Volume 5, Issue 10 October,1983
$1.50

Fort Worth Scene

Several computer products including a new computer,
new printer, new peripherals, and new software are
described in this issue.

Just when you think that you've seen everything, some-
thing else appears that makes you realize you haven't seen
anything yet. The CGP-220 Ink Jet Printer is really a terrific
value in a printer. It has color. It's self cleaning. The ink comes
in cartridges so there’s no mess. It uses plain or roll paper.
Enough said. This is not intended to be the second article on
the CGP-220.

Radio Shack will be offering OS-9 for the Color Computer
for those who want the ability to write their own operating
system, multi-processing or multi-tasking on the Color Com-
puter. You can read about OS-9 this month, too. There are
seyeral new hardware items for the Color Computer: the
Multi-Pak Interface, the Mouse, and the new Deluxe Joystick.

AND FOR THE CHILDREN

Educational packages designed to run on the Color
Computer are coming our way from two of the most recogniz-
able names in the fields of education and entertainment for
children: Walt Disney Productions and Children’'s Computer
Workshop (CCW).

Many favorite Disney characters are found talking and
teaching basic education skills in the eight educational pack-
ages from the Walt Disney Educational Media Company. In
addition to helping a child learn, these programs are de-
signed to amuse and entertain with their high resolution
graphics, recorded narration, and music.

CCW is a part of the Children’s Television Workshop, the
same folks who produced "Sesame Street,” “The Electric
Company,” and “3-2-1 Contact.” The seven programs in this
series are designed to develop basic skills in 3 to 6 year olds
and to teach cooperative strategy to children ages 7 through
10 in an interactive, entertaining environment.

FOR THE PC-2

For the PC-2 there's the fifth article in the popular series
on PC-2 Assembly Language and an article on the PC-2
RS-232 communications device. | would recommend the
latter to anyone who has ever wondered about communica-
tion terms like parity, stop and start bits, framing errors, etc.
This article offers fundamental information on RS-232
terminology.

MCN’S NEW SIZE

Something else new, in case you didn't notice right off, is
that TRS-80 Microcomputer News has grown again. We
leaped to fifty-six information packed pages this month. By
doing this we hope to provide you with additional useful
material throughout the year. We are striving to see that there
will be something in every issue for all our readers. A

This Model 16B has an internal 15-meg hard disk.

2 TRS-80 Microcomputer News, October 1983

Y

TRS-80 Microcomputer News

Volume 5 Issue 10
OCTOBER 1983

TRS-80 Microcomputer News is published monthly
by Radio Shack, a division of Tandy Corporation, One Tandy
Center, Fort Worth, Texas U.S.A. 76102. Copyright 1983 by
Tandy Corporation, One Tandy Center, Fort Worth, Texas
U.S.A. 76102. Ali rights reserved.

Reproduction or use, without express written permission
from Tandy Corporation, of any portion of the Microcomputer
News is prohibited. Permission is specifically granted to individ-
uals to use or reproduce material for their personal, non-
commercial use. Reprint permission for all material (other than
lvan Sygoda's Profile article), with notice of source, is also
specifically granted to non-profit clubs, organizations, educa-
tional institutions, and newsletters.

TRS-80 Microcomputer News is published monthly by
Radio Shack, a division of Tandy Corporation. A single six
month subscription is available free to purchasers of new full
size TRS-80 Microcomputer systems with addresses in the
United States, Puerto Rico, Canada and APO or FPO ad-
dresses. Certain smaller TRS-80 Microcomputers will not in-
clude this free subscription. Subscriptions to other addresses
are not available.

The subscription rate for renewals and other interested
persons with U.S., APO or FPO addresses is twelve dollars
(3$12.00) per year, check or money order. Single copies of the
Microcomputer News may be purchased from Radio Shack
Computer Centers or Computer Departments for $1.50 sug-
gested retail each.

The subscription rate for renewals and other interested
persons with Canadian addresses is Fifteen dollars ($15.00) per
year, check or money order in U.S. funds. All correspondence
related to subscriptions should be sent to: Microcomputer
News, P.O. Box 2910, Fort Worth, Texas 76113-2910

Retail Prices in this newsletter may vary at individual stores
and dealers. The company cannot be liable for pictorial and
typographical inaccuracies

Back issues of Microcomputer News prior to January, 1981
are available through your local Radio Shack store as stock
number 26-2115 (Suggested Retail Price $4.95 for the set).
Back issues of 1981 copies are available as stock number 26-
2240 (Suggested Retail Price $9.95 for the set).

The TRS-80 Newsletter welcomes the receipt of computer
programs, or other material which you would like to make avail-
able to users of TRS-80 Microcomputer systems. in order for us
1o reprint your submission, you must specifically request that
your material be considered for reprinting in the newsletter and
provide no notice that you retain copyrights or other exclusive
rights in the material. This assures that our readers may be
permitted to recopy and use your material without creating any
legal hassles

Material for publication should be submitted on magnetic

“media (tape, disk, or CompuServe). If you submit material on
“tape or disk, and it is accepted for publication, we will send you

two cassettes or diskettes for each one you sent us. Cassettes
will come from dur box of mixed blank cassettes. If you submit
material on CompuServe, and we think we may use the mate-
rial, we will extend your Microcomputer News subscription by
six months for each article accepted. If you are submitting
material over CompuServe, please include your name and ad-
dress or your subscription number so we can find you. If the
material is very short, send it to us in E-Mail. If you have more
than a few lines, you need to place the material in the ACCESS
area of CompuServe and then fet us know itis there by leaving a
message on E-Mail.

Material may be submitted by mail to P.O. Box 2910, Fort
Worth, Texas 76113-2910, or through CompuServe. The
Microcomputer News’ CompuServe user ID number is
70007,535.

Programs published in the Microcomputer News are pro-
vided as is, for your information. While we make reasonable
efforts to ensure that the programs we publish here work as
specified, Radio Shack c¢an not assume any liability for the
accuracy either of the programs themselves or of the results
provided by the programs.

Further, white Microcomputer News is a product of Radio
Shack, the programs and much of the information published
here are not Radio Shack products, and as such can not be
supported by our Computer Customer Service group. If you
have questions about a program in the Microcomputer News,
your first option is to write directly to the author of the program.
When possible, we are now including author’s addresses to
facilitate communications. If the address is not published, or if
you are not happy with the response you get, please write us
here at Microcomputer News. We will try (given the limited size
of our staff) to find an answer to your question and, in many
cases, will publish the answer in an up-coming issue of Micro-
computer News.

Trademark Credits

CompuServe™ CompuServe, Inc.
CP/M® Digital Research
Dow Jones™
NEWS/RETRIEVAL
Service® Dow Jones & Co., Inc.
LDOS™ Logical Systems, Inc.
VisiCalc® VisiCorp, Inc.
XENIX™ Microsoft
Program Pak™ Tandy Corporation
SCRIPSIT™ Tandy Corporation
TRSDOS™ Tandy Corporation
TRS-80® Tandy Corporation

Contents:
Color Computer

Color Computer Draw Statement by Mike Kim 10
Color Computer Multi-Pak Interface 19
Color Mouse and Deluxe Joystick by Linda Miller 20
IF/THEN/ELSE Statements by Ray B. BIeSSUM oot e e 42
0S-9—A New Color Computer Operating System by Bruce Elliott 16
Programs
Calendar by Tim McDuffie 32
Drawing with the Color Computer by David Andrew Palmer 34
Spiral by Leo Gilbride 23
ComputerClubs e 15
Computer Customer Service 24
TRS-Xenix Power
Data Bases
Profile 28
Profile and the Model 100
e S = 38

Write A Codefile!
by Kimberly Bilstad Ness and Mary Turner
Education
Educational Computing from Walt Disney, Inc™ by LindaMiller 4
Learning Can Be Child’s Play: Children's Computer Workshop

Develops Educational Software for Radio Shack 7
Pod Concept in Classroom Networking by Warren Hornsby, Jr. oo ... 14
Fort Worth Scene 2
General Interest
Fast Data Lines for Models 1/111/4 and 11/12/16 by B.M. Tennyson 12
On-Line Computer Telephone DIreCtOry, 31
Poem—Frustration by J. De Augustine 13
Word Processing and Programming by Davy L. Barron ..., 18
Magazines 40

Model I/111/4
Install the Model III Business Graphics Package

On Your 5 Meg Hard Disk by Annette Zamberlin-Main 39
Programs
Bar, Line and Scatter Graphs for the Model 11l by AF Bell 51
Model 11/12/16
A New Model 16B with 15-Megabyte Hard Disk by Annette Zamberlin-Main 11
Model 100
Debug for the Model 100 21
Notes on Previous Issues e e e 43

November 1981

Reading Profile II Files from BASIC
February 1982

3-D Color Graphics
March 1982

Relocating Machine Language Prog.

Labels and Renumbering on PC-2

Periods to Commas in Data Stmts.

Merge BASIC Prog. on CoCo
March 1983

Renumbering on Models 1 and 111

High Res Screen Dump CGP-115

April 1982 Additional PMODE3 Color Set
Perpetual Calendar Music Program Pak (26-3151)
May 1982 Plotter Cass. Interface Manual

Engineering Math 11 (26-3526)
April 1983
Expressive, Expeditious, X-Pad
Sieve of Eratosthenes
May 1983
Disk Editor Disassembler
PC-2 INPUT Statements
Disk Directory
June 1983
USA Flag for CoCo and MC-10
Document Listing for Model 11
Bargraph
Grid for CGP-115
Variable Swapping Routine
A Tribute to Columbia

Ultra Precision Multiplication
Verifying Programs and Data Files
June 1982
Concentric Circles
Graphs for the PC-2
July/August 1982
Accounts Payable
September 1982
G.E. ASCII Sequential Files
October 1982
Coded Message
December 1982
Christmas Eve
January 1983
Non-Reset of Random No. Generator

Day of the Week/Monthly Calendar July 1983
February 1983 Record Chess Play
Variable Swapping Invasion
Peripherals
CGP-220 Ink Jet Printer by Linda Miller 53
Pocket Computer
PC-2 Assembly Language—Part 5 by Bruce Elliott o 35
PC-2 RS-232 Communications Device—Part 1 by Peter Levy 4

Prices shown in TRS-80 MICROCOMPUTER NEWS are in U.S. Funds.

TRS-80 Microcomputer News, October 1983 3

Educational Computing
‘Walt Disney Productio:

By Linda Miller

With thirty years of experience in the educational field
and fifty years in the entertainment industry to its credit,
Walt Disney Productions now lends its expertise to the field of
educational computing. The Walt Disney Educational Media
Company has developed eight interactive, educational pack-
ages to run on the cassette based, 16K TRS-80 Extended
Color BASIC Computer.

These packages cover language arts, math, govern-
ment, and problem solving. Each package has:

Excellent high-resolution screen graphics

Recorded narration—Real voices are interspersed with

the program activities.

Music to create drama and add interest to the

presentation

The teachers in the programs include such old friends
as Donald Duck, Mickey Mouse, Goofy and many other
beloved Disney characters. Even the intrepid crew of the
Palomino space explorer offer instruction along the way.

Each package has a story line which makes the learning
interesting and fun and creates added incentives for complet-
ing the learning activities.

All eight programs utilize the Radio Shack Talk/Tutor
system format of instruction. This means that an audio-visual
education program is presented to the child, and at various
pointsin the program, the child is asked a question. When the
child responds with correct keyboard input, positive rein-
forcement such as “excellent” or “very good” is displayed. If
the response is incorrect, the child is asked to try again.

Each software package is accompanied by a player’s
guide which contains information for parents, directions for
loading and using the program, player’s instructions includ-
ing a summary of the story and several follow-up activities.
The follow-up activities provide opportunities for the parent
and child to review and reinforce the concepts taught in the
program.

PROGRAM DESCRIPTIONS

To acquaint you with each package, a brief description
follows of each one.

Telling Time with Donald (26-2530) for ages 5-8. This
program has the dual purpose of teaching how to tell time to
the half hour and introducing telling time on a digital clock.
While fishing, Donald Duck and his cousin, Gladstone
Gander, discover a magic lamp. When the lamp is
rubbed, a friendly genie appears and grants Donald and
Gladstone three wishes. Each wish must be made exactly on
the half hour.

The terms digital clock, minutes, one-half, and half past
are introduced to the student’s vocabulary in this program.

from

From Math Adventures with Mickey, Part 1

Problem Solving with Scrooge McDuck (26-2531) for
ages 9-13. Part 1 of this package is Estimating with Scrooge
McDuck. When Scrooge takes Huey, Dewey, and Louie to
lunch on their birthday, he teaches them a valuable lesson in
estimating cost that eventually enables the three boys to
recover money previously stolen from Scrooge’s bank. The
objectives of Part 1 are to: show the value of estimating in
everyday money handling, demonstrate that understanding
“why” in math is important even when using a calculator, and
illustrate that a math answer must be checked for both accu-
racy and reasonableness.

From Math Adventures with Mickey, Part 2

4 TRS-80 Microcomputer News, October 1983

Part 2, Graphics with Goofy, teaches how graphs help us
easily record and present information, the three basic types
of graphs (bar, line and pictographs), and the speed with
which we can understand information via graphs.

Daisy Duck is acting as Goofy's campaign manager in
his bid for the office of mayor. She keeps tabs on voter trends
and polling through graphs which she uses to demonstrate to
Goofy how well he is faring against his opponent.

Mickey’s World of Writing (26-2532) for ages 8-11. In
Part 1 Jiminy Cricket narrates this fanciful tale of the Knights
of the Alphabet. When the citizens of Wordland complain that
the Knight of | is the only “capital” knight, King Mickey
announces new laws. These laws state the basic rules of
capitalization. Each new law is tried out by the knights with
great excitement. The program concludes as all the knights
are given the Order of the Capital to be used according to the
laws. The Knight of | is still special because the letter | is
always a capital when it makes a word by itself. Concepts
taught in this program are:

The titles Mr., Mrs., Ms. and Miss begin with capital
letters.

The first word in every sentence begins with a capital
letter.

The names of months and the days of the week begin
with capital letters.

The pronoun | is always capitalized.

In Part 2, Writing Sentences with Ludwig Von Drake,
Louie is writing his entry for the Best Sentence Contest held
by the local baseball team, the Duckburg Drakes. All contest-

- ants are required to write a sentence explaining why they like
- the Drakes. Louie has included every reason he could imag-

ine in one sentence. When Professor Ludwig Von Drake
comes along, he points out that Louie has not really written a
good sentence. Ludwig takes Louie to the baseball stadium
where he teaches him how to recognize and write a good
sentence. Louie revises his sentence and wins the contest.

The objectives of Part 2 are to: teach the difference
between a good sentence and an incomplete or run-on sen-
tence, identify what makes a sentence, point out that a sen-
tence is usually a complete thought, and explain that a
sentence must make sense.

From Mickey’s Alpine Adventure, Part 1

Goofy Covers Government (26-2533) for ages 10-14.
As areporter on his first assignment, Goofy proceeds to learn
about the government of the United States. With a tour guide
and a bright young tourist, Goofy takes a tour of the Capitol
building where he learns about the jobs of congresspersons
and senators.

Next Goofy learns the qualifications and responsibilities
of the office of President of the United States.

The purposes of this program are to:

Undeftscore the importance of Congress

Distinguish between senators and representatives
Explain election procedures and requirements

Define the duties and powers of Congress

Point out that there are limits on congressional power

From Mickey’s Alpine Adventure, Part 2

Mickey’s Alpine Adventure (26-2534) for ages 7-10. In
Part 1 Mickey and Minnie visit the town of Apple Pass where
they find that the town artist has difficulty with short vowel
sounds and has misspelled all of the signs inthe town. Mickey
and Minnie set about to help the artist fix the signs, and in the
process, they teach him some key words to help him remem-
ber short vowels.

The objectives in Part 1 are to: learn the five short vowels
and the specific sound of each, identify and recognize spe-
cific short vowel sounds, and practice reading and spelling
short vowel sound words.

In Part 2 Donald Duck, Huey, Dewey, and Louie are on
their way to a ski lodge when they discover that due to
mistakes in spelling, they have forgotten some important
items. When they visit a nearby town to purchase the needed
supplies, they meet some unusual shopkeepers and learn
about spelling with vowel digraphs. As the story progresses,
the student will learn to identify long vowel sounds, recognize
vowel digraphs, identify the long vowel sound patterns in the
digraphs ai, 0a, and ea, and practice spelling words which
contain the vowel digraphs ai, oa, and ea.

Math Adventures with Mickey (26-2535) for ages 9-
13. The two major objectives of this package are to demon-
strate an effective method for problem solving and to
demonstrate the correct use of decimals.

Part 1 is Problem Solving with Mickey Mouse. Mickey is
hired to manage a scary old castle where he discovers that
the staff cannot plan intelligently because they don't know

TRS-80 Microcomputer News, October 1983 5

how to solve problems involving math. Mickey and Minnie
decide to teach the staff how to solve their math problems by
demonstrating a five-step problem-solving method, estab-
lishing the need for planning in our daily lives, and encourag-
ing a confident attitude about problem solving.

In Part 2, Decimals with Donald and Daisy, these two
friends find themselves on an adventure in the Himalayas
preparing to climb Decimal point. Donald has forgotten to
buy the necessary supplies, but a traveling department store
cart opportunely appears carrying all the missing items.
Donald makes many calculation errors which necessitates
his friends helping him determine the correct prices of his
purchases. When an avalanche separates Donald from his
friends he finds his newly learned math skills crucial to his
survival.

Donald's misadventure is used to teach the concept that
math is a necessary skill to be an intelligent consumer. The
activities are directed at curing common difficulty with deci-
mals, establishing the need in math for attention to detail, and
encouraging students to check answers to see if they are
reasonable.

Space Probe: Reading (26-2536) for ages 10-15. This
outer-space adventure helps develop important reading
comprehension skills.

Part 1, Understanding Cause and Effect, is designed to
develop the ability to identify cause and effect situations and
to demonstrate the relationship of sentence parts. When the
explorer craft Palomino sustains damage in a meteor shower,
the crew charts a course for a space station to get repairs.

The space station has a shortage in the parts required to
repair the Palomino. The Palomino crew sets out to discover
the cause for all the shortages.

From Mickey’s Alpine Adventure, Part 2

In Part 2, Drawing Conclusions, the crew of the Palomino
discovers an unexplored solar system. The third planet in this
solar system has an atmosphere similar to that of earth. The
crew begins exploring the planet only to become captives of
R-1000, a master computer, who informs the Palomino crew
that he had been directed to run the city and protect all living
things. The only effective way that R-1000 has found to
protect the living creatures is to lock them up. Only the quick
thinking of the Palomino’s robot Vincent saves the crew from

captivity. When the Palomino leaves the planet, the crew
agrees that they have learned much about drawing faulty
conclusions.

The objectives of Part 2 are to: demonstrate the use of |
facts to draw conclusions, help students develop the ability to
make judgements, provide practice drawing conclusions,
and apply skills in reading a schedule.

Space Probe: Math (26-2537) for ages 7-14. In Part 1,
Problem Solving: Multiplication and Division, the Palomino
responds to a distress call from a remote Earth colony. The
previously populous colony’s only inhabitants are a handful
of unconscious survivors lying in capsules in suspended
animation.

From Space Probe: Math

The crew of the Palomino has to use multiplication and
division skills to determine the number of survivors and the
amount of antidote necessary to combat the mind diffusion
disease that afflicts them.

Part 1 is designed to demonstrate the concepts of multi-
plication and division, how to write a number sentence for a
multiplication or a division problem, when to use multiplica-
tion and when to use division in solving math problems, how
to set up a multiplication or a division problem, and how to
take a systematic approach to problem solving.

In Part 2, Problem Solving: Area and Perimeter, the
Palomino explorer ship is exploring still another unknown
planet. The inhabitants are about to lose their crops to the
threatening eruption of a nearby volcano unless something
can be done to protect their fields.

The terms area, base, height, and perimeter are defined
while using both a rectangle and a square. The formulas for
determining area and perimeter are also taught.

FINALLY . ..

All of these programs are interactive so the student is
drawn into the problem solving process. Student responses
to the problems or situations become an integral part of the
presentation. The graphics are outstanding and the voices
and music in the story make the programs as entertaining as
they are educational. Each of the eight packages are sold at
the suggested retail price of $34.95. 8

Disney software and characters © 1983 Walt Disney Productions.

6 TRS-80 Microcomputer News, October 1983

. Learning Can Be Child’s Play

Children’s Computer Workshop Develops
Educational Software for Radio Shack

For thirteen years Children’s Television Workshop has
demonstrated successfully the philosophy that one of the
greatest vehicles for learning is fun. The computer games
developed by Children’'s Computer Workshop, a wholly
owned subsidiary of Children’s Television Workshop, con-
tinue this tradition of combining fun with education. The first
two clusters of Children’s Computer Workshop games for use
with the Radio Shack TRS-80 Color Computer, using
Extended Color BASIC, are now available through all
Radio Shack stores.

The first cluster of four activities is designed to present
“Basic Pre-School Skills” to children ages 3 through 6. The
second cluster is a series of three “"Cooperation and Strat-
egy’ games for children ages 7 and older that reward collab-
oration rather than competition. A third cluster for ages 10
and older will be distributed later this year.

Children’s Computer Workshop's computer games have

‘extended the goals, pioneered by Children’s Television Work-

"o

shop in television with “Sesame Street,” “The Electric Com-
pany” and “3-2-1 Contact.”* The aim is to create software that
is wholesome and engaging, encouraging children to play
constructively and learn actively. Children’s Computer Work-
shop games allow children to experiment and explore, to
think and solve problems, and to practice skills while they are
having fun. The games are designed to be a family experi-
ence where children and parents play together and learn
from each other.

Both Children’s Television Workshop and Children’s
Computer Workshop were founded with the same goal in
mind: to use technology that was beguiling to the eye, mind
and imagination of a child and use it as a tool for engaging
young minds.

When Children’s Television Workshop was established,
that new technology was, of course, television. “Sesame
Street,” the first program produced by Children’s Television
Workshop, brought Ernie, Bert, Big Bird and all the wonderful
Muppets to popularity on TV, and has won more awards than
any children’s show in history. “Sesame Street” was seen in
over ten million American households last year. After
“Sesame Street,” Children’s Television Workshop created
“The Electric Company,” designed to build reading skills in 6
to 10 year olds, and “3-2-1 Contact” which aims to stimulate
the interest of 8 to 12 year olds in science and technology. No
company has done more research and testing of children's

__response to the television screen or gained greater insight
“ into learning capabilities and entertainment preferences of

children.

The computer has brought an exciting new dimension to
electronic learning—that of interaction. A great deal of plan-
ning and research have gone into making Children's Com:-
puter Workshop games responsive to children of different
ages and learning styles. Children's Computer Workshop
products are different from many other software products in
purpose—Ilearning while playing - and their creation process
is entirely different as well.

Children’s Computer Workshop games come from
teamwork, harmonizing the diverse contributions of a skilled,
creative staff, educational specialists, and research and test-
ing with children themselves. Whenever possible, their level
of difficulty, pacing and direction of the games are under the
control of the player. So, as the child responds to the com-
puter, the computer responds to the child.

Photo 1. Grover’s Number Rover (Ages 3-6).

ACTIVITIES FOR PRE-SCHOOLERS (AGES 3-6)

The “Basic Skills Series” of games, for children ages 3
through 6, focuses on four important pre-school skill areas:
working with numbers, letters, matching shapes and colors,
and classifying objects.

The four games in the “Basic Skills Series” are:

Grover’'s Number Rover™**, which lets children play
with numbers in an engaging and fun environment. Each of
the six activities is designed to provide increasing levels of
challenge, while allowing the child to explore number opera-
tions and number facts. Children play with the basic opera-
tions that form the foundation of later mathematical skills.

TRS-80 Microcomputer News, October 1983 7

Cookie Monster’s Letter Crunch™ ™ * lets kids match let-
ters and words in order to feed the Cookie Monster—and you
know he's always hungry! The fun of moving Cookie Mon-
ster from letter to letter and watching him eat will encourage
children to practice letter recognition and letter sequencing
skills.

Ernie’'s Magic Shapes™** helps children to sort out the
things they see, in a process called visual discrimination. By
looking closely at Ernie's figures, children can match shapes,
" structure parts into meaningful wholes, recognize embedded
figures and notice similarities and differences.

Photo 2. Ernie’s Magic Shapes (Ages 3-6)

Big Bird'’s Special Delivery™* * provides a playful setting
in which children can practice an important skill—classifica-
tion. In order to help Big Bird deliver packages to the right
stores, a child must consider and compare objects according
to the attributes of form and function.

DESIGNING SOFTWARE FOR PRE-SCHOOLERS

Children’s Computer Workshop executive producer,
Dan Oehlsen, explains how Children’s Computer Workshop
approached the design of software for pre-schoolers. “Work-
ing with numbers, letters, matching shapes and colors, and
classifying objects are the kinds of activities that parents and
teachers immediately recognize and the things they want
their pre-school children to learn about. We decided to con-
centrate on these areas because they match specific goal
areas for the 13th season of ‘Sesame Street.” They draw on
some of the same skills that are part of the television show, but
the computer allows for a level of interaction that is impossible
with television.”

Oehlsen also knew that in addition to working in a new
medium, computer programs for pre-school children are a
very new idea. “There are just not very many products out
there for children in this age range, and | think many people
are skeptical about whether computers are appropriate for
children this young. So, we decided to stay with traditional
and accepted educational goals. We wanted to do some
things with the computer that could not be done with other
media. We were not in any way trying to suggest these
programs should replace coloring books, or paper and pen-
cils, or blocks, or paints or teachers. Rather, our games
should provide kids in this age group with another opportu-
nity to play with and to learn as they play with a certain set of
skills.” The Children’s Computer Workshop production team
used the ability of the computer to give children immediate
feedback on what they are doing and the flexibility to move

from one level to another that a computer allows to give kids a
new experience with these traditional skill areas. “We were
not trying to teach numbers or letters,” says Oehlsen. "We
were trying to give pre-schoolers an environment in which .
they could play with concepts they may have learned from*
their teacher, or from their parents or doing other things. We
took traditional educational goals and some of the unique
things that a computer can do and put them together in a way
that works for pre-schoolers.”

One big question that Children’s Computer Workshop
faced in developing these products was what was going to
happen when they took a task that they knew a pre-school
child could do, and put a computer between the child and the
task. They knew, for instance, that pre-schoolers can count
and stack blocks. That is a straightforward task. Depending
upon the age of the child and the level of ability, it is something
that is relatively easy for a pre-schooler to do. But, what
happens if a child has to count something on a computer
screen and then has to push a button on the keyboard in
order to have that count register? Does that change the task
in a way that makes it more confusing to the child?

“The first question that we had to ask was how we could
use the computer, the keyboard and the screento expand the
child’'s ability and not create a roadblock to learning,”
Oehlsen explained. “"We spent a lot of time working with
prototypes of the programs, going out and testing in pre-
schools. We wanted to see if three-year olds could find an
arrow key on the keyboard if we showed them an arrow on
the screen. If three objects came out on the screen could the
children count them and then find the appropriate numeral
on the keyboard? Did that sequence of events make sense to
them? Could they make the association between the numbe

of objects and the symbols on the keyboard? By breaking the ..

tasks down into fine components and continually testing with
kids from the very beginning of the software development
process, | think what we have done is put together four
programs that work very well for children, as well as work
very well with children. We have learned that kids are very
comfortable with and really enjoy our programs, that the
computer facilitates their interaction with the concepts and
that they learn the mechanics of operating the computer very,
very quickly. Little kids in this age range have no fear of
computers.”

EXTENSIVE RESEARCH AND TESTING

What Children’s Computer Workshop has found while
testing these programs is that on the very basic level, the level
for the three-year-olds, simply being able to push a button on
the keyboard and have something predictable happen on
the screen fascinates them. In Grover's Number Rover, for
instance, when three-year-olds play, they can push the arrow
key and a "Twiddle Bug” comes racing across the screen.
They push another arrow key and it goes off the screen.
Oehlsen reports that three year olds find their simple task
engaging and have been observed to play this way on their
own, exploring the computer environment, for up to a half
hour at a time. He feels that the control over the elements of
the activity that the computer allows is a very powerful con-
cept for young children.

“If the computer is programmed to be responsive to (
children, it becomes an incredibly intriguing device for learn-
ing. Kids will sit and explore and play with it as they try new

8 TRS-80 Microcomputer News, October 1983

things. The computer does not replace other techniques for
helping children learn; it does open another door for them
and, most importantly, the kids have a lot of fun.”

£ CO-OPERATIVE COMPUTER GAMES

(AGES 7 AND OLDER)

The second cluster of Children’'s Computer Workshop
games are designed for children ages 7 and older. Entitled
the “Cooperation and Strategy Series,” these three games
encourage players to work toward a common goal. Children
play in an environment where they may share information,
divide responsibilities, and build on one another’s strengths.
The three games in the “Cooperation and Strategy” series
are:

Peanut Butter Panic™* * * is a two player game in which
success depends on cooperation. As the players jump for
stars to make peanut butter sandwiches, they soon find that
they must work together to catch the most valuable stars, and
they must share the sandwiches they make to maintain their
jumping energy. Teamwork develops naturally and is well-
rewarded. Players must plan their jumps carefully to move to
higher levels of the game as they work together and share
resources.

Photo 3. Taxi (Ages 7 and Up).

