goes 
for the Group number. Group 257, User 1 
is also converted to number 257. Which 
means that there are only 256 groups too! 
Wait a sec, that means we're right back 
to 256 x 256 = 65536 users! So why the 
heck did they make this change? 



The idea was to add this group number to 
allow a collection of people access to each 
other's files to work on the same project. 
To do it, they changed the way that 'public' 
files work. You can take the public access 
of your file, and nobody else can touch it. 
That is, in OS9. In OSK, anybody with your 
same group number can still access it. 
Which means that if you want your files 
private from everybody else you have to be 
given your own group number. But remember 
there's only 256 of them! 

So we've gone from having 65,536 separate 
users to only 256. What more could they 
have mussed up? Well, get this. Group 256, 
user 256 converts to ••• 0. That's right, 
that user not only has access to everything, 
but you can't tell what he's done! He might 
just as well be sysop! But is there any 
warning about this? No, they leave you to 
discover that major security loophole 
yourself! 

The bottom line? There are still only 65,536 
users, but only 256 private file areas. 
Don't use Group or User numbers above 255, 
and be careful what users you put in the 
same group. If you have to move somebody 
from one group to another, you have to 
change the owner number of all their files. 
Watch out for converting user files from 
OS9, the numbers won't match up. 

While some will be quick to point out that 
few people will really need more than 256 
private file areas, this problem still 
plagues those who do. For example, it is 
mpossible to OSK use in a college 
environment where many different student 
file areas must be kept separate without 
hacking the system. I really think that was 
a mistake. 

Now I can't agree enough with 99% of what 
Microware has done with 059, but this is 
embarrasing. I really have to wonder at 
what could possibly move them to make such 
an obvious break from their previously 
wonderful system design track record. 

Next Time: Proper Formatting of C Source 
Code 

cmp.8 cmpa #$08 
bne cmp.5 
stb wnsizx 

* Window type 5 only has 2 colors on screen. So, Pop must make the background 
* color 1 not 2 
cmp.5 cmpa #$05 

bne wrtwin 
dec bakclr 

* This routine makes the window via the DWSet call. 
wrtwin leax ,u load X with address of the data space 

ldy #SOOOA load Y with 10; 10 is the number of bytes to write 
lda #$01 Load A with StdOut path 
os9 iSwrite write the DWSet call to StdOut 
bcs bdexit 

*Select the window via the OS9 Select call. So, the window just made will 
* ··pop' 1 up on the user's screen. 

ldd #$1821 load 0 with Select codes and store them in cllcod 
std cllcod 
leax ,u load X with address of data space 
ldy #$0002 two bytes to be written 
lda #$01 load A with StdOut 
os9 iSwrite write the Select codes 
bcs bdexit 

* This next routine close the Stdln path and dups the StdOut path. So, Stdln 
* not is coming from the newly made window. 

Ida #$00 load A with Stdln path, and close Stdln 
os9 ISclose 
bcs bdexit 
Ida #$01 load A with StdOut, and dup StdOut to Stdln 
os9 iSdup 
bcs bdexit 

* This next routine closes StdErr and dups StdOut to StdErr. StdErr will now 
* be to the newly made window. 

lda #$02 load A with StdErr, and close StdErr 
os9 iSclose 
bcs bdexit 
lda #$01 Load A with StdOut, and duplicate StdOut to StdErr 
os9 iSdup 
bcs bdexit 

* Test the lblflg and branch over the fork call to chain if clear 
lda lblflg 
beq chain 

* This is the routine to fork label 
pshs u push the address of the data space on the stack 
ldy #$0001 load Y with 1; the size of the parameter area 
leax lblcmd,pcr load X with the address of the Label command 
tfr x,u transfer address of command to fork to U register 

fndeol Ida ,u load A with char at U 
cmpa #SOD test A for end of line 
beq forkit if A is eol fork label 
Ida ,u+ get next char in A from U 
cmpa #$20 test A for space 
bne fndeol if not A space get next char 

forkit ldd #$1100 load D with module attributes 
os9 fSfork fork the label command 
bcs bdexit if error forking label exit with error 

* Wait for Label to exit 
puts u get the data space address off the stack 
os9 fSwait wait for Label to exit 
bcs bdexit if an error occurs while waiting! exit with error 

Sector 12 



* chain to command 
chain lda curwin load A with current window flag 

bne gdexit if the curwin flag is set user 
doesn't want to chain 

leax stkmem,u load X with address of the 
stack memory 

tfr x,s put address of stack in stack pointer 
ldy #$DOFF load Y with 256 
ldx cmdadr load X with address of the command 
tfr x,u put command address in U 

tstchar lda ,u load A with char at U 
cmpa #SOD test A for e o l 
beq chncmd if e o l chain 
lda ,u+ load A with next char 
cmpa #$20 
bne tstchar 

chncmd ldd #$1100 load D with module attributes 
os9 f$chain chain to command 

gdexit clrb clear B for exit without error 
bdexit os9 fSexit exit 

emod module CRC 
modend equ * bottom of module 

FILE DESCRIPTOR: Goto_Shell 
OWNER: Scott Griepentrog 
ATTRIBUTES: Editor, Sea Shell'er from way back 
ALLOCATION MAP: Sysop@Root (StG-Net), 
72427,335@CIS, StG@hummer.iupui.edu 

As luck would have it, OS9 is a little lack in 
neat shell utilities. Things like the Unix Cshell 
has- alias, if/then, goto, etc. Hey, we only 
just got (in OSK) the shell environment variables 
from Unix, but we still don't have a goto? 

Well, as luck would also have it, there's a way to 
write a goto, in C (or most any other language), 
and I happen to have done it. Actually, the idea 
hit me when I was watching the MM1 back at the 
Chicago Fest earlier this year. Somebody had 
rigged a neat little hack to allow a shell script 
to repeat forever - handy for running those fancy 
graphics displays. 

The program was actually nothing more than a 
lseek() (F$SEEK) call, on path #0 (stdin, 
therefore the shell script itself) back to the 
beginning of the file. Place the program at the 
end of the script, and it rewinds the file to the 
beginning - and the shell starts receiving the 
list of command all over again. 

The program below, named goto, has a little extra 
feature. It actually seeks out a particular line 
in the file you want to jump to. To name a line 
to jump to, use the * (which is ignored by the 
shell) and follow it with a word. Then do a goto 
with that word, and the shell will jump to that 
point. For example: 

*repeat 
date -m 
sleep 60 
goto repeat 

This will display the date and time, wait a second, and repeat. 
Again, and again. Now I admit that a goto alone has practically no 
use except for making an endless loop, but I am working on an if (yup, 
later issue), which will liven things up a bit. 

The following code was written and tested on OSK, but should work in 
059 just as well. 

!* goto (label) 
pd 90104121 by StG 

*I 

#define ERR (-1) 
#define BUFSIZ 256 

extern int errno; 

char find[BUFSIZJ; 
char buf[BUFSIZJ; 

main(argc,argv) 
char **argv; 
{ 

if (l*++argv) 
{ 

} 

writeln(1,••use: goto (label) - shell script use only\n'',80); 
exit(O); 

I* build string to look for in find *I 
strcpy(find, ''*'' ); 
strcat(find,*argv); 

I* rewind script to beginning *I 
if (lseek(O,OL,O)==ERR) 
{ 

} 

I* should get error if seek is attempted on SCF *I 
writeln(2,• 'GOTO: use in shell script only\n'',80); 
exi t(errno); 

I* and look for 'find' */ 
while (readln(O,buf,BUFSIZ)>Q) 
{ 

} 

I* continue until we find line that matches *I 
if (strncmp(buf,find,strlen(find))) continue; 
if (*(buf+strlen(find))!='\n') continue; 

I* found our label - just exit normally 
and shell will process next line of script*/ 
exit(O); 

I* didn't find label - display message and exit wlerror *I 
strcpy(buf,''GOTO: label not found: ''); 
strcat(buf,*argv); 
strcat(buf, ''\n' '); 
writeln(2,buf,80); 

Sector 13 



FILE DESCRIPTOR: Hacker_Contest 
OWNER: Scott Griepentrog 
ATTRIBUTES: Editor, Hacker 
ALLOCATION MAP: Sysop@Root (StG-Net), 72427,335~CJS, 

StG~hummer.iupui.edu 

There are many definitions of the term 'hacker•. The one I 
prefer is 'person who spends more time than he should 
hacking at the keyboard of a computer•. Now there are those 
that would claim membership in hackerdom by breaking into 
and crashing computers, or other such frown-upon acts, but 
these people should be termed malicious hackers, or 
trashers. Or phreakers if they are fooling with Ma Bell. 
But I claim to be a 'benign' hacker. I could probably get 
into a system if I really wanted to, but even if I were to 
wouldn't do anything to it. Just let the sysop know of the 
security hole. 

