A FULL
TURN OF THE
SCREW

"Turn of The Screw" articles from
Rainbow Magazine, Jan ’83 to Jul ’89

By

Tony DiStefano

A FULL
TURN OF THE
SCREW

The Complete Collection of
"Turn of The Screw" articles from
Rainbow Magazine, Jan 83 to Jul ’89

By

Tony DiStefano

PUBLISHED BY

Tony DiStefano
3489 Marian
Laval, Quebec
Canada H7P 5K8

Copyright® 1983,1984,1985
1986,1987,1988,1989
by Falsoft, Inc.

All rights reserved. No part of the contents of this book
may be reproduced or transmitted in any form
or by any means without permission.

This book includes material Copyright® 1983-1989 by
Falsoft, Inc., The Falsoft Building, P.O. Box 385,
Prospect, KY USA, 40059 (502) 228-4492,
publishers of "The Rainbow"® and used with permission.

Disclaimer

The author has exercised due care in the preparation of
this book and the programs contained in it. Neither the
author nor the publisher make any warranties either
expressed or implied with regard to the information and
programs contained in this book. In no event shall the
author or publisher be liable for any damages caused by
this book.

The Color Computer is a registered trademark of the Tandy
Corp. The Rainbow is a resigtered trademark of Falsoft Inc.

First edition published in September 1989

Table of Contents

Article Date Page
Poke Speedup 01/83 01
Finger Saving Circuit 02/83 01
Green On black Video 03/83 03
Reduce RFI on Your Monitor 04/83 04
Close Look at Memory 06/83 05
Make ROM Port "Y" Adapter 07/83 07
Parallel Printer Interface 08/83 08
Interfacing the GI Sound Generator 09/83 10
Project 0dds & Ends 10/83 14
Build a Speaker/Amplifier 11/83 15
Installing a ROM Switcher 12/83 16
Upgrading Guide for the COCO 2 01/84 18
Program Pak Connection 02/84 19
Add Function Keys to Keyboard 03/84 21
A 12 Volt Power Supply for COCO 2 04/84 23
Design A Video Monitor Output 05/84 24
Phoneme Speech Synthesizer 06/84 25
Duelling Cassettes 07/84 27
Popular Misconceptions & Common Problems 08/84 29
The Halt Pin and it's Function 09/84 30
The Modem to Printer Connection 10/84 32
Force a Cold Start from Reset Project 11/84 33
Lights! Camera! COCO! 12/84 35
Intro to the inside of the COCO 2 01/85 37
How the Multi-Pak Interface Works 02/85 39
Construct 16K of EPROM for Controller 03/85 42
Add Numeric Keypad to your COCO 04/85 45
Hookup a Voice Synthesizer from RS 05/85 48
Follow a Memory Map 06/85 50
Look Ma, No switch 07/85 53
Switching Double Sided Drives 08/85 55
COCO! with more LEDs 09/85 58
Analog to Digital Converter Ptl 10/85 60
Analog to Digital Converter Pt2 11/85 62
What is a VDG? 12/85 64
Beginners Hardware Course Ptl 01/86 67
Beginners Hardware Course Pt2 02/86 69
Introduction to Timing 03/86 72
Memory, How it works 04/86 75
Exploring Memory Cells 05/86 79
The CPU 06/86 82
The PIA 07/86 84
Timing & the SAM Chip 08/86 87

The New Video Display Generator 09/86 89

Table of Contents

Article Date Page
The COCO 2B 10/86 91

Hardware Fixes, Video Display Generator 11/86 93

The No Switch VDG 12/86 95

How Monitors Work 01/87 97

COCO! Music to your Ears 02/87 29

Buffers 04/87 101
Hardware Projects Review 05/87 103
Expandable Relay Project 06/87 105
Cache of the Day 07/87 107
Uses for Memory 08/87 110
Build an EPROM emulator 09/87 112
Disk Controllers 10/87 113
Improved Printer Adapter 11/87 116
Finishing the Printer Adapter 12/87 118
Add a LED to your Controller 01/88 120
Build an Electronic EPROM Emulator Eraser 02/88 122
Bigger & Better EPROMs 03/88 124
Build a Megabyte ROM Disk 04/88 126
Multi-Pak LED Update 05/88 128
Increase Character Display 06/88 130
Project Adapter "2 for 1" 07/88 132
Serial Paks 08/88 134
Summer Cleanup 09/88 136
A Simple Expandable LED Project 11/88 138
Project Expansion 12/88 141
Do You Read Me? 01/89 143
LIghts Out! 04/89 145
The ABCs of a Disk Drive 05/89 147
The DEFs of a Disk Drive 06/89 148
Dynamic RAM Explained 07/89 150

ii

Introduction

I remember, on a hot summer night, back in 1981, I was
browsing around on Compuserve. I came upon a notice on the Tandy
forum for a free copy of a newsletter. I ordered it. It was just
about the only information I could find back then, for my newly
acquired COLOR COMPUTER. A few days later I received it. A two
page thing, stapled together, and printed on an EPSON printer. It
was called THE RAINBOW. I subscribed to it. It grew and I
absorbed every bit of it. As time passed, I learned more about my
COLOR COMPUTER. I did things to it that no one else thought of
doing. My friends wanted the same. The more I did, the more they
wanted. By then, Rainbow had grown to a full blown magazine. I
felt I had gained enough knowledge about the COCO to be able to
write for Rainbow. I called them up and asked. I spoke to a
gentleman called Lonnie. He gave me the go ahead. It was that
simple. A lot of people ask me how I got started. That was it, I
called!

Shortly after I started writing, I met Christian Rochon. He
bought and sold COCOs and add-ons. He needed a controller to add
to his drive kits. This was how DISTO was born. He said if I was
able to design a controller, he was able to market it. As you
know, it worked out quite well. Disto now has many products for
your COCO, and CRC is still marketing them.

Through the years, many people have asked me if I had a copy
of this article or that article. That gave me an idea. Why not
make a collection of all my articles into a book. This way,
anyone who wanted, would have access to any article for research
or reference purposes. This is what this book is all about.

From the first day I brought home my COCO until today, I
have made a lot of friends. Too many to mention them all, but
here are the most important to me. First, I would like to thank
Larry Callahan for getting me interested in computers, and always
being there for me when I needed someone. Next, I want to thank
Christian and his wife Johanne for the endless patience they had
dealing with me and DISTO products. Then comes Kevin Darling, who
has given me his full support whenever 0S9 was involved. Without
him, the SC-II would not have succeeded. Finally, I want to thank
Lonnie Falk for making all this possible.

I hope you enjoy this book as much as I did writing it.

iii

High Speed POKE Has
Effect On CoCo Hardware

By Tony DiStefano
Rainbow Hardware Columnist

This is the first of a series of articles that will deal with the
‘insides’ of your Color Computer. Every month 1 will
explore and explain different parts of the Radio Shack
Color Computer hardware; its limitations, what it can do,
what it cannot do, and how to improve it. In general, just
digging into your computer and learning about the
hardware that all that great software runs on.

In my first article 1 would like to clear up a controversy
that has cropped up concerning the so-called high speed
computer. As most people know, POKE 65495.0 speeds up
Basic programs by about 65%. But why does it work on
some computers and not on others? Also, why does it not
work with most disk systems? There is also the POKE
65497.0. That seems to do some strange things on the screen.
What does that do and why? Well, Here's the story!

All timings in the computer are derived from a 14.31818
mhz crystal. This frequency is the clock input to the 6883
(SAM) chip. When you power up, the Basic power up
routine sets the SAM to divide the crystal frequency by 16,
making the 6809E (MPU) frequency of .894 mhz clock rate.
A write to $SFFD7 (*$” denotes hex number) or POKE
654950 sets the SAM into what is known as the A.D.
(Address Dependent) rate. This means that the MPU will
work at one of two speeds .894 mhz or 1.788 mhz clock rates.
This rate depends upon where the MPU is addressing.
That'’s right! The SAM will switch between fast and slow
clock rates depending where it is addressing memory. If the
MPU is addressing memory between locations 0 and $7FFF
(reading or writing) it will run at the slow clock rate. This
area i1s usually RAM. That is 32K of RAM. When it
addresses memory between $8000 and $FEFF it will run at
the fast clock rate. This area of memory is usually occupied
by Extended Basic. Basic, and DOS ROMS. I say usually
because in another SAM mode this area could be RAM
also. In the 1/0 (input/output) area, any addressing done
between SFF00 and SFFIF is at slow clock speed. The rest
of the 1/ O area between $FF20 and $FFFF is at fast speed.
This means that only one of the P1As go to high speed, and
not both, like many people think. The PIA that does go to
high speed is the one that does the D to A conversions and
the /DG controls.

What does all this mean to you? Well, you can use this
information to find out why your computer doesn't work at
the dual or high speed. We’ll start with the easiest and least
expensive ways. First, if you have a disk drive, disconnect it
and try to get the computer to work without it. If the high
speed doesn't work without the drive plugged in you will
have to open the computer. Turn the computer off before
opening it. (P.S. Refer to your service manual for
instructions before you attempt to open your computer. Oh!
By the way, you may void your warranty by opening up the
computer.) Now, remove the RF shield and locate the two
capacitors labeled C73 and C75. These two capacitors along
with resistors R73 and R74 make up a RF suppression
circuit in the main clock circuit. This, unfortunately, distorts
the square wave shape of the E and Q clock signals. This may
prevent the system from working at the higher speed. OK,
now make sure the compuer is off, and remember to make
sure it's off before you do any modification.

Cut one side of both of these capacitors. Why only one
side? Because you may want to resolder it if it has no effect
on the high speed after you cut it. After all, it is a part of the

RF suppression circuit. Turn the computer on and try the
high speed. If it works, great; if not, you will have to
continue. The next step is to check the PIAs. Since only one
of the Pl1As goes to high speed, the D to A and the VDG
control one, try changing the P1As around. The chance that
both will not work at high speed is rare. If the other one
works then you are on your way. If not, well, you will have to
go one step further. At this point you may have to change
some ICs. If you can, borrow rather than buy one two-mzh
PIA (MC 68B21) and one two-mzh MPU (MC 68B0O9E) IC,
because if after you have changed these two parts you may
still be out of luck. Replace the MPU and the PIA with
faster ones. Now it should work at the higher speed. If not.
the only other components that you can change then are the
Basic and Extended Basic ICs themselves.

With your computer working at high speedsit’s time to try
it with your Disk drive. What! It still doesn’t work? Don't
despair; I have another trick up my sleeve. There is one more
capacitor to cut, it is labeled C85. This capacitor has the
same purpose as the other two—RF suppression. Try the
high speed with the Disk controllerin. WOW! It works. But,
if it should happen that your computer still doesn't work, the
DOS ROM may not be fast enough.

Chances are your system will now work at the higher
speed. If you still have problems after cutting these three
capacitors and changing the PIA and MPU (which is very
unlikely), there is not much more that you cando. Now that
POKE 65495,0 works, what about POKE 65497,0? Thisis a
mode in which the SAM will run at the high speed
throughout the whole 64K of memory. Everythingisin high
speed, ROM, RAM, and all I/ O. The reason that the screen
goes haywire is that at that speed the SAM chip does not
have time to latch in the video, therefore the garbage on the
screen. But if your RAM is fast enough, the computer can
still work, even though the display makes you think
otherwise. Here is a short test program to see if yours will
work:

10 POKE 65497,0
20 FOR 1 = 1 to 500: NEXT 1
30 POKE 65496,0

If this program comes back with OK on the screen. then
your computer works atthe DOUBLE SPEED. You can use
this mode whenever there are a lot of calculations to do and
there is no need for the video screen. Sound and keyboard
functions should work OK, but do not trytodo 1/O in this
mode. If it does not work, but works at the High Speed, then
all you need is faster RAM. If you are using 4116 or 4164
chips make sure they are 150 nano seconds or faster. Well,
that is all for now. Good luck with high speed. I'll see you
next month. A\

Construct A Finger-Saving
Circuit For Your Joystick

By Tony DiStefano

Have you ever played a game on your computer so long
that your ‘fire-button’ finger got sore? Well 1 did, and that's
what prompted me to do something about it. 1 was at a
friend’s place the other day and he showed me his new game.
It was a great game, but when you pressed the fire button
only one shot came out of the “space cannon.” It didn't fire
rapidly like a machine gun. Every time you wanted to fire
again you had to let the button go and press it again. After
an hour of playing, you can bet my finger was numb. Then |

thought, if I could make an auto-fire button on my joystick,
things would go a lot easier on my poor ol finger. So, I set
out to do just that. After a little drilling, and cutting and
soldering, 1 came out with a circuit that I call my “Finger
Saving Rapid Fire Circuit!” It also has speed adjust. Here’s
the circuit.

—0
O—o
ouT
- m = e == —— = o= ==
' [}
! I
+8V ' = |
, N2 |
1 { [\ !
IR ALE = 1
' D w11 1
; 1 203 4 85 8 :
' L - !
W le | e T e
, T '
! |
' A '
N e e - e~ - -

This isn't a very complicated project, but it does require a
little experience in project building. The first thing you will
need is a joystick. Any joystick will do, but since this is a
Color Computer 1 modified a Radio Shack joystick. The
next item on the agenda is a parts list. Again, I used Radio
Shack parts in this project because there's a Radio Shack
store right around the corner from where I live. It’s a lot
easier than going all the way downtown. If you're a
hardware hacker like me, you'll probably have all the parts

in your junk box and won't have to buy any of these parts.
Here is the list.

PARTS LIST
Quantity Description RS Part #
| IC CD4011 #276-2411
1 Button # 275-8080
! Potentiometer #271-1722
1 Transistor 2N2222 # 276-1617
2 Resistors 100k 1/4w #271-1347
1 Capacitor . luf 50v #272-0135
1 14 Pin Socket # 276-1999
1 Small Perfboard # 276-1392

Now that you have all the parts, it’s time to put it together.
First, you must mount the pot (potentiometer) and the
button. Open the joystick by removing the big screws on the
bottom of the joystick. In the case of the more recent sticks
there will be only two screws. Remove the lid. You will need
a drill and two bits, a 1/2 inch bitand a 5/16 inch bit. Now
you must drill two holes in the front of the joystick; that is,
one on each side of the fire button. Don’t drill into the lid,
but rather in the same part the joystick assembly is mounted
on. If you look at the front (looking at the button) with the
stick pointing upwards, the pot mounts on the right side and
the button mounts on the left. I did it that way because the
button doesn’t fit on the other side. The button hole size is
1/2 inch, while the pot hole size is 5/16 inch. Use the /2
inch bit to make the button hole and the 5/ 18 inch bit to
make the pot hole. A pilot hole, using a 1/8 inch bit, is

better, but not necessary. Be careful when you drill into the
plastic, there are wires on the other side and you don’t want
to break them. Mount the pot and the button with the
hardware supplied. Tighten them well so that they won't
come loose in the middle of a fierce battle. You may want to
seal each nut with a little dab of nail polish. Ok, let’s put that
aside for a while and start on the circuit board.

Cut the perfboard into a piece about | 1/4 inches by 3/4
inches. This should be just bigenough to mount all the parts,
yet be small enough to fit inside the joystick. Insert the
socket in the center of the board and to one side. The long
side of the socket should align with the long side of the
board. Note that pin #1 on the socket should match with pin
#1 of the chip. Pin #1 is the bottom left hand corner of the
socket—the side with the notch. Also note that the pin
numbers go counter clockwise around the chip. All pin
numbers are looking down on top of the chip and are
reversed when soldering underneath the board. Solder in the
rest of the components (except the button and the pot)
according to the schematic drawing. Do not solder anything
to the points marked with letters just now, 1 will get to that
later. Use the long leads of the components as connecting
wires to the socket. Do not solder onto the chip itself; use the
socket and make sure that the chip is not in the socket when
you solder. In fact, you should not insert the chip until all the
wiring is done and you are ready to test the circuit. Thisisa
CMOS chip and is very sensitive to static electricity:

Now that all the components are in, it's time to solder
wires to connect to the rest of the circuit. There are five wires
coming off the board labeled A to E. Each has its special
place, and I will describe them one by one...

A) Wire A goes to the center terminal
and one side of the pot that is mounted
on the joystick.

B) Wire B goes to the other side of the pot.
C) Wire C goes to one side of the
button which we mounted earlier.

D) Wire D goes to the 5 volt

supply. On my joystick it's

the white wire that comes from

the main cable. This may not be

the same on all joysticks, so

it is best that you trace it from

the connector. This is pin #5

on the connector.

E) Wire E goes to the ground of

the joystick. This wire is black

on my joystick, but again it may

be different on yours. This is

pin #3 on the connector.

There is only one more wire to add. This is the point
marked “out” on the schematic. One end of the wire comes
from the free end of the button you mounted. The otherend
of this wire goes to the already existing button. There are
two wires on the existing button. The one you want is the
one that comes from the connector side, not the side that
goes to the joystick pot—that’s ground. Solder your wire to
the same spot, but make sure that the original wire does not
come loose when you do. This completes the wiring.

Carefully insert the chip into its socket. Make sure that
pin #1 is in the right place. You are now ready to try out the
circuit. With the board not touching anything (off to one
side) plug in the joystick and turn on the computer. Type in
this program and run it...

10 CLS
20 PRINT@0, PEEK (85280) : GOTO 20

A number should appear on the screen. Press the regular
fire button. The number should change. It doesn’t matter
“what the number is, just that it changes. Now press the rapid
‘ fire button. The value you see on your screen should change
rapidly. Turn the pot on the joystick from one end to th‘c
other slowly. This is your speed control. Y ou should adjustit
according to your needs. The number should change from
slow to fast. If it does, then allis welland it's time to close up
the joystick. If itdoesn’t, then check your work carefully and
correct the errors. The most common is the pinout of the
transistor. Make sure that the base and collector are in their
right places. Before you close up the joystick, put alittle dab
of rubber cement or silicon glue to hold down the board to
the inside of the joystick. Anywhere that fits will do. Make
sure that it doesn't touch anything. Close it all up and have

fun.

That's about it for this month. | hope my "Finger.Saving
Rapid Fire Circuit™ can save a few fingers.

A

Green On Black Video:
‘Eye Friendly’ Conversion
By Tony DiStefano

It's two o'clock in the morning and you are typing away
on your TRS-80 Color Computer. Your eyes are burning
because you've been staring at that bright green screen
trying to create your “Do everything program"for hours. So
you turn down the color, contrast and brightness of the
display but that doesn't help too much. It's still a big square
of light. Well..what can you do? Follow these simple
instructions and when you are finished you will have a
reversed screen like mine.

Though these instructions are simple, only those with
soldering experience should attempt this project. You will
need a Phillips screwdriver, a grounded soldering iron,
solder, an 1C extractor, two pieces of thin wire, flux cleaner,
and a little patience. And, if you haven't received the
warning before, opening your computer may void your
warranty. .

Before you start tearing into your computer, a bit of
background on the VDG (Video Display Generator) is in
order. The VDG is a large scale integrated circuit (LSI) chip
that takes care of all the video you see on the screen, be it
Alphanumeric or full graphic. The VDG continually scans
memory (Via the SAM) and displays what it sees. In the
Alphanumeric mode it converts the ASCII code of a byte of
memory into a graphic block that looks like the letter it
represents. Normally an upper case letter or number is black
with a green background. Lower case letters are the
opposite, green with a black background. What my circuit
modification does is reverse the order so that upper case
letters are green with black background and lower case
letters are black with green background. This does not
change anything in memory nor does it interfere with
BASIC. It also does not change any graphic modes or color.
Everything stays the same except the letters, numbers and

symbols. The diagrams in this article pertain to most
versions of the computer. Version 1.1, 1.0, 4K, 16K, 32K,
64K, BASIC, Extended BASIC, and even Disk BASIC are
OK. The only version of which I cannot say “it works”is the
newest version, the one with the power supply in the bottom
left hand corner. It should be the version “F” but it is not
written anywhere on the board.

Before you start into this, make sure that you have a large
clean work space. Make sure the computeris not plugged in.

0

FIG-1

Put the computer upside down on a soft surface. Unscrew
the seven screws that hold the cover on. If you haven't
opened it before, the seventh screw is under the black sticker
that' warns you not to open this thing. Turn the unit over
again (top side up) and pick up all the screws that fall out.
Put them aside in a safe place. Remove the top coverand put
that away, too. Lean forward slightly and gently pull up on
the keyboard. Unplug the connector that ties the keyboard
to the main board. Put the keyboard aside. Now cut the two
tie wraps that hold the RF shield in place. That’s the big
square piece of metal with holes in it. Remove the RF shield
and put it with the other parts. You are now ready for part
two.

Before you start part two, let me tell you that the board is
very sensitive to static electricity. Try to avoid dry areas and
avoid touching the contacts on the board whenever possible.
OK, let’s get going. Locate and pull out the 741.S02 IC
marked U29 on the PC board. Carefully bend pins I,2and 3
so they stand straight up in the air upside down. The dot
denotes pin #1. If you are facing the computer it is the top
left hand corner. See Figure 1. Now solder one end of a four-
inch piece of wire to pin#1 of the IC. The best wire to useisa
#28 or #30 Wire Wrap wire. Solder another piece of six-inch
wire to pins 2 and 3. Yes, both pins together. Now put the IC
back in the socket. Make sure it is in thz right orientation.
The dot should be in the upper left hand corner. Also make
sure that the wires and the pins do not touch the side of the
RF shield. Now carefully remove the MC6847 1C marked
U7 on the PC board. Bend pin #32 outwards just enough so
that when you replace it, it does not go into the socket.
Replace the MC6847. Again, make sure of the orientation.
The dot should be in the upper right hand corner. Take the
other end of wire that connects to pin 1 of the 74L.S02 and
solder it to pin 32 of the MC6847. Take the other end of wire
that connects to pins 2and 3 of the 74LS02 and solder that to
pin 2 on the MC6847. Be careful not to solder the pin to the
socket. You won't be able to get the IC out if you do. Check
the wiring and make sure that there are no shorts. Your
wiring should look like the wiring in Figure 2. Now turn the
power on. You should see the normal SIGN ON and
copyright notice. Adjust the contrast, brightness and color
on your TV so that you get crisp green letters with no
background shading.

The closing up of the unit is the same as the opening, but
in reverse. Turn the power off and replace the RF shieid.

™~ p—

Ace3tn
)14
FIG-2
P-4 -
AcE3Y
3z
o I
FIG-3

Again, make sure that there are no wires hanging out, and
that there are no small pieces of wire or solder left in the:
closed area. Replace the keyboard and connector and put
the lid back on. One thing to note when you are putting the
bottom screws on is that there are two short screws. They go
under the keyboard. If you put the long ones there you'l
pierce a hole in the top cover. Do not overtighten them.
After the computer is all back together again check all the
functions just to make sure that all is running properly.

The whole operation should go off without a hitch, but if
you do have problems retrace all of the above steps. The
circuit does work, and if yours doesn’t work you may have
made a mistake somewhere. Some of you might want to add
a switch to be able to change back and forth between normal
and reversed screen. To do so, follow the wiring diagram in
Figure 3. Make the wires long enough to be able to mount
the switch on the outside cover or somewhere accessible
when the cover is on. Warning! Wires that run outside of the
RF shield can cause interference with your TV, Using a
shielded wire will help. Ground the switch cover with a
separate wire. This should take care of most of the RF
problems.

Good luck. A

—

How To Reduce ThatBRFI On Your Monitor
y

Tony Distefano

First of all I would like to clear up a problem with the
“Finger Saving Rapid Fire Circuit.” The potentiometer in
the Parts list has the wrong part number. It is not rhe
Rainbow’s fault, it is mine. You see, when | first made this
circuit, it was indeed a 100k ohms pot, like the part number
stipulates. But 1 thought the firing speed was not variable
enough, so 1 changed the pot to | Mega ohms. If you have
already bought the 100k ohms pot, do not despair, it will still
work. The only difference is that the firing speed will not go
as slow as the | Mega ohms one will. Radio Shack does not
have a | Mega ohms pot in that package, so | cannot give
you another part number for it. Almost any other electronic
hobby shop shouid have it, though.

Okay, let’s get on with this month’s project. One of the
problems with some of the older Color Computers is that
when you plug in a disk drive, you get a lot of noise on the
screen. The type of noise | am talking about is not a buzz
from the speaker, but a type of wavey, herringbone pattern
that seems to swim across the screen at a regular rate. Yes,
that is “RF1." That stands for Radio Frequency Interfer-
ence. | talked a little about RF1 in the January ‘83 issue of
Rainbow. 1t is very annoying to see this noise going back
and forth on the screen all the time. Fortunately, there are a
few things you can do to eliminate it.

One of the things you can do is this. Open the door and
look inside the cartridge port. On both sides of the connec-
tor there should be metal clips. If there aren't, your local
Radio Shack Repair Center can put them in for you. Appar-
ently they will do this at no charge. 1 guess you will have to
find this out for yourself. What this does is, when you have a
disk controller plugged in, the clips act as extra ground
connections. This prevents the controller from acting like an
antenna.

Another way to reduce the RFI in the Color Computer is
to get the aluminum shield from Radio Shack (again!). This
shield fits under the keyboard. It snaps into the main board
between the plastic standoffs and the board. The rest goes
under the keyboard without any other connections. This
extends the ground plain that is under the main board to the
keyboard, too. The third way, and the main topic of this
month’s article, is to modify the TV that you are using with
the Color Computer.

Before you start digging into your TV set, I'll give you a
little background on how the signal gets from the Color
Computer to the tuner. It starts from the connector in the
back of the computer. It then goes down a shielded piece of
wire to the connector box supplied by RS. This is a switch
box which allows you to connect your antenna to it and

switch back and forth between regular TV signals and the
computer without disconnecting anything. THIS BOXIS A
BIG SOURCE OF NOISE! Get rid of it immediately! RF1
can seep through that box like water through a screen door
on a submarine. It is best to get rid of the wire that RS
supplies too. You must make your own wire. This is not
hard. Buy the four-foot white coax cable from RS part
#15-1529. On one side, push on one of the F-56 connectors
(supplied with the kit). On the other side install a Shielded
Phono Plug, RS part #274-321. That is the end that goes into
the computer. If your TV set has only the two screw type
terminals you will need a F-61 connector as well, RS part
#278-212, (more on that later).

So far, what you have done should reduce the RFI by
quite a bit, but if there is still RFl coming in you must
modify the insides of your TV. The next step requires that
you remove the back of your TV. Only experienced hackers
should take off the back of a TV. There are high voltages
present in there. If your TV is like mine and most TV sets,
the antenna connections are done via a small circuit that
isolates the ground of the TV to the antenna. This is done to
prevent electric shocks, because since there is no power
transformer, one side of the AC line is directly connected to
the internal ground. Touching the ground of the TV is like
touching one side of a plug. Nothing will happen until you
touch a ground point like the third pin of a three-prong plug
or a water pipe. The Color Computer is grounded with a
three-prong plug. If you try to connect them, watch out.
Then you will see all the sparks fly. This is why the manufac-
turer of the set put a high impedence circuit to isolate the line
from the antenna input. A small circuit is a lot less expensive
(and a lot lighter) than a power transformer. Unfortunately
this circuit is very sensitive to RF1. You have to remove this
circuit and connect the antenna terminals directly to the
tuner.

The first thing you must do before you take out the circuit
istoadd in a transformertoisolate the line. The transformer
must be a line isolation transformer. Y our local electronics-
store should have one. The power rating of the transformer
must match the power rating of your TV. Itis usually written
on the back of the set, or in the operating manual. Now,
remove the back from the TV and mount the transformer
somewhere inside, with the proper mounting hardware. Cut
the AC cord that runs inside the set. If your set has a
removable cord, cut the wires from the internal side of the
connector. Re-route the AC side of the two wires to the
input of the transformer and route the output of the trans-
former back to the TV input. This will isolate the ground
from the Ac line. 1 cannot emphasize enough the need for
this transformer; if you don't put it in and you remove the
circuit, you stand the chance of burning out your TV and
your computer. Then you won’t have to worry about RF],
only fire. Enough of this, now it’s time to remove the circuit.

Unsolder the circuit from the antenna terminals. If the
terminal is not the cable TV type, drill a hole and mount the
F-61 connector. The other side of the circuit is usually a
shielded wire that leads to the tuner. Cut the wire as close to
the circuit as possible. Strip off the insulater and solder the
inside wire to the tip of the F-61 connector. Solder the shiled
part to the outer part of the connector. This will connect the
antenna terminal directly to the tuner input. Before you plug
in the TV, a little check is in order. With an ohm meter, and
the TV on (but not plugged in) measure the resistance
between the AC cord and the antenna terminal. Test both
wires. If they read high impedence you are in business, if not,
then check the wiring again. There should be no shorts
between the AC cord and the antenna terminals. Replace the
cover and try it. There you are, a clean picture. A

Memories Of The PROM

By Tony DiStefano
Rainbow Contributing Editor

What is a ROM? What is RAM? Or PROM? Or

EPROM? Or EEPROM? They are all forms of
memory chips, I think that before I go on, 1'd better cough
up a little background on memory chips. For those of you
who know all about memory chips. I think that before I go
on, I'd better cough up a little background on memory chips.
For those of you who know all about memory chips, bear
with me while l explain the concept of memory to those who
are not quite up on the subject.

The first thing I'll look at is memory chips in general. A
memory chip is a device which holds a certain amount of
information. How much information it holds depends on
the chip itself. It can be anywhere from 1K by 1 to 6K by 8
and more. (1K=1024) More on this later. A memory chip is

This month I would like to take a close look at memory.

much like a telephone book. You look up a name and it gives
you a telephone number. The name (in the phone book) is
equivalent to the address lines of a memory chip. The tele-
phone number (in the book) is equivalent to the data lines of
a memory chip. Your fingers are equivalent to the CPU
(Central Processing Unit), in this case the MC6809.

Let's take a look at the address lines first. A typical
memory chip has between 10 and 14 address lines. This
depends on how much memory the chip has. Address lines
on a chip form a binary number (quick, look up binary
numbers in your nearest math book). Each number is one
memory location. One memory location is one byte. If the
chip has 10 address lines then it has 2 to the power of 10
different combinations. That is 2%2%2*2%2%2*2*2*2*2 and
that is equal to 1024. (Is my math right?) In this chip (or
phone book) there are 1024 bytes (or names). The CPU (or

phone book) there are 1024 bytes (or names). The CPU (or
figures) can ask to look at any one of these bytes by giving
the memory chip a binary number. This number, in the form
of address lines then, tells the memory chip, what byte of
information the CPU wants. This is the function of address
lines.

The CPU gives the memory chip a binary number that
corresponds to the address of where the byte is to be found.
The memory chip then reacts by giving the CPU the infor-
mation that is stored at that location, with the data lines.
Data lines (like address lines) form a binary number.
Memory chips can have from | to 16 data lines. Each line is
known as one bit. Four bits make one nibble. Two nibbles or
eight bits make one byte. Two bytes or 16 bits make one
word. Most microprocessors work with 8 bits or 1 byte.
Some work with 16 bits or one word. The Color Computer
works with 8 bits. That means the CPU in the computer has
8 data lines or an 8-bit data bus. A bus is no more than wires
that connect all of the chips together.

The last set of lines that are associated with the memory
chip are control lines. Two of these lines include power and
ground to the chip. The rest of the control lines are quite
invisible to the user. The only one that is of interest is the
chip select. This line tells the memory chip when to activate.
Since there are usually more than one memory chip in a
computer system, there must be a way of controlling which
chip is to be giving or taking data from the CPU. This is
where the chip select line comes in. A memory chip will not
give or take data unless this line is activated. Well, that’s
enough on memory chips in general.

ROM stands for Read Only Memory. In this type of
memory, the information that is in it cannot be changed,
erased or lost. ROM memory is non-volatile. As soon as
powerisapplied toa ROM, the data isavailable. The data in
these chips was entered into it when the chip was made at the

factory. Anyone can have a ROM made with their own data
in it, but there is usually a minimum order of about 1000
pieces. [talso takes a long time for delivery. Not practical for
a home user. A ROM is said to be masked with the data
when produced. All computers need at least some ROM
memory in order to function. The Color Computer has
Color Basic in ROM. Without ROM the computer would
not be able to do anything.

RAM stands for Random Access Memory. This is quite
different from ROM. RAM memory can be changed, erased
and lost. When power is applied to a RAM chip, there is
nothing in it. The computer can put any data it wants in it
and change the data that is in it whenever it wants. One thing
about RAM is that as soon as the power is removed from the
chip, the data that was there is lost forever. RAM memory is
volatile.

PROM stands for Programmable Read Only Memory.
This chip is much like the ROM. The difference is that a
PROM is blank. It has no data in it. All of the bits in a
PROM are HI. With the proper accessories a user can put
any data into a PROM. Once the data is entered or pro-
grammed into the chip, it becomes just like a ROM. It hasall
the properties of a ROM. It cannot be changed, erased, or
lost. The only exception to that is, if a PROM is pro-
grammed more than once, the data can become very
scrambled and totally useless.

EPROM stands for Erasable Programmable Read Only
Memory. This chip is very much like a PROM. The major
difference is that (like the name says) it can be erased. An
EPROM is like a PROM but has a little window in the chip
that exposes the internal circuits. When an EPROM s
exposed to ultraviolet light it is erased. To protect an
EPROM from being erased, a small sticker is placed over
the window. All the bits return to their original state of HI.
An EPROM can then be re-programmed with different
data. It can be re-used over and over again.

EEPROM stands for Electrically Erasable Programma-
ble Read Only Memory. This chip is much like the EPROM.
The difference is that, instead of using a window and ultra-
violet light to erase the memory, an electrical pulse is used.
There is no need for a window or an ultraviolet light to erase
an EEPROM.

How are memory chips used in the Color Computer? The
CPU in the Color Computer is a MC6809E. It has 16
address lines. That means it is capable of addressing (or-
looking at) 65535 different bytes of memory. Normally it is
said that this CPU can access 64K of memory. That is like
having a phone book with 65535 names in it. A 32K Disk
Color BASIC computer has many memory chips. First, it
has 32K or RAM. Then it has 8K BASIC ROM, 8K
Extended BASIC ROM and 8K Disk ROM. There is also-
8K memory not being used. That totals up to 64K of -
memory. That is our full 65535 telephone book. But what if
you had another phone book? What if you could switch
between two phone books? That could give you much more
memory. Or could it? In the Color Computer there is a chip
called the SAM chip. SAM stands for Synchronous Address
Muitiplexer. This chip has the ability to switch between two
phone books. EHH!? I mean between different memory
chips. This gives the computer the capability to access a total
of 96K bytes of memory. In a full blown Color Computer
there is 96K of memory. Not all of this memory can be
accessed at one time (especially with Radio Shack BASIC),
but with the SAM chip in action and the right software, all
of the 96K of memory can be used.

This brings me to the most asked question about the
Color Computer. “*How come, when I put 64K memory
chips in my computer, I do not get any more free memory
whenltypein PRINT MEM, than with 32K memory?” The
answer is that the BASIC INTERPRETER was not written
to handle more than 32K of RAM. Itis possible however, to
use all the available RAM by using the right software. As
soon as more companies realize that the extra memory is
there, more and more programs will be written to take
advantage of the full 64K memory. ~

Build A Y’ Adapter
For Your Disk Controller

By Tony DiStefano
Rainbow Contributing Editor

toexpand their computer without having tospend a

lot of money on expansion interfaces, power sup-
plies, and the like. Well, here goes. This s the first of a series
of expansion projects for the Color Computer. The empha-
sis on these projects will be low cost. They will be geared
toward the experimentalist or the “hacker.” They will satisfy
the person who is tired of playing games and wants to
expand his or her knowledge about hardware by experi-
menting. All of these projects will be done via the Program
Pak connector. A problem arises in trying to experiment
when you have disk drive. Those of you that have disk
drives reaily don't like to constantly remove the controller
and plug in some experimental board and then replace the
controller. And when it comes to using software, having first
tosave the program on cassette (yuk), unplug the controller,
try the software out on the project and then replace the
controller is not a very interesting proposition.

Did you ever try to plug two pair of headphones into one
headphone jack? You can’t. What you have to do is, go to
your nearest Radio Shack store and buy a “Y ™ adapter for
your headphones. That is what you are going to do; go to
your nearest Radio Shack store and get a Y™ adapter for
your disk controller. Well, not quite! You see they don't
make a “Y " adapter for a disk controller. What a shame! |
guess you'll have to make one. This brings me to the first
project for the Color Computer. I callit “The Color Compu-
ter Y-er,” or is that “wire?” In any case, it will solve the
problem of having access to the bus with the disk controller
plugged in. Putting this together is not that hard, and not
expensive, but you have to remember that this just gives you
acess to the bus, it is not a buffered expansion interface. You
cannot plugina ROM Pak and expect it to work. To do that
will require some circuitry. That may come later.

The Y-er requires four parts: one project board, Radio
Shack No. 276-163; two 40-pin Card Edge Connectors,
Radio Shack No. 276-1558, and a 12" piece of 40-wide flat
ribbon cable. You can use Radio Shack No. 276-1542. This,
however, has a connector on one end. Youdon’t need it and
have to cut it off. .

If you can get ribbon wire from another source (like I did),
do so; why pay more for a connector when you don’t have
to? As for tools, all you need is the regular set of tools for
electronic projects. The only other tool you will need is a
four inch vice. You need that to crimp the connector to the
ribbon cable. And that's it—one hour later, you'll have your
very own Y-er. ,

Okay, let's start. Take the project board and cut it in half,
atabout the “20™ mark. You will need the half with the lower
numbers. The other half may be used in a later project, but
fornow, put it aside. With a sharp knife, separate one end of
the ribbon wire into individual wires about one inch long.
Stripabout 3/ 16 inch of insulation off of each wire. Tin each

-wire with solder. This is where the tricky part starts. This has

g lot of people have been asking me to explain how

Here is the “Y-er” in use with next months project.

to be done just right. Hold up the ribbon wire by the stripped
end and let the rest of the wire hang down. Starting from the
right hand side, bend the ends of the wire alternately for-
ward and backward. The first one on the right side goes
away from you. This divides the ribbon into two sections.
Counting from right to left, the odd numbers are away from
you and the even numbers are close to you. The top section
and the bottom section. The top section will solder to the top
(component side) of the project board and the bottom will
solder to the bottom (copper side). You do this by soldering
the bottom side first. The first wire on the right goes into the
hole just below the first finger on the right. That means that
it will solder to the copper side. The second wire goes on the
first finger on the component side directly above the first
wire. Then the third wire goes under the second finger to the
finger on the copper side. The forth wire goes on top of the
second finger and so forth until all of the wires are done. The
last wire on the left goes on the top (component) side of the
last finger. From now on this is known as the top side. The
first finger on the right side is pin #1, the pin directly under-
neath is pin #2, the last finger on the top side is pin #39 and
the pin under that is pin #40.

Now, it’s time to put the connectors on. Slip one connec-
tor into the other end of the ribbon wire. The connector
should be pointing upwards, in the same direction as the top
of the project board. Place the connector about two inches
away from the edge of the project board. Examine the
connector and wire carefully and make sure that all the wires
line up with the teeth of the connector. You might have to
stretch and tug the wire into place. Gently pinch the connec-
tor together between two fingers. The teeth should start to
press against the wire. Again check that all the teeth align
with the wires. When they do, sandwich the connector in
between two small pieces of wood. Put the wood and the

connector into a vise. Turn the vise until the connector is
completely closed. Examine the connector to be sure that it
is properly closed. If not, then give it another shot on the
vise. It is important that the connector be fully closed. Now,
slip in the second connector. It should stay close to the end
of the wire. Crimp it like you did the first. If you think that
you cannot properly crimp the connector, local electronics
shop personnel might be able to help you.

Figure 1 Y-ER
PIN PIN
PIN) #1 82
#1)
PIN.—. _
#39 PIN "~ PIN
#39 #40
CONTROLLER EXTRA

Your “Y-er” should now look like the one in Figure 1.
Before you go plugging this thing in, you should run a few
tests. The first test is to determine if all the wires have
continuity. This is where the other half of the project board
comes in. Plug the board into one of the connectors. With an
OHM meter, check that all the wires show continuity

between the two ends. Make sure that they all line up! Pin #1
on one should be pin #1 on the other. That is important:
reversed wires can cause a disaster. Next check the conti-
nuity of the other connector. If all is well there is one more
thing to check before you can use the “Y-er.” You must
check for shorts between the pins. Put one lead of the OHM
meter on pin #1. Place the other lead on each of the sur-
rounding pins one at a time. All of the readings should show
high. There should not be any resistance between any pins.
After all this checks out, remove the flux left behind when
you soldered the wires to the project board. This can be done
with flux cleaner. If you don’t have any, an old toothbrush
and lighter fluid will work. You might have to getdowntoa

little bit of scrubbing. If you bought the Radio Shack con- .

nectors you will have to do a little trimming in order for the
disk controller to fit in correctly. A small knife will do the
trick. Cut deep enough that the controller fits in all the way.

After you feel sure beyond the shadow of a doubt that

there are no shorts and no opens it’s time to try it out. With

the power off, plug the “Y-er” into the Color Computer’s
cartridge slot. Make sure it is in tight. Turn the computer on.
If all is well, then turn it off again and plug the controller
into the first connector. Turn it on and there you are, you
have access to the bus with the controller plugged in. Right
now you don’t have anything to try it out with, but next
month my project is a parallel printer port. For now try
plugging the controller into the other connector to make
sure that it works.
[a)

Build This
Parallel Printer Interface

will adapt to my Y-ER expansion card. After you

build this circuit, you will be able to use any parallel
printer that is Centronics compatible. This circuit uses one
MC682! PIA. The other two chips used are for decoding the
address bus to memory map the PIA from $FF70 to $FF73.
The P1A has two functions: 1) to check if the printer is busy
and 2) to transfer data to the printer. Bit 0 of port A is used
to monitor if the printer is busy. All 8 bits of port B are used
to transfer the data to the printer. The Control line CB2 is
used to strobe the data into the printer. The PIA is initialized
insuch a way that CA2 auto strobes when a write to port Bis
done. Refer to the Motorola MC6821 PlA data sheet for
more details on how a PIA works.