Taxi™*** allows kids to get "behind the wheel” of a cab.
By maneuvering around street grids based on city maps,
players try to deliver as many passengers as possible before
their time is up. When played cooperatively, the game
encourages communication and division of labor. As
players develop mutually effective strategies, their scores will
increase.

Star Trap™ * * * is a dynamic maze game where coopera-
tion really pays off. The challenge is to trap a shooting star by
blocking the paths with x's and using the special maze gates.
One player can make a trap, but two players working as a
team can play more efficiently. By talking and planning to-
gether, players will trap the star more quickly and move to
higher levels in the maze.

In creating the “Cooperation and Strategy” game series,
Children’s Computer Workshop established an educational
goal, but education in a very broad sense of the term. They
set out to create a set of games that kids could play coopera-
tively and still have a good time. Dan Oehlsen explains,

“What we tried to achieve in the ‘Cooperation and Strategy
Series’ was a little different than what we did in the pre-school
cluster. We did not establish an educational goal that was
tied to a content area or a curriculum area like spelling or
math. We chose a broader area, but one we felt was just
as important.

Photo 4. Taxi (Ages 7 and Up).

"Our first objective was to create a group of games that
would be a lot of fun to play. Games that would give kids the
same sort of interactive excitement that they get playing other
video-games. We wanted these games to have that type of
strong appeal.” Oehlsen feels that what they have accom:-
plished in this series of games is very similar to what “Sesame
Street” does on the screen. "First of all, it is a really fun show
to watch. We know that if kids will not watch the program, the
content does not really matter. They will have no opportunity
to experience it. So, our first objective was to develop a set of
three games that children would like to play. After that, we
wanted to design games that kids would enjoy playing to-
gether, cooperatively.”

In each of the three games in this series the way players
succeed is to cooperate with their partners. They are all
played by two players simultaneously, and in every case, the
players reach a point where, in order to do better in the game,
they have to work together. Children’'s Computer Workshop
research has shown that soon after beginning play the kids
discover that working against one another is a very limiting
strategy. :

TRS-80 Microcomputer News, October 1983 9

COOPERATION AND COMPETITION

The Children’s Computer Workshop folks do not suggest
there is anything wrong with kids playing competitive games.
“What we set out to do with these games was to provide some
alternatives,” says Oehlsen. “Competitiveness is certainly a
positive thing in some circumstances, but in other situations,
cooperation and collaboration with another person may be a
good strategy also. There are lots of competitive games out
there. We wanted to demonstrate that it is possible to play and
" have fun in a cooperative environment. Some games that we
make in the future may involve competition. But, we really

[T

think there should be more of a ‘balance’.

Another important issue concerning computer games is
that of isolation of the individual. “Sometimes kids want to
play by themselves. Sometimes they want to have something
they can do on their own, away from other people. That can
be a good thing. Again, we think these should be alternatives
for children. We think this is a medium that should not neces-
sarily isolate people. It can be a medium that facilitates com-
munication between people. We set out to create a group of
games that would use the computer medium to get children
to talk to one another and work together. In fact, that is what
happens in these games. When kids play them, they are
usually very quiet in the beginning and then, a couple of
minutes into the game, an amazing thing starts happening—
they start talking to each other. Because they have to commu-
nicate to go any further, to improve their score, the
cooperation and collaboration happen naturally, as a part of
game play. Once they get to that point, there is a lot of
interchange between the kids throughout the rest of the
game. We think that is a positive thing and good for the kids.
The same kids might want to play a game that allows them to
play by themselves another time, but we feel that this alterna-
tive is a unique and important one for children to have.”

Children’s Computer Workshop researchers have got-
ten extremely favorable feedback on these games from par-
ents. They enjoy playing them with their children and are
pleased that they have at least one cooperative strategy
game in the library of games they have for their kids.

The people at Children's Computer Workshop believe
that children can learn through play. They view children as
their partners in the development of their products. Their
software is thoroughly tested for age appropriateness, ap-
peal, accessibility, and comprehension of learning goals.

Their games are designed and redesigned to best serve the
needs of kids, and resulting products are unlike anything else
on the market.

*Sesame Street, Electric Company, and 3-2-1 Contact are
trademarks of Children’s Television Workshop.
**Trademarks of Muppets Inc.
***Trademark of Children’s Computer Workshop Inc.
CCW and Children’s Computer Workshop are trademarks of
Children’s Computer Workshop Inc.

Color Computer Draw
Statement

Mike Kim
CIS 70615,1040

Here is a hint for using the DRAW statement with the
Color Computer. When using the DRAW statement, you can
use variables rather than absolute numerals with the motion
commands. All you have to do is take the direction
(U,D,LR,E,FG, or H), putan equal sign and then the variable
(i.,e. U=Awhere Alisthe variable). As far as | can tell, you can
use the variables B, M, U, D, R, L, etc.

Editor's Note: The last variable in U, D, R, L, etc. must
have an absolute value or an FC error will occur.

10 TRS-80 Microcomputer News, October 1983

Model L1/12/16

. The New Model 16B with
15-Megabyte Hard Disk Built-In

by Annette Zamberlin-Main

One expression of the state-of-the-art in 68000 micropro-
cessor technology is Radio Shack’s Model 16B. It has proven
to be well-suited for the office of today, providing simultane-
ous job-handling without the expense involved in purchasing
and utilizing multiple microcomputers.

The 16B offers high operating speeds and large memory
capacities that numerous business users require in their par-
ticular environments. It can handle complex computational
jobs and highly sophisticated programs.

Now to all of this, Radio Shack introduces an innovation
of revolutionary proportions, a 256K 1-Floppy Disk
Model 16B with a built-in 15-Megabyte Hard Disk
(Cat. No. 26-6006) at a cost of only $6999.00.

That's right, built into the physical 16B microcomputer
cabinet is a 15-megabyte hard disk drive.

Just imagine the power and capacity of this machine!
You can access up to 15 million characters on the hard disk.
And there is the ability to add another external hard disk drive
for atotal of 27 million characters of on-line hard disk storage.

Compare the old price (RSC-9, page 9) of a 128K
Model 16 with 1-floppy disk drive and an external 12 Meg
‘hard disk drive for $8494.00. Let's see, $8494.00 less
7 $6999.00 is $1495.00. That is a significant price drop espe-

cially when considering all the features of the 16B.

MODEL 16B FEATURES
In addition to the 16 bit 68000 there is a second proces-

sor, the Z-80A. In the 168 the Z-80A 8-bit processor handles
input and output plus a variety of other housekeeping chores.

PORT CAPABILITY

This computer has one standard parallel printer port and
two RS-232C serial communications ports built-in which allow
interfacing the 16B to modems, digitizers, serial printers,
and a variety of other peripherals. The 16B also has high-
resolution graphics as an option.

THE KEYBOARD

The 16B has a detachable typewriter-style eighty-two
character keyboard with a numeric keypad. The eight special
function keys are programmable so often repeated tasks can
be performed with the stroke of a single key. Other special
keys include HOLD, ESCape, BREAK, CTRL, CAPS, and
REPEAT plus up, down, right, and left arrow keys.

WHAT A MEMORY!

The 16B has 256K RAM bytes of memory, expandable to
768K. That is a lot of memory! There is 64K Input/Output
memory and 2K videoc memory.

VIDEO DISPLAY

The 16B has a high-resolution 12" green display monitor
which allows you to display either 80 or 40 characters per line
with 24 lines per screen. It displays upper and lower case
characters with true descenders on the video. It also will
display an additional 32 “business graphics” characters.
There is automatic scrolling plus an available partial screen
scroll protection.

TRS-80 Microcomputer News, October 1983 1

SOFTWARE COMPATIBILITY AND EXPANSION SLOTS

The Model 16B can run existing Model I1/12 software in
the single user mode. It will also run new software which has
been designed to take advantage of the Model 16B's ad-
vanced features.

Add to this two more expansion slots (4 in the 16B, 2 in
the 16) in the user accessible card cage. The hard disk uses
one of the expansion slots.

OPERATING SYSTEMS

The Model 16B includes two operating systems:
TRSDOS for single user environments and TRS-Xenix Core
System Version 1.3 which is a powerful multi-user operating
system.

WHAT A VALUE!

The 16B is a tremendous value in a computer. It is eco-
nomical in that it provides simultaneous job-handling without
the expense of multiple computers. The Model 16B is for the
individual who wants the most advanced microcomputer
technology at his fingertips. ¥z |

Fast Data Lines for
Models 1/111/4
and I1/12/16

Barney M. Tennyson, CPA
146 South Battery
Charleston, S.C. 29401

Using the programs NEWLINE and TEXTLINE, data
lines can be entered free of syntax and continuity problems
and with less typing on the operator’s part. Specifically de-
veloped to run on either the Models I/111/4 or the
Models 11/12/16, these two programs allow you to make
corrections to data during the entry process.

NEWLINE

In NEWLINE numerical information can be entered with
ease from the keypad since all separating commas are
added by the program. Each data item is entered individually
and stored in the same data line until you type in #. A #
indicates completion of data entry in the current line and
causes the next line number to be displayed. Each line num:
ber is incremented by 10. Entering END stops data from
being entered and causes the data lines to be written to a disk
file named TEMPXFER. If you discover that you made a
mistake on the previous item of data, just type XX instead of
the next data item and you can type that item over again.

If NEWLINE is to be used without the character limitation
routine suggested below, it would still be wise to insert a
caution line following line 10160 to alert you that the line is
nearly full. For example:

18165 IF LEN(T$(N)) => 24¢ THEN PRINT "WARNING..... "

(The character limitation number—240 above—de-

pends on the nature of the information being entered.)

You may want to use the following suggestions which

can be successfully added to the primary routine.

1. Add a live keyboard input subroutine to limit the
length or nature of individual items and to control the
length of the line.

2. Customize the input process at lines 10060 through
10120 to provide descriptive prompts for the informa-
tion required in a particular application.

3. When lines are to be entered consecutively without
any interval, eliminate the prompt for the starting line
number and have the program set the starting line.
For example, using an assigned data block with a
single item on each line:

1999 DATA END
Read and discard the data lines already in place with
a counter variable, and set SN equal to 1000 plus the
counter variable.

4. Display operator instructions for continuation of the
main program just before line 10190.

1¢¢ ' *%% TEMPORARY LINES 1(@-116 #**

11§ CLEAR 5¢¢¢

112 DEFINT A-Z

113 DIM T$(1¢@)

114 cLS

115 PRINT"ADD DATA LINES TO THE RESIDENT PROGRAM:"

116 PRINT

18¢@¢ ' ** SUBROUTINE TO ADD DATA LINES **

12 TRS-80 Microcomputer News, October 1983

19919
19@30
19¢40
19958
190960
19079
1¢¢8¢
1099
16199
1411¢
19120
1613¢

OPEN"0",1,"TEMPXFER"
INPUT"STARTING WITH LINE NO. '";SN
FOR N=1 To 100

PRINT

PRINT"Entering Line Number ''SN
SN$=STR$(SN)

L=LEN(SN$)-1

SN$=RIGHTS(SN$,L)

T$(N)=SN$+" DATA "

PRINT

INPUT"Enter Data Item '";D$

IF D$="#" THEN GOSUB 142¢¢

: NEXT N

16149

IF D$="END" OR D$="'end" THEN GOSUB 10200

: GOTO1@184

1415¢

IF D$="XX" OR D$="xx" THEN GOSUB 1¢28¢

: GOTO 1¢12¢

1¢16¢
1¢17¢
19184
1919¢
19204
142485
102149

T$(N)=T$(N)+D$+", "

GOTO 19120

CLOSE

MERGE" TEMPXFER"

' %% TO WRITE LINE TO FILE %%
Z$=SN$+" DATA "

CLS

: IF T$(N)=z$ THEN SN=SN-1¢
: N=N-1
: RETURN

1¢22¢
1623¢
16249
1625¢
1626¢
1627¢
1¢28¢
19285
19299

L=LEN(T$(N))-2
T$(N)=LEFTS(T$(N),L)

PRINTTS$(N)

PRINT#1,T$(N)

SN=SN+10¢

RETURN

' %%k% ITEM CORRECTION ROUTINE #*%
Z$=SN$+'" DATA "

IF T$(N)=2$ THEN N=N-1

: SN=SN-1¢
: FL=1

19300
19314
1¢320
19339
1¢34¢

L=LEN(TS$(N))

FOR X=(L-2) TO 1 STEP -1

IF MIDS(T$(N),X,1)=" "THEN 1¢5¢¢
NEXT X

IF FL=1 THEN PRINTT$(N)

: GOSUB 1@4¢¢

1¢35¢
19369
1¢37¢
1¢38¢
19394
10400
18419
18429
1¢50¢
19519
19520
1¢53¢
19548

: RETURN

TS(N)=SN$+" DATA "

PRINTTS$(N)

GOSUB 104¢¢

RETURN

' %k% PRINT LINE FOR CORRECTION ROUTINE ***
PRINT"CORRECTION OF PRECEDING ENTRY"
FL=§

RETURN

! %% PREPARE LINE FOR CORRECTION *#
T$(N)= LEFT$(T$(N),X)+" "

PRINTTS$(N)

GOSUB 1¢40¢

RETURN

TEXTLINE
With TEXTLINE each dataline will contain a single item of

data. It is

particularly useful for form letters and standard

documents which are regularly used. The use of double
quotes after the word DATA in the program permits the use of
commas and other prohibited characters within the data

string. As

in NEWLINE, XX lets you correct the previous line

and END stops DATA line entry and causes the DATA lines to

be written
1¢¢ '

to the disk file TEMPXFER.

%% TEMPORARY LINES 10@~116 #%*

11¢ CLEAR 50¢¢

112 DEFINT A-Z

113 DIM T$(1¢¢)

114 CLS

115 PRINT"ADD DATA TEXT TO THE RESIDENT PROGRAM:"

116 PRINT
1¢¢@¢ ' ** SUBROUTINE TO ADD DATA LINES #*
1¢¢1¢ OPEN"O",1,"TEMPXFER"

10030
10949
16050
1¢06¢
16679
10089
10994
19100
19119
19120
1913¢

1014@

1¢15¢

10164
19179

1¢18¢
1¢19¢
1020¢
19265
1¢21¢

16220
1¢23¢
16240
16259
16260
1¢274
1¢39¢
10409
10419
10424
10509
14519
16529
1¢539
19549

INPUT"STARTING WITH LINE NO. ";SN
FOR N=1 TO 1¢¢

PRINT

PRINT"Entering Line Number '"SN
SN$=STR$(SN)

L=LEN(SN$)-1

SN$=RIGHTS$(SN$,L)

T$(N)=SN$+'" DATA "+CHR$(34)

PRINT

LINEINPUT"Enter Data Item ";D$

IF RIGHT$(D$,1)=CHR$(13) THEN GOSUB 1¢2¢¢

: NEXT N

IF D$="END" OR D$="'end" THEN GOSUB 1¢20¢

: GOTO1¢18¢

IF D$="XX" OR D$="xx'" THEN SN=SN-1¢

: N=N-1

: PRINTTS$(N)
: GOSUB 1¢39¢
: NEXT N

T$(N)=T$(N)+D$+", "
GOSUB 1¢20¢

: NEXT N

CLOSE
MERGE" TEMPXFER"

! #%% TQ0 WRITE LINE TO FILE #*%%
Z$=SN$+" DATA '"+CHRS$(34)

CLS

: IF T$(N)=2$ THEN SN=SN-1¢
: N=N~1
: RETURN

L=LEN(T$(N))-2

T$(N)=LEFTS$(TS(N),L)

PRINTTS$(N)

PRINT#1,T$(N)

SN=SN+10

RETURN

' %%% PRINT LINE FOR CORRECTILON ROUTINE #%*
PRINT"CORRECTION OF PRECEDING ENTRY"
FL=p

RETURN

' %% PREPARE LINE FOR CORRECTION **
TS(N)= LEFTS$(TS(N),X)+" "

PRINTTS$(N)

GOSUB 1¢4¢¢

RETURN

Frustration

J. De Augustine
2275 Grove Way #19
Castro Valley, CA 94546

Since | saw a poem submitted by a reader in your Janu-
ary issue, | thought perhaps you might like to share a few of
my thoughts with your readers.

| bought a home computer,
Thinking even | could learn
This mysterious new language
That appeared at every turn.

In a week | was addicted:

At the keyboard day and night,
Using strings and variables,
But nothing came out right.
Futility has made me doubt
My ability to learn.

I may have ample GO-SUBS
But I'm short a few RETURNS!

TRS-80 Microcomputer News, October 1983

13

The Pod Concept in Classroom

Networking

By Warren Hornsby, Jr.

Editor’s note: Warren Hornsby is a teacher and systems
programmer who independently produces and sells special-
features operating system software for use with Radio Shack
Network 2 systems. For more information, write to Hornsby at
“ClassWare”, 8192 N. Dilcrest Ct., Florence, KY 41042. While
the article below describes a Network 2 configuration
with Model III student stations, the same arrangement
could be used with other Radio Shack Network 2 or Network
3 configurations.

This article describes a special arrangement of tables
and computers that allows one Radio Shack TRS-80 Network
2 system in a classroom or resource center to serve 30
students at once. Hardware required is:

e Ten Radio Shack TRS-80 Model I11 or Model 4 comput-

ers with at least 16K memory each

¢ One Radio Shack TRS-80 Model III or Model 4 disk

system with at least 32K memory

e One Radio Shack Network 2 Controller, with all the

necessary connecting cables that come with the
controller.

THE SET-UP

A special system of grouping students around the net-
work’s computers (called the “pod” concept) is used to reach
the goal of teaching the maximum number of students that
can effectively be taught with the minimum amount of com-
puter hardware.

Pictured above is a typical “pod” of three students.
Notice that each member of the pod has a direct line of sight
to the computer screen. While not physically separated from

the teacher or from the rest of the class, the “pod” is an entity
of these three students working and learning together.

Atthe end of whatever time period the teacher dictates,
the pod should rotate (see illustration of THE POD CONCEPT,
below). Normally the rotation is clockwise; often on a daily
basis. What this means to each student is that every third day
the computer is his or hers. The other two days, the student is
not just an observer, but a vital member of the “pod.” (During
testing or short exercises, of course, the pod may rotate more
often.)

THE BENEFITS

The pod system has been in use in several schools,
where the following benefits have been noted:

1. While a one-to-one ratio of student-to-teacher is often
voiced as the ideal, this is not necessarily true in the student-
to-computer relationship, especially in younger (primary and
junior high) grades. It has been observed that in both pro
gramming and Computer Assisted Instruction classrooms,
that students can sometimes get lost or confused with some
simple procedures for operating the computer. With two other
“pod"” members, this rarely occurs.

2. The “three against one” (students vs. computers)
atmosphere of the pod is very reassuring to new computer
students and goes a long way towards relaxing them in their
relationship with the computer. (The computer is, after all,
almost human . . .?)

3. If a real problem should occur in the lesson, a pod is
much more likely to alert the instructor than a lone individual
might be.

4. Nearly three times the learning takes place as the
student not only does his or her lesson or test, but also
observes as other pod members do their lessons.

5. "Brainstorming” quickly becomes the norm when
programming and debugging get underway.

6. The usual practice of “lining the outside walls” with
computers in the typical computer lab is no longer necessary
to avoid tripping hazards from wires on the floor. The floor
plan of the pod system illustrates the complete lack of wires
on the floor where foot traffic could be expected; this works
especially well if Radio Shack power strips are used to supply
power to all computers. If no floor plugs are available, then
one power cable will have to exit from the pod arrangement at
some point close to a wall outlet. The cable should be cov-
ered and shielded from foot traffic.

7. Finally, for less than what is usually spent on textbooks
and for about half of what is spent on setting up the average *
typing lab, 180 students (30 x 6 class periods) can be given

14 TRS-80 Microcomputer News, October 1983

The “Pod” Concept

B

8
pod

——

4
A S
" 4

o
@

/
©

=

. extremely comprehensive and powerful exposure to pro-

gramming, CAl, remediation, tutorials, and anything else

associated with having computers available on a truly "work-
able” basis.

CONCLUSION
Al in all, the “pod” system of arranging the computer

Computer Clubs

| Teacher Station |

classroom has many good features, not the least being the
maximum coverage of the student population with the maxi-
mum computer exposure at the minimum cost. At higher
grade levels and/or in advanced programming classes, of
course, the closer to a one-to-one ratio of computer-to-
student, the better. 43

The Color Byte Club

¢/o Randy Blunt

869 Innes Ave.

San Francisco, CA 94124

The Color Computer Club
of San Francisco

¢/o Thai Howard

1771 Page St.

San Francisco, CA 94117

Color Computer Users Group
¢/o A. Arnold Weiss

Apt. 1626 Kennedy House
1901 J. F. Kennedy Bivd.
Philadelphia, PA 19103

Halifax-Dartmouth Color Computer
Users Group

PO. Box 572

Dartmouth, N.S. B2Y 3Y9

Canada

Kansas City TRS-80 Users Group
/o Mary Youngblood

300 N. W. 83rd Street

Kansas City, MO 64118

Portland Area TRS-80 Users Group
P. 0. Box 02500
Portland, OR 97202

San Antonio TRS-80 Users Group
14310 Pembridge
San Antonio, TX 78247

Shippensburg Color Computer Club
/o Dept. of Mathematics &
Computer Science

Shippensburg University
Shippensburg, PA 17257
1-717-532-1406

South Brevard Color Computer Club
/o Dossey E. Evans, 11

2727 N. Wickham Road, 10-203
Melbourne, FL 32935
1-305-254-0575

Ventura County Color Computer Club
/o Carol Simpson

524 Kitty Street

Newbury Park, CA 91320

1-805-499-3055 42

TRS-80 Microcomputer News, October 1983

15

0S-9—A New Color Computer

Operating System

By Bruce Elliott

The following information is a composite of quotes from
the OS-9 documentation, paraphrases from that documenta-
tion and other relevant materials.

WHAT IS 0S-9?

0S-9 is a versatile operating system for the 64K TRS-80
Color Computer. It is based on the UNIX operating system
developed by Bell Laboratories Inc. Unix is widely used on
larger computers, including the Radio Shack Model 16 which
runs the UNIX based Xenix™.

0S-9 opens many new doors by expanding the Color
Computer’s capabilities. OS-9 offers sophisticated features
that are normally availabie only in much larger computers.
Among these features are:

Multi-Level Filing System—Like most operating sys-
tems, OS-9 lets you store information on disk in a
“file” and index these files with a directory. 0OS-9,
however, goes one step further by letting you create
a hierarchy of directories and files.

Multi-user/Multi-tasking Operation—Multi-user means
that more than one person can use the system at the
same time. The number of users is limited by the
number of terminals. The TRS-80 Color Computer
can have one terminal; this means that two people
can use 0S-9 at the same time, one person on the
Color Computer and one on the terminal.
Multi-tasking means that two or more tasks (pro-
grams) can run at the same time. For example, with
0S-9 you could print reports and enter information
at the same time.

Device-Independent Input/Output System—0S-9 uses
a very efficient method for inputting and outputting
information. OS-9 expects all input to come from the
“standard input device” and all output to go to the
“standard output device.” On the Color Compulter,
0S-9 expects all input to come from the keyboard/
console and all output to go to the video display.
You can easily “redirect” the standard I/O devices
to other devices such as printers or disks. This
means that an OS-9 program needs only one output
routine and one input routine. From there you can
redirect the routines to other devices. This saves
time for the programmer and space on the disk
because programs can be shorter.

WHAT IS THE ADVANTAGE OF 0S-9?

The first thing to do in looking at OS-9 is to answer the
question “What is an operating system?”

An operating system acts as a manager for your com-
puter. It sends information to the disk drives, printer and
video. The operating system manages the storage space on
your disks and in your computer’s memory. The operating
system also responds to your commands.

OK, an operating system manages the computer. What
does that have to do with the Color Computer?

If you presently have a Color Computer disk system, you
may not be fully aware of the computer’s operating system.
Radio Shack deliberately made the operating system under
Color Disk BASIC “invisible” to you in normal operations. If
you want to format a disk you simply ask BASIC to initialize the
diskette using DSKINI. BASIC then goes out to the proper
drive, initializes the diskette and returns control to you in
BASIC. There is no need (or way) for you to move out of
BASIC and into the operating system.

Under “most” operating systems, including those of the
Models 4/12/16, BASIC is simply one of many programs |
which is available to you for use under an operating system.
To format a diskette you use a disk format utility, which is NOT
part of BASIC. In Color Disk BASIC, the operating system is
“hidden” in BASIC so that you do not have to deal with it.

Under OS-9, you bring up the operating system by
"booting” it from the operating system diskette. OS-9 loads
into your Color Computer and takes control. BASIC is gone,
as is the hidden nature of the operating system. Under OS-9
you will have to learn how to function within the operating
system, if you are going to successfully use the power of the
system.

16 TRS-80 Microcomputer News, October 1983

If your main thing is running program paks, or if you buy
your programs off the shelf, then you probably don’t have a
lot of need for OS-9. Color Spectaculator (ROM or Disk) will
still function and will still do the same functions that they have
always done. Color Scripsit will continue to function and does
not need OS-9. If you write your own programs, or if you want
to learn a lot more about your Color Computer, then 0S-9
may have some advantages for you.

Atthe time | am writing this article, the only OS-9 product
is the bundled package of the OS-9 operating system and the
Editor/Assembler/Debugger. By the time you are reading
this, BASIC09, a compiled BASIC for use under OS-9, should
also be available. The first products that you can expect for
OS-9 are languages. First BASICO09, a little later we expect to
have some other popular languages available. It will take
some time for all of us to get comfortable with OS-9 on the
Color Computer and for applications programs to begin
to appear.

Does this mean you should not buy 0S-97 NO! It only
means that OS-9 is an advanced operating system which will
unleash the power of the Color Computer. If you are still
uncomfortable with Color BASIC, or if you have no intentions
of writing your own programs, then your money might be
better spent on a different product.

WHAT DO | NEED TO RUN 0S-9

The hardware required to run OS-9 includes a 64K
TRS-80 Color Computer with at least one floppy disk drive.
The OS-9 standard system disk includes modules to support
the following TRS-80 Color Computer hardware:

® 64K RAM

¢ Keyboard

e Alphanumeric Video Display

e Color Graphics Display

e Disk Drives (1 or 2)

e Joysticks (1 or 2)

e Serial Printer

e RS-232C Communications Port

Because OS-9 makes extensive use of the Color Com-
puter's disk drives, the OS-9 Boot Disk includes a test for your
disk drives. This test checks the speed of the drives. A disk
drive’s speed should be about 300 RPM (rotations per min-
ute). The test will tell you if your drives are too fast, too slow, or
if they are working within a proper speed range. If your disk
drives should need adjustment, this work can be done at a
Radio Shack repair facility.

Beyond the hardware requirements, you should be very
familiar with Extended Color BASIC and Color Computer
Disk BASIC. OS-9 is an advanced operating system de-
signed for experienced computer users. Radio Shack
strongly recommends that you feel comfortable with Color
Disk BASIC before you move up to OS-9. The 0OS-9 docu-
mentation assumes that you have a working knowledge of
the Color Computer disk operating system.

TELL ME MORE ABOUT 0S-9

I have known for some time now that OS-9 was coming
as a new operating system for the Color Computer. When |
finally got a copy (xeroxed manuals and labelless diskettes),
the first thing that struck me was a similarity to Xenix™. This
similarity was the large stack of manuals for each. | received
six separate manuals to support the initial release of OS-9:

Getting Started With 0S-9

0S-9 Operations Manual

08-9 Technical Information

0S-9 Macro Text Editor User's Manual

0S-9 Assembler User's Manual

0S-9 Interactive Debugger User's Manual

[am not quite sure how many pages that represents, but
it certainly represents an incredible amount of information
about both OS-9 and the Color Computer.

The first thing to get used to about OS-9 is its file system.
Both Color Disk BASIC and OS-9 store information in disk
“files” just as you might store a memo or other information in a
file folder. Like most disk files, these files can contain a wide
variety of information.

Under Color Disk BASIC, each diskette has a directory
which tells you what information is stored-on that particular
diskette. OS-9 also uses directories, but in a slightly altered
way. As in Color Disk BASIC, each directory points to (shows)
information which is on a diskette. The difference with 0S-9 is
that one directory may contain or be contained in another
directory, and each diskette may have many such directories.

The OS-9 system starts at the “system device directory.”
This directory contains a directory entry for each device in the
Color Computer system, such as the keyboard/display, disk
drives, printer, and the optional terminal. The system device
directory looks like this:

System Devlice Directory

l ! I | l
P Do TERM D1 T1

The P is the printer, DO is the first disk drive, TERM is the
keyboard/display, D1 isthe second drive, and T1 is a terminal
connected to the RS-232C serial port. (Even if you don't have
the actual device, your system device directory still has
the entry.)

The disk drives, referred to as /D0 and /D1, are the only
devices that can form their own “tree” structure by storing
other directories and files. Each drive has a “root” (or main)
directory which is the beginning of its particular directory
tree.

Generally, the disk in drive 0 is the OS-9 system disk. its
root directory contains two files (startup and OS-9Boot)
and three sub-directories (SYS, DEFS and CMDS). The sub-
directories contain another level of files. As an example,
CMDS contains the files copy, list, dir and del, among many

TRS-80 Microcomputer News, October 1983 17

others. (Note that OS-9 uses the convention of lowercase
entries for files and UPPERCASE entries for sub-directories.)