So being a true hacker is more a case of being able to 
figure things out, invent new ways of doing things, etc. 
Not just happening to know a back door and the command for 
shutting the system down. Come up with a neat way of doing 
something (often called a neat 'hack'), and you too can call 
yourself a REAL hacker. And since there's no better 
challenge than to write a program, I present the following 
problem. 

Write a program that outputs the numbers 1 through 10 in a 
random order, but using each number once, and only once. 

Sounds easy eh? One is tempted to just write a routine that 
goes through a loop 1 through 10, grabbing random numbers 
and checking off the ones you have used (so as not to repeat 
them) as you go. But if you expand that routine to do say, 
1000 numbers, you will find that it begins to slow to a 
crawl as it aproaches the end of the loop (although on an 
68k machine you may have to increase that even more to see 
it). The chances of finding the one number it has left at 
the end are 1 out of 1000, which means it spends a lot of 
time looking. So how can it be done that would improve the 
speed? That is the challenge. Get out your keyboard and 
start hacking. Write your routine in Basic09, C, or even 
RS-BASJC. C of course is my favorite, but use whatever you 
have available. 

The best solution each month will be printed, and that 
person will get a free year's subscription to the OSKer. 
Also, you can get your picture on the front cover as the 
'Hacker King'. Submit your code via mail to the OSKer post 
office box (see inside front cover> or via e-mail to any of 
my adresses listed above. 

Good Luck! 

Example of the worst case program: 

I* 
* rnd(x), returns 0-(x-1) pseudo-randomly 
* this random routine really sucks, but is just as an 

example 
* in case your library doesn't have one 

*I 
rnd(x) 
int x; 
{ 

static long seed=25849; 

seed*=?; 
seed+=3; 

} 

if (seed<O) seed=-seed; 
return(seed%x>; 

I* try setting this to 1000! */ 
#define MAX 10 

I* C happens to zero globally declared stuff *I 
int array[MAXl; 

main() 
{ 

} 

int i, r; 

I* loop to max *I 
i=O; 
while (i<MAX) 
{ 

} 

J* get rnd's until find one not used *I 
do r=rnd(MAX>; 
while (array[r]); 

I* print it out and increment use flag *I 
printf(' '%d\n' ', r+1 ); 
array [r] ++; 

i++; 

FILE DESCRIPTOR: Kevin_Darling_Speaks 
OWNER: Scott Griepentrog 
ATTRIBUTES: Editor, Humble Before The Great Kevin 
ALLOCATION MAP: Sysop@Root (StG-Net), 72427,335~CJS, 
StG~hummer.iupui.edu 

Kevin Darling, the famous guru of OS9, has graced my humble 
magazine with an interview. Well, actually, Keven is just 
pretty darn smart, and is one of the friendliest people 
you'd ever want to meet. But his name is up there in 
lights, or should be, and I took this chance to find out 
why, and what he's up to these days. 

As our conversation was recorded on a super high quality 
Radio Shack answering machine that is not old, just classic, 
I later had lots of fun transcribing what Keven said out 
from under the static and warblies. So if you come across 
something that doesn't sound right, it probably isn't. 
Words I couldn't decipher at all are marked with [?], and 
larger holes with [ •.• ]. And anything in brackets is 
essentially what was said, or as close as I could figure, 
just not the exact wording. Of course, K: is where Kevin 
has spoken, and S: is where I sneaked in a few words. 
Enjoy! 

K: The biggest thing that's held back OS9 from wide 
acceptance all these years is not having a graphics 
standard, or even a terminal standard in the old days. 
S: But 059 Lv2 has its own graphics and windowing standard, 
so to speak, so you must be talking about OSK? 
K: Well, 059 in general. The cocos were the only ones to 
have windows for quite some time of course. In Japan, they 
had windows on their 059 machines, but they were totally 
different from ours. 
S: How were they different? 
K: Well, I've not actually seen them, but I know a guy who 
was porting a super graphics program called the egg from 
japanese version to CoCo windows and the project got 

. Sector 14 



cancelled. It's really too bad as it was the most 
astonishing graphics program you've ever seen in your life. 
Had incredible manipulations built into it. 
S: Sounds like the story of 059, lots of great stuff written 
and projects keep getting cancelled. What is it that the 
MBA types have it against us ya know? 
K: <laughs> Politics, politics, politics .•. 
S: Yah. 
K: That's the first thing people ask. Oh, OS9 sounds great, 
but does it have windows? Does it have graphics? You have to 
say, well, yah and no. There are a half dozen packages out 
there you can get. There's CoCo windows, Rave, G·windows, 
MGR which is PO, GKFMAN, and another one or two somewhere. 
But there's no one standard. And here you are telling 
everybody [that with OS9l you can take you disks from 
Macintosh (with compatible drives) to an Atari ST, to an 
Amiga, and run the same binary program, and hey, this is 
real! y cool. •. 
S: Yah! The same program because all those machines use the 
68k processor. That is what we need. 
K: And if you have a PC drive on the MAC than you can 
actually the same disk from machine to machine. That's very 
powerful stuff and what an incredible market that would be, 
but with no standard graphics, you're [out of luck]. Now 
you could use a graphics termcap type of deal ••. 
S: But that gets into some complex stuff .•. 
K: Now there are people who have done that. I know a guy 
who has ported PC programs to OS9 and he uses the same 
graphics termcap so it will work on anything. Now thats 
kinda OS9-like in a way •.• 
S: Is it compatible with the termcap from unix? 
K: Yah, it's an add-on to that. I think it's something 
that's already been done under Unix. Now what's funny is 
that even like three years ago, two years ago there was a 
huge interest in OS9 building for a while there. 
S: From who? Just the CoCo'ers? 
K: on CompuServe from people with other machines. Whenever 
there's an article in magazine about OS9 we get a lot of 
people come over. In Januaray of 1988 or something there 
was an article in Dr. Dobbs Journal on OS9. Somewhere 
around here I got a master list of places to look for 059 
articles. I collect that kind of information. 
s: Of course! 
K: So when somebody asks me, they've heard of OS9, [I tell 
them] look in Unix world so and so an issue, the title of it 
is ''When Unix is the wrong choice''· 
S: Great title! 
K: And it talks about OS9 being used at NASA. And how for 
any realtime stuff they only use OS9. Actually, that's kind 
of a misnomer because they use their own customized version 
of OS9. They bought a liscense to it. 
S: You mean they re-wrote OS9 for their own use? 
K: Yah, they modified it for their own use. They call it 
PCOS. 
S: It still runs on 68k's though? 
K: Yah 
S: What did they change, do you know? 
K: I have no idea, I really don't. The shuttle 
communication system for instance runs off OS9, or that 
version of OS9. They use the 68010 and they have I think 
it's 200 channels and 130 intercom positions for all the 
technichons for when the shuttle takes off and that machine 
actually takes samples from each of the channels and 
multiplexes them in real time for people who are punched 
into each other. 
S: Cool! Now thats complex! 
K: So anyways, there's been 'waves' of interest in OS9 over 
the years as other systems, like OS/2 was introduced. 
S: Yah, like all the people that go "OS/2's cool, but 
you've already got OS/9? What the heck (is that]?'' 