To put the circuit together is not too hard, but, like all
electronic projects, care should be taken in the process. The
circuit is shown in Figure 1. It consists of only three chips.
The shopping list below includes everything you need to
build the project. The first thing you must do is trim one side
of one of the connectors of the project board. I'll explain
why later. Look at Figure 2 to get the location of where to
cut the board. You have to remove three pads. Well, it is
actually six pads because there are three pads on each side.
Use a hacksaw to cut the board. Be careful not to cut or

The Parallel Printer Interface is the first project that

scratch any of the other pads. Next, position the 1C sockets

as shown in Figure 2. Note the position of pin one on each.

socket. They all go on the bottom and to the lcft. Position
them the same way. Solder all the pins on all of the sockets.

The next thing to do is to get the B-Plus and the B-Minus’

buses in. Turn the card upside down and locate the bus that
is parallel to position 5 written on the sides. That will be the

ground bus. I traced all the legs of the ground bus with a.

black grease pencil. This makes finding a ground point
easier. The other bus, at location 33 on the sides, will be the
B-plus line. That's the S-volt line. Use a red grease pencil to
mark it.

The rest of the soldering on this card will be made follow-
ing the schematic. Solder the wires one by one, and after
each connection is done. mark it on the schematic. This
prevents you from trying to connect a wire twice or forget-
ting others. The small pads that point to the left on the
schematic mean that it goes to a pin on the Color Computer
cartridge side. The small pads that point to the right mean
that it goes on the printer connector side. Refer to Figure 2
to get the proper location of the pinout for both the compu-
ter side and the printer side. Note that pin | for the computer
side is the top of the upper pad and that pin | for the printer
side is the bottom lower pad. 1 did it that way because the

ribbon cable will sit properly in the connector. It will drop
downwards. After all the wiring is done, clean the board of
the flux residue. This can be done with flux remover, or
anything else that will remove the flux. Check your work
carefully and make sure there are no shorts or cold solder
joints. It would be wise to check the wiring once again.

Put the board aside for now, it’s time to concentrate on
the printer ribbon cable. You have two choices: 1) buy one
from Radio Shack, or 2) make one yourself. The first choice
is simple; go to your nearest Radio Shack store and buy
printer cable #26-1401. That is a 34-pin edge card to 36-pin
plug. It'sfora Model I/ 111 to standard parallel printer cable.
It will work perfectly. The second choice is a bit more work
but will cost you much less. You will need three parts.

1) 34-pinedge card toribbonconnector, RS #276-1564.

2) 36-pin Centronics type connector, RS # N/A.

3) 6 feet of 34-conductor ribbon wire, RS # N/ A.

Take one end of the ribbon wire and connect it to the
34-pin edge card connector. Procedures on how to connecta
ribbon wire to a connector are explained in last month’s
Jissue in my Y'ER article. Now, the other end is a bit tricky.
There are 36 pins and only 34 wires. The last two are not
used. When you put the ribbon and the connector together,
make sure that the first wire (pin | on the edge card connec-
‘tor) meets with pin | on the Centronics connector. The last
two pins will be left empty. On the connector the empty pin
numbers are # 36 and # 18. Then, press the connector in the
usual manner. This will give you a printer cable for about
half the price of one you would buy.

Okay, now you have the board and the connector. After
youare sure that both are constructed right, it’s time to plug
it in. Now, the computer gives you the familiar logo, but
what do you do with it? It doesn’t work, does it? You are
missing some software to hook it into BASIC. The machine
Jlanguage program listed below will re-route the PRINT #-2
;command to the parallel port. All you have to do to hook it
'in is EXEC. When you type EXEC again, it will unhook
itself and PRINT #-2 will again go to the RS-232 port. Be
caréful that you give itan ORG in the right place, and make
sure that you reserve enough memory, so youdon't crash the

program. That’s all there is to it!

Pin # 4 (e bovow)

Figure 2 e
L |
ot i v = []

PRINTEA)

_ Figure 1
T4
< h] PaPaLLEL PRINTEP POPY
- ML 13T
((_ZD—-_“—,_?]; .f. 8y 1OWY DISTAFAND
(X} " is
< —T s L}
s [
S - 1(%%t:_—4— E 13
&__u_lq P AT 1 ; .
t e I ey
+ + 28 20
EE'CZ lruw.:}:y____,__lz “‘-‘4]I> (033
T e I3—= B 75 o0
- P —2Y4 W
w0 I3 }———1“ $ Ha—ry o
-1 F——a 7 e
conruIER PIN -t B 04
< Hi > o
PRINTER PIN: D os
S Hee > o
H—C o
TYROR

P 2 17 (on bovtoms)
Pin 8 34 tam top) o

DE

[

[>]

L

L

Cat. Neo.

=

COMPLTLA SIDE

P 81 (am top)
" Pin # 3 (o bomem)

i

Shopping List For The Parallel Printer Port

Quantity Description RS # (if any)
1 PROJECT BOARD 276-163
1 40 pin IC socket 276-1996
2 16 pin 1C socket 276-1998
1 74LS133 N/A
| 741.S138 N/A
1 MC682i N/A
2 .01 uf CAP 272-1265
The listing:
» PARALLEL. PRINTER ROUTINE
* BY TONY DISTEFANO
2031 OEQD NAM PPRINT
2002 SEVR ORG $7F o0
2003 BBLF PRNO EQU $6F
2004 PO9C CRHOOK EQU $9C
20035 2168 PRHOOK EQU 168
o006 FF7 PIA EQU SFF72
POB7 7FOO BEFF70 INIT LDX #PIA Fl1A LOCATION
2008 7FO3 4F CLRA
2O0F 7FR24 A7) STA 1,X DDR ACCESS A
2210 7FP4& A3 8TA 3, X DDR ACCESS B
#2211 7F@8 A784 STA @, X ALL INPUT A
PB12 7FBA AC INCA
2013 7FBB 979C STA CRHOOK BASIC IDED
@214 7FOD B&FF LDA #SFF
@C 1S 7FOF A702 STA 2,X ALL OUTPUTS B
P16 7F11 A701 STA 1,X CONTROL ACCESS
PB17 7F13 B862C LDA #$22C B+STROEE
o018 7F1S A703 STA 30X CONTROL ACCESS
@019 7F17 BE@148 LDX PRHOOK
@028 7F1A 1@BE7F4Q LDY RETURN+1
#9231 7F1E BF7FAR STx RETURN+1
PO22 7F21 10BFO168 STY PRHOOk
A3 IF2S I9 RTS
324 7F26 I4@2 PRINT PSHS A PRINT DEVICE #
PR2E 7F28 F66F LDA PRNO
o826 7F2A BLIFE CMPA #S$FE TO PRINTER?
BA27 7F2C 260F BNE NOGO NOT FRINTER
9228 7F2E BLFF7@ Pl LDA FIA
AA29 7F3X1 84v1 ANDA #} IS PRINTER
PA3IB 7F3I3 26F9 BNE F1 READY"
#AIT1 7F3S IS0 PULS A TO PRINTER
PB3I2 7F37 B7FF72 STA FIA+2 & STROBE
POIT TFIA T262 LERS 2.S GO BACK TO
0914 7F3C 39 RTS CALLER
2035 7FID 3IS@2 NOGO PULS A NOT FOR PRINTER
PO36 7FIF 7E7F26 RETURN JMP FRINT ADDRESS
2QI7 TF42 END
NO ERRORS FOUND
CRHOOk. 2A9C o013
INIT JFoQ
NOGO 7FID @e27
P1 TFE @@=
PIA FF7Q ©@07 aa28 3372
PRHOONM @168 @019 22
PRINT 7F26 @36
PRNO PASLF 2925
RETURN 7F3F Q@23 3321

GI Sound Generator: Software
Control For Complex Sounds

we’ll have some fun. How about making some

interesting sound effects? Well, I'll show you how to
interface the General Instrument’s programmable sound
generator number AY-3-8910 to the Color Computer. The
features of this chip according to GI are:

eFull software control of sound generation.

®Interfaces to most 8-bit and 16-bit microprocessors.

eThree independently programmed analog outputs.

oTwo 8-bit general purpose 1/O ports (AY-3-8910).
eSingle +5 Volt supply.

This Programmable Sound Generator (from now on,
known as the PSG) is a LSI Circuit which can produce a
wide variety of complex sounds under software control. lts
flexibility makes it usefu] in applications such as music
synthesis, sound effects generation tone signalling and even
FSK modems (with a little extra circuitry). All of these
sounds can be produced with just a few simple POKEs,
leaving the processor free to do other tasks like calculating
more sounds, updating the screen or doing graphic anama-
tion (in the case of arcade type games). One or two pokes can
produce sounds that carry on for several seconds, or even
continuously.

This PSG is a register-oriented device. This means that
communication between the processor and the PSG is based
on the concept of memory-mapped 1/O. The control com-
mands are issued to the PSG by writing (POKEsor STAs)to
two memory locations. The first location (memory mapped
at hex address FF65) is to select which internal register you
wish to access. The second memory location is for the data
you wish to enter or retrieve and is at hex address FF64. All
functions of the PSG are controlled through 16 registers
which once programmed, generate and sustan sounds on its
own. More on how to program it later.

Referto List#1 to getall the parts needed for this project.
Itis not hard to put together, but like any electronic project,
care should be taken when working with static sensitive IC’s.

] ast month’s project was a practical one. This month

Quantity Part # Desc
] AY-3-8910 PSG
1 741.S133 TTL
I 74L.S04 TTL
] 74LS157 TTL
2 16 PIN SOCKET
1 14 PIN SOCKET
1 40 PIN SOCKET
2 01 UF CAPACITORS
1 10K OHMS RESISTOR
1 PROJECT BOARD RS #276-163

LIST#1

With the schematic (Diagram 1) in one hand and a solder-
ingiron in the other, it’s time to put the board together. Start
by getting the ground and B-Plus buses wired in. It is best to
wire all the connections to the connector on the side of the
board that has the lowest number. That’s the side with the

10

number one on the edge. The two buses run close to the edge
connector, it will be easier to connect to. Refer to Diagram 2
for the proper layout of the sockets. The rest of the soldering
is quite straightforward. Follow the schematic and cross off
each line after it’s done. This will eliminate any missed wires.
When you are finished, clean the board in the usual manner.
Check again the wiring with the schematic, remember that
the Y’er is not buffered and is not forgiving of wiring errors.
A short can cause many headaches. When you're finished,
insert the chips (remember pin 1's) and plug it in. Turn the

-

LSRR LT
| s]
' RZIRN A . Tal l AT

J
=

Pt | anee!

PRINTER StDE CONMPUARKR NO)

'
o]

r--w—o%

P—

<

computer on, when you get the familiar sign on, turn up the
sound, type in and RUN this program.

10 AUDIO ON

20 POKE $HFF01 $HB4

30 POKE &HFF03,& H3F

40 SR = &HFF65 : WD = &HFF64

50 POKE SR,RND(15)-1 : POKE WD,RND(256)-1 :

GOTO 50

This short program will generate ramdom sounds, beeps,
pops, and whistles in the speaker of your TV. This is more or
less just a test to make sure that the circuit is working. (You
will have to use your imagination to come up with better
software.) If you do not get any sound, check the wiring
again; this circuit does work. I have a working model right
here in front of me. Here, just put your ear a little closerand :
listen. Can you hear it? I told you it works. Okay, enough
foolin® around, the following descriptions of the PSG are
texcerpts taken from the Gl product description manual.

Sound Generating Blocks
The basic blocks in the PSG which produce the pro-

grammed sounds include:

Tone Produce the basic square wave tone frequencies

Generators for each channel (A, B, C) ‘

Noise Produces a frequency modulated pseudo ran--

Generator dom pulse width square wave output.

Mixers Combine the outputs of the Tone Generators -
and the Noise Generator. One for each
channel (A, B, Q).

Amplitude Provides the D/A Converters with either a

Control fixed or variable amplitude pattern. The
fixed amplitude is under direct CPU control; :

v

the variable amplitude is accomplished by
using the output of the Envelope Generator.
Envelope Produces an envelope pattern which can be
Generator used to amplitude modulate the output of
each Mixer.
D/A The three D/ A Converters each produce uptoa
Converters 16 level output signal as determined by the
Amplitude Control.

Dperation

Since all functions of the PSG are controlied by the
processor via a series of register loads, a detailed description
of the PSG operation can best be accomplished by relating
each PSG function to the control of its corresponding regis-
ter. The function of creating or programming a specific
sound or sound effect logically follows the control sequence
listed:

Operation Registers Function
¥one Generator Control RO-RS Program tone periods.
Noise Generator Control R6 Program noise period.
Mixer Control R7 Enable tone and/ or noise
on selected channels.
Amplitude Control R10-R12 Select “fixed™ or “envelope-

variable™ amplitudes.
Envelope Generator

Control RI3-R15 Program envelope period
and select envelope pattern

Tone Generator Control
[Registers R10, R1, R2, R3, R4, RS)

The frequency of each square wave generated by the three
Mone Generators (one each for Channels A, B,and C) is

—

NS BITE
83 82 91 DO

GRAPHIC REPRESENTATION
OF ENVELOPE GENERATOR
OUTPUT €3 K2 E) €O

mMCE~-<4200
MOP 4P
LER S 2 L L4 3
or0ZX

o
©
»

-

AN

£
»

ete] NINNNNNNNNIN

vlojajn \ y See Fig 4 tor detall

N
/
YAVAVAVAVAN
%

—— (VF— [P 1S THE ENVELOPE PERIOD
1DURATION OF ONE CYCiE

Fig. 1 ENVELOPE SHAPE/CYCLE OPERATION

obtained in the PSG by first counting down the input clock
by 16, then by further counting down the result by the
programmed [2-bit Tone Period value. Each 12-bit value i
obtained in the PSG by combining the contents of the
relative Coarse and Fine Tune registers, as illustrated in the

following:
Coarse Tune Fine Tune
Register Channel Register
R1 A RO
R3 B R2
RS C R4

[e7]0e]as]ne | 000 a7[oens]ne]{03]{02[01]00

NOT
ysgo

[Ynu]nwl et | 2 I ED) IR

12-bt Tone Penod (TP} to Tone Generator

Noise Generator Control
(Register R6)

The frequency of the noise source is obtained in the PSG
by first cutting down the input clock by 16, then by further
counting down the result by the programmed 5-bit Noise
Period value. This 5-bit value consists of the lower § bits
(B4-B0) of register R6, as illustrated in the following:

Noise Period
Register R6

ODOOOamo

NOT S-bil Noe Penod (NP)
USED t0 Nowse Generator

Mixer Control—1/0 Enable
(Register R7)

Register R7 is a muiti-function Enable register which
controls the three Noise Tone Mixers and the two general
purpose 1,0 Ports.

The Mixers, as previously described, combine the noise
and tone frequencies for each of the three channels. The
determination of combining neither/either/both noise and
tone frequencies on each channel is made by the state of bits
B5-BO or R7.

The direction (input or output) of the two general purpose
1/0 Ports (10A and 10B) is determined by the state of bits
B7 and B6 of R7.

These functions are illustrated in the following:

Mixer Control—1/0 Enable
Register R7

o7 [e [as | o« [83 [82 [o | 20 |

A~

Function | input Enadle
8

10 Pont [a
Function Nowe Enabie Yore Eravie
Cromnet | C | 8 [a c [o] a

11

Amplitude Control
(Registers R10, R11, R12)

The amplitudes of the signals generated by each of the
three D; A Converters (one each for Channels A, B, and C)
is determined by the contents of the lower 5 bits (B4-B0) of
registers R10, R11, and R12 as illustrated in the following:

Amplitude Control

Register Channel
R10 A
R1l B
R12 C

(e7[ee[Bs|es]3]e2]a1]e0]

.ﬁyy\ l\

EEEm

4-bit “fixed”
amplitude Levet.

lmpmuoo
“MOGe"

Envelope Generator Control
(Registers R13, R14, R15)

To accomplish the generation of fairly complex envelope
patterns, two independent methods of control are provided
in the PSG: first , it is possible to vary the frequency of the
envelope using registers R13 and R14; and second, the rela-
tive shape and cycle pattern of the envelope can be varied
using register R15. The following paragraphs explain the
details of the envelope control functions, describing first the
envelope period control and then the envelope shape/cycle
control.

Envelope Period Control
Registers R13, R14)

The frequency of the envelope is obtained in the PSG by
first counting down the input clock by 256, then by further
counting down the result by the progrmmed 16-bit Envelope
Period value. This 16-bit value is obtained in the PSG by
combining the contents of the Envelope Coarse and Fine
Tune registers, as illustrated in the following:

Envelope Envelope
Coarse Tune Fine Tune
Register R14 Register R13

[er]ea]esTexTes]ee]e ao] o7[ne[ns[0e{n3{a2]0: |00

[errs]er-Jewofeesz[errifer o ers [uru [err [eme Jers [era Jem [era [v [enm:

18-tit Envelope Period (EP)
to Enveiope Generator

12

Envelope Shape/Cycle Control
(Register R15)

The Envelope Generator further counts down the enve-
lope frequency by 16, producing a 16-state per cycle enve-
lope pattern as defined by its 4-bit counter output, E3 E2 El
EO. The particular shape and cycle pattern of any desired
envelope is accomplished by controlling the count pattern
(count up/count down) of the 4-bit counter and by defining
a single-cycle or repeat-cycle patern.

This envelope shape/cycle control is contained in the
lower 4 bit (B3-B0) of register R15. Each of these 4 bits:
controls a function on the envelope generator, as illustrated.
in the following:

Envelope Shape/Cycle
Control Register (R15)

{B7]8s|Bs]B4]23]82]61]80] .
K I l‘- Hold

Enveiope
Generator

Attack

Cantinue

- GRAMIC M PRESENTATION OF
THE DECHMAL VALUES OF
ENVELOPE GENERSTOR “
" OUTPUT 3 E2E1 £D

i =

Fig. 2 DETAIL OF TWO CYCLES OF Fig. 1
(ref. waveform “1010” in Fig. 1)

D/A Converter Operation

Since the primary use of the PSG is to produce sound tor
the highly imperfect amplitude detection mechanism of the
human ear, the D/ A conversion is performed in logarithmic
steps with a normalized voltage range of from | to I Volt.
The specific amplitude control of each of the three D/ A
Converters is accomplished by the three sets of 4-bit outputs
of the Amplitude Control block, while the Mixer outputs
provide the base signal frequency (Noise and/ or Tone).

(Reprinted by permission, courtesy General Instru-
ments/Microelectronics)

.GI PROGRAMAARELE

" FOR THE RADID SHACK 80OC

€y TONY DISTEFAND

SOUND GENERRTER

31 F—t d
X]
30 A—= ge- y iy L . owr L1V
2y AIG—00-=8 " ¢ CE—=s
. 1 ™~ E . 3 = co
258 @ }—— n s EES}—=H -
1C-2R 2 B J—3L—" |
1 1 & 2%
2 25 G p—o1 AT
IC-2E 2y @__J}. . v
n Ly SN
23 S < ; +—ErE> 35
1c-2¢ 10 E}—32) . <
12 S € 11 o1 k13 Rl-1keeS
2z ol 12 oz }—22 L
13 03— '
14 T —25 e
15 (TE }—3&] o
1 e 31 2
16 (OE }—=1 —
< - IS : T . nl
&G 11 T —24 ;
1 == I % : : 33 <G} — 1
[: s “ Ll 3.
T 3+ <GHT—— =
@-JE::«@-——L Ic ND. *54 GND
12 1r-zn IC-1 MLEII3 1 &
Ir-z MLEOY M7
103 AY-3-8310 %0 1
IC-% MLSISA 1€ &

w

15

NOAMAL 2L
VOLTAGE

NOTE ENVELOPE ONLY—
NOISE AND TONES
ARE DISABLED

DECIMAL VAL UE
OFEJE2EVEO

EP=ENVELOPE PERIOD

Fig. 3 D/A CONVERTER OUTPUT

Fig. 5 MIXTURE OF THREE TONES

.........

WITH FIXED AMPLITUDES

A Hardware Hacker
Cleans House

times just too much. First, | must think of a good

project, then, there is the research. Making diagrams
and designing circuits. After that, there is the proto-typing,
(that is the hardest part and the most time consuming)—
buying the parts, soldering it together, and then trying to
find out why it doesn’t work. Sometimes that requires a
whole change of circuit. After the hardware works fine, it’s
time to write the article. All this must be leading up to
something; it is, this month is cleanup month. It’s time to
answer a few questions and clear up a few problems. That is
to say | didn’t have time to complete a project. But, 1'll tell
you this, there will be some hot projects coming this fall.

Okay, the first thing on the agenda is a correction: Radio
Shack does have a | mega-ohm potentiometer. The part
numberis 271-211. This correction comes from the April 1983
issue of the Rainbow. It stated that Radio Shack did not
carry this part, but as someone pointed out to me, they do.
This was in my finger-saving rapid-fire project.

The next thing is a little longer. A reader sent me a letter
and asked me if it was possible todo my Reverse Screenona
“F” board, or the latest version, the one which has the
smaller RF shield. Well, it is possible todo it. There are just
a few diffcrences. The first change is the “U.,” or chip
numbers. Since Radio Shack decided to change the com-
plete layout of the Color Computer, they changed the chip
ID numbers. U29 on the old board now becomes U8 on the
new board, that’s the 74LS02. U7 on the old board becomes
U6 on the new board, that's the MC6847. | stated in my
article you have to remove the 74L.S02 and bend the pins
upwards and replace the chip in the socket with the pins
sticking out. Well you can't do that on the new board. Radio
Shack decided to save a few cents by not putting this chip in
a socket. Fortunately they had the insight not to solder the
input pins to ground. When making the modification you
don’t have to remove the chip. just solder your wire straight
to the pin, there is nothing connected on the other side. Use
the same pin numbers as the other chip. Remember though,
you still have to bend pin number 32 on the MC6847. Apart
from these changes, the reverse screen will work fine.

The next problem is with my Y'er. You cannot plug in a
Radio Shack program pack or any other pack for that
matter, into onc of the slots when the disk controller is
plugged in the other slot. 1t will not work and might even
cause damage to the computer and or to the disk controller.
This is becausc the bus is not buffered nor does it have the
switches to select between different slots. It will only work
with my projects or other projects that are independently
memory mapped. Thatis to say it does not use the CTS (pin
number 32 on the cartridge connector) or SCS (pin number
32 on the cartridge connector) for selecting the device. These
signals are being used by the disk controller software and

Trying to come up with one project a month is some-

14

hardware. If another device were to use these signals, there
would be a bus contention and the CPU would get very
confused. Maybe later on I could work on an adapter that
would let you use these signals without any problems.

Another point of interest to you goes back to my article on
memory chips. If you can recall, I talked about ROMS and
EPROMS. Here s a little more. The socket that is available
for Extended BASIC inside your computer has 24 pins. It
usually holds an 8K ROM supplied by Radio Shack. This s
where Extended B45/C resides. It is necessary though, to put
an Extended 845/C ROM there. You can put different soft-
ware there. All you nced is to insert a chip. What chip? That
depends on how long your program is. It is possible to put
software that takes from 1K to 8K of memory. Most of the
time anaverage user putsinan EPROM, because they are so
easy to program, and are relatively inexpensive. All you
need is some software and an EPROM Programmer, and of
course an EPROM. Most of the common EPROM chips
available today are 24 pins, that means that they are pin
compatible with the socket (in the Color Computer) and will
plug into the socket directly. There is however, one chip that
is not. This is the 2764 8K EPROM. They why use it? You
might ask. Well it’s the least expensive 8K EPROM chip on

This adaptation works for the 2764 EPROM only. After
the adaptation, it will fit in any of the Color Computer’s
ROM sockets: BASIC, Extended BASIC, or even the Disk
BASIC socket.

This adaptation can be done directly to the chip or in.
between two extra sockets. If done with the sockets, one 24
and one 28-pin socket is needed. The 28-pin to seat the
EPROM and the 24 to go into the other socket.

1) Directly on the Chip.

a) Solder pins 1, 28, 27 and 26 together.

b) Pry up pin 20 so that it does not go back in the socket

when the chip is replaced.

c) Solder pins 20 and 22 together

d) Solder a wire to pin 2 and insert the other side of the

wire into the hold left by pin 20.
e) Insert the chip so that pin 3 on the chip goes into pin 1 in
the socket.
2) Using two sockets.

a) Align pin 3 of the 28 pin socket on top of pin | of the 24

pin.

b) Solder all the pins but pin 20 of the 28 pin socket to the

24 pin socket.

c) Solder pins 1, 28, 27, 26 of the 28 pin together.

d) Solder pin 20 to pin 22 on the 28 pin socket.

e) Insert chip into the top socket. Pin | of the chip goes

into pin | of the socket.
- f) Insert the bottom socket into computer socket. Pin |
goes into pin 1 on both sockets.

The only other consideration left is when programming
he 2764. The above modification reverses the address lines
A1 and A12 as seen by the Color Computer. This means
hat, at programming time, these lines must be again rev-
irsed. This can be done in software or in hardware. Hard-

are requires that the two traces that lead to the EPROM
rogrammer socket be reversed. In software all you have to
ois transfer the second 2K block of memory with the third
K block of memory.

Some of you who have had problems with my projects
have written me asking for help. I must confess. 1 have a
hard time answering letters. If you do write me, be patient, |
will answer in time. Tell you what, I'll set aside one nighta
week, let’s say Monday night, when you can call me at home,
and talk to me about your problems. My telephone number
is (514)473-4910. But please, don’t call before 7 p.m. or after
11 p.m. The cost of your long distance call might be worth
not having to wait for a response in a letter. P

Build A Speaker/Amplifier
For Your Computer

Color Computer. Today, two and a half years later |

bought a video monitor. It is a standard composite-
video monitor. It is a 9” green phosphorous screen Electro-
home. | know what you are thinking, “Oh no, not another
video monitor adapter!™ Well, I'm not about to bore you
with another version of this adapter. I used one of them
myself rather than design my own. When | connected my
monitor, I was delighted with the clear, crisp quality of the
picture. I found that it had one thing missing—a speaker. |
could not make any sounds with this monitor because it did
not havce a built-in speaker. At first, | would keep my color
TV set next to it with the volume up. That was quite an
inconvenience. Well, you guessed it, this month’s project is a
low cost, built-in spcaker and amplifier for the Color Com-
puter. The whole thing fits under the keyboard. Iteven hasa
volume control with an on/ off switch.

The heart of the amplifier is the power 1IC# LM80. This is
acomplete precamp and amp in one. It requires a minimum
of support parts and i1s quite rugged. It also has a high input
impedence, about 150k ohms. A high impedence is needed in
our case because the sound circuit on the Color Computer is
highimpedence. I you look in the 83 Radio Shack catalog,
you will see that they say the power supply has a maximum
of 10 volts. That is not true, it must be a mistake in printing.
Itcan, in fact, take up to 22 volts for B+. We will be using 12
volts.

To construct this project you will need the standard pro-
ject tools— things like screwdrivers and pliers and cutters
and soldering iron and solder and a drill to mount the
volume control. You will also need everything on the list of
parts. See Figure 2. All of these parts are quite common and
need not be bought at Radio Shack. As a matter of fact, |
had all of the parts in my parts bin. 1 have included the
Radio Shack numbers, where possible, just as a matter of
convenience. Mount all of the components except the
speaker and volume control on the Proto board. Following
the schematic in Figure 1, solder all the components
together. All the ground points indicated on the schematic
should be soldered together at one point. This is to prevent
what 1s known as ground loops. A ground loop is when an
electrical signal has two or more paths to get to the same
point. This path or loop can act like an antenna, in which it

January 9, 1981, that was a great day. | bought my first

15

can radiate RF noise or act like an RC circuit and cause
feedback. Though it is not indicated in the schematic, pins 3,
4,5,10,11, 12 arealso grounded. This acts like a heatsink for
the 1C, and should be enough for most applications, but if
you think that you’ll be using this amplifier very loud, it

Figure 1
c-1 r-1
In ...I }—_'\\.Avlsv
LR

would be wise to add a small heatsink to the IC. Also, make
sure that the ground wire that goes from this board to the
main board is at least 22 gauge. Make this wire about 4”
long. Now, the B+ line (12 volts) should also be 22 gauge.

This wire will go to one side of the switch on the pot. Make
this wire 5 long. The other side of the switch will go to the 12
volt supply. You might think this to be heavy wire, but this
chip can deliver up to 8 watts. (That is a lot of power.) The
switch-to-power wire should be about 10” long. That will go
to the B+ on the main board. The connections for the
speaker should be 24 gauge. Make these wiresabout 5” long.
That should be long enough to reach the holes on the other
side of the computer just underneath the keyboard. Solder
the other ends of the two wires to the speaker. There are two
more wires from the board, and they go to the volume
control—one wire to the center and the other to the left side.
Make them about 5” long, too. That will be long enough to
reach anywhere in the front of the computer.

Open the computer in the usual way and remove the
keyboard. Place the components in accordance with Photo
#1. You may want to tape them down temporarily so that
they don't move around too much. Drill a hole in the com-
puter to mount the volume control. Personal taste will judge
exactly where to drill it. The hole should be */,6”. Mount the
volume control in the hole. Be careful not to break the
attached wires. Make sure that the position of the volume
control will not getin the way of the keyboard. The next step
is to connect the B+ (12 volts) and ground. If you have the
“F™ (or 285) board, find the power by looking at the photo.
It is the jumper for 16/64K memory. Use the one marked
16K. For the ground connection, scratch off a bit of the
green coating on the PCB just to the right of the keyboard
connector, under C59, and solder to that. If you have
another version, use Test point #9 for the 12 volts and Test
point #4 for ground. The last connection to make is the
input. That connection goes all the way to the top. It con-
nects to pin #3 on the RF adapter. This is all that has to be
done; but before you close the computer, check your work.

Replace the keyboard and turn the computer on. To test
your amplifier, any sound command will work. This one line

program works fine:
10 SOUND RND(255),1 : GOTO 10

Turn the volume control on. You should hear a click. Turn-
ing the volume control up should result in some random
sounds coming out of the speaker. |00 IFSOUND =NONE
THEN TROUBLESHOOT ELSE CONTINUE. Only kid-
ding folks, but that is the next step. If you don’t get sound,
check your wiring and check for cold solder joints. Make
sure that the chip is plugged in the right way. If the sound is
loud at first and drops as you turn the volume control up,
you have the outside wire on the pot on the wrong side.
Unsolder, and reverse it. Other than that, you should have
no problems.

Now, you could leave the speaker and amplifier just taped
down, or you could use some rubber cement or screws.
Don't use a permanent glue though, it could make a mess if
ever you have to remove this thing from the computer or
change the speaker. When all checks out, replace the cover
and enjoy your new speaker and amplifier.

Figure 2 Parts List

Part Description RS &
R-1 Resistor 150K ohms 271-047
R-2 Resistor 2.7 ohms n/a

C-1 Capacitor 10 uf @ 16v 272-1423
C-2 Capacitor 022 uf @ 16v 272-1066
C-3 Capacitor 10 uf @ l6v 272-1423
C4 Capacitor 470 uf @ 16v 272957
C-5 Capacitor 220 uf @ 16v 272-1006
C-6 Capacitor d uf @ 16v 272-1069
S-1 Speaker 2 to 5 inch 40-248

IC-1 Amplifier LM- 380 276-076
pPC Proto-Board .l inch spacing 276-1392
V-1 Potentiometer 100K ohms 271-216

~

Install Your Own
ROM ‘Switcher’

eady 1.0, 1.1, 1.2, 7.5, 9.4 hike! No, this is not a
Rfootball lesson. It's a problem that Radio Shack has

presented Color Computer users. There are pres-
ently three versions of the BASIC ROM. These are 1.0, the
very first version to come out; 1.1, the second one to come
out and probably the most common; and the latest one, 1.2.
There are many differences between them, (I am not about
todescribe all of their differences in this article), but whena
friend of mine bought the latest version of the Color Com-
puter, he was very happy to find out that a lot of the basic
software ran a little faster on the 1.2 version. Of course, 1
wanted the newet version, too. But I also wanted to be
compatible with the older software. I wanted the best of the

16

wo worlds. So 1 got out my old soldering iron and pro-
ieeded to do just that. I'll show you how to modify your
somputer to have and be able to select between two of them.

The first thing you'll need to know is what version you
save in your computer. The way to do that is simple. You
just have to type in: EXEC 41174 [ENTER]. This will tell
you what version you have. If you don't have the 1.2 version
then read on' You, too, may want to be able to select
between the two. If you have the 1.2 version already, you
may want to have the 1.1 version also. If you have 1.0, you
may want to have 1.1 also, or 1.2 — in fact you may have any
two of the ROMs.

The next thing you have to do is to acquire the newer 1.2
BASIC ROM (or whichever one you want to add). 1 went to
my local Radio Shack Computer Center and tried to order
one. They said that it would take weeks toarrive. | am much
too impatient to wait that long, so 1 called up my old friend
Bob Rosen from Spectrum Projects. He had some in stock
and sent me one right away.

Now it’s time to get down to the nitty-gritty of this
month's project. All you will need for this project is the 1.2
ROM (or any other), two 10K ohm resistors and a single
pole double throw switch. A good switch to use is a RS
#275-625. Any SPDT switch will work, but 1 like this one
because it is very small and will fit almost anywhere. Open
your computer in the usual way. Remove the BASIC ROM
withan IC remover. If youdon't havean IC remover, a small
flat screwdriver will work. Stick the blade under one side of
the IC. Push in very slowly. The 1C should start to lift. Don’t
push too hard or too far in. Push in just enough so that the
IC begins to lift. Now remove the screwdriverand insertitin
the other end. Again push in until it starts to lift. Keep doing
this procedure back and forth until the 1C comes out.

Next, mount the new I1C on top of the old one. Make sure
that pin | on the old pin matches pin I on the new one. It’s
time to solder them together, but leave a space in between
the two chips, so that the air can circulate between the chips
and keep them cool. You don’t want a heat problem to
develop. 1 used a popsicle stick as a spacer. Solder all the
pins except pin 20. Leave pin 20 of the two ROMs unsol-
dered. In fact, pull them apart a little just to be sure that you
don’t. Next, cut the two 10K ohm resistors so as to make
them fit. Examine Photo | to get the proper positioning of
the two resistors. Solder them together according to the
photo. Solder the resistors to pin I of the 1C pack (or better
known as piggy-back — remember 32K). Next, take two
small pieces of light gauge wire (wirewrap wire 278-501 from
RS is a good wire to use) and wire the resistors and the
protruding pins together using Figure | as schematic.
Remember to clean any residue left from soldering. Solder
the other ends of thes wires to each side of switch 1. The
center pin of the switch goes to the empty pin 20 on the

17

socket, the pin that we lifted earlier. The best way to do that
is to take a /6" piece of stiff wire (a snipped off piece of
resistor lead will do just great) and solder it to the end of the
wire. The end of this wire will go into the empty pin of the
socket.

Find a good spot to mount the switch. You will need a
3 /16" drill bit and drill if you used the RS one. I mounted
mine on the back cover just left of the reset button. Okay,
now insert the 1C pack into the socket. Make sure that pin 20
on the bottom IC does not enter the socket. It must be bent
enough so that it rests on the outside of the socket and
another wire can be inserted into the hole. Insert the wire
that comes from the center pin of the switch into the hole.
Check your work carefully. When you think all is right, turn
on the computer. Make a note which side the switch is on
and type in EXEC 41175. This will tell you which ROM is
active. Turn the computer off, flip the switch and turn it on
again. Typein EXEC41175again. Now you should have the
other ROM active. Note the setting on the switch and mark
it above the switch. Flipping the switch when the computer
is on will not harm the computer but it is not recommended
because the BASIC interpreter might get lost. That is to say,
the software expects certain routines to be in certain places.
If you switch the routines around (by switching the ROMs)
without telling BASIC about it, BASIC will jump to the wrong
place and get lost. Close up the computer and tidy up your
room. I'll see you next month.

Figure 1
T
% R110K()
1
l ROM 1 PIN 20
1 - -
-— $ - »:;-{3:- s5v
OuUTPUT o
TO ,,;:' R2 10K ()
EMPTY i
PIN 20 -
ROM 2 PIN 20

UPGRADING YOUR
COOR COMPUTER 2

long, long, long, long, long time ago Radio Shack
introduced a little gem called the Color Computer. It

had a whopping 4K RAM memory. The first thing
you knew, the hobbyists were able to expand this computer’s
memory to 16K, probably even before Radio Shack intro-
duced its 16K. Then the hobbyists boosted the memory to
32K by a method known as piggyback, again before Radio
Shack. The hobbyists didn't stop there, 64K memory was
next. But the 64K memory did not consist of piggybacking
four sets of 16K chips, it was a different chip. All of the 32K
piggyback chips were put on the shelf or put in computers
whose owners did not care for 64K . Where am 1 leading with
all this, you may ask? Well, a few months ago Radio Shack
released ariother little gem, the Color Computer 2. Only this
time they started with 16K memory and after looking inside
one, | saw that it was very easy to upgrade to 64K. Most of
the owners will be upgrading to 64K. This is part onc of this
month’s article: How to upgrade from 16K to 64K memory
in the Color Computer 2. To upgrade your Color Computer
210 64K, you must first get a Color Computer 2. Ha ha, only
kidding, but you will need some 64K memory chips. The
chips to getare #4164, with an access time of 300as or faster.
There are many different suppliers for this chip, with many
different numbers, but as long as they are 4164 compatible
they will do.

Open the €CC-2 by removing all of the screws on the
bottom. Remove the top cover. Carefully remove the key-
board by pulling the ribbon wire out by the dark colored
base. The cight identical chips along the bottom of the PCB
are the old 16K chips. Using an 1C extractor or a small flat
screwdriver, remove the eight chips. Put them aside for now.
Insert the 4164 chips. Make sure that pin one on the chip
goes in pin one in the socket. The only other thing you have
to do is to make one solder joint. Look for a small *WI"in
between the 6822 PIA and the SN74L.S244 chip. Right
above this W1 mark are two solder points. Solder these two
points together and voila, 64K memory. That's all there isto
it! Now. if a whole lot of people convert to 64K, that will
icave a lot of 16K chips sitting around doing nothing.

This will be the second part of this month’s article. Those
16K chips that are removed from the Color Computer 2 to
make 64K can be used to give you 32K. Yes, it will be in the
piggyback fashion. It is a httle harder to do than a 64K
upgrade, but nevertheless can be done in less than one hour.
To upgrade a 16K Color Computer 2 to 32K you will need
eithera set of 16K chips removed from another Color Com-

uter 2 or buy a set of 16K chips. One important note to
rcmember 1S t)},\ese chips are not ordinary 16K chips. They
are not the same chips that come from the regular Color
Computer. The chips that come from the first CoCo are
§116 chips. The 16K chips that go into the Color Computer 2

18

are 2118 chips. The main difference between a 4116 and a
2118 chip is that the older type 4116 needs three power
supplies to run. It needs +5 volts, +12 volts and -5 volts. The
newer 2118 needs only +5 volts to run. Itis also more power
efficient.

If you piggyback 4116 chips in the CC-2, it will not work.
and might even do some damage, sodon’t put4116 memory
chips in the CC-2. Now that the warning has been said. it's
lime to continue. Remove the eight memory chips from the
board. You should now have 16 memory chips, eight from
your computer and eight from another source. Put half of
them aside for now. Examine one of the chips carefuily,
notice the pins. When a pin comes out of the chip it is wide,
then it becomes narrow. The narrow part of the pin is the
part that goes into the socket. With a narrow pair of long-
nose pliers (or a finger, if you have narrow fingers) grab the
narrow part of pin 4. Bend the pin back and forth until it
falls off. Be careful that you don't bend the wide part of the
pin. That part of the pin should stay intact. Do thisto seven
more chips to give you a total of eight chips with the narrow
part of pin 4 removed. Next take out the untouched chips.
Mount the chips with the short pin on top of the chips with
all the pins. The photo will help you determine how to
position the chip. This photo was taken with a mirror, so
that you can see both sides of the chip (there is only one chip
inthe photo). Before you start soldering, make sure that pin

| on the top chip is on top of pin one on the bottom chip.
Leave a small gap in between the top and bottom chip. This
Is needed for ventilation. Next, solder all the pins together.
All but pin 4 of course, it is now to short to reach anyway.
Okay, now get a small piece of wire. Any thin wire will QO, I
used some Radio Shack wirewrap wire. Cut eight pieces
ebout 14" long. Strip off about '/12" of insulation off each end
of each wire. Solder one end of this wire to pin 4 (the one
with the short leg) of the chip-pak and the other end to pin9
(still on the top) on the chip. Do this to all eight chip-pgks.
After you are finished clean the chip-paks carefully with a
resin remover. Radio Shack now carries resin remover. The
part number is 64-2322. It is not of the best quality, but is
good for small jobs like the chip-paks. After the chlp.-p.aks
are clean, check them over for shorts or cold solder joints
and repair them. When you are surc that they are all okay,

plug the paks into main board. Again, make sure that pin
one on the chip goes into pin one in the socket. When you are
finished, turn the computer on and type in:

PRINT MEM [ENTER]

Without a disk drive plugged it, the amount of memory
displayed should be 24871. With a drive plugged in, the
value should be 22823. And finally without Extended BASIC
it should be 31015. If you get these values, all is okay and you
canclose up your CC-2. That’sall thereistodotoupgrade a
CC-2 from 16K to 32K. If you have problems, chances are
that you soldered one of the chips in backwards. In that case
you might as well throw the two chips away and start again.
Well, that’s all for this month.

| hope you have lots of good memories. A

Trouble Shooter Makes
Program Pak Connection

thing I want to discuss is about telephone calls. 1 was

good enough to give out my number to those people who
had problems with my projects or want to express an idea or
opinionand I think that it is great that I got a lot of response;
but please limit your calls to Monday nights only! For those
of you who do not have my number and those of you that
just started getting the Rainbow, my number again is (514)
473-4910. Call only after 7 p.m. EST and not too Jate. | am
an early riser!

Okay, now back to the order of the day (month?). One of
the best things to come out of these phone calls is that people
can point out errors in my articles. (Yes, I do make mistakes.
You should see my replacement-parts bills.) The faster 1
know about the mistakes, the faster I can write a fix for
them. The main reason for the mistakes or errors is the
transfer of information from my proto-board to you, the
Rainbow reader. All of my projects are tried and tested
before I write them in here. If a project that you put together
does not work, check your work carefully. If it still doesnt
work, call me and I'll give you a fix. If I can’t give you a fix
on the spot, I'll write one up in the following article.
Speaking about fixes, here is one.