To help you find your way inside the OS-9 structure, each
device or file has its own unique "pathname.” A pathname is
the description of the path to follow to move from the system
device directory to the desired file. The pathname for the file
dir in the previous paragraph is: /DO/CMDS/dir. This name
tells us that dir is located on the diskette currently logged into
drive 0, and that it resides in the sub-directory CMDS. A
- pathname can be as long as needed to uniquely describe the
path to a particular device, directory or file.

0S-9 COMMANDS

attr - Change file attributes.

backup - Make a disk backup.

binex - Convert binary to s-record.

build - Lets you create or build simple files.

chd - Change working data directories.

chx - Change working execution directory.

cmp - File comparison utility.

cobbler Make a bootstrap file.

copy - lets you duplicate a file.

date - displays the current system date and time.

dcheck - Check disk file structure.

del - lets you delete a file.

deldir - lets you delete a directory and all files in its
system.

dir - list the contents of the current directory.

display Display converted characters.

dsave Generate a procedure file to copy files.

dump Formatted file dump.

echo - Echo text to output path.

exbin - Convert s-record to binary.

format Initialize disk media.

free - tellsyouthe amount of free space remaining on
a diskette.

ident - Print OS-9 module identification.

kill - Abort a process.

link - Link module into memory.

list - displays the contents of a file.

load - Load module(s) into memory.

login - Timesharing system log-in.

makdir allows you to create your own directories.

mdir - Display module directory.
merge Copy and combine files.
mfree - displays the amount of available memory in

your OS-9 system.

0S9Gen Build and link a bootstrap file.

printerr Print full-text error messages.

procs - Display processes.

pwd - prints the name of the current working
directory.

pxd - Print current execution directory.

rename lets you change the name of a file.

save - Save memory module(s) on a file.

setime lets you set the system time and date.

setpr - Set process priority.

sleep - Suspend process for a period of time.

shell - 08S-9 command interpreter.

tee - Copy standard input to multiple output paths.

tmode - Change terminal operating mode.

tsmon Timesharing monitor.

unlink - Unlink memory module.

verify - Verify or update module header and CRC.

xmode - Examine or change device initialization mO(igé.l

Word Processing and
Programming

Davy L. Barron
311 Montgomery St.
Troy, Al 36081

Most word processors save their text in ASCII format or ¢

have a utility program to convert their text to ASCIl and back
for proofreading. To use this tool to edit programs, all that
needs to be done is to follow these simple directions.

1. Save your program in ASCIll format. In most cases it
would be saved like this: SAVE “program”, A.
Load and run the word processor.

Load program or text into the word processor.

You are now ready to edit your program.

Save the program out in ASCII format (Model /111
Scripsit) or convert the file to ASCII format (Model 111/
4 SuperSCRIPSIT or Model 11712 Scripsit). &3

oD

18 TRS-80 Microcomputer News, October 1983

Interface

By Linda Miller

With the Multi-Pak Interface (Cat. no. 26-3024, sug-
gested retail price $179.95) it is possible to connect up to four
Color Computer Program Paks or Interface Controllers such
as the Disk Controller to the Color Computer at the same time.
By selecting one of the four available slots you can change
from one program pak to another.

Frequently used program paks no longer have to be
removed and reinserted each time you want to use them.
They can be plugged into the Multi-Pak interface and used
over and over without having to change the setup or continu-
ally change the cartridges.

Four program pak slots

Program pak

Color Computer connector selector switch

HOOKING UP THE MULTI-PAK INTERFACE

When everything is turned off, the Multi-Pak Interface
Computer Connector is aligned with the cartridge slot. The
Multi-Pak Interface’s connector is then gently slipped into the
Color Computer’s recessed cartridge receptacle. Next the
computer and the interface are plugged into a power source.
After the program paks have been inserted in the appropriate
slots, the computer and the interface are turned on.

While it doesn’t matter which of the four slots the pro-
gram paks are plugged into, itis recommended that the Color
Computer Disk Interface Pak be plugged into slot four.

HARDWARE OR SOFTWARE SLOT SELECTION

Slot selection can be accomplished via the switch
on the interface (hardware) or by POKEing a memory loca-
tion (software).

- The Color Computer Multi-Pak

Switch positions one through four select the correspond-
ing slots. When the switch is set to slot four, then the program
pak in slot four is selected. Moving the switch to another
position selects a different program pak. Sometimes after
changing to a different slot, you may have to press the reset
button.

By POKEing the appropriate value at address 65407, itis
possible to software select any of the four interface slots.

POKE Address | with the Value of for slot #
65407 0 1
65407 17 2
65407 34 3
65407 51 4

The BASIC statement POKE 65407,17 selects slot two.

WHAT DOES IT ALL MEAN?

What this means is that | can have Dungeons of
Daggorath, Double Back, Canyon Climber and the Disk
Controller all plugged in at the same time. If | decide to play a
different game or decide to use my disk for more serious
applications like Scripsit, | just reposition the switch on the
front of the Multi-Pak Interface to the appropriate slot, press
the reset button, and I'm ready to go.

Convenience is the watchword here. The Multi-Pak
Interface makes frequently used programs only the press of a
button away.

TRS-80 Microcomputer News, October 1983 19

The Color Mouse and the Deluxe

Joystick

By Linda Miiler

The TRS-80 Color Computer Color Mouse (cat. no.
26-3025, suggested retail price $49.95) can be used in place
of or in conjunction with the Color Computer joysticks
(26-3008). With programs that require exact positioning of the
cursor such as the three listed below, the Mouse is far supe-
rior to conventional X-Y controllers.

Galactic Attack (26-3066)
Polaris (26-3065)
Wildcatting (26-3067)
Reactoids (26-3092)

GETTING READY

The mouse connector is plugged into the joystick con-
nector in the back of the Color Computer. The Color Mouse
should be placed on a flat plane (such as a table top, desktop,
or floor) with a sheet of paper between the flat surface and the
Color Mouse. The sheet of paper is just a precaution to
prevent marring of the flat surface. When | placed the Mouse
on a stack of printer paper, it seemed a little more responsive.
Maybe that was because the surface of the paper was not a
rigid as my desk and that allowed more contact with the
rotating ball on the bottom of the Mouse.

The Mouse is positioned so that the fire button is at the
top and the power cord comes out the side opposite to the
operator. In this position the lettering on the Mouse is easily
readable.

CURSOR CONTROL

Controlling the cursor with the Color Mouse is a matter of
logic. Cursor movement is relative to the movement of the

Mouse. Horizontally and vertically, the Mouse divides the
screen into 64 steps (0 - 63). The center point of the screen is
X=32, Y=32. The maximum movement of the Mouse is
approximately 4.5" both horizontally and vertically. The
range of movement and direction that the cursor can be
moved is software dependent.

Figure 1 indicates the maximum movement capabilities
of the Mouse and the directions of movement.

) 4.5" 63
o TOP

15" | <@

63

Figure 1.

SOFTWARE AND THE MOUSE

Software is a critical factor in the way that the Mouse
operates. The available movement area and the direction of
movement of the mouse are determined by the Color Com-
puter program being used. With some programs the entire
screen may be used while with others, the movement may be
restricted to certain areas of the screen. Diagonal movement
is permissible as can be seen in Figure 1.

The Mouse is programmed like the joysticks, and pages
84-88 of Getting Started with Color BASIC provide the neces-
sary information for writing software to use it.

THE MOUSE IS FUN TO USE

The Mouse feels quite different from a joystick and lends
itself better to some software applications than others. The
Color Mouse can make drawing color graphics as well as
many other applications great fun.

20 TRS-80 Microcomputer News, October 1983

THE DELUXE JOYSTICK
The TRS-80 Color Computer Deluxe Joystick is a high-

=~ tech, high-performance joystick designed to increase screen
© positioning power and fun.

TO BEGIN WITH

The Deluxe Joystick (cat. no. 26-3012, suggested retail
price $39.95) is easily installed. Its five pin connector plugs
directly into either of the JOYSTK connectors at the rear of the
Color Computer. Two Deluxe Joysticks can be connected to
the computer.

Separate X and Y axis controls give you precise screen
positioning.

Selectable “free-floating” or “spring center return” con-
trol stick adjustments let you tailor the stick action to the
software being used.

The convenient “fire” button lets you execute game or
program functions, such as starting a new game, quickly and
efficiently.

LET’S TAKE A LOOK

§-<—————Control Stick

Fire Button

Y-Axis * ‘ X-Axis
Adjustment Switch Adjustment Switch

The control stick lever lets you move in the direction of
your choice. The fire button fires missiles or initiates program
functions. Move the X-Axis adjustment switch to the left or
right to adjust your horizontal position as close as possible to
the screen’s center. The Y-Axis adjustment switch moves up
or down to adjust your vertical position as close as possible to
the screen’s center.

The control stick has both spring center return and free-
floating modes of operation. The spring center return mode
means that the control stick will automatically return to center
position when you release the lever. When the lever is re-
leased, the screen position will be at or near dead center. The
control stick can be free-floating for the X, Y or X and Y axes.
Free-floating means that the control stick will remain in its
present position when you release the lever.

In addition there are two levers on the control stick hous-
ing which allow fine adjustments to the electrical center of the
Joystick.

With spring center return and free floating modes plus
the ability to fine adjust the electrical center of the Joystick, itis
easy to customize it to your own playing specifications. 3

DEBUG for the
Model 100

This BASIC debugging program has been run in an 8K
Model 100. It ran successfully after deleting some user pro-
grams and executing a CLEAR 50 to free additional memory
space.

The commands are:

V - Will prompt you for the address that you want to see.

Enter a Hex value and press (ENTER).

Q - Returns to BASIC (Quits Debug).

- Displays the Next memory block

- Displays the Previous memory block.

- Performs a Screen print. The contents of the display
are sent to the line printer.

- Produces a hardcopy of memory. When prompted,
enter a hex value for the address at which to start the
dump and press (ENTE R). Then enter a Hex value
for address at which to stop the dump at the next

prompt and press (ENTER).

= (D - The arrow keys are used to position the
cursor.

0-9, A-F - These characters modify memory.

9% FOR X=¢ TO 3
: READ Z(X)
: NEXT X
91 DATA 251,253,252,254
1¢¢ cLs
11¢ GOSUB 1¢0¢
120 GOSUB 3¢¢¢
13¢ GOSUB 9¢¢
1 I$=INKEY$
: IF I$="" THEN 13¢
14¢ IF I$="V" THEN GOSUB 1¢¢d
: GOSUB 30¢¢
: GOTO 13¢
145 IF 1$="Q" THEN CLS
: END
15¢ IF I$="N'" THEN GOSUB 5@¢¢
: GOTO 13¢
160 IF I$="P" THEN GOSUB 60¢@
: GOTO 13¢
17¢ IF 1$="S" THEN PRINT@ CP," ";
: LCOPY
: GOTO 13¢
175 IF I$="H" THEN GOSUB 13¢¢¢
: GOTO 13¢
18¢ IF I$=CHR$(28) THEN GOSUB 7@¢¢
: GOTO 13¢
199 IF I$=CHR$(29) THEN GOSUB 84¢d
: GOTO 13¢
2¢¢ IF I$=CHR$(3l) THEN GOSUB 9¢d@¢
: GOTO 13¢
21¢ IF 1$=CHR$(3¢) THEN GOSUB 1¢@gg
: GOTO 13¢
22¢ IF 1$<"@¢" THEN 130
23¢ IF IS$>"F" THEN 13¢
24¢ IF I$>"9" AND IS$<"A' THEN 13¢
25¢ GOSUB 11¢d¢
899 GOTO 139
9¢¢@ cc=cC+l1
: IF CC>3 THEN cC=§
91¢ PRINT@CP,CHRS(Z(CC));
92¢ RETURN
999 END
1¢@¢ PRINT@CP," ';
: PRINT@28¢,"";
: LINE INPUT "ADDRESS: "; A$

T nwuouZ

TRS-80 Microcomputer News, October 1983 21

1995
1919

1920

IF A$ > "FFD@" THEN AS$="FFD@"
P$=A$

GOSUB 2¢¢¢
A=P

: RETURN

2000

2005
2010
2020
2¢3¢
2049
2§59
2060
2079
3¢dd
3045
3914
3@20

IF LEN(P$)<4 THEN P$="@"+P$
GOTO 2009

P=0

FOR Pl=@ TO 3
P2$=MIDS$(P$,4~P1,1)

P3=ASC(P2$)-48

1IF P3>9 THEN P3=P3-7
P=P+P3*16"Pl

NEXT Pl

RETURN

CLS

CP=5

FOR Pl=A TO A+47 STEP 8
P=P1

: GOSUB 4{@¢¢

3¢3¢
3049
3¢50

PRINT P$;" ',
FOR P2=Pl TO Pl+7
P=PEEK(P2)

: GOSUB 4000

3060
307¢
3089
3083
3090
3100
311¢
3124
313¢
3140
315¢
3160
4009
4919
4420
4936
4435
4940
4959
4960
4@7¢
408¢
4999
4109
5000

5¢1¢

P3$=RIGHTS$(PS,2)
PRINT P3$;" ";
NEXT P2
PRINT" ;
FOR P2=P1 TO Pl+7
P4=PEEK(P2)
IF P4<32 OR P4>126 THEN P4=ASC('".™)
PRINT CHR$(P4);
NEXT P2
PRINT
NEXT Pl
RETURN
P$=""
RESTORE 4100
FOR PP=1 TO 4
READ P9
P8=INT(P/P9)
P=P-P8*P9
P8=P8+48
IF P8>57 THEN P8=P8+7
P$=P$+CHR$ (P8)
NEXT P§
RETURN
DATA 4(396,256,16,1
A=A+48
IF A>65488 THEN A=65488
GOSUB 3¢4¢

: RETURN

6000

6010
7099
7910
7920
7030

7@4@1
7045

A=A-48
IF A<# THEN A=(
GOTO 5¢1¢
PRINT@CP," ";
CP=CP+3
P1l=CP
Pl=P1-40
IF P1<@§ THEN P1=Pl+4(ELSE 7¢30
IF P1<27 THEN RETURN
CP=CP+16
IF CP>24 THEN CP=CP-4§
S=CP

: A=A+8 ELSE RETURN

7059
7060

IF A>65488 THEN A=§
§=5
GOSUB 3¢¢¢

: CP=8

8009
8¢1¢
8020
8030

8040

RETURN
PRINT@CP," ";
CP=CP-3
P1=CP
P1=P1-40

IF P1<@ THEN Pl=Pl+4(¢) ELSE 8§30
IF P1>4 THEN RETURN

8045

CP=CP-16
IF CP<® THEN CP=CP+4{
S=CP

: A=A-8 ELSE RETURN

8050
8060

IF A<@ THEN A=65488
8=226
GOSUB 3¢@¢

: CP=S
: RETURN

9009
9019

PRINT@CP," ";
CP=CP+40

: IF CP>239 THEN CP=CP-4@ ELSE RETURN

9¢2¢

9930

A=A+8

IF A>65488 THEN A=
CP=CP-20¢
S=Gp

: GOSUB 3¢¢¢
¢ CP=S§

10900
10016

10020

1¢g@3¢
11099
11¢1¢
11929
11430
11¢49

11050

RETURN
PRINT@CP," '';

CP=CP-4{

IF CP<5 THEN CP=CP+4{@ ELSE RETURN
A=A-8

IF A<@ THEN A=65488

CP=CP+20¢

GOTO 9030

PRINT@CP," ";

CP=CP+2

PRINT@CP-1,1$

PS="0@"+1$

GOSUB 9¢¢

1$=INKEY$

IF I$=""" THEN 11040

IF I$=CHRS$(27) THEN CP=CP-2
GOSUB 12¢¢¢

P=PEEK(P)

; GOSUB 4@¢@
: P$=RIGHTS(PS,2)
: PRINT@CP+1,P$;

11066
11476
11975

11080
1199¢

RETURN
IF I$<"@" OR I$>"F" THEN 11040
IF I$>"9" AND IS$<"A'" THEN 11040
PRINT@CP,I1$;

CP=CP-2

P$=P$+I$

GOSUB 2000

S=p

: GOSUB 12¢¢¢
: POKE P,S

11100

1111¢
11129

12¢¢¢
12¢1¢
1202¢

1203¢
12046
12950
12060
13¢0¢
13014
13012

13¢18
13¢20
13¢3¢
13432

S=PEEK(P)

Q=P-A
R=31+40*INT(Q/8)
Q=Q-8*INT(Q/8)

R=R+Q

IF S<32 ORS>126 THEN S=ASC(".")
PRINT@R, CHRS(S)

RETURN

PA=8*INT(CP/4@)+A

PB=CP

PB=PB-4{

IF PB<§ THEN PB=PB+4§ ELSE 12020
PB=PB-5

PB=INT(PB/3)

P=PA+PB

RETURN

PRINT@CP," ";:PRINT@240,"";
LINE INPUT"START: ";PS$

P$=PSS$

GOSUB 2000

PS=P

PRINT@240 ,STRINGS(40,32);
PRINT@240 ,"";

LINE INPUT"END: '";PE$

P$=PES

: GOSUB 20¢¢

: PE=P

TRS-80 Microcomputer News, October 1983

13@34 LPRINT CHRS$(12);
13¢36 pp=@
13¢4¢ FOR PL=PS TO PE STEP 16
13¢5¢ P=PL
: GOSUB 4(¢¢
13¢6¢ LPRINT P$;" ";
13¢7¢ FOR PI=PL TO PL+15
13¢8¢ P=PEEK(PI)
: GOSUB 4@0¢
13¢9¢ LPRINT RIGHTS(PS$,2);" ';
131¢¢ NEXT PI
1311¢ LPRINT " ";
13126 FOR PI=PL TO PL+15
1313¢ PX=PEEK(PI)
1314¢ IF PX<32 OR PX>126 THEN PX=ASc(".")
1315¢ LPRINT CHRS$(PX);
1316¢ NEXT PI
1317¢ LPRINT
13175 PP=PP+l
: IF PP>59 THEN LPRINT CHR$(12);
: PP=0
13180 NEXT PL
13183 PRINT@248 ,STRINGS(40,32);
13187 LPRINT CHR$(12);

1319¢ RETURN s |

Spiral

Leo Gilbride, Age 12
614 Alameda Padre Serra
Santa Barbara, CA 93103

| am a twelve year old boy, and | received my 32K Color
Computer as a combined birthday and junior high school
graduation present. “Spiral” is a program that, given proper
coordinates, will produce a colorful spiral. It will run on a 16K
Extended BASIC Color Computer.

After you enter and run the program, the computer will
then ask whether the spiral should grow or shrink. Once this
decision is made, you must enter the first spiral circle size and
position, which is determined by the horizontal and vertical
center points and its radius. The limits of these coordinates
are included in the program to ensure that the spiral does not
completely exit the screen. After all the coordinates are en-
tered, the spiral will appear on the screen for 15 seconds. You
can continue making many different spirals with a “yes”
response to the final question.

The following coordinates will give you a full spiral on the
screen:

“Grow” H=64 V=46 R=10
“Shrink” H=150 V=100 R=85

If you have the Screen Print program and a printer, you
can print out a spiral by loading the spiral program after
loading the Screen Print Program. With this program, you will
be able to print many variable spirals.

1¢ '*%* SPIRAL *¥%%

15 'BY LEO GILBRIDE

2¢ CLS
: PRINT " #%k SPIRAL *%%"

23 INPUT "DO YOU WANT THE SPIRAL TO GROW OR
SHRINK";W$

25 IF W$ = "GROW' GOTO 14@ ELSE 3¢
3¢ IF W$ = "SHRINK" GOTO 33 ELSE 2¢
33 CLS

: PRINT " LARGEST CIRCLE COORDINATES"
: PRINT " "

35

37
44

42
45

47
5¢
55
(]
65
74
75
8¢
85
99
149

114

12¢
140

145

159
155

169
165

167
17¢
175
18¢
182
185
199
195
209
205
21¢

215

SOUND 150,1
: INPUT "HORIZONTAL CENTERPOINT
18¢)";A
IF A <72 OR A > 18§ GOTO 35
SOUND 158,1
: INPUT "VERTICAL CENTERPOINT
12¢)";B
IF B < 54 OR B > 120 GOTO 40
SOUND 15¢,1
: INPUT "CIRCLE RADIUS (72 TO 96)";C
IF ¢ < 72 OR C > 96 GOTO 45
PMODE 4,1
PCLS
SCREEN 1,1
FOR I =1 TO 14
CIRCLE (A,B),C
A=A-8
B=B-6
cC=¢-8
NEXT I
FOR X = 1 TO 60¢@
: NEXT X

(72 TO

(54 TO

PRINT " "
: INPUT "WOULD YOU LIKE TO TRY IT AGAIN (Y OR
N)";F$
IF F$ = "Y" OR F$ = "YES" GOTO 2¢ ELSE END
CLS
: PRINT " SMALLEST CIRCLE COORDINATES"
: PRINT " "
SOUND 15@,1
: INPUT "HORIZONTAL CENTERPOINT (8 TO
175)";H
IF H > 175 GOTO 145
SOUND 15@,1
: INPUT "VERTICAL CENTERPOINT (¢ TO
18@)";v
IF V > 1¢¢ GOTO 155
SOUND 154,1
INPUT "CIRCLE RADIUS (# TO 35)";D
IF D > 35 GOTO 165
PMODE 4,1
PCLS
SCREEN 1,1
FOR I =1 To 14
GIRCLE (H,V),D
H=H+ 8
v V+6
D D+ 8
NEXT I
FOR X = 1 TO 60¢g¢
: NEXT
PRINT " "
INPUT "WOULD YOU LIKE TO TRY AGAIN (Y OR
N)'Y;G6S
IF G$ = "Y" OR G$ = "YES" GOTO 2§ ELSE END W & |

#on o

o]

TRS-80 Microcomputer News, October 1983 23

Computer Customer Service

TRS-Xenix Power

The subject of TRS-Xenix gives us the chance to share
with you some tips that we in Computer Services have discov-
ered to be very helpful to many of our customers. Because
Xenix is so flexible, you have a great deal of control over the
system. The intent of this article is to help users gain some
insight into the power of the system and become more com-
fortable with its use.

First, l would like to explain what TRS-Xenix is and what is
meant by multi-processing/multi-user. TRS-Xenix is derived
from the powerful UNIX operating system developed by Bell
Laboratories. UNIX has been extensively field-tested for the
past decade and has demonstrated outstanding perfor-
mance under heavy workloads. The TRS-Xenix “core” is a
derivative of this powerful UNIX system. The core comes with
only those modules needed to run the current application
software such as the Model 16 COBOL Accounting Software
and Multiplan, but it can be enhanced with the purchase of
the Development System which adds about 250 additional
modules to the system. The development system with the
powerful C language is for advanced programmers develop-
ing multi-user software but also contains many other powerful
features such as: an on-line UNIX reference manual, system
maintenance, system status information, electronic mail,
spelling dictionary with over 20,000 words, text editors, a sort
utility, typesetting, and many more. A COBOL Development
System and a BASIC interpreter are also available as sepa-
rate additions to the core.

Multi-processing and multi-user sometimes mean
different things to different people. Here we define multi-
processing as the ability to run one or more operations at a
time, while multi-user is the abililty for one or more persons to
run the same or different programs at the same time. This
means that one person could be in Accounts Receivable,
another in General Ledger and still another in Order Entry. We
could also have one person in General Ledger and two
running Multiplan.

MAKING BACKUPS

This is perhaps the most important thing | could bring up
in this article. Without backups you are asking for serious
trouble. TRS-Xenix offers a number of backup procedures
which are easy to understand and run. Before we take a few
minutes to discussthem, let's talk about “VERIFY.” TRS-Xenix
has the option to verify what is being written to a disk. When-
ever you backup, you should always turn verify on to insure
that the backup is a good copy of your data. To enable verify
simply type the command:
verify "b "o
" =space
b= —1 (for floppy) or —h (for hard drive)
o=y (for yes) or n (for no)

where:

After turning on verify you have three options of how you
want to make your saves. The firstis the “save/restore” utility

which is executed from the “tsh shell.” This is perhaps the
most preferred way to make backups of the entire system.
The "tsh save” is as easy to use as the TRSDOS-11 save was
or perhaps even easier. Here is the syntax of the “tsh save”
command, but first, remember you must be in the “tsh shell”
before the command will execute.

save " :d " t" name

where: " =space
d =drive-number
t= —ss (single sided disk) or —ds (double)
name =the directory name you wish to save.
Note: 1. One of the above (—ss, —ds) must be

specified.

2. You can’t save devices.

3. A/ in place of the name will save the entire
system.

Now that you know how to save under the “tsh save”
utility, | bet you want to know how to put it back. Let me assure
you that it's just as easy as the save. Here's the syntax:

restore " :d " name

where: " =space

d =drive-number

name =the directory name you wish to restore.
Note: 1. Ifyouusea —dinthe place of name it will give

you alist (directory) of what is on the floppy disk

With the most preferred option of save out of the way, let's
discuss the least preferred option “sysadmin.”

Sysadmin is menu driven in order to simplify it's use. The
sysadmin program cannot recognize the difference between
files of the same name in different directories because it does
not know about pathnames. When you restore a file which
was saved under sysadmin, it assigns a number rather than
the original file name. This number is unique to a single
TRS-Xenix file. The file you restore is placed in your current
working directory, and so to avoid possible confusion, re-
name it to its original name and move it back to its correct
position in the directory hierarchy (using the mv command).
This moving of files is what makes the sysadmin our least
preferred option of backing up the system.

The last save option | wish to discuss is only used to save
the three disk accounting packages and is also a menu
driven program. All that is needed to invoke this save is to
type “save”. Under this menu you have the option of saving
your data or programs. It is the recommended way to make
daily data saves of your accounting packages.

USER SHUTDOWN

Now that we have covered Save commands, | would like
to move on to something that everyone has been asking for.

What is it, you ask. Well, it's how to shut the system down (0

without knowing the root password.
Using the four steps outlined below, the root user sets up
the usr/shutdown file so other users will be able to shut the

24 TRS-80 Microcomputer News, October 1983

system down without knowing the root password. This pro-
cess requires four steps. It will be very helpful if you know
something about the text editor supplied with the core sys-

= tem. However, | will give you step by step instructions to follow

- for your convenience.
Duplicate the following key strokes exactly as they
appear below in the Strokes to Duplicate column.

Step 1.
Login as root.

Strokes to Duplicate Explanation of Key Strokes

ed /etc/shutdown
14p

d

d

i

else : okay

14p

w /etc/shutdown
q

Step 2.

mkuser

n

shutdown
password
password

to shutdown system
n

n

Step 3.
. ed /etc/passwd

s/211/0/
s/50/0/

w /etc/passwd
g

Step 4.

cd /usr/shutdown
ed .profile

a

/etc/shutdown 0

W
q
Notes

3.1 Except for the numbers 211 and 50, the line you

LLoads file into buffer.
Displays line number 14.
Deletes line 14.

Deletes the new line 14.
Enters insert mode.
Input new line.

Exits insert mode.
Displays current line.
Writes out new file.

Exits ed.

To create a new user.
No for instruction.

User login name.

User password.

Retype for check.
Comment.

For no change.

No for add another user.

Loads file into buffer.
Displays line (Note 3.1)
Replace user id with roots id
Replace group id with root
id

Displays line (Note 3.2)
Wirites out new file.

Exits ed.

Change directory.

Loads file into buffer.
Append to end-of-file.
Sets shutdown (Note 4.1)
Exits append mode.
Writes out new file.

Exits ed.

display should read as follows:

shutdown:j9InvgjAuhNJs:211:50:t0 shutdown
system:/usr/shutdown:/bin/sh

(211 is the user ID and 50 is the group ID. Your
numbers will probably be different from those
shown).

3.2 The line you display should read as follows:
shutdown:j9InvgjAuhNJs:0:0:to shutdown
system:/usr/shutdown:/bin/sh

4.1 You may set shutdown from 0-15 minutes (currently
set at 0 minutes).

All'that is needed to shutdown the system now is to login

as shutdown.

RESTRICTING USERS-1

What's next on the list? Well, lots of customers have been
asking questions on how they can have one person run
general ledger and nothing else. All that is needed is to
modify that user’s entry in the “passwd” file. Let's take a look
at Rick’s entry in the /etc/passwd file and change it so he can
only run general ledger. The following is the way it looks
before we change it:

rick::212:50:rick’s file:/usr/rick:/bin/sh

Now with “ed” (or another text editor) we can change
this entry to read:

rick::212:50:rick’s file:/ust/rick:rungl

As you can see we only replaced /bin/sh with rungl.

Now Rick can only run general ledger, and when he's
through, he will be logged out.

The above procedure is good if you want the user to run
only one package and nothing else. However, what if you
want him to be able to run more than just one program? This
brings us to our next topic.

RESTRICTING USERS-2

Itis generally a good policy for the owner of the system to
restrict access to the files and directories of the system.
However, if some of the files and directories need to be
shared by several individuals, the individuals can be identi-
fied to the computer as a group. The group affiliation is a
facility that allows groups of users to share files while still
restricting access to unaffiliated users.

With any file on the TRS-Xenix operating system, there
are three levels of protection: the owner, the group, and all
others. Using “chmod” (which we will discuss later), you can
restrict or allow access to any file on the system. Chmod
controls read, write, and execute ability for any user that logs
into the system.