K: But the first question always was that did it have a 
standard graphics interface, and you have to say no, and 
interest died again. So we've need a graphics standard for 
a long, long, long time. 
S: And you hope to provide that. 
K: And it will be ported to the Amiga, and the Atari. 
S: And all the big 68k machines. 
K: It may be awful hard to port this to the Mac, because 
they're running their windows under the Mac operating 
system. So that's going to be a little bit tougher. [ ... ] 
I would actually like to use Rave, but they didn't really 
design [?J it's really for controlled displays. It's not 
really a multi-screen type of deal. You can't just start a 
new window like you can on the coco and get a shell on it. 
They could modify it to do it, and I actually talked to the 
guys about it before. They're (Microware) interest is still 
mainly [?] I think still 80% of their business is 
controlling [systems? •• ] 
S: The industrial market with doing like, process control 
systems. 
K: One of the interesting things is when all of this new 
[business] with the new machines starting to come out was 
why don't we just go straight to OS-9000. 
S: Now I have never actually seen it, but my opinion of OS· 
9000 is that it just can't be right because it's not running 
on a motorola processor. 
K: Yah, that's my opinion too. But's it's nice, and it 
runs, and a 386 processor is a fast [omitted] processor. 
S: From what I understand though, OS-9000 only runs on a 
386. 
K: Yah, a 386. 
S: Cuz I had heard rumors that they were trying to do it 
[OS9J for the PC, and then for the 286, and this comes out 
and it's 386 only. Like I'm not going to buy a 386 machine 
just to have OS-9000. 
K: Yah, but boy I tell you what, wouldn't it be sweet, cuz 
you can go out and buy a 386 portable now, a laptop. Can 
you imagine running OS-9000, that would be g, ~at. 
S: Well, you could also take an MM1 motherboard and create 
you own portable laptop out of it. 
K: True, but look at all this cheap hardware laying around. 
S: That's the problem, yah. They've already got the 
hardware there. 
K: Yah, and that was the main point. Not only that but you 
automatically have an MSDOS compatible machine at the same 
time. 
S: That's true. But you're not running true OS9, probably, 
because you're running on .•• 
K: Yah, it's 059. 
S: Does the C compiler work the same on it. 
K: Yup. 
S: So for instance a lot of my C programs would work, ported 
over to that machine. So that might not be such a bad way 
to look at [upgrading OS9J. 
K: Especially since 386 machines are coming down real 
quickly. 
S: Yah, I might just do that to have a PC portable. 
K: That automatically gets you into a lot of markets, cuz 
everybody's got a 386 laying around these days, or will be. 
S: Yah, that's true. So that's definately something to look 
at for the future then. 
K: Yah, so, the question was, why didn't we do that, and ••• 
S: That's a good question. 
K: When I was first looking at 05·9000 it wasn't fully 
debugged at the time, and I still think it's not fully 
debugged now. Second, things were a little bit costly at 
the time. And because other than I didn't want to write the 
windowing system in C •.• 
S: Much less hack it in '386 assembly ••• 
K: Exactly. That was the last thing on my mind. Yah, we 

sector 1S 



all love the motorola stuff. 
S: So the decision has been to do the windowing system in 
68k, in 68k assembly. Which is the way to do it because 
that's the way OS9•s done anyway. 
K: Right. 
S: And that's its big advantage over unix is that it doesn't 
have the overhead built in with C compiled programs. 
K: As a matter of fact that's one of the things again 
against OS-9000, because it's written in C. 
S: You're kidding! 
K: Yah, 95% of it is written in C. File managers, 
everything. 
S: So they essentially took OS9 and put it inC? 
K: Exactly. 
S: Ohman. So you're getting some of the benefits of the 
good structure internally of the operating system over unix, 
but you're running into the problem of still having the 
excess overhead built into all your c [software]. 
K: Of course, this depends on two things, one, how good is 
your c compiler. 
S: Yah, well, see, now there's the thing. I did a lot of 
study on that back at Purdue. And the big problem with C 
compilers is that because they compile all the way down to 
object before they link, a lot of assumptions have to be 
made about every function. Every function might be 
recursive, therefore all variables have to be passed on the 
stack. Which means that say you just want to call a little 
function that plays around with your [passed value] and does 
a little calculation, and comes right back to you. Well, 
you've got to pass the variables on the stack every time 
[it's called], which is actually a good deal of overhead. 
mean, you could have just as much overhead code in passing 
the stack as the actual code in the function may have. So 
what will end up happening is that if you're calling this 
function, let's say, one time for every character in a file 
you're processing. Multiply that by the overhead and you've 
easily got half overhead and half program. 
K: Right. Of course if you go to a fast enough processor, 
like where we saw it up at BUSCON (VME standard bus 
convention) in Boston last August I think, or September, 
Microware had OS·9000 running there, and they haad it 
running on two machines. I think a 68020 and a 386. 
S: So OS-9000 also runs on 68k? 
K: It's written in C. It can be ported on anything you 
want. Now that's very handy. Running on a 386 or a 68030 
it's not going to matter if it's running inC because it's 
going to be fast. 
S: But the problem still is you've got to have that fast 
processor. 
K: It smacks of the Intel way of doing things, which is to 
rely on faster hardware to take care of it. 
S: Take care of your lack in software. But that's where we 
have an advantage back in 68k OS9 because we've [well, 
Microware had] done everything in assembly. 
K: However, I refuse to dump on OS·9000, because in 4 years 
we may all push over to it. 
S: I'd rather see it done in assembly first, but yah. 
K: And somebody may eventually take the 386 part and 
optimize it. 
S: Well, not only that, but somebody may take the C compiler 
apart and optimize it. I •ve actually got a design for that. 
K: They also gave the guy who did it (0S·9000) pretty much 
free reign. Very similar to what they did with us on the 
upgrade. So he added in all this stuff like text editing on 
the command line, ala my editor, and a neat way of having 
the buffers shared between SCF and the serial driver. So 
they don't use separate buffers, they use the same interrupt 
driven buffer. 
S: Do what now? [translation: could you please explain that] 
K: Right now, SCF has it's own editing buffer right? The 

driver has it's own interrupt driven buffer to hold the 
[incoming] characters. But it still comunicates between SCF 
and the driver one character at a time. Which is a lot of 
overhead and memory usage. so what he did was if it's an 
interrupt driven driver you can set a bit to tell the SCF to 
share the buffer and where it's at. So like doing an ISREAD 
of 50 bytes SCF can go straight to that buffer and pluck it 
out, update the pointer for the driver, and whosh, ya know. 
S: Major speed increase there, especially if you've got a 
big file coming in on the serial line. 
K: So it's (05·9000) a neat thing. And the memory module 
directory is the neatest thing of all. We've wanted that 
for a long time. 
S: How's that work? 
K: You have a makmdir and a chmdir so you can do ••• 
S: Do what? [translation: huh?] 
K: Makmdir makes a module directory. Say you have several 
people on the system, they're all compiling modules that 
have the same name or something, it doesn't matter because 
you're in a different module directory. 
S: Oh, so you can make your own execution directory like, 
only in memory. 
K: Yah, exactly. So what you can do is a makmdir Scott, and 
only you can see those modules and only you can execute 
them. 
S: That's very cool! Cuz that's always been a problem if 
you've got enough people working in the machine at the same 
time, and somebody's trying to compile something that 
somebody else is trying to use it •.• The guy compiling is 
wondering why the change he just made isn't showing up, and 
the guy using it goes what the [omitted] did this change 
for? 
K: And when you do a mdir you don't see a whole lot of 
modules you don't want to see. 
S: Right, that too. Like I don't need to know about all 
these screwy system modules if I'm just a user. 
[also discussed here was that OS-9000 does not have the same 
disk format, this portion of tape was buggy] 
K: Another question is why we didn't all move to the Amiga. 
At one time, I was all for it, to tell the truth. The 
problem was A: it wasn't readily available, 8: certain 
things about the Amiga drive me nuts. 
s: Like what? 
K: Well, one of them is their bit banger disk driver. 
S: You're kidding? 
K: It's okay, but it's not a regular chip. I wish they used 
a regular, everyday, Western Digital chip like the Atari 
uses. 
S: Oh, they didn't use a compatible chipset for the floppy 
controller. 
K: They actually use a serial to parallel converter. 
S: They bit shifted it out there. 
K: Which means that when you format a disk, you actually 
give it all of the data. 
S: Oh man. 
K: Well, that has a slick idea because you can say, Oh well, 
I can be compatible with any disk format out there right? 
The problem was of course that they did this horribly slow 
because they had to do •.• 
S: all the conversion by the processor. 
K: And track read and write. If you want to write one 
sector, you have to read in the entire track, find and 
modify that sector, and then write the whole track back out. 
S: Ugly! Ohman ••• 
K: Ugly is right. They get around this because of the fact 
that they have DMA and they cache stuff up and things like 
that. But still I didn't like [it] and the worst problem 
was we did not have an OS9 compatible disk driver and I 
don't think there is one yet. So, obviously both OS·9000 
and OS9 have the big problem of compatibility. You can't 