There is a problem with my internal speaker/amplifier
project. The capacitor marked C-2 in the parts list is wrong.
Itis not a .022 uf capacitor. It should be a .002 uf capacitor.
Also, the part number for the LM-380 (IC-1) is not 276-076
likeit says in the article, but 276-706. Sometimes my fingers
getcarried away. The last thing to mention is a misprint in
Figure 1. The little scribble to the right of C-2 should read
“6.” That is pin #6 of the 1C. I would like to thank Hilton
Wasserman for pointing this out to me. For your interest,
the schematics in “Turn of the Screw™ are drawn with the
help of my Color Computer and an EPSON printer. | use

Iwould like to get right into business this month. The first

19

the program Schematic Drafting Processor, currently being
distributed by Spectrum Projects. See the ad in this
magazine.

I received a letter from Kyle Rogers this month, this is a
part of it; *. . . | enjoy reading ‘Turn of the Screw," and |
would like to build many, if not all, of the projects presented.
But I find that I have neither the tools, skills, nor the time to
construct the devices. Many hardware columns in other
magazines have alleviated this problem by making an
agreement with an outside company for that company to
manufacture and market pre-assembled versions of the
projects presented in that magazine. . . ." Can anyone help?
Please contact me through the Rainbow.

The remainder of this article will be in answer to Tewfick
Chidiac’s question, “What do all the pins in the Program
Pak connector, on the side of the computer, connect to,
anyway?” Okay, Tewf, here is a detailed description of the
Program Pak connector.

First of all, the main use for this connector is to plug in
(you guessed it), Program Paks. These are little plastic cases
that contain a small PCB (Printed Circuit Board). On this
PCB these is usually one or more ROMs (Read Only
Memory). This is where the game or utility software is
stored. Other examples of different types of Paks are; disk
controllers, RAM (Random Access Memory) boards, print-
er ports, 1/ O (Input/ Qutput) boards, serial communications
boards and so on. They all have one thing in common. They
access the “bus.” A bus is a term used to represent common
wiring that connect to many components. Having access to
the bus lets you expand the capabilities of your computer.
The bus in the Color Computer fall into three main
categories; data lines, address lines and control lines. Our
computer has eight data lines, it is known as an 8-bit data
bus. Italso has 16 address lines and several control lines. The

following is a list of all the lines (or pins) that come out of the
connector.

Color Computer Bus Descriptions
PIN# Function Description Direction
1 -12v -12 Volts Output
2 +12v +12 Volts Output
k! HALT Halt line to CPU Input
4 NMi Non Maskable Interrupt Input
5 RESET Resets the computer Input
6 E Main clock signal Output
7
8
9

8 Secondary clock signal Ouptu
Cartridge detect signal Input

+5v +5 Volts Output
10 DO CPU Data line #0 1/0
11 Di CPU Data line #1 I/0
12 D2 CPU Data line #2 1/0
13 D3 CPU Data line #3 1/0
14 D4 CPU Data line #4 I/O
15 D5 CPU Data line #5 1/0
16 D6 CPU Data line #6 I/0
17 D7 CPU Data line #7 1/0
18 R/W Read/Write signal Output
19 A0 CPU Address line #0 Output
20 Al CPU Address line #1 Output
21 A2 CPU Address line #2 Output
22 A3 CPU Address line #3 Output
23 Ad CPU Address line #4 Output
24 AS CPU Address line #5 Output
25 Ab CPU Address line #6 Output
26 A7 CPU Address line #7 Output
27 A8 CPU Address line #8 Output
28 A9 CPU Address line #9 Output
29 AlO CPU Address line #10 Output
30 All CPU Address line #11 Output
31 Al2 CPU Address line #12 Output
32 CTS Cartridge Select signal Input
33 GND Ground Return Input
34 GND Ground Return Input
35 SND Sound Input Input
36 SCS Spare Select signal Output
37 Al3 CPU Address line #13 Output

38 Ald CPU Address line #14 Output
39 AlS CPU Address line #15 Output
40 SLENB Device Disable Input

I'shall describe each pin in detail and where it connects to
inside the computer. 1) This output pin comes from the
power supply. It supplies -12 Volts to any component,
maximum drain is 100.ma (miliamps). 2) This output pin
also comes from the power supply. 1t supplies +12 Volts and
has a maximum of 300 ma. 3) The Halt line is an input line
that goes directly to the CPU. It is tied to normally HI (+5v),
by a resistor of 4.7k ohms. When this pin goes low, the CPU
completes its last instruction and goes into the tri-state
mode. Tri-state means that all of the CPU bus lines are high
impedance, They are neither HI nor LOW. It is as if nothing
was connected to it. 4) The NMI input line goes directly to
the CPU. Itisalso tied HI. When this line goes low, the CPU
performs a non-maskable interrupt. That means that the
CPU will jump to a predetermined address and continue to
execute this code until it reaches an RTI (Return from

Interrupt), in which case it will continue doing what it was
doing before the NMI line went low. 5) The RESET line
connects to the CPU and all the man chips that have reset
lines. All except the VDG chip. That is only controlled by
the external [RESET] switch in the back of the computer.
The function of the RESET line is to initialize all the
components to powerup conditions. Under software control,
if the value in byte # $71 (113) is not equal to $55 (8 denotes
Hex), the computer willdo a cold start. If it is, it will attempt
todoaarmstart. This line is also tied HI, butitha 100k ohm
resistor. 6) The E clock is the main timing for the CPU. The
E clock is generated by the SAM (Synchronous Address
Multiplexer) and goes into the CPU and nto the bus. 7) The
Q clock is the secondary clock. It is also generated by the
SAM. The Q clock leads the E clock by 90 degrees. 8) This
input goes into one of the PlAs (Peripheral Interface
Adapter). It is tied HI with a 10k ohm resistor. The function
of this line is to detect the presence of a Program-Pak and to
jump toit. 9) This output pin comes from the power supply.
It supplies +5 volts to any component with a maximum of
300ma. 10-17) These eight DATA pins provide bi-direc-
tional communications between the CPU and the system.
They connect directy to the CPU and all other data related
chips. 18) The Read/ Write line is an output which tells all
data related chips which direction the data lines of the CPU
are in. 19-31 and 37-39) These 16 pins address lines come
from the CPU and tell all other data related chips, where in
memory the CPU wants to Read ot Write. 32) This output is
a chip select. It comes from pin #12 of the 74LS138. It is
memory mapped to select memory between $C000 (49152)
and $FEFF (65279). This is a 16K block of memory known
as the cartridge memory or the Color Disk BASIC ROM area
if you have a disk drive plugged in. The pin is active LOW,
which mans that the meory chips associated with this pin
will respond when it is low. 33-34) These two pinsare ground
returns. All signals are returned to the system through them.
35) This input is connected directy to the sound multiplexor .
(MC14529b) pin #12. With this pin, sounds in the audio
range can be output to the TV speaker. 36) This output is
another chip select. It comes from pin #9 of the 75L.S138. It
is memory mapped to select memory between $FF40
(65344) and $FFSF (65375). This is a 32 byte long block of
memory mainly used for external 1/ O for such devices as a
disk controller or PlAs. The pin is active LOW, which
means that the 1/0O devices associated with this pin will
respond when itis low. 40) This input is connected to pin 6 of
the 74L.S138. This active LOW pin disables the internal
device selection. This allows decoded but unused sections of
memory to be used by the cartridge hardware.

Now that you know all about the cartridge connector, go
out and experiment but be careful, CPUs and SAMs are
quite expensive.

References:

Radio Shack Color Computer Technical Reference Manual
Motorola Microprocessors Data Manual,

Artwick Microcomputer Interfacing

Adding Function Keys
To Your Keyboard

better) keyboards introduced for the Color Computer by

companies other than Radio Shack. Some of them are
functionally the same as the original Color Computer key-
board, meaning that all the keys are all in the same place and
do ali the same things. There are, however, some keyboards
that are different. They have extra keys. Some have one
extra key, some have more. Why are these keys there? What
do these keys do? How can I get these keys to work with my
computer without having to buy? These and many more
questions will be answered in this article.

The first thing I'll give you is a background on how the
:Color Computer keyboard works. The keyboard itself is
nothing more than a bunch of switches. Fifty-two to be
exact. The computer monitors these switches and when you
press one, the computer responds in some predetermined
way, most of the time by putting an ASCII character on the
screen. The computer must be able to read or scan all of the
52keys. One way to do this would be to have 52 inputs to the
icomputer via many P1As (peripheral interface adapters). A
better method of reading these keys is to matrix the switches.
This is where the switches (or keys) are arranged in rows and
columns. That is how the Color Computer reads the
keyboard.

Figure | shows us how the keyboard is wired. The PIA
marked number U8 (U18 on the “F” board and U7 on the
CoCo-2) is the only digital circuit used. The PIA chip is a
programmable interface device which functions as both an
input and an output register. The eight keyboard columns
are attached to the B side of the PIA. These eight lines are
programmed to be outputs. The seven keyboard rows are
attached to the A side of the PIA. These seven P1A lines are
programmed to be inputs. To read the keyboard, only one
column is enabled by writing a zero in the bit that corres-
ponds to that column and by writing ones in all the other
bits. If a key has been pressed in that column, one of the
input lines will be a zero and the key location will corres-
pond to the bit that is low. By scanning each column in the
keyboard, all of the keys may be checked. Eight columns by
seven rows should give you access to 56 keys. The color
Computer only offers you 52. There is a difference of four
locations (or keys) that are not accessible from the key-
board. There are simply no switches for those locations.
Okay, if you look carefully at Figure | again, the row with
the[ENTER], [CLEAR], [BREAK] and [SHIFT] keys has
the four empty spots. That means that all we have to do is
add four switches to these empty spots and then we can
uccess all 56 locations.

Figure 2 shows how to wire up four switches. These
switches can be any single pole, single throw, normally open,
or momentary on switches. The Radio Shack switch #275-
1547 will do fine. There are five to a package, and they're not

In the last few months, there have been many new (and

21

very expensive. They are small enough that they fit aimost
anywhere. In Figure 2, the numbers that go to the four
switches and the common are the pin numbers to the key-
board connector. That is where the keyboard connects to the
main board. The connector is marked 1 and 16 oneachend.
Itis very easy to solder to the back of the connector on all the
Color Computer models. If you have a CoCo-2, then it is
easier to solder the wires to the PIA itself. You cannot get to
the back of the CoCo-2 keyboard connector, it is soldered
straight up. The pin numbers that correspond to the P1A are
marked in brackets.

Before you solder in the wires and switches, you must
decide where to put the four switches. There are many
possibilities. 1 drilled four holes on the top cover of the
Color Computer, just above the TRS-80 decal. | used a five
pin connector to the wires, so that I could remove the top
cover when I go in to do some experiments, which is almost
every second day. Anyway, | thought of putting the four
switches right into the keyboard. While this is possible, it is
very tricky to solder to thin-film PCB. That is what the
newer keyboards are made of. 1 don't recommend that
anyone do it unless they have a lot of experience in solder-
ing. As soon as you touch this stuff with a soldering iron, it
melts. Maybe you can mount the buttons inside the key-
board and run separate wires out of the keyboard and to the
connector. Thisis possible, though I haven't tried it myself. |
will leave this part up to you. You're on your own. Put the
switches wherever they best suit your needs.

The next part is the software. This short program will
show you which key is which and what ASCII value it has.
Typeitinand RUNit. Then press all the keys one at a time.
Try them with the shift key, too. Then you can label the four
keys accordingly. Some of the ASCII values are regular
ASCIlI characters and can be gotten from the keyboard.
Also, there is one combination that does not even produce a
character. That is[SHIFT] F1. In order to use these keys in
your program, you must use CHRS or program it in
machine language. The ASCI! values | got were using Color
BASIC 1.1. ‘

If everyone could agree on some kind of standard for
these keys, then the software companics would be able to
include them in their software, i.e., control codes or special
functions like delete and insert in such programs as a word
processor or spreadsheet. | would like to mount a campaign
to standardize these function keys.] hope to hear from all of
the software writers and the keyboard manufacturers so we
can get started. If we generate enough interest, maybe Radio
Shack will add these keys to future Color Computers. Are
you listening, Radio Shack?

Figure 1

Keyboard Wiring Diagram.

The eight keyboard columns
are attached to the B side of

the PIA. These eight lines are
programmed to be outputs.
The seven keyboard rows

are attached to the A side of
the PIA. These seven PIA lines

are programmed to be inputs.

X Y 4 4+ ¢ - - - SPACE

ENTER—CLEAR-BREAK i%FT
_J/

@@8@8@@@99&99@?9

Figure 2
12 13 14 15
[13] [14] [15] [16]

How to wire your four switches.

The Listing:

10 ° A FROGRAM TO CHECK WHAT

20 ° FUNCTION KEY CORRESPONDS

3@ ° WITH WHAT ASCII CODE

40

5@ CLS

60 A% = INKEY#

70 IF A% = "" THEN 60

B@ IF A% = CHR$(64) THEN PRINT *
FUNCTION KEY #1 (UNSHIFTED)" : G
0T0 150

@ IF A% = CHR$(189) THEN FRINT
"FUNCTION KEY #2 (UNSHIFTED)" :

GOTO 150

100 IF A% = CHR$(103) THEN PRINT
"FUNCTION KEY #3 (UNSHIFTED)" :
GOTO 15@

110 IF A% = CHR#$(4) THEN FPRINT "

FUNCTION KEY #4 (UNSHIFTED)" : G

070 150 .

120 IF A% = CHR$(1) THEN FRINT

FUNCTION KEY #2 (SHIFTED)" : GOT

0 150

138 IF A$ = CHR#(S52) THEN PRINT
"FUNCTION KEY #3 (SHIFTED)" : GO

T0O 150

140 IF A¥ = CHR$(214) THEN FRINT
"FUNCTION KEY #4 (SHIFTED)" 1 6

07O 150

150 FRINT : FRINT FRINT As

16@ FRINT : FRINT : PRINT : PRIN

T "HIT ANY KEY TO CONTINUE"

170 A% = INKEYS®

18@ IF A% = "" THEN 170

190 GOTO SO A

A 12-Volt
rower Sup iy
For The Cdat -

By Tony DiStefano 3 TP
Rainbow Contributing Edito g L C e “ "““ “““
i L ‘.
s - IS . {‘.
hen Radio Shack came out with the CoCo 2, they 150 milliamps or .15 amps. The reference manual for the
Wmade itas close as possible to the old Color Com- regular Color Computer says that the 12 volts can supply up
puter as they could. Nevertheless, there are some to 300 milliamps. 1 don't think that you need that much
minor differences. First of all, the physical size of the case is current, seeing that the Radio Shack controller needs only
different. It is a lot smaller. All the other differences are not about 25 milliamps. Another reason that | used this chip is
very obvious. You cannot see them from the outside and that it has the capability of shutdown. This means that under
most are invisible to the user. That means that even though certain circumstances the IC will stop to output voltage.
they are different, it will function the same. For example: This is very important when you want to turn the CoCo 2
The RS-232 circuit is completely different, different 1Cs are off. At first | thought of just adding a switch. But then that
used, they are placed in a different part of the computer. But, would mean that every time you wanted to turn the compu-
when you use the RS-232, it will work with all the old ter on, you would have to first turn on the 12 volt switch and
software. Another difference is the RF modulator. It is a then the five. In the case of the WD-1793 (which, by the way,
completely different modulator. The circuit is all changed, is the FDC or Floppy Disk Controller used in the Radio
yetit works. So what is all this coming to? Why am | telling Shack Disk Color System), the 12 volt supply must go on at
you all this if it is all the same? There is one change Radio the same time or before the 5 volt. The 12 volt must also be
Shack did that will affect the user. It is in the power supply. shut off before the S volt. That is a lot to ask for, just to turn
In the Color Computer, there are four voltages coming the computer onand off. Next, I tried a relay to switch the 12
from the power supply. Five volts, 12 volts, -5 volts, and - 12 volt on and off, but that was just not fast enough. Well, that
volts. In the CoCo 2 there is just one voltage. That is S volts. is why the LM-723 chip suited this case so well. It can be
A small negative voltage is produced on board for the RS- switched on and off by an external source and was fast
232, which requires negative voltage to work. It does not enough to boot!
have 12 volts. Most people would say, “So what!™ Well, if The first thing you must do (like always) is to get parts.
you don't have a disk system or a graphics tablet, you There are not a lot of parts and are all available at your local
wouldn’t know the difference. But, if you have the oid Radio Radio Shack store. Here is a list of parts you will need:
Shack controller (the ones sold with the gray drives) or a
graphics tablet, you will find that neither of them work with Quantity ID Description RS#
your CoCo 2. Why? This is where the 12 volts come in. Both 1 1C-1 LM-723 (voltage regular) 276-1740
of these accessories (and probably many more) need 12 volts l Tl 12 volt transformer 273-1385
tofunction. The CoCo 2 does not have 12 volts. One way to I DI S0v bridge rectifier 276-1151
‘solve this problem is to get the Multi-Pak Interface from 1 Perf board 276-158
Radio Shack. Not a bad idea, it has the 12 volts and is quite [o) 1000uf @ capacitor @ 35v 272-1019
handy if you have many things to plug into it. On the other I CI I0uf @ capacitor @ 35v 272-1013
hand, it is expensive if all you have is a disk drive. Well, there l C2 100pf capacitor @ 25v 272-123
is another solution, build a small 12 volt power supply. I'll ! Ql 2N2222 transistor 276-1617
show you how. 3 R1,2,5 4.7 ohm 4w resistor 271-8019
This power supply is small enough that it will fit under the 2 R34 15k ohm liw resistor 271-8036
keyboard of the CoCo 2. The IC that I used can supply up to ! 14 pin socket 276-1999

23

There is also the regulaf paraphernalia like wire, screws,
and solder, ¢tc., that you must get. I'll leave that for you to
figure out. Next, mount all the components (except the 1C)
on the perf board according to the photo of my prototype.
The component layout is not too important since you are
doing point-to-point wiring. Wire the components accord-
ing to the schematic in Figure 1. The two 15k resistors in
paralicl are there because | needed a 7.5k resistor and Radio
Shack did not have one. The only problem you will have is
with the power transformer. The pins do not quite fit in the
holes. Make a mark on the board where the pins sit. Use a
small drill and widen the holes so that the transformer will fit
in. Check the wiring carefully. Now it is time to test it. Please
do not install this power supply before you test it. Putting
more than 12 volts on the controlier will cause many dollars
of repair. Plug the 1C in the socket. Make sure that pin | of
the IC is pin | of the socket.

Figure 1
1
ACIN] lg ° ics
T -
—(@ 12V
i nzé .lm out
T 1a | 4
5V
®
CONTROL i+ =
L)

transformer to the AC line of the CoCo 2. The polarity is not
important in this case. The two points to solder are the
center onc and the right side one. That puts our circuit on the
side of the fuse. It saves us from putting in another one. Plug
the CoCo 2 in and measure the voltage at the output. It
should be zero volts. Now take the control wire and touch it
to the plus side of the 1000uf capacitor. The output voltage

should jump up to 12 volts. If it does, it is okay and time to
install it into your CoCo 2. If not, back to the drawing board
and check the wiring again. The output voltage should not
vary more than five percent. If it does, try changing the
voltage divider resistors. The three resistors that control the
output voltage are R-2, R-3 and R-4. Do not change thesc
values by much, just try another of the same value; it might
have enough difference.

The final thing to do is to mount the board properly and
make the rest of the connections. Again, make sure that the
CoCo 2 is unplugged when soldering to the computer. The
transformer just fits under the keyboard. Use four screws to
secure it to the base. Solder the ground wire of the power
supply to the ground on the main board. The base of two
diodes that are on the bottom left is just fine. The control
input can go toany 5 volt location on the main board. 1 put it
on the top side of C-28. The only wire left to connect is the
output. That connects to pin 2 on the cartridge connector.
When you solder to it, make sure that you don’t short out
any other pin. The last test to do is to check the 12 volt pin.
Plug the CoCo 2 in and leave it off. Measure the voltage at
pin 2 and ground. It should be zero volts. If not, check your
work again. Now turn the computer on and the voltage
should jump to 12. If so, turn it off and plug the controller
(or other) into the computer. Turn it back on and measure
the voltage. If it is 12 volts, turn everything off and close it
up. That is all there is to it.

A lot of people have been calling me about the CoCo 2
64K article. It seems that there is a revision “B” on the CoCo
2 and that they could not get it to recognize the 64K. | have
not seen this revision myself, but from what | hear through
the grapevine, it should work anyway. If anyone can tell me
for sure, send me a line.

The article “ROM Switcher™ has a bug in it. The two
resistors that solder to pin | of the chipdo not goto pin 1.1
took a photo of the wrong chip and therefore made an error
on the pinout. They should go to pin 24. If you tried this out
and found that it didn't work, that is the problem. Just do
the modification and ail will work okay. It should not have
causcd any damage to the chips or the computer. "Till next
time.

Designing
A Video
Monitor

Output

24

few months ago, when | wrote the article on how to -
Aadd aspeaker to your CoCo, I mentioned that 1 was -

not going to do an article on a video monitor output
for the CoCo. Well, 1 got a lot of letters and phone calls
asking me to do one. The major complaint is that most of the -
monochrome (black and white) video outputs do not have
enough gain to drive certain monitors. 1 thought this was
quite strange because | had made one from a schematic in
the Rainbow and did not have any trouble with gain. |
always had plenty of brightness and good contrast with my
Electrohome monitor. Well, just this week, I bought an
Amdek 300A amber monitor, and guess what? My video
monitor adapter did not have enough gain to drive this
monitor properly. I thought there was something wrong
with the monitor. I brought it back to the place I bought it
and aired my complaint. They checked it out and told me
that the monitor was okay and that my computer was not
strong enough to drive this type monitor. It didn’t take long

beforc I took my video monitor adapter and threw it out the
window. Now what was | to do? Humm! I guess I'll have to
design my own.

What follows is what | designed as a video monitor output
for the Color Computer. Following the schematic in Figure
I, you see a three stage amplifier. The first transistor is used
as an impedence amplifier. The second transistor is an
inverting voltage gain amplifier. The last transistor is used as
an emitter follower. This adds the current gain necessary to
drive monitors that are terminated with a 75 ohm load, just
like the Amdek. It is not hard to construct this circuit. You
will need all of the usual project tools like a soldering iron,
pliers, cutters, screwdrivers and the like. Get all the parts in
the parts list, though 1 think that most of you will have all of
these parts in your junk bin. There is nothing hard to get, but
do get all the right resistor values, close is not good enough.
You can mount it on a piece of perf board like in the list, or
you can mount it on just about anything. The output con-
nection can be made in many ways. You can drill a hole in
the back of your CoCo and install a chassis mount RCA
connector — Radio Shack #274-346. If you don’t want to
drill a holc in your CoCo, just use a long wire with an RCA
jack on the end, or whatever type terminator your monitor
has. Most monitors have RCA terminators. You can mount
the board inside the computer with double-sided tape on top

cof the RF adapter.

The .1 uf capacitor in the parts list does not show up on
the schematic. This is a decoupling capacitor and goes from
the +5 volt line to ground. This is only to eliminate noise
generated from the power supply. This video monitor out-
putwill work onany CoCo version, it willeven work on the
CoCo 2.

Like usual, if you have some problems with my projects or
modification, or if you have a good idea you would like to
share with me, give me a call on any Monday night after 7
p.m. My telephone number is (514) 473-4910. If you want to
writc to me, do so. If you need a reply to a question, inciude a
SASE. Till next time.

Figure 1

ouT

Parts List

Number Description RS#
Ql MPS2907 PNP 276-2023
Q23 MPS3904 NPN 276-2016
R1 470 OHMS W 271-1317
R2 100 OHMS YW 271-1311
R3 27 OHMS W N/A
R4 220 OHMS 271-1313
RS 10 OHMS 271-1301
Cl .J UF 25V 272-1069
Pl PERF BOARD 276-162

Lot

Equip Your Computer
With A Phoneme

Speech Synthesizer

the Votrax SC-01 and the cartridge connector. This is
_ an LSI (large scale integration) chip. With the right
interface, this chip will translate certain predetermined data
into voice sounds. In other words, it talks. It is a phoneme

speech synthesizer. | will show you how to connect it to the
Color Computer and how to use it.

This month | have an interesting project. It is using

25

The first thing we must do is get all the parts. A parts list
appears at the end of this article. You will need, what I call,

“the standard “kit building tools.” This includes soldering

iron, solder, pliers, cutters, screwdrivers, knife, drill and
bits, hacksaw and your favorite beverage.

~ There is nothing hard about this project. The regular care
in project building will suffice. The Votrax chip isa CMOS

"IV
ay
Phoneme Phoneme Duration Example 33 AY 65 day
Code Symbol (ms) Word 34 Y1 80 yard
80 EHS 59 jacket 35 UH3 47 mission
1 H2 7 enlist 36 AH 250 mop
02 EH1 121 heavy 37 P 103 past
03 PAO 47 no sound 38 (o]} 185 coid
04 DT 47 butter 39 ! 185 pin
05 A2 71 made 40 U 185 move
06 A1 103 made 41 Y 103 any
07 ZH 90 azure 42 T 71 tap
08 AH2 71 honest 43 R 90 red
09 13 55 inhibit 44 E 185 meet
10 12 80 inhibit 45 w 80 win
11 I 121 inhibit 46 AE 185 dad
12 M 103 mat 47 AE1 103 after
13 N 80 sun 48 AW?2 90 salty
14 B 71 bag 49 UH2 71 about
15 \(/: 71 yan 50 UH1 103 uncle
16 H* 7 chip 51 UH 185 cup
1;3/ gH 121 shop 52 02 80 for
1 71 200 53 Ot 121 aboard
19 AW1 146 lawful 54 u 59 you
20 NG 121 thin 55 U1 90 you
21 AH1 146 father 56 THV 80 the
22 001 103 logking 57 TH 71 thin
23 00 185 book 58 ER 146 bird
24 L 103 land 59 EH 185 get
25 K 80 trick 60 E1 121, be
26 J* 47 udge 61 AW 250 call
27 H 7 hello 62 PA1 185 no sound
gg ’C:% 72) et 63 STOP a7 no sound
103 fast ' .
30 D 55 paid * T must precede /CH/ to produce CH sound.
D must precede /J/ to produce J sound.
Li Figure 1:
Parts List ‘ . +12v
iD Description v CI— _'E[_ R1
IC1 MC621 e ” 24 v —11 v
IC2 VOTRAX SC-01 RESET i PAO i mex 118
R1 2K OHMS 58 (g PA1 P 16
R g e B e S B
) 21 5 1
R7 100K OHMS W Qe Mo PRI ol
c1 220 pf a0 TER G eaed 0 o e -
Cc2 .01 Mf M o33 e PAS , Ps T
8 2v R c2
C3,C4 A Mf oo N3 5 A L
T1 2N2222 oy 32 1 PAS X v
S1 40-pin socket 31 PAT
S2 22-pin socket pz {2
PCB 40-pin edge card 03 D Ao 120 a2
Da @"_Z'z"' CA1 | AF [21 €3
o8 27 39 7 ca (22 R3
06 (i—=H CA2 sT8
o7 O7}--28- GND _-Ll’ =
GND 1
sND (35}

Schematic of Spectrum Voice Pak, courtesy of Spectrum Projects

26

chip, so be careful not to zap it with a static charge. Using the
schematic in Figure |, mount and solder all the components
inthe parts list. Use the sockets for the two 1C’s. The triangle

. boxes in the schematic refer to the Color Computer connec-
tor. Remember that pin #1 on the Color Computer is the top
right-hand side looking into the cartridge slot. This chip
needs 12V to operate so that means it will not work with the
CoCo 2, unless you have built my 12V supply for the CoCo
2. It also uses the SCS select line, so if you have a disk drive
you must use one of the many expansion boxes available. If
you have the Radio Shack Multi-Pak Interface, put the
voice box in slot 3, the controller in siot 4, and type in this
extra line in the BASIC program.

| POKE 65407,254

Once you are finished mounting the components, type in
the short program (listed later), and try it out. Turn the
volume of your TV up, because the sound is routed to the
sound output of the Color Computer, and it will come out
of your TV. Now that your voice box works, here are some
details you will need to work on the Votrax chip. This chip
phonetically synthesizes continuous speech of unlimited
vocabulary. A phoneme is a building block for speech. It is
likeasingle lip movement, like “ohhh™or “ahhh.” Itis a part
of speech. For example, the word hello is made of several
phonemes. The firstis ‘H’, next would be ‘E’, followed by an
‘L'and a long *O". Together, these phonemes pronounce the
word “hello.™ In order to make a complete sentence, you
must break each word down phoneme by phoneme. The
SC-01 is capable of reproducing 64 phonemes. Each pho-
neme is a part of everyday speech. Using all of the 64
phonemes, you can produce almost any speech pattern you
wish. Table | describes each phoneme, the numeric value,
the duration in milliseconds, and an example of the sound it
makes.

One more feature the SC-01 has is that it has built in
inflection. This is the ability to speed up or slow down the
speech in order to add accent to the voice. An example
would be when you ask a question. There are four inflections
(or speeds). They are invoked by adding one of four values
tothe phoneme code. The four values are 0, 64, 128, 196. The
default is 0, or the slowest speed. The next three speeds are
each a little faster than the last.

Okay, once your voice project works, you may want to
put it in a small case. An old game pak from Radio Shack
willdo fine. Trim the PCB so that it will fit in the case. If the
posts are in the way, cut them off and glue the pak shut. If
you don’t have an old pak you can get one from Bob Rosen
at Spectrum Projects for $6. The Votrax SC-0! chip is also
available from the same company for $35. If you don’t want
to put it together yourself, you can get a complete Votrax
package for $69.95 from him too. To order the Votrax chip
or the case from Spectrum Projects, dial (212) 441-2807. In
Canada call MICRO R.G.S. at (800) 361-5155.

Til next time, au revoir.

249

END 254

The listing:

10 CLS :
TION

2¢ POKEA+1,@:POKEA, 255: POKEA+1,S
2 * INIT PIA

3¢ POKE6S5281, 180: POKESS283,51:P0
KE&65315,68 * INIT COCO SOUND OUT
PUT

49 X=63:GOSUB260

%0 PRINT@200, "VOTRAX SC-@1"

&0 DATA 27,47,24,52,53,55,62,62,
21,0,9,47,0,12,12,56, 60, &0

78 DATA 25,2%,21,24,%8

80 DATA 25,25,50,49,12,37,34,54,
55,42, 58

98 DATA &2,62,62,62

100 DATA 6,33,41,14,60,41,31,40,
41,30,60,41,60,41,2,1,29,30,26,6
2,41

118 DATA 6,33,41,42,146,21,0,9,41
»30,26,0,6,33,41,25,0,6,33, 41
120 DATA 2,0,3%,24,2,1,12,2,1,13
,52,53,55,3

132 DATA 37,60,41,62,25,34,54,5%
»55,21,49,58,2,1,31,42, 60

140 DATA 33,41,34,54,55,5%,15,460
»33,41,308,50, 14,35,24,34

150 DATA 54,54,2,1,25,31,31,45,2
1,8,9,41,18, 460,41

160 DATA 63

176 FOR I=1 TO 142:READX:GOSUB20
P:NEXT I

180 X=43:B0SUB20O

196 END

200 POKEA,X ® STORE DATA

210 POKEA+1,52 * STROBE ON

220 POKEA+1,60 °® STROBE OFF

238 V=PEEK (A)

249 IF (PEEK(A+1) AND 128) THEN

A = 43344 * VOTRAX LOCA

RETURN ELSE 2490 A

Dualing Cassettes

27

gavemeacall ona Monday night. He was workingona
project that would control the motors of two cassette
playersand was having some problems with it. We spoke for
a while, but | could not figure out what his problem was over
the phone. | told him that ! would put together one and
present itin one of my articles. There is one thing — I cannat
for the life of me remember his name. You know who you
are, so give me a call and I'll give you credit for this idea.
First we must describe what this project is and what it
does. It is what I call a Dual Cassette Controller, which fits
in a small ROM pack, and plugs into the CoCo or CoCo 2
expansion port. It has three DIN connectors. Qne plug fits
into your cassette connector in the back of the computer.
The other two connectors connect to two tape recorders.
This Dual Cassette Controller will enable the user to
transfer files from one cassette to another. This could be
useful in making backup copies of your software a lot easier
than with one cassette. With the proper software, it could
allow you to make complete backups of everything on one
cassette to another. It could also be useful when sorting or
changing ASClI text files. An example would be if you have
a telephone list, and someone changed his or her address or
telephone number, it would be easier with two cassette
recorders tq update the file. The next few paragraphs will
show you how to build and operate the Dual Cassette
Controller.
The first thing to do in this project is to get the parts and

Igol the idea for this month’s article from someone who

(Tony DiStefano is well known as an early specialist in
Color Computer hardware projecis. He is one of the
acknowledged experts on the “insides” of CoCo.)

tools necessary to construct the Controller. You will find a
parts list later on in this article. The tools you will need this
time are the “standard tool kit,” drill, round file and a sharp
knife.

This project is just as much electronic as it is mechanic. It
involves cutting, drilling and filing things into shape. ltis up
to you to make it as nice as you can or want. Halfway into
building it | thought of mounting the whole thing inside the
computer. Then I thought there are always many ways of
modifing your computer to suit your needs. Do it the way
you please. I included a few photos to show you how I built
my proto-type. You cando it the same way or come up with
your own design. However the mechanics are done, the
electronics are the same.

Following the schematic, solder all the components
together. If you want the thing to fit in a ROM pack case,
place the components as shown in the photos. Also, do not
use sockets for the relays, it won’t fit in the case. From past
experiences, there seems to be a difference in Radio Shack
part numbers in Canada and the U.S. Some numbers do not
always match, so be careful. When you are not sure, use the
description to get the part. Use at least a 24-gauge wire for
the connections to and from the relays that connect to the
motor connections on all the connectors. There are no sur-
prises in the circuit, it is quite simple, only the regular care
for static sensitive 1C’s will do. Remember to clean the PCB
when you are finished.

In the “Turn Of The Screw” column by Tony DiStefano
in our June 1984 issue, we stated that the schematic of
the Spectrum Voice Pak was supplied courtesy of
Spectrum Projects. We should add that the schematic
is copyrighted by John Kelty of Kelty Engineering.

DUAL CASSETTE CONTROLLER

o CASSETTE1
@ ' L] 31
v (o9} —_
1]e 2
3
9 7
scs]
L 2
aes 5 }— s
. 1
o0 R
L 5
oo O}——m——"

CASSETTE 2
-2

Mount the three connectors on the end of the case. Drill,
cut and file the plastic case until they fit. Then cut the PCB
until it fits in the case. Make sure that no wires touch
logether and all solder joints are solid. Use my photos as a
guide.

To try out the controller, follow these simple steps. Turn
offthe computer. Plug the controller into the computer slot.
Plug one end of the DIN to DIN wire into the computer’s
cassette port. Connect the other end into the controller’s
input and connect the two cassette recorders into the proper
connectors on the controller. Next, turn on the computer. In
order to test the relays, type this in:

MOTOR ON ENTER
The internal relay should click on.

POKE 65344,] ENTER

Parts List
1D # Description RS Part #
Ul 741.S175 N/A
R1.R2 470 ohm Yw 271-1317
J1,02.)3 5-Pin DIN Female 274-005
Q1.Q2 2N 3904 276-2016
K1.K2 SV Relay DPDT 271-215
DI,D2 1N4004 276-1103
Cl duf 1OV 272-111
MISC Proto-board N/A
Case N/A
16-Pin Socket 276-1998
5-Pin to 5-Pin wire 42-2151

Relay number | should click on.
POKE 65344,0 ENTER

Relay number | should click off.
POKE 653442 ENTER

Relay number 2 should click on.
POKE 65344,3 ENTER

Both relays should be on. If all this works then the relays
work okay. Now try to CSAVE and CLOAD to each
cassette. To access the first cassette you must first:

POKE 65344,1 ENTER

Then all 10O will be through cassette number one. If you
want to access cassette number two you must first:

POKE 653442 ENTER

That will give you access to the second cassette. CSAVEs
and CLOADs will be done through this cassette. There is
one more interesting thing with this controller. If you POKE
65344,3 and ENTER, you will be able to CSAVE to both
cassettes. Since both motors are on and the output goes to
both recorders, you will get two copies of whatever you
CSAVEd or CSAVEMd. This will not, however work with
CLOA Ds because the inputs are switched. With some good
machine language code, a user could open two cassette files
say, OPEN “O", #-3, “FILENAME". If you want to know
where 1 got that proto-board and case, it was from Micro
R.G.S. It is a great proto-board and suits CoCo projects
quite well. i

RAMBOW S

Popular Misconceptions
And Common Problems

about the Color Computer. Playing and poking around
inside 1 compiled lots of information about how this
computer works. | listen to everyone that has something to
say about it, in case | learn something new. If | do, !
immediately race home and try it out. To see if what I heard
or what I saw rcally works or is true. Howcver, not
everything I hear 1s right. This brings me to this month’s
topic. I will try to clear up the “hearsay™and “did you know™
about the Color Computer. Some of them are started by
.good o' Radio Shack and others are started by well known
people in the Color Computer circles, but most are started
by people who misunderstand something and repeat it to
isomeone else. Nevertheless, where ever they come from, 1
would like to clear up the ones I am familiar with.
The first one pertains to disk drives and disk controllers.
‘Some believe that the new 1.1 disk controller needs and gets

In the past three and a half years | have learned much

29

its 12 volts from the power inside the disk drive. That means
that the 1.1 controller can only work with the newer white
drives. This is simply not true. The new 1.1 controller does
not get 12 volts from the disk drive. The fact is the engineers
at Radio Shack redesigned the 1.1 disk controller so that it
does not use 12 volts. They used a different controller chip
and data separator in the 1.1 controller. They did this so one
could use this controller in the newer CoCo 2. You sec, the
CoCo 2 has no 12 volts inside, so the older controllers would
not work with it. This is the way it is. The older 1.0 controller
will work with the regular CoCo only. The newer I.1
controller will work with both the regular CoCo and the
CoCo 2. The older gray disk drives will work with either
controlier without any modification. The newer white disk

drives will work with either controller without any modifi-
cation.

The next misconception is that some software can damage
your hardware. This, in most cases, is not true. The software
cannot hurt the hardware. If the software crashes (does not
work right), then at most, you could erase a disk if it was not
write protected and the door to the disk drive was closed.
Y ou will lose what you have in memory, or turn the cassette
player on and if it is in the record mode, you could write on
top of something important. If you see garbage on the video
screen or see the sync break up and the picture tear all across
the screen, just turn the computer off, wait for 15 seconds,
then turn it on again and all is well. This will not hurt the
computer. The only case where 1 can see a problem is if the
softwarc turns the cassette relay on and off repeatedly at a
high speed. If you were to leave this condition for a extended
length of time. it could burn out the relay. | have never seen
this happen to my computer. Another highly unlikely prob-
lem could exist with a disk drive. If the software were to
bang the read/write head repeatedly to track 0, the head
could get out of alignment. But again, you could stop it
before any damage could result.

The third misconception involves memory. So many peo-
ple call me and say, “1 just had a 64K upgrade put in my
computer. How come when | type PRINT MEM 1 get less
than 32K? Did | only get 32K? Where are the other 32K?" 1
covered this topic in an article last year but the amount of
times | hear this question warrants me to explain it again.
The CPU inside the CoCo and the CoCo 2 isan MCM6809.
This CPU can only access or work with 64K memory total,
ROM and RAM total. When you turn on your computer, a
total of 32K memory is reserved for BASIC, Extended BASIC,
and Disk Extended BASIC. This right away leaves only 32K
left for PRINT M EM. The rest of the memory difference is
being reserved for such things like video area, graphics
pages, I/ O buffers, and variables. The other 32K of RAM is
sleeping. BASIC cannot get to it because it does not know
how to wake it up. It takes programs that are written with
64K in mind. Programs that know how to wake up the
sleeping 32K are usually advertised as being able to make
use of the full 64K . They will perform a test to see how much
memory is available and make use of all of it.

The second part of this month’s article is about common
problems. There are a lot of little quirks that bother the
average user about the CoCo. The biggest one I can think
about is with disk drives. The ever popular 1/ 0 Error. What
anightmare when the project you were working on for hours
islosttoan1/0 Error. There are a lot of so called “fixes” for
1/0 Errors, like hiding the directory on track 35 or backups
of backups of backups. Then there are those programs that

The Halt Pin

"R24.

try to recover your lost files. Don’t get me wrong, they are
good programs and I did have to recover files myself, but if
you have a lot of I; O Errors, it might be wise to take a look
atyour hardware. 1 get a lot of letters from people who have
these problems.

Here are some good tips on how to prevent disk 1/0
Errors. The most common cause of errors is the connection
between the controller and the computer. The Radio Shack
controllers have lead-coated contacts and they get dirty.
They oxidize and prevent the signal from going through.
Some say to clean the contacts with a soft pink eraser.
Others say that it is no good and say to use alcohol and a
Q-Tip. I say use both. First the eraser to clean the big dirt
and then the alcohol to mop up. It works great!

Some of the older disk drives have problems with speed.
The speed drifts and causes 1/ O Errors because the drive belt
slips due to excess oils present in that area. What you have to
do is remove the cover and clean the belt. Clean your heads
regularly. Finally, remember to always open the drive door
whenever you are not doing 1/0 to disk. If your program
crashes, there is no chance that it will garble your disk.
Always have the door open when turning your computer on.

The next common problem is the Radio Shack keyboard.
Sometimes the older keyboard keys can stick or give double
characters. The best way to clean this would be to take it all .
apartand clean each key one by one. But if you take it apart
you will be greeted with a springy surprise. Yes, marny little
springs are inside the keyboard. A much easier way to clean
a key is to squirt a little shot of lighter fluid into the space
around the key and quickly press the key several times. Do
this again if the problem persists.

The last problem that is common to the CoCo user (espe-
cially the old D™ and “E™ boards) is in the power supply.
The symptoms are strange. At first, it might look like the
software has crashed. Then, the screen might go blank . . .
all white, no control. Hitting the Reset is no help, but
turning it on and off fast sometimes fixes the problem. It
sounds like the power switch is defective, but that is not the
problem. The current sensing resistor is likely out of toler-
ance. It is supposed to be a .33 ohm two-watt resistor. The
resistance in one case was up to .47. That gave a false reading
to the current sensing amplifier. Then the five-volt section of
the power supply shut down, thinking that there was a short,
causing the computer to fail. The 12 volts to the RF adapter’
was still on. That gave the blank screen effect. To solve this
probiem change the resistor, with the same value, of course.