Before we get into chmod we must first understand the
layers of protection that exist: the owner, the group, and all
others. The first and last of these are the easiest to under-
stand. The owner is the person who created the file, and all
others are just that, all those other than the owner. The one
layer that is not easily understood is the group. Every file and
every user has a group id that is assigned by TRS-Xenix. By
changing these group id’s, we can allow users to run some
programs but not all.

All users are given a group id of 50 when they are
created with mkuser. All files, excluding system files, are also
given a group id of 50. With ed we can edit these files and
then with some special commands, we can change the
group id for any file or user we wish. The first thing to dois to
create the new group. To do this we must edit the file /etc/
group. The syntax for adding the group is as follows:

Group name:..group id#:user’s login names

Where: Group name =the name you wish to assign the
group.
group id#=the number that the group is to be
identified by.
user’s login names = all the users that you wish to
be in that group.
Here's an example of a new group I've added:

Group name::group id#:user’s login names

TRS-80 Microcomputer News, October 1983 25

The keystrokes for adding this new group were as
follows:

ed /etc/group

a

payroll::60:mike,sally,robert

w /etc/group
g

‘ Now that we have a new group created, we must change

group id’s for the users selected and the programs to be
protected. There are two ways of changing the group id’s for
a user: by changing their id when they login, or by a
“newgrp” command that allows you to change back and
forth between groups. To have the person login with the
different group id, we must edit the file /etc/passwd. You
should already know how to do this from our examples of
shutting down the system.

To use the newgrp command the syntax is:

newgrp groupname

Now that we have changed the group id’s for the user,
we must change the id for the program. For this we use the
command chgrp. The syntax is as follows

chgrp group# filename

For example: chgrp 60/usr/bin/runpr

This has changed the group id's for both users and the
programs that we have decided to limit access to. Now we
can change the permissions using the chmod command, so
only the users with the same group id as the program can run
them. This command is explained in your runtime manual,
but | will also cover it here to help explain it further.

The syntax for chmod is:

chmod [ugoa] [= — +] [rwxtugo] file.

To explain further, the [ugoa] is saying for whom (the u
stands for all users, the g for groups, the o for owner, and a for
all for these), the [= — +] is for leaving the same(=), taking
away(-), or adding(+), and the [rwxtugo] is the permissions to
be affected (of these listed, only rwx are of interest to us). To
give an example, let's change permissions for the program
used above and change it to where only the owner and users
with the same group id can run it.

chmod og + rwx /usr/bin/runpr

To disallow anyone else from running it.

chmod uo-rwx /usr/bin/runpr

MAKING MULTI-COMPANIES

Now for something new. How many times have you
wished for the ability to place more than one company’s
accounting information on the same hard disk? With
TRS-Xenix we have this capability! Just follow these few
simple steps.

Step 1.

Install all of the accounting programs and the data for
one of the companies. Use the "INSTALL” command. This
will place all the data in a directory called "Dta.01”

Step 2.

For our example we will use Accounts Receivable and
will be copying from Dta.01 to Dta.02, the 2 being for our
company #2.

Now copy this information from one directory to another.
For this we will use the copy command “cp.” The syntax for
this is:

cp —-ro /Dta.01 /Dta.02

Step 3.
Check on the permission levels of the copied files to
assure they are set correctly. This is done by the following

steps:
cd /Dta.02/Ar
1 (to list the directory)
The permission levels should look like the following
example.

—rwxrwxrwx 1 root 186 Jun 22 10:49 file.dta

If the permission levels don't match this example, then
we need to use the “chmod” command to set them correctly.
The key strokes would be:

chmod 777 /Dta.02/Ar/* (* =wildcard)

We use the wildcard here to set the permission levels of
all the files in our new Dta.02 directory with one command.

Step 4.

Using the editor ed we will next modify the runar file to
give us access to our newly created company data files. Here
is the procedure to follow:

ed /usr/bin/runar (loads file into the buffer)

6s/1/2/ (changes 1 to 2 on Dta.Ox)

w /usr/bin/runar2 (writes to a new file runar2)

q (exits ed)

chmod 777 /usr/bin/runar2 (sets permissions)

Now when you want to run company #2's accounis
receivable, you just simply type in “runar2”. This will take us
to company 2's data files.

Step 5.

Repeat steps 3-4 for each accounting package.

Step 6.

Repeat the entire process for each additional company.

SAVING MULTI-COMPANIES

Now that we've installed our additional companies, we
need a way to save them. To do this we have two options. We
can either have it so that when we save all our data is saved,
or we can have it so that only one particular company’s data
is saved. For our example we will edit the save command so
that we can save company 2's data. If you want the save
command to save all the data, place an " *" where we have a
“2" in our example. Now for the syntax to accomplish
this task.
ed /usr/bin/save
69s/01/02
82s/01/02
114s/01/02
w /usr/bin/save2

(loads file into the buffer)
(changes Dta.01 to Dta.02)

(writes to a file save?2)
(exits ed)

After completing these steps, when you need to save the
data for company 1, just use “save” and for company 2 you
would use “save2”.

MULTIPLE HARD-DISKS

For those of you that wish to include additional hard
drives in your system, just follow these few simple steps.

Step 1.

Do a normal system shutdown using either “shutdown”
or "haltsys.” Then re-boot the system.

Step 2.

Format the secondary hard drive using this “diskutil”
program as you did when you formatted the primary disk.
Just follow these few basic instructions:

26 TRS-80 Microcomputer News, October 1983

TRS-Xenix Boot

- diskutil

Copy or format (c or f)?

Enter “f” to format.

Hard or floppy disk (h or f)?

Enter "h” for hard disk.

Hard drive number (0..3)?

Enter the appropriate drive number (0-3).

Step 3.

Make a file structure on the drive.

For 8 meg use: /etc/mkfs /dev/irhd1 16966 1 17.
For 12 meg use: /etc/mkfs /dev/rhd1 23018 1 17.

Edit the /etc/rc file for automatic mounting of the second-
ary hard drive using the following syntax.

ed /etc/rc (loads file into the buffer)

a (to append to the file)

/etc/mount /dev/hd1 /mnt1 (mounts the

secondary)

. (exits the append mode)

w (writes the file)

q (exits ed)

Now the disk will be referred to as directory “/mnt1.”

In order to take data files to the secondary hard drive,
use the following steps.

copy —ro /Dta.Ox /mnt1/Dta.0x

check the permissions

edit the runxx files to say “cd /mnt1/Dta.Ox/Xx

With the above information you should be able to accom-
plish just about anything you need with the all-powerful
TRS-Xenix operating system.

In response to some problems that have been reported
to us in Computer Customer Services, we are including the
following solutions.

PRINTER DIFFICULTIES

If, when you attempt to print information you receive a
printer busy or a printer not ready message, you need to try
these steps.

Step 1.
chmod 666 /dev/clp
This will set the permission levels correctly.

Step 2.
cd /usr/spool/lpd
I

rm lock
cd /
ps —alx

At this point look for “Ipd” under the column titled CMD.
After finding this, find the corresponding number under the
column titled PID. Then we will kill this number as follows:

kil —9 PID#

Step 3.
Initialize the line printer by entering the following:
Jusr/lib/lpd

Step 4.

If the above steps don't solve the problem, then shut the
system down, boot your machine from a TRSDOS floppy disk
and check the printer with DIR [PRT]. If it does not seem to be
ahardware problem with the printer, then the last alternative is
to reinstall the Xenix core.

DT-1 “@” SIGN

If you have a copy of Xenix core version 01.02.00 and
you receive " @" symbols on your DT-1 screen, this is caused
by aninvalid termcap type. To correct this, type the following:

ed /.profile

g/TERM =trs16/.d

w

q

Ideally the .profile should have the following command
in it

if test —z “$TERM”

then

TERM =trs16

fi

The Xenix 01.02.00 system will check for a DT-1 or
TRS-16. If neither of these are being used, TERM will be set to
TRS-16 by the above command.

READING A DIRECTORY OF FLOPPY DISK

To read a directory of a floppy disk that you have used
the "tar” command to move files to, do the following.
tar tf /dev/fd0

CONCLUSION

With TRS-Xenix, not only do you have control over the
applications being run, but you basically have control of the
entire system. This gives one unlimited possibilities inthe area
of computer operations. With the ability to add two data
terminals, the system increases its productivity to make it a
very valuable tool in the business environment. With the
addition of the TRS-Xenix development system, you are
given a variety of more advanced commands and utilities to
use, as well as the “C” language compiler to enhance your
system. This addition will give added flexibility to further
customize this already powerful operating system to meet
your specific needs.

;export TERM

-
Computer Customer Service
Address and Phone Numbers

8AM to 5PM Central Time
Computer Customer Services
400 Atrium, One Tandy Center

Fort Worth, Texas 76102

Model I/111/4 Business Group (817) 390-3939 .
Model 11/12/16 Business Group (817) 390-3935
Languages and Compilers (817) 390-3946
Color/Model 100/Pocket Computer Group (817) 390-3944
Hardware and Communications Group . .. (817) 390-2140
Educational Software T (817) 390-3302
Games, Books, and New Products (817) 390-2133
)

Newsletter Subscription Problems (817 870~04%

TRS-80 Microcomputer News, October 1983 27

Profile

Profile and the Model 100

The Small Computer Company

P.O. Box 2910

Fort Worth, TX 76113-2910

By lvan Sygoda, Director, Pentacle

Profile III Plus section copyright 1983, lvan Sygoda.
- All rights reserved.

If you're like me, you don’t do all your business in the
office or all your leisure time activities at home. As a manager
of dance companies, | often travel to conventions of presen-
ters, and as a philatelist, | occasionally attend stamp shows
or make the rounds of the dealers. Thanks to my new
Radio Shack Model 100 portable computer, | don’t have to
leave my Profile data bases at home when | go on the road.
It's much easier to lug around a Model 100 than a Model III
or 12.

THE OLD STAMPING GROUND

As I've been promising, here is a method of transferring
your data to and from the Model 100. I'll use the STAMPCAT
stamp collection data base | discussed in the June 1983
Profile article and then accessed from BASIC in the July
issue. (For newcomers who can’t get to a Radio Shack to leaf
through recent issues, STAMPCAT is a one-segment Profile
data base in which | store information about each item in my
stamp collection. The fields are listed below.)

. . Buffer
Field Heading Length Variable
1 Cat# 6 CTS
2 Suffix 1 SF$
3 ltem ID 2 ID$
4 #Stamps 2 NS$
5 Year 4 YR$
6 Denom 5 DN$
7 Series 15 SR$
8 Color/Var 12 VR$
9 Dealer 3 DLS
10 Purch.date 8 PD$
11 Price 7 PR$
12 Mint/Used 1 MU$
13 Cond:Recto 10 CR$
14 Cond:Verso 10 CV$
15 Scott val 7 SV$
16 Mkt val 7 MV$
17 Source 3 SC$
18 +/-% 5 CH$
19 Last upd 8 LUS
20 Marker 1 MK$
21 Face val 6 FV$
Figure 1.

Five relatively simple steps are involved, and I'll go
through them one by one. Then I'll show you a neat way to
make a menu to call these operations, using Profile’s menu

creation program. First, I'll discuss a short BASIC program
that plucks data from the Profile data base and puts it in a
separate datafile to be transferred to the Model 100. Then, I'll
show the transfer process itself, from the desktop computer
to the 100. The next step involves displaying and editing the
data on the Model 100. The fourth step is transferring the
updated data back into the desktop computer. And, finally, I'll
discuss another short BASIC program that tucks the updated
data back into the Profile data base.

ASCIl A QUESTION, GET AN ANSWER

The whole process is quite simple thanks to the ASCII
(American Standard Code for Information Interchange)
method of storing alphanumeric information. As I've pointed
out before, Profile stores data as strings of ASCII characters
arrayed one after the other, character by character, field by
field. This principle is the key to successfully manipulating
files.

Figure 1 lists the fields in STAMPCAT/KEY —the only
segment in this data base—along with the buffer-variable
names | assigned them in the accompanying BASIC
programs. Listing 1 is the Model 1II BASIC program
STAMP100/BAS, which takes the data from my Profile data
segment and puts it into another data file STAM100/DAT. |
used a Profile user index (STAMPCAT/IX1) so that my
Model 100 file will be in catalogue number order. (The Scott
catalogue numbering system is copyrighted by the Scott
Publishing Company.) Here are the details.

1¢ 'STAMP1@¢/BAS- OPEN BASIC FOR 3V FILES

20 CLS
: CLEAR 100¢¢
: DEFINT A-Z

3¢ OPEN '"R",1, "STAMPCAT/IX1", 61¢

4@ FIELD 1,7 AS KY$,2 AS PH$,l1 AS XX$

5@ OPEN "R'",2, "STAMPCAT/KEY'",6127

6@ FIELD 2,6 AS CT$,1 AS SF$,2 AS IDS$,2 AS NS$,4
AS YR$,5 AS DN$,15 AS SR$,12 AS VR$,3 AS DLS,S8
AS PD$,7 AS PRS,1 AS MUS,1¢ AS CRS,10 AS cv$,7
AS SV$,7 AS MV$,3 AS SC$,5 AS CH$,8 AS LUS,1
AS MK$,6 AS FVS$

7¢ OPEN "R",3, "STAMP1(@/DAT",240

89 FIELD 3,120 AS zY$,120 AS zZ$

9¢ FOR LR=4 TO LOF(1)

1¢¢ GET 1,LR

11¢ PR=CVI(PHS)

12¢ GET 2,PR

13¢ LSET 2ZY$= '"Scott no.=" +CT$ +SF$ +" Year=" +
YRS +'" Denom='" +DN$ +" Ser=" +SR$ +'" Clr/vr="
+VRS +'" ID=" +ID$ +NS$ +MUS$ +" Cond:R=" +CR$
+II V=ll +CV$ +Il n

28 TRS-80 Microcomputer News, October 1983

135

138

LSET ZZ$=" Prch price=" +PR$ +" Dlr=" +DL$ +

Figure 2 shows what the Model 100 display looks like. To

" Dte="! +PD§ +" Curr m'rkt=" +MVS + Src=" design it, | used the video display worksheet on page 210 of
+5C$ +" Upd=" +LU$ +" Curr Scott=" +8V$ + the Model 100 User's M |
" Mkr=" +MK$ +" Rec.no.' +RIGHTS("@@gg" e Moae ers Manual.

+RIGHTS(STRS$(PR) ,LEN(STR$(PR))-1),5)
PRINT "Processing Logical Rec.#'"; LR-3;
"(Phys.Rec.#"; PR; "Cat.#'"; CTS +SF$;")"

Here are some of the considerations that went into this
design.

14¢ PUT 3 Six lines is the Model 100’s usual "page” size. This
15¢ NEXT LR cleverly designed machine treats your files like a text docu-
i?g PRINT "DONE.. ™ ment. If a particular record is longer than 240 bytes (6 lines of

40 characters per line), it displays the first six lines and
prompts you to call for “More” on line 7. The 8th line usually
displays the labels for the function keys. Although the labels
can be toggled off, it seemed simpler and neater to limit each
record to exactly six lines.

The size of the longest ASCI! line that can be transmitted
using BASIC is 240 bytes. (See page 12 of Al and Dru
Simon’s "Communications Corner” in the May 1983 TRS-80
Microcomputer News for more details.) I'm just beginning to
learn about inter-computer communications, and it seemed
best not to mess around.

Line 10: Be sure you open BASIC for variable length
files, in this case three, by answering the “How many files?”
prompt with 3V.

Line 20: The usual housekeeping chores.

Lines 30-80: Each file being used or created must be
OPENed for random access (“R") and then FIELDed. Check
your Disk System Owner’s Manual for further information.

Lines 90-150: The FOR NEXT loop which does all the
work. Line 90 begins at logical record 4 because the first
three records in STAMPCAT/IX1 are for Profile housekeep-
ing. LOF(1) is the index file, fielded in buffer 1.

Line 110 converts the physical record number, which the
index file points to into an integer. Line 120 GETs that physical
record from STAMPCAT/KEY in buffer 2.

A SENSE OF WHERE YOU ARE

Lines 130 and 135 are the crucial ones, and so I'll dwell
onthem. Thefield is splitinto ZY$ and ZZ$ (see line 80) simply
because one line of BASIC, which is limited to 255 bytes, is
not long enough to do all the necessary LSETs. These lines
do two things. First, the fields | want available for display on

. the Model 100 are LSET into buffer 3, which is where

- STAMP100/DAT begins its life. This is accomplished by link-
ing the strings of the display and of the headings and fields.
Second, itis here, rather than on the Model 100 itself, that the
Model 100 screen display is formatted. The spacing is all-
important—that's why there are leading blanks before many
of the labels. I'll explain in more detail below.

Line 135 ends with something weird. | decided, some-
what arbitrarily, that | wanted the record number displayed in
the form "00016,” exactly five digits long, so that it would be
flush right on the screen. The RIGHTS monstrosity is the result
of the contortions involved in stripping blanks from the STR$
representation of a particular integer. It's very silly and great
fun.

SPACES HAVE CHARACTER

The spacing of the screen array is important because the
whole display for each record is actually one continuous
string of concatenated headings and fields.

If, in updating my data, | inadvertently lengthened or
shortened a field, all the following fields would be displaced
by that many characters. A result, for instance, is that the
cents part of the catalogue value would find itself in the
market value field and wreak havoc when put back into the
Profile data segment. By crowding the information the way |
did, the screen’s left and right margins become guideposts
for the proper alignment of the data. The display is less free-
form, and | can tell at a glance if any field is not the length it
should be.

The reason | leave column 40 blank is to ensure that |
don’trun afoul of the Model 100’s “wrap around” feature. For
example, if the Update field ("Upd =) went all the way to the
right margin, the program would think it was part of the word
“Curr” on the next line.

Figure 3 shows a sample of what STAMP100/DAT locks
like when it's inside the computer. The listing— (Enter LIST
STAMP100/DAT (ASCII, PRT) from TRSDOS on the
Model III)—is nicely aligned because my 80-column printer
is exactly twice the width of the Model 100 40-column screen.
This provides a handy way to check out my format.

Line 138 gives me something to look at while the pro-
gram goes about its business.

Video Display Worksheet

Siclojt|t| |nlo|. =] J(J Yelalr|=[(Jl Dleinjlom/=[l]
Se|r|=I 1 ICllir/lviri=Il .]
IIDi=iC|)| [Cloin|d|: |RI=Il 1l [VI=IL]
Piriclhh| lplrlijcle|=]C I Dllr|=]l]| D|tlel=]L]
Clulrir| Im/‘[rik|t|=ll) |S|rici=IL]| [Vlpld|=][|
Clulrir| (Siclo|t|t]|=]l J] Mk|r|=]l] Rleic|. nlo|.|[]
Figure 2.

TRS-80 Microcomputer News, October 1983 29

Ser=Wash.-Franklin Clr/vr=FP, P.ll unw
Prch price= 60.00 D1lr=SAM Dte=74/04/12
Curr Scott= 725.00 Mkr= Rec.no.00009
Ser=Wash.-Franklin Clr/vr=0F, P.1ll unw
Prch price= 5.00 D1r=ZEN Dte=78/11/16
Curr Scott= Mkr= Rec.no.00010
Ser=Wash.-Franklin Clr/vr=RP, P.11x10

Prch price= 9.00 Dlr=ZEN Dte=78/11/16

Scott no.=524 Year=1918 Denom= 5.00
ID=S 1* Cond:R=vf V=nh
Curr m'rkt= 450.00 Src=SAN Upd=83/03/27
Scott no.=530 Year=1918 Denom= .03
ID=S 1% Cond:R=xf V=1h
Curr m'rkt= Src= Upd=83/03/27
Scott no.=538 Year=1919 Denom= .0l
ID=S 1* Cond:R=vf+ V=nh

g

Curr m'rkt=
Scott no.=541

ID=S 1% Cond:R=vf-xf V=nh

20.00 Src=SAN Upd=83/03/27
Year=1919 Denom= .03

Curr Scott=
Ser=Wash.-Franklin
Prch price= 115.00 D1r=ZEN Dte=78/11/16

Mkr= Rec.no.00008
Clr/vr=P.11x10 TyII

Curr m'rkt= 100.00 Src=SAN Upd=83/03/27 Curr Scott= 37.50 Mkr= Rec .no.00007
Scott no.=ZZZZZZ Year= Denom= Ser= Clr/vr=

ID= Cond:R= V= Prch price= Dlr= Dte=

Curr m'rkt= Src= Upd=83/07/03 Curr Scott= Mkr= Rec.no.00015

Figure 3.

One more suggestion before | leave step 1 and the
description of the BASIC program. The way to add new
records to the data base while using the Model 100 is simply
to anticipate your needs before creating STAMP100/DAT. |
create a few "dummy” records while still in Profile, arbitrarily
assigning them catalog numbers like “ZZZZZZ" so that
they're included in the index file, but at the end. These empty
records are waiting for me, when | need them on the road.

LET’S COMMUNICATE

Having created a data file with the desired information in
it, the next step is to feed the file to the Model 100. There are a
number of different ways to do this. You can connect the
Model 100 directly to a Model I11, 4, I, or 12 using an RS232
cable with a null modem adapter, which is how | did it. Or you
can communicate over telephone lines using modems. In
either case, you need a suitable communications package
for the Model 111 such as Videotex Plus (26-1588), LCOMM
under LDOS 5.1.3 (26-2213). The Models 4, 1T and 12 al-
ready come with a terminal utility that does the same thing.
Finally, the new Model 4 has a Model 100 tape utility, which
means you can save STAMP100/DAT on cassette for subse-
guent loading into the Model 100. Whichever way you do i,
make sure the communications parameters for both comput-
ers match.

AWAY WE GO

| loaded STAMP100/DAT into my Model 100 as
STAMPS.DO. Any six-character filename works, followed by
the .DO (document) extension. When | want to go into my file,
I position the cursor over STAMPS.DO at the main menu and
press (ENTER); the first record appears on the screen. |
can scroll through them all by pressing the (F_1J function key
(“Find”) and then entering the desired match string.

For example, entering “no. =335" calls up the "page”
with all the information about Scott no. 335. All the
Model 100’s built-in text editing features are available. The
one thing that takes a bit of getting used to is that the text
editing program is always in “insert mode” rather than in
“overwrite mode.” So you have to be careful to leave fields
the same length you found them.

There's another way to do the same thing if you’re going
to simply reference your data as opposed to updating it. The
Model 100’s ADDRSS and SCHEDL programs both have

built-in search functions. You can make either one available to
your data by renaming either ADRS.DO or NOTE.DO to
something like HOLD.DO and then renaming STAMPS.DO to
gither ADRS.DO or NOTE.DO. This is done from Model 100
BASIC: NAME “STAMPS.DO" AS “NOTE.DQ”. The text edit-
ing features are still available. But be sure to rename things
back the way they were when you're done.

| also recommend that you back up your Model 100 file
on cassette from time to time. My Model 100 is very reliable,
but sometimes I'm not. One night; while preparing this article,
I pressed download instead of upload and zapped the whole
data file. Thimk, as they say.

GOING THE OTHER WAY

All voyages come to an end, and sooner or later, you'll
want to feed your updated data back into Profile on your
desktop computer. The first step is to upload STAMPS.DO
from the Model 100 to the Model III (or whatever) as
STAMP100/DAT. The new information simply overwrites the
original data file.

Listing 2 shows STAMPIII/BAS, the BASIC program |
use to put the updated file back into my Profile data base. It
involves the same principles as before.

1) 'STAMPIII/BAS- OPEN BASIC FOR 3V FILES

20 CLS
: CLEAR 10¢¢
: DEFINT A-Z

3¢ OPEN "R",l, '"STAMP1@@/DAT",240

4@ FIELD 1,10 AS QA$6 AS FAS$,1 AS FBS,6 AS QBS,4
AS FC$,7 AS QC$,5 AS FD$,5 AS QD$,15 AS FES,8
AS QE$,12 AS FF$,4 AS QF$,2 AS FG$,2 AS FHS,1
AS FI$,8 AS QG$,10 AS FJ$,3 AS QHS$,10 AS FKS$

45 FIELD 1,119 AS Fz$,12 AS QI$,7 AS FL$,5 AS
QJ$,3 AS FM$,5 AS QK$,8 AS FW$,12 AS QLS,7 AS
FO$,5 AS QM$,3 AS FP$,5 AS QN$,8 AS FQ$,12 AS
Q0$,7 AS FR$,5 AS QP$,2 AS FS$,10 AS QQ$,5 AS
FT$

5¢ OPEN "R",2, "STAMPCAT/KEY" K127

6@ FIELD 2,6 AS CT$,1 AS SF$,2 AS ID$,2 AS NS$,4
AS YR$,5 AS DN$,15 AS SR$,12 AS VRS$,3 AS
DL$,8 AS PD$,7 AS PR$,l AS MU$,10 AS CR$,10 AS
CV$,7 AS SV$,7 AS MV$,3 AS SC$,5 AS CH$,8 AS
LUS,1 AS MKS$,6 AS FV$

7¢ FOR LR=1 TO LOF(1)

8¢ GET 1,LR

9¢ PR=VAL(FTS)

16¢ GET 2,PR

30 TRS-80 Microcomputer News, October 1983

<

11¢ LSET CT$=FAS
: LSET SF$=FB$
: LSET ID$=FG$
: LSET NS$=FHS
: LSET YRS=FCS$
: LSET DN$=FD$
: LSET SR$=FES
: LSET VR$=FF$
: LSET DL$=FMS$
: LSET PD$=FW$
: LSET PRS=FL$
: LSET MUS=FIS
: LSET CR$=FJ$
: LSET CV$=FKS$
: LSET SV$=FRS$
: LSET MV$=F0$

12¢ LSET SCS$=FP$
: LSET LUS=FQ$
: LSET MK$=FS$

13§ PRINT "Processing Rec.#'"; LR; "(Phys.Rec.#";
PR; "Cat.#'"; FA$+FBS;'")"

14¢ PUT 2

15¢ NEXT LR

160 PRINT '"DONE."

17¢ END

Inlines 40-45, | FIELD the transfer file so that | can unmix
the headings and fields. Hoping to be efficient and accurate, |
followed a procedure that got me into trouble. When choos-
ing field variable names, | decided to name the headings
QA% . .. QQ% and the actual fields FA$. . . FT$. That way, it
would be easy to ignore the headings when it came time to
LSET the updated fields into STAMPCAT/KEY, and I'd be
sure not to skip any fields, since | know the alphabet rather
well. Because one line of BASIC isn’tlong enough to do all the
necessary FIELDing, | divided the task between two lines.
» FZ$inline45isa “dummy” field that gets me to where line 40
~ leaves off. Clever, eh?

Line 90 is a consequence of line 135 inlisting 1. CVI(FT$)
wouldn’t work because of the way | manipulated the record
number. VAL(FT$) works just fine.

Lines 110-120 LSET each field into STAMPCAT/KEY,
field by field. This procedure takes care of the fact that there
were one or two fields | didn't display on the Model 100, such
as percentage change in the stamp’s value. Such uninvolved
fields remain unscathed.

Finally, line 130 tells me what's going on while it's going
on.

FREE MENU

The Profile program you bought from Radio Shack has a
menu creation program used to construct user menus for
your Profile data bases. The Profile III Plus version is calied
EFCM/CMD, and it's on your Creation disk. The Model I1/12
versions call it MAKEMENU/EFC. Did you realize you can
use it to make any menu you want, whether Profile is involved
or not?

Call the relevant program from TRSDOS, and then make
careful notes of your answers to the prompts. To call
STAMP100/BAS and STAMPIII/BAS, Model 111 users have to
construct DO files to record all the keystrokes involved and
then call the DO file from the user menu. Model I1/12 users
can enter keystrokes directly into the menu format. Try it!

MORE TO COME

We've barely scratched the surface. The Model 100
comes with a powerful BASIC, which we didn’t use at all this

month, and which should make it possible to manipulate your
Profile data with even greater finesse—for instance, by re-
creating some of Profile’s math capabilities. If any of you have
made headway in this area, let us know so that we all can
share your expertise.

Also, I've been promising articles on interfacing Profile
with Scripsit and Visicalc. One of these days I'll deliver. A
round-up of the most interesting problems and guestions
posed by readers is also in the works. Keep those cards and
letters coming.

PROFILE Editor's Note: This is Mr. Sygoda’s eleventh
article in a series of ‘how-to’ Profile articles. Other articles in
the series will be published over the next few issues in this
column. We hope that you enjoy this feature, and we look
forward to your comments and questions on Profile.

Pentacle is a New York City-based non-profit service
organization specializing in administrative services for per-
forming art groups.

The On-Line Computer
Telephone Directory

The On-Line Computer Telephone Directory
Post Office Box 1005
Kansas City, MO 64111

The "On-Line Computer Telephone Directory” (OLCTD)
is a quarterly newsletter for telecomputing. They keep you
up-to-date with the latest trends in microcomputer telecom-
munications. Plus, you get the latest information on:

e User operation procedures for many of the popular
microcomputer bulletin board systems.

¢ Simple, straightforward explanations of the technical
aspects of computer telecommunications.

» Software/hardware news and reviews.

AND a directory of over 400 free-access microcomputer
bulletin board systems on-line in North America.