Sector 16 



transfer [omitted] over except by serial port. I'm having a 
great time now because I still use my editor on the CoCo, 
edit up the source code, stick it on the prototype, compile 
it, take the disk, stick it in the HH1, and run it. so I 
like being able to read and write CoCo or ST or HH1 disks, 
take them back and forth between the machines. I like that 
a lot. At least as a beginning. Sooner or later I will be 
sticking my CoCo in the closet. 
S: At the point at which everything you need to do is on the 
HH1. 
K: Exactly. With all the 68k Utilities, and the TOP stuff 
from Germany, I think we won't have a lack of software. As 
far as utilities go. We'll be pretty well taken care of. 
S: It's the big applications that we'll be lacking at first. 
K: Yah, and what [bugged?] everybody on the CoCo of course 
was a lack of space. We have no problems like that now. 
S: That's true, we've got the memory and we've got the SCSI 
for mass disk storage. 
K: And we've got the space for processes, because that's 
something a lot of people say, well, I could port this over, 
but I have to do some tricks to get around the 64k limit. 
And this way, you can edit a half meg file in memory. I 
think in many ways we're kind of chipping away at the damn 
that holds people back. And it's going to really help out. 
I feel a lot less [?l myself. 
S: Now you don't have to be worried so much about memory 
constraints. 
K: Exactly. 
S: At the same time though, all the good experience in doing 
that has probably taught you some good programming skills. 
K: Exactly. The difference on the CoCo was you would write 
something and look at first and foremost at the size 
standpoint. 
S: And the problem is we were trying to play catch-up with 
all the other big machines who didn't have to. 
K: Exactly. So we'll be in much better shape here. I feel 
kinda free myself. 
S: I can quote you on that right? 
K: Yah, you can quote me on that. A lot of people ask me 
that kind of question all the time- What's the difference 
between the two machines, Is it like going back to level 1? 
Well, it would be if you where on a 64k machine. But you're 
not, you're on a 1 meg machine. And those of us who have 
had 512k Atari 's for a long time, we didn't feel 
constricted. And with one meg, you really don't feel 
constricted. Even with possible fragmentation of memory, it 
is so rare a problem, I've never run into it. It's a 
regular OS9, as you know. People are worried about that. 
Mostly, the commands have more options to them. 
S: And they all have the dashes now, like should have. 
K: Yah, and actually we need to have people write some coco 
compatible stuff like that so that people can get used to 
it. I'm sure you've done the same thing I do, you go back 
and type dir -eon the coco and it doesn't [work]. 
S: Yah, I keep doing that. In fact, the coco right now is 
just running the network, and I don't really use it, except 
it's got the modems on it. So unless I'm pulling stuff in 
and out, in which case the first thing I do is slap it on a 
coco 3·1/2 and read it into the Atari. 
K: Of course, some things that we have modified for the CoCo 
over the years I miss. One in paticular is the way we 
modified the shell to execute scripts out of the command 
directory. 
S: Those kinds of things we can re-write a new shell (for 
OSK). 
K: Yah, we will have to re-write a new shell to get some of 
this stuff. But other than that, everybody's always 
worried, no, no, it's very easy. 
S: Very easy to convert, yah. 
K: It really is. 

S: Yah, I've got an article I'm writing in the OSKer that is 
OSK for OS9ers, that covers the basic set of commands and 
what the differences are. Really, in the end it shows, hey, 
there's not that much different. 
K: Hey, somebody a long time ago, maybe it was Frank [Hogg], 
uploaded a file to the OS9 forum on CIS a file that Listed 
the help output of all the commands. Some stuff I've really 
taken to, Like the dsave -er, execute and rewrite over files 
with the same name. I use that a lot when I'm copying stuff 
around. 
S: Really, cuz I'm used to the dircopy. 
K: Things that were a Little bit difficult on the coco 
become a little bit easier here. And probably vice versa 
sometimes. 
S: It's more a case of just getting used to the new options. 
K: Yah, and of course in level 2 it's the same thing, 
everybody put help on all their commands. [the-?] 
S: Yah, all the commands do that in OSK. In fact, I'm more 
peeved with the few commands that people have written for 
OSK already that don't. And what's more I get really 
irritated when I get on Unix and I put a -? on something I 
want to know the options to and the shell barks back at me 
that it can't find?. It's like, argh! Now I gotta go pull 
up that stupid man page and it's going to give me all this 
[omitted] I don't need to know when all I want is the stupid 
options. 
K: And of course the other thing we've done is stepped up 
with disk [cache] and SCSI DHA. And that really helps us. 
S: Yah, so that the through-put even just on floppy is 
faster. 
K: And of course the ghost modules is another big thing. 
S: Now, I really haven't Looked at ghost modules too 
closely. That's where it sticks into memory? 
K: Now you notice a Lot of the stuff that you do now, dir 
and copy ••• 
S: Yah, the first time you run dir or copy it links itself 
into memory and it stays there until you unlink it. 
K: It stays there until it needs the memory. Which is 
never. 
S: Yah, if you've got a meg of memory, it never actually 
needs to unlink them. 
K: I think only once on the Atari, I think the C compiler is 
also ghost modules. I would run a compile and I would have 
all sorts of stuff in memory, and then I need it for 
graphics screens, and that's when it took them off. I was 
suprised cuz it went and I was wondering why. Then I 
relized that it had given up that space. But that only 
happened to me once. I had a whole lot of screens open. Of 
course the other thing is we're going to need more disk 
space, which is [whyl we've got these high density drives. 
When each picture is 64K Long, twice the space of a CoCo 
picture. It's been a good training ground for us. I wonder 
if you could actually compare us to, have you ever read 
Frank Herbert's Dune? 
S: Yah! Well, I •ve watched the movie. I haven't actually 
sat down and read the whole book yet. 
K: All these kind of stories where these people are put on a 
really barren place. They get along there, and when they 
break out to another spot, they're lean and mean, ya know. 
And so we've had excellent training over these years of 
working in small places, doing the best we can with that, 
and optimizing for speed and everything else, while these 
other guys have always had this open space and not had to 
worry. 
S: Yah, and they're programming techniques have been 
sloppier because of it. 
K: Exactly. And so, I think, when you take our same 
techniques that we have done and move the move to the 68000 
we can really, really, speed. 
S: And outperform everything all the other stuff people are 