Onthe“D"and“"E"board itis R66and onthe*“F"boarditis

a)

And Its Function

30

while ago | wrote about the
Apins' functions on the cartridge
connector of your computer. One

of the pins was the “HALT" pin, which
isthe center of discussion for this month.
The HALT pin is not one of the most
popular pins. Certainly not as popular
as, let’s say, an address line or a data
line. Address and data lines are used
continuously while the HALT line can
sitidly forever. In fact, if you don’t have
adisk controller or anything else plugged
in the cartridge slot, the HALT line will
not be used. The disk drive controller
always uses the HALT linetodoits 1/O.
What does the HALT line do? It does
what it says it does — halt. When this
line is logically high (five volts), it is
inactive. But once the HALT line goes
low, at zcro volts, many things start
happening. The CPU will stop. First of
all, the CPU will finish its current
instruction, which takes between two to
15 clock cycles, depending on what
instruction the CPU was execuling.
Then the CPU will tristate the address
bus and the data bus, which means the
CPU will neither input nor output — it

is inactive. Everything stops, however,
nothing is lost. When halted, the BA
(Bus Available) and the BS (Bus Status)
lines will go high. This indicates that the
CPU is in the halt state. You don't have
to worry about these lines; Radio Shack
chose not to use them by not bringing
them to the cartridge connector. The
CPU registers are all preserved and the
RAM (random access memory) is stiil
refreshed. That’s the SAM chip’s job.
Everything will stay halted until the
HALT line returns to a high state. Then

“The HALT line has a
multitude of uses. The
most useful and practical
is to slow down a BASIC
listing.”

(Tony DiStefano is well known as an
early specialist in Color Computer
hardware projecis. He is one of the
acknowledged experts on the “insides”
of CoCo.)

the CPU will continue just as before.
While halted, the CPU will not respond
to external real-time requests such as
the Interrupt Request or the Fast Inter-
rupt Request. The Non-Maskable Inter-

rupt and the Reset will be latched for
later request. Stopping the CPU will
usually not cause any problems, but
under certain conditions, problems can
occur. This is when the CPU is involved
in critical timing. Examples are cassette
or disk 1/0O; timekeeping or serial 1/0O
like printer; or modem 1/O. If the CPU
is HALTed during these and other tim-
ing conditions, loss of data or complete
scrambling of data is eminent. Timing
loops can be thrown off, so stay away
from the halt line when doing 1/O or
timing. \

What could one use the HALT line
for if one had control of it? Well, there
are a multitude of uses. The most uscful
and practical is to slow down a BASIC
listing. You know, whenyoudoa LIST
and a long flash of text just streams by?
Well, you could slow that down to a
reasonable speed using the halt line.
Another use is to study, step by step,
how the CPU draws graphics. You
study the different techniques program-
mers use to draw and move objects on
the Hi-Res graphics screen. A third use
is to study how BASIC commands func-
tion such as PRINT and SET and
RESET.

Now that you know all about the
HALT line and what useful things you
can do with it, let me shew you haw to
put together a small circuit that will Jet

Figure 1
-+ i = 4 * T \ 4 M
- -y P S peg
—l : l & =1
i S R
= oot sl e s 1
MLE1ED
s o afi 7 A
i
] £ L=
i3 ‘_]
[AESS |
:_,; -3 4

31

you control the HALT line. First you
will need parts, which are listed in Table
I. You will also need the standard “tool
kit”for assembling. Itis not a very diffi-
cult circuit to put together, just the
usual parts. Follow the diagram in Fig-
ure 1, and put the circuit together. Use
the socket for the 1C. When you are
finished plug the board into the ROM
Pak of the CoCo or any one of the slots
of the Multi-Pak Interface. It will also
work with the CoCo 2. You might want
to put the switches and the pot on
another small board with remote wires
so that it would be more accessible when
using it. Also if the rapid fire mode is
too fast or slow, try changing the value
of C2. The lower the value, the faster it
will goand vice versa. Trya .00]1 toa .01

capacitor.

With switches } and 2 off, turn on the
computer. Everything should work
normally. Now turn switch | on. The
cursor should stop. Press the push-
button several times. The cursor will
flash occasionally. Turn on switch 2.
When you push the button, the cursor
should start to flash slowly. Turn the
potentiometer from one end to the
other. The cyrsor should speed up and
stow down. That is your speed control
when switch 2 is on. When switch 2 is
off, the push button acts like a single
stepper. When it is on, it is rapid firc.
When switch 1 is off, the whole thing is
disabled. The task ts complete. I'm sure
that you will find many uses for the
HALT line.

R1,2.3
Vi

Cl

C34
IC1
Tl
S1,82
S3

PCB

Table 1

PARTS LIST
DESCRIPTION

IK OHMS 5 WATT
500K OHMS POTENTIO-
METER

150 PF 10 VOLTS

.005 MF 10 VOLTS

.1 MF 10 VOLTS
7415123

2N 3904

SPST SWITCH
MOMENTARY PUSH ON
SWITCH
PROTO-BOARD (RGS
MICRO)

16 PIN SOCKET

7

The Modem To

Printer Connection

{ all my projects, the short and
Ot‘asl ones seem to be the most
popular. The ones that seem to
better the computer and help the user on
his quest for good computing are the
ones that people call me to thank me
for. I also get ideas from these people.
For instance, the “Dual Cassette™ pro-
ject was an idea I got from a reader.
When I presented this, | had forgotten
his name, and wanted him to call me.
Well, he did; his name is Lennie James.
Thank you, Lennie, for the idea. The
basis of this month’s article actually
came from several people. It is based on
the RS-232 port of the Color Computer.
The original question was this: Is there a
way to connect a printer and a modem
together so that everything that comes
from the modem can also go to the print-
erat the same ime”? The answer is “yes.”
There are many ways of doing this.
Some are very easy and fast, others
require a bit more work and money. I'll
tell you the theory on how to do it and
let you decide on what method to use.
What is RS-232 anyway? The full

(Tony DiStefano is well known as an
early specialist in. Color Computer
hardware projects. He is one of the
acknowledged experts on the “insides”

of CoCo.)

name for this is EIA RS-232C. ElA
stands for Electronic Industries Associa-
tion. The EIA RS-232C standard de-
fines the interfacing between data term-
inal equipment and data communica-
tions equipment employing serial binary
data interchange. Electrical signal and
mechanical aspects of the interface are
well specified. The complete RS-232C
interface consists of 25 data lines. This
would seem to be enough signals for a
complex parallel communication line,
but many of the 25 lines are very special-
ized and a few are undefined. Most
computer terminals only require from
three to five of these lines to be opera-
tional. Table | briefly describes all 25 of
the defined lines.

Table 1
DESCRIPTION
Protective Ground
Transmitted Data
Received Data
Request to Send
Clear to Send
Data Set Ready
Signal Ground
Received Line Signal

Detector
Unassigned
10 Unassigned
H Unassigned

O W\IOMQMN—-;

32

13
14
15

16
17

18
19
20
21

22
23

24

25

PIN

Sec. Rec'd Line Sig.
Detector

Sec. Clear to Send

Sec. Transmitted Data

Transmission Signal
Element Timing

Sec. Received Data

Receiver Signal
Element Timing

Unassigned

Sec. Request to Send

Data Terminal Ready

Signal Quality
Detector

Ring Indicator

Data Signal Rate
Selector

Transmit Signal
Element Timing

Unassigned

Table 2
DESCRIPTION
CD — Status Input

Line
RS232IN — Serial
Data Input
GROUND — Zero
Voltage Reference
RS2320UT — Serial
Data Out

The Color Computer uses only four
of these lines. They are the four most
used in small computers. Table 2 shows
the pin and description for the Color
Computer version of the RS-232. Pin |
onthe computer is equal to pin 5 or pin
8 on the EIA RS-232C; pin 2 on the
computer is equal to pin 3; pin 3 on the

~ computer is equal to pin 7; and pin 4 on
the computer is equal to pin 2.

So much for the theory, now for the
good part. The secret to this is to con-
nect the Transmit (Serial Output) of the
modem to the Receive (Serial Input) of
the printer. Now there are many ways to
do this. 1t all depends on what kind of
equipment you have. If you are one who
just unplugs your printer cable to plug
in your modem, you will have the most
to do. If you have one of the several
switchers available for your modem and
printer, all you need is a switch and a
piece of wire.

Step 1

Follow these instructions if you have
aswitcher. If you don't have an SPST
switch, RS #275-624 is good and small.
First you have to take the switcher
apart. You will need the right screw-
driver. After the switcher is apart, locate
the connector that the modem connects
to. Solder one end of a piece of wire to
pin 2 of that connector. Solder the other
end of this wire to one end of a SPST
switch. Solder one end of another piece
of wire to the other end of the switch.
Now locate the connector that the print-
er connects to. Solder the last end of
wire to pin 4 of that connector. Mount
the new switch somewhere in the switch-
er. Close up the switcher. I'll show you
how to use it later.

Step 2
Follow these instructions if you do
not have a switcher. Undo the modem

connector that plugs into the computer.
Solder a wire to pin 3 in the connector.
Using a piece of tape, label this wire *G™
for ground. Solder another wire to pin 2
of the connector. Reassemble the con-
nector. Undo the printer connector that
plugs into the computer. Solder a wire
to pin 3 in the connector. Label this wire
“G" for ground. Solder another wire to
pin 4 of the connector. Reassemble the
connector. Solder the two wires labeled
G together. Solder the other two wires
to each side of an SPST switch. Mount
the switch any way you want.

“Is there a way to con-
nect a printer anda modem
together so that everything
that comes from the modem
can also go to the printer
at the same time? The
answer is ‘yes.””

In order that the printer prints all that
comes in on the modem, the printer
parameters must be set correctly. Most
modem communications use 300 Baud.
That means your printer must be set to
300 Baud. Other parameters, like seven
or eight bits, even, odd or no parity,
must also be set right. That will depend
on what parameters the host computer
1s using. The fact is that all these para-
meters must be looked into before the
printer will function right. Another thing
I should mention is that the printer may
or may not print what you type. That
depends if you are working in full or
half duplex mode. If you are in half
duplex, you will not see on paper what
you type; with full duplex you will see it.
At certain times you may not want to
see what you type in, so just change to

half duplex if the host computer will
allow you.

The next thing you must do is set up
the wiring correctly. If you are using
Step I, then you must set the switch you
installed to the “on” position and the
switcher to the modem side. When you
want to use the printer alone, make sure
that the switch is in the “off™ position

" and the switcher is set to the printer side.

If you followed Step 2, then plug in the
modem connector and turn the switch
on. When you want to use the printer,
turn the switch off and plug the printer
connector on.

During normal printing, there is hand-
shaking going on between the printer
and the computer. That is, before the
printer sends out a character to the print-
er, the computer checks if the printer is
busy. Hf it is, the computer will wait until
the printer is ready. In modem com-
munication, there is no such handshak-
ing. That means if the printer is busy
and the modem transmits a character,
the printer will miss that character and
not print it. This is especially true when
the printer is doing a carriage return or
line feed. If your printer has an input
buffer and can print faster than about
30 characters per second (300 Baud) or
120 characters per second (1200 Baud)
you will not miss any characters. Anoth-
er way to avoid missing characters is if
the host computer can be programmed
to wait after every carriage return; the
printer would have time to catch up.

If you have problems with one of my
projects or you want to discuss one of
your own projects, | have reserved Mon-
day nights for this. I'll be happy to talk
with you if you call me then. The
number to call is (514) 473-4910. But
limit the calls to Monday nights, any
other time is forbidden fruit.

Well, that is it for this time, good
modem printing. ~

Force A Cold Start
From Reset With

T'his Simple Project

oes this ever happen to you?
You are playing a nice game, or
heavy into some database.

Then. you get tired and want to quit. So,
you hit the Reset button in hopes of
clearing what is in memory, and the
software appears on the screen again.
So you hit the Reset button again in
disbelief but to no avail, it comes right
back. There is no way of getting out of
it. You then proceed to a power down
routine. First you open the doors to all

your drives, to avoid destroying a disk.
Then you turn the computer off. Count
to 15 and then turn the computer back
on. Next you close the doors to the
drives in use. It happens to me all the
time, especially when | use protected
soltwarc. Well, | decided to do some-
thing about it.

Before I get into the construction part
of this article, a little theory on what is
happening. When someone first turns
on the computer, it does what | call “a
cold start routine.” It does things like
check how much memory is present and
initializes the PIA and SAM chips. It
then initializes all the necessary point-
ers, et¢. Belore it turns control over to
the user by putting the OK prompt on
the screen, it puts the value $55 (§
denotes a Hex number)or 85indecimal
in location $71, 113 in decimal. But first
itchecks to seeif it has been on before (if
it has donc this initializing routine be-
forc). 1t does this by seeing if memory
location $71 or 113 in decimal contains
$55 or 85 in decimal. If it does, it means
the computer has alrcady been on before
the Resct button was pressed and that it
doces not have todo a cold start. Instead,
it does a warm start. This warm start
firstinitializes the PIAsand SAM chips
only and then jumps to the warm start
vector. The warm start vector is located
in memory locations $72 and $73, 114
and 115 in decimal.

Youcansece that if you were to change
the reset vector 1o your own program,
and madec surc that $71 contained $55,
then, if somcone were to press the Reset
button, control of the computer would
not return to the user’s program, but
rather the program pointed to by the
reset vector, This is how a program can
come back after you press the Reset.
NOP is the first byte to which the reset
vector must point. That is $12, 18 in
decimal. That is another condition of a
warm start. The BASIC ROM checks for
that.

Now that we know what the comput-
cr docs when we hit the Reset button,
how do we change these conditions to
suit our own needs? Well, it'’s simple, in
theory anyway. Whatif we were to deny
the CPU access to that particular byte
(371)? If the computer could not read or
write to that byte, then when it made its
test, it would never sce $55 and always
doa cold start. So much for theory, this
is the real world. The makers of the
Color Computer were kind (or smart)
enough to put a "MEMORY DIS-
ABLE" or better known as the SLEND

5VOLTS

[

COCO PIN# 18
23

24

25

6 VOLTS

COCO PIN #40

R2

T2

(L

21 l

2]
2
2: s 1 13
9 | iC-2
10
114
12
7 —
2 —
;: 5.3 1
n 9) ica
» "
k! }
w Figure 1

Hardware Cold Start

ALLICs
PIN #7 = GROUND
PIN #14 = +5 VOLTS

pin, on the 40-pin bus conncctor. This
pin i1s normally high (five volts), and
when some device or other pulls it low (0
volts), all forms of memory chips
(ROM, RAM and PlAs) are disabled. |
will be using this pin in conjunction with
my circuit to deny access to memory
location $7! to the CPU.

The actual circuit is in Figure | and
the parts histis in Table 1. Some of these
parts are not available at your local
Radio Shack. You will have to go to a
more specialized electronic store ortoa
mail order store like Active Electronics
or JDR Electronics. Youcan getacom-
plete parts kit trom RUS Micro Inc.
Just ask for the “Turn of the Screw”
hardware kit # 1. The USA order line is
800-361-4970 and the Canadian line is
800-361-5338. Also look in this maga-
zine for their ad. The chips used in this
circuit are called CMOS (Complemen-
tary Metal Oxide Semi-conductor) chips
and they are quite delicate. The slightest
static charge can permanently damage

34

the chip. The shock you receive from
rubbing your feet on a carpet is enough
to killa CMOS chip if you were to come
in contact with it. Make sure you and
your work are grounded before you
plug the chips into their sockets. Leave.
the chips in their original package until
you are ready to plug the computer in.

The construction is simple. The regu-
lar Tool Kit will do. Just connect the
wires to the right points. The Proto-
Board | like to use is made by RGS
Micro. There are three capacitors in this
circuit, used for power supply decou-
pling. Place them close to each chip on
the board. As usual, clean the board
after all is done. Place the switch where'
itis easily accessed. If you have a Multi-
Pak Interface like I do, it is better to’
mount the switch upside down. This cir-
cuit will work for any board version
(CoCo 2 also) except the “F” board; a
small modification to this computer
version is needed. If you have this
board, open the computer and cut a

capacitor. It is labeled C77. This capaci-
tor is tied to the SLEND line and
ground. Cutting this capacitor should
not interfere with the normal operation
of the computer.

Forcinga cold start is now quite easy.
Hold down the switch with one hand.
Hit and release the Reset button with
the other. When the computer returns
topower on condition, release the switch,
it's as easy as that. Any time you don’t

Lights!
Cameral!

CoCo!

want a cold start (a normal reset), just
don't hold down the switch and you will
get a normal reset condition.

NOTE: There is an error in last month’s
“Halt Pin And Its Functions” sche-
matic. Pin #8 should read Pin #6 and a
Pin #8 go ground should be added.

Table 1
Parts List
Quan-
tity ID # Description RS Parth
i IC-I CD4068 N/A
2 1C-23 CD4078 N/A
I R-l 1000 OHMS %W 271-132t
I R-2 100 OHMS %W 2711311
2 T-1.2 MPS3904 or 276-2016
MPS222A 276-2009
3 C-1.2.3 .1 uF CAPACITOR 272-1053
3 o- 14 PIN SOCKETS 276-1999
b - PROTO-BOARD N/A

his is an enlightening project

Twhich involves lights. That’s

right, a computer controlled light

show. This could be used to light up

your Christmas tree, brighten up your

house or porch, or even change your

denintoadisco. You know those strings

of lights you can buy at Christmas time

- that come in sets of 20 or 30? They are
perfect to use.

Normally 1 would now start to des-
cribe how to put the project together,
get the parts and run the thing, but one
of my friends, Mike Schmidt, told me

_that | would do well to explain the the-
"ory of how my projects work. Well here
goes, a little explanation goes a long
way into understanding how the things
-work.

The heart of the project is based on a
‘nifty little chip called a “thyristor.” It is
better known as a triac. To fully under-
‘stand a triac, one must first look at an
SCR (Silicon-Controlled-Rectifier).
Figure | displays the schematic diagram

of an SCR.

FIGURE 1

ANODE

There are three parts toan SCR. The
anode, the cathode and the gate. As you
can see by the diagram, it doesn't look
like more than a diode with another
wire going to it. Well, that's basically
what it is. The main part of it is a diode,
but this diode does not conduct in any
direction. It is an open circuit capable of
withstanding rated voltage until trig-
gered. That is where the gate comes in.
When a small current is applied to the
gate, the current path of the diode part
of the SRC becomes low-impedance in
one direction and remains so, even after
the trigger source current is removed. It
will remain so until current through the
path stops or is reduced below a min-
imum “holding™ level. An SCR is useful
for DC and half-wave AC applications.

Figure 2 shows the diagram of a
triac. It looks just like two SCRs back
to back. In fact, a triac is nothing more
than a bidirectional thyristor. A single
trigger source turns the device on for
load current in either direction. Since

GATE A
GATE
CATHODE MT 2

A

they conduct in both directions, triacs
are useful in AC power applications
that require full source power control
capability to be applied to the load. This
capability is what we need in this pro-
ject. Inshort, a triac can be described as
an electronic switch. It can also be used
as a variable control switch, but that
capability will not be used in this project.

The Radio Shack Optocoupler is a
special type of triac device. Instead of
the normal gate controlled trigger, it has
an optoisolator device connected to the
gate. This is important to us because
high voltage like the AC coming from
the wall is very dangerous to a low vol-
tage computer. Even the slightest spike
of noise can destroy a computer. The
optoisolator part of this device will pro-
tect the high voltage from coming close
to your computer. Only one problem,
the current handling capabilities of this
device is too limited to be useful. So
we’ll use it to trigger the gate of a more
powerful triac. The triac, in series with a
load (our lights) and the AC from the
wall, will complete a circuit. Before, |
told you that a triac is an electronic
switch. With the right signal to the
Optocoupler, we can control the load

(Tony DiStefano is well known as
an early specialist in computer
hardware projects. He lives in
Laval Ouesi, Quebec.)

35

FIGURE 2

P1 F1
CoCo) A0
PORT
___________________ .
20 oq-d- | (seetext) :‘ --------------- ":
36-CS L = ! ‘] ' 81
R1A ! '
R18 ! 2 |
11-D1 ——-L 1c-1 r—s-—-w—-—:-—-j : m {
. | .
1202 e & _AAA - ['
8 0 R1D ! | !
R1E 1
R1F i
18-DS —4 ww 1 :
R1G |
16-06 3 L AA————] ‘ @
R1H | i L‘ﬁ '
| | |
10 1 J |] '
33-GND L I |
|
B2 I B1 '
== ! ! ‘
- e e e — e — - L‘_— %
! (
' TO OTHER !
CIRCUITS \
(our lights) on and off. This project is basically in two parts.
We now know that the right signal to Table 1 The first part is the computer side. The
the Optocoupler can turn our lights on Parts List only parts that go on the proto-board
and off. What is the right signal? A (B2) are the latch, resistors and the
small current, say, from a computer, is capacitor. What will leave this board is
quite enough. The rest is quite simple. a ground wire and one wire for every
One eight-bit latch to control the Opto- triac circuit you need. You may connect
coupler and eight resistors and we are !0 Quantity Description Avaliable At the two boards together directly or use a
off. The rest is just construction. There ;| | 7415374 Electronics Store SORNECtor. What connector you use
is a parts list in Table I. _ ci I 1 UF 25WVDC RS depends on how many wires you use.
All the parts that have a quantity of f I 10 amp Fuse RS Rcfe.r to the Radio Shack catalog for
“#* need explanation. You do not need & holder the right connector. o
to make all eight of the triac circuit. It g * 220 ohms Yw RS The second part of the project is the
all depends on your use. If all youwant g2+ 150 ohms Y%w RS main board (BI). It consists of all the
is a light chaser, then you need only o1 + Optocoupler RS #276-13¢ remaining parts. There is enough room
three of each part. If you want to do T * Triac RS #276-1001 on the board to fitall eight triac circuits.
something more elaborate, you may 4j * Heatsink RS #276-1363 There is not much to this part, just
want to construct all eight of the triac g, + AC socket Hardware Store _ €Xamine photo I for placement of all the
circuits. The maximum is, of course, p) I AC Plug Hardware Store Parts and follow the circuit.
eight. More 15 possnble' but requires g | Proto-Board Before trying this, you should run a
more circuitry. 1 don't thn}k there is the Main-Board RS #276-161 few tests. Plug in all the ICs except the
need for more, but if there is, writetome g 1 Proto-Board 74LS374. Plug in the control box and
for details. As it is, the eight-bit latch is Computer-Side R.G.S Micro the lights. None of the lights should be

memory-mapped at $FF40 (65433 in
decimal), so the use of this with a disk
drive is impossible unless you have one
of the expansion interfaces available on
the market.

Misc.: Wire, connectors, sockets, solder,
mounting hardware, plastic project box.

on. If some or all of the lights are on,
turn everything off and check your
work. Next, take a little piece of wire
and jumper pin 20 to pin 3,4, 7,8, 11,
12, 15, 16 — one at a time. As you do

36

this each hght should go on. If this is
OK, turn everything off and plug in the
last chip. To see if all is OK, turn every-
thing on. All the lights should be off.
Type POKE & HFF40,255, or POKE
65433,255. The 65433 (& HFF40 in Hex)
is the control byte. The lights should go
on. POKEing a zerointo the same loca-
tionshould turn the lights off. The short
listings provided will give you an exam-
ple of what you can do with the lights.

The last step is how to control each
light separately. POKEing a zero into
the control byte will turn off all the
lights. Each of the eight lights is con-
trolled by one bit. The first bit controls
the first light, the second bit controls the
second light, and so on.

Table 2 shows the decimal value of
each light. To have any light on, just
poke the decimal value of the light

number into the control byte. If you
want more than one light on, you must
add the decimal values of each light.
Example, if you want light 2 and light 6
on, you mustdo 2 + 32 =34. POKE 34
into the control byte. 1 wrote a little
program in BASIC to give you an exam-
ple of what you can do with these lights.

Table 2

POKE value
I

2

4

8

16

32

64

128

Light to turn on

OO0 ~J O L AW N -

There are a few things to remember,
though. Each individual tnac circuit
load (light or set of lights) must not
exceed 400 watts and the total power
must not exceed 1200 watts. To get the
chaser effect, you need just three triac
circuits and three sets of lights. Arrange
the lights in parailel and tie them to-
gether so that the sequence of lights goes
1,2,3...1,2,3...1,2,3. RUN the
chaser program and, there you have it.

It has been brought to my attention
that there seems to be a problem with
my parallel printer adapter. The prob-
lem is with the grounding of pin 18,
While on my Epson printer, 1 have no
problems, on most printers there is a
positive voltage on this pin. Connecting
this in to ground can cause damage to
the printer. To solve this do not ground
pin 18 in the output connector.)

An Introduction
To The Inside

Of The CoCo 2

y, doesn’t time go fast? I can’t
believe I've been writing for
RAINBOW for two years now.

January being THE RAINBOW's Be-
ginners issue, I decided to introduce the
novice to the inside world of the Color
Computer. The latest CoCo 2 is the
newest Color Computer to be introduced
by Tandy. It is different inside from the
old CoCo 2. You can tell the difference
by the shield covering the power
transformer. Though it functions the
same, the insides of this CoCo are very
different (again'). More on that later.

Before we get on our way, let me
‘mention that I just came back from my
seccond RAINBOWfest. I must say that
these shows are great. 1 found THE
RAINBOW staff to be very friendly and
helpful. It is amazing to see that much
enthusiasm generated about the Color
Computer. Chances are I'll see some of
you at the next RAINBOWfest, too,
in California. Stop in and say hello.
Look for me at the R.G.S. Micro booth.

Now, let’s look into this little thing,
but remember, opening your computer
might void your warranty. Radio Shack
only warranties the computer for three
months, so after that you are on your
own, anyway. First of all, never open
the computer with the power on. Now
that that’s said, let us continue.

To open your CoCo, use the following

37

procedure. Place the computer upside
down on a towel (or other soft surface)
on a clean work table. Remove the four
screws (one in each corner) with a
medium-sized Phillips screwdriver.
There is one more screw to remove; it
is behind the little sticker that says
“Opening case will void warranty. See
owner’s manual for warranty informa-

tion.” You must break this seal to
remove the last screw. That is how
Radio Shack can tell if you have opened
it. Just push the screwdriver through
the center of the sticker; it will give way
to a hole. Some of the CoCo 2s may
have a sixth screw on the other side.

Remove the last screw. Turn the-

Figure 1

A\ AN

AN

Il |

TOO LITTLE

JUST ENOUGH

I

TOO MUCH

TABLE 1
IC# Name Description
} SC77527 SALT Power supply
and RS-232 CHIP
2 MC6821P PIA Peripheral
interface adapter
3 SC77526 DAC Digital to
analog converter
4 NESSSD Timér for color
burst in PMODE 4
5 7418273 Octal D-Type
Flip-flop
6 7415244 Octal Buffer
Driver
7 SC67331P 11A Industrial
interface adapter
8 MC6847P VDG Video Display
Generator
9 MC6809EP CPU Central
Processing Unit.
10 74L502 Quad 2-input Nor
Gate
i 74LS138 3 to 8 Decoder
‘ Chip
12 8040364B ROM BASIC 1.2
13 8042364A ROM EX BASIC 1.1
14-21 8040517 16K DRAM
Dynamic
Random Access
Memory
22 MC6883P SAM Synchronous
Address
Multiplexer
Beginners Project Parts List
Quantity Description Radio Shack #
1 LED 276-068 or
276-069 or
276073
! RESISTOR 1k ohms 271-8023

computer back right side up, and gather
up the screws that drop out. Grab the
top cover of the computer and pull it
off. Wow! Look at all those things. The
components marked with the letter ‘U’
(or ‘IC’ in the case of the newest CoCo)
are known as ICs (Integrated Circuits).
Table | labels all the ICs used in the
computer and gives a short description
of each.

Some of the components that make
up the CoCo are very sensitive to static
electricity. You must be careful not to

zap (permanent damage caused by
static discharge) a chip by touching the
pins with your fingers. If you must
touch a chip, always touch a ground
point with your fingers first. This will
discharge any static your body might
be carrying to ground. A good ground
point to touch is the RF adapter. That
is the big metal can sitting to the left,
where you plug in the TV wire. Another
point is one of the metal clips that hold
the bottom shield to the main PCB
(Printed Circuit Board). You will find
these clips all around the edge of the
PCB. :

Now that we have seen the insides
of the CoCo and are a bit more familar
with its parts, let’s do something to it.
About the simplest thing we can do is
add a pilot light. It is not hard, and
if you take it one step at a time, anyone
will be able to do it, and the good thing
about it is that it costs less than $I.
By the way, this pilot light will work
on any version, not just the CoCo 2.
Before you plunge into this though, if
you do not have any soldering expe-
rience, practice on something else first.
To do this, you will need a soldering
iron. A low power, medium or fine tip
soldering iron will do. The solder to
use must be a rosin core and not too
thick. Radio Shack sells both at a
reasonable price. If you have never
handled a soldering iron before, get
Radio Shack’s proto-board and practice
on it first,

Here are the step-by-step instructions
on how to solder: ‘

1) Make sure that your soldering tip
is clean and hot. A wet sponge
is great to clean the tip.

2) Secure the component to the PCB.

3) Heat the component and the PCB
with the iron.

4) Touch the end of the solder to the
component. My personal habit is
to position the solder so that it
will touch the iron, component
and PCB at the same time.

5) When enough solder flows, remove
the solder.

38

6) Remove the iron from the joint.

7) Wait until it cools before moving

the component or the PCB.

To make a good joint takes practice.
To put the right amount of solder also
takes practice. Too much or too little
could result in a bad connection.
Examine Figure 1, and notice the
difference between too little and too
much solder. Sometimes a bad connec-
tion can be turned into a good con-
nection just by heating up the joint
again. After it cools, the joint should
be shiny and smooth. Practice several
times until you get the hang of it. Ther
is one more thing to remember; after
all the soldering is done, clean the PCB
with Radio Shack rosin cleaner-
remover.

Now that you feel more at ease with
soldering, it is time to put your newly
acquired talent to work. Yes, the pilot
light. There are only four parts to this
project. The LED, a 1K (K=1000) ohm
14 watt resistor, and two short lengths
of colored wire (preferably red and
black). That is it. Examine the schematic

Figure 2

@ VOLTS (Pin #8)

RED
WIRE

1K RESISTOR

LED — SZ//

BLACK
WIRE —

GROUND (Pin #33) |-

in Figure 2. This is a diagram on how
the components connect together and
to the computer. The first thing to do
is mount the LED. You must decide
where to put it. After that, you must
check that when mounted, it does not
interfere with the normal operation of
the computer, i.e., short out or lean on
other components and does not prevent
the cover from fitting properly.

Mount the LED by drilling a Y4-inch
hole where the LED is to be mounted.
Cut both sides of the resistor leads to
about % inch. Solder one side of the
resistor to the long end of the LED.
Solder one end of the red wire to the
other end of the resistor. Solder one
end of the black wire to the other (short)

end of the LED. Twist the two wires
together lightly and cut them about 18
inches long. This should be long enough
to have the cover out of your way if
ever you want to open the computer
again.

Now, solder the other end of the red
wire to inside of pin 9 of the edge
connector. That is the five volts side.
How do you get to pin 9?7 Simple, just
start counting from the end closest to
the back of the computer. All the top
pins are odd numbered, so count I, 3,
5, 7, 9. Make sure that you don’t short
out two pins with the solder. Finally,
solder the black wire to pin 33, count
that one the same way. Pin 33 is the
ground return pin.

Place the cover on top of the computer
(without the screws for now) and turn
the computer on. The LED should turn
on. If not, chances are that you got the
wires to the LED reversed. In that case,
unsolder the resistor and the black wire
to the LED and resolder them the other
way. Otherwise, you should not have
any problems. Tuck the wire in the
cover and place the cover back on.
Make sure that the wire does not stick
out and that the keyboard is sitting on
the pegs properly. Turn the computer
over and replace the screws. There you
are, your first modification to your
computer. Now doesn’t that make your
day?

A

A Look At How The
Multi-Pak Interface Works

his month we’ll be looking at
Twha(makes Radio Shack’s Multi-

Pak Interface (MPI for short)
tick, and finish off by adding a littie
LED numeric display to tell you what
slot is active.

First off, a little background on the
memory map of the Color Computer
is necessary. Judging by the amount of
questions 1 get, the concept of a
“memory map” is very confusing to
many. Hopefully, after reading this
article, the memory map for the Color
Computer will be better understood by
all.

The CPU in this computer is the
MC6809. It has 16 address lines. In
binary numbers, 16 bits can have 65,536
different combinations, or 2 to the
power of 16. That means the CPU can
directly access 65,536 (better known as
64K) bytes of memory. The key word
here is “directly.” At any one time, the
CPU will read or write within this
boundary, but there is no rule that says
we can’t fool the CPU into accessing

All Address ————i Memory Memory Memory Memory
and Data Lines { ——1 1 2 3 4
from CPU . . _ .
: CE CE CE CE
CE
from CPU >r—
(Figure 1)

(Tony DiStefano is well known as an
early specialist in computer hardware
projects. He lives in Laval Ouest,
Quebec.)

more. To the CPU, it looks like only
64K; to the user the amount of memory
the CPU can access can be almost
limitless. The secret (not a very big one)
is bank switching.

A memory chip, be it RAM, ROM,
EPROM or whatever, has what is
known as a chip enable (CE for short)
pin. This pin activates the chip for a
read or a write. When this pin is not
activated, the chip becomes invisible to
the CPU; it is as if it was not there.

Now, think of several chips all in
parallel, except for the CE pin. Put all

the CE chips on a switch so you can
select one at a time (see Figure 1).
Changing the switch would mean
whatever memory chip was connected
by the chip would be activated. This
technique allows the user to have access
to more than 64K of memory — how
much more depends on how many
switches you have.

Let’s take this one step further.
Instead of the manual switch, as in
Figure 1, an electronic switch is put in,
(see Figure 2) and if this electronic
switch could be controlled by the

39

computer, it could switch to different
chips all by itself. That way, the CPU
could actually access more than 64K.
All the CPU would have to do is change
the electronic select switch.

This is done, of course, in software.
The software must know there is more
than 64K online. It must also know how
to access this memory in reference to
where the switches are. This is basically
what the Multi-Pak Interface is — an
extension of the CPU’s memory capac-
ity. It comes complete with mechanical
and electrical switches, along with
everything else you need to make it
work, like a power supply, buffers,
wires and connectors, etc.

Now that we know what it can do,
let’s look at how it does it. In order
to understand how the Multi-Pak
works, an understanding of the Color
Computer memory map is necessary.
Note that all versions of the CoCo and
CoCo 2 have the same memory map.
(Figure 3 shows the memory map.) This
is a hardware memory map rather than
a software map. The hardware map
shows what chips are where and what
areas are reserved for them. A software
map would show what variables are
where, i.e., printer Baud rate, input
hook, cassette buffer and so on. Right
now we are interested in the hardware
map.

The following is a point by point
description of the memory map as it
is when you turn on the computer. The
map can deviate from this with certain
commands to the SAM (Synchronous
Address Multiplexer) chip, but these
are the default settings (on power up).
The “$” denotes a Hex number.

1) 0 to 32767 ($30-$7FFF) — This
area uses the internal RAM chips. They
can be one to two banks of 4K, or 16K
DRAM (Dynamic Random Access
Memory), or /4 of 64K DRAM.

2) 32768 to 40959 (38000-$9FFF)
— This area uses an internal 8K * §
ROM chip. This space is usually taken
up by Extended BASIC.

3) 40960 to 49151 ($A000-$BFFF)
~— This area uses another internal 8K
* 8 ROM chip. This space is occupied
by Color BASIC.

4) 49152 to 65279 ($C000-SFEFF)
— This area is 16128 ($3F00) long. It
is one page (page = 256 or $100) less
than 16K. This area is reserved for
external memory. It is accessible via the
cartridge connector on the side of the
computer. More on this later.

S) 65280 to 65311 ($FF00-$FF1F)

CE —
B am——{ | CE Memory 1
from CPU Decoder - ry
Chip # CEM y 2
74L5139 —_—
(k) CEM y3
| Latch and| CE Memory 4
Al Address Memory
and Data Lines Map
from CPU Decoding
Circuitry (Figure 2)

l

— This area is normally used as an
I/O port. It is used to control a PIA
(Peripheral Interface Adapter). This
PIA is connected to the keyboard,
analog MUX select lines, horizontal
and vertical sync interrupt, joysticks
and buttons.

6) 65312 to 65343 (SFF20-$FF3F)
— This area is another internal I/O
port. The second PIA in this computer,
it controls the 6-bit D/A, cassette
10O, RS-232 1/0, RAM size, motor
control, sound enable, single bit sound
output, graphics mode control and

CoCo Major Chip-Enable

Memory Map 6553S SFFFF
Vectors
65520 SFFFO
SAM
Control
Registers
G5279 SFEFF
65376 SFF60
- =~ === 2
Disk vo
Extended
BASIC 65344 $SFFa0
49152 $C000
Extended
BASIC V o*
40960 $A000 65312 $SFF20
BASIC
0
32768 $8000 vo
65280 SFFOO
RAM
] $0000
{Figure 3)

40

cartridge interrupt input.

8) 65344 to 65375 ($FF40-$FF5F)
— This area is the third 1/O port and
is reserved for external use. It is
accessible via the cartridge connector
on the side of the computer. More on
this later.

9) 65376 t0 65519 (3FF60-SFFEF?)
— This area controls the SAM chip.
The SAM chip generates all the system
timing and all of the device selection.

10) 655201065535 (3FFF0-$FFFF)
— Finally, this area is the indirect
pointers to the CPU interrupt vectors.
Each pointer is two bytes long. Starting
from the top, they are: Reset, NMI,
SWL IRQ. FIRQ), SWI2, SWI3 and the
last one 1s Reserved. This area is
controlled by the SAM chip and
. whenever it is accessed, the SAM chip
will re-route (re-map) it to 4915]
($BFFF), the top of the Color BASIC
area. The reason for this is the CPU
must use these vectors, and the only
ROM that definitely comes with the
computer is this one.

As you can see from the map, the
areas that will concern the MPI are #4
and #8. They are accessible through the
cartridge port.

Let’s start with #4. The most common
use for this area is the ROM-Pak. All
of Radio Shack ROM-Paks use this
area, however, not all of them use the
whole 16K area available. Some use 2K
or 4K, but most use 8K. In the case
of the disk drive system, the software

known as Disk Extended Color BASIC
resides in this area. As a matter of
interest, this software is kept on an 8K
ROM chip, but only uses a little more
than 6K of it. The rest of it is blank.
The pin that controls (chip enable) this
area on the cartridge connector is #32.
It is called the Cartridge Select Signal
(CTS) and is active LOW.

The second area available to the
cartridge port is #8. It is generally used
as an [/O port, but can be used for
just about anything. The 32 byte length
limits it to mostly 1/O. Radio Shack
game ROM-Paks do not use this area;
the disk system does. It uses this area
to communicate to the disk controller.
Some of my projects also use this area.
The pin that controls (chip enable) this
area on the cartridge connector is #36.
Itis called the Spare Select Signal (SCS)
and is also active LOW.

There are four slots in the MPI. This
means you could put up to four ROM-
Paks in there. They don’t have to all
be ROM-Paks; you could put in a
ROM-Pak, a disk controller, a voice-
pak, an RS-232 adapter, an x-pad and
your own “gizmo,” just to name a few.
They are all different, but fall into two
categories: ones that use the SCS and/
or CTS, and ones that use their own
memory map decoding.

Let’s look at the ones that do use
these signals. The MPI has two ways
of selecting which slot will be active:
1) The switch in front of the MPI. This
is used as a “power up” default switch.
When you turn the system on, the slot

Q+5v

—I Common 9?*5\’
3 |5 116 Cathode
scs 9 2 a[5] s ?1; SV
1 10 1| o/ 9 T
2 7 11 14 H ﬂ 2 1 7 10 AAAAL 8
[S —
30— : 13 8 "u13 4 12 . 13
14 6 3e— 11 7 1B o1
15 ' — R PVEET
2776]8 _L" {15 2 C——
= 2'_6_]8 Common
— 1 Anode
-5V)
3[sf1]e Q+svV]
— +
- CTS ; 3 . 10 c— 11 . 14
14 7 11 10 8
- u13 4 A
7 a4 |12 —— 14 o 1 7 1" 10 ’
Bo—ro 8 13 a 12 13
7 7 13 AAA 1
15 — 13 o——q 14 11
. NAA-
2] 6] |8 BE B e/
A4 = 2[6] |8
- A - B

*U13=.74SL139 (inside MPI)

. 5V= Pin #16 (U13)
GND-= Pin #8 (U13)

" (Figure 4)

All Resistcrs = 2K s Watt

41

that will be active will correspond to
the switch’s position. If you want the
game in slot #2 to run, place the switch
to #2 and turn the computer on. 2) The
second way to select the active slot is
by the built-in electronic switch. The
electronic switch is nothing more than
a memory-mapped byte. At this loca-
tion, there is a latch so the associated
circuitry can remember what slot is
active. This latch is at 65407 (3FF7F).
Writing to this byte will change the
active slot so it is equal to the value
stored in that byte. To change the active
slot, a poke or a store will do. You can
also read the latch. The value returned
will correspond to the active slot.

To make matters more complicated,
the SCS and the CTS can be switched
separately. Yes, the SCS can be in slot
I and the CTS in slot 3. The electronic
switch is divided into two parts, or
nibbles. Each is four bits, making it
eight bits, which is equal to one byte.
The lower four bits controls the SCS
and the upper four bits the CTS. A four-
bit binary number can have 16 different
combinations, but only the first four
are used in the MPL. That makes four
ports. The value needed to select a given
port must start with zero. This is the
first siot, even though the numbers start
from one.

To select a slot, a little calculation
is necessary. It 1s, of course, easier in
Hex numbers. Here is a table that
references the slots.