As the seasons change, so changes the field of micro-
computer telecommunications. New products, develop-
ments and bulletin boards appear. Old, outdated information
becomes useless. That's why the people at OLCTD go to
great lengths to make sure that the directory section in each
issue is thoroughly checked, revised and updated. Accord-
ing to OLCTD, nobody has a more accurate list of bulletin
board systems.

For subscription information, write to:

Subscription Dept.

OLCTD

Post Office Box 10005

Kansas City, MO 64111-9990 £

TRS-80 Microcomputer News, October 1983 31

Calendar

Tim McDuffie
P.O. Box 835
Huntington, TX 75949

Now you can have immediate calendar-oriented results
at the touch-of-a-button on your Color Computer. This pro-
. gram offers three functions that are accurate, all the way from
January 1, 1753 to December 31, 2099

Function #1 tells you the day of the week for which a
given month, day, and year falls on. The date that you entered
will remain on the screen, along with the day of the week, in
case you forgot what you entered.

Function #2 will produce a calendar along with its month,
and year givenit. An “L” appears to the right of all leap years.

During this mode you may press the to view the next
month or the to view the previous month. You may also
view the displayed month in the next year by pressing the
or the displayed month in the previous year by pressing the

'Function #3 will tel you, in days, how long it has been
from one date to the next, given a “from” date and a “{o”
date.

Atthe end of functions 1 and 3 you will be prompted with
the following:

ENTER [R]—RETURN TO MENU
[A]—ANOTHER RUN

In function #2, however, the above prompts would be
difficult to achieve, therefore you are prompted with “[R] OR
[A]" in the upper right-hand of the screen. Both prompts ask
for the same thing.

EXPLANATION OF ERROR MESSAGES

1 2 OR 3 ONLY
BAD MONTH

—Bad menu selection
—Three-character month ab-
breviation was misspelled
—Too many or too few days
given for specified month
—Year given is >1753 or

<2099
—Feb. 29 was given along with

a year other than a leap year
— Total days displayed would be

0 or negative

When entering the DATA statements, be sure they are in

the order exactly as shown here and that no spaces appear
before or after the commas, otherwise the program will not
function properly.

BAD DAY

“BAD YEAR

NOT A LLEAP YEAR™
T0 < = FROM

14¢ 'CALENDAR' BY TIM MC DUFFIE

12¢ 'NEEDS 16K WITH STANDARD

125 'OR EXTENDED GCOLOR BASIC.

13¢ DIM DP(42), ML(12), MD$(12)

14@ GOSUB 1560

15¢ H$="COLOR COMPUTER CALENDAR"

16§ GOSUB 61¢

17¢ PRINT "DO YOU WANT TO:"

18§ PRINT

19¢ PRINT "[1] - FIND WEEK-DAY FOR A GIVEN"
2¢¢ PRINT " MONTH, DAY & YEAR"

2@5 PRINT

21¢ PRINT "[2] - FIND CALENDAR FOR A GIVEN"

220
225
230
240
245
250
255
260

279
289
290
309
319
32¢
33¢

349
345
350
360
37¢
38¢
399
469
410

420
425
43¢
440
442
444
446

448
45¢
452

460
47¢
499
5¢¢
51¢
520
539

540
554
555
560
576

58¢
59¢
600
610
628
63¢
635
649
654
655
670

684
690
692
693
694

698
709

PRINT " MONTH & YEAR"
PRINT
PRINT '"[3] - FIND NUMBER OF DAYS"

PRINT " BETWEEN 2 DATES"
PRINT
INPUT CHS
CH=VAL(CH$)
IF CH<1 OR CH>3 THEN EX=f
: GOSUB 1550
: GOTO160
ON CH GOSUB 29¢, 380, 460
GOTO 158
H$=""DAY-OF-WEEK FINDER"
GOSUB 610
GOSUB 650
GOSUB 718
IF DV=1 THEN GOSUB 1550
: GOTO 3¢¢
GOSUB 8¢¢
GOSUB 93¢
GOSUB 1160
GOSUB 14¢¢
IF RA$="R'" THEN RETURN ELSE 3@¢
GOSUB 61§
GOSUB 658
GOSUB 718
IF DV=1 THEN GOSUB 155¢
: GOTO 386
GOSUB 8¢
GOSUB 93¢
GOSUB 12¢¢
GOSUB 14¢¢
IF RAS$="R'" THEN RETURN
IF RAS="A" THEN 380
IF RAS=CHRS$(8) THEN GOSUB 7¢¢
: GOTO 420
IF RAS$=CHRS$(9) THEN GOSUB 693
: GOTO 42
IF RAS=CHR$(94) THEN GOSUB 748
: GOTO 420
IF RA$=CHRS(1¢) THEN GOSUB 712
: GOTO 420
H$=""NUMBER OF DAYS"
GOSUB 61¢
FOR XD=1 TO 2
PRINT FT$(XD)
GOSUB 659
GOSUB 718
IF DV=1 THEN GOSUB 1554
: GOTO 476
GOSUB 8¢
FT(XD)=TD
IF XD=1 THEN GOSUB 154§
NEXT
IF FT(1)>=FT(2) THEN E£X=5
: GOSUB 155¢
: GOTO 47¢
GOSUB 1354
GOSUB 14¥¢
IF RAS="R'" THEN RETURN ELSE 47¢
H=INT(32~-LEN(HS))/2
CLS
PRINT @ H, HS$
PRINT
RETURN
INPUT "ENTER MONTH (1'ST 3 CHAR.)"; MI$
IF LEFT$(MIS$, 1)="R'" THEN 150
IF CH=2 THEN DI=l
: GOTO 690
INPUT "ENTER DAY-OF-MONTH"; DI
INPUT "ENTER YEAR (1753-2099)"; YI
RETURN
MP=MP +1
IF MP>12 THEN MP=1
: GOSUB 7@8
RETURN
MP=MP-1

32 TRS-80 Microcomputer News, October 1983

742

706
708
749

71¢
711
712
714

716
717
7138
719
720

734
740
750

760
770

775
789

799
8¢d
820
839
84¢
850
860
87¢
380
89¢
9¢¢
91¢
920
93¢
949
95¢
96¢
97¢

98¢

99¢
1400
141¢

1929
1439

1449

1¢5@
1060
1979
1484

1999
11¢¢
1119

112¢
113¢
1144

115¢
116¢
117¢
118¢
119¢

IF MP<1 THEN MP=12
: GOSUB 712
RETURN
YI=YI+1
IF YI>2@$99 THEN YI=2¢99
GOSUB 1554
GOSUB 1¢1¢
RETURN
YI=YI-1
IF YI<K1753 THEN YI=1753
GOSUB 1554
GOSUB 1¢1¢
RETURN
MF=1
DV=§
IF YIK1753 OR YI>2¢99 THEN DV=1
: EX=3
: RETURN
MC$=LEFT$(MIS, 3)
FOR X=1 TO 12
IF MC$=LEFT$(MDS$(X), 3) THEN MP=X
: MF=§
NEXT
IF MF=1 THEN DV=]
: EX=1
: RETURN
GOSUB 1¢1¢
IF DI<1 OR DIDML(MP) THEN DV=1
IF MP=2 AND DI=29 THEN EX=4 ELSE EX=2
RETURN
TD=¢
IF YI=1753 THEN 87§
PY=YI-1753
LY=INT(PY/4)
RY=PY~LY
TD=(LY*366)+(RY*365)
IF MP=1 THEN 91¢
FOR X=1 TO (MP-1)
TD=TD+ML (X)
NEXT
TD=TD+DI
RETURN
DD=TD/7
DD=DD-INT(DD)
DD=INT(DD*1(¢)
GOSUB 1930
IF ¢D<=180@¢@229 THEN GOSUB 1¢7¢
: RETURN
IF cD<=19¢@@229 THEN GOSUB 1104y
: RETURN
GOSUB 113¢
RETURN
IF (YI/4)-INT(YI/4)=¢ THEN ML(2)=29 ELSE
ML (2)=23
RETURN

IF DIK1¢ THEN CD$="@"+MIDS$(STR$(DI), 2) ELSE

CD$=MIDS(STRS$(DI), 2)

IF MP<1§ THEN CMS$="@"+MID$(STR$(MP), 2) ELSE

CM$=MIDS(STR$(MP), 2)
CD=VAL(MID$(STRS(YI), 2)+CM$+CDS)
RETURN
FOR X=1 TO 7
IF DD=D1(X) THEN DW=X
RETURN
NEXT
FOR X=1 TO 7
IF DD=D2(X) THEN DW=X
: RETURN
NEXT
FOR X=1 TO 7
IF DD=D3(X) THEN DW=X
RETURN
NEXT
PRINT
PRINT MD$(MP) DI "," YI "IS " DD$(DW)
GOSUB 1540
RETURN

1209
1219
1215
122¢
123¢
1244
1299
13¢¢
13i¢
1329
1339
1349
135¢
1355
1369
137¢
1384
1399
1392

1394
1396

1400

141¢

15¢¢
15¢2
1564

153¢
154¢

155¢

1552

1554

1564

157¢

1580

1599

1600

1619

1620

163¢

L1640

165¢

1664
167¢

CLS®
PRINT @ #, MDS(MP) ", " YI;
IF ML(2)=29 THEN PRINT "L";

FOR X=1 TO 7
PRINT @ CH(X), LEFT$(DDS$(X), 3);
NEXT
FOR X=1 TO ML(MP)
DS$=MIDS(STRS(X), 2)
PRINT @ DP(X+(DW-1)), DS$;
NEXT
GOSUB 154¢
RETURN
ND=FT(2)~FT(1)
GOSUB 1392
PRINT
PRINT "TOTAL DAYS = " ND$
GOSUB 1540
RETURN
NDS=MID$(STRS(ND), 2)
LD=LEN(ND$)
IF LD<4 THEN RETURN
DR$=RIGHTS$(NDS, 3)
DL$=LEFTS$(ND$, LD-3)
ND$=DL$+","+DR$
RETURN
IF CH=2 THEN PRINT @ 21, "[R] OR [A]"; ELSE
PRINT
: PRINT "ENTER [R] - RETURN TO MENU"
: PRINT " [A] - ANOTHER RUN"
GOSUB 15¢¢
: RETURN
RA$=INKEYS
IF RA$="R'" OR RAS$="A" THEN RETURN

IF CH=2 THEN IF RA$=CHR$(8) OR RAS$=CHR$(9) OR

RA$=CHR$(1@#) OR RAS$=CHR$(94) THEN RETURN

GOTO 150¢

SOUND 199, 2
RETURN

PRINT @ 480, EMS$S(EX);

SOUND 228, 12

: RETURN

SOUND 224, 2
SOUND 199, 2
RETURN

FOR X=1 TO 42

: READ DP(X)
NEXT

FOR X=1 TO 7
READ DI1(X)
NEXT

FOR X=1 TO 7

: READ D2(X)

: NEXT

FOR X=1 TO 7
READ D3(X)
NEXT

FOR X=1 TO 7

: READ DD$(X)

: NEXT

FOR X=1 TO 12
READ ML (X)

: NEXT

FOR X=1 TO 12

: READ MD$(X)

: NEXT

FOR X=1 TO 2

: READ FTS$(X)
NEXT

FOR X=1 TO 7
READ CH(X)
NEXT

FOR X=f TO 5

: READ EMS(X)
NEXT

RETURN

DATA 128, 132, 136, 146

TRS-80 Microcomputer News, October 1983

33

1672 DATA l44, 148, 152, 192

1674 DATA 196, 204, 204, 203

1676 DATA 212, 216, 256, 26@

1678 DATA 264, 268, 272, 276

168¢ DATA 28@, 328, 324, 328

1682 DATA 332, 336, 34d, 344

1684 DATA 384, 383, 392, 396

1686 DATA 4@y, 484, 408, 448

1688 DATA 452, 456, 46@, 464

1690 DATA 468, 472

17¥% DATA @¢, 14, 28, 42, 57, 71, 85
1710 DATA 14, 28, 42, 57, 71, 85, 0@
172 DATA 28, 42, 57, 71, 85, @@, 14
173¢ DATA SUNDAY, MONDAY, TUESDAY
174¢ DATA WEDNESDAY, THURSDAY

175¢ DATA FRIDAY, SATURDAY

176§ DATA 31, ¢¢, 31, 3@, 31, 3¢
177¢ DATA 3i, 31, 38, 31, 3¢, 31
178¢ DATA -JANUARY, FEBRUARY, MARCH
179% DATA APRIL, MAY, JUNE, JULY
180¢ DATA AUGUST, SEPTEMBER

181¢ DATA OCTOBER, NOVEMBER

182¢ DATA DECEMBER

183% DATA 'FROM-DATE', 'TO-DATE'
184¢ DATA 64, 68, 72, 76, 88, 84, 88
185@ DATA **1 2 OR 3 ONLY*¥

186y DATA **BAD MONTH**

1870 DATA **BAD DAY**

188¢ DATA *%*BAD YEAR¥¥

189 DATA **NOT A LEAP YEAR¥*

1900 DATA **TO < = FROM¥* 4

Drawing with the
Color Computer

David Andrew Paimer
7 Frontenac Cresc.
Deep River, Ontario
Canada

This is a drawing program for Color Computers with a

minimum of 4K RAM.

10 'dedesoidesoiodok DRAWK #ok ook sk BY DAVID ANDREW

PALMER 1982

148 cLs

11¢ PRINT"§m=mmmmmmmmmm e PRINTS CHARACTERS
= e READS FROM CASS.
R it PRINTS TO CASS.

[i DISPLAYS LIST"
126 INPUT"PRESS<ENTER>" ;PO

13§ PRINT"S—---———~--~-- RANDOM COLORS
[mm—m e e COLOR CHANGE
Cmmmmmmmmmm CLEARS SCREEN
B-—mm—mmmmemmm REVERSES COLORS
o e ERASE CURSOR
R SCREEN BORDERS"

14¢ PRINT"l=~=--mmmm—mmm CURSOR IN UP LEFT
Qe e CURSOR IN UP RGHT
it CURSOR IN DN LEFT
fmmmmmmm e CURSOR IN TP RGHT
Jemmmmmm e TURNS ON JOYSTICK
{mmmmmm e REPAINTS (DOWN
ONE) Dm=wmmmmmmm = REPAINTS(UP ONE)

15¢ INPUT"PRESS <ENTER> TO START";PO

164 cLsS(@)

:C=5

: H =31

: V=15
17¢ A$ = INKEYS

18¢
199
200
21¢
220
23¢
240
250
260
27¢
280
29¢
306
31¢
320
330
348
350

360
37¢
380

390
409
419
42¢

430
440
450
460
479
480
49¢
5¢¢
51¢
520
53¢
540
550
564
57¢

580
594
639
619
629
630
640

650
660
67¢
680
699
709
71¢
720
736
749
750
760
779
780
790
8¢¢
81¢
820
830

IF A$
IF AS
IF A$
IF AS
IF A$

"x"THEN GOSUB 60
" = "THEN GOSUB 650
"AMTHEN V = V-1
CHRS(1@)THEN V = V+1
CHR$(8)THEN H = H~1
IF A$ = CHR$(9)THEN H = H+l
IF A$ = "C" THEN CLS(#)
IF H > 63 THEN H = 63
IF H< @ THEN H = @
IFV<® THEN V =0
IF Vv > 31 THEN V =
IF A$ = "/'" THEN C
IF C =9 THEN C = §
IF A$ = "L" THEN GOSUB 520
IF A$ = "S'" THEN S = S+l
IF S =2 THEN S = §
S =
A
4

H~
H+

Wowowononon

31
= C+l

IF 1 THEN C = RND(8)
IF A$ = "1" THEN H = §

:]

IF A$ = "2" THEN H = 63
: = ¢

IF AS = "3"THEN H = @

]

<

IF AS = "4'"THEN H = 63

: v
IF AS$ = "D"THEN GOSUB 720
IF A$ = "<'"THEN GOSUB 780
IF A$ = "!"THEN RUN
IFH=630RH=®ORV =23l 0RV =@ THEN SOUND
255,1
IF A$ = "B"THEN CLS(C)
IF A$ = "J"THEN JJ = JJ+1
IF JJ = 2 THEN JJ = @
IF JJ = 1 THEN SET(JOYSTK(#),JOYSTK(1)/2,C)
SET(H,V,C)
IF A$ = "E"THEN E = E+l
IF E =2 THEN E = §
IF E = 1 THEN RESET(H.V)
GOTO 17¢
FOR X = §§ TO 63
SET(X,8,C)
SET(X,31,C)
NEXT X
FOR X = § TO 31
SET(H,X,C)
: SET(63,X,0C)
NEXT X
RETURN
OPEN"OQ",#-1,"DATA"
FOR X = 1024 TO 1535
PRINT#-1,PEEK(X)
NEXT X
CLOSE#-1
: RETURN
OPEN"I" #-1,"DATA"
FOR X = 1§24 TO 1535
INPUT#-1,A
POKE X,A
NEXT X
CLOSE#-1
IF A$ = "<" THEN GOSUB 78§
FOR X = 1024 TO 1535
P = PEEK(X)
IF P > 239 THEN RETURN
POKE X,P+16
NEXT X
RETURN
FOR X = 1024 TO 1535
P = PEEK(X)
IF P < 16 THEN RETURN
POKE X,P-16
NEXT X
RETURN

Hon o

«p

34

TRS-80 Microcomputer News, October 1983

Pocket Computer

- PC-2 Assembly Language—-Part 5

By Bruce Elliott

This is the fifth in a series of articles which describe the
MPU (microprocessor unit) used in the Radio Shack PC-2
pocket computer. It is our intention to include specific infor-
mation about the 8-bit CMOS microprocessor, the machine
code used by the microprocessor, as well as information
about the PC-2 memory map, and certain ROM calls which
are available. Please realize that much of what we are talking
about refers to the overall capabilities of the MPU, and does
not imply that all of these things can be done with a PC-2.

The information provided in these articles is the only
information which is available. We will try to clarify any ambi-
guities which occur in the articles, but cannot reply to ques-
tions outside the scope of these articles. Further, published
copies of TRS-80 Microcomputer News are the only source of
this information, and we will not be maintaining back issues.
Parts One, Two, Three and Four of this series were published
in the March, April, May, and September 1983 issues,
respectively.

The first three articles described the MPU used in the
PC-2, including information on the MPU'’s structure and its

- machine language. We also gave you details on the

© PC-2 memory map and the locations of ROM routines which
are available. In the fourth article we presented two lists to
make finding a particular machine language instruction eas-
ier. We also provided some information on how you might
begin to use the information we have published. In this fifth
article we want to present information on how to create your
own machine language routines, and begin describing how
to use the PC-2 ROM calls which are available.

CREATING YOUR OWN PROGRAMS

Last month we looked at an existing machine language
program and described a procedure (disassembly) for deter-
mining how the program did what it was supposed to do. This
month | want to define a program and then describe the
procedure for creating a workable program that fits the defini-
tion. To make things simple, the program we are going to
design will do only one thing-—display on the LCD the key
you press on the keyboard. | know that this program may
sound silly. After all, doesn’t the PC-2 automatically display
the key you press? The answer is no, it doesn't. Try using the
INKEY$ command. With INKEY$, if you want the character
displayed you must display it yourself.

What we are really doing is designing a program which
will accept characters from the PC-2 keyboard and display
them on the LCD. This program should show you how to do
three important things in assembly language: first, how to get
information from the keyboard into the computer; second,
how to take information that is in the computer and display
it on the LCD; and third, how to use the PC-2's ROM
subroutines.

In Part 1 of this series (March, 1983, pg. 26) we
published a PC-2 memory map. It is in this section of PC-2
memory that we find ROM subroutines.

WHY DO ROM SUBROUTINES EXIST?

In general, any computer consists of similar basic parts.
To function, a computer must have a processing unit, input
and output functions, working memory to store temporary
results, and some sort of control mechanism or program.

In the PC-2, the processing unit is the MPU which we
have been describing in this series. The input function is
handled primarily by the keyboard, and the output function is
handled primarily by the LCD. The working memory is RAM
(Random Access Memory), and the control mechanism is in
the form of programs stored in ROM (Read Only Memory).

In order to make the PC-2 behave so that you can use it,
the manufacturer wrote an operating system to control the
various functions of the computer. Part of this operating sys-
tem is instructions which control the keyboard, the LCD, and
BASIC. This is where ROM subroutines come from. To func-
tion properly, the PC-2 has to have a routine which looks at
the keyboard and stores any key which may be pressed.
Likewise, there has to be a routine somewhere which takes a
character and displays it on the LCD. The PC-2 memory map
tells us where some of these routines are located, and we
will use this information to create our machine language
program.

IS THIS INFORMATION AVAILABLE ON OTHER
COMPUTERS?

Radio Shack has received permission from the original
manufacturer of the PC-2 to disclose the information which
we are presenting in this series of articles. The information is
fixed, and we do not expect it to change.

If you happen to own a different TRS-80 you may have
tried to get similar information for that computer and you were
told “l am sorry, but we cannot provide you with that informa-
tion.” Why? Well, there are two major reasons. The first and
largest reason is that most computers are evolving products.
As a computer evolves, the contents of its operating systems
also change. If we give you information about where a partic-
ular routine is located in the first version of a program or
operating system, you are going to expect that information to -
be true in the second version of that program or operating
system also. With few exceptions, every change of a machine
language program such as an operating system means a
relocation of ALL of the contents of that program.

Because the contents of programs are subject to change
with each revision, what Radio Shack typically does is to
publish certain "published entry points.” These published
entry points won't normally change, even if the rest of the

TRS-80 Microcomputer News, October 1983 35

program does change. Other than the published entry
points, Radio Shack, in general, will not provide you with
other information about the contents of the program. Using
only published entry points protects your software from be-
coming obsolete as soon as Radio Shack issues a new
version of the program.

The second major reason for not providing the informa-
tion is that Radio Shack often does not have permission from
the copyright holder to release the information. As an exam-
ple, Microsoft BASIC on any of our machines is owned by
Microsoft. Since Microsoft owns the code, they have the right
to tell us what we can and cannot publish.

BACK TO THE PC-2

The stated function of our machine language program is
to accept keyboard entries and display the pressed key on
the LCD.

A quick glance at the memory map for System Program
ROM shows two keyboard scan routines and two routines
which output single characters to the LCD.

E243H Keyboard Scan—Wait for Character

E42CH Keyboard Scan—No Wait

ED4DH Output one character to LCD and increment

cursor position by one

ED57H Output one character to LCD

(Remember that the H after the address, as in E243H,
indicates that the number is in Hexadecimal notation and not
decimal.)

E243H

My information on the E243H Keyboard scan routine
tells me that the PC-2 will wait for a key to be pressed. Once a
key has been pressed, the key's code will be placed in the
MPU Accumulator. If a key is not pressed within about seven
minutes, the PC-2 will be turned off automatically. Once
power-down has occurred, pressing the key will return
the computer to the keyboard scan routine.

E42CH

The information on the E42CH routine states that if a key
has been pressed, the key code will be in the accumulator. If a
key has not been pressed the accumulator will contain 00H.

ED4DH

To output a character using ED4DH, the ASCII code of
the character to be displayed is placed in the accumulator
and the routine is executed. The character will be placed at
the current cursor position, and then the cursor position will
be updated.

The current cursor position is stored in memory location
7875H. According to our information, if the old cursor posi-
tion (before the call to ED4DH) was less than 96H the new
cursor position (stored in 7875H) will be the old position plus
6H. If the old cursor position was 96H or greater, the new
position will be O0H.

ED57H

To display a character using the ROM routine at ED57H,
place the ASCII value of the character to be displayed into the
accumulator and execute the ED57H routine. The character
will be displayed at the current cursor location and the cursor
position will not be updated.

LET’S WRITE THE PROGRAM

| try to program conservatively when | use machine
language. What | mean by this is that | try to disturb as few

things as | can. So, the first part of my program will “save the
MPU registers.” What | mean by this is that | will save a copy
of the various registers so | can restore the MPU when | am
finished with my program. This is done by using the appropri-
ate push (PSH) instructions to “push” the register values onto
the stack.

FD C8 PSH A
FD 88 PSH X
FD 98 PSH Y
FD A8 PSH U

Now that | have saved a copy of the registers, | want to
set the PC-2's cursor position to the left side of the L.CD. This
would make the cursor position (stored in 7578H) zero (0).

B5 0@ LDI A, @0H
4A 75 LDI XL, 75H
48 78 LDI XH, 78H
PE STA (X)

Notice that | used three LoaD Immediate (L.D1) instruc-
tions. The first LD! puts the cursor position (O0H) into the
MPU’s Accumulator (A register.) The next two LDIs load the X
register with the address which stores cursor position
(7578H). The fourth instruction (STA) tells the MPU to put the
value currently in the A register into the memory location
which is currently in the X register.

Now that the cursor is where | want it, it is time to get a
keystroke from the keyboard. Since the only thing | want to do
is to get a keystroke, | choose to use the routine which waits
for a key to be pressed before returning. A ROM routine is
executed by using the Subroutine JumP (SJP) command.

BE E2 43 SJP E243H

We learned earlier that once a key is pressed, the PC-2
stores the ASCII value of the key in the A register. Both display
routines | am considering require the ASCH value of the
character | want displayed to be in the A register. Since the
keyboard scan routine already put the ASCII value in the A
register, all | need to do is use a subroutine jump to the proper
display routine.

BE ED 4D SJP ED4DH

| chose to display each character in cursor position 0, so |
used the display routine at ED4DH.

The purpose of this program was to get a character from
the keyboard and to display it on the LCD. My program has
done that, so | restore the registers by POPping their values
(in reverse order) off the stack.

FD 24 POP U
FD 1A POP Y
FD fA POP X
FD 8A POP A

There is one final task which any machine language
program which is called from BASIC (as this one will be) must
perform and that is to return control of the PC-2 to BASIC. This
is accomplished by executing a return command.

9A RTN

Here is the completed machine language program
along with various comments so | can remember what is
happening.

FD C8 PSH A 'Save Registers
FD 88 PSH X
FD 98 PSH Y

36 TRS-80 Microcomputer News, October 1983

<o

FD A8 PSH U

B5 @0 LDI A, @@H 'Cursor Position
4A 75 LDI XL, 75H 'Cursor Storage
48 78 LDI XH, 78H ' Location

QE STA (X) 'Store Cursor

BE E2 43 SJP E243H
BE ED 4D SJP ED4DH

'Read Keyboard
'Display Character

FD 24 POP U 'Restore Registers
FD 1A POP Y

FD #A POP X

FD BA POP A

9A RTN 'Return to BASIC

TURN IT INTO A BASIC PROGRAM

Now that | have the machine code for my program, |
need a way to get the program into the PC-2 and executed. A
very straight forward way to do this in the PC-2 is to put the
machine language program intc a BASIC program shell like
the following:

1¢ WAIT @

2¢ DATA &FD, &C8, &FD, &88
3¢ DATA &FD, &98, &FD, &AS8
40 DATA &BS, &0@, &4A, &75
50 DATA &48, &78, &QE

6@ DATA &BE, &E2, &43

7% DATA &BE, &ED, &4D

80 DATA &FD, &2A, &FD, &lA
9¢ DATA &FD, &@A, &FD, &8A
10@ DATA &9A

11¢ M=16999

12¢ FOR I=1 TO 3¢

13 READ A

148 POKE M+1, A

15 NEXT I

160 M=M+1

17¢ PRINT " READY"
18¢ CALL M

19¢ coTO 18¢

Line 10 simply sets the PC-2 PRINT command delay
time to 0.

Lines 20-100 contain DATA statements into which | have
placed the hexadecimal values for my machine language

Op-Code
5)

Suggested Name Op-Code

Suggested Name

program. Notice the use of a leading ‘&’ to indicate that the
values are in Hex.

Line 110 contains the address (minus one) where | will
begin storing the machine language program in memory.

Lines 120-150 POKE the machine language routine into
PC-2 RAM memory. Line 160 updates the memory pointer
from line 110 so that it contains the actual starting address of
my routine (17000 decimal).

Line 170 tells me that the machine language program
has been put into memory and will begin executing with the
next instruction.

Line 180 tells BASIC to turn control of the PC-2 over to
the machine language program which begins at location M
(my memory pointer). The PC-2 will set the cursor position to
zero, wait for a key to be pressed on the keyboard, display the
proper character and return to BASIC.

Line 190 tells BASIC to go back to line 180 and execute
the machine language program again.

THAT IS ALL THERE IS TO IT!

If you have followed this series of articles all the way
through, you now have enough information about the PC-2
and how it operates to begin writing your own programs in
machine language.

Next month we plan on giving you some additional infor-
mation about the various ROM subroutines which are avail-
able to you in the PC-2.

A CLOSING GIFT

Operation codes (op-codes, mnemonics) are short
names which programmers give to machine language com-
mands to make them more readable, and more remember-
able. We have given you several lists with op-codes and have
provided some detail on what the commands do. At least one
person has asked “How am | supposed to pronounce those
funny looking things?”

Below is a listing of the various PC-2 op-codes and a
recommended “name” or pronunciation for each.