Sector 17 



doing. We've got the advantage now. It's just a matter of 
time before we're actually built them all up. 
K: And that the other thing, people say it takes years for 
these things to happen. It really does, these big companies 
like IBM, these people have millions of dollars of backing, 
20 people working on a project. Of course they can come up 
with something, ours just takes longer. As I mentioned on 
the OS9 forum the other day the wierd thing about OS9ers is 
they were patient. And if we see something new, we chew it 
over for a couple of years. Will it work out for the next 
50 years. Can I still be running this in the year 2000? A 
lot of us are still running utilities that were written in 
1980. 
S: Yah, like the edit command for 6809. If it wasn't for 
uMacs I would have done something to get that on 68k. 
Because that was my editor. I finally learned uMacs to the 
point where I like it better now. 
K: One of the things that's wierd about OS9 is we're frugal 
about stuff and we don't like to write the same thing twice. 
Not ever. Other people are into instant gratification. 
Which I can understand. Like the PC'ers, who immediately 
bypass the bios and go straight to screen memory. Which has 
caused them no end of trouble over the years. 
S: Yah, you talk to the screen directly and you get faster 
display, but you don't have [operating system] control when 
you try to go multi-user later. 
K: How do you change thousands of programs that are all 
competing against each other to be faster than the other 
guy. 
S: Yah, the bottom line is talking to the hardware is always 
the fastest. But if you don't have that layer, you can't 
switch off programs. 
K: See, the amiga guys are in the same kind of position. 
Most of their programs, so they tell me, go directly to the 
screen hardware. We used to argue with the RSDOS'ers as a 

. matter of fact, they'd say, this program, the same program 
under OS9 runs slower. They'd say, will somebody buy it? 
We'd say, yes, because people are more patient. We realize 
the hardware's going to catch up. The hardware's going to 
get really cool one of these days, and if my stuff still 
works .• ~ Of course now you're going to tell me to implement 
CoCo escape codes, right? But in the main, our stuff is 
written to be device independent. We like that because the 
hardware will always get better. And you can see it even 
now with this stuff. When we move to the 68000 it's a lot 
faster. And Kevin Pease has a 68030 unit running the same 
windows here, his stuff just SCREAMS. so as time goes by, 
we're going to benefit from our device independence. So 
people into instant gratification, people who have to run 
this canned program now, this game now, that's fine. Use 
your PC for that. Use your Atari, use your Commodore, use 
whatever you've got. And I have no beef with those people. 
S: Yah, it's like right now I'm using a desktop publisher on 
the PC. Because it's the only one available that's decent 
enough and will talk to a laser. But I keep thinking in the 
back of my head, what I can do to write one on an OS9 
system. 
K: And now we actually have the freedom, the ways to do it. 
Of course the other main thing is OS9 has been, at last, 
[for?] the hobbiest. We may even have a PC around, like you 
do, to do something specialized like that. But you want to 
have fun, or you want to learn, you use the CoCo or anything 
running OS9. A lot of people on the board use pc's at work, 
but when they come home, they learn and play in their OS9. 
It's a learning experience. I know people who have started 
in OS9, when they got their coco the first they had was OS9. 
They didn't even use RSDOS by the way. 
S: Yah, I actually started in RSDOS and then was doing some 
very OS9-ish things like redirecting i/o by playing around 
in assembly language with the roms in the CoCo. And I was 

in the midst of that project, had most of it completed, when 
I found OS9. It's like, oh, shoot, they've already done all 
this. 
K: Oh, yah, I was the same way. 1 like a lot of people had 
heavily modified the rom. Trouble was, other people 
couldn't use my stuff. When I use OS9, I said, gee, now I 
write something I can share with other people and they can 
add it in, and it will work with everything else. Ya know, 
wow. 
S: And, it was multi-tasking already. So it had some neat 
features we hadn't gotten to. 
K: So these people that start with OS9, and then, say for 
instance, move to MSDOS, they have far fewer problems 
because they're used to a disk operating system. So the 
glitz and the glamor, some people say our programs don't 
have the flair, they don't have the fancy colors on the 
screen and stuff like that. Well, yah, but thats window 
dressing. Most OS9 heavy duty software works great! And 
it's very [proficient?]. It may not have pretty little 
windows, but it works. And it works solidly is the main 
thing. I am always astonished with some of these forums 
with people talking about how their programs crash all the 
time. And I go how can you put up with it? I'm [using?] a 
multitasking machine and a multitasking machine is useless 
if it crashes all the time. 
S: Even if there's just one program going astray it'll take 
the whole machine down with it. 
K: Sure, so we do have bugs, but in the main, if you have a 
program, it's going to work. And if it's fouled up it may 
foul up it's own self, or it may foul up it's own files, but 
it's very rare to find an OS9 program that actually messes 
up the machine. 
S: Well, I've actually written one that does, but that's the 
exception rather than the rule. 
K: For instance, if you wrote a Basic09 program, unless 
you're doing [?] or a bad stat call, you're not crashing the 
machine because it's a solid program to start with. On the 
whole we're far better off than most people. A lot of us 
like me leave our machines up for 24 hours a day for months. 
S: In fact, I just retired a machine that has been running 
practically 24 hours a day for the past 6 years. 
K: I think the right incentive to keep us with it will keep 
us going for a long time. As the hardware gets better, we 
will reap the benifits of it. But mostly OS9ers are into 
learning stuff. 
S: To get on to other things of minor interest, how did you 
first get started into computing? 
K: Wow. 
S: Big question. 
K: Back when I was 11 years old, 1964, my parents gave me an 
analog computer kit. In 1971 I was at UNC chappel hill, 
taking programming courses there in PL/1. When everyone 
thought that PL/1 was the language to end all languages. 
That was when they were first starting out UUCP at North 
Carolina. Between Carolina and Duke was the first UUCP. 
S: Really? 
K: Yah, that's where they started using that. I wish I had 
been involved in that but I wasn't. I was taking calculus 
courses that used the computer. Then I joined the army, and 
unbeknownst to myself I was using incredible technology. We 
were using 32 bit RISC processors [in?] these jammers we had 
and I didn't know it. But in 1977 a friend of mine 
introduced me to Byte magazine. So when I got out in '78 I 
went down to school at [?] state and [studied in?] 
electronics engineering. In '79 I [built?] a 6800 processor 
from scratch. 
[the tape is reproducing static very clearly here] 
K: I was running a 6800 system with a VOG chip I finally got 
one k of programming memory, 4k of graphics memory. [Was?] 
using a scope for output, vector display. 32 by 32 dot 

Sector 18 



screen and managed to get up to 256 by 256 vector using d to 
a converters. Kinda slick because I had stored in memory a 
picture of a transitor curcuit, and so what happened is i 
hooked it up to the scope, people would come over here and 
they'd say Lemme see your scope. I'd turn on the power and 
it came up with a picture of a transistor curcuit on the 
scope. I built a voice synthesizer on it, had voice input 
on it, a math chip on it, it was neat. ~hen you built 
something, it was new. You could build something that 
nobody else had. 
S: Very easily. 
K: And nowadays of course you either buy chip to do it or a 
machine already [? ••. ]. You kinda miss the old days. So 
when the CoCo came out, I went to work for Radio Shack just 
so I could get a discount on the machine. Here it was with 
a 6809 and a VDG chip. 
S: And you already knew the machine. 
K: And I wanted to move to a 6809, so I said, aw man, I 
gotta have it. As it turned out it took me a year after 
they came out with it before I could actually afford one. 
And Marsha [my wife] gave it to me for christmas, and I 
think she's regretted it to this very day. I still worked 
at Radio Shack when I bought my first floppy drive for $450 
on sale. Bought one of those graphics tablets for $400. 
Some friends of mine at the club here got into OS9, came to 
me after messing with it, and once I got into it I was very 
excited. I guess I got into it about 183 or 184. Whenever 
it came out. I remember I was at Ft. Worth Rainbowfest 
when it came out. 
S: That was '84 from my notes with Frank. 
K: Okay, so I was there when it came out. As a matter of 
fact we had been on a cross country trip on the way stopping 
at every Radio Shack, and asking them [if they had] OS9. 
And this is what really kills me. I stopped in a Radio 
Shack center in Dallas, Texas, and asked the guy if he had 
OS9 and he said yes. The problem was I didn't have the 
money to buy it. Because that was two days before the 
Rainbowfest, when they officially started selling it, if 
had had the money I could have been the first official owner 
of OS9 on the CoCo which I thought was cool. I blew it. So 
they had about 50 or 100 [copies of] 059 at the fest, and 
they were sold out just like that. They were gone. And 
like most people I looked at the manual and said, oh, 
[omitted] this is complicated. I stayed away from OS9 
actually for a while after that because it did seem 
complicated. It wasn't until later that I realized how 
[quick?] everything was. And so about the next year, 85, 86 
or something, I expanded my CoCo to 128K. Just before 
everybody else started coming out with the banker and all 
that. I went ahead and designed it and built it here, 
actually one for a friend of mine too. So we had 128K 
coco's here, and we decided what can we do with it? So 
wrote a ramdisk for OS9 to use it. The company DSL came out 
with a 128K kit, and they called me up and I they started 
selling my ramdisk. I modified it for [their] board. So 
that was my first [?J product. And what I didn't know was 
that had made me known to people. I was not into 
communications, I wasn't on CIS, I had no idea. I sold 
enough of them it paid for my first hard disk which was a 5 
megger cost me $800. That really hurts. People complain 
about the cost of drives, I just want to smack them. I went 
to my first RainbowFest at Princeton, and I walked in there 
and people would walk up to me, spot my name tag and say 
''you're the guy who wrote the ramdisk' '· I really had no 
idea. And that's how I met [?and ?l from LRTech, they said 
they had taken apart [my ramdiskl and used it for writting 
their hard disk driver. Which is funny because they way I 
had writen the ram disk was from a hard disk article in [?] 
Micro Computing, that was written by Steve Childres, who was 
Pete Lyal's boss. 