Slot # CTS SCS
I 0 ($0) 0 (30)
2 16 ($10) 1($1)
3 32 (%20) 2(82)
4 48 (330) 3(33)

Toselect a CTS and an SCS is simple:
take the value from the CTS column

that corresponds to the slot number you
want active, and add it to the value of
the SCS that corresponds to the slot
of that one, For example, if you want
the CTS to be in slot 3 and the SCS
in slot 2, the sequence would be as
follows:

32($20) + 1 (81) =33 (821)

You would then POKE 65407,33 but
you must remember when you change

“There are four slots in
the MPI . . . you could
put up to four ROM-
Paks in there. They don’t
have to all be ROM-
Paks; you could put in a
ROM-Pak, a disk con-
troller, a voice pak, an
RS-232 adapter, an x-
pad and your own ‘giz-
mo,’ just to name a few.”

slot numbers, the computer might
crash. It all depends on what software
is running at the time. If, for instance,
you were running Disk Extended BASIC
and changed the CTS to another slot,
a crash would occur and the disk
software would no longer be there. If
the slot that received control was auto-
starting, it may start properly, depending
on the status of the interrupts.

Now for the project. This is a simple
2-1Ccircuit. The IC I used in this project
is the 7448. It is a BCD (Binary Coded
Decimal) to seven-Segment decoder
driver. This chip takes a four-bit binary
number from zero to nine, and turns
on the proper LED display segments
to make them look like numbers. This
IC can drive the display directly without
resistors. It also uses the less expensive
common cathode display (RS #276-
075).

Unfortunately, the 7448 is not avail-
able at Radio Shack. The one available
is the 7447 (RS #276-1805). There are
two differences between the two: 1) it
needs resistors to drive the display, and
2) it drives a common anode (more
expensive) display. The choice is yours.
If you can find the 7448, then use the
common cathode display. If not, then
use the 7447 with the common anode
display (RS #276-053) and the resistors.
Both schematics are shown in Figure
4,

I mounted the ICs and the displays
on the same protoboard, as you can
see from the photo. I will leave it up
to you to mount the display where you
want it. The display and the 1Cs do not
have to be on the same board. You
could always cut a square hole in the
cover and mount the displays there,

To see if the display is working right,
with all slots empty, place the front
switch to slot #1 and turn the computer
and MPI on. The display should read
00. Turn the switch to each position
— #2, #3 and #4 — the display should
read 11, 22 and 33, respectively. Try
POKEing different values acording to
the Slot Table, and verify that the
numbers change accordingly. From
now on you will be able to see at a

glance which slot is active. .

Constructing 16K
Of EPROM

For Your Disk Controller

42

lot of people call or write to me
Awith suggestions about doing

this and trying that, and I plan
to start doing some of them soon. Some
of the most popular ones are quite good,
but I'll not mention them right now.
1 wouldn't want to say something and
not live up to it later.

I would hke to apologize to my
readers for the errors that sometimes
appear in “Turn Of The Screw.” You
see, all of the projects that appear in
this article, I have buiit, tested and
debugged. The biggest problem is when
it 1s time to write the article, 1 have
to take my prototype and transfer all
the hardware information into type.
That means diagrams, parts lists, text
and schematics. This is where | am most
vulnerable to errors. Once | have
finished the rough draft, I read it over
again, then when all is completed, | read
the whole thing once more. Errors,
however, do creep in; please bear with
me, | do my best.

If, when constructing one of my
Projects, you ao come across something
that does not seem right, don’t continue.
Stop and study the situation. If you
don’t come to a solution, contact me
either by letter (include a SASE) to THE
RAINBOW, or by calling me on any
Monday might at (514) 473-4910. Never
try to do something unless you are sure
of what you are doing. Be forewarned,
the computer is not very forgiving. One
error can cause a lot of damage. I know,
I have burnt out a few chips in my time
and occasionally still do.

Now to get to this month’s topic. One
of the memory mapped areas | described
in last month’s article is the area
rescrved for the cartridge ROM pack.
I also said that when you plugged in
the disk controller, the Disk Operating
System (Disk BASIC) used this area.
This month, we will look into expanding
Disk BASIC hardware.

To recap this area, the *CTS pin on
the controller controls the ROM chip
that contains the disk software. The
*CTS select line can access a total of
16,128 bytes. (Better known as 16K.)
It is memory mapped from 49,152
(8C000) to 65,279 (SFEFF).

The ROM that Radio Shack uses in
Disk BASIC is only 8K long, the lower
8K, from 49,152 ($C000) to 57,343
($DFFF). All references to the “lower
§K™ will be at this address. That leaves
the upper 8K, from 57,344 ($E000) to
65,279 ($FEFF), of unused memory.

All references to the “upper 8K” will
be this area.

Actually, this memory is not unused.
It is memory mirrored to the lower 8K.
This means 1t is not properly decoded
and when the upper 8K accesses, the
lower 8K chip responds. For example,
type in:

PRINT PEEK(49152) ENTER
and
PRINT PEEK(57344) ENTER

Both responses will be the same.
Now, if we were able to properly decode
this area, we could use the free space
to add another chip, usually an
EPROM. This chip could be used as
an extension of Disk BASIC or often-
used utilities.

For example, the Spectrum DOS, by
Spectrum Projects, could be burned
into EPROMs, and whenever you
turned the computer on, it would be

Figure 1

a7 = 24 [Jvce
A6(] 2 23[JAs
boas[]3 nbw
! asl] o 21 [J A2
Aa3]s 20 [CE
A2 6 19[JA10
a7 18 JAn
A0[]s 7)o
oo[] 9 16] D6
o110 15[D5

L b2 M 14[] D4
sno(] 12 13 [Jp3

MOTOROLA MCM68A364

right there. (I will not go into how to
work with or use EPROM pro-
grammers. There are several on the
market and all seem to be good; it all
depends on price and ease of use.
Usually the more you pay, the easier
it is to use. I will leave the software
programming up to you.)

What I intend to do in this article
1s describe the chip that is in the Radio
Shack controller when you buy it, and
the way you can interface two 8K
EPROMs or one 16K EPROM.

43

The 8K EPROM 1 will use is the Intel
2764; it is the most economical one |
have found. The 16K EPROM is the
Intel 27128 (a little more expensive, but
alittle less trouble). Other manufacturers
make the same chip, but make sure it
is the Intel pinout as opposed to the
T1 pinout. You can use the T1 pinout
chip, but you’ll have to figure out the
pinout changes for yourself. Another
note: If you like to use the high speed
poke, for POKE 65495,0 you must use
a 300 ns. access time chip, or faster,
in order for it to work. The siower 450
ns. chip works in the regular mode, but
not at the faster rate.

Now, the chip that contains the Disk
BASIC software 1s made by Motorola.
This chip is a masked ROM — ROM
means Read Only Memory. That means
the data contained in this chip can never
be changed, erased or lost (unless you
burn out the chip). The data is perma-
nently printed directly on the chip itself
at the time of production. It costs less
to produce a ROM as long as the
quantity is high.

The chip used here is an
MCM68A364. It is an 8K by 8 ROM.
Figure | shows the pinout of this chip.
By the way, the BASIC and Extended
BASIC chips are also the same chip, just
different masks.

The first way of using all of the 16K
memory in the cartridge area is to use
a 16K EPROM. Figure 2 shows the
pinout of an Intel 27128 EPROM.
Examine the diagram and compare it
to Figure 1.

What is wrong with this picture?
There are 28 pins on this chip. The 8K
ROM has only 24. This is a bit of a
problem, but certainly not unsurmount-
able. It’s time to get the ol’ soldering
iron and wire out. The following is a
step-by-step procedure to modify and
solder up a 27128 EPROM to fit (kind
of) into a 24 pin socket. I recommend
only those experienced in soldering
attempt this.

The first thing we must do is study
the pinout for this chip. Examine Figure
2, the Intel 27128 chip. The first thing
we notice 1s that it has 28 pins, four
more than the socket. Pin numbers I,
2, 27 and 28 are the odd ones. If you
line up pin #3 of the EPROM and pin
#1 of the ROM, the rest of the pins
are almost the same as the ROM. The
different pins between an Intel 27128
and an MCM68A364 are as follows:

Pin # EPROM ROM
1(-) Vpp N/C
2¢) Al2 N/C
20 (18) CE Atl
22 (20) OE CE
23 (21 All Al2
26 (24) Al3 Vee
27 (-) PGM N/C
28 (-) Vce N/C

When it is time to insert this chip
into the 24 pin socket, let the odd pins
hang out. Pin #3 on the IC will plug
into pin #1 on the socket. Make sure
you get pin #1 right. It is usually marked
with a small hole or a notch.

Step 1 — Bend pins #20, #23 and
#26 (on the IC) out far enough so when
you insert the chip these pins will not
enter the socket. Make sure it does not
touch anything.

Step 2 — Solder a short piece of #30
wire from pin #20 to pin #22 on the
IC.

Step 3 — Solder another piece of #30
wire from pin #] to pin #28 and pin
#27 on the IC.

Step 4 — Solder one end of a one-
inch piece of #22 wire to pin #28 on

Figure 2
vPP[] 1 el 28 [Jvce
A2 27[)PGM
ar(]s 26(] a13
A6 (] a 25[7] A8
as(s 24 A9

Yink 231 A1
A3[j7 225&

A28 21 L:|A1o
ar s 20 JCE
Ao 1o 19 [] D7
oo (] 11 18] D6
o112 17]os
02(]13 16 [Da
sND[]14 15 b o3
INTEL 27128

the IC. Strip % inch of insulation from
the other end. This end will insert into
the empty pin #24 of the socket.

Step 5 — Solder one end of a two-
inch piece of #22 wire to pin #2 on the
IC. Strip '4 inch of insulation from the
other end. This end will insert into the
empty pin #21 of the socket.

Step 6 — Solder one end of a one-
inch piece of #22 wire to pin #23 of
the IC. Strip % inch of insulation from
the other end. This end will insert into
the empty pin #18 of the socket.

Step 7 — Solder one end of a four-
inch piece of #30 wire to pin #26 on
the IC. Solder the other end of this wire
to pin #37 on the edge connector, the
side that plugs into the computer. That
1s the second to last pin closest to you
on top, on the right-hand side if you
are looking at the front of the controller.

That’s it! Carefully insert the chip
into the socket making sure there are
no shorts. You now have a 16K
EPROM in your controller. If you want
to erase this EPROM, just remove all
of the solder spots and start over again.
If you do a good job in soldering and
de-soldering, the EPROM could stand
about 10 or so recyclings.

If you don’t want to use a 16K
EPROM, or your present programmer
cannot handle 16K chips, then using
two 8K EPROMs is the answer. There
are two problems with using two 8K
EPROMs. The first problem is how to
decode the two separate chip select lines
and the last address line. Figure 3 shows
the pinout of an Intel 2764.

Notice that pin #27 is the pin used
in the programming of this chip.
However, if this pin is low during a read
cycle, the chip “deselects” — the chip
does not respond to a read. It stays
deselect all the time this pin is low. If
we were to attach the last address line
to it (A13) when this line was low, the
chip would not activate. The fact that
A13 is low means you are accessing the
lower 8K block. Since the chip deac-
tivates when it is low, it meets the
decoding needs of the upper block.

On the other hand, pin #20 of the
1s made to activate the chip when low.
So, if we tied A13 to this line, the chip
would behave opposite to the first. It
would be deactivated when A13 1s high.
This would properly decode for the
lower 8K block and deactivate for the
upper.

Using this technique would solve our
first problem, but we still have one more
problem: Where to put the second chip?
I have used this technique before and
most likely I'll use it again — it’s great.
It is called the “piggyback” technique.
We will solder the two chips on top
of each other, except Al3 and a few
more, to get it to fit in a 24 pin socket.

Before we go any further here, there
is a difference between an Intel 2764

44

Figure 3
ver (1 = 28 [Jvce
a2]2 27 [)PGM
a7 3 26 [[INC
a6 (] 4 25] A8
as s 24 gu
Ad e 23 a1
A3, 22[J0E
A2 : 8 23 bmo
A1 [j 9 20 [JCE
a0 (] 10 19 Jo7
po [11 18] D6
01 Q 12 17[Jos
p2 (] 13 16[]D4
sno (] 14 15103
INTEL 2764 J

and an Intel 27128: The 2764 has an
N/C on pin #26, whereas the 27128 has
Al3.

The following is a step-by-step
instruction on how to solder up two
2764s to fit in a 24 pin socket and be
accessed as a 16K chip.

Step ! — Program the first chip with
the data that goes into the lower 8K
and mark it as the lower chip. Program
the second with the data that goes into
the upper 8K and mark that one as the
upper chip. It is important not to get
the two mixed up, they are not wired
up the same way.

Step 2 — Take the lower chip and
bend pins #20 and #23. Take the upper
chip and bend pins #20 and #27.

Step 3 — Mount the upper chip on
top of the lower chip so pin #1 is on
pin #1, 2 on 2, and so forth, leaving
a small gap for air circulation. Solder
all the unbent tips of the upper chip
to the bases of the lower chip. Even
if the lower pin is bent, in the case of
pin #23.

Step 4 — Solder a one-inch piece of
#30 wire from pin #20 to pin #22 on
the upper IC.

Step 5 — Solder another piece of #30
wire from pin #1 of the lower IC to
pin #28, #27 and #26 of the lower IC.

Step 6 — Solder one end of a two-
inch piece of #22 wire to pin #2 on the
upper IC. Strip !4 inch of insulation
from the other end. This end will insert
into the empty pin #21 of the socket.

Step 7 — Solder one end of a two-
inch piece of #22 wire to pin #23 on
the upper IC. Strip ' inch of insulation
from the other end. This end will insert
into the empty pin #18 of the socket.

Step 8 — Soider yet another two-
inch piece of #30 wire from pin #20 of
the lower 1C to pin #27 of the upper
IC. Solder one end of another four-inch
piece of wire to pin #27 of the upper

IC and solder the other end of that to
pin #37 of the edge connector. See the
ﬁ}’st Step 7 for proper location of this
pin.

You are now ready to plug the
“spider” (as I call it) into the socket.
Remember pin #3 in the spider goes into
pin #1 of the socket. The other four
pins sticking out over the socket are
#1,#2, #27 and #28.

By popular request, for those of you
who do not want to build this project,
there is a board adapter available, built
and tested, that you can buy from
R.G.S. Micro which does the same
thing. See their ad in this magazine. It
fits inside only the J&M controller and
is made for two Intel 2764 EPROMs.

That is it for now, enjoy your 16K
Disk BASIC. ' V)

‘Adding A Numeric Keypad
To Your CoCo

ust the other day. I walked into
me local electronics store and saw

they had recently opened a ware-
house bargain section in the rear of the
store. | immediately went in and started
to browse. This place is a gold mine
of old parts and nifty gadgets. Some
items 1 found werc individual keyboard
switches. Tuey were surplus from who
knows where, were of good quahity and
very inexpensive.

If you recall, a while back [did an
article on adding function keys to your
keyboard. I explained that in the eight
by seven matrix that makes up the
CoCo keyboard, there are four free
areas and how to add switches. Ever
since then, 1 get requests to write an
article on how to add a numeric keypad
to the Color Computer.

1 looked into it and found that it
would be quite easy to wire one up.

time at all, [had mysell a nice numeric
keypad. It was then that | decided |
should submit “Adding a Numeric
Keypad™ to THE RAINBOW.

It is still up to you to find your own
keyboard switches and keycaps. You
will also have to build your own keypad
case since the size and shape of your
case will depend on what kind of
keyboard switches you get and how
many you decide to add (I'll explain
later). In other words, all of the
cosmetic side of this project will be left
up to you. 1 will supply the schematic,
parts list and method of putting
together a numeric keypad.

For the benefit of those of you who
do not know how the CoCo keyboard
works, a little background information
may help you with this project.

The keyboard has 53 keys. A PIA
(Peripheral Interface Adapter) is used

Very few components would be needed
and it would not cost too much. About
the only thing that was keeping me {rom
foing such an article was the actual

keypad switches — there were none to
be had around here. I could have used
regular switches; after all, that is all that
makes up the keyboard part of a CoCo,
but it would not look like a nice keypad.
Therefore, 1 put the numeric keypad
article on the back burner.

Back at the electronics store, I picked
up about 20 keyboard switches along
with an assortment of keycaps. In no

to scan these switches (keys). The eight
keyboard columns are attached to the
‘B’ side of the PIA. These eight lines
are programmed to be outputs.

The seven keyboard rows are attached
to the ‘A’ side of the PIA. These seven
PIA lines are programmed to be inputs.
To read the keyboard, only one column
is enabled by writing a zero in the bit
that corresponds to that column and

(Tony DiStefano is well-known as an
early specialist in computer hardware
projects. He lives in Laval Ouest,
Quebec.)

45

by writing ones in all the other bits.
If a key has been pressed in that column,
one of the input lines will be a zero
and the key location will correspond
to the bit that is low. By scanning each
column in the keyboard, all of the keys
may be checked.

My idea is (if 1 run some wires in
parallel to that of the keyboard lines)
to take those wires and run them to
a connector, and finally to some
keyboard-like switches. Since the
switches would be in parallel, this would
give you the choice of pressing, for
example, the number ‘1’ on the main
keyboard or on the numeric keypad.
You could enter all your numeric data
from the keypad.

But also, I included a few more keys
that would be handy: the plus key(+),
the minus key (-), the multiplication key
(*) and the division key (/). Then there
is the decimal point (.) and the ENTER
key (CR).

The schematic in Figure 1 shows how
to wire the above keys to the main
keyboard connector. I chose those keys
because it suited my needs. There is no
reason why you could not change them
to fit your needs, or for that matter,

you can add a complete second key-
board. All you have to do is get the
right wiring.

Figure 2 shows the complete wiring
diagram of the CoCo keyboard. All
versions of the CoCo or CoCo 2
keyboards are the same, even though
the keyboards look different. That is
one of the few things that did not change
in the ever-changing CoCo.

Now, the next thing I didn’t like was
that if you wanted to enter a multipli-
cation sign or a plus sign, you had to
press the SHIFT key. I had two choices:
1) include the SHIFT key and press it
every time you wanted these functions,
or 2) make a small electronic circuit to
automatically press the SHIFT key when
you hit these keys. I elected to do the
latter of the two.

The switch that is normally used for
the keyboard is an SPST (Single Pole
Single Throw) momentary on. To
automatically hit the SHIFT key and the
key you want shifted would require a
DPST (Double Pole Single Throw)
momentary on. That way, both circuits
would connect and we would get the
shifted function, if any, of that key.
That is a good way to do things, but

I could not find a DPST switch in the
shape of a keyboard key. So, I decided
to make an equivalent transistorized
circuit.

Look at the transistor part of the
circuit diagram in Figure 1. Each
transistor acts like a switch. The 10K
bias resistor makes sure the transistor
stays off when not being accessed. That
is the equivalent of the switch being off
or open (no key pressed).

The emitter of the transistor is
connected to the output side (Port B)
of the PIA. If you recall, all the ‘B’ lines
are programmed to be outputs and are
all high or five volts. Only one line at
a time goes low, so when the line that
has the emitter of the transistor con-
nected to it goes low, the transistor’s
emitter is effectively connected to
ground.

The 1K base resistor is used to limit
the base current, but enough to tum
the transistor on. The switch in this
circuit is connected to five volts. When
the switch is on (key pressed), current
flows through the resistor, therefore,
turning the transistor on. That makes
the collector of the transistor ground
potential. In turn, the ground potentia

Figure 1 Keypad Schematic
K
E
\B(16 g
o 15
A 14 N
R
° 5 e
c 12
0 1M
N 10
§ 9
c 6
& 7
R

8
* 5v
* GND —
FEMALE \MALE

CONNECTOR l CONNECTOR

INSIDE
COMPUTER

* SEE TEXT

46

on the collector grounds one of the
corresponding input pins on the ‘A’
Port of the PIA. To the computer, this
translates into a pressed key.

Now. take the plus key for example.
The Port ‘B’ output that connects to
this key 1s PB3 (keyboard connector
#12). The input pin is PAS (keyboard
connector #7). 1 placed my transistor
circuit on these two points as described
above. Now, when 1 press the switch
connected to the transistor, I get the
semicolen (;), the unshifted plus.

I then made another transistor circuit
for the SHIFT key and connected the
base resistor to the same switch as the
plus key. Now when I press the switch
connected to the two transistors, 1 get
the shifted plus in one key press. Nice,
but this would require two transistors
for every shifted key I needed. Use a
simple diode to isolate the two tran-
sistors and now you only need one diode
per shifted key. (I'm sure that someone
will write me saying, “I found a way
to do it with fewer parts,” but this one
works. so I'll use it.)

As a point of interest, this circuit can
make an easy pause key. When you
want to stop a listing, you press the
SHIFT @ key. Well, this would make
a one-key pause button.

You can really get carried away and
make all of the shifted keys “one-key
only.” For example, “SHIFT backspace”
means backspace the complete line.
You can now have one key to “delete
line.” Another good one is the question
mark (?). It is used as a short form for
the PRINT statement.

The construction of this project
requires a bit of doing and cutting. I'll
leave that part up to you. As you can
see in the photo, I used a proto-board
and glued the keys onto it. You can
see the transistors and resistors at the
bottom. The important parts, like the
theory of operation, schematic diagrams
and keyboard layout, are here. There
. should be enough information here to
© get you going.

Since there are many board revisions
to the CoCo. there might be a problem
asto where to find the right connections
to the keyboard. The best way to cover
all versions is to connect directly to the
keyboard connector itself. It is a 16-
pin connector and all of them are wired
the same way, even though the connector
might be different.

I suggest you solder your wires to
the connector. If the connector is too
close to the board and you cannot reach

its soldered pins, you could always
remove the board and solder to the pins
from the bottom side.

Remember, when soldering from the
bottom, the pin numbers are backwards.
The pin numbers go from | to 16; 1t
is marked which side is 1 (left) and
which side is 16 (right).

Find a good spot to mount the 15-
pin connector — on the side of the
computer directly under the keyboard
1s not bad. On the left or right depends
if you are left- or right-handed.

Mount the female connector to the
computer. Using a short length of
ribbon wire, solder all the pins needed
from the keyboard connector to the 15-
pin connector.

There are two more connections that
go to the 15-pin connector that do not
go to the keyboard connector: the
ground wire and the five volt wire.
There 1s always a question of where is
the best place to connect the five voits
and ground. I always look for a I. uf
decoupling capacitor. They usually
connect to the right points. If you are
not sure, use pin #8 on the 74L.S138
for ground and pin #16 on the same
chip for the five volts. That is all the
wiring you have to do on the computer
side; the rest is all in the keypad adapter.

Solder another short length (the
length is up to you) of ribbon wire to
the male 15-pin connector. Make sure
all the wires match the pinout of the
female side. The rest of the wiring is
done on the proto-board with the
keyboard switches and other parts.

The parts list matches the needs of
the schematic in Figure 1. If you are
adding more keys, you will have to add
more parts. The connector I used has
15 pins. There are a few free ones, but
if you decide to do a complete remote
keyboard (or somewhere in between)
you will need to move up to the 25-
pin connector since the | 5-pin connector
is not enough.

One last thing, if you write me and
expect an answer, please include a
SASE or, for faster responses, you can
call me on Monday nights only (please).
My number is (514) 474-4910.

Parts List
ID Description
Ql,2,3 2N3904 transistor
R1,2,3 10K 1/4W resistor
R4,5,6 1K 1/4W resistor
D1, 2 IN914 diode

Cl 15 pin sub-D male

C2 15 pin sub-D female
Maiscellaneous16 (or more) conductor-
ribbon wire

12 key-switches

12 key-caps

proto-board

plastic or metal case
screws and mounting
lugs, etc.

Hardware

Reference
TRS-80 Color Computer Technical
Reference Manual

Figure 2

Keyboard Wiring Diagram

How To Hook Up
The Radio Shack

Voice Synthesizer

little while back, I did a project
Ausing the Votrax SC-02 voice

" I synthesizer chip to make CoCo
talk. It was an interesting project and
I got a lot of correspondence about it.
However, not all of it was good. People
found that the chip was hard to find,
and when they found it, 1t was very
expensive. Ever since that time, 1 have
been getting letters inquiring about how
to hook up Radio Shack’s own speech
synthesizer to the CoCo.

I just came back from the Irvine
RAINBOWfest in California, and
believe it or not, more than one person
asked me about this synthesizer. I know
I am slow at times, but I think I finally
got the message. So, this month we are
presenting “How to Hook up the Radio
Shack Voice Synthesizer to Your Color
Computer.”

But, first things first! 1 got a good
piece of information while 1 was at the
Irvine RAINBOWfest. | was talking to
a gentleman about the “ins and outs”
of the CoCo and we came upon the
subject of repairing. If you have the ‘F’
board (also known as the 285 board)
this is for you.

On some of these boards, there is a

(Tony DiStefano is well-known as an
early specialist in computer hardware
projects. He lives in Laval Ouest,
Quebec.)

The listing: TURNSCRW

* FROM RAINBOW'S

UL UN-

18 FOR I= 1 TO 55
28 READ A
38 POKE&HFF40,A

40 IF (PEEK(&HFF41) AND 1) = 1 T

HEN 40

* THI8 18 FOR THE RADIO 8HACK
* VOICE SYNTHESBIZER IC

TURN OF THE SCREW
* BY TONY DISTEFANO

problem (an intermittent one at that).
The symptoms are as follows: the
computer works fine for a while, then
all of a sudden random characters start
to appear in columns one and nine of
the screen. Just about this time, the
computer freezes up and all work that
1s there pgets lost. According to the
gentleman | spoke with, the problem
stems from the SAM; it is some sort
of heat problem.

He says that Radio Shack is aware
of this and is offering some help. Go
to your Radio Shack dealer and order
the “Final Fix” for the old CoCo.

Let’s get back to the synthesizer,
When | went to buy the chip, I saw
there were two different sets: the older
276-1783 chip set and the newer 276-
1784. Only the 1784 is listed in the new
catalog, so | decided to go with it. This
is just one chip while the 1783 is two.
The package of this chip says that it
comes) complete with specifications,
applications data and programming
information, and 2) requires additional
components and skill in project
assembly.

That’s fine, but they don't tell you
how to hook it up to your Color
Computer.

Usually, in this next section | describe
the functions of my project. This time,
the project | am doing comes with a
20-page manual. 1 must say it is not

50 NEXT I
6@ END

100 DATA
118 DATA
120 DATA
1380 DATA
148 DATA
15@ DATA
4

160
170
180
190

DATA
DATA
DATA
DATA

48

a bad manual; the only thing left out
was the circuit to connect it to the
CoCo. But once the circuit is up and
running, all you need to start writing
programs that talk is in the book. It
has all of the “allophone™ set (as they
call it) and even has a dictionary of
words. It also includes a set of rules
for using these allophones.

From the diagram and the description
of this chip, 1 think you can add more
chips to it so it can speak more sounds,
possibly whole sentences and phrases.
There 1s, however, no reference to part
numbers or where and when these chips
will be available. There will probably
be more on this later. Anyway, I
included a BASIC program listing you
can use to try out your project.

This chip, as is, is quite easy to
implement to the CoCo. It is basically
divided into two parts. The first part
is to get the data to the chip. The second
is to poll the chip until it is not busy.
Then you can give it the next piece of
data.

It is just like a parallel printer; in fact,
if the CoCo had a parallel printer por,
I would have used it without any other
extra parts. But that is not the case,
so 1 used the old cartridge method
which means it is connected to the
CoCo via the cartridge connector, so
if you have a disk drive, you will need
a multipack or some kind of a switch.

27,7 ,45,15,53,4
24,06,04

26,26,16,4

20,04
13,23,23,2,42,12,44,4
42,1%,16,9,49,22,13,51,

4

63,24,06,4
13,53,11,19,4

33,12,55,0,13,7,0,40,2
) '26’56’53|1

Figure 1

coco
CARTRIDGE +5v
CONNECTOR] 123193
PIN#10 (DO) 1 1:
PIN#11 (D1) ‘ :s o
PIN#12 (D2) L
PIN®13 (D3) :
PIN#14 (D4) 14
PIN#15 (DS) ! 13
sV
o
3 Fes |2 9
7
-
PIN#S (+5V) —-——5‘-'-{15'6
ic2 |2
15 20
=== 5
PIN#38 (SCS) , o
— 2
PIN#18 (R/W)
PIN#19 (AO) ——H _[.1.22.10.11
PIN#33 GND | 8,3,4

It will not work with just a Y-cable
because 1 used the *SCS output of the
computer and it is used by the disk
controller (see my previous article on
the Multi-Pak Interface). With a few
more chips. you can make it work with
just a Y-cable. I will be doing an article
soon on the technique of memory
mapping and how to memory map
something anywhere in memory.

To get data to the chip is easy. All
you have to do is strobe the *ALD pin
with data valid on the data lines and
the data is entered. You can use the
*SCS pin and you would not need any
_other parts. but there is another
location to monitor. That is the pin that
says when the chip is no longer busy
with the last command you gave it,
which is the *LRQ pin.

This is where the two TTL chips |
added come in. The first chip is a
MLS138: this is a decoder chip. It is
capable of decoding a three-bit binary
number into its eight different outputs.
It also has three other select lines.
Examine the 74LS138 in Figure | and
notice that all I used is three lines. That

is all that’s necessary for this project.

We need two locations, one to write
the data to the chip, and the other to
read the busy pin of the chip. The *SCS
pin of the CoCo selects the 741.S138
chip. A0 selects which location and the
*R/W lines select a read or a write.
Since we are using the *SCS pin on
the CoCo, location $FF40 (65344 in
decimal) i1s the base address. We are
using only A0 so the two locations are
$FF40 and $FF41.

In this case, $FF40 (65344) is the
write location which is used to transfer
data to the chip. Location number
$FF41 (65345 in decimal) is used to
monitor if the chip is busy. Reading
(or PEEKIng in BASIC) this location
reveals whether it is busy or not.

The *LRQ line is connected to the
input of a tri-state buffer. This is the
74LS125 chip. Only one of the four
gates is connected. The output of this
gate is connected to DO on the CoCo
bus. When you read the location, all
other bits in the byte are irrelevant. If
bit 0 is a logic 1, the buffer is full and
the chip is busy. When this bit is logical

0, the chip 1s free and waiting for
another command.

The rest of the circuit is the same
as the recommended circuit by Radio
Shack. There is one thing that confuses
me about the Radio Shack circuit and
I don’t have the solution. It 1s the reset
circuit: the two transistors, diodes,
capacitor and resistors that connect to
the reset and SBT reset. This circuit,
as 1s, does nothing. 1 think it has
something to do with the little arrow
and the “NOTE"” sign. What does that
note refer to? Where is that note? What
does that do?

I constructed the whole circuit, along
with my circuit, and it worked fine. |
monitored the SBY pin on the synthe-
sizer chip and found it did nothing. It
was always a logical 1. I disconnected
the pin from the rest of the circuit; it
still made no difference, so 1 cut out
all the components except for the 100K
resistor.

If you feel you must leave this circuit
in, fine. Better yet, if you have an answer
as to why 1t is there, please write me;
I would like to know.

49

If you have a Multi-Pak from Radio
Shack, a simple poke will give you
access to the chip by changing the soft
switch inside the Multi-Pak Interface.
Remember that the Multi-Pak can
change access to the *CTS pin and the
*SCS pin. The *CTS pin controls 16K
of software and the *SCS controls 32
bytes of 1/ O. The control byte is SFF7F
(65407 in decimal).

To change the selector, you must
poke a number into this byte. The most
common configuration is to have the
controller in slot #4 and the voice in
slot #1. In that case, the value you must
poke in the control location is a value
of $30 (48 in decimal). Refer to your
MPI manual for more details.

Table 1 lists all the parts necessary
to build this voice synthesizer, including
the parts in that reset circuit. At the
end of this article, there is a list of mail-
order stores that you can get parts from.
There is no guarantee that any or all
of these stores will have these parts.
Except for the TTL chips and the proto-

board, Radio Shack will have all of

these parts.

There is one more thing to note. The
diagram requires a 3.12 MHz crystal.
The manual says you can order this

crystal from Radio Shack, but you will
have to wait. I didn’t want to wait, so
1 bought Radio Shack’s 3.579545 MHz
crystal instead, which they had in stock.
It works just as well, except the voice
will be about 14 percent faster.

As usual, if you have problems with
this or any of my projects, write to me
(through RAINBOW) and I'll try to help
you. If you have an emergency, you can
call me on Monday night only after
supper. My number is (514) 473-4910.

Electronics Parts Mail-Order Houses

JDR Microdevices
1224 S. Bascom Ave.
San Jose, CA 95128
(800) 538-5000 or (800) 662-6279 (CA)

Jameco Electronics
1355 Shoreway Road
Belmont, CA 94002
(415) 592-8097

Dokay Computer Products, Inc.
2100 De La Cruz Blvd.
Santa Clara, CA 95050
(800) 538-8800

Table 1

Number Description

IC1 SP0O256-AL2
(Radio Shack #276-
1784)

IC2 74LS138

IC3 741L.S125

1C4 LM386

Cl1,2,3,4 Juf 15V

Cs luf 1SV

C6 10uf 15V

C1 100uf 15V

C8,9 .022uf 15V

Cl10,11 22pf 15V

R1 1K %W

R2 10K %W

R3 200K LW

R4,5 100K 4 W

R6,7 33K LWW

R8 10 uW

Vi 10K POT

CRI1 3.12 MHz (see text)

DI1,2 IN914

Q1,2 MPS 2907 or 2N2907

Misc. Proto-board, speaker,

solder, wire, case

‘How To Follow

A Memory Map

get alot of questions and calls about

memory mapping. Don’t feel bad
— it took me quite a while to get it
right myself.

Let’s go over it step by step. This time,
Il go into some hardware on how to
memory map something to the CoCo
*SCS area, which is the area mapped
at 65344 ($FF40) to 65375 ($FF5F).
This memory mapping technique will
work on any version of the CoCo or
CoCo 2 since the theory is the same.
In fact, most of this theory will work
on just about any computer.

A basic understanding of a CPU is
a must when trying to understand

I feel like a broken record, but I still

mapping. By now everyone understands
the importance of binary and Hex
numbers; it has everything to do with
mapping.

Let’s start with binary: zero and one.
That’s it. A binary digit has only two
values, zero and one. Two binary digits
have four combinations: 00, 01, 10, 11.
Three digits have eight and so on. Table
I shows a four-bit number and the
relation between decimal numbers, Hex
numbers and binary.

As you can see, a number from zero
to 15 in decimal can be represented by
one character from ‘0’ to ‘F’ which is
four binary bits. This is called a nibble.
Now, a number from zero to 255 in

50

decimal can be represented in Hex from
‘0" to “FF™. This is called a byte. In
binary, a byte takes up eight bits or
two nibbles. The 6809 CPU (the CPU
in the CoCo) has a data bus of eight
bits, better known as an eight-bit CPU.
(The internal structure is 16-bit, but Il
get into that story another day.)

Back to our nibble. This nibble,
represents 16 different combinations or
discrete locations. Each different loca-
tion becomes one memory location and
each memory location has its own
discrete address.

Address 0 (0000 in binary) is the first
memory location (zero is a valid
number). Address 1 (0001 in binary) is

Table 1

Decimal Hex Binary
0 0 111
] 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 RN
8 8 1000
9 9 1001

10 A 1010
11 B 1011
12 C 1100
13 D 1101
14 E 1110
15 F 1

the second. But, that is only four bits;
the 6809 has 16 bits used for memory
locations which is a 16-bit address bus.
Sixteen address lines means the CPU
" can access 65536 different locations.
The first location is *0000000000000000™
and the last location is “11111111
11111, with 65534 combinations in
between. For example, 10101000
01101010™ 1s a valid location.

Writing out 16 zeros and ones every
time we want to mention an address
is silly. If we go back to our nibble,
it can be represented by a single
character. Sixteen bits would be four
nibbles. Each nibble represents one-
fourth of the 16-bit address. So, going
back to our first location, we can now
write it as a four-digit number, $0000.

The ‘$" in front of the number means
the number to follow is in Hex; it can
also be represented by the letter ‘h’ at
the end of the number. The last location
would now be $SFFFF, and a number
somewhere 1n between would be
SCDSA.

That is the basic memory map of a
CPU. Let’s go back to our nibble for
now — it is a little easier to work with.
If we were to spread out each of the
16 locations into individual outputs,
there would be 16 of them.

Most computer peripheral devices
such as PIAs and VDGs require that
8 logical zero be used to select that
particular device. That means if you
have several devices connected to the
same computer and want to select one
t a time, all the select lines would be
atlogical one, except the peripheral that

(A [~ 16 [Jvee
setears | 8 O] 2 15 [] vo
c s 14 [] ¥
ceal] 4 13 [1 v2
enasLe {cea] 5 12 [1y3 @ ouTPUTS
a1 s 11 [va
outeur v1 [7 10 [1 vs
GND: 8 9 Y6
7415138
Figure 4A

is to be selected. If we were to map
out our four-bit address to one of 16,
the result would look like the results

in Table 2.
Table 2

One of 16
Select Lines

Binary
Number

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
111

ITHITIIIIntnne
IRRRRRD R RRE RN
IRRRRERERIRERINY!
TITLTITII110111
INRRRERERARINERY
IRRRRRRRRRIORERN
FITITTEILI01E0TT1
It
[RERRREIUERRNRAN
IRRERRIUREEREEERE]
IT111011111E11E]
ITHIOTTEILTILLLY
THiorr et
HOTITEIITILLTEL]
IOTYHITHITREDTTY
OlfITIILIILILILI

In each of the 16 examples, only one
of the 16 lines is low, therefore only
one of the possible 16 devices is selected.
This is known as decoding. Decoding
means separating a binary input to its
individual outputs.

That is only four bits. If we were to
look at 16 bits (the amount of address
lines the 6809 CPU has), the decoded
output would be one of 65536. Listing
a table of the outputs would require

51

several hundred pages (1 think I'll pass
on that one).
You can see the amount of compo-

i nents that goes into a chip. The amount

of individual outputs doubles with
every addition of one bit. Table 3 shows
the relation between the amount of
binary bits to the amount of individual
select lines possible.

Table 3
Number of Number of
Bits Select Lines
1 2
2 4
3 8
4 16
S 32
6 64
7 128
8 256
9 512
10 1024
11 2048
12 4096
13 8192
14 16384
15 32768
16 65536

Do the numbers in the right-hand
column look a bit familiar? They
should: 1K, 2K, 4K, 8K, 16K, 32K and
64K. These are the real values people
talk about when they say “K’s.” When
you say your computer has “I6K,” it
really has 16384 bytes of memory; 16K
is just a rounded off number for the

real thing.

OK, we now understand how a CPU
can access all those bytes of memory.
“How come | can’t see thousands of
wires and chip selects in my computer?”
would be the next question. Well, there
are thousands of wires and chip selects
in your computer, but most of them
occur inside the major chips of the
computer.

Take, for instance, the Color BASIC
chip. It is 8K, or 8192 bytes long. This
1s a good place to start. If you look
back to Table 3, it takes 13 address lines
(lines AQ through A12) to make up 8K
of memory. The chip used for Color
BASIC has 13 address lines. They
connect to the first 13 address lines of
the computer. That leaves us with a
balance of three lines.

A typical Chip Enable line on a
memory chip activates the whole chip.
When *CE is activated, it works in
conjunction with the other 13 lines. It
is sort of a master select. The computer
tells the chip that | want a byte of data.
The other 13 lines tell the chip which
of the 8192 bytes of data it wants.

Now, look back at Table 2. For the
sake of theory, take the Color BASIC
chip. Connect the first 13 lines (least
significant) to the CPU. You are left
with three unused lines (most signifi-
cant). Look at the first three bits in
Table 2. If you apply that theory to
this situation, three bits can select eight
devices.

Consider the Color BASIC chip as a
device -and connect one of the output
lines of the three to eight decoders. A
decoder such as this does exist; it has
three inputs and has eight output lines.
It also has other control lines, but we’ll
look into that a little later in this article.
Connect the three binary input lines to
the last three free address lines of the
CPU. Depending on which output line
we use, the CPU will select the Color
BASIC chip on one of eight 8K borders.

If we put the chip on the first line,
the CPU will activate the chip from
memory location 0000 to 8191. If the
chip was hooked up to the second, it
then would see the chip as being from
8192 to 16383, the third would be from
16384 to 24576 and so on and so on,
increasing by 8K every time, until we
reach 64K. This is known as memory
mapping. What we have done is memory
mapped an 8K chip to the CPU. Again,
where this 8K is depends on what
output line of our decoder we use.

We have used all of the address lines
in this situation. There are times when
not all of the lines need to be used.

INPUTS

T
ENABLE SELECT

OUTPUTS

G1G2'| C B A |Y0O Y1Y2Y3 Y4 Y5 Y6 Y7
X H X X X|HHHHHHHH
L X| XX X|HHHHHHHH
HLILLL|JLHHHHHIHH
HL{LLHIHLHH HHHH
HLILHL|IHHLHHHHH
HL|/LHH|[HHHL HHHH
HLIHLLIHHHHLHHH

I
r
I
-~
I
I

H LIHHLIJH

H L|H

H H|H

*G2=G2A+G2B

H=LOGIC 1, L=LOGIC 0, X=IRREVELANT
Figure 4B

CoCo Connections T

PIN# FUNCTION
3 §cs 4_1G2A
S ‘Gzé
L.
21 a2 3lc
20 Al 2
19 a0 1A

Y| o
ys | 10

ya 1 CHIP SELECTS OUTPUTS

) TO PERIPHERAL
Y312 DEVICES
vz |13
Y1 14

YO |15

-] *SV________G)

33 GND

1

L

Figure 5

When memory mapping a device to a
CPU and not all the address lines are
used, a condition called memory “ghost-
ing” or “mirroring” is formed.
Memory mirroring is produced when
the same chip is activated in two or
more areas of memory. The best way

52

to explain this is to use an example
Take the previous example of the 8K
Color BASIC chip. The chip itself has
13 address lines connected to the CPU
and the remaining three (most signif-
icant) lines of the CPU are decoded to
one of eight. That leaves no address lin¢

free or unused. If we were to use a 4K
chip instead of the 8K, there would be
one less address line. Table 3 reveals
that.