Op-Code

Suggested Name

btr e ,
DCS Decimal Subtract Rotate Left BHS Branch Half Carry Set
AND AND Accumulator Rotate Right BHR Branch Half Carry Reset
ANI AND Immediate Shift Left BZS Branch Zero Set

OR

nt

=t
Store Accumulator

Compare Accumulator ATP Accumulator to Port VCS Vector Carry Set

Compare Immediate ITA Port Input to Accumulator VCR Vector Carry Reset

Bit SPU Set PU VHS Vector Half Carry Set

Bit Immediate RPU Reset PU gHR Vector Half Carry Reset
mulato 3

RIE Reset Interrupt Enable RTI Return from Interrupt
Store and Decrement AMO Accumulator to Timer, Bit 9=0 MEO Memory Enable O
Store and Increment AM1 Accumulator to Timer, Bit 9=1 ME1 Memory Enable 1
Store X NOP No Operation £

TRS-80 Microcomputer News, October 1983 37

AgriStar

Write A Codefile!

by Kimberly Bilstad Ness and Mary Turner

A USDA aide called AGRI-STAR headquarters to ask
how he could access reports most efficiently. He wanted to
print all current news stories early each morning for the
Secretary of Agriculture to review. We suggested he build an
on-line codefile.

A researcher from a large agricultural firm needs to
access growing degree day weather reports from each cli-
matic division in seven states each day. She uses AGRI-STAR
codefiles.

David Prentiss follows the corn and soybean markets,
checks long term and severe weather reports and reads ag
news stories on AGRI-STAR early each evening from his farm
operation near Delta, Ohio. He can get all the market and
analysis reports he needs in less than six minutes. By using a
codefile, he can access those reports even more quickly in
sequence by entering one three-keystroke codefile code.

PICK REPORTS FIRST, BUILD A CODEFILE FAST

AGRI-STAR provides electronic access to thousands of
volatile pieces of information; each piece is identified by title
and by a report code. Reports and their codes are listed for
quick reference in print form in the AgriScan Index of Reports
and Keywords. Or, codes can be located on-line by entering
words that identify the kind of information desired. For exam-
ple, to get a list of all available cash corn market reports on
AGRI-STAR, type CASH.CORN at any *.

If the same reports are accessed regularly, storing those
report codes in a codefile will save on-line connect-time and
eliminate the need to locate, recall or enter a long series of
codes each time the reports are accessed.

We are learning that many of our AGRI-STAR clients are
becoming sophisticated codefile builders. Building codefiles
is fast and easy; it's possible to build up to 10 different
codefiles, each of which can store up to 10 report codes.

STREAMLINE TO SAVE TIME

Using codefiles can help streamline information gather-
ing on AGRI-STAR according to one dedicated user, Debra
Streeter, a Top Farmer market analyst. Says Streeter, “Code-
files are well worth the small investment in time it takes to learn
how to use them.” She has created her own codefiles for
specific days of the week. For example, she has grouped
reports that are updated weekly on Friday in one codefile and
weekly Wednesday reports in another.

Streeter also creates a special codefile shortly before a
major government report is due to be released and includes
the trade expectations, the report itself and trade reaction
reports.

A STREETER SAMPLE

Several days before the U.S. Commerce Department
is scheduled to release its housing start figures, Streeter

builds a codefile that includes CNS434, PRE-HOUSING
START SURVEY; CNS415, HOUSING STARTS; CNS842,
HOUSING STARTS REACTION and CNS820, HOUSING
REACTION—COMMERCE. The day the reports are re-
leased, she has at her fingertips the information she needs to
help her determine her own economic analysis.

Streeter offers some tips to codefile users. She suggests
that if reports are to be printed, fill a codefile with 10 reports
and use the RUN command to scroll reports without interrup-
tion, saving connect-time. If reports are not to be printed,
merely viewed on-line, she suggests building codefiles with
only five or fewer reports in each.

A HOG OPERATION SAMPLE

Just as analyst Deborah Streeter does, many farmers
make their livings analyzing market trends and deciding
when to buy and sell commodities. And using codefiles can
help make that job easier as well.

For example, a hog farm operator marketing from a
central lllinois location might build a codefile to track daily
cash hog markets as reported in the USDA’s Federal-State
Market Reports, private sources reporting directly from the
major local livestock trading centers, and favorite hog market
analysis and recommendation reports.

That farm operator would likely access the sample code-
file below at about noon each day. The codefile contains the
following reports:

DAR2 DOANE'S LIVESTOCK MARKET WATCH. This
report is updated twice a day on AGRI-STAR to provide cattle
and hog market reviews, analysis and advice.

CNS358 IOWA-MINN OP/MIDSESSION HOGS

CNS367 SIOUX CITY OP/MIDSESSION HOGS

CHS368 ST PAUL OP/MIDSESSION HOGS

CNS364 PEORIA OP/MIDSESSION HOGS

CNS373 WEST FARGO CASH HOGS. These are the
USDA reports updated late each morning.

CNS838 ILLINOIS HOGS-PRIVATE SOURCES

CNS857 JOLIET HOGS-PRIVATE SOURCES

CNS830 PEORIA HOG OPEN-PRIVATE SOURCES.
These private source views on the local markets are updated
just before 9:00 a.m. CDT each day.

TO BUILD A FILE

To create a codefile on AGRI-STAR, simply follow these

steps: ,

Step 1 Type WRITE CODEFILE1 (We'll use 1 to name the
file, but any number between 1 and 10 can be used)
and list the report codes with a space between each
code. Like this: * WRITE CODEFILE1 DAR2
CNS358 CNS367 CNS368 CNS364 CNS373
CNS838 CNS857 CNS830

(Continued on page 40)

38 TRS-80 Microcomputer News, October 1983

~ Install the Model 111 Business
‘Graphics Package on Your 5 Meg

Hard Disk

by Annette Zamberlin-Main

I've just run across, and then tested, a terrific little set of
procedures for installing the Model 111 Business Graphics
package (Cat. No. 26-1597) on the 5 Meg Hard Disk (Cat. No.
. 26-1130). The Business Graphics package has always been
- apowerful tool for anyone involved in the production and use

of bar graphs, pie charts, scatter charts, and line charts.
Installing the graphics package on your 5 Meg Hard Disk will
make it even more convenient, not to mention much faster
to use.

On the installation | tried, we used a 2-Drive Model 111
and one 5 Meg Hard Disk. You can, if you so desire, use up to
a four hard drives and a four floppy drives configuration.

IS YOUR HD INITIALIZED?

The preliminary subset of procedures deals with the
initializing or reinitializing of the system. Before any installa-
tion is made, your hard drive system must first be initialized. It
may already be initialized so you may proceed to the next
section of instructions. You may want to reinitialize your hard
disk drive; in which case directions for reinitialization may be
found in Appendix B of your Hard Disk Operating System
manual (Cat. No. 26-1130).

Remember that it is during the initialization process that
LDOS assigns the logical drive numbers to your hard drive(s)
and floppy drive(s). In the configuration that we are using, our
one hard drive contained four logical drive numbers (0-3) and
two logical drive numbers for the two floppy drives (4-5)
contained in the Model I1I:

Logical Drive 0 Hard Drive (primary)

Logical Drive 1 Hard Drive (primary)

Logical Drive 2 Hard Drive (primary)

Logical Drive 3 Hard Drive (primary)

Logical Drive 4 Floppy Drive (first)

Logical Drive 5 Floppy Drive (second)

Hard Disk Drive initialized? All right?

INSTALLATION OF THE PROPER DEVICE DRIVERS

Another member of the subset of preliminary proce-
dures deals with the installation of the proper printer/plotter
drivers. The Business Graphics chart diskettes are set up to
produce output on the Line Printer VIII. If you are using a
different output device, you must configure the chart disk-
ettes for your printer or plotter before attempting to install any
of the diskettes onto the HD. Please see Chapter 9 of the
Business Graphics Analysis Pak for a further discussion of
the procedures.

The Initialization Diskette which you used in the above
process now becomes your Boot Diskette. Place your boot
diskette in your first physical floppy drive, boot-up the system
and let’s proceed with the installation of the Business Graph-
ics package.

LDOS CONV UTILITY

There are four floppy diskettes contained in your
Business Graphics package that you will want to install on
your hard disk system. There is a Model III diskette in the
Business Graphics package for each type of chart or graph:
line, bar, scatter, and pie.

It is now time to delve into the LDOS utilities for our next
subset of procedures. The CONV utility will allow us to move
files from a Model III TRSDOS diskette onto an LDOS format-
ted drive. Two drives are required. The syntax is:

CONV :s :d (parm,parm, . . . ,parm)

's is the Logical Source Drive. It cannot be Logical

Drive 0.
:d is the Logical Destination Drive.
The allowable parameters are as follows:

VIS Convert visible files.
INV Convert invisible files.
SYS Convert system files.
NEW Convertfiles only if they do not exist on the destina-
tion disk.
OLD Convert files only if they already exist on the desti--
nation disk.
QUERY Query each file before it is converted.
abbr: All parameters may be abbreviated to their first
character.
For the purposes of our experiment, when each of the
four diskettes from the Business Graphics package were
inserted in Logical Drive 4, | typed:

TRS-80 Microcomputer News, October 1983 39

CONV :4 1 (NEW,Q=N)

The above means that all files on the TRSDOS disk,
which is in Logical Drive 4 (the Source Disk), are converted
onto Logical Drive 1 (the Destination Disk), only if they do not
already exist on the Destination Disk. For the sake of expedi-
ency, Q=N is used so that | would not be asked before each
separate file on the disk is moved.

After the first disk was converted and installed onto the
destination drive, | called up the destination drive’s DIRectory

‘to check to see what files | now had on it. For my particular
experiment, | had converted the Model ITI Business Graphics
disk containing the Bar Chart programs. My DIRectory listing
for Logical Drive 1 now included two new files TRSBAR and
TRSCHART/CMD.

POSSIBLE PROBLEMS

Having worked with the Business Graphics package
before, solely with floppy diskettes, | realized that every disk-
ette in the package contained one user file called
TRSCHART/CMD. | could see trouble brewing ahead if |
continued on with the LDOS CONV utility and did not make
some readjustments fo file names.

What | would have on Logical Drive 1 if | continued on
with the LDOS CONV utility and made no readjustments
would be five files:

TRSBAR TRSPIE TRSSCT TRSLIN TRSCHART/CMD

The trouble now becomes extremely evident. During the
execution of the CONV utility, TRSCHART/CMD was overwrit-
ten three separate times. All that would result would be four
driver files (TRSBAR, TRSPIE, TRSSCT, and TRSLIN) and
only one TRSCHART/CMD file which would load its partner
driver file and provide the actual user interaction. Not a very
good situation.

LDOS RENAME COMMAND

In order to circumvent this potential disaster, | utilized the
LDOS library command of RENAME after each execution of
the CONV utility. The LDOS RENAME command allows you
to change the filename and extension of a given file.

The syntax is:

RENAME filespect TO filespec2

After the first execution of the CONV utility, when | in-
stalled TRSBAR and TRSCHART/CMD onto Logical Drive 1,
| typed:

RENAME TRSCHART/CMD TO BARCHART/CMD

Please remember that this RENAME command must be
utilized after the installation of each disk of the Business
Graphics package in order to insure against any potential
conflicts because of duplications of file names.

In total you would have typed:

RENAME TRSCHART/CMD TO BARCHART/CMD

RENAME TRSCHART/CMD TO PIECHART/CMD

RENAME TRSCHART/CMD TO LINCHART/CMD

RENAME TRSCHART/CMD TO SCTCHART/CMD

All of the four CONVs utilities and four RENAMEs com-
mands completed, | now had fully installed the Business
Graphics package onto my 5 Meg Hard Disk.

GETTING FANCY

If you want to get fancier with all of this, say install a user
menu onto the hard disk which enables selection of one of the

four graphics packages, Profile 1II Plus HD (Cat. No.
26-1593) may be just what you are looking for. Check
the documentation in the software package concerning
“Defining User Menus” and simply follow the straight for-

ward instructions. The menu you create will increase your)

Business Graphics files access efficiency and lend a profes-
sional tone to the entire selection process.

QUICK CHECKLIST

U Initialize or reinitialize HD.

[Install proper printer/plotter drivers onto chart floppy
diskettes.

[J Use CONV utility to move files from Model III TRSDOS
diskette onto the LDOS formatted drive.

0 Remember to RENAME TRSCHART/CMD each time
the file is moved onto a drive.

[Optional: Add a selection menu using Profile III Plus
HD. 4

MAGAZINES

Below are five magazines of speical interest to TRS-80
owners that we believe have editorial content of high quality
and will be of use to our customers.

Basic Computing— The TRS-80
User Journal (Name change for

80 US Journal—covers all TRS-80's)
3838 South Warner Street

Tacoma, WA 98409

(206)475-2219

Color Computer Magazine
Highland Hill

Camden, ME 04843
(207)236-9621

Color Computer Weekly
P.O. Box 1355
Boston, MA 02205

Rainbow (Covers the TRS-80 Color Computer)
P.O. Box 209

Prospect KY 40059

(502)228-4492

two/sixteen magazine

P.O. Box 1216

Lancaster, PA 17603

(717)397-3364 A3

COdefi Ie (From page 38)

Step 2 Press (ENTER). The computer will confirm the re-
port codes entered and stored in the codefile.

To access the codefile, type CODEFILE1 or CF1 at any
* . |f more than one codefile has been created and must be
accessed in sequence, the codefile numbers can be entered
in a string. For example, type CF1 CF3 CF10 to display all the
reports stored in those codefiles.

One of the major design principles inherent in
AGRI-STAR is to make access to any one or many of the

thousands of reports simple and fast. The codefile feature

meets that objective and ought to be considered whenever
reports must be accessed regularly. x|

40 TRS-80 Microcomputer News, October 1983

- The PC-2 RS-232 Interface-Part 1

By Peter Levy

Thisis thefirstin a series of articles designed to introduce
the reader to the PC-2's RS-232 Interface (26-3612). This
month | plan to explain what an RS-232 is, roughly how it
works, and go into a little detail about the particular RS-232
Radio Shack sells for the PC-2. Later articles will discuss
specific applications. As the astute reader has probably no-
ticed, the world is getting rather full of computers. The
amount of information stored on all these machines is beyond
reasonable description. It is useful for all these computers to
be able to share information, since putting information into a
computer from scratch is something of a pain. Hooking up a
cable and then drinking coffee while the machines chat is a
whole lot less grief than retyping some huge list of
information.

The problem here is that if we just told all the computer
manufacturers to build machinery with communications
channels, there would be at least one distinct data encoding
scheme for each computer designer in the industry. Com-
municating computers aren't too useful if one is saying
“Who'sthere?” and the other replies “Wer istda?”. Some sort
of standard is needed. Several such standards exist, but by

~ far the most common standard for microcomputers is one

named RS-232-C, which simply defines a set of conventions
for computers to use while sending information over a wire.
Although the actual RS-232 standard just defines pin
locations and voltages and such, a fairly universal com-
munications protocol has been established around it. Com-
munications circuitry and devices that work according to
these particular conventions are usually just called RS-232
devices. Infact, a general purpose RS-232-standard commu-
nications device is likely just to be called an RS-232. In the
interest of simplicity, when | refer to an "RS-232" in this article,
I’ll actually be referring to the entire device. Also, I'm going to
call a binary 1 bit (this is the same thing as a bit which is “set”
or “true”) a "true” bit.

The basic notion behind the RS-232 is simple. If a com-
puter can send one bit—just one “true/false” unit of binary
information—it can, given time, send enough bits to transfer
any amount of information.

The RS-232 sends individual bits over a wire by chang-
ing the voltage present in the wire. The receiving RS-232 is
built so that it can distinguish varying voltages and, according
to its interpretation of those voltages, set or reset a data bit
which is “visible” to the computer the RS-232 serves. Thus,
one bit is transferred.

A single bit doesn’t contain very much information, so
computers (and programmers) seldom work with them.
Microcomputers usually handle bits in groups of eight, in
units called bytes. These are called eight-bit machines, of
course. The industry is evolving toward sixteen-bit machines
(Obviously, the more bits a computer can deal with at once,

the faster and more powerful it is.), but at the RS-232 level
communications are still done with eight-bit (or less)
protocols.

Communications would be a real pain if programmers
had to work at the bit level, so the RS-232 is designed to
handle bytes for us. We give the transmitting RS-232 a com-
plete byte, and the RS-232 disassembles it into its component
bits, sending each one in turn over the wire. The receiving
RS-232 reads each bit in sequence, assembles the bits into a
complete byte, and hands it to the computer for processing.

Since, when the RS-232 transfers a byte, it has to do it
one bit at a time,—it transfers the bits of a byte one after
another, in sequence, over a single wire—it is called a SE-
RIAL device. Thisis opposed to PARALLEL communications
where all the bits are sent at once over several parallel wires.

When it processes a byte, the RS-232 also throws in
some bits of its own for control purposes and to make sure the
other RS-232 knows what is going on. First, it sends one
“true” bit before anything else, just to warn the other RS-232
that a new byte is starting. This is called a START BIT. After it
has sent the data bits, it sends some more extra bits to tell the
other RS-232 that this is the end of the byte. These are called
STOP BITS. Between the last of the data and the stop bits, it
may also send a PARITY BIT. A parity bit is set up so that the
total number of “true” bits after the start bit and before the
stop bit(s) is always either odd or even, which gives the
receiving RS-232 a fairly good way of knowing if something
went wrong. If we're using even parity (under which the
number of true bits after the start bit and before the stop bit is
always even) and the receiving RS-232 counts five “true” bits
in the data bits plus a “true” parity bit, then the total number of
“true” bits is even, and the byte has probably been trans-
ferred correctly. Parity can be odd, even, or none with no
parity meaning that the parity bit is not sent at all. Some
machines also allow an “ignore” parity, in which the parity bit
is present but ignored.

TRS-80 Microcomputer News, October 1983 41

Since the RS-232 is sending start and stop bits, timing
(between bytes) isn't critical, and there is no need to keep up
a continuous data stream between bytes. Yes, two RS-232's
must stay synchronized with each other during the transmis-
sion of a single byte from start bit to stop bits, but at the
working level—the byte level—they (and the programmer)
don’t need to worry about timing considerations. This makes
the RS-232 an ASYNCHRONOUS device. The opposite of
this, a SYNCHRONOUS device, is exemplified by a cassette

- drive, which is timing-critical and cannot pause between bits,
or even bytes, of information.

Now, let's consider what can go wrong during the trans-
mission of a byte via an RS-232.

Well, first, a bit can get scrambled somehow (commonly
caused by a noisy telephone ling). This will probably (but not
certainly) cause the parity of the received byte to be wrong
(assuming parity is in use) and will therefore be detectable to
the receiving RS-232 as a PARITY ERROR. The next possibil-
ity is that the receiving RS-232 might somehow lose syn-
chronicity with the sending device. It winds up being sort of
“out of phase” with reality and can't figure out which bits are
start, data, parity, or stop information. This condition is called
a FRAMING ERROR. Finally, if the RS-232 we’re using can
only store one complete received byte and a new byte is
received before the old one has been asked for by the
computer the RS-232 serves, the RS-232 throws away the old
byte and saves the new one. The lost byte has been overrun
by the new one, and this is called an OVERRUN ERROR.

The RS-232 can detect any of these errors, and via
circuitry provided for that purpose, it can tell the computer
what is wrong. It is up to the computer, or actually its commu-
nications program, to detect the RS-232's error signal and
somehow notify the operator.

Now, when using this wonderful device, we need to
consider a few things about the nature of the information
we're sending. If we're sending it over a phone line, whichisa
fairly noisy medium, it should be sent slowly and carefully so
that each received bit can be examined carefully. If the two
computers are near each other with a high-quality cable in
use, we can use a much higher speed. If we're just sending
text we can do it with only seven data bits per byte, speeding
our transmission by one-eighth, and for some purposes we
may only need as few as five data bits. We may or may not
want to use parity bits. Fortunately, the RS-232 lets us select
lwhich of these different PROTOCOLS is to be used, within
imits.

The first protocol is speed. Serial transmission speed is
measured in bits per second, called BAUD. Most phone lines
are only good for about 300 baud with ordinary equipment.
RS-232's generally allow speeds from 50 to 19,200 baud,
with some going to 38,400. Although the baud rate actually
only defines the rate at which bits within a byte are sent, this
ultimately limits the speed with which a byte can be proc-
essed. At 300 baud about 30 characters of text per second
are transmitted.

Nextis WORD LENGTH, which is the number of data bits
used per byte (a byte is sometimes called a word). This can
be from five to eight bits. Next is the parity convention—odd,
even, or none. Last is the number of stop bits, usually one or
two. Yes, you inthe back, there is such athing as 1.5 stop bits.
No, | don’t want to explain it just now.

All this flexibility creates one problem: namely, that for
two RS-232’s to communicate, they must both use exactly the

same protocol. If they're set differently then all sorts of confu-
sion will result over which bits are start, data, parity, and stop
bits. The RS-232 is designed so that these protocols can be
set by the user, and this is generally done for him by the
computer via a command provided for the purpose. In the |
TRS-80 world this command is usually called SETCOM (SET
COMmunications parameters).

The PC-2 RS-232 accessory includes complete RS-232
communications hardware as described above, and so gives
the PC-2 the ability to communicate with any other RS-232
device (at least in theory). But it is also a lot more than just a
communications board. It includes an 8K ROM (8092-byte
permanent memory) which contains machine-language in-
structions for PC-2 BASIC telling it what to do with the added
hardware, how to behave as a terminal, and how to recog-
nize and process all the new commands the PC-2 needs to
work with the RS-232. There is some additional circuitry that
provides sort of a translation service between the computer
and the RS-232 itself so they can talk via the expansion bus.
The case also contains a set of rechargeable batteries, to
keep the whole thing portable, and all the plugs and jacks
and connectors and stuff needed to hook it all together.

In later articles, I'll go into some specific applications of
the PC-2 RS-232, including a talk with CompuServe (next
month), how to work with serial printers, and whatever else
comes to mind later (requests welcome). x|

IF/THEN/ELSE
Statements

Ray B. Blessum
5657 West Rim Circle
Riverside, CA 92509

| have noticed that neither of the Getting Started books
for the Color Computer list ELSE as an acceptable BASIC
word; however, | have found that the machine accepts IF/
THEN/ELSE sequences. This is useful to know in translating
Mode! I programs to run on the Color Computer. Such trans-
lations make many programs written for Model I available.
The chief change is substituting PRINT#-2, for LPRINT and
getting around the DEFINT, etc., statements. 43

Radie Sfhaek

ol ukoracsimo i 55 o s isce B ovmoucy sk comomanin

42 TRS-80 Microcomputer News, October 1983

Notes on Previous
Issues

~ NOVEMBER 1981

Reading Profile II Files from BASIC
David Boing

500 S. Main St.

Akron, OH 44318

The procedure suggested in the November, 1981,
Microcomputer News works fine for reading Profile KEY files.

However, if you are creating a new KEY file from BASIC
to be used by Profile, then a problem exists if all three sub-
records of a physical record are not written.

The problem is the FIELD statement. The buffer is 256
bytes long. The FIELD statement will handle this correctly for
the third sub-record but will put garbage into the second and
third or third sub-record when writing the first or second sub-
record respectively.

The following is my solution:

PR=INT((LR-1)/3)+1 : SR=LR-3*(PR-1)-1

FIELD x,(85%SR) AS XX$,6 AS AS,........ , ((2-8SR)*85)
AS XZ$

LSET A$=.......:LSET XZ$=STRINGS$((2-SR)*85,32):PUT
x,PR

FEBRUARY 1982

3-D Color Graphics

Douglas W. Evans
577 Carter Ave.
Woodbury, NJ 08096

. | discovered a way to shorten the 3-D Color Graphics
- program and to save some memory using the following
changes:
13¢ cLS
: INPUT"RX,RY,RZ";R(1),R(2),R(3)
: INPUT "HOW MANY MOVES';M
15¢ R(1)=R(1)*p1/18¢
: R(2)=R(2)*P1/184
: R(3)=R(3)*PI/18¢
Delete lines 22(¢-37¢
192 FOR Q=1 TO 7
194 READ Y,Z,N
195 A(X,NY)=Nl
: A(X,NZ)=N2
206 N1=A(X,Y)
: N2=A(X,Zz)
: T=R(N)
21¢ GOSUB 1¢¢@
212 NEXT Q
213 RESTORE
¢ NY=Y
: NZ=2Z
215 GOTO 39¢
2@8¢ INPUT "WHICH --'";Q
: IF Q<1 OR Q6 THEN 20¢¢
53@@ DATA 1,2,3,4,5,3,1,3,2,4,6,2,3,2,1,6,5,1,0,0,1

Chris Petit
Rt. 3 135 Davis Drive
Luling, LA 70070
Thanks to Mark Granger’s 3-D Color Graphics program,
| realized one could save any graphic picture to tape
by knowing the starting and ending memory locations.
:Everything went well with the command CSAVEM
FILENAME”,1536,7679,0 for PMODES 3 and 4 (4 graphic
pages), but after purchasing the Color Computer disk drive,

the command SAVEM “FILENAME",1536,7679,0 seemed
to work until trying to retrieve the picture. After many 1/O
errors, | decided to look through some old issues of
Microcomputer News, and | ran across the article “Answers
to Interesting Questions” (March 1982). It provided the clues|
needed to come up with SAVEM “FILENAME",3584,9727 0.
These numbers work in PMODE 3 and 4 without changing
the RAM structure after power up. I've also tried Hex num-
bers but retrieval of the picture seems to go slower. To retrieve
the picture simply type or include in your BASIC program
CLOADM"FILENAME” or LOADM“FILENAME".

Stunt Racer

Steve Rapp, Jr.
150 Dogwood Land
Bloomfield, Indiana 47424

Here is a hall of fame for high scorers addition
to the “Stunt Racer” program written by Y. Maksik. (The
REM statements could be taken out to conserve
memory.)

55 IF A<25 OR A>1¢¢@ THEN 5¢

Add to line 280 :GOTO 50000
5@@@¢ IF SC+S1<375 THEN END '375 COULD BE CHANGED TO
A HIGHER OR LOWER NUMBER
5¢@@1 PRINT
: PRINT "YOU QUALIFY FOR"
5¢@@2 PRINT "THE STUNT RACER"
: PRINT "HALL OF FAME"
: PRINT"**********"
5¢@@3 PRINT
: PRINT "ENTER YOUR INITIALS BELOW.'
5¢0@4 CS=INKEYS
: IF C$="" THEN 5¢¢@g4
50@@5 DS$=INKEYS
: IF D$=""" THEN 5@¢@5
5¢@@6 ES$=INKEYS
: IF E$="" THEN 50¢@6
5¢8¢7 CLS
: PRINT
5¢@¢8 PRINT "STUNT RACER *HALL OF FAME%"
: REM BY STEVE RAPP, JR.
5@@@9 PRINT "#&kkickddkiikdk
: REM COULD USE STRINGS
5¢@#1¢ PRINT
: PRINT
5¢@11 N$=CS+DS+ES
5¢@12 PRINT " WANG e ":8C+S1
In lines 50013-50020 you can put your own permanent
high scores using “PRINT” statements. Note: This score is
non-permanent.

5@@5@ PRINT@ 979, "PLAY AGAIN?";
5¢@52 I$=INKEY$
: IF I$="" THEN 50@52
5¢¢53 IF I$="Y" THEN RUN ELSE STOP
For people who want a challenge, delete line 90 and
RUN it. Type a ‘1’ for length of obstacles.

MARCH 1982

Relocating Machine Language Programs
Michael J. Brady
864 Carr Ave.
Santa Rosa, CA 95404

I recently made use of your March 1982 article regarding
the moving of tape programs to disk. | successfully moved
tape SCRIPSIT (Ver.1.0) using the information in the article,
but could not get it to execute. The only way | could get it to
work was to use the following procedure (this process works
best with TRSDOS 2.3):

TRS-80 Microcomputer News, October 1983 43

1) LOAD SCRIPS/CMD (DO NOT execute!)

2) Get into Level II (BREAK)-RESET from 2.7 or
BASIC2 from 2.3) _

3) POKE 14308,0 (To set the cassette portto 1. | use the
El ports)

4) SYSTEM and at the *?/38608 (the decimal equivalent

of the move-up routing’s address)

If there is some text in the buffer, | have been successful
with RESETing out of SCRIPSIT to do something like chang-
ing character sets, then restarting with a SYSTEM and /.
Randall J. Britto
4209 Sherwood Ave.

Decatur, GA 30035

The article about relocating machine language pro-
grams was a life saver. In the article you said that “. . . if all
these procedures outlined are followed exactly, there
shouldn’t be any trouble.” And you were right with Scripsit
and several of the others, uritil | got to EDTASM (Series).

With this one | had problems. | used a utility program that
told me the loading, entry, and ending addresses of a ma-
chine language tape. | found that my EDTASM (Series 1)
started at address 4646 not the 4AEE as stated. Using ad-
dress 4646, it loaded the first time.

If there are others that can’t seem to get it to work, you
might want to try that value for S1 and S2.

Just ari added note for LDOS users. None of these
relocations seem to work with LDOS yet (gives us something
to work on).

APRIL 1982

Perpetual Calendar

A. Arnold Weiss
Apt. 1626 Kennedy House
1901 J. F. Kennedy Bivd.
Philadelphia, PA 19103

The Perpetual Calendar program has a bug. If run as
printed, you get an "OD” error in line 1340. This can be
corrected by changing the “HDT$" in line 1345 to “HOL$".
The following changes also help clean up the program:

In line 190, change *9999” to "“10000”

In line 9999, change “STOP” to “RETURN”

Add the following lines.