S: So you taking that it sort of snow-balled ••• 
K: into everything else. And then we all learned more as we 
went along. Later on I got up on CIS, went on to become the 
assistant sysop. About the same time, in 187, I build a 
68008 co-processor for my CoCo 1, I used it to do the 
graphics. That design (the arbitration between the 6809 and 
68008) is now implemented in the TC9, unless he changed 
that. It took me forever to figure out. So after writing 
that ramdisk and seeing how many other people were into OS9 
that really got me interested. After that I wrote the 
Inside level 2 book. Various people snuck me copies of 
Level 2 early. So I actually had all these notes written up 
for myself, and Frank said why don't you write something up 
on Level 2. Just a little pamphlet should help. As it 
turned out I had all these notes laying around. I thought 
it would be a good idea for Frank to print all my notes for 
me in a nice format. That's why I kept tossing stuff in 
there because I use it for my own reference. That [ramdiskl 
and the reference are the two things out there. But I met a 
lot of people that way. That's my favorite thing about OS9 
is all the people. I love it. 
S: ~ell, for one thing you do a something really neat that a 
lot of people like and you become instantly famous. 
K: Yah, it's the rush is the thing. I told Mike Haaland 
[author of MVCanvas] wait till you go to the fest, these 
people are going to know who you are [and he didn't believe 
mel. Sure enough his first day, people went ''you're Mike 
Haaland, you're Mike Haaland''· They even asked him for his 
autograph. Now this is as embarrasing as you can get. 
Don't print that, but it's embarrasing. You know, I'm just 
you ..• 
S: ''I'm just an average Joe, I just happen to have written 
this thing, ya know. Anybody could have done it.'' 
K: And that's what my biggest problem is, most anybody could 
write this stuff ... 
S: If they sat down and did it. 
K: Yah, and my advantage has been I have had 24 hours a day 
for the past 4 years to do nothing but OS9. 
S: Now explain that. How did that come about. 
K: Marsha has her own business. And bless her heart, she's 
always had faith that OS9 will pay off. Eventually. And 
then I'll be able to take care of her. So actually, the 
world owes Marsha. Everybody else always says, well, how do 
you know so much. 
S: It's the time you spend at it. 
K: Sure, yah. If you had 24 hours a day, to play with OS9 
and mess with it, you would know all this stuff too. I'm 
just like anybody else, [but] I just happen to have the 
time. 
S: Yah, that's where I've had an advantage being a student. 
~hen my parents supported me I could fiddle with OS9 in all 
my spare time. [And now that I work for myself, it's almost 
all I do.] 
K: The other great thing is that people have donated 
equipment too. Like Bill Brady he donated the Atari ST so 
that I could write OSK stuff, and Bob Santy bought me a 20 
meg hard disk so that I could write windows for him. And 
~ayne Day gave me a CoCo3, because see, I couldn't afford 
any of this. I am more poor than the poorest person you 
know. 
S: See, now that's something a lot of people wouldn't know. 
K: So when people say, why couldn't you have done this or 
the other, I have to say because I don't have the money or 
resources. [He mentions about here that he can't even 
afford mailing letters out really.] Various people have 
donated various things. A lot of the stuff in here. I want 
to pay these people back one of these days. 
S: ~ell, I tell ya, you are really paying them back with the 
work you do. 
[the tape is barely intelligible at this point and bits and 

Sector 19 



pieces are missing] 
K: The funny thing was, about six months before that 
[message on CIS about 1 Meg upgrade working], I was about to 
upload a file giving all of the details I could for guys 
like you. If somebody does this, send me one. Here's how 
you do it, and I will do the software. Tony had called me 
up, and said ''I'm really bored, I don't have anything to 
work on''· And I said, I'm about to upload a file on how to 
make a 1 Meg upgrade. 
S: Talk about timing. [ ••• ] 
K: So the other thing I do is I always give out my name and 
number at all my seminars, at the fests. So my number is 
out all across the country, and the interesting thing is I 
get the most unique phone calls from people, and I love 
that. Except for when my phone's off the hook when I've got 
to get some work done. I get up to a dozen calls a night, 
and several of them will be from people who I have never 
talked to before. [ ••. ] or they'll be somebody who's out in 
the middle of nowhere, never been near a club, there's 
nobody else that uses OS9 [ .•• ] and I have the greatest 
admiration for these people. These people have perservered 
under great odds. I kinde learned it [OS9] on my own too, 
but once you get on a major network like CIS or Delphi or 
something like that, and you've got all this help ••. 
[the one hour micro-cassette runs out and I start another] 
K: The main thing is, I like the people the most. I know 
some ham types who run OS9, just so they can have a BBS to 
talk to one another. Just for their friend across the city. 
And these people taught themselves, they've had no problem. 
They didn't start of with RSDOS, so they weren't confused. 
They thought this is the way computers work. 
S: ~hich is right, in a way .•. 
K: So to them, to move from OS9 to RSDOS would actually be 
as bad as an experience as these guys who move from RSDOS to 
059. Probably worse. So I wish I had more time. These 
days, I have to keep my phone off the hook a lot because I 
just have to get this work done. I kinda miss talking to 
all these people. On the OS9 forum the unofficial motto has 
been 'there is no such thing as a stupid question'. The 
only dumb OS9 question is the one you didn't ask. Newcomers 
will often come up and say, ''I have a dumb question''. 
S: Those are the smartest questions of all. 
K: If you didn't ask it, you were dumb. Because you're 
beating yourself against a wall for no reason. So I love 
the way people help out. I love the way that OS9 people 
most of the time feel very strongly about handing out free 
software. Obviously it's gotten to the point where that has 
to change a little bit. MVCanvas, stuff like that. People 
wouldn't finish a project unless they get [paid back?l on 
it. So we're now moving to a new era here, of major 
commercial appliations and stuff. I think it's past time 
for it. I reserve my greatest admiration for somebody who 
comes up and says 'remember that problem I had 3 days ago, 
kept at it and I finally found the answer'. To me, those 
are the best people around. Because they did not give up. 
Somebody who does give up right away, I'm sorry, ya know. 
No loss. 

Kevin and I could have talked on most of the night, er, 
morning, but he's got the windows to write and I've got the 
OSKer to put out. ~e agreed however, that ideas are nat 
something that CoCa and OS9 people are short of. In that 
vein, I'm offering to serve as a buffer far ideas about 
Kevin's new windows. He says he's got a lot of the core 
routines dane, and promises that the first release (with the 
new machines, MM1 and TC70) will be usable although somewhat 
minimal. Fancier stuff will be updated as we go along. But 
he is in need of input as to what capabilities people think 
the windows should have. The major questions of how exactly 
it is going to work have not all been answered as yet. But 

I think he's a little reluctant to outright ask for 
opinions, because he knows he'll get plenty of them. To cut 
down on Kevin's overhead, you can forward your opinions to 
the OSKer P.o. Box (see inside front cover) or e-mail to 
any of my network adresses. A complete list of suggestions 
will be compiled and forwarded to Kevin. And of course we 
at the OSKer will keep you updated as to the progress of the 
Darling windows. Hmrn. Hey, Kev, what do you want to call 
this thing anyways? 