Now, leave this address line free and
not connected to anything. When the
CPU reads the first 4K of the chip (the
only 4K in this case) all is fine, but when
the CPU reads the next 4K, the 13th
address line will change state. Since it
is not connected to anything, the CPU
will read the same thing as the first 4K.
That is because the only address line
that changed for the second 4K of
memory 1s that free address line.

Let’s take this one further and use
a 2K chip. Now we have two free
address lines, The CPU will see the same
repeated data every 2K for the duration
of the 8K bank. Bank is a word used
to describe an area of memory. It is
not any particular size, but referred to
as an 8K bank or a 2K bank, whatever
the size in question is.

Itis not wrongto leave free lines when
memory mapping, but it does make for
inefficient use of memory. Take for
instance the Disk Extended Color
BASIC from Radio Shack. The chip
itself 1s only 8K long, but is mirrored
twice into 16K. It still works but renders
the other 8K of memory unusable
without more hardware to decode the

free linies. This, however, does make for
a less expensive parts count.

Now to get down to hardware. The
area most frequently used by CoCo
hardware hackers is *SCS: Spare Chip
Select. It is already partially decoded
by the SAM chip. It is sort of a mini
“Master Select.” The SAM chip decodes
this area to be from 65344 ($FF40) to
65375 (3FFSF). It is only 32 bytes long.
therefore also requires five address
lines. These are A0 to Ad. So the *SCS
(Master Select), along with five address
lines, makes up the 32 bytes of the
memory map.

This area is great for 1/O purposes
such as the projects I presented in this
column. Take, for example, my article
“Lights! Camera! CoCo!” (December
1984, Page 24). It uses the *SCS pin.
This is just the sort of thing I am talking
about. I used just the *SCS pin and
none of the other address lines. That
means the chip I used is memory
mirrored throughout the 32 bytes (five
address lines) and is only one byte wide.
I saved adding some chips, but in this
case. I didn’t need the rest of the area.

Now, if we take the three to eight
decoder 1 mentioned earlier, and
integrate it into the *SCS circuit, we
could access more chips. Figure 4A
shows the functions of a chip called the

Look., Ma
No Switch!

efore 1 get into this month’s
Bprojcct, I want to thank my

readers for being so good about
calling me only on Monday nights. 1
have had many interesting calls, and not
all on problems relating to my projects,
cither. Some just call me to discuss
theory and hardware.

For all new readers to this column,
let me explain what I am talking about.
I have set aside Monday nights for
people to call me about problems they
might encounter in putting my projects
together. My number [in Canada] is
(514) 473-4910. If by chance you want
to write me a letter, by all means do,
but if you want a written answer please

include a self-addressed, stamped
envelope, otherwise I'll take it as just
a point of interest. But please keep the
calls to Monday nights.

The next thing on the agenda is a
piece of software/hardware I had the
pleasure of trying — the CoCo Max
drawing package. The software part is
great. The hardware part is used to read
the joystick (or in this case, a mouse)
more precisely than the CoCo’s internal
joystick connection.

In my case, it was no problem to
connect this ROM pack-looking adapter
to CoCo; I have a Radio Shack Multi-
Pak Interface. I just plug it in and away
we go. This, however, might be a

53

74LS128. This is acomputer compatible
chip that works well with the CoCo.
In fact, there is already one of these
chips inside the CoCo. If you have a
schematic for the CoCo, look it up.

Figure 4B shows the Truth Table for
this chip. When you examine this table,
you will notice the similarity between
this and Table 1, only it is only three
bits wide. There is a four to 16 decoder
chip available, called a 74LS154, but
you’ll have to look that one up yourself.

Now, the diagram in Figure 5 shows
how this chip can be hooked up to the
CoCo and the *SCS pin. This is hooked
up as such: You have eight separate chip
enables from 65344 ($FF40) to 65351
($FF47) and it is memory mirrored four
times to make a total of 32 bytes. If
we were to replace A0 with Al, Al with
A2. A3 with A4 and left A0 not
connected, we would have every second
byte memory mirrored. If we moved the
address lines up one more, it would be
every four bytes memory mirrored.

If we added more 74L.S138s, we could
even have 32 bytes not mirrored at all.
It all depends on the decoding technique
and how many free address lines we
want.

I hope all this decoding has helped
you understand more on how the CoCo
works. See vou next time, and we'll say
hito LEDS.)

problem to users who have a disk drive
and no Multi-Pak Interface: they both
plug into the Expansion Slot on the side
of the CoCo.

In order to have both the disk drive
controller and the joystick connected
together without a Multi-Pak, you need
an adapter. These adapters (better
known as ‘Y’ adapters), don’t come
cheap. I did an article on how to make
a 'Y’ adapter for your CoCo in the July
1983 isssue (“Build A 'Y’ Adapter For
Your Disk Controller,” Page 176). If
you don't have it, call up RAINBOW to
get a back issue. This adapter will work
with the CoCo Max and isn’t nearly
as expensive.

On with the Project

Once upon a time, long, long ago in
a place far, far away I did a project
on how to get inverse video on the
CoCo. For those of you who are not
familiar with the term “inverse video,”
let me explain: When you turn on the
CoCo, you are greeted with a green
square on the screen with black letters
inside — the “normal” screen. When
you enter in lowercase letters, you get
this black square with a green letter in
it. That is how you can tell it is
lowercase.

Anyway, the project was a modifi-
cation so that the computer would show
a totally black screen with green
uppercase letters. The lowercase letters
were black with a green square. What-
ever was green before was now black
and whatever was black before was now
green. Consequently, the term “inverse
video.”

Included with the circuit was a switch
so you could switch between inverse
video and normal video. 1 also said if
there was enough interest 1 would come
up with a circuit that would let you do
the switching (the part of the physical
switch) in software. There was; 1 did;
here it is.

This month, 1 will show you the
circuit and how to connect it so a simple
POKE command will switch you between
normal and inverse video. If you have
an EPROM burner and know how to
modify the DOS, you can have it built
into the DOS. In order to build this
circuit, you will need the standard kit
builder’s paraphernalia. You must also
be unafraid of digging into your CoCo.
As far as I know, this circuit will work
on any version of the CoCo family.

The first part, as usual, is the circuit.
Find in Figure 1 the circuit for this
electronic switch. It consists of two
chips and one capacitor. In order to
understand how this circuit works, you
must first know a little about the chips
I used. The first chip is the 74LS86.
This chip is a quadruple 2-input
exclusive-or. Exclusive means one or
the other but not both. This short truth
table will help explain.

Input A Input B Output
L L L
L H H
H L H
H H L

H = High level (1) L = Low level (0)

Figure 1
IC-1
Pin #20-+ 5V .
Pin #2 of VDG 3 e Pin#320f VDG (see text)
16
1
. 3
Pin #33-D0 e—Fmn+——{ G2
Pin #23-CE e———] 12
Pin # 21-W/R e~ 19} 13
1 14
(see text)-A3 -——————
15
5
c1
7 8 -
Pin # 1-GND S 1
All wires connect to the PIA except where noted
(see text)

In my circuit I used the ‘B’ input of
one of the four gates as the inverter
control. When ‘B’ is high the output
is inverted with respect to the input ‘A’.
When ‘B’ is low, the output is the same
with respect to the input ‘A’. This is
nothing new and it has been done
before. A 74LS86 is almost always used
for this purpose. If you were to put a
switch here, you would have an inverted
controller, switchable by hand. My
circuit goes one further.

The next chip is a little more tricky.
What is required from this part of the
circuit is a type of switch action with
memory, which means memory mapping
(remember last month?).

This puts theory to good use. Inside
the CoCo there are two possible areas
we can use: either the keyboard PIA
(MC6821 or MC6822) or the DAC
(Digital to Analog Convertor) PIA.
They are mapped at $FF00 (65280) and
$FF20(65312), respectively. (I'll go into
the differences between the two later.)
Both of these 1/O areas are 32 bytes
long. The functions these I/O areas
control (the PIA) require only four
bytes, and the other 28 bytes are
memory mirrored. What this chip does

"is decode this area into two halves. This

becomes either $FF10 (65296) or $FF30

34

(65328), depending on what PIA you
hook it up to.

In order to do this, we need four
signals. The first is the chip enable from
the PIA that selects the 32 bytes. The!
next is the Read/ Write line, to make
the memory mapped byte a write-only
byte. The next signal needed is address|
line #3, which is the address line needed
to get us the two halves of the area
The final signal needed is a data line
so we can write a signal to control the
74LS86 and latch it. All this adds up
to a one-bit latch that can be changed
by software; our one output needed to
feed the ‘B’ input (control) of the
741.S86.

The chip used is a 74LS151. This chip
is a one-of-eight Data Selector/ Multi-
plexer. Although the chip is not known
for its latching capabilities, my good
friend and co-worker Larry Callahan
and I worked out a way to latch the
output with the input by using a small
capacitor. By feeding the output to all
of the inputs but one with a capacitor,
it acted as a latch with the last input
as a control. We then used the inverting
output as a latched bit to control the
input ‘B’ of the 74L.S86.

When a zero is written to chip it is
remembered by the capacitor and other

inputs. When a 1 is written to the same
location, it is remembered as well. That
isall there is to it. For more information
on these and al} the “74LS” family of
chips, refer to The TTL Data Book by
Texas Instruments. By the way, the
value of the capacitor is a mere 100 PF
at 50 volts.

To construct this circuit, I used a little
piece of perf board one-half inch by two
inches and stuck it on top of the PIA
using double-sided tape. I ran the wires
along the sides to the proper pins of
the PIA and the VDG (MC6845). 1
soldered directly to the pins of the PIA
and VDG, though, some like to use a
socket so as not to damage the com-
ponents themselves.

All of the wires just need to be
connected but, there is one pin that has
to be hfted out of its socket; that is
pin #32 of the VDG. If your VDG is
not soldered in, just remove it, bend
the pin up on an angle, replace the chip
back in its socket, and then solder your
wire to the lifted pin. If your VDG is
soldered in, you will have to cut the
pin using a sharp, pointed knife. Be
careful not to damage the adjacent pins.
If you use a socket, bend the pin of
the socket and solder your wire to the
bent socket pin. Solder all the wires to
the perf board according to the sche-
matic diagram. Solder all the wires to
their respective pins on the PIA.

All the pins except A3 solder to the
PIA. There are several places to get A3.
Itis pin #22 on the cartridge connector,
pin #12 on the CPU (MC6809E), pin
#5 on either ROMs or pin #19 on the

gAM (MC6883). This brings us to the
IA.

Which PIA should you use? Well,
that all depends on whether you want
the screen to go back to the inverse
mode when you hit Reset. If you put
the circuit on the DAC PIA, the
software switch will stay in the same
position until you turn off the computer
or change it. If you put the circuit on
the keyboard PIA, the screen will
default to the inverse mode every time
you hit the Reset key. The choice is
up to you.

The poke will be the same, though
the addresses will be different depending
on which PIA you use. If you have it
on the DAC PIA the address to POKE
into 1s $FF30 (65328) and the keyboard
PIA has the address set to $FF10
(65296). From now on, if you want to
change the state of your screen from
one to the other, and the circuit is
connected to the DAC PIA, all you
have to do is:

POKE 65328,0 for Inverted Video
POKE 65328, 1 for Normal Video

for the keyboard PIA, the command

is:
POKE 65296, 0 for Inverted Video
POKE 65296,1 for Normal Video

This modification should not interfere
with the normal operation of the
computer. It will only invert text in the
text mode. None of the graphics mode
will be affected and none of the colors
of the PSET or PRESET will be changed.

Switching
Double-Sided Disks

BOW gang at the Chicago RAIN-
BOWfest in May. That made my
first RAINBOWfest anniversary. There
were a lot of new products to be seen.
Fancy software, new and improved
hardware, and a lot of new faces.
These get-togethers are quite warm
and friendly. 1 have gone to many
computer shows, some for different
kinds of computers and some that host
just one brand. But, I have never seen
one that came close to the atmosphere

It was great seeing the whole RAIN-

at a RAINBOWfest. I tip my hat to

the CoCo Community.

Speaking of new products, look
forward to seeing my new line of
products, starting with the DISTO disk

controller.

Clearing up Confusion

The topic of this month’s project
involves disk drives and disk controllers.
There seems to be some confusion
about disk drives being double-sided,
double-density, single-sided, single-

55

One more thing! The chips for this
project are not available from Radio
Shack, but most electronics parts mail
order houses have them. There is
nothing special about these chips. If you
can’t find them, try JDR Microdevices,
1224 S. Bascom Avenue, San Jose, CA
95128. The telephone number is (408)
995-5430.

In closing, I would like to say I have
been getting a few letters from readers
who are interested in making a computer
storage scope using the CoCo. The
average price for such a scope starts
at about $10,000. The hardware that
goes into one also costs big bucks.

To try to make a project of one in
this column is not quite possible. First
of all, the CoCo is not a fast enough
computer to make it worthwhile.
Second, the hardware required would
run up a bill I don't have the means
of paying. And last of all, the time it
would take to develop a schematic, you
would be lucky to get it by 1999. But
keep your ideas coming.

Parts List
Part Description
IC-1 74LS86
1C-2 74LS151
Cl 100pf 50V

Miscellaneous Perf board, Wire, 14-
pin socket, 16-pin
socket

density, 96 or 48 tpi (tracks per inch)
and the compatibility between them.
Especially when you talk about OS-9.

“When the Color
Computer first came
out, the only mass
storage available was a
cassette recorder.
Though the cassette

“When the Color
Computer first came
out, the only mass
storage available was a
cassette recorder.
Though the cassette
recorder works well for
music and speech, it
was slow and not well-
suited for computer
work. A new form of
mass storage had to be
invented: The diskette
was introduced.”

I hope to clear all that up right here
and now and follow it up with a small
project to let you see just what side of
the fence, uh . . . | mean disk, you are
on.

I will start off by describing a diskette
and a disk drive. First, a diskette is a
form of media. It holds information —
what information is up to you. A
telephone numbers file, a game or two,
your favorite word processor. All of
these are files that make your computer
function the way it does; this data has
to be stored somewhere.

When the Color Computer first came
out, the only mass storage available was
a cassette recorder. Though the cassette
recorder works well for music and
speech, it was slow and not well-suited
for computer work. A new form of mass
storage had to be invented: The diskette
was introduced. There are many kinds
of diskettes on the market today, but
I will limit this discussion to those that
are compatibile with our lovable CoCo.

Without going into too much detail,
the Radio Shack standard diskette used
with the CoCo is a SY-inch, single-
sided, double-density, 35 tracks at 48
tpi, soft-sectored diskette. The Radio
Shack Disk BAsIC, disk operating
system, drive and controller are made
to comply with these standards. You
can get more details on the DOS in the
Disk BASIC manual. The Radio Shack
controller is made to handle two or four

drives, depending on what cable you
have.

N/C

-

nOonnonoononMnnoaoannnon

N/C

N/C
INDEX/SECTOR
ORIVE 0 ENABLE
DRIVE 1 ENABLE

DRIVE 2 ENABLE
MOTOR ON
DIRECTION SELECT
STEP

WRITE DATA
WRITE GATE
TRACK 0

ALL
THESE
PINS
ARE
CONNECTED
TO
GROUND

WRITE PROJECT
READ DATA
DRIVE 3 ENABLE

N/C

Figure 1
34-pin disk drive
connector pinout
Note: Looking at the DISK CON-
TROLLER edge connector,
pin #1 is the top right-hand
pin

The disk drive itself connects to the
controller via a 34-pin ribbon connector.
Figure 1 shows the pin configuration
of the “disk side” of the controller. As
you can see from the diagram, four pins
are used for selecting or activating up
to four drives. Radio Shack drives differ
from standard drives by the way they
are selected. You see, all four pins on
Radio Shack drives are connected
together and the selecting is done by
missing pins in the cable connector.

For example, to select Drive 2, the
cable connector that is configured to
be number 2 has the pins that correspond
to drive numbers 0, |1 and 3 missing.
That way, when another drive is
selected, it won’t affect that drive
because that pin is missing.

There is one more interesting thing
about the Radio Shack cable config-
uration. Drive 3 pin on the controller
i1s not in the normal position for a
standard drive. The normal position for
a standard Drive 3 is pin #6, where
Radio Shack chose to keep this pin
empty.

Interestingly enough, though, the
place they did put it is where the
standard disk drive has its side select,

36

pin #32 (for double-sided drives only).
Since this pin is connected to the
controller, it gives us access to the
second side of a 'disk drive. All the
hardware is there to use the second side,
providing you have double-sided drives.

Today, the price of double-sided
drives is so low that in some cases it
is cheaper to buy a double-sided drive
from another company than it is to buy
a single-sided drive from Radio Shack.
More and more people already have
them and are not using the second side
because Disk BASIC does not allow
them to do so. I will show you a couple
of ways to access the second side. One
is software and the other is hardware.
Use the method that suits you best.
Either way, you will want to build the
project if you have double-sided drives.

“There are two ways to
change the mask byte
in software. One is to
burn the new mask byte
into an EPROM. The
second is to use the 64K
mode of the computer

and make the changes
in RAM.”

The first thing to do to use the
double-sided drive is make sure you
have one! You must connect it to the
Radio Shack controller. Remember, |
said there were pins missing in the
Radio Shack cable and that will give
us problems.

The side select pin is only present on
a four-drive cable, and then only on
the fourth drive. You must add another’
connector for every double-sided drive
you are adding to your system. (They
are available at your nearest Radio
Shack Computer Center.) The connector
is a 34-pin edge card connector. If you
don’t know how to install it on your
cable, ask your dealer to do it for you.
Have him press the new connector
about an inch and a half away from
the old connector.

The disk drive now has to be con-
figured to which drive number you
want. There are jumpers inside the drive
you must set. In the owner’s manual
of the drive there will be instructions
on how to do that.

Now you have a double-sided drive
on line, but you will still need a way

to access it. The first way is in software.
The way Disk BASIC selects the drive
isby using four “mask” bytes. Each byte
contains the necessary data in order to
activate that drive number. There are
four bits that control each of the output
pins as seen in Figure I.

In the controller, there is a memory-
mapped byte that controls the output
of these pins. It is at SFF40 or 65344,
Try this:

POKE 65344,1

The select light on Drive 0 turned on.

Now try the values two, four and 64
instead of one. This will turn on drive
numbers I, 2 and 3, respectively. The
last value of 64 activates Drive 3 (if you
have four drives), but remember on our
double-sided drive that is the side select.
Bychanging the values on the four mask
bytes we can access the second side of
the drive. By changing the mask data,
you can access the second side of the
drive as another drive.

PIN # 32

SPDT
SWITCH

X = CUT TRACE

1

Figure 2
Double-sided drive switcher

Example: If you have one single-
sided Radio Shack drive and one
double-sided drive with the right
changes to the mask byte, you will have
three drives on line. The Radio Shack
drive is the first, the first side of the
double-sided drive is the second and the
second side of the double-sided drive
is third. If you had two double-sided
drives, it would be as if you had four
separate drives. Two double-sided
drives is the maximum you can have
with Disk BASIC because there are only
“four mask bytes.

16
DRIVE # 0-10 A e 7
DRIVE # 1-12 [:’ G2s ¢
ORIVE # 2-14
${a1 . 2
. 3 s ¥y
() c
17 2 1 [
[s 100 .0. %W
L]
s =
SIDESELECT-R2 g o Y 7
y7
s
*SEE TEXT
-

- GROUND*

Figure 3
Dual color-drive side indicator

There are two ways to change the
mask byte in software. One is to burn
the new mask byte into an EPROM.
The second is to use the 64K mode of
the computer and make the changes in
RAM. I'll leave that part up to you,
but what I will do is tell you how to
change the mask byte.

The four mask bytes correspond to
four drives. Since we are using the last
drive number as a side select, we can
no longer use it as a drive but only as
a side select. That leaves us with three
other mask byte values. The values are
1, 2 and 4. The side select value is 64.
Any combination of this will work
(maximum of four).

First example: Your first drive is a
Radio Shack single-sided drive. You
want it to be Drive 0, so the value of
the first mask byte is ‘1.’ Your second
drive i1s a double-sided drive; they will
be Drive 1 and Drive 2. The second
mask byte will be ‘2’ and the third byte
will be 65. The fourth byte will be
untouched.

Second example: You have two
double-sided drives' Drive 0 will be the
normal side of the first drive; Drive 1
will be the normal side of the second
drive. Drive 2 will be the second side
of the first drive and Drive 3 will be
the second side of the second drive. The
four mask bytes are 1, 2, 65, 66.

Radio Shack has two versions of
DOS: 1.0 and 1.1. The memory address
of the four mask bytes for DOS 1.0
is $D7AA (55210); the address mask

57

bytes for DOS 1.1 is $D89D (55453),
plus the next three bytes for the other
three values.

If all that doesn't thrill you, you can
select the other side by adding a small
switch to your disk controller. Figure
2 shows how to hook up the switch to
your controller. You must cut the foil
between points ‘A’ and ‘B.’ Drill a
suitable hole in the cover of the
controller to mount the switch. When
the switch is in the up position, the
normal sides of all double-sided drives
are accessed. When the switch is in the
down position, the second side is
accessed. Never change the switch when
doing I/ O to disk since it will ruin both
sides. Again, remember, you must not
use the fourth drive on a four-drive
connector.

To some, it is easier to install the
switch than to do it in software, but
it is a little more difficult to manually
flip the switch. In any case, visual cue
as to what side of the disk you are really
on is almost a necessary option.

Figure 3 is a schematic for a circuit
that will tell you what side of the drive
you are using by lighting a different
color LED for each side. This circuit
goes inside the disk drive and replaces
the “active drive” select LED. The heart
of the circuit is the Radio Shack Tri-
Color LED (part #276-03S5). This LED
glows one of three colors. We will be
using only two of these colors, red and
green. The circuit uses a 74LS138
decoder.

When no drive is selected, the two
outputs used are logical level one and
the LED is off. When the drive in
question is selected, the ‘A’ (drive select)
input goes low, therefore activating the
chip. If the ‘B’ (side select) is high (first
side of the drive), the Y7 output goes
low. This will cause a positive voltage
to appear across the Tri-Color LED
which makes the LED glow red. If the
‘B’ input is low, the Y6 output goes low,
in which case there will be a negative
voltage across the LED. Then the LED
will glow green. When the ‘A’ input is
high (drive not selected) the chip is
disabled and both Y7 and Y6 are high,
the LED will be off. I put red as the
first side because it is the color of a
single-sided drive. That way when I see
green, I automatically know I'm on the

other side.

There are just a few things to consider
when hooking up this circuit inside the
drive. The first is where to get the five
volts and ground needed to run the
circuit. The easiest place to get a ground
is pin #1 of the drive cable connector.
Pin #1 is on the side of the connector
that has all the pins connected together.
They are all the odd-numbered pins.
The drive connector pins are numbered
on each end.

Five volts can be taken from the last
pin of any 74LSXX chip. Use a volt
meter to check the voltage. This is either
pin #14 or #16 depending on how many
pins there are on that chip.

The second thing to watch for is to
make sure the ‘A’ input matches that
of the drive selected. This means if the

‘A’ wire goes on Drive 0, make sure
the drive configuration block is set to
Drive 0, otherwise the LED will never
light.

The actual construction of the circuit
can be done on a small perf board. Tape
or glue down the board in an unused
area of the disk drive. Make sure it
doesnt get in the way of the diskette
that enters the drive. Remove the old
LED. Replace it with the new one. Use
tape or glue to hold it down.

Now, try the drive and access the first
side of the drive. The LED should be
red. If it is green, reverse the wires that
go to the LED. When all is OK, the
LED will glow red for the first side and
green for the second side. This way you
will always know which side of the drive
the software is accessing,

Making CoCo Shine

With More LEDs

to do projects that light up or make
noise. The projects I get the most
response from are the ones that involve
LEDs (Light Emitting Diodes). Well,
who am I to argue with my readers?
(I'll let you in on a little secret — I
like them, too!) In order to keep my
readers happy, here is another one.
This month’s project is a two-fold
project, and maybe a little more. The
first part involves three LEDs. These
LEDs will be connected to the RS-232
port. The second part is a Reset button
mounted up front. A Reset button up
front may not be a new idea, but the
way 1 do it the wires will not get in
anyone’s way. The part about “maybe
a little more” means that if ever you
want to add more things to your
“cover,” there are leftover wires. If you
are confused, read on; it is all explained
in this month’s article.
The Color Computer’s RS-232 port
has four wires, three lines and one
ground. There are two inputs and one

It seems to me a lot of people like

(Tony DiStefano is well-known as an
early specialist in computer hardware
projects. He lives in Laval Ouest,

Quebec.)

output. As so labeled by Radio Shack,
the two inputs are RS-232 “IN” and
Carrier Detect, “CD.” The third line is
an output known as the RS-232“OUT.”

These three lines can take the standard
RS-232C levels. The “level” in this case
means at what voltage level the computer
considers a logic level of one (logic level
HI) or logic level of zero (logic level
LO). The levels for standard RS-232C

“If you find the LEDs
never light, try
soldering them in

backwards.”

are plus 12 volts (+12V) and minus 12
volts (-12V). These levels are maximum
levels. The Color Computer also has
one RS-232 output. The standard for
RS-232C output is also plus/minus 12
volts.

Now, here is where the interesting
part begins. According to the EIA
(Electronic Industries Association), a
voltage above plus three volts shall be

" considered a logical one and a voltage

below minus three volts shall be
considered a logical zero. Any voltage
in between these two limits will be
considered undefined. That means if a
voltage is 12 volts and on its way down,
the logic level will not change from a
one to a zero until it reaches minus three
volts. The same is true for a voltage
on its way up.

As far as the RS-232 is concerned,
there are essentially two Color Com-
puters. All of the “big” Color Computers
(the older gray or white models) are the
same. All of the “small” Color Computer
2s are also the same. They differ only
in the output voltage levels. The CoCo
outputs the full plus/minus 12 volts,
while the CoCo 2 only outputs plus/
minus five volts. On the input side, the
CoCo can safely handle plus/minus 12
volts while the CoCo 2 can take up to
plus/minus 25 volts.

I mentioned that the voltage levels
less than three volts and greater than
minus three volts are undefined. This
is done to improve the reliability of RS-
232 communications. It improves the
noise margin level. For example, a
signal that fluctuates a volt or two will
not pass threshhold level; therefore will
not produce false data.

58

RS-232 Monitor

Ds2 DBY

[\'adl
14
—_ 1 2 1 1
|] 2
oL 1| C | [— :
A 1
L] s —1
T
*ISEE TEXT -
*21J4 is for the ‘D’ and ‘E’ Board
IC2 is for the CoCo 2
1CS5 is for the CoCo 2 (Korea)
U17 is for the ‘F’ Board

Figure 1

n ‘n -]
R v RvZ A R A
“co* - " “ouT
| L

This method of transmitting data is
more reliable, but the electronic circuitry
needed is also more expensive to
produce. Radio Shack did not spend
the extra money. Instead, they made
a circuit that has no margin of safety.
In the case of the CoCo, any voltage
greater than 2.6 volts is considered to
be a logic level of one, and any voltage
less that 2.6 is considered to be a logic
level of zero. The CoCo 2’s voltage level
is also 2.6, but I think on some CoCo
2s it is set to 2.0 volts.

That takes care of the “ins” and
“outs” of RS-232 in the Color Computer;
now let’s get down to the hardware part.
I have had several letters and phone
calls about RS-232 compatibility be-
tween the CoCo 2 and the CoCo, or
the CoCo 2 and some other peripheral
such as a modem. This may not solve
your problem, but it will focus on
whether or not the computer is the
problem because this month’s project
is an RS-232 monitor. Since there are
only three lines on the CoCo’s RS-232,
you will need three LED:s.

The schematic in Figure 1 shows the
simple circuit involved in building the
RS-232 monitor. The chip I used is a
TTL (Transistor-Transistor-Logic)
chip. I used a buffer/inverter to drive
the LEDs. Only three of the six buffer/
inverters are used; the other three are
unused and are free to be used in
another project.

The inputs to these buffers come from
the PIA (Peripheral Interface Adapter)
that controls the RS-232. I took the
signals from these points because the
voltage levels are compatible with the
TTL chip used. Also, these points are
the points the computer sees and not
what is coming in on the RS-232 lines.

The chip I used inverts the signal.
1 did it that way because on power-up,
all three signals on my computer are

ones. Normally that would mean all the
LEDs would be on. To me, that is a
bit distracting. The inverter turned all
the LEDs off when I powered up.

The logic here is that everything is
off until you use something. For
instance, when the printer is online, the
“IN” LED would light up. Another
example is when my modem is on, the
“CD” LED is on when there is a carrier
— not the other way around. If the LED
says there is a zero (by being on) the
computer sees a one. This way you can
visually see exactly what the computer
reads and writes. You will be able to
see, at a glance, whether your modem
is online, your printer is busy or when
the computer is transmitting something.
All in all, it monitors all RS-232
functions.

If you don't like the fact that the LED

information is inversed, there is a simple
way to change it. First, reverse all the
LEDs’ polarity by plugging them in
backwards and, instead of connecting
the other (common) side to ground,
connect it to the five-volt side. This will
inverse the inverter, giving you a non-
inversed signal. When you see the LED
on, there is a one on the RS-232 line
in question. Do it whichever way you
choose.

This is the major part of the project,
but equally important are how and
where the LEDs are mounted. I mounted
the three LEDs on the top cover of my
CoCo. At first thought, there is nothing
unusual about this, but if you are like
me, the cover is always unscrewed. |
must pull the cover off my computer
at least a dozen times a week. If I have
alot of wires going to the cover, chances

Reset Switch
D82 DB
] s : L)
2 T }
*see TEXT Figure 2
Parts List
iD Description Radio Shack
Number

R1,2;3 100 ohms ¥ watt 271-1311

IC1 74LS04 or 7404 276-1802

L1,23 LED (with mount) 276018

DBI1 Sub-D Malie 276-1537

DB2 Sub-D Female 276-1538

Si SPST Momentary 275-1547

Miscellaneous Wire, solder, proto-

board, etc. ~

59

are a few of them will break off before
the week is out, so I put in a connector.
That way, when 1 remove the cover to
dive into my CoCo, all I have to do
is disconnect it and the cover is
completely removable. It is a good idea
that saves resoldering the wires every
time one breaks off.

Though any connector can be used,
1 used a DB-9 male and a DB-9 female
for two reasons: 1) They are both
available from Radio Shack, and 2) It
isimpossible to plug them in backwards.
Leave eight to 10 inches of wire on each
side of the connector to give plenty of
slack, but be careful that the connector
does not short out when you stuff it
inside the CoCo. Some kind of sleeve
would be good. The chip can be
mounted on an optional piece of proto-

board or glued upside-down on top of
the PIA. Again, this is your choice.

The rest of the circuit is quite
straightforward. If you find the LEDs
never light, try soldering them in
backwards. 1 always have trouble
finding the anode to those things. Some
people have expressed difficulty in
finding where to connect to get plus five
volts and ground. A good place to find
plus five volts is on Pin 9 of the edge
connector. Finding Pin 9 is simple.
Start from the back of the connector
(the part closest to the rear of the
computer) and count the top pins 1,
3,5,7 and 9, and there you are. Ground
is on Pin 33; count the same way.

As an added bonus to the RS-232
monitor, I added a Reset switch in the
front of my computer. The circuit in

Figure 2 shows how to add it in. Mount
the switch on the front cover on
whichever side that suits your needs.
Use two of the unused pins on the DB-
9 connector to do the wiring, so that
way you can disconnect it from the
computer at the same time you discon-
nect the LEDs.

There are about as many different
reset switches as there are different
CoCos. Some of them have six pins,
and some have only two. The one that
has only two is easy to wire; put one
on cach and there you go. The ones
that have six pins are a bit different.
The easiest way to figure out which one
is which is use a short piece of wire.
With the computer on, touch any two
pins on the reset switch with each end
of the wire. When a reset occurs, those
are the two pins to use.

AR

The Analog-To-Digital

Converter, Part 1

he world inside your computer
Tconsists of zeros and ones — all

that goes on inside your compu-
ter hinges on two values. Memory,
PIAs, CPUs, VDGs and SAM chips all
transfer information between each
other using only two different states.
These states are called logic states.

The first logic state is zero, also
known as “low” or “lo.” In the Color
Computer (and most computers) a logic
state low is zero volts, also known as
ground level. The second logic state is
one, also known as “high” or “hi.”
Again, in the Color Computer, a logic
state high is five volts. Except for
specified tolerances, all other voltages
in between are undefined and if encoun-
tered can give the computer some
unpredictable results. This is the digital
universe of computers. Figure 1 shows
a typical digital wave form.

The real world, however, deals in ever
changing states. Digital ones and zeros
are just two of millions of different
states that exist. The real world is an
analog world. A good example of the

(Tony DiStefano is well-known as an
early specialist in computer hardware
projects. He lives in Laval Ouest,
Quebec.)

analog world is speech. You can speak
loud, you can speak low or many levels
in between.

Sound waves are ever changing. For
example, if you take a microphone and
amplifier and hum into it, the speaker
will vibrate, reproducing the sound you
are making. That vibration is a back
and forth motion. The frequency of the
back and forth motion depends on the
frequency of your hum. Frequency is
measured by how many times a wave
form goes back and forth in one second.
Every time the speaker moves back and
forth is one cycle. :

From 1886 to 1888, the work of
Heinrich Rudolph Hertz led to his

discovery of electromagnetic waves.
The German physicist’s revelation
opened the way for the development of
radio, television and radar. As a tribute
to him, the frequency of any wave, be
it digital or analog, is measured in hertz
(or Hz, for short). In the audible range,
the frequency is from about 20 Hz to
20,000 Hz or 20 kHz. The ‘k’ stands
for “kilo” meaning thousand. Our
CoCos, for instance, run at 894,000 Hz
or .9 MHz. The ‘M’ stands for “mega”
meaning million.

Figure 2 shows a graphic represen-
tation of the output of a sound wave.
Compare it to the wave form in Figure
1. There are some obvious differences;

6V

Figure 1

ov

it is these differences that make it
impossible for a computer to directly
and accurately read and duplicate an
analog wave form.

Don't despair, there are ways around
it. This is the first of a two-part project
on how you can use a computer to
measure analog signals. This project
stems from several letters received from
my readers requesting that 1 build a
computerized oscilloscope adapter for
the joystick port. 1 looked into the
joystick port as an input, but found it
to be inaccurate or not fast enough. By
the time you finish reading this, you'll
know why.

Anyway, this month we’ll cover the
theory on how a computer (and a little
hardware) can convert an analog signal
to a digital value. Next month we’ll
cover how to build and calibrate the
analog to digital converter.

Now to the task of explaining how
acomputer can convert an analog signal
to a digital value. The first thing the
computer needs is some hardware, a
comparator. A comparator is an IC that
has two inputs (the “positive” input and
the “negative” input) and one output.

The output has two states; on or off,
good for a digital computer. The inputs,
however, have analog inputs.

Here is how a comparator works.
When the positive input voltage is
higher (more voltage) than the negative
input, the output is high. When the
positive input voltage is lower (less
voltage) than the negative input, the
output is low. Figure 3 shows a block
diagram of a computer-controlled
comparator,

The way it works is simple. If we had
a known voltage at the negative input,
by reading the output (high or low) we
could tell if the test voltage at the
positive input is higher or lower than
our reference voltage. Furthermore, if
we change our reference voltage and
zero into the unknown voltage, we will
then know what the unknown voltage
is. This technique is known as successive
approximation.

The procedure for successive approx-
imation is as follows: Start by putting
half of the maximum voltage your
device can measure to the reference
voltage. If the output of the comparator
is high, that means the unknown voltage

Figure 2
+5 V
oV
-5V
Figure 3
vox:roc'g
COMPUTER A
INPUT + INPUT
3) OUTPUT
— mpUT | COMPARATOR
COMPUTER
CONTROLLED
VOLTAGE
REFERENCE
COMPUTER
INTERFACE

is higher than the reference voltage. We
then increase the reference voltage by
half the difference of the present value
and the last value and test again. If the
output of the comparator is low, that
means the unknown voltage is lower
than the reference voltage. We would
then decrease the reference voltage by
half the difference and test again.
Continue to do this until we have
reached the unknown voltage.

Let’s take an example. In this exam-
ple, I round off the reference voltage
to the nearest whole number for ease
of calculation. The maximum voltage
is 100 and the unknown voltage 47. The
first reference value is 50 — too high,
so we subtract from the present value
using the successive approximation
method. New reference is now (100-50)/
2 or 50-25; the new reference is 25 —
too low, so we add. The new reference
is now (50-25)/2 or 25+13; the new
reference is 38, still too low. Add again,
(25 -38)/2 or 38+7. The new reference
is now 45, again too low. Add (38-45)/
2 or 45+4 and the new reference is 49.
That’s too high, so substract (49-45)/
2 or 49-3. The new reference is now
46, which is too low, so add (46-49)/
2 or 46+2. The new reference voltage
is now 48. Too high, so substract (49-
48)/2 or 48-1. We have now reached
the point where our reference voltage
matches the unknown voltage.

Actually, the rounding off is not
limited to integer calculation, but rather
to the resolution of the reference
voltage. When =zeroing into the
unknown voltage, you divide until the
unit change in voltage is one. You
cannot divide and get a more accurate
fix on the unknown value. No matter
how close you get, the comparator will
always give a higher or lower value. The
more accurate the reference, the closer
you get to the real value of the unknown
voltage.

This reference accuracy is one of the
reasons why 1 chose not to use the
joystick input. You see, inside the Color
Computer there is all of the previously
mentioned circuitry: a voltage compar-
ator, a variable voltage reference, an
unknown voltage input (joystick) and
the interfacing circuit to control it all.
A more common name for a variable
voltage reference is “Digital-to-Analog
Converter” or DAC for short. The
DAC inside the CoCo is limited. It has
a fixed output of .25 to 4.75 volts and
the resolution of about 0.0715 volts.

61

The range is not very good for an
analog-to-digital project.

Another reason for not using the
joystick input is speed. You see, the
successive approximation method
talked about earlier is time-consuming.
The CPU has to calculate the next
reference voltage value, set up the DAC,
read the comparator output and make
the proper decision.

The speed at which an unknown
voltage can be found is very important.
When the unknown voltage is stable
and not changing, the computer can
take all the time in the world to figure
out what the voltage is. But, if the
unknown voltage is changing, like the
humming mentioned earlier, speed is
important.

The amount of time it takes the CPU
or other device to find an unknown
voltage value is called the “conversion
time.” The faster the conversion time,
the more samples can be taken and the
more accurate the wave shape repro-
duction can be. For example, if you
have a loop to read the A to D converter
which takes 10 ms (ms = milliseconds
=1/1000 seconds), that means you have

100 samples per second. If you are
sampling a wave form that is 1,000 Hz,
you will miss a lot of information. It
is safe to say you need at least 10 times
the sample rate to reproduce a partic-
ular sine wave with reasonable
accuracy.

A BASIC loop using the JOYSTK
command will limit you to about 3 Hz
— not very fast. In machine language,
you can get a lot faster, but it is still
slow due to the overhead created by
the CPU having to do the conversion.
In the case that the CPU has an external
A to D converter, a great increase in
speed and accuracy can be achieved.
With the right software the effective
conversion rate for an external A to
D could be as high as 800 hertz.

The last thing I must mention this
month is that the A to D circuit requires
negative voltage. This is no problem
with the first CoCos, but it is with the
CoCo 2. The CoCo 2 has no negative
voltage available at the cartridge
connector. There is, however, negative
voltage available inside the CoCo 2.

To bring this voltage to the cartridge
connector is simple; you just need one

piece of wire and a soldering iron. First,
unplug the computer, then open it and
locate the chip with the number
SC77527; this is the SALT chip. You
will find -12 volts on pin 15 of this chip
(just what the doctor ordered). Solder
one end of a piece of wire to that pin.
Locate pin #1 of the cartridge connector
(it is the top pin closest to the back
of the computer) and solder the other
end of wire to this pin. Before you plug
anything into the computer, measure
the voltage to that pin. It should be
about -12 volts, give or take two volts.

On the CoCo 2 this pin is normally
not connected to anything. On the
regular CoCo, this is the regulated
~-12 volt pin. The -12 volts you just
added to that pin are not regulated, but
in this and most cases, it will not matter.
There will be a negative voltage reg-
ulator on the A to D convertor. Of all
the peripherals 1 have seen for the
CoCo, only one uses the negative
voltage and it doesn't matter that it is
not regulated.

If all is well, close your computer and
I'll see you next month with Part 2 of
the A to D converter. Q)

Putting The Finishing

Touches

On The

Analog-To-Digital Converter

his month we'll finish the analog-
I to-digital project we started last
month. The most important part
of this project is the chip that does all
the work. There are many chips on the
market today, ranging from very cheap
and slow to extremely fast and expen-
sive. My budget (and I am sure I’'m not
alone) is very tight. I found this chip in
a local electronics surplus store and
paid a little less than two dollars for it.
The chip is the Teledyne Semiconductor
number 8700CJ. It is an eight-bit
analog-to-digital converter.

This converter is a fully self-
contained, single 24-pin, dual in-line
package. The circuit requires only
passive support components. The con-

version technique used in this chip is a
bit different than the one I talked about
last month, but the net results are quite
the same. Conversion is performed by
an incremental charge balancing tech-
nique that has inherently high accuracy,
linearity and noise immunity,

An amplifier integrates the sum of the
unknown analog current and pulses of
reference current. The number of pulses
(charge increments) needed to maintain
the amplifier summing junction near
zero is counted. At the end of conver-
sion the total count is transferred into
the eight digital outputs. Figure I shows
the pinout of the 8700CJ analog-to-
digital converter. The following is a pin-
by-pin description of this converter.

62

Pin# Description
1to4 No connection
5to 12 Eight data lines — These

output-only data lines repres-
ent the eight-bit value as a re-
sult of the conversion. Pin #5
is the most significant bit, Bit
7. Pin #12 is the least signifi-

cant bit, Bit 0.

13 Iref — This the reference
input current used to compare
to the unknown current.

14 lin — This is the unknown
input current to be measured.