5 PCLEARI

2041 M=h/10

: IF M=FIX(M) THEN K=1 ELSE K=

242 1F K=1 THEN GOSUB 11¢¢¢

16¢¢¢ END

11¢¢¢ PRINT " Press any key to continue'

11¢1¢ RS=INKEYS$

: IF R$="" THEN 1101¢

11¢2¢ RETURN

The changes in lines 190 and 9999 prevent the program
from coming to a grinding halt. Line 10000 is just an “END"
statement. Lines 2041, 2042, 11000, 11010 and 11020 pre-
vent the Holidays from scrolling off the screen. Line 5 clears
as much memory as possible.

Ken Heberle.
116 Goodrich
Erie, PA 16508

Here are some enhancements for my Perpetual Calen-
dar program.
1) To make it run faster add the following lines:

35 POKE 65495,0
415 R$=""

The POKE instruction above will cause the program
to execute much faster, but you will not be able to use
any tape 1/O functions until you press RESET.
Change the following lines to read:

1¢8¢ IF R$="" THEN DD=@ ELSE GOSUB 13@¢
2¢8¢ IF R$="" THEN 1450

Delete line 961

2) To keep Holidays/étc. from scrolling off the screen if
you have more than 12 in a month add the following
lines:

239 HC=8
2043 $S=1
2047 HT=INSTR(SS,HOLS$(H),CHRS(13))
2048 IF HT<>@ THEN HC=HC+l

: SS=HT+1

: GOTO 2047
2049 HC=HC+1

: IF HC>12 THEN GOSUB 85¢¢
85¢¢ PRINT "PRESS ANY KEY TO CONTINUE";
851¢ R$=INKEYS

: IF R$="" THEN 8519
852() PRINT

: HC=f§

: RETURN

3) To add Daylight Savings Time add the lines below:

362 IF D1>4 THEN HX=36-D1 ELSE HX=29-Dl

3630 HOLS(HX)="BEGIN STANDARD TIME"+CHR$(13)+
" (#%% SET CLOCKS BACK #%¥)"

365@ RETURN

3982 IF MO<>4 THEN 3990

3984 HX=29-D1

3986 IF D1=6 THEN HX=3(

3988 HOLS$(HX)="BEGIN DAYLIGHT SAVINGS TIME"

#CHR$(13)+ " (#%* SET CLOCKS AHEAD #xx)"
MAY 1982
Ultra Precision Multiplication
Jack Watts

1925 Kalakaua Ave., Apt. 2703
Honolulu, Hi 96815

Use of the following modifications will enable the Ultra
Precision Multiplication program to handle many digited dec-
imal numbers. The F is a flag used to eliminate zeros before
the decimal or first non-zero number.

Note the change in line 310: DP + 1.

Line 321 retains zeros after the first non-zero digit is
printed. Without this line, zeros embedded in the middle or
end of the string would be omitted.

Line 322 eliminates zeros before the decimal or first non-
zero numeral is printed.

The changes are:

276 F=p

31¢ FOR T=DP+1 TO 1 STEP -1

32¢ IF T=(D1+D2) THEN PRINT ".'";

¢ F=1
: GOTO 330
321 IF A(T)<>§ THEN F=1
322 1IF T>=(D1+D2) AND A(T)=@ AND F=@ THEN 348

Verifying Programs and Data Files

Ben H. Nation
P.O. Box 391
Fairfield IL 62837

Line 25 of this program should be changed to read:
INPUT "ENTER LOGICAL RECORD LENGTH (LRL)";L

44 TRS-80 Microcomputer News, October 1983

JUNE 1982

Concentric Circles

Steve Havens
67 North Sable St., #15
Keeseville, NY 12944
There are mistakes in lines 70 and 90 of my program,
“Concentric Circles,” as it appeared in the June issue.
Change lines 70 and 90 to read as follows:
78 I=63+Y*(2.6667%SIN(A))
1 N=23+Y*COS(A)
9¢ NEXT A
: Y=Y~1-2
: IF Y<§ THEN 1¢i¢ ELSE 60

Graphs for the PC-2
Randy Klindt

If you enter eight items in the line graph section of this
program, after it finishes printing all eight it will draw a line
down to the bottom. The problem is in line 410. Change line
410 to read:

41¢ FOR J=1 TO I-1

JULY/AUGUST 1982

Accounts Payable (26-4505 Ver. 1.0/2.0)
Christopher G. Hardin
P. 0. Box 847
Arleta, CA 91331
The information regarding the Print Checks option (line
2410) is correct. But please be advised that Trinity Forms
Company (advertised in the back of the Accounts Payable
Manual) supplies two different formats for their Accounts
Payable checks. If you are running your Accounts Payable
program with Trinity Accounts Payable checks which have a
/2" left side ringer, the program and checks are just fine. But,
if you are using their checks that have a 3/4” left hand side
ringer, the following correction is required. Change line 2410
to read:
241¢ LPRINT L1$
: LPRINT TAB(5);NAS
: LPRINT L1$
: LPRINT L1$
: RETURN
The necessary TAB statement can be any number be-
tween 3-10, depending upon the number of characters in
your name string.

SEPTEMBER 1982

General Electric ASCIl Sequential Files

John M. Price
P. O. Box 194
White Sulphur Springs, MT 59645

In General Electric ASCIHl Sequential Files, Mr. Halloran's
method is very useful when there are many lines of data.
However, both Mr. Halloran and Michael Guerard (in an
update in the April, 1983 issue) used the MID$ statement to
separate the line number from the first datum.

| have found that it is easier to put a comma between the
line number and the first datum, when creating the data file.
Then, in the INPUT statement of the actual program, | make
the first variable a “dummy” variable. This way the line num-
. ber is assigned to the “"dummy” variable and is conveniently
out of the way.

| use a descriptive variable name called SKIP for the

“dummy” variable. This way, when I'm reviewing the pro-
gram or looking for errors, | don't forget that it is a “dummy”
variable. Also, if the INPUT statement is within a FOR loop, be
sure that you don't array the “dummy” variable and waste
memory.

By using this method, two problems are eliminated. First,
the MID$ statement is no longer needed and second, you
don't have to worry about the length of the line number.

OCTOBER 1982
Coded Message

Harris Bockover
1001 S. 27th
Fort Dodge, IA 50501

| found Peter L. Vogel's program that solved David Sni-
der’'s Hex/ASCII problem to be an excellent program. How-
ever, there is one small problem. It didn’t solve the whole
coded message. | added the following lines to Mr. Vogel's
program (and ran it on my TRS-80 Color Computer.)

155 FOR T=1 TO 8

295 NEXT T

3¢5 DATA 2¥23594F5527524520¢534D4152544552
31¢ DATA 2§5448414E20594F55204C4F4F4B212¢
32¢ DATA 205448415427532050524F4241424C59
330 DATA 2857485920594F552052454144285241
340 DATA 44494F20534841434B204D4943524F43
35¢ DATA 4F4DS@55544552204E4557534C455454
36@¢ DATA 45522E

DECEMBER 1982

Christmas Eve

Chris Petit
Route 3, 135 Davis Drive
Luling, LA 70070

| have added the following lines to Todd Day’s joystick
routine.

9¢¢@ SCREEN 1,0

: H=JOYSTK(@)*4

: V=JOYSTK(1)*3

: C=PPOINT(H+1,V+l)

: PSET(H,V,8)

: IF X1<>H OR Y1<>V THEN PSET(X1,Y1,C)

: X1=H

 YI=V
9¢1@¢ P=PEEK(6528()

: IF P=126 OR P=254 THEN 9¢2¢ ELSE 9¢¢¢
9@2¢ IF X=H AND Y=V THEN 9¢¢¢ ELSE Zl=Z1+l
9¢3¢ IF Z1=2 THEN LPRINT #-2,X;Y,H;V

: PRINT X;Y,H;V

: STOP
9040 X=H

Y=V

: GOTO 9¢¢¢

These changes allow a single dot to be displayed and
moved around until just the right coordinates are found. To
save the first set simply push the fire button, then move the
dot to the second location and do the same. Both sets of |
coordinates will be printed on the screen and on the printer.
(Optional—to delete this option, remove “PRINT#-2"
inline 9030.) | putin the printer option since some of the lines,
when editing, cause the coordinates to scroll off the screen
before you can use them. The extra SCREEN command in
line 9000 allows you to RUN 9000 again for a quick second
set of numbers.

TRS-80 Microcomputer News, October 1983 45

JANUARY 1983

Non-Reset of the Random Number Generator
David A. Levine

Hda. Zotoluca #404

Echegaray, Edo. de Mex. 53300

Mexico

This program doesn’t work on my 16K Extended BASIC
Color Computer. It just takes out the first number of a se-
guence, but the others are exactly the same. It seems to work
by adding the following to the program:

XXX A$=INKEY$
: ZZ=RND(TIMER)
: IF AS$="" THEN XXX

(where XXX is the line number)
You can also enter the following as a direct statement,
FOR X=1 TO RND(TIMER):ZZ=RND(TIMER):NEXT

If this command takes too much time, you can
it and then CLOAD or type in your program.

Day of the Week or Monthly Calendar

David A. Levine

Hda. Zotoluca #404

Echegary, Edo. de Mex. 53300
Mexico

The Day of the Week or Monthly Calendar program
didn’t find the correct day of the week on which | was born. |
discovered that line 430 must be deleted.

John Barach
Box 99
Sexsmith, AB
TOH 3C0 Canada

After reading George Quellhorst’s program, | made the
following addition to determine the elusive date of Easter
Sunday. Except for the formula in line 550, it is just a simple
addition.

7 REM EASTER ADDITION BY JOHN BARACH

225 GOSUB 55¢

55¢ F=1+Y-((INT(Y/19))*19)

555 G=475

56¢ IF F=1 AND M=4 GOSUB 760
: PRINT@ G,"14TH";

57¢ IF F=2 AND M=3 GOSUB 76@
: PRINT@ G,"3RD";

58 1IF F=3 AND M=3 GOSUB 760
: PRINT@ G,"23RD";

59¢ IF F=4 AND M=4 GOSUB 760
: PRINT@ G,"11TH";

6@¢ 1IF F=5 AND M=3 GOSUB 760
: PRINT@ G,"31ST";

61¢ 1IF F=6 AND M=4 GOSUB 760
: PRINT@ G,"18TH";

620 IF F=7 AND M=4 GOSUB 760
: PRINT@ G,"8TH";

63¢ 1IF F=8 AND M=3 GOSUB 760
: PRINT@ G,"28TH";

64@ IF F=9 AND M=4 GOSUB 760
: PRINT@ G,"16TH";

65¢ IF F=1¢ AND M=4 GOSUB 760
: PRINT@ G,"5TH";

66§ IF F=11 AND M=3 GOSUB 76
: PRINT@ G,"25TH";

67¢ IF F=12 AND M=4 GOSUB 760
: PRINT@ G,"13TH";

68¢ IF F=13 AND M=4 GOSUB 76§
: PRINT@ G,"2ND";

69¢ IF F=14 AND M=3 GOSUB 760
: PRINT@ G,'22ND";

7¢¢ IF F=15 AND M=4 GOSUB 76{
: PRINT@ G,"1¢TH";

71¢ IF F=16 AND M=3 GOSUB 760
: PRINT@ G,"3@TH";
72¢ IF F=17 AND M=4 GOSUB 768
: PRINT@ G,"17TH";
73¢ IF F=18 AND M=4 GOSUB 76
: PRINT@ G,"7TH";
74¢ 1IF F=19 AND M=3 GOSUB 760
: PRINT@ G,'"27TH";
75¢ RETURN
76 PRINT@ 457 ,"EASTER--SUN AFTER";
: RETURN
Also, by adding the following line you can switch directly
from Day of the Week to a calendar of that month.
535 1IF P$="K" THEN D=1
: GOSUB 3¢
: GOTO 194

FEBRUARY 1983

Variable Swapping
G. Kinum
P. O. Box 2033
Glendora, CA 91740

| would like to submit an improved version of the Variable
Swapping Program by Steven Kaiser and a programming tip
for other novice programmers like myself. The variable swap
routine is mostly used in ‘SORT’ routines. Using one less
variable for the swap would be helpful, and less confusing,
especially if data in two or three columns must be swapped in
unison. Given ‘A’ and ‘B’ as the variables to be swapped, the
simpler method is:

1¢ c=A

20 A=B

3@ B=C

The variables are now swapped. In my programs | keep
the swap to one line, and use one line for each column to be
simultaneously swapped, i.e.:

4@ C=A : A=B :B=C

56 C$=AS$: AS$=B$: B$=C$

Leon Bryant
1005 Johnson St.
High Point, NC 27262
To conserve memory space make the following
changes:
Delete line 30 and change line 40 to A=B.

Labels and Renumbering an the PC-2

Bernard Clark
25151 Brookpark Rd., Apt. 1108
North Olmsted, OH 44070

The renumbering program by Fabio Marzocca works
great—when the PC-2 is not supporting additional memory.
If the program is executed on a PC-2 equipped with either a
4K or 8K RAM module, the renumbering program will not
perform its task and may cause the PC-2 to "act” weird
and possibly “lock up” (this happened to me on one such
occasion).

The installation of the RAM module will not only change
the number of program steps available but will also change
the starting address of the program and the ending address
of the variable storage area.

The program will work nonetheless with only one change
as outlined below. Although this has been tried on a PC-2 with
an 8K RAM module, the same approach ought to work with
the 4K RAM module as well.

46 TRS-80 Microcomputer News, October 1983

1. lf there is any program currently in memory, save it to
cassette so there is no program in memory. Type in
(NDEMWCD) to clear memory.

2. Find the program memory starting address by typing
COMACOERICOOIENTER). Keep arecord of
this address for future reference.

3. Load the program to be renumbered as well as the
renumbering program itself.

4. On line 60000 of the renumbering program, replace
the 16581 with the figure from step 2. This will provide
the start point for the renumbering program to act
upon.

The above steps ought to make it possible to use the

renumbering program with any ROM module installed in the
PC-2.

Periods to Commas in Data Statements

W. R. Ham, Jr.
3007 Sansom Court
Milton, WV 25541

Please try the following:

1 '"ROUTINE TO CHANGE PERIODS TO COMMAS. IN DATA

STATEMENTS
"ORIGINAL BY EDWARD M. ROBERTS
'TRS-8¢ MICROCOMPUTER NEWS. FEBRUARY 1983
"MODIFIED BY BILL HAM AND CHRIS GUNLOCK
'27@1 1/2 FIFTH AVE., HUNTINGTON, WV 257¢2
"LINE 4@, AS SHOWN, IS FOR DISC BASIC
"FOR NON-DISC USE

: "FOR 2=17129 TO VARPTR(Z)"
8 'L1¢-30 IS TEST. L3@-9¢ IS ROUTINE.

SAVE BEFORE RUN

~Nov W

3¢ DATA 1.2.3.4.5.6.7.8.9.1¢.11.12.13.14.15
4@ FOR Z=PEEK(16548)+256%PEEK(16549)
TO VARPTR(Z)
5¢ IF PEEK(Z)=136 Y=z
: Z=VARPTR(Z)
: NEXT ELSE NEXT
69 FOR X=Y TO Z
7¢ IF PEEK(X)=46 POKE X, 44
8¢ NEXT
9¢ CLS
: LIST

Merge BASIC Programs on the Color Computer
Cyrus Dadgar
1018 Westridge Cir.
Lafayette, IN 47905
I'have found that, on 32K computers, this program cuts
memory down to a little more than 8K. | use the following line
changes to correct this problem:
3¢ CLEAR 20¢,32364
4¢ FOR A=32365 TO 32381
Also, change the following steps of the procedure:
Step 5. EXEC 32365
Step 8. EXEC 32376
All other steps should be followed according to
instructions.
Clifford L. Siebert
7460 Brightwood
STL, MO 63123
Here is alisting for a 32K version of the MERGE program
~sent in by George Fraser.

1¢ ' "MERGE FOR THE COLOR COMPUTER
29 ' BY G. FRASER MARCH 1982
21 ' MODIFIED FOR 32K BY C.L. SIEBERT FEB.'83

3¢ CLEAR 20¢,32747

4@ FOR A=32748 TO 32764

5¢ READ B : POKE A,B : NEXT

60 DATA 158,25,175,140,12,158,27 ,48,3¢

7¢ DATA 32,3,174,148,3,159,25,57

Also, change the following steps of the procedure:
Step 5. EXEC 32748

Step 8. EXEC 32759

MARCH 1983

Renumbering on the Models I and III

Ronald Schneider, M.D., P.C.
1030 President Avenue
Fall River, MA 02720

| thought you might be interested in knowing that under
TRSDOS BASIC there is a renumbering program called
“NAME" that not only renumbers lines but also renumbers
GOTO's and GOSUB's. | didn't discover “NAME" until after
typing in the program and trying to find the best way to add a
REMARK line and MERGE it with resident programs.

Matthew Belmonte
2120 Mariboro Drive
Alexandria, VA 22304

The renumbering program apparently does not work as
stated. | have received many letters and telephone calls, and |
have heard of only one Model III user who has been able to
get the program to run. He used the following change.

Delete NEXT Y in 63998

He got the wrong line numbers above 255. To remedy
this problem, try the following changes:

Line 83996 change A=Y/255 to A =Y/256

Line 63997 change IF Y)255 THEN Y =Y-255 to

IF Y»255 THEN Y =Y-256

I have no guarantee that these changes will work. My
apologies to Mr. Dunbrack, whose letter | did not have time to
answer.

William P. York
2885 Tanglefoot Lane, #8
Bettendorf, 10 52722

| believe that there is a bug in the Renumbering on the
Models I and III program. Attached is my program, which
takes a different approach.

65¢@¢ INPUT "NEWLINE,STARTLINE, INCREMENT";Y,S,I
: X=16548
: Z=INT(Y/256)
: Y=Y-Z*256
65¢1¢ FOR A=@ TO S
: X=PEEK(X)+256%PEEK(X+1)
: A=PEEK(X+2)+256*%PEEK(X+3)
: NEXT A
65¢28 FOR A= TO 65¢¢¢
: POKE X+2,Y
: POKE X+3,Z
: Y=Y+I+256%Z
¢ Z=INT(Y/256)
1 Y=Y-2%256
1 X=PEEK(X)+256*PEEK(X+1)
: A=PEEK(X+2)+256*%PEEK(X+3)
: NEXT A

High Res Screen Dump for the CGP-115

David Andrew Palmer
P.O. Box 814

Deep River, Ont

KO0J 1P0 Canada

There is an error in your listing of my program. Line

TRS-80 Microcomputer News, October 1983 47

11000 should be changed to read:

11¢¢¢ PRINT#-2,"J1,8"
: PRINT#-2,"R-1,0"
A deeper second density can be made by changing line
10000 to:
19¢¢¢ PRINT#-2,"J2, @, 6, -2, -2, 8, 6, 2, 2, 8, 8,
'2) ‘23 ﬁ: ¢: 2"
This will cause the plotter to form two boxes, one over the
other, for each set pixel.

Additional PMODE3 Color Set

Cameron Parker
11421 30th PI., SW
Seattle, WA 98146

| found an error in the Additional PMODE3 Color Set
program. | have also known about the color set, but lines 10
and 20 should read:

1¢ PMODE3

: SCREEN 1,1
2@ PMODE4

Music Program Pak (26-3151)

Stanley Davis
2882 Instone Ct.
Westlake Village, CA 91361

Several months ago | wrote to you about some features
that | found in the MUSIC Program Pak for the Color Com-
puter. (Published in the March issue) However, there was a
typographical error. Instead of pressing the letter “|” to insert
a note, you should press the letter "1” (for insert).

Also, in order to stop a composition to insert a note, you
press this sequence (=JHHP. The right and left arrows can be
used to advance or backspace one note at a time to the exact
spot at which you wish to make corrections.

Plotter Cassette Interface Owner’s Manual (26-3605)
Joseph J. Sokolosky

4L Quiet Stream Ct.

Timonium, MD 21093

| found one of the corrections to the documentation to be
in error.

The error concerns the insertion of a comma on the
PRINT# -1 and the INPUT# — 1 statements. The correction
as listed suggests that the comma should not be included
after the — 1 on these statements. This is not the case. If the
comma is not included after the — 1, an ERROR 1 (syntax) is
returned by the BASIC interpreter. However, if a comma is
included after the # on the INPUT# or PRINT# commands,
ERROR 21 (variable not in expression) results.

To summarize these findings, the formats for the INPUT#
and PRINT# commands are listed below:

INPUT#"filename”;variable, . . .

PRINT#"filename”;variable, . . .

INPUT# — 1,"filename”;variable . . .

PRINT# -1, “flename”;variable . . .

Engineering Math II (26-3526)

Albert I. Hardy, Jr.
118 Roberts Avenue
Haddonfield, NJ 08033
You state that the last paragraph on page 8 of this manual
should be deleted. There is no such paragraph on page 8.
(Editor’'s Note: The statement should have indicated the
last paragraph on page 5.)

APRIL 1983

The Expressive, Expeditious, Exhilarating X-Pad

Bill Mueller
Box 5
Upham, ND 58789

| enjoyed reading about the X-Pad by Paul S. Hoffman.
But seeing that the price was a little out of my range, | came
up with the following program. When the screen goes to
graphics, press to get back to the text screen.

4 CLEAR
5 CLS
: INPUT "TYPE IN NUMBER OF TIMES";A
8 DIM X(A)
9 DIM Y(A)
1¢ FOR B=1 TO A
15 CLS
: PRINT "YOU HAVE"A-B"TIMES LEFT"
2¢ INPUT "TYPE IN X AXIS";X(B)
3¢ INPUT “TYPE IN Y AXIS";Y(B)
4% NEXT B
47 DIM B(A)
5@ PMODE 4,1
6@ SCREEN 1,8
78 PCLS
8¢ FOR B=l TO A
9¢ PSET (X(B),Y(B))
1¢¢ NEXT B
11¢ A$=INKEY$
12¢ IF A$="" THEN 110¢
13¢ IF A$=CHRS$(12) THEN 4

Sieve of Eratosthenes
Kenneth R. Weiss

3700 Wilshire Boulevard
Los Angeles, CA 90010

The prime number generator program by Dan Jeuch
and Steve Hess contains two critical errors. Lines 100 and
510 should read:

168 PRINT X;

D Y=Y+1

: PM(Y)=X

: GOTO 96
519 PRINT PM(P)

In addition, the inclusion of the following line will signifi-
cantly improve the speed of the program:
65 IF PM(T)>SQR(X) THEN 1¢¢

For BASIC interpreters lacking the SQR function, raise X
tothe .5 power (xA.5). On my TRS-80 Model 11, use of this line
reduced the time to find all primes between 0 and 1800 from
8 minutes, 45 seconds to 4 minutes, 35 seconds, nearly a
50% improvement. The execution speed improvement
should increase as the program searches for larger primes.

William F. Dossett
9102 Happy Trail
Austin, TX 78754

The program "PRIME” by Jeuch and Hess will not run as
listed. The reason seems to be that the test for primeness in
line 70, on which the program is based, quickly runs into a
division by zero condition and the program crashes. The
remedy is to put a line just before the test, say at line 65 that
reads:

65 IF PM(T)=@ THEN 8¢
I've modified their program as shown below to take care ¢

of division by zero and to eliminate some surplus codes. ~
(Incidentally, line 510 of the original program has an error.)

48 TRS-80 Microcomputer News, October 1983

The test for primes, as written in their program, requires
successive division by each integer from 1 to the target
integer. Actually only the first half of this sequence of numbers
is needed. Hence, some gain in efficiency can result by using
Y/2 instead of Y, where Y is the upper limit of the testing loop
(line 60 in the original program).

1 REM #*%% <(PRIME2> **%
11 REM THE ORIGINAL PRIME PROGRAM BY
12 REM JEUCH AND HESS APPEARED IN TRS-8(
13 REM MICROCOMPUTER NEWS, APR. '83, P.38
2¢ CLS
: DEFINT A-Z
: DIM PM(1¢0¢)
30 X=9
: Y=4
4@ PM(1)=2
: PM(2)=3
: PM(3)=5
: PM(4)=7
5¢ INPUT "N=";N
60 PRINT
1¢¢ PRINT
: FOR P=1 TO Y
: PRINT PM(P);
: NEXT
110 X=X+1
: IF X=N THEN END
12¢ FOR T=1 TO Y/2
13¢ IF PM(T)=@ THEN 15¢
14¢ IF INT(X/PM(T))=X/PM(T) THEN 11¢
15¢ NEXT
160 PRINT X;
: Y=X+1
: PM(Y)=X
: GOTO 11¢

I'd like to offer an alternative approach for generating
. prime numbers. It is noticeably faster than the first program.
Note that the only arithmetic operation is addition.

1¢ REM #**% <ERASIEVED> *%%
11 REM WFD APR. 83
2¢ DEFINT A-Z
: DIM F(100¢@¢)
3¢ cLS
: INPUT "N=";N
4@ PRINT
1¢¢ FOR I=§ TO N
114 IF F(I)=1 THEN 2¢¢
12¢ P=I+I1+3
: IF P>N THEN 21¢
13¢ PRINT P;
140 K=I+P
15¢ IF K>N THEN 190
16¢ F(K)=1
17¢ K=K+P
18¢ coTo 15¢
19¢ c=c+1
20¢ NEXT I
21¢ PRINT
: PRINT
: PRINT C;'" PRIMES"

This program is a true sieve. Primes are generated di-
rectly by the sieve process. No test for primeness is made;
none is necessary. I'll leave it to the interested reader to
discern the generating principle. Analyze lines 120, 140 and
170. Look especially carefully at the embedded loop formed
by lines 150-180. Hint: F()isaflag; whenits valueis 1 thereis
a hole in the sieve. Take some small value for N, say N=15,
. calculate and trace each line of the program manually, but do
it slowly and carefully. | think you will find it illuminating and
interesting.

MAY 1983

Disk Editor Disassembler

Ashok Basargekar
1423 N. Cleveland St.
Orange, CA 92667

Please note that there is a slight error in the Disk Editor
Disassembler program. The statement IF PEEK(PI)=18 in
line number 51 should be corrected to:

IF PEEK(PI)=17

PC-2 INPUT Statements
Lloyd E. Scott
1780 Miller Rd.
Castleton, NY 12033

I would like to propose an additional syntax not given in
the PC-2 Input Statements article. | think this statement will put
a little extra “class” in PC-2 programs.

Pause “INPUTX = “;:BEEP 1:INPUT X:CLS

This syntax prints the input prompt, gives a beep and
displays the "?” when ready to accept the data input.

eg., INPUT X = (BEEP)?

The ? gets lost with the syntax input “INPUT X";X.

Disk Directory
William L. Harris
P.O. Box 143
Bourbonnais, IL 60914
Here is my Directory-To-Printer program, which is some-
what shorter than Berry Rinaldo’s Disk Directory program,
being only one line long. The program is just as effective in
the immediate mode as it is as a program.
14 POKE 111,254
: DIR
: PRINT#-2
: PRINT#-2,FREE(#)"GRANULES FREE"

The only limitation | am aware of is that the POKE and
DIR must be combined in one statement for it to work.

JUNE 1983

USA Flag for the Color Computer and MC-10

Kent Jakway
4861-CR7
Garrett, Ind. 46738

I have added a repeat feature (press “R") and a music
start feature (press “M”).

122 A$=INKEY$

124 IF AS$="M'" THEN 13¢
126 GOTO 122

172 AS$=INKEY$

174 IF AS$="R" THEN 13¢
176 GOTO 172

Document Listing for the Model 11

Dave Zimmerman
1115 Byron Avenue
Elizabeth, NH 07208

I saw two or three flaws in this program. One concerns an -
?RG Error (RETURN w/o GOSUB) in line 1152 that you can
get if you get an error other than 52 or 53 on line 20. To
remedy this, change these lines to read as follows:

2¢ ON ERROR GOTO 114¢

: ML=l
: CLOSE

: OPEN "D",2,"PROGLIST/PRT"
: ON ERROR GOTO #

TRS-80 Microcomputer News, October 1983 49

: CLOSE
: ML=
114¢ IF ERR=54 THEN RESUME NEXT ELSE GOSUB 1150
: IF ML THEN RESUME NEXT ELSE RESUME 1100
The other error concerns the indentation inside of a
FOR-NEXT loop. The indentation for the loop spaces 12
positions and at the end of the loop only brings it back five.
Another cause of strange indentation in a printed document
is that the program doesn’t recognize a multiple NEXT, as in
NEXT M,L. To fix the 5/12 space problem, change line 4188
to read:
4188 IF C=129 THEN NF=NF+5

Bargraph
Norman Moulton, Jr.
Eagle Hollow Rd.
Corinth, VT 05039

| was thoroughly impressed with the graphics display of
the program by Dennis L. Hargens. However, | would like to
suggest a better way of entering the vertical axis label. This
routine allows you to type it in all at once instead of entering it
one letter at a time and then entering ‘XX'.

First type: DEL 70-150

Then replace it with this:

7¢ PRINT@ 224,"WHAT ARE THE UNITS OF THE GRAPH?";

8¢ INPUT UNS

9¢ FOR Y=1 TO LEN(UN$)

1¢¢ UNS$(Y)=MID$(UNS,Y,1)

11¢ NEXT Y

Grid for the CGP-115
Ervin A. Madera

843 Santa Dorotea Circle
Rohnert Park, CA 94928

| tried the program as indicated (change all the LPRINTs
to PRINT# —2,) on my BASIC 16K TRS Color Computer and
the needle fairly well flew off the machine with the program as
written. The following line changes achieved what | thought
the program was designed to do.