FILE DESCRIPTOR: OSK_for_OS9ers 
OYNER: Scott Griepentrog 
ATTRIBUTES: Editor, OSK on board 
ALLOCATION MAP: Sysop@Root (StG·Net), 72427,335@CIS, 
StG@humrner.iupui.edu 

I've had several people ask me what the difference is 
between OS9 and OSK. Well, quite frankly, there isn't much 
at all. I mean, all the commands (well, almost) you have in 
OS9 work pretty much the same way (well, sort-of), and 
programming under it is pretty much the same (ugh, maybe 
not). 

If that's confused you already, then let me try to explain 
myself. If you know OS9, you know OSK. But, you have to 
get used to a few things that they've changed. First, every 
single time (except tmodetxmode) that they forgot to put the 
dash on options (like dir e) in OS9, they did correctly in 
OSK (like dir -e). Plus, they put -? for help on every 
single command! So if you forget an option, or want to see 
what new options they added with OSK, you can just ask the 
command. 

Far example, if you enter 'dir ·?', you get: 

Syntax: dir [<opts>] {<dir names> [<opts>]} 
Function: display directory contents 
Options: 

·a show all files 
·d show directories with a slash 
-e extended dir listing 
·n treat dirs like files 
·r recursive dir listings 
·r=<num> recursive dir listing to depth <num> 
·s unsorted dir listing 
-u unformatted listing 
-x directory is execution dir 
·z read dir names from stdin 

So, the dir with just e and x options has grown to include 
many more, but don't forget to put the - in front! Also 
added is* and? wildcards in the shell, so you can do 
things like 'list *.doc•. Plus, they've added a mode to 
copy. If you do a copy /dd/fromdir/* -w=/dd/todir it will 
copy all the files in one directory to another. Thew 
option names what directory to copy the files into, and has 
to be used when copying more than one file with the 
wildcards. 

Also new is the addition of shell environment variables. 
The first time you'll find these necessary is if you try to 
use uMacs, or any other program that uses the termcap 
database (for interacting with any type of terminal). For 
example, when editing files from my PC across a serial port 
to the ST, I set the environment variable TERM to 'ansi' 
with the command 'setenv TERM ansi'. What this does is 
create a storage area called TERM and put in it 'ansi'. 
Then when I run uMacs, it asks for the TERM, and looks up 

Sector 20 



ansi in the /dd/sys/termcap file to figure out how to talk 
to it. Also, login sets a lot of variables when you log in. 
The printenv command shows for me: 

HOME=/dd/USER/StG 
SHELL=shell 
USER=StG 
PROMPT=OSK: 
TERM=ansi 

Oh, I almost forgot, you can set the shell prompt too. And 
if 1 do a 'chd' it automatically goes to my home directory 
from the HOME variable, so I don't have to remember where my 
directory is. The environment variables are actually 
implemented separately from OSK itself (they can be done in 
OS9 the same way!). There are special calls and code 
written into the argument processing inC that pass 
environment variables when commands are forked. Which means 
that only c programs (most, if not all, of the commands in 
OSK are written in C) can do argument processing, unless 
code is added to the other languages (does Basic do this?). 

And the greatest thing since sliced donuts is the addition 
of named pipes! The /pipe device now becomes a directory, 
into which you can copy files. I haven't actually used it 
much, but anytime you need to use a quick temporary file you 
can put in in /pipe for faster processing. But watch out, 
it's not like a ramdisk. Once you read the file back out, 
it's gone. It's just like a pipe, only you can store it 
with a name until needed. 

The OSK C compiler is practically 100% compatible with the 
OS9 one. All your C code written for OS9 will covert with 
very little if any change. At the same time, they made some 
big improvements. The int declaration is now 4 bytes, and 
the compiler has helpful warning messages. Also, they 
implemented the unsigned char type! This has always been a 
pain as it was missing in OS9. 

Basic under OSK is also compatible with Basic09. I don't 
know a whole lot about this (gimme a break, I don't use it), 
so somebody please find out and fill me in, but I have heard 
that certain variable sizes are different under OSK, and 
this could possibly mess up GET/PUT random access 
operations? I'll let ya' ll know as soon as I find out. 

Got any questions? Ask the Doctor ••. 

FILE DESCRIPTOR: Origins_of_OSKer 
OWNER: Scott Griepentrog 
ATTRIBUTES: Editor, Set Statable 
ALLOCATION MAP: Sysop@Root (StG-Net), 72427,335@CIS, 
StG@hummer.iupui .edu 

Why do we call this magazine the OSKer? ~~cause it was the 
only name that fit I suppose. But I didn't invent it. 
Really! Look in the May/June '88 issue of the MOTD, page 3, 
middle column, 2nd paragraph. ''You Atari OSKers and CoCo 
Folks both can pitch in ••. ''. So don't blame me. 

I have started a few conventions though. For one, spelling 
it without the apostrophe between OSK and 'er, as one would 
tend to. This was suggested by Alan Sheltra (Sysop@Zog) I 
believe. Although I originally didn't take to the idea, I 
caught on. It's easier to pronounce correctly for one 
thing. Which brings me to the second convention - OSKer is 
said 'oscar', just like the fish. 

The cover artwork, also done by Alan, was derived from a 
suggestion by Frank Hogg. He wanted to see a more amiable 
cover, depicting the two camps working together to 'save' 
users from the sinking CoCo (we had originally planned him 
and Paul in a ring duking it out). I just hope no CoCo-Nuts 
were offended by it ••• 

It was a couple of months ago when members of what is left 
of the Indy CoCo Club (which we really ought to rename the 
OS9 club) were discussing where the Rainbow is going (can 
you say pishtochk?>, and that we really needed a good 
magazine just for OS9. Again and again we came to the 
conclusion that somebody should start one. It was several 
weeks later before it occured to me that if somebody didn't 
get off his brain (I was standing on my head at the time) 
and get the ball rolling, nobody else would. 

So I bounced some suggestions around the StG network for 
possible titles, content, and so forth. What I got back was 
nothing but positive response, and plenty of it. It seems 
that just about everybody had been thinking the same thing. 
That I should get off my head start working on it. 

So, with a few hundred thousand keystrokes, a bit of my own 
money, and the interest of a large number of people in the 
OS9 community, as well as the assistance of several others, 
the OSKer has been born. 

Special thanks go to Alan for his myriad suggestions, 
collecting a list of people for the first issue, and drawing 
the cover and ad copies. Additonal thanks to Chris (the 
Bug) for the pop utility. Chris is already working on about 
five more programs, so we expect him to be a regular. And 1 
can't forget Kevin Darling letting me talk to him at length, 
or Frank and Paul for their help too. 

But most of all, thanks to you, the reader, for taking the 
time to show an interest in OS9. With your help, we can get 
together and benifit from each other's knowledge needs, and 
effort. 

Hey, if that isn't corny enough for you, I •ve got a ten 
pound bag of nacho's ••• anybody got some cheese? Please! 

''The Atlanta CoCo Fest'' 

Oct. 6-7, Northlake Holiday Inn, Atlanta Georgia 

CoCoPro handling ticket sales, room reservations. Tickets 
are $10 for one day, S15 full show. Rooms are $49 plus tax, 
and the first 125 people who purchase hotel rooms through 
CoCoPro receive free one night pass for each room/night. 

IMS, Microcom, Zebra, B&B, and many others will have booths. 
Kevin Darling, Art Flexser, Dan Robbins, J.D. Walker are 
doing seminars. 