15 AMPout — The output of the
first comparator. Used to
limit high frequency oscilla-
tion.

_1|l[

Figure 2 .
+5V (08}
5V <09} _J— 19]]21 c3 RS
T . \o
= 20| lu é 14 v
o2 3 12 INPUT
Do 5] 1[4 11 2 e L%, VOLTAGE
DIAL—1 C Iy 10
22— 1 [9
o @ 12 13 16 R3
D5 4 14 7 18
D6 -:] 16 17 6 iz x|
D7 7} 18 18 5 13 =
L 3 +5V
Scs(@———Y |10 2 R1 R4
‘GND @}_]. - -4 Vi
= Ve -
—12V 0T N s ouT _L
s S re
Towo T

Analog-to-Digital Converter

circuit is finished and ready to be tested,
insert the converter and power up. Like
most of my projects, this one is made
to work with the cartridge connector on
the side of the computer. It will not
work with a disk drive controller
plugged in because it uses the SCS line
and is memory mapped at $FF40 or

65344. 1f you want to change where it
is mapped, read my article, “How to

Follow a Memory Map,” in the June
1985 RAINBOW. It will, however, work
with a Multi-Pak Interface.

Follow the procedures with the MPI
to set it up. In order to see if all is
working well, a simple program is
necessary.

10 CLS
20 PRINT @@, PEEK(65344) : GOTO 20

Run the program. Touch and let go
the junction of C3 and C2 with your
finger. The number on the screen should
change value. If it does, all is well and
you are ready for the adjustment proce-
dures. If it dosen’t, check over the
circuit, repair the problem and try
again.

The adjustment procedure is simple.

¢ The first adjustment is the zero adjust.

Ground the input, that is, add a jumper

; from the input pin to ground. Adjust V1
* until the value on the screen reads zero.

Increase VI until it just changes to one
and then back off until it changes back
to zero. Now remove the ground clip
and enter a reference voltage. This
reference voltage should be the full-

scale voltage of the resistor selected
above. This 1s the full-scale adjustment.

For instance, if R6 is selected and the
value is one megaohm, the full-scale
voltage is 10 volts. Put a known 10-volt
source to the input,

Different resistor values require dif-
ferent full-scale voltages. Adjust V2
until you read 254. Increase V2 until it
just turns to 255. Go back to the zero
adjust and check it again. Do this until
both adjustments are right. If your
values for RS, R6 and R7 are accurate
all the other scales will follow. The
accuracy depends on the accuracy of
these resistors. If you are a real stickler,
you can add a trim pot on every resistor
and adjust each full-scale separately.
That is all the adjustments you have to
do.

That covers the hardware end of an
analog-to-digital converter. There are a
few things to remember about the
circuit. First of all, it is only good for
positive voltages. Negative voltages will
register only as zero. It will not, how-
ever, hurt the converter. There is a way
of biasing the converter to except neg-

63

ative voltages. If enough readers are
interested, I'll do another article on how

to expand on this converter.
The input impedance depends on the

full-scale resistor. It will typically range
from 100K ohms to about 10 mega-
ohms. The possible uses for this type of
circuit are endless. First, it is a voltage
meter, used for measuring voltages of
batteries, transformers, adapters, other
circuits and many more. But, for most
of these items it is simpler to use a 35
Radio Shack volt meter.

So why the fancy-pants converter?
Well, there are many purposes. With the
proper input device, one could make a
long term study of outside temperature
patterns. Another would be the slow
changes of alpha waves in meditation.
With the right software you could use
your computer as an oscillascope or
even control the temperature of your
house. I can think of many things, just
use your imagination.

As always, if you have a question or
a problem and absolutely can’t wait for
the post office, call me on Monday
nights only, and after supper, at (514)
473-4910. If you write and want a
response, include a self-addressed,
stamped envelope; my address is 4680
18th Street, Laval Quest, Quebec H7R
2P9. Sorry, I don’t do windows.

Parts List
ICI — 74LS374 octal flip-flop
IC2 — 8700CJ eight-bit A-to-D
(teledyne semiconductor)
IC3 — 7905 -5 volt regulator
R1 — 320K ohms V4 watt
R2 — 100K ohms ! watt
R3 — 100 ohms % watt
R4 — 100K ohms Y, watt

RS — 10K ohms Y watt one per-

cent metal film

R6 — 1 megohms Y, watt one per-
cent metal film

R7 — 10 meg ohms Y% watt one
percent metal film

R8 — 1K ohms Y% watt

Cl — .1 uf 25 volts

C2 — 270 pf 25 volts

C3 — 68 pf 25 volts

C4 — .1uf25volts

Vi — 20K trim pot

V2 — 50K trim pot

S1 — SPTT rotary switch
Misc. — 24-pin socket, 20-pin

socket, CoCo proto board,
wire, solder, case, etc.

~\

A helpful list of some computer acronyms and abbreviations

What Is A VDG, Anyway?

video output to the CoCo in the

May 1984 issue of RAINBOW. To
this very day, 1 still get letters about it;
I decided to take 2 moment and answer
the most common questions. The single
most-asked question is “Where (or
what) is a VDG?”

All the chips in the Color Computer
have part numbers that identify them.
While numbers are good for ordering
and sorting, they say very little about
what the chip does. The makers of these
chips have given names to them that
describe their respective functions. For
instance, the heart of the CoCo is a
microprocessing unit designed and
manufactured by Motorola. Motorola
gave this part the code number of
MC6809. For technicians who are very
familiar with chip numbers, it is no
problem to remember that a MC6809 is
a microprocessing unit.

There are so many different chips
made by different companies (which do
basically the same thing) that numbers
no longer have a clear meaning. Espe-

cially when talking about computers in

Iwrotc an article on how to add a

(Tony DiStefano is well-known as an
early specialist in computer hardware
projects. He lives in Laval Ouest, Que-
bec.)

general and not about one specific
model. People started calling chips with
a specific function by nicknames. A
MicroProcessing Unit soon came to be
known as an “MPU.” This is known as
an acronym. An acronym is a word
formed from the first letter or group of
letters of a series of words. There are a
lot of abbreviations and acronyms in
computer jargon. Some of them are
directly related to the CoCo and some
are not.

I have compiled a list of all the

Acronyms and Abbreviations

ACIA (*used in the Deluxe RS-232

Pak) — Asynchronous Communica-
tions Interface Adapter. Used for serial
data.

A/D — Analog-to-Digital. A chip that
converts an analog voltage to a digital
value.

ALU — Arithmetic Logic Unit. Used to
perform binary arithmetic functions.
ANSI — American National Standards
Institute.

“There are so many different chips made by
different companies (which do basically the
same thing) that numbers no longer have a clear

meaning.”

abbreviations and acronyms for com-
puter parts I could think of. The ones
marked with an asterisk (*) mean that
the CoCo has one of them inside or uses
it in one of its add-ons, such as a disk
drive. Along with the acronyms is a full
name and short description. Not all of
the acronyms represent one chip —
some may represent a group of chips
and some represent a type of standard.
1 am open to letters for the ones I may
have missed and will write an update as
soon as 1 can.

ASCII — American Standard Code for
Information Interchange. Better known
as ASCII characters. The format is such
that ali alphanumeric and special char-
acters on a typical computer keyboard
are given a specific numeric value.
Anyone using the ASCII standard will
use the same values.

BASIC (The language, as in Color
BASIC 1.1) — Beginners’ All-purpose
Symbolic Instruction Code. (Bet you
didn't know that one, ay?)

BCD — Binary Coded Decimal.

64

I6 ZEROadjust — This input is
used to adjust so a zero vol-
tage will be accurate.

17 Ibias — This input current ad-
Justs between the speed of the
conversion and the supply cur-
rent. The faster the conver-
sion, the more current it re-
quires.

18 VSS — This pin requires 5
volts power supply.

19 VDD — This pin requires +5
volts power supply.

20 GND — This pin is the sys-
tem ground.

21 INIT — This pinisa TTL
level input used to start the
conversion process. Can also
be connected to be free-
running.

22 BUSY — Thispinisa TTL
level output. When it 1s high
(logic 1), the converter is busy
calculating the next value.

23 VALID — This pinisa TTL
level output that is high when
the data at the eight data pins
is latched with valid data.

24 Another pin with no connec-
tion.

Figure 2 shows the circuit 1 designed
for this project. 1C #2 is the converter
chip — it is the heart of the project. All
the pins described need not be repeated,
however, there are a couple of other
support chips that could use a little
explanation.

The first (IC #1) is a 741.S374. This

is an eight-bit, D-Type flip-flop with tri-
state outputs. It is used to store the data
produced by the converter and to act as
a buffer to the computer. The converter
is wired in a free-running mode. That
means as soon as it is finished doing a
conversion, it immediately starts again
as opposed to waiting for a signal from
the computer to do another conversion.
The data valid pin of the converter is
connected to the clock pin of the 374,
therefore transferring valid data from
the converter to the flip-flops. Data is
transferred from the converter to the
flip-flop on the rising edge of the signal
only, therefore no data is lost when the
converter is busy doing the next conver-
sion.

1C #3 is the other chip needed to make
this work. It is a voltage regulator; a
negative voltage regulator at that! It can
take any negative input voltage from
about -8 volts to -30 volts. The output
will be a regulated -5 volts.

Why all this negative voltage? Well,
the converter is kind of fussy that way.
It needs -5 volts to work (something to
do with the linearity I am told). If you
are using a regular CoCo or a Multi-
Pak Interface, there is no problem, but
if you have a CoCo 2, you will have to
fish out some negative voltage. (See last
month’s issue on how to do that.)

The 7905 is a three-pin chip that looks
more like a power transistor than an IC.
The pin numbers and description of this
chip are simple. Looking at the chip and
legs pointing downward, the left-most
pinis ground. The center pin is the input
and the right-most pin is the output.

Figure 1

NCQO
NCQO
NCLC
NCC
BIT 704
BIT 6C
BIT 50
BIT 4@
BIT 30
BIT 20
BIT 1011
BIT 0QC

22

SQOCD\IO'JUT-PCO(\D"‘

|—A
N

8700CJ

24 ONC

230 DATA VALID

O BUSY

21 O INITIATE CONVERS
200 GND

198 VoD

18 Vss

17 B IBias

16 AZERO ADJUST
150 AMPLIFIER OUT
14plmy

13 P IREF

65

The IC does not need to be mounted on
a heatsink; there is not enough power
demanded of it. 1t also does not need a
socket.

The rest ot the parts are just to make
the converter work properly. There are
only two adjustments to make; I'll get
to that later, but now I would like to
focus your attention on the three resis-
tors, RS, R6, R7, and switch S1. You
may or may not want to include these
in your final circuit. You may want even
more than three resistors. It all depends
on what you want to use this circuit for.

The input resistor, R5, R6 or R7,
depending on which one is in circuit at
the time, is a scaling resistor. The value
of this resistor will determine what the
full-scale voltage value will be. To
determine the full scale voltage, you
must follow this simple formula: Rin =
Vin full scale / 10uA.

Where Rin is the resistor value in
question, Vin is the full-scale voltage
wanted and 10uA (micro amps) is the
current required for full scale. This
current can be changed but will remain
constant for now.

For example: You want a 10-volt full
scale. Using the above formula, 10 volts
divided by 10 micro amps equals
1,000,000 or one megaohm. I put RS at
100K ohms to give a 1-volt full-scale
reading, R6 is one megaohm for a 10-
volt reading and R7 at 10 megaohm to
give a 100-volt full-scale reading. These
should be metal film resistors with a one
percent tolerance or better to ensure
high accuracy. I used these because of
their thermal stability and low noise
generation.

These three scales can be whatever
you choose. Just follow the formula and
you won’t go wrong. You can even add
more resistors for more scales, but of
course you will have to change the
switch S1. If you need only one scale,
only one resistor is needed and you
won’t need the switch either.

The construction is not too compli-
cated, but care has to be taken because
the 8700CJ converter is a CMOS chip
and it is very sensitive to static electric-
ity. Use proper anti-static handling
procedures. Do not insert the chip into
its socket until everything is finished,
checked and cleaned. It is important to
clean the board properly. Leftover
solder flux on the board can affect the
accuracy of the circuit. It may even
cause it to fail altogether.

Use the Parts List and the diagram in
Figure 2 to build the circuit. After the

CPU (*the CoCo uses an MC6809) —
Central Processing Unit. Basically the
same as MPU described earlier.

CRT — Cathode-Ray Tube.

CRTC — Cathode-Ray Tube Con-
troller. A chip used when an 80 by 24
character display is needed. Sometimes
referred to as a CRT.

CTM (*the CoCo uses an MC1372) —
Color Television Modulator. It takes
the signals from the VDG and converts
them into a signal that is suitable for a
color TV.

D/A — Digital to Analog. A chip that
converts a digital value to an analog
voltage.

DMA — Direct Memory Access. A
process of moving data from one device
or memory area to another device or
memory area without the use of the
CPU.

EIA — Electronic Industries Associa-
tion. An agency that sets standards.
FDC (*the older Radio Shack disk
controller uses the WD 1793 by Western
Digital and the newer Radio Shack uses
the WD 1773 by the same company) —
Floppy Disk Controller. This is the
main chip used when a computer talks
to a floppy disk.

EEPROM — Electrically Erasable,
Programmable, Read-Only Memory. It
is the same as an EPROM except that
electricity rather than ultraviolet light is
used to erase it.

EPROM — Erasable, Programmable,
Read-Only Memory. More permanent
than RAM but less than ROM.

1C — Integrated Circuits. It means all
chip-like components.

IIA — (*the CoCo ‘F’ board and the
CoCo 2 use an MC6822) — Industrial
Interface Adapter. It is much like a PIA
but has slightly different input capabil-
ities. Used in conjunction with the
newer keyboards.

LCD — Liquid-Crystal Display. Usu-
ally seen on a digital watch.

LED — Light Emitting Diode. The
indicator on almost any disk drive.
LSI — Large Scale Integration. Many
transistors in one package.

MMU — Memory Management Unit.
Something that is lacking in our CoCo,
this chip lets a CPU handle more mem-
ory than it could without it.

MSI — Medium-Scale Integration.
Smalier than the LSI.

MSO — Montreal Symphony Orches-
tra. Has nothing to do with computers,
but it is something we are proud of in
Canada.

OP-AMP (the CoCo uses the old stand-
ards LM741 and LM339) — OPera-

tional AMPIifier. Used in audio circuits
to amplify a given signal.

PIA (*there are two of these in the
CoCo, they are both MC6821s) —
Peripheral Interface Adapter. Lets the
computer “talk” to things like a key-
board or joysticks.

PIC — Priority Interrupt Controller.
This chip is useful when a computer has
many levels of interrupt.

PLL — Phase Locked Loop. This is a
device that compares the phase of one
signal with another.

PROM — Programmable, Read-Only
Memory. Like an EPROM but not
erasable.

RAM — Random-Access Memory.
Usually pertains to any kind of memory
but mostly refers to static memory, as
opposed to dynamic memory.

ROM (*the regular CoCo has one of
these. If you have Extended BASIC, it is
another one. If you have Disk Extended
BASIC, there are a total of three ROMs
in your CoCo. The newest CoCo 2 has
BASIC and Extended BASIC ROMs
bundled together) — Read-Only Mem-
ory. It is called “read-only” because the
information is inserted into the chip at
the factory and cannot ever be changed.
This process is called a “masked” ROM.
SALT (*only the CoCo 2s have this
custom chip) — Supply And Level
Translator. In the CoCo this chip is
responsible for main voltage supply
regulation, RS-232 interface level con-
version, cassette read operations and
driving the cassette relay.

SASE — Self-Addressed, Stamped
Envelope (see the last paragraph).
SAM (*the CoCo has one of these —
an MC6883) — Synchronous Address
Muitiplexer. This chip takes care of the
DRAM ROM and I/O in the CoCo.
SS1 — Small-Scale Integration. Even
smaller than MSL

TTL (*there are a few of these in the
CoCo) — Transistor-Transistor Logic.
Actually TTL refers to a whole family
of chips that do everything from simple
buffering to AND and NOR gates to
full memory refreshing. There are many
levels of TTL, ranging from the regular
to the ‘S’ (Schottky) series and the LS
(Low-power Schottky) series. Today
there are even more. There is the ALS
(Advanced Low-power Schottky) se-
ries, the AS (Advanced Schottky) series
and even the ‘F’ for fast series. There is
even a HC (High-speed CMOS) series.
All have different specifications for
speed, power dissipation and price.
UART — Universal Asynchronous
Receiver/ Transmitter.

66

VDG (*the CoCo and CoCo 2 use the
MC6847) — Finally, the one we have
been waiting for! It stands for Video.
Display Generator. It is the chip that
translates memory data into the visual
display with which we are most familiar.
VLSI — Very Large Scale Integration.
Refers to chips that have thousands and
thousands of transistors, something like
the Motorola MC68000, a 16-bit CPU
that is used in the . . . sorry I just can
say it, red-fruit like computer.

There are also a lot more chips and
components that go into making up the
CoCo, but the rest do not have fancy
abbreviated names. The following is a
list of the active components in the
CoCo that are not mentioned in the list
of acronyms.

The MC14050B is a latch used in the
D/ A circuit.

The UMI1285-8 is a Modulator. It
takes the signal provided by the CTM
and converts it into a signal that can be
used by a regular home TV,

The MC14529 is a data separator
used to select the analog inputs for the
A/D circuit. These are the joysticks,
sound, cassette and exterior sound. In
fact, all of the analog-type signals that
are in the CoCo go through this chip.

The CoCo also has four voltage
regulators. The regulated voltages are
+12 volts, -12 volts, +5 volts and -$
volts. The CoCo 2, on the other hand,
has only two regulated voltages: +5
volts for all the circuits and an internal
(to the SALT chip) -5 volts.

Through the years the CoCo has'
evolved from the first board (which |-
believe to be the ‘B’ board) to the latest
CoCo 2. As a point of interest the next
list is the amount of components it takes
to build a CoCo ‘F’ board and a CoCo
2 ‘A’ suffix board:

CoCo CoCo2
!F’ IA'
Capacitors 85 49
Connectors 7 6
Crystals 1 1
Diodes 17 13
ICs 29 16
Fuses 1 1
Inductors 10 7
Relays 1 1
Resistors 83 34
Switches 3 3
Transformers 1 1
Transistors 4 2
Misc. components 89 43

Though 1 do not have the exact
numbers, the CoCo ‘B’ board has even
more parts than the CoCo ‘F’ board and
the CoCo 2 ‘B’ board is supposed to
have even less parts than the CoCo 2°A’
board. How is that for progress? And
don’t forget the price difference, too.

Next time someone talks to you

about his VDGs and DMAs, you will
be able to understand what he is talking
about, and tel)l him what we have in our
own CoCo.

As always, if you have a problem with
something in this column and abso-
lutely can’t wait for the mail, give me a
call on Monday nights only, at (514)

473-4910. My address is 4680 18th
Street, Laval Ouest, Quebec H7R 2P9.
If you write to me and expect an answer,
include an SASE; you won't get an
answer without one. I am sure you
know what SASE means, right? 0

Understanding how a computer works

A Beginner’s

Hardware Course

Part 1

his being the Beginners issue, I will start a multi-part

I article on how a computer works, starting from

“simple theory™”to “how to build one of my projects.”

This month, we will begin with basic concepts: what is a

bit, what does digital mean, what is analog, how does it

differ from digital, and a look at a different numbering
system.

The dictionary meaning of analog is “proportionate.”
When speaking, you can speak loud or low. Light can be
dark or bright, or any shade in-between. Radio waves and
TV pictures are all said to be analog signals. These are
examples cf analog wave shapes — continuously changing.
When we talk about a digital system, there are no shades
or continuous motion. There are only two states in a digital
signal: ON or OFF. There is no in-between. This is the core
of computing. Everything your computer does is accom-
plished using these two states. OK, let’s expand on these
states.

First, there is ON. It is also known as “high” (Hi or ‘H?),
“plus,” “one” (or ‘1), “mark,” “voltage” and many others.
The two terms I use most often are Hi and ‘1’ these are
the terms 1 will use throughout these articles. In most
microcomputers, the operating voltage for the hardware is
five volts. Virtually all the mircocomputer and support
chips work with five volts. It is pretty much a norm. Given
this, a Hi measures about five volts on a voltage meter, but

(Tony DiStefano is well-known as an early specialist in
computer hardware projects. He lives in Laval Ouest,
Quebec.)

4.5 volts is also considered Hi. There are limits to how low
the voltage can be before it is considered invalid. In fact,
any voltage greater than two volts is considered to be a logic
level Hi or ‘1".

Next is the OFF state. It, too, has many names: “low”
(Lo or ‘L"), “minus,” “zero” (or ‘0°), “space” and “ground,”
just to name a few. To keep consistent, I will use Lo and
‘0’to mean OFF. A low state is considered to have zero volts
and when measured with a voltage meter, nothing registers.
Under certain conditions, a small voltage can be present.
Any voltage below .8 volts is considered to be a logic level
‘0’. Any voltage greater than .8 volts or less than two volts
is not a valid logic state and results are, at least, unpredict-
able.

Now we know about the highs and lows of digital
operation. The next step is a “bit.” A bit is one piece of logic
information. It has, as we now know, two states, either Lo
or Hi. It’s also known as a binary digit, binary meaning two.
The two states are:

State 0 = 0 (Low)
State 1 = 1 (High)

But, just two pieces of information is not very much to work
with. If we use two bits side by side, and considered every
combination of 0’s and 1’s, there are four separate
combinations.

State 0 = 00
State 1 =01
State 2 = 10
State 3= 11

67

I am sure you recognize these numbers. Once the top of the
number ladder is reached, you add another digit to the left
of it. Each number added raises the value of that digit in
the number by a factor of 10.

//////}//} 1\\?\\\\\\\\

1{1g E3 1gE2 1 E1 [1g E g-100
o:r ol'r o'r 61:
! n
3ppp + 28p + 1§+ 5 = 3215

When large numbers are to be represented, there are more
digits. Each new digit added means adding another power
of 10. Numbers ranging in the millions require only seven
digits in Base 10 numbers, but require many digits in Base
2 since every added digit is only to the power of 2.

1 1 1 p
//// (\\
2L[§4j 253 |

2E1l [2Ep-2
| |
or or or or or

i [I |

16 + g + 4 + 2 + é = 22
You can see that a Base 2 number adds up to a lot less than
Base 10. There is yet a better-suited numbering system for
computers, but first let’s look at a bit more (ha, ha).

The Color Computer (all versions) has an eight-bit CPU.
That means all data, program code and characters are
stored in eight-bit values. These groups are better known
as bytes. A byte can hold any value from 00000000 (Base
2) to 11111111, or in decimal, from zero to 255. If you
convert 1111111 to decimal, it works out to 255. Each byte
in the CoCo i1s one memory location. A byte can hold one
ASCII character, one piece of data or one machine language
code. We'll look more at memory later on.

In the computer environment there is another numbering
system. It is most used and is called the hexadecimal
numbering system, or Hex for short. The Hex system, as
the name implies, is a Base 16 number. This means there
must be 16 symbols before the carry over to the next digit.
In Hex, the symbols are 0, 1, 2, 3,4,5,6, 7, 8,9, A, B,
C, D, E and F. Just as the next digit after ‘3" is ‘4’ (3+1),
the next digit after ‘9’ (9+1) is ‘A’. Remember that A, B, C,
D, E and F are digits, not letters, in the hexadecimal system.
The following table exemplifies the different numbering
systems described.

2 E 2

ot
(]
4

Decimal Binary
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

VO IAWNH WN—~O

MO AW» OO IAUNE LW —O

68

If you have three bits side by side, there are eight different
combinations.

State 0 = 000
State 1 = 001
State 2 =010
State 3 =011
State 4 = 100
State 5 = 101
State 6 =110
State 7 =111

Can you see a pattern start to develop? Every time one
more bit is added, you double the amount of different
combinations possible. This is known as Base 2 or binary
numbering system. Most of us are more familiar with Base
10 or decimal numbering system. In short, Base 10 numbers,
unlike Base 2 numbers, have 10 different combinations per
digit.

State 0 =0
State 1 =1
State 2=2
State 3=3
State4 =4
State 5=5
State 6 =6
State 7=7
State 8 = 8
State9 =9

As you can see from the table, the Hex numbering system
is the most efficient because of its highest base number. The
decimal system takes two characters to the one character
needed by Hex; binary takes four characters. Since the
CoCo has an eight-bit bus (a memory byte), you can
represent a memory location with eight bits (11111111) or
three decimal digits (255) or a two-digit Hex number ($FF).
From now on we will use all three numbering systems, which
ever happens to be the best for the occasion. When using
Hex, however, I will put the character ‘$”in front of it. Some
like to put an ‘h’ at the rear of the number — both are
correct, I just prefer the dollar sign.

Understanding the Hex and binary numbering systems
and what they stand for in a computer is the base from where
your knowledge of the CoCo will grow. I will not cover
adding and subtracting or conversion from one base to
another in this article, but if you want to learn more on
numbering systems, your local library should have number-
ing systems in the math section.

One of the command functions built into Extended BASIC
is HEXS, pronounced “Hex string.” This command transfers
a normal decimal value into a string variable in hexadecimal
format. The syntax for this command is HEX$(X) where ‘X’
can be a direct value or any numeric expression. As an
example, to get the Hex equivalent of the decimal value 207,
type PRINT HEX$(2@7) and ENTER. This prints CF and is
the Hex equivalent of 207. A very handy command to have.

On the other hand, how would we change a Hex value
into a decimal value? Extended BASIC comes to the rescue
again, for it has another function that allows entry of Hex
values, the &H sign. Anytime you need to enter a value in
Hex, use the &H in front of the value. For instance, if you
have a line that sets the value of ‘X’ to the Hex value FF,
you can calculate $FF to a decimal value or you can enter

it as 108 X = &HFF. Another use of the function &H is to
convert a Hex number to decimal. Since all numbers printed
are done in decimal, to convert a Hex number to decimal
all you have to do is PRINT &HX and ENTER, where ‘X’ is
any Hex number and the result is printed in decimal on the
screen. If you are to substitute the letter ‘O’ instead of ‘H’,

all values will be in octal, or Base 8.
* %

I got a letter from a reader just this week. He pointed
out a problem with “Turn of the Screw” in the November
1984 issue. There is mention of a switch in the text, but no

such switch existed in the diagram. Figure | shows where R1

this switch goes.

Next month, we’ll look into digital logic gates, truth

tables and their use in computers.

CoCo Pin #4
5Volts
R2 S1
T2
}\‘ m I
—— Iy

A Beginner’s
Hardware Course

Part 2

ast month we took a look at
‘ Lbinary bits and different num-
‘ bering systems. So far, there
doesn’t seem to be any relation between
* these and computers. All we did is
express numbers in different forms.
But, we are a little closer to computers
than you think. We know the computer
is made up of a lot of chips that use bits
of zeros and ones. In order to under-
stand the ins and outs of these chips, I
will go into detail of how chips use zeros
and ones.

The heart of all digital computers is
the logic circuit elements. They perform
binary arithmetic operations, make
logical decisions and perform opera-
tions such as counting and temporary
storage. The basic type of logic element
is called a “gate.” Gates are circuits that
look at two or more binary signals and
produce a binary output, which de-
pends upon the conditions of the input
signals.

In order to comprehend this better,
let’s look at an equivalent circuit that is
casier to understand, using conven-

(Tony DiStefano is well-known as an
early specialist in computer hardware

projects. He lives in Laval Quest, Que-
bec.)

tional components you are likely to find
around the house. If you want to build
and test these circuits yourself, Radio
Shack has all the parts. The switches are
single pole, single throw. Any battery
and bulb combination will do, just be
sure the battery and the light bulb are
the same voltage rating, otherwise you
may end up burning out the bulb or get
no results at all. Such a circuit is shown
in Figure 2.

This circuit contains three compo-
nents: a battery, a switch and a bulb.
Here, the switch is considered the input
and the bulb is considered the output.
When the switch is on (a logical 1) the
bulb is lit (this is also considered a
logical 1). When the switch is off (logical
0) the bulb is off, also giving us a logical
0. In a logical element such as this, the
input (the switch) and the output (the
bulb) follow each other, one to one or
Zero to zero.

The symbol used to represent this
circuit or logical element in a logic (or
computer) schematic is shown in Figure
la. This gate is called a “buffer.” The
input is exactly the same as the output.
Not very useful in a logical sense, in that
it does nothing, but it is needed under
certain circumstances. For instance,
when the output of a gate (logic ele-

69

ment) is connected to many other gates,
it may not have enough power to drive
all the gates properly. In this case a
buffer is used. Whenever a gate is used
there is always a small delay between
when the input changes and the output
changes; a buffer is sometimes used just
for that delay.

To continue our understanding of
gates, let’s introduce another factor in
our battery circuit. Now study the
circuit in Figure 3. It has two switches.
The two switches are in a series, that is,
one after the other. Therefore, they
must both be on before the bulb will
turn on. This circuit or logical element
is known as an AND gate. The defini-
tion of an AND gate is: “The AND gate
is a logical element with two or more
inputs and a single output. Both (or all
in the case of more than two) inputs
must be binary ‘I’ to produce an output
of binary ‘1°.”

The symbol for an AND gate is
shown in Figure 1b. The main value of
the AND gate is its ability to detect
when all inputs are binary ‘I’. For
example, in a control system when all
the motors are on, turn on the extra
generator. A quick way to remember
this gate is, when ‘A’ AND ‘B’ are ‘I’,
then ‘Y’ is ‘1". Hence the term AND.

two inputs is a binary ‘1’. The other
input being a binary ‘0°.”

A quick way to remember the func-
tion of this gate is when the inputs are
different, the outputis‘1”. Like the other
gates, it, too, has the inverted version.
It is called the EXCLUSIVE-NOR or
XNOR for short. The definition of an
XNOR gate is the same as the XOR, but
has its output inverted to a binary ‘0’
when either of the two inputs is a binary
.

The gates described so far are quite
simple in structure. They have one or
two inputs and one output. They are the
fundamental elements in creating more
complex chips, and even the basis of
complete computer CPUs. In the case
of the simple two-input AND gate,
there are four discrete combinations of
inputs. The two inputs are represented
by a two-digit binary number. Re-
member last month? They are 00,01, 10
and 11, and the output for each given
condition is 0, 0, 0 and 1, respectively.
Not so hard to remember or display.
But, in other chips, where there might
be five or six inputs and eight or 10
outputs, it can be too much to re-
member. Now is when the “truth table
comes in. The definition of a truth table
1s: “A truth table is a graphic represen-
tation of all possible combinations of
inputs versus outputs of a particular
logic element.”

The second column of Figure 1 rep-
resents the truth tables for the given
gates. Notice that all possible combina-
tions of inputs are given. Columns A
and B are the inputs, as you can see from
the gates in Column 1. Column Y is the
output. Read the truth table as you read
text, one line at a time. Each line is one
condition. The condition is given for ‘A’
and ‘B’. The output, 'Y’, is the result for
a given gate. Every line is different, and
continues until all possible combina-
tions for that gate are shown. This way,
at a glance, you can tell what the output
is for a given input of any gate. In these
cases, it is not too difficult to follow or
remember. Later on, when I show you
the truth tables for some of the chips
that make up our good ol’ CoCo, you
will be glad I introduced you to these
tables.

Though I will not be getting into great
detail in this series of articles, I feel it
is necessary to talk a little about Boo-
lean algebra. The definition of Boolean
algebra is: “A system of mathematical
logic used to represent digital logic
signals and express the logic operations

Figure 2 Figure 3
e — g
Figure 4
/
/
Figure 5§
J— +
- =D
AND + NOT = NAND

performed by digital signals.”

To put it into simple terms, Boolean
algebra is an equation that represents
the function of a logical element. Take,
for instance, the buffer in Figure 1. The
output is equal to the input. A Boolean
equation would be:

Y=A
Now an inverter would look like this:

Y=NOTA or Y=*A

The AND symbol in a Boolean ex-
pression is a dot in the middle of the
line, like the multiplication sign in
regular math. Notice its occurrences in
Figure 1. The OR symbol in a Boolean
expression is a plus sign (+). Again, the
Boolean OR symbol can be seen in
Figure 1. The next Boolean symbol is
the EXCLUSIVE-OR. This is no more
than the plus symbol with a circle

around it. Figure | also shows the XOR
symbol. Any of the inverting symbols in
Boolean algebra are represented by a
small horizontal bar above the equation
in question. You can see the inverting
gates in Figure 1.

That is it for this month. If you are
going to the Palo Alto RAINBOWfest,
Feb. 14-16, come and see me at the
DISTO booth.

References

1) Contemporary Electronics,
McGraw-Hill Continuing Education
Center.

2) Digital Computer Logic and Elec-
tronics, The Algorithms Press.

3) Model 100 Service Manual, Radio
Shack, Tandy Corporation.

4) The TTL Data Book, Texas In-
struments, Incorporated.

5) Microcomputer Interfacing,
Prentice-Hall, Inc. A

an

The next gate we will study is the OR
gate. Again, we have two switches in our
next diagram, Figure 3. The difference
is that now they are wired in parallel,
one on top of the other. If either switch
is on, then the bulb will be on. If both
are on, the light is, of course, still on.
This circuit or gate is known as an OR
gate. The definition of an OR gate is as
follows: “The OR gate is a logical
element with two or more inputs and a
single output. If any one input is a
binary ‘1’ then the output is binary ‘I’.”

The symbol for an OR gate is shown
in Figure lc. The main value of the OR
gate is its ability to detect when any
input is binary ‘I’. An example of this
use is when any door or window opens,
an alarm sounds. A quick way to re-
member this gate is when *A’ OR ‘B’ is
‘I, then ‘Y is ‘1”. Hence the term OR.

If we look back to our first gate, the
buffer, we notice the input matches the
output. Since the input and the output
are the same, it is called a “non-
inverting” output. This gate, and most
other gates, can also come in an “invert-
ing” output. In the case of our buffer,
it becomes an inverter, or better known
as a NOT gate. Figure 1d shows the
symbol of an inverter. The definition of
an inverter is: “An inverter is a logic
tlement whose output is always the
complement (the opposite) of its input.”

Notice the difference between a
buffer symbol and an inverter symbol.
The inverter symbol has a small circle
on the output side. Any inverting out-
put gate has a small circle on the output,
This is true for the AND and the OR
gate, too. If you take the output of an
AND gate and tie it to the input of a
NOT gate, the result (the output of the
NOT gate) is an inverted AND gate (sce
Figure 5). This requires two gates and
some wiring. It is so often used that the
IC designers decided to put it all in one
chip. This is called a NAND gate. The
same thing goes with an OR gate — it
becomes a NOR gate. These two gates
are defined as follows: “NAND and
NOR gates are the complements of
AND and OR gates, respectively.”

The last gate we will look at is the
EXCLUSIVE-OR gate. The symbol for
the EXCLUSIVE-OR gate is shown in
Figure le. For short, this gate is called
XOR. It is a little different than the OR
gate and is used mostly when a signal
needs to be inverted in some cases and
not in others. The definition of an XOR
gate is: “The logical XOR is defined as
a binary ‘I’ output when either of the

Figure 1
Truth Table

Symbol
A Y
__.D_ 0
A Y
1
Buffer
AlB Y
A v 0/o o
[J— 010
AND 1/0]o0
111 |1
A AlB|Y
B Y 0 0 0
L on o 1|1
1] 01 1
1] 1 1
A {>o Y A
Inverter 0
1 0
AlB |Y
A—) Y 0cjlo o
8—ry o 1 | 1
XOR 110 1
1{1]o0
‘ Al B Y
A— 0| 0| 1
[J— o 1] 1
NAND 1y 011
1{1] 0
A B Y
0 [1
A o | 1 0
1 0 0
" NOR 9 1 0
- A B | Y
0 0 1
A
D BHn
B 1 o] o
. - XNOR 1 3 P

Boolean
Expression

Y=A

Y=A+B

Y=A®B

3

Y

71

The third installment of the “beginner’s hardware course”

An Introduction
to Timing

Continuing our journey into the
CoCo, this month 1 will look
into the heart of this and any
computer — timing. All the hardware
of the computer is controlled by timing.
The most important part of the timing
is to keep the CPU in step. What is a
CPU, anyway? Well, the letters CPU
stand for Central Processing Unit. The
CPU inside 1the CoCo is the MC6809.
The CPU, in a way, does all the work.
It can move data from one part of
memory to another, compare two
values and act according to the result,
add and subtract values and so forth. In
fact, without the CPU, the rest of the
hardware that makes up a computer
would be worthless. The CPU is a very
complex chip. It has data lines, address
lines, interrupt lines, status lines and
more. The timing that goes with the
CPU is also important. OK, let's get
intoit. Itis a prerequisite to understand-
ing how a CPU works.

Up till now, when [talked about
zeros and ohes and the change from one

Tony DiStefano is well-known as an
early specialist in computer hardware

grojects. He lives in Laval Ouest, Que-
ec.

to the other, it was considered to be
instantaneous. There was no mention of
how long it took to change from one
state to another. In fact, we are dealing
with real life, not just theory. Situations
in theory rarely work in real life the way

“The first fact of the
real world is
propagational delay.”

you want or expect them to. Welcome
to the real world of delays. Ever caught
an on-time airline flight? Ha!

The first fact of the real world is
propagational delay. Take, for instance,
a simple inverter. Figure la shows an
inverter. When there is a ‘1’ at the input
there is a ‘0’ at the output. A ‘0’ input
will give a ‘1’ output. But when the input
changes from one state to another, there
is a short delay before the output

changes. This delay is called the prop-
agational delay, which means the
amount of time it takes an electrical
signal to go through a logic element or
wire.

Figure 1b shows a graph of the input
and the output of an inverter. The X-
axis (from left to right) shows the
passing of time. This can be in seconds,
hundredths of seconds, thousandths of
seconds and even millionths of seconds.
When no time base is given, then time
factor is not relevant. Typical delay
times for the TTL family (more on chip
families in later articles) is from five to
30 ns (ns = nanoseconds). The Y-axis
usually shows the binary level of *0’ and
‘I’. When two or more signals are shown
that are related to each other, they are
shown on top o1 each other with the left-
to-right passing of time common to
each. .

Getting back to Figure 1b, we see the
passing of time and the relation of the
input to the output. There is no delay
shown in this diagram. To show the
delays of each signal for a given com-
plex gate would confuse the diagram.
Instead, an overall delay is given for the
gate. But, in order to get used to the idea
of delays, Figure lc shows the time
delays of a typical inverter. Along with

Figure 1a

IN ouT

ouT

Figure 1b

Figure 1¢

— —— > -
-—

TIME iy

72

by

DELAY DELAY

Figure 2a Figure 2b
READ CYCLE WRITE CYCLE
et trC ——————— - twe !
f——————ta ————— \(-
ADDRESS
\ \ /
ADDRESS /(/< \
ft— twr

the delay of the signal there is also the
rise and fall time. The rise time of a
signal is described as the time it takes
for a given signal to reach 90 percent of
maximum voltage from the 10 percent
voltage level. The fall time of a signal
is described as the time it takes for a
given signal to drop to 10 percent
voltage from the 90 percent voltage
level. In the case of the CoCo, the
voltage considered a logical level of ‘1’
(or HI) is five volts. The logical level ‘0’
(or LO) is, of course, zero volts. The
actual working voltages may be slightly
different.

Delay, rise and fall times are impor-
tant mainly to the designer of the
system. When an engineer designs a
computer he must know these timings
and make sure that all operations are
within the given limits. For example,
two signals go to one gate, but one goes
through several gates first. Each time
the signal travels from one gate to
another there is more delay. If the signal
is delayed enough, an improper signal
output results.

It sounds like I'm making a big deal
of delays. While it is important, it is not
a major concern to computer hackers
(or should I use the term hobbyist?) and
even less to end users. More important
to us is another kind of delay. It is
known as *“access time,” which means
the mean time between the request for
memory and the actual valid data.

Let us look at a typical memory chip.
There are thousands of gates and tran-
sistors inside this chip. All of these gates

inside the chip cause a significant delay
between the time when the address to
the chip is valid and the time when the
data output appears on the data bus.
This is known as access time. When
talking about memory, an important
parameter is access time. These access
times can range from super-fast static
memory at about 10 ns to very slow
dynamic memory at 450 ns and slower.
It is this limitation that controls and

“More important to us
is another kind of
delay. It is known as
‘access time,” which
means the mean time
between the request for
memory and the actual
valid data.”

limits the speed of CPUs. Figure 2a
shows the read cycle timing diagram of
a memory chip. Figure 2b shows the
write cycle for the same chip. What
follows is a description of what each line
on the diagram means.

Address — These are the address lines
that select what byte is to be accessed.
It is shown with two lines, one high and
one low. It is shown this way because
there are usually several lines and since
the timing is the same no matter what

byte you access, it is not relevant which
address line is high or which line is low.
The two lines (one on top and one on
the bottom) represent any given address
within the chip. Where the lines criss-
cross means a change of address. That
is when the CPU is finished with that
byte and requests another by putting
another address on the bus. Access
times are always measured with respect
to the address change from the CPU.
Actually, it starts when the address is
stable, better known as a “valid ad-
dress.”

Chip Select (CS) — Remember the *CS
line on memory chips in past articles?
It is used to select or activate the chip.
From the diagram of the read cycle, we
can now see the relation between when
the address is valid, the *CS line and
when the data is valid.

Data out — This, of course, is the data
that the CPU requested. Notice the data
valid area. That is the time when the
data that appears on the bus is the data
that is held in that memory location.
Notice the top and bottom dual line
display. It has the same description as
address lines, some are ones and some
are zeros. The line in front of the data
valid section is halfway between zero
and one. That means the data lines are
tri-state and no valid data is input or
output. The shaded area on both sides
of the data valid window is the transi-
tion time between tri-state and data
valid. In this area, data lines are chang-
ing to their proper values. A read in this
area will not yield valid data.

73

Read/ Write — The *R/W line is used
to select a read cycle or a write cycle.
Straightforward, no problems there. In
the CoCo this line is logical ‘1’ to read
and ‘0’ to write.

The following is a description of all
the relevant parameters used in Figures
2a and 2b.

t(rc) — Read Cycle Time: the time it
takes for a complete read cycle given in
ns.

t(a) — Access Time: the delay between
a valid address and data valid.

t(co) — Chip Select to Output Valid: the
delay between when the *CS is active
and the data is valid. This is only true
with a valid and stable address.

t(cx) — Chip Select to Output Active:
same as t(co) but not to data valid; to
when the data lines start changing from
tri-state to output. Usually of minor
importance.

t(otd) — Output Tri-state from Deselec-
tion: the time that the data stays valid
after the *CE goes inactive or deselects.

t(oha) — Output Hold from Address
Change: the time that the data stays
valid after an address change is de-
tected.

t(wc) — Write Cycle Time: same as the
t(rc) except for a write cycle.

t(w) — Write Time: the minimum time
the write line has to remain low.

t(wr) — Write Release Time: time
between the *WE line deselects and a
change of address.

t(otw) — Output Tri-state from Write:
the time it takes the data lines to go to
tri-state from a write request.

t(dw) — Data to Write Time Overlap:
the time data must be stable before the
*WE line deselescts.

t(dh) — Data Hold from Write Time:
the time data must be stable after the
*WE line deselects.