(Editor's Note: We are listing the corrected lines with
LPRINTs in order to standardize with the original program. To
run on the Color Computer, all LPRINTs, including those
listed below, should be changed to PRINT#-2,.)

4@ PRINT#-2,"J440 0"

5¢ PRINT#-2,"R-440,-24"

1¢@ PRINT#-2,"R425,8"

: PRINT#-2,"J@,-24@"

: PRINT#-2,"H"
141 PRINT#-2,"J@,1@":PRINT#-2,"S@"
165 PRINT#-2,CHR$(17)

Variable Swapping Routine
Frank Romanelli
711 Lincon Ave.
Ridgefield Park, NJ 07660

The Variable Swapping Routine by Dennis Lee Bieber
will work on the Extended BASIC Color Computer if the
functionis changed to a single variable. Change the following

lines to read:
1¢ DEF FNX(A)=(A AND NOT B) OR (NOT A AND B)

4@ A=FNX(A)
: B=FNX(A)
: A=FNX(A)
Walt Nolan

283 38th St. Dr. SE #7
Cedar Rapids, 1A 52403

Here is a simpler routine which swaps two variables with-

out using temporaries, or having to first define a function.
1¢ INPUT A,B

20 A=A+B
: B=A-B
: A=A-B
3¢ PRINT A,B

A Tribute to Columbia

Arnold E. van Beverhoudt, Jr.
P. O. Box 56
St. Thomas, V.l. 00801

| was pleased to see my program, “A Tribute to Colum-
bia,” printed in the June 1983 issue. However, | did notice
that one line in the program listing was incomplete. Please
inform your readers that line 40070 should read as follows;

4G@7¢ IF POINT(X,Y)=-1 THEN LPRINT CHR$(18);
CHR$(28);CHR$(3);CHRS(128); ELSE LPRINT
CHRS$(18); CHR$28);CHRS$(3);CHRS$(255);

This correction should solve any problems in getting a
screen print of the graphic pictures of the Space Shulttle.

Danny Sherman
8112 S. Greenwood Ave.
Columbia, MO 62501

The program™A Tribute to Columbia” by Arnold E. van
Beverhoudt, Jr. was very nicely done, but the printed version
contained two errors. The most important mistake was in line
240. The line should be changed to read:

24¢ H$(14)=CHR$(143) + STRINGS$(3,128) + CHR$(143) +
STRINGS(2,148) + ...etc.

The last segment read STRING$(3,140) in the printed
version. The second error appeared in line 40070. The pa-
renthesis at the end of this line was not included. Once these
changes were made the program ran perfectly.

JULY 1983

Record Chess Play

Dieter W. Koch
2883 Concord Bivd.
Concord, CA 94519

Thank you for publishing my “Record Chess Play” pro-
gram. Unfortunately, five program lines have been repro-
duced with errors in them and could cause frustration in
someone frying to make the program work properly.

In line 13110 and 13240: E=15
Line 13210 must include: S=3
In line 13270: E=12

In line 13670: B=6

Stephen T. Whitney
Whitney Tobacconist
Mill Pond Shopping Center
Cos Cob, CT 06807

There are several errors in Record Chess Play by Dieter
W. Koch. The PC-2 has some unique features and the pro-
gram is a complex one so even an experienced user would
have trouble. | found the following corrections necessary.

Change lines 13110 and 13240 from E+151t0 E=15
Change line 17320 to GOSUB 37410

The routine for printing a King only prints cross-bar to ~
right. On line 13670 try: R=15, B=6, E=12, S=6.

50 TRS-80 Microcomputer News, October 1983

Invasion

Fred Truncale
10 Vista Way

... Springfield, NJ 07081

There was one small problem with Invasion. Every time
you killed a ship in the top row, you got an illegal function call
in 700. | fixed this by changing line 700 to read:

7¢¢ IF X<128+1 THEN GOTO 10¢@
PRINT@X+1-128,"

And by adding these lines to the program:

1¢@¢ PRINT@ X,'""
1616 coTo 71¢

Robert Sisco
127 S. Travis St.
Lindenhurst, NY 11757

Here are some changes for the Invasion program for the
Model 111, using the special character set which makes the
game better. The changes and additions are listed below.

Changes:

320 C$=CHRS(214)
343 A$=CHRS(234)
35¢ B$=CHR$(255)
45¢ 1F X>Y THEN PRINT@Y,CHRS$(238) ELSE 518
5¢¢ INPUT "ENTER TO PLAY AGAIN ';M
: PRINT CHR$(21)
: GOTO 110
680 PRINT@ V-64+1,C$
: PRINT@V-64+1," "
69¢ 1IF V=X THEN PRINT@X,CHR$(238) ELSE 73¢

Add the following lines.

9¢ PRINT CHR$(21)
115 PRINT CHR$(21)
455 FOR I=1 TO 8:NEXT I
: PRINT@Y,CHR$(239)
: FOR I=1 TO 8
: NEXT I
: PRINT@Y,CHR$(240)
: FOR I=1 TO 8
: NEXT I
PRINT@Y," "
695 FOR I=1 TO 8
1 NEXT I
: PRINT@X,CHR$(239)
: FOR I=1 TO 8
: NEXT I
: PRINT@X,CHR$(24¢)
: FOR I=1 TO 8
: NEXT I
PRINT@X," "

Also, to get the program to run without an FC Error inline
700, change line 700 as follows:

70¢ PRINT@X+128-1,""

I hope these changes will make the game a litlle more
interesting. It won't leave the screen messy and will make
both the alien and your ship look like they are exploding.

x|

Bar, Line and Scatter
Graphs for the Model 111

A. F. Bell

680 Kirkwood Dr.
Sudbury, Ont P3E 1X3
Canada

This program is written in BASICG for a TRS-80 Model 111
with a High Resolution Graphics Board in place. With it a user
can get hard copies of Bar, Line, or Scatter graphs. Up to
three sets of data can be graphed.

The program is broken into blocks :

Lines 100-180 initialize the program and allow choice of
graph. XL and XW set the left side of the graph (the place of
the Y axis) and the width of the graph respectively. YT and YH
set the top of the graph and its height. These are the only two
variables which need to be changed if graphs of different size
or location are preferred. XG and YG set the gradations on
the Xand 'Y axes, and XD and YD are the resulting distances
between the gradations.

Lines 200-290 allow input of the parameters for the
graph. Lines 200-210 allow input of titles and center them. TG
is the flag for the type of graph, and if TG =1 (signifying a bar
graph) then lines 225 and 230 set the X axis gradations. In
lines 280 and 285, XF! and YF! are the factors with which the
coordinates are calculated.

After all that fuss, lines 300-345 suffice to allow input of
the raw values of the coordinates. Once this is finished in fine
340, the screen is cleared and converted to graphics mode.

Lines 400-490 draw the axes, their titles, and their grada-
tions. If the graph is a bar graph using names along the X
axis, then line 450 prints out the names. If necessary lines
475-490 identify the point, line, or graphic block belonging to
each set of data using subroutines 2100, 2200, or 2300.

Lines 500-525 together with subroutines 1100, 1200,
and 1300 are enough to add the points, lines, or blocks for
each set of data. Line 515 is required to provide a start for
the lines.

Lines 600-620 allow a choice between ending the pro-
gram, repeating the options, or printing out the graph.

1¢¢ 'BLSGRAPH/GRA 1¢/07/83

1¢5 'Written in Model 3 Disk BASICG using about 6.5K by

11¢ 'Dr AFJ Bell, 68§ Kirkwood Dr,Sudbury,Ontario P3E 1X3

115 CLS

: PRINT@ 348,"Initializing...";

12¢ CLEAR 500

: DEFINT A-Z

: SCREEN 1

: CLR
125 XL=60

T XW=560

: XR=XL+XW

: XG=1¢

: XD=XW/XG
13¢ YT=16

: YH=200

: YB=YT+YH

: YG=1¢

¢ YD=YH/YG
135 DIM PT!(3,58,2),MV(2),C$(2),P$(3),L(3),

T$(3),N$(3),NP(3),XN$(31)
14@ IDS$="Invalid data"

:Cs(L)=" x =
D C3(2)=" ¥ ="
145 P$(1)="4"
: P§(2)="-"
: P§(3)="n

TRS-80 Microcomputer News, October 1983 51

15¢ L(1)=&HFFFF 43¢ GLOCATE(XL+IMT,5),8

: L(2)=&H8888 : PRINT#-3,MT$ 'Prints titles & axes
: L(3)=3855 45 LINE (XL,YT)-(XL,YB)
155 T$(1)="D" : LINE -(XR,YB)
: T$(2)=CHRS$(&HS5) +CHRS(&HAA) 41¢ FOR L=YG TO § STEP-1 'Numbers Y Axis
¢ T$(3)="z" 415 LINE(XL,YT+L*YD)~-(XL+2,YT+L*YD)
16¢ PRINT@ 344,"Graphs available"; 42 NY=(YG-L)*MV(2)/YG
: PRINT@ 472,"A Bar Graph'; 425 TIF NY>99 THEN PX=5§ ELSE IF NY>9
165 PRINT@ 536,"B Line Graph"; THEN PX=4¢ ELSE PX=3{
: PRINTG@ 6¢¢,"C Scatter Graph'; 43p GLOCATE(XL-PX,L*YD+8),0
17¢ PRINT@ 728,"What is your choice (A, B, or C) ?"; : PRINT#-3,NY
: GOSUB 1¢¢¢ 435 NEXT
175 CLS : GLOCATE(@,YB-IYT),3
: TG=ASC(AS)-64 : PRINT#-3,YT$
18¢ 44@ FOR L=@ TO XG 'Numbers X Axis
203 INPUT"MAIN TITLE";MTS$ 445 LINE(XL+L*XD,YB)-(XL+L*XD,YB-2)
: LMT=LEN(MT$) 45¢ IF XA=2GLOCATE (XL+L*XD,¥B+3),8
IMT=(XW-LMT*1¢)/2 : PRINT#-3,XN$(L+1)
205 INPUT"X Axis Title';XT$: GOTQ 479
: LXT=LEN(XT$) 455 NX=L*MV(1)/XG
IXT=(XW-LXT*16)/2 46 IF NX>99 THEN PX=4@ ELSE IF NX>9
21¢ INPUT"Y Axis Title";YT$ THEN PX=45 ELSE PX=50
: LYT=LEN(YT$) 465 GLOCATE(PX+L*XD,YB+3),0
IYT=(YH-LYT*8)/2 : PRINT#-3,NX
215 INPUT "How many sets of data (1-3)";NS 47@¢ NEXT
IH=648/(NS+1) : GLOCATE(XL+IXT,YB+12),0
22¢ IF NS<I OR NS>3 THEN PRINT ID$: PRINT#-3,XT$
’ GOTO 215 : IF NS=1 GOTO 5@
225 IF TG>1 GOTO 255 ELSE INPUT 475 FOR L=1 TO NS 'Identifies data sets
"How many bars in each set ";XG 48@ XH=L*IH
: IF NS*XG>3¢ THEN PRINT ID$: GLOCATE(XH-48,YB+21),0
: GOTO 215 : PRINT#-3,N$(L)
: ELSE XD=XW/XG 485 ON TG GOSUB 21¢¢ ,2206 ,230¢
BW=XD/(NS+.5) 49¢ NEXT
FOR L=1 TO NS : XA=§
NP(L)=XG 495
: NEXT 5¢@ FOR J=1 TO NS 'Plots points
23¢ PRINT "X axis divided by number(A) or name(B)?" 5¢5 FOR K=1 TO NP(J)
GOSUB 1@¢¢ 51¢ X=XL+PT!(J,K,1)*XF!
IF A$="C" GOTO 23@ ELSE XA=ASC(A$)-64 : Y=YB-PT!(J,K,2)*YF!
CLS 515 IF TG=2 AND K=1 THEN CIRCLE(X,Y),1,0
IF XA=2 THEN LN=(XW/1$)/XG-1 ELSE GOTO 255 : GOTO 525
235 FOR L=1 TO XG 52 ON TG GOSUB 11¢¢ ,12¢0¢ ,13¢¢
24% PRINT "Name of group ";L;" (<'";LN;'chars)"; 525 NEXT K,J
INPUT XNS$(L) 53¢ :
245 IF LEN(XN$(L))>LN PRINT ID$ 63@ AS=INKEYS
GOTO 248 635 IF A$="" OR (A$<O"E" AND A$O'P" AND AS<OMR") GOTO 64¢
25¢ NEXT 61@ IF AS$="E" THEN CLS
PRINT : END
255 FOR L=l TO NS 615 IF A$="R" THEN CLR
260 PRINT '"Name of set';L; : CLS
INPUT N$(L) : GOTO l6¢
IF TG=1 GOTO 275 62 LPRINT CHR$(27) CHR$(14)
265 INPUT"How many points in set (1-5@) ";NP(L) : CMD"I","GPRINT"
27¢ IF NP(L)<1 OR NB(L)>5@ THEN PRINT ID$ 625 :
GOTO 265 10¢@¥ AS$=INKEYS
275 NEXT : IF AS="" OR AS<"A" OR AS$>"C" GOTO 100¢
¢ PRINT 1¢1¢ PRINT A$S
IF XA=2 MV(1)=10d¢ : RETURN
: XF!=XW/Mv(l) 1¢92¢ :
GOTO 285 11¢¢ X=X+(J-1)*BW
28¢ INPUT"Maximum value of X '";MV(l) : XE=X+BW 'Draws bars
: XF!=XW/MV(1) 111¢ LINE(X,Y)-(XE,YB),1,B
285 INPUT"Maximum value of Y ';MV(2) 112¢ IF YB-Y<l THEN RETURN
: YF!=YH/MV(2) 113¢ PAINT(X+1,Y+1),T$(J),1
PRINT : RETURN
290 : 1149
3¢@¢ FOR J=1 TO NS 'Inputs coordinates 120¢ LINE-(X,Y),1,,L(J)
3¢5 PRINT "Please enter coordinates for set ";J : RETURN 'Draws lines
31¢ FOR K=1 TO NP(J) 1219 :
315 FOR L=1 TO 2 13¢¢ GLOCATE(X,Y),P
32¢ IF L=1 AND TG=1 PT!(J,K,1)=(K-1)*MV(1)/XG : PRINT#-3,PS$(J)
GOTO 335 : RETURN 'Plots points
325 PRINT "Value for point';K;C$(L); 131¢ :
INPUT V! 2190 LINE(XH+40 ,YB+20)-(XH+8¢,YB+28),1,B
33¢ IF VI>=@ AND V!<=MV(L) THEN PT!(J,K,L)=V! 211¢ PAINT(XH+41,YB+21),T$(L),1
ELSE PRINT ID$: RETURN
GOTO 325 2129
335 NEXT L 22(3@ LINE(XH+40 ,YB+23)-(XH+80,YB+23),1,,L(L)
: PRINT : RETURN
34@ NEXT K,J 2219
CLS 23¢¢ GLOCATE(XH+4¥,YB+21),0
SCREEN @ : PRINT#-3,PS(L)
345 : RETURN

52 TRS-80 Microcomputer News, October 1983

Peripherals

By Linda Miller

The firsttime that | saw the terrific color printouts created
by an ink jet printer, | wondered when an affordable
Radio Shack version would be available for TRS-80 comput-
ers. Such a printer now exists in the CGP-220 Ink Jet Printer
(Catalog number 26-1268, suggested retail price $699.00).

~ THE CGP-220 IS COLORFUL!

There are seven colors available (red, yellow, blue,
green, cyan, magenta, and black). Ink is neatly contained in
two up-to-four million character ink cartridges, one black and
the other tricolor. There's no mess in handling the cartridges.
They're easily removed and installed.

The CGP-220 uses the YMC method to produce different
color combinations. With this method, the colors Yellow, Ma-
genta, and Cyan are mixed in different combinations to
produce other colors.

Although the Color Computer uses a RGB method for

- mixing colors, it is possible to print graphic displays from a

color monitor because the CGP-220 is equipped with built-in
software that allows conversion from the RGB method to the
YMC method.

- The CGP-220 Ink Jet Printer

TECHNOLOGY, SPEED AND PAPER

The technologically advanced CGP-220 uses a drop-on-
demand ink jet system and a piezoelectric-type print head. It
has a one line print buffer, a printing speed of thirty-seven
characters per second, bi-directional line scanning, and uses
either plain single sheet paper or an 81/2" by 135’ paper roll.

SERIAL AND PARALLEL INTERFACING

The CGP-220 has both a serial and an eight bit parallel
interface. It can be connected to a standard TRS-80 parallel
port or a Color Computer serial port.

MORE FEATURES

The CGP-220 is a very versatile printer with many fea-
tures including variable line feeds, elongated characters, dot
pitch selection, and print head positioning.

With variable line feed capability, the distance of a line
feed can be changed from 1/6” (normal) to /8" (three quar-
ter). The following program and sample printout illustrate the
difference between the normal and three quarter line feeds.
(For TRS-80s other than the Color Computer, change the
“PRINT#-2," to “LPRINT"” in all the program lines.) In line 30
CHR$(27); CHR$(56) changes the line feed from */s" to 1/s".
CHR$(27); CHR$(54) in line 50 resets the line feed back to
normal again.

The distance between the first line and the second line of
the printout is the result of the /6" line feed while the distance
between the second and third line is the result of the /8" line
feed.

PRINT#-2, CHR$(27);CHR$(14) switches to printing
elongated characters.

RN TELD

.= F s P oI RS

H 5 - "B e e E3 ~3
= i = i € s T €
B B == £ OS3 33 Fe 3

i1
il
i

PRINT#-2, CHR$(27),CHR$(15) switches back to nor-
mal characters.

Characters are usually set in a ratio of 4:3 meaning the
characters are slightly taller (4) than they are wide (3). It is
possible with the CGP-220 to print characters in a 1:1 ratio
where they are as wide as they are tall. PRINT#-2,
CHR$(27);CHR$(78) or PRINT#-2, CHR$(27);"N” changes
the ratio to 1:1. “N" is the alternate instruction for CHR$(78).

1 RATIO
E

4:3 RATIG

TRS-80 Microcomputer News, October 1983 53

PRINT#-2, CHR$(27);CHR$(80); or PRINT#-2,
CHR$(27);"P” switches back to the 4:3 ratio setting.

The CGP-220 print head can be positioned in any of 640
dot columns in each of the three print modes (Text, Bit Image,
and Color Scan) with a BASIC statement like the following.

FRINT#-2.0

S LrRE

CHR$(27);CHR$(16) first tells the printer to get ready to

position the print head. CHR$(n1) will indicate a range on the
line. Each line is divided into three ranges. The firstrange is 0,
1 is the second range and 2 is the third range. The "n2” in
CHR$(n2) indicates the dot position within range 0,1, or 2.
Table 1 indicates the possible values of n1 and n2.

If you wish to ni (range) n2 must be

specify dot column must be

0 -255 0 0-255

256 - 511 1 0- 255

512 - 640 2 0-129
Table 1.

PRINTING CHARACTERS MULTIPLE TIMES

A character can be printed repeatedly up to 256 times.
PRINT#-2, CHR$(28);CHR$(n1);CHR$(n2) tells the printer
that the character whose ASCII code is “n2” will be printed
“n1” times. The character to be printed enclosed in quotes
could be substituted for CHR$(n2) as in the following exam-
ple where the asterisk (*) would be printed five times.

[]

COLOR SELECTION

Colors can be selected from the seven available colors
and white which is non-printing.

o
i

CHR$(27);CHR$(84); says “l want a new color.” “n” is
the number for the selected color.

If you want to use color n must be
Black 48
Red 49
Green 50
Yellow 51
Blue 52
Magenta 53
Violet 54
White (not printing) 55

Table 2.

THREE PRINTER MODES

The CGP-220 has three separate printer modes: Text, Bit
Image and Color Scan.

The text mode is the default mode of the CGP-220 and is
used for printing documents, letters, etc. The characters are
formed in a 5 x 7 dot matrix and may be printed in any of the
seven available colors. The CGP-220 has a full 128 character
ASCII character set including upper and lower case, num-
bers, punctuation, European symbols, and other special
characters.

The graphic capabilities of the CGP-220 are most im-
pressive in the Bit Image and Color Scan modes. Both have
bit addressable graphics with up to 640 dots per line of high
resolution printing. In these modes all positioning and action ¢
of the print head is done through software. There are no pre-
defined characters.

BIT IMAGE MODE

Up to 640 dots across by 7 dots vertically can be
addressed in each line in the Bit Image mode. That's 640
dot columns and seven vertical dots in each dot column
(640x7 = 4480). That's a lot of dots in a single line!

Consider this short BASIC program.

CHR$(18) in line 10 puts the printer in the Bit Image
mode. CHR$(27);CHR$(16) tells the printer to get ready to
position the printhead. CHR$(0) indicates the first range (0) of
the line, and CHR$(100) indicates the one hundredth column
position in range 0. CHR$(255) causes all seven dots in the
dot column to be printed. How did CHR$(255) do that?
Consider the chart below.

Dot position Dot # Number used to
in column value print the dot

1 1 129

2 2 130

3 4 132

4 8 136

5 16 144

6 32 160

7 64 192

Table 3.

To print a dot at position 5 in the column, substitute
CHR$(144) for CHR$(255) in line 10. From the chart it's easy
to see how each single dot can be printed simply by using its
number, but the question of how to print more than one dot in
asingle column still remains. This is where the numbers in the
Dot# value column come in handy. To printdots 1, 5, 6, and 7
in the column, the dot # values of the dots to be printed
are added together (1+16+32+64=113). The result
(113) is added to the number 128 which results in 241. By
substituting 241 for 255 in line 20, dots 1, 5, 6, and 7 are
printed. CHR$(255) caused ali seven of the dots in the vertical
column to be printed because 255 is the sum of all the Dot #
values (1+2+4+8+16+32+64=127) plus 128
(127 + 128 =255).

Elongation and dot pitch selection as well as color are
available in the Bit Image Mode.

THE COLOR SCAN MODE

The Color Scan Mode allows for greater manipulation of
colors and even greater detail in graphics creation. Unlike the
Bit Image mode which addressed vertical columns of seven
dots, the Color Scan mode addresses horizontal rows of
eight dots with up to 80 dot rows for 640 dots across the line.

PRINT#-2,CHR$(27);CHR$(67) puts the CGP-220 in the
Color Scan mode. Next CHR$(n) is sent to the printer to
indicate an “n” number of eight dot rows to be printed out of a
possible eighty. The dots in each eight dot row are numbered

54 TRS-80 Microcomputer News, October 1983

in dot positions from right to left with the dot # values shown in
the chart below.

Dot column # 8|7[6[5]14[312]1
Dot # value 128|64]132|16(8 14 |2 | 1
Table 4.

In a manner similar to the Bitmage mode, specific dots
or combinations of dots are printed by their corresponding
number or sum of corresponding numbers. To print the dots
in columns 7, 5, 4, 2, and 1, the sum arrived at would be
64+16+8+2+10r91. Unlike the BitImage mode, no other
number is added to the sum.

All the colors (black, red, green, yellow, blue, magenta,
violet, and white) are available in the Color Scan mode. Each
dot in every eight dot row may be printed in a specific color.

After entering the Color Scan mode (line 10 below) the
number of dot rows to be printed is sent to the printer (line 20),
followed by the red data + green data + blue data (lines 30 -

50).

i@ CLHRESOET s, CEHTER COLOR SCAN MODE
2B OPRIN "HUMERER OF 3
30 "RED DATA - (3

CHES(O1Z2 0 DHREO 128 GHLY IH EACH OF THE
THREE ROWS

"GREEM DRTH - 0L §
ONLY IN EACH OF THE
THREE ROUS

"ELUE DHATA - COL
ONLY IH ERCH OF THE
THREE ROME

Line 30 contains the red data. The three CHR$(128)s
indicate that the left most dots (column 8) will be printed in red

48 PRINTH-Z. CHRECIG G CHREC 16
CHREC 162,

S8 PRINTH-Z.CHREC1 D CHRECL).
CHR$C 1

- R

—
EEE ERE

ink in each of the three rows of eight dots. The three
CHR$(16)s in line 40 mean that fourth dot from the left (col-
umn 4) in each of the three rows of eight dots will be printed in
green ink. The three CHR$(1)s inline 50 indicate that the right
most dot (column 1) in each of the three rows will be printed in
blue ink. Where no color is indicated, the dots will be printed
in black ink. Dots that have color data indicated for all three of
the colors will be non printed or white.

The colors yellow, magenta, and violet are formed by
mixing colors.

Red + Green = Yellow
Red + Blue = Magenta
Green + Blue = Violet

, Table 5.

Change lines 30, 40, and 50 in the program above to
read like the ones below.

30 PREINTH-2 CHRECLISS G CHRSO LSS CHRESC L3S,

40 PRINTH-Z §051 0 CHREOS]) CHRES(ST

58 PRINTE-Z.CHRECEH) CHRFC 8D CHRFoEd

Table 6 graphically illustrates the dots to be printed and
the color data with which they will be printed.

Coumn# | 8|7]|6[5|[4[3|2]| 1] Dot Total
Red data 128| 64 21 195
Green data 32|16 2|1 51
Blue Data 32|16| 8 | 4 60

Table 6.

Dots 128 and 64 are only used for red data so they will
printred. Dots 32 and 16 are used for green and blue data so
they will print violet. Dots 8 and 4 are used for blue data only
so they will print blue, and dots 2 and 1 are used for both red
and green data so they will print yellow.

ANNUAL SALES RESULTS

Graphic pictures can be created in meticulous detail
using the Color Scan mode.

COLOR COMPUTER SCREEN DUMP

With a 16K Color Computer, there is a faster (and sim-
pler) way to get a color printout. The Color Computer Screen
Dump program can be used to reproduce the four color
graphic printouts which appear on the Color Computer
screen on the CGP-220. At this writing the Color Computer
Screen Dump program is not available due to changes that
are being made in the program. It will be available at some
future date.

TRS-80 Microcomputer News, October 1983 55

With Micro Painter (26-3077) pictures can be created on
the screen and dumped to tape After loading the screen
dump program into memory using the instructions in the
manual, the picture tape created using Micro Painter can be
loaded with a CLOADM and checked using the BASIC pro-
gram below

Lé PLEAF ¢

6 PHODE 4.1

2 SCREEN 1.1

Once the picture has been verfied. (BRE AK) the pro-
gram, press the (=), and (G, (W) or (B (for a green, white,
or black background color). The screen will begin dumping
to the CGP-220.

Radio fhaek [...
U.S. POSTAGE
PAID
TRS-80 Microcomputer News Radic Shack
PO. Box 2910 A Div. of Tandy Corp.
Fort Worth, Texas 76113-2910

ADDRESS CHANGE
[l Remove from list [Change as shown
Please detach address label and mail to address shown above

THIS ONE'S GOT IT ALL

The CGP-220 has so much - a large ASCII character set,
three printer modes including tremendous grahics capabili-
ties, color, and many other features. All totaled up the
CGP-220 is a unique, affordable, and very useful printer‘

'I.’:.l‘llll‘
":':.";::- .
wt

¥
-

kL
Yar

	Binder3.pdf
	_0613132153_001.pdf
	_0613132201_001.pdf
	_0613132206_001.pdf
	_0613132216_001.pdf
	_0613132222_001.pdf
	_0613132234_001.pdf
	_0613132240_001.pdf
	_0613132306_001.pdf
	_0613132313_001.pdf
	_0613132324_001.pdf
	_0613132331_001.pdf
	_0613132339_001.pdf
	_0613132344_001.pdf
	_0613132352_001.pdf
	_0613132400_001.pdf
	_0613132407_001.pdf
	_0613132412_001.pdf
	_0613132420_001.pdf
	_0613132428_001.pdf
	_0613132433_001.pdf
	_0613132509_001.pdf
	_0613132518_001.pdf
	_0613132524_001.pdf
	_0613132533_001.pdf
	_0613132538_001.pdf
	_0613132547_001.pdf
	_0613132553_001.pdf
	_0613132601_001.pdf
	_0613132606_001.pdf
	_0613132618_001.pdf
	_0613132622_001.pdf
	_0613132631_001.pdf
	_0613132638_001.pdf
	_0613132645_001.pdf
	_0613132650_001.pdf
	_0613132700_001.pdf
	_0613132707_001.pdf
	_0613132715_001.pdf
	_0613132720_001.pdf
	_0613132730_001.pdf
	_0613132735_001.pdf
	_0613132743_001.pdf
	_0613132749_001.pdf
	_0613132757_001.pdf
	_0613132803_001.pdf
	_0613132810_001.pdf
	_0613132817_001.pdf
	_0613132825_001.pdf
	_0613132831_001.pdf
	_0613132838_001.pdf
	_0613132845_001.pdf
	_0613132854_001.pdf
	_0613132859_001.pdf
	_0613132908_001.pdf
	_0613132914_001.pdf
	_0613132923_001.pdf
	_0613132928_001.pdf
	_0613132936_001.pdf
	_0613132941_001.pdf
	_0613132950_001.pdf
	_0613132954_001.pdf
	_0613133002_001.pdf
	_0613133009_001.pdf
	_0613133018_001.pdf
	_0613133022_001.pdf
	_0613133030_001.pdf
	_0613133036_001.pdf
	_0613133045_001.pdf
	_0613133051_001.pdf
	_0613133059_001.pdf
	_0613133106_001.pdf
	_0613133115_001.pdf