For more info call Dave Myers at CoCoPro, (313) 481-3283 

Sector 21 



The OSKer Software List 

This regular section is a list of all software that is done 
and working, being written, or just wanted. The list is 
kept alphabetically for easy lookup, and to the right will 
be the status of that program. A 9 or K indicates that the 
program is only available (being written, wanted for) OS9 or 
OSK specifically- otherwise both are assumed. The entire 
list of codes are as follows: 

9 - for OS9 only 
K - for OSK only 
w- Wanted, dead or alive ••. 
C - Code is being written 
A - in ALPHA test 
B - in BETA test 
D - Program is DONE and ready for purchase 
$ - Program is being sold 
S - Program is being sold as Share-Ware 
P- Program is in Public-Domain 

To request a Wanted program, mail a short description to the 
OSKer (P.O. Box 24285 Speedway IN 46224), call us up (317-
241-6401), or post it to the OSKer news area on StG-net. 
The most asked for programs will be featured in detail. 

If you are developing a program, please let us know about 
it. Not only is the general public eager to know what is 
going to be available soon, but it may help someone else 
decide against creating a similar product. 

If you have a program available, whether for sale, share­
ware, or public-domain, mail a copy of the program to the 
OSKer. All programs submitted for verification will also be 
considered for reviews, and can be returned. Programs 
certified by the Rainbow will be added by request. 

Because this is the first issue, there is only a couple of 
program in the list. Hey, sorry- check back next month! 

Feature Wanted Program 

Frank Hogg has suggested a program that would serve an 
interface (maybe with pull-down menus, windows) to the CIS, 
Delphi, Genie, etc. The purpose of which is to make it 
easier to switch between different services, as all the 
basic functions would be handled by the program. sounds 
like a really neat idea- Thanks Frank! 

The OSKer Software List 

Program Description CODE 

DTP Desk-Top Publisher KW 
DB9 OS9 Data Base C 
Term Terminal Prog, Common Interface to Svcs W 
MVCanvas Graphics Paint (Editor) 9$ 
Spr Sleuth 68000,008,010 Disassembler K$ 

FILE DESCRIPTOR: uMacs_Primer 
OWNER: Scott Griepentrog 
ATTRIBUTES: Editor, OS9 Freak, uMacs Hopeful 
ALLOCATION MAP: Sysop@Root (StG-Net), 72427,335@CIS, 
StG@hummer.iupui.edu 

OSK comes packaged with a ready-to-go full screen editor 
called uMacs. The name is derived from Micro-Emacs, which 
is derived from Unix's Emacs, which I believe is derived 
from something like Editor with Macros. It has been in 
development on Unix for years (mostly by hackers), is quite 
large, and even this smaller version we have can be a bit 
too much for the average user to get used to. 

uMacs uses the termcap routines (also from Unix), which 
allow a program to work with almost any terminal. This 
makes it usable from an serial line as easily as from the 
console display. Shove any dumb terminal with cursor 
addressing next to your OSK machine and you've got an 
editing station. You can even use a PC as a terminal, as I 
am now. 

Other features of uMacs are multiple (windowing) edit 
buffers, a C source mode for auto-indention, and the 
capability to redefine control keys for different functions. 
There is a way to save your prefered key settings, but 
Microware conviently forgot to include how to do this in 
their documentation. 

So uMacs is a pretty powerful editor - but why are people 
afraid to try it? After one look at the massive amount of 
control sequences one would seem to have to learn to make 
use of it, I balked too. But out of desperation for a good 
editor in OSK I forced myself to learn. 

I've been using the old EDIT command from 6809 OS9 for what 
seems like an eternity. Hey, it works from any terminal, 
has global change and macro writing features I still like 
much better than any screen editor's, and it doesn't take a 
lot of memory. But in OSK they put only the stupidest 
commands into 'EDT' -much like the Basic09 editor (which 
was oddly enough the major factor in my giving up use of 
Basic09). But enough of my problems •.• 

To make it easier for the rest of you, I've created a list 
of the more commonly used uMacs control sequences and what 
they do. It's separated into sections based on the 
different type of sections. You can use this as a handy 
'cheat sheet' for the basic editing functions. 

Of course, ·x means to hold the control key down and press 
X. But uMacs also uses the escape key to trigger certain 
sequences. For example, to exit uMacs you press ESC, then 
z. This is shown in the form M·Z, where the M- means the 
escape. Don't ask me who came up with the idea to use M­
for escape- if I knew I'd be giving him what for too. 

Another odd thing is that you can preface commands with ESC, 
key in a number, and then the control sequence for the 
wanted function. Most commands will repeat that number of 
times, others (like goto line) will use that as a numeric 
argument. Also, ·u can be used to set a repeat count, and 
-G is used to abort most any function. And if uMacs gives 
you the message [Key not bound], what it's saying is it 
doesn't understand the key sequence you hit. 

MOVING AROUND 

begining-of-line 
end-of-line 

Sector 22 



forward-character 
backward-character 
begining-of-file 
end-of-file 
next-1 ine 
previous-line 
next-page 
previous-page 
next-word 
previous-word 
next-paragraph 
previous-paragraph 
goto-1 i ne 
ESC G) 

MAKING SPACE 

newline 
newline-and-indent 
insert-space 
open-line 
handle-tab 
controls spacing) 

OTHER STUFF 

buffer-position 
clear-and-redraw 
help 
swap) 
exit-emacs 
quick-exit 
i -shell 
quote-character 
file) 
redraw-display 
at center) 

KILL AND YANK 

kill-to-end-of-line 
yank 

DELETING 

-F 

·s 
M-< 

M-> 
"N 
·p 
·v 
·z or M-V 
M-F 
M-B 
M-N 
M-P 
M-G (press ESC, then line#, then 

"M 
"J 
·c 
·a 
·1 (plain tab, except THODE 

·x= 
.L 
M·? (goes split screen · ·x·o to 

·x·c 
M·Z 
·xc 
M·Q 

M· I 

(aborts changes) 
(save all changes and exit) 
(temporary shell) 
(puts actual next char in 

(redraw display with cursor 

·K (puts text in yank buffer) 
·y (yanks text back in) 

delete-previous-character·H 
·7 (this is the DEL key on PC's) 

delete-previous-word M-·H 

delete-next-character 
delete-next-word 

FORMATTING PARAGRAPHS 

fill-paragraph 
to fit width) 
set-fill-colum 
F) 

EDITING ANOTHER FILE 

find-file 
exiting) 
next-buffer 
line or found) 
insert-file 
save-file 

M-·? 
·o 
M-D 

M-0 

"XF 

·xx 

(this reformats a paragraph 

(set width · ESC (#cols) ·x 

(load up a new file without 

(get next file on conmand 

(load file into current) 
(save current file) 

SEARCH AND REPLACE 
search-forward 
search-reverse 
query-replace-string 
replace-string 

M·S 
M·R 
M· "R 

"R 

(search for string) 

(replace with prompting) 
(replace, no prompting) 

"""' Apologies to our readers for not being able to print the 
article 'Playing Chess in C' in our first issue. We simply 
ran out of space, and it's too big. Maybe if Kevin didn't 
have so much to say ••• We will print it in our next issue, 
along with more suprises and fun. And just maybe I'll get 
the hang of this stupid DTP, or get irritated enough with it 
to start writing my own. Anyways, thanks for your support! 
We can't do it without you. Let us know what kind of 
articles you want, and get your submissions in to get your 

\.OSKer for free! - StG 

SPACE 

AVAILABLE 

Your advertisement could be here! 

Three issues for $80! 

Call Scott at (317) 241·6401 

Sector 23 



I Want My OS9! 


	The OSKer
	Table of Contents
	A Tale of Two Computers
	Doctor OSker
	Doing Windows
	Pop
	Pop Con't
	Pop Con't 1
	Pop Con't 2
	Pop Con't 3
	Pop Con't 4

	Editors Ramblings
	Flame On
	Flame Con't
	Flame Con't 1

	Goto Shell
	Goto.c

	Hacker Contest
	Kevin Darling Speaks
	OSk for OS9ers
	Origins of OSKer
	Software List
	UMacs Primer
	I Want  My OS9!