Figures 2a and 2b show the read and
write cycle paramaters for a typical

memory chip. Though these are not the

" memory chips inside the CoCo, the

timing and paramaters are quite similar.

Figure 3
READ CYCLE
SYMBOL | PARAMETER MIN | MAX | UNIT
tpc READ CYCLE TIME 250 NS
ta ACCESS TIME 250 NS
tco CHIP SELECT TO OUTPUT 85 NS
tex CHIP SELECT TO OUTPUT 10 NS
totd. OUTPUT TRI-STATE FROM 15 NS
DESELECTION
toha OUTPUT HOLD FROM ADDRESS 20 NS
CHANGE
WRITE CYCLE
SYMBOL { PARAMETER MIN | MAX | UNIT
twe WRITE CYCLE TIME 250 NS
tw WRITE TIME 135 NS
twr WRITE RELEASE TIME 0 NS
totw OUTPUT 3-STATE FROM WRITE 60 NS
tdw DATA TO WRITE TIME OVERLAP 135 NS
tdh DATA HOLD FROM WRITE TIME 0 NS

74

Now with no further delays, it is time
to look into the CPU . . . well, sort of!
There is one more thing we must look
into; it is CPU related, though. We are
getting closer. It is the master clock,
which is a master reference wave form
used to synchronize all of the logic in
a system.

The master clock is usually the high-
est frequency in the computer. All other
timings are derived (divided) from this
clock. The CPU clock is the speed or
frequency at which all instructions and
data are retrieved and stored to mem-
ory. Depending on the system design,
the CPU clock can be equal to the
master clock, or any division thereof. In
the case of the CoCo, the master clock
frequencyis 14.31818 MHz (mega-hertz
or million hertz) and the CPU clock
frequency is 1/16 that of the master
clock at 0.8948 MHz. Well, there are
two clock speeds in the CoCo. Under
special conditions, the CPU can work
at 1.8 MHz.

Now you might say, “Wow, my CoCo
has a clock rate of only .894 MHz!"
Compared to that of the 4 MHz of other
computers, that may or may not be
slower. You see, it gets more compli-
cated. The CPU clock does not always
mean the net speed of the computer.
There are some other factors involved,
such as synchronous 1/ O, as opposed to
asynchronous I/O.

Let’s look at synchronous I/O first.
As the word implies, synchronous 1/0
means that any memory, read or write,
is synchronized. Synchronized to what?
The CPU clock, of course. On any given
clock cycle, the CPU can do one I/0.
You know exactly when the CPU will
need the bus. It corresponds to the clock
cycle. In an asynchronous situation, the
CPU requires more than one clock cycle
to do a read or write. Asynchronous I/
O requires either three or four cycles
depending on what kind of 1/0 it is
doing. On this type of CPU, signals are
required to tell memory or other devices
that an 1/ O has started. ‘

Just about now, a little bit of math
is required. Given that the clock fre-

quency of the CoCo is 894886 hertz or
0.894 MHz, one clock cycle is 1117
nanoseconds. The way | did this is to
transfer from frequency to time period.
The equation used is:

T=1/F

where ‘T’ is In seconds and ‘F’ (fre-
quency) is in hertz. So the frequency of

0.894 MHz is a time period of
.000001117 seconds, or 1117 nanosec-
onds, or 1.117 microseconds. Now,
when we talk about speed, we can say
that the CoCo can do about one I/ O per
microsecond — a much more accurate
way to measure the effective speed of a
CPU.

I hope these articles about the hard-
ware of the CoCo are informative to

you. Also, 1 hope I am not going too
fast; it is hard for me to judge what
audience 1 am writing for. If you have
some comments to make, a direction to
take or something you don't under-
stand, write to me through RAINBOW
and I'll try to answer the interesting and
common ones here in this column. Next
time, we'll look deeper into the heart of
the CoCo. Q)

The Makings of Memory
and How it Works

emember AND, OR and XOR
Rgates? Along with these gates

came simple truth tables and
Boolean expressions. All the gate exam-
ples that were given were two inputs and
one output. Most of these gates also
come in multiple inputs and a variety of
outputs. For example, Figure 1 shows
a four-input NAND and a three-input
OR. If you also examine the
accompanying truth tables, you will see
that the rule of thumb for these gates
still applies. (See my column in the
February 1986 RAINBOW, Page 154, for
the rules to logic gates.) Some gates are
made, for instance, to have up to 13
inputs, but they are used mostly for
memory mapping. I'll be going into
more detail about memory mapping in
a future article. No matter how many
inputs you have, though, all the same
rules apply.

Another property of logic gates
(which have more to do with hardware
than logistics) that we haven’t touched
on yet is the type of output. So far, all

Tony DiStefano is well-known as an
early specialist in computer hardware
projects. He lives in Laval Ouest, Que-
bec.

the outputs we have talked about are
either ones or zeros; a one being a
positive voltage (+5 volts in the case of
the CoCo) and a zero being no voltage
or ground. There are two other types of
outputs to consider. The open-collector
output and the tri-state output.

Let us look at the tri-state output
first. “Tri,” meaning three, tells us there
are three posible output conditions.

4 INPUT NAND
3-INPUT OR
Figure 1

I

How can that be with a binary output?
The word binary implies two condi-
tions. What is the third state? The third
state is called high-impedance. That is
when the output is neither one nor zero.
It is as if the output was not connected.
The physical connection to the chip is
still there (in the chip), but the internal
connection is broken as if a switch was
inserted.

Examine Figure 2a. It shows an
example of how a tri-state gate works.
Itis not practical to show a switch every
time there is an output that has tri-state
capabilities. Figure 2b shows us how a
tri-state output is symbolized. The extra
line shown is for the tri-state output
control. Itis an input. Depending on the
chip, this input can be active high or
active low. By active, I mean that the
switch (Figure 2a) is closed. Active high
means the switch is closed when a one
is present at the tri-state control input.
Active low is when a zero is present.

This type of output is needed when
there are two outputs connected to-
gether. Look at Figure 2c and try to
think what logic level Point B is if Point
A=0 and Point C=1. This could lead to
some problems. One gate wants to be
five volts and the other wants to be
ground. A short circuit exists and one,
if not both gates, can suffer damage. A
condition like this cannot exist. It is up
to the system designer to make sure
there is no possibility for output con-
flicts such as the one in Figure 2c.

However, in a computer, there are
times when two outputs must meet and
go into one (or more) inputs. It is then
necessary to use tri-state outputs. The
main use of tri-state outputs is when

75

there must exist, on a single connection,
more than one output. An example of
this is right on the CoCo. When you add
a ROM pack or a disk drive controller
to your computer, the pack and the
computer share common connections,
therefore both must have tri-state out-
puts.

a IN : —o0 OuT
CONTROL
b In D_Tq our
CONTROL
B
C a o———D—-f)——Q——oC
Figure 2

The second type of output is open-
collector. In electronic terms, the output
circuitry means that the last transistor
connection to the output pin is the
collector. The emitter is connected to
ground and the base connects to the
previous transistor. Now, to speak
English. Figure 3a shows a typical open
collector output. If you are not up on
your electronics, and that is a bit too
much to swallow, let’s look at it in
another way.

Figure 3

The output of an open collector gate
can be seen as a switch with one end
connected to ground. It has two states:
1) if the output is high (one), it is high
impedance, not a logical one, as if it
wasn't connected; 2) if the output is low
(zero), it 1s logical zero or ground.
Figure 3b shows the equivalent circuit
to an open-collector output.

There is no special symbol for an
open-collector gate — only the data
sheet of the gate in question will tell.
Usyally, open-collector outputs have a
resistor connected to plus voltage that
gives it away. There are specific uses for
this type of output. I will not go into too

much detail here, but an example of this
is in the disk controller. The controller
uses open-collector outputs to control
the disk drives.

Now it’s time to move on to new
material. So far, all the gates we have
looked at have a given output for given
inputs. If the inputs are removed, the
output is no longer valid. In a computer,
there is a need to remember previous
events. For example, when you use a
calculator to add two numbers, the first
number must be remembered or stored
to be used later. The ability to remember
a previous event in a computer is called,
yes, you guessed it, memory. The sim-
plest form of memory is one bit. A one
or a zero is one bit of memory. A flip-
flop is a logic gate with memory. The
simplest form of flip-flop is called the
R-S (Reset, Set) flip-flop. It is made by
using two gates we have already looked
at,

Examine the diagram in Figure 4a. It
uses two NAND gates. A NOR gate

S
Q
R Q
a
s R Q Q
0 0 1 1
0 1 1 0
1 0 0 1 |
1 1 Q| a
1 | LT 0 1
LT 1 1 0
* NO CHANGE
b
o—d S Q }—o
o—q R Ql—o
c
Figure 4

could also be used; the only difference
is that the polarity required to activate
the device is inversed. Given that the 'S’
and ‘R’ inputs are both ones, the out-
puts ‘Q’and “*Q” (the use of the symbol
‘** simply means not or active low; it is
usually shown using this symbol or as
a small black bar above the character)
would be one and the other zero. The
outputs are always the complement of
each other.

Due to the nature of this circuit, it is
impossible to tell which output is which
when power is first applied. It is an
indeterminate state. 1f we were to
change the ‘S’ input to zero and then
back to one, we would have what is
known as a pulse. A pulse is a change
of logic state for a predetermined
amount of time, then it returns to its
original state. That means if a signal is
normally one, a pulse is a negative-
going pulse. If the signal is normally
zero, a pulse is a positive-going pulse.

This comes right in line with what is
called the active state. Let’s say we have
a signal that is high (one) when it is idle
(doing nothing) and when we want this
line to do something, it goes low (zero).
This is called active low. The same is
true inreverse: A signal that is normally
low and pulses high to activate is called
active high.

To get back to our flip-flop, the result
of a low pulse on the ‘S’ line “flips” the
outputs to a known state. The ‘Q’
output is one and “*Q” is zero. If we
were to pulse the ‘R’ line, the outputs
“flop” to just the opposite. If both ‘R’
and ‘S’ were to be pulsed, the output is
again indeterminate. The truth table for
an R-S flip-flop is shown in Figure 4b.
The symbol for a NAND R-S flip-flop
is shown in Figure 4c.

The next diagram, Figure 5Sa, is called
a clocked R-S flip-flop. This is used
when it is necessary to set up the input
conditions, but delay the actual setting
or resetting action until a pulse is given
from another source. The CK (clock)
line is used to inhibit the ‘S’ and ‘R’ lines
from entering the flip-flop stage. Follow
the logic using the truth table in Figure
5b. Figure 5c shows the symbol for this.

To continue our quest to understand-
ing memory, let'’s go one step further. If
we were to add an inverter to the ‘R’side
of our R/S flip-flop and tie its input to
the ‘S’ side (Figure 6), we now have a
D-type flip-flop. The D-type flip-flop is
one step closer to making a memory
chip. The ‘D’ stands for data. The
logical state of ‘D’ is transferred to the
‘Q’ output on the leading edge of the

76

s et ——————
C b
A Q
cK
Re————] D) B Q
a
s R cK Q Q
0 0 0 NO CHANGE
1 o | 1| 1 0
0 1 J—'L 0 1
1 1 INDETERMINATE
JL | 1
b
—0 S al—
~——t CK
Qbl——o
-0 R
c
Figure §

clock pulse. The word “edge” in this
context means the precise moment the
pulse changes state. This means the
instant the CK input goes high, the gate
(A’ or ‘B’) that has the one transfers to

the R/S section of the D-type flip-flop.
When the CK line returns to its inactive
zero state, the data is locked into the
flip-flop.

You can say that this is a one-by-one

memory chip. It is a far cry from the
65,536-by-eight memory capabilities of
the CPU inside the CoCo. Can you
imagine how big the computer would be
if it had 524,280 chips in it? We will work
up to that next month. In the meantime,
back to the flip-flop.

There are many limitations to the
simple D-type flip-flop. The main one
being that since there is a single input
(apart from the clock), the ‘D’ input
must remain stable for the duration of
the clock pulse. This is to ensure that the
data is accurately transmitted to the
output. There are many types of flip-
flops. For right now, I will go into
detailed explanations of only the ones
that will help us understand the mak-
ings of a memory chip.

The next diagram, Figure 7a, shows
a more sophisticated flip-flop. It is
labeled a “positive-edge triggered D-
type flip-flop” (whew, what a mouth-
ful). This gate is one step closer to
resembling the memory chips inside
today’s computers. The ‘S’ and ‘R’
inputs are normally one or active low.
The CK line for now should be zero.
When the CK goes high, the output of
Gate B goes low, causing the R-S flip-
flop formed by ‘E’ and ‘F’ to be set. If,
while the CK is still one, the ‘D’ input
changes, the output of Gate D changes,
although this has no effect on the output
since Gate C is inhibited by the output
Gate B.

When CK returns low, the output of
‘B’ goes back to one, but ‘C’ is now
inhibited by the zero state of the CK.
The output now reflects the ‘D’ input.
This circuit i1s very similar to one bit in
a RAM chip. Figure 7b shows the
symbol for this gate and Figure 7¢
shows the truth table.

The CoCo’s CPU reads and writes
data eight bits (one byte) at a time. This

b o %D .

Figure 6

77

is not a big problem for us; all we have
to do is make eight flip-flop circuits for
every byte we need. There is, however,
another problem we have not yet seen.
This and most CPUs do not have sepa-
rate input and output pins. That would
make 16 pins. Instead, it has only eight
pins, commonly known as the data bus,
and one direction pin. This direction pin
is known as the read/write line, or *R/
W for short. The *R/ W pin on this CPU
is active low for writing. That means
when this output is high, the CPU is
reading or entering data (the action of
transferring data from memory to the
CPU). Likewise, when it is low, it is
writing or producing data (the action of

transferring data from the CPU to
memory).

With just a few more gates, the
famous positive-edge triggered D-Type
flip-flop will concede to the CPU’s
demands. Figure 8 shows one way of
making this happen. Remember the tri-
state output described earlier in this
article? Well, it is finally put to good use.
The ‘R’ and ‘S’ lines are the same as
before. In most memory circuits, they
are never used. The ‘Q’ line, however,
is tied to the input of a tri-state buffer.
The *Q in this case is not used. The
output of the buffer becomes the new
‘D’line. This is also the input, but a new
line has been added — it is the *R/W

input. When this input line is high and
the CK line is high, the action is a read.
The tri-state Buffer A is activated,
therefore the output of ‘Q’ appears at
the ‘D’ line.

When the *W/R line is low and the
CK line is high, the action is a write. The
‘Q’ output is blocked by the tri-state
Gate A, but Gate B allows the ‘D’ input
to be transferred to the R/S flip-flop
and, therefore, memorized into this bit.
This is the basis of how memory storage
works in a computer.

Next time, we’ll look at how many
bits of memory form bytes and how
many bytes of memory form a memory
map. a

{ E b -
/ o—dp ¥ ol—o plcx| o o
] 1 0 1
o—riex Q t——o
CK O |— c F l 1 ! 1 [
oo——'l
|
Figure 7
One-bit Memory Cell
D o- ﬁ
o>
D Q
R/W o {>¢
. CKo— cK Q }————o NC

Figure 8

78

Expanding the theory and

understanding the concept of memory . . .

Exploring Memory Cells

By Tony DiStefano

Rainbow Contributing Editor

ast time we looked at how a few

I flip-flops and gates added up to

make a memory cell. A memory

cell can also be part of a bigger block

of memory cells. This time, Il expand

on the theory of memory cells and

describe in detail the concept of mem-

ory mapping, chip select, data and
address buses.

Let’s start back at the one-cell mem-
ory bit. Figure la shows the block
diagram of a one-bit by one-bit memory
chip. This chip does not exist on the
market; it is too simple. It would take
thousands of these chips along with
thousands of wires to make a decent
amount of memory. Today there are

Figure 1a
+V
D
One-bit
RIW memory
cell
E

Tony DiStefano is well-known as an
wrly specialist in computer hardware
projects. He lives in Laval Quest, Que-
* bec.

static memory chips that have 8K by 8
bits wide in one 28-pin DIP (Dual Inline
Package) and dynamic memory chips
pushing one megabit (that's one million
bits).

are high. When AOislowand Al is high,
Y1 is low. When AOQ is high and Al is
low, Y2 is low. And finally, a 1 on both
A0 an Al produces a fow on Y3. If you
look at the truth table for this circuit

Figure 1b

Yo

Y

A0~

Y1

Y2

A1 o 4

s
o

Y3

Oy

It’s time for some theory. Remember
when I described the binary number
system? This is where it comes in handy.
Let’s look at two binary bits to start
with. Two binary bits have four differ-
ent combinations: 00, 01, 10, 11. Figure
Ib shows a circuit that has two inputs
and four outputs. This type of circuit is
known as a decoder. There are decoders
with two-, three- and four-bit inputs.
More about this later. For now, two bits
will prove my point. Look again at
Figure 1b. When A0 and Al (on the
input side) are both low, Y0 (on the
output side) is low and the other three

Figure 1c
INPUTS | OUTPUTS
OE|A0|A1]YO{Y1]|Y2|Y3
ojojo|O|1]1]1
o{o|1[1]{0|1}1
oj1|o0f|1|1]0]1
o|1|1[1}1([1}o0
1{X]Xl1[1]1})1

79

(Figure Ic), notice that binary counting
and individual outputs are related.

1 hope by now you are starting to
understand Hex and binary relations
because they get more important as we
go along. Figure 1d shows the block
diagram of this two-to-four decoder.
The other line in our decoder (Figure 1d
only) is an input. The name of this line

Figure 1d
+V
o€ — — Yo
AQ ——i
A1
p— Y3

is Output Enable, OE for short. When
this line is low, all of the preceding is
true, but when this is high, the outputs
YO0 to Y3 never go low. It can also be
known as a Chip Select if it is connected
to the right gates.

Figure 2a shows how the decoder and
our one-bit memory cell go hand-in-
hand. One thing to notice is the decoder
inputs are labeled A0 and Al. There is
a good reason for using the letter A. In
this case and almost all cases, the letter
A, along with another number, is short
for Address lines. In a computer system,
there are address lines to form an
address bus.

The definition of address bus is:
Address lines are inputs that reflect a
binary number and identify a specific
position or location in a memory sys-
tem. Or more plainly, when the CPU
wants a specific piece of data in mem-
ory, it puts out a binary number equal
to the number of the location it wants.
The 6809 CPU in the CoCo can specify
65,535 different locations. If you recall,
that boils down to 16 binary bits (2 to
the power of 16). That is so the 6809
CPU has 16 Address lines, A0 to AlS.
Maybe we should get back to our two-
address memory block.

To continue showing individual gates
for decoding would not only be silly, it
would take up enormous amounts of
room in this magazine. They don’t call

Figure 2a
OE — E
A0 — D
Al — — R/W
E
D D
—{ R/W
R/W —_ —
E
D
| R/W

—F
| ° "

today’s chips LSI (Large Scale Integra-
tion) for nothing. A single chip can have
the equivalent of a quarter of a million
gates. Imagine trying to draw that many
gates! It’s much easier to draw block
diagrams, and as long as you under-
stand the theory behind these blocks, it
makes the diagrams a lot easier to read.
From now on, I will use block diagrams
whenever it is not convenient to use
discrete gates.

The block diagram in Figure 2b
shows the same idea as Figure la, but
with more address lines, therefore more
output lines, and can thus select more
flip-flop memory cells. Each time an
address line is added, the number of
gates needed to decode the input goes
up exponentially and the amount of
outputs doubles. If there are four ad-
dress lines, you can access 16 different
locations; if there are five address lines
you can access 32 and six address lines

Figure 2b

Al =

A2 wd

e YO
¥t
—— Y2
e Y3
e Y4

Y5

80

gives access to 64. Here is a list relating
the address lines to the amount of
discrete locations possible:

Address Lines Discrete Locations

Decimal Hex
1 2 2
2 4 4
3 8 8
4 16 10
5 32 20
6 64 40
7 128 . 80
8 256 100
9 512 200
10 1024 400
11 2048 800
12 4096 1000
13 8192 2000
14 16384 4000
15 32768 8000
16 65536 10000

Look how neat the Hex column is.
It's much easier to see the doubling
effect of adding one more address line.
It's also a lot cleaner.

Up to now, I have shown you only
one data bit per location. The CPU can

access eight data bits at a time. We could
duplicate the circuit eight times; it was
done in the past and is still done in the
case of dynamic RAM chips. One bit
wide per chip. The CoCo also used chips
eight bits wide, but that’s ROM. Figure
2c again shows our two-address mem-
ory chip but with a twist. Every decoded
address line (YO to Y3) is connected to
eight memory cells. Each of these cells
has its own line. Each of these lines is
labeled with the letter D and a number.

As you may have guessed, the
numbers represent which bit is being
accessed. They begin with zero and can
g0 up to any number, usually the
amount of data bits that the CPU can
handle. Most small microcomputer
CPUs have eight bits. They form one
byte. Model 100, the Apple II+, the
Atari 800 and the Commodore 64 all
have eight bits. Other CPUs have 16 bits
like the Amiga, the Apple Macintosh
and the Atari 520. Then there are more
powerful CPUs with 32 and 64 bits.
Those are the minis and full mainframe
computers.

Another aspect of data bits is a little
harder to explain. That is the aspect of
internal and external data bus. This
leads us to another definition, the Data

Bus: data lines that are bi-directional
lines providing communication be-
tween discrete components in a compu-
ter system. Some CPUs have only eight
data lines coming from the CPU, which
is to say there are eight pins on the CPU
chip, but it can handle more than eight
bits internally. Usually a CPU has
double the number of internal data
capabilities than external. In order for
the CPU to read or write double-
capacity data, it must do two reads or
two writes — one after the other and
incrementing the address bus by one
before the second. I'll get into the
structure of the 6809 at a later date.

If you gather all the information and
theory I have given you in the last few
articles and stuff it all into one package,
what do you get? Presto, you have a full-
blown memory chip. Figure 3 shows the
pinout of a typical 2K by 8 RAM chip.
This chip contains 16,384 memory cells
arranged into 2,048 locations of eight
bits each. That means 11 address lines
(2 to the power of 11 equals 2,048,
right?) and eight data lines. It has all of
the inputs and outputs that I have been
describing in the last few articles. There
should be no surprises. The following is
a pin-by-pin description of this chip.

Figure 2¢
D1 D2 D3 D4 DS D6 D7
B | I | ! | |
OF — E E E E E E E
A0 — vt D1 L{ D D D D D D D
Al —— Y2
A2 — b ——
=" | To more
I ! memory
i I

i

i o 1P

I

[

|

[

[

: : To more

' cells

To more
cells

81

Figure 3
ot

A7t 24y vee
A6]2 23] A8

As[]3 227 A9

A4(]a 213 R/W
A3[1s 20[] OE
A2[1s6 19[] A/0
A1[}7 18[JCE

A0 s 17 o7

Do [Je 16{] D6

D1 Cf1o 15_L_|DS
D2 11 141 D4
GND[]12 13[]p3

Typical 2K by 8
static RAM chip

A0 to A10 — These inputs only are
address lines that choose which memory
byte is to be selected. There are a total
of 11 address lines, therefore this chip

has a maximum of 2,048 ($800) bytes of

memory.

D0 to D7 — These bi-directional lines
form the data bus in which data can be
transferred to or retrieved from the
internal flip-flops.

GND — This is an electrical ground to
the chip. All signal levels to the chip are
with respect to this pin. Commonly
known as Vss, it has a voltage potential
of zero volts.

Vee — This input supplies power to the
whole chip. The voltage requirement for
a typical memory chip is from three to
eight volts. The current (power) require-
ments for a 2K memory chip can range
from 10 to 100 milliamps for a regular
chip and 10 to 100 microamps for a
CMOS chip.

R/W — This Read/ Write input deter-
mines the direction of data flow through

the data lines. When this pin is high, the
memory chip sends out data stored
inside. This is a Read action. When it
is low, the data lines enter data to the
chip to be remembered. This is a Write
action.

CE — This input selects the chip. When
this pin is high, the chip is in the tri-state
mode. The chip is inactive and the data
lines are not reading or writing.

OE — This input is an Output Enable
pin. If the CE pin is low and this pin is
high when reading, the data is ready,
but the data lines are kept in tri-state
until the OE line goes low. When read-
ing, this pin can be used as a second chip
select or enable.

All of these lines in one package make
up a memory chip. All computers need
memory. There are a lot of different
kinds of memory chips and what |
described here is just one of them. But,
whatever the kind of memory or the
packaging material used, they are all
basically (in theory) the same as the
ones described. That’s it for this

time.
A\

Investigating the CPU

you have been following the past
I fsevcral articles, you are familiar

with how a memory chip works.
A memory chip by itself is not useful
and a Printed Circuit Board (PCB) full
of memory chips cannot do much. We
need something that can write to and
read {rom this memory. What we need
is a CPU. What is a CPU? It’s a Central
Processing Unit.

This chip i1s the workhorse of the
computer. It does yust about everything.
In the CoCo, the CPU is made by
Motorola. The part number for this
chip is MC6809EPC. The “MC” stands
for the company, the “6809” is the part
number, the ‘E’ means it’s driven by an
external clock and the “PC” means it is
a plastic package.

It’s common knowledge that the 6809
is one of the most powerful eight-bit
CPUs made. In fact, some people argue
it is the most powerful. Whatever the
case, we're going to dig into it and look
at it from a hardware point of view.

The most important thing to know
about this chip is the pinout. The 6809

|

is contained in a 40-pin DIP (Dual
Inline Package) the same size and shape
as the VDG, PIA and SAM chips also
in the CoCo. Figure | shows this 40-pin
chip and the pin names. The following
is a pin-by-pin description of the 6809.
Pin 1 — Vss. This is the ground pin to
which all signals are referenced. It has
a potential of zero volts.
Pin 2 —NMI. This normally high (five
volts or logic state of one) input triggers
on the negative edge of a pulse. This in
turn requests that a non-maskable
interrupt sequence be generated. A non-
maskable interrupt (as the word indi-
cates) cannot be inhibited by the pro-
gram. It also has a higher priority than
FIRQ, TRQ or software interrupts.
During recognition of this NMI, the
entire machine state is saved on the
hardware stack. After a reset, an NMI
is not recognized until the first program
load of the hardware stack pointer. The
pulse width of the NMT low must be at
least one E-cycle long before it is rec-
ognized.
Pin 3 — IRQ. This input triggers in the

82

same way as the NMI except it initiates
an interrupt request, providing the IRQ
bit in the CC (Condition Code register)
is clear. This also saves the entire
machine state on the stack. The TRQ has
a lower priority than the FIRQ. It is up
to the service routine to clear the source
of the interrupt before doing an RTI
(Return from Interrupt).

Pin 4 — FIRQ. This input, like the TRQ,
initiates a fast interrupt request, provid-
ing the FIRQ bit in the CC is clear. This
has higher priority than the TRQ, but
only saves the CC register and the
program counter on the stack. The
interrupt service routine should clear
the source of the interrupt before doing
an RTIL

Pins 5 and 6 — BS (Bus Status) and BA
(Bus Available). Two outputs that work
together to generate the condition of the
CPU. When BS and BA are both low,
a normal or running condition exists.
When BS and BA are both high, it
indicates the CPU is in the halt mode.
When BS is high and BA is low, an
interrupt or reset is acknowledged. And

finally, when BS is low and BA is high,
the CPU isin a sync acknowledge mode.
Pin 7 — Vce. This input powers the
CPU with five volts.

Pin 8to 23 — A0 to A15. These 16 pins
are used to generate one of 65,535
different address locations the 6809
CPU can access for data transfer. When
the processor does not require the bus
for a data transfer, it sends out all that
is on the address bus. The R/W line
equals one, but BS equals zero. This is
known as a dummy access or VMA
cycle. All addressed bus lines go into a
high-impedance state when BA is high
or when TSC is driven high.

Pin 24 to 31 — D7 to DO. These eight
bi-directional pins are used to transfer
data to and from the CPU and other
devices connected on the data bus.

Pin 32 — R/W. This output signal
indicates the direction of the data
transfer on the data bus. A low indicates
the CPU is writing data to the data bus.
A high means the CPU is reading. When
BA is high or when TSC is high, the
output is made high-impedance.

Pin 33 — BUSY. This output-pin signal
indicates that bus re-arbitration should
be deferred. Wow, what a mouthful!
This means BUSY is high for the first
two cycles of any instruction that first
reads, then writes new data, high during
the first byte of a double-byte access,
and during the first byte of any indirect
access.

Pin 34 and 35 — E and Q. These clock
signals are required only by a 6809 that
has an ‘E’ prefix. In the CoCo, these
signals are generated by the SAM
(MC6883) chip. These signals bring the
CPU to life. The ‘Q’ clock must lead the
‘E’ clock. Addresses are valid after the
falling edge of the ‘E’ clock, and data is
latched from the bus by the falling edge
of the ‘E’ clock. More on ‘E’ and ‘Q’
clocks later.

Pin 36 — AVMA. This output is the
advanced VMA signal and indicates the
CPU will use the bus in the following
bus cycle. The predictive nature of the
AVMA signal allows efficient shared-
bus multiprocessor systems. When the
CPU is in either a halt or sync state, the
AVMA is low. The CoCo does not
support this feature.

Pin 37 — RESET. A low on this nor-
mally high input forces the CPU into a
reset condition. The reset vectors are
loaded into the program counter from
locations $FFFE and $FFFF, then the
CPU begins to execute the instructions
it finds. Because the reset threshold

Figure 2 -

1117ns >
E
\|&—— 62008 ———»
N S
— 279ns —
o)4 \
R/W Y/
ADDR /D>
DATA dats valid

Read Data Timing

/ N

\.
o be \
RW / %b\ /m
ADDR) —
DATA <//f] dnavaiia) p—

Write Data Timing

Y

Not valid

voltage is higher than that of standard
peripherals, it ensures all peripherals
are out of reset state before the CPU
goes to work.

Pin 38 — LIC. The last instruction cycle
is high during the last cycle of every
instruction, and its transition from high
to low indicates the first byte of an
opcode will be latched at the end of the
present bus cycle. LIC is high when the
CPU is halted at the end of an instruc-
tion.

Pin 39 — TSC. This three-state control
causes the address, data and R/ W lines
to go into a high-impedance state. The
control signals BA, BS, BUSY, AVYMA
and LIC do not go into the High-
impedance state. To force the CPU into
this state, TSC must be made high just
before the end of the previous cycle. To
regain access, TSC is brought low and
the clocks for that processor restarted
when the addresses become valid.

Pin 40 — HALT. A low level on this
input pin causes the CPU to stop run-
ning at the end of the present instruction
and remain indefinitely without loss of

data. When halted, the BA output
becomes high, indicating the buses are
free. While stopped, the CPU does not
respond to external requests, although
Nﬁl or RESET will be latched for later
response. During the halt state the ‘Q’
and ‘E’ clocks must continue to run
normally.

Figure 2 is a diagram of the timing
information of a read cycle and write
cycle for memory or peripherals.

The complete read cycle for the CoCo
is about 1,117 ns (nanoseconds) long.
The cycle starts with the falling edge of
the ‘E’ clock. Some 200 or so nanosec-
onds later, the address bus is stable.
That means the bus holds a valid 16-bit
address. At the same time, the R/ W line
is stable with a logic level of one. A little
later, about 80 ns or so, the ‘Q’ clock
changes to a high condition. But for
now, it is not very important.

The next change is the ‘E’ clock.
About 629 ns after the ‘E’ clock falls, it
rises again. This change is important
but I'll get to that later. Next, the ‘Q’

83

Figure 1
Vss
NMI
IRQ

FIRQ
BS
BA

Vcec
A0
A1
A2
A3
A4
AS
A8
A7
A8
A9
A10
A1
A12

1
2
3
4
5
6
7
8
9

MC6809EPC

clock falls to a zero state. Now, most
important, when the falling edge of the
‘E’ clock occurs, the data on the data
bus is transferred into the CPU.

There is a small catch: the data must
have been valid (stable and not chang-
ing) 80 ns before the falling edge of the
‘E’ clock. It is up to the memory device
or peripheral to make sure the data is
there on time. The CPU does not wait;
if the data is not there on time, wrong
data is entered into the CPU.

The second part of Figure 2 is a write
cycle. The complete write cycle is the
same length as the read cycle, approx-
imately 1,117 nanoseconds. Again,
everything starts with the falling edge of
the ‘E’ clock, and again the address bus
is stable with a 16-bit address. This time
the R/ W line is stable with a logic level

of zero. The *Q’ clock rises and the ‘E’
clock rises; the ‘Q’ clock falls and the ‘E’
clock falls. But this time, the CPU
supplies the data.

The data is valid no later than 200 ns
after the rising edge of the ‘Q’ clock,
which occurs just before the rising of the
‘E’ clock. The data stays valid until
about 20 ns after the failing edge of the
‘E’ clock. In that time, the memory of
the peripheral device must take the data
from the data bus. Then another cycle
starts. The CPU decides whether it is a
read or a write, depending on what it’s
doing next.

How the CPU decides depends on
what it did in the previous cycle. When
the computer is first turned on, the reset

* line keeps it from doing anything until

everything stablizes. When the reset line
starts the CPU going, it always does the
same thing — two reads. These two
reads are always at the same place,
$FFFE and $FFFF. This is the reset
vector, which is a pointer that points to
a memory location. Because the 6809
can access 65,535 bytes of data (16 bits),
the pointer must be exactly 16 bits long.
Since the 6809 can access only eight bits
at a time, the pointer must be two bytes
long.

After the CPU reads these two bytes,
it places them in an internal register
called the program counter. This pro-
gram counter always points to the
CPU’s next instruction. The CPU reads
the first instruction. Instructions in the
6809 can be one to four bytes long, so
the CPU hds to read zero to three bytes
more depending on the instruction.
After the complete instruction has been
read, the CPU acts on it. This instruc-
tion could be read data, write data or
do something internal. Whatever the
case, the CPU continues to read and
write until turned off.

Now we know how a CPU accesses

devices on the bus. It’s time to join the
CPU and the memory chips discussed
in previous articles.

For example, let’s use an 8K memory
device. This could bea ROM ora RAM
chip. It has 13 address lines, A0 to Al2.
Two to the power of 13 is 8K. Since the
CPU can access 64K, eight of these
memory chips can be used. But how?!
Some sort of decoding has to be set up.
If we hook up the first 13 address lines
to the CPU, we are left with three
unused lines.

Now, we can usc a three to eight
decoder chip (explained in an earlier
article). If we connect the three unused
address lines of the CPU to this de-
coder, we have cight individual address
locations. In turn, these eight lines can
be used to control the chip enable lines
of eight 8K memory devices. That
brings our total to 64K of memory.
Mixing the 8K devices between ROM
and RAM would give us a complete
computer. Well, almost.

Eight chips of memory do not a
computer make. It needs a little more
than that. Things like a keyboard,
video, drives and joysticks are a must on
a computer. These connect a computer
to the real world. But these things are
not as complex as you might think.
They are just more devices connected to
the CPU via address lines, data lines
and control lines.

For instance, the keyboard is simply
a bunch of switches and, through a
device called a PIA (Peripheral Inter-
face Adapter), the CPU monitors the
switches and interprets them according
to the software. Each switch represents
a letter of the alphabet or a number.
That’s all. PIAs and other I/ O devices
take up little room in a memory map.
A PIA only takes up four bytes. More
decoder chips are needed in order to
map it properly, but the same theory is
used. A

Investigating the PIA

This month I'm looking deeply into
a PIA. The letters PIA stand for
Peripheral Interface Adapter. The
Color Computer uses two of the
PIAs. The older, regular CoCo uses
two MC6821 PIAs. The newer CoCos
and the CoCo 2s use one MC6821
and one MC6822. The differences
between the two are minor. The 6822
is called an IIA. This stands for
Industrial Interface Adapter. Both
have the same pinout and function in
the same way. I will describe the
differences between them later in this
article.

IU's interesting to know what PIA
stands for, but what does it do? A
PIA provides the means of
interfacing external hardware or
devices 10 a computer. In our case,
the MC6809 CPU. Most devices do
not conform to the specifications of
a CPU. Take, for instance, a switch.
That’s right, an everyday household
switch. It turns on the lights, stove,
radio and so forth. It works well, but
us not computer compatible. This is
where a PIA comes in. It's a go-
between from the CPU to the switch.
With a PIA and a little circuit, the
CPU can tell if the switch is on or
off. Or in CPU terms, a zero or a
one. This is known as an input. If
the computer had to control a light
or a motor, a PIA would be used to
switch a transistor on or off and, in
turn, the transistor would control a
relay and the relay would turn the
motor on or off. This is known as an
output.

This particular PIA has two
bidirectional eight-bit peripheral data
buses for interface 10 external devices
and four individually controlled
interrupt and interrupt disable
capability plus two control registers
and two data direction registers.

The PIA, like many other devices,
looks like memory to the CPU.
Therefore, the PIA must have
address lines, data lines and control
lines such as chip enable and
read/write. Figure 1 shows the pinout
of an MC6821 PIA chip.You should,
by now, recognize many of the pins
and their names. The following is a
pin-by-pin description of this chip.

PBO - PB7 - The second eight
peripheral data lines, which can be
programmed as outputs or inputs.

CBL1 - Is an input only line that sets
the interrupt flags of the B control
register.

CB2 - Is eigher an interrupt input
line

vss [~ « [ca
pao [} 2 ¥ [TJca
Al [] 3 ¥ []TRQA
PA2[] 4 37 [[]RQB
pa3] 5 3 {_]Rso
Pae] 6 35 [rsi
pas[] 7 34 [T] RESET
Pas [] s 3 [Joo
AT 9 2 [Jo
P[] 10 u [Jm
poi[] 1 » [Jo3
PB2 7 12 ® s
PRI 13 8 [Jbs
PB4 [] 14 © 27 D
PBS [] 15 2% b7
pas [| 16 s [JE
PB7 [11 % [Jcsi
cBt [18 23 []C7
B[] 1 2 [TJcso
vee[] 2 2t RIW
MCG821
Figure 1

or a peripheral control output line.

Vee — This is the five volt input that

powers the chip.

R/W — This input controls the PIA as

a read or a write to the registers.

CS0 — Chip Select 0 is an active high
input. When this pin is low the chip is
disabled.

CS2 — Chip Select 2 is an active low
input. When this pin is high, the chip is
disabled.

CS1 — Chip Select 1 is an active high

input. When this pin is low, the chip is
disabled.

85

E — This is the Enable clock or the ‘E’
clock. Used to enable input or output.

D7 to DO — These are the eight data
lines that the CPU uses to read and
write data to the PIA.

RESET — This active low input initial-
izes the PIA to power up conditions.

RS1 — This input is the second address

line used to access one of four locations
on the PIA.

RSO0 — This input is the first address
line used to access one of four locations
on the PIA. -

IRQB — This active low output is used
to generate an interrupt to the CPU
from port B. The method of interrupt
depends on how the control register is
set up.

IRQA — this active low output is used
to generate an interrupt to the CPU
from port A. The method of interrupt
depends on how the control register is
set up.

CA2 — Is an input only line that sets
the interrupt flags of the B control
register.

CA1 — Is cither an interrupt input line
or a peripheral control output line.

First let me talk about the structure
of the PIA. Basically, there are two
ports. Each port has two control lines.
Each PIA has two address lines and

takes up four memory locations in the
CPU’s memory map.

Table 1 shows the memory map of a
PIA. Address locations 0 and 2 are
ports A and B respectively. Address
locations 1 and 3 are control registers
A and B respectively. I hope by now you
can recognize addresses by binary bits.
It may be a little confusing as to what
CRA2 and CRB2 have to do with the
memory map. There are actually six
registers to a PIA. But, if you remember
your binary math, six is not an even
power.

The designers could have added
another address line and wasted the
other two address locations. But in-
stead, they put a software switch in the
control register. Bit 2 tq be exact. When
the switch (bit 2) is low (zero) then
address 0 or 2 becomes a data direction

register. If you write a one in any bit
position in that register, that bit be-
comes an input. On the other hand, if
you write a zero, that bit becomes an
output.

After all bits have been selected as ins
or outs, then turn the switch at CRA2
or CRB2 back to a one. Now the 0 and
2 addre.ses become input and output
peripheral ports as programmed.

The next part of the PIA is a little
more complex. This includes control
bits and interrupts. Along with the two
eight-bit ports, this PIA also has four
other pins. There are two pins used for
inputs or outputs and there are two pins
that are inputs only. These four pins
work in conjunction with the bits in the
control register of the PIA. Table 2
explains the bit names of control regis-
ter A (CRA) and control register B
(CRB).

Let'slook at CAl and CBI first. They
are inputs only. On given conditions,
these inputs generate an interrupt. Bits
0 and 1 in the respective control regis-
ters have the following influence on the
interrupts. If bits 0 and 1 are both low
(either register), the interrupts are
disabled and no interrupts go through.
Only the interrupt flags are set on the
falling edge of the input. If bit 1 is low
and bit 0 is high, the falling edge of the
CAl or CBI input causes an interrupt
and sets the flag. Bit 1 high and bit 0
low sets the flag on the rising edge of
the input but does not cause an inter-
rupt. Bit | high and bit 0 high causes an
interrupt and sets the flag on the rising
edge of the input. The CAl and CBI1
interrupt flags are on bit 7 of the respec-
tive control byte. In other words, bit |
enables or disables the interrupts and
bit 0 controls on which edge the input
causes an interrupt.

Bits 3, 4 and 5 of the control byte
control the CA2 and CB2 pins. These
pins are a little more flexible than the
CAl and CBI pins. They can be outputs
or inputs controlled by bit 5. If bit 5 (on
cither control byte) is high, then the pin
is an output. If it is low, then it is an
input. When bit 5 is low, bits 4 and 3
make these pins behave exactly like bits
1 and 0 make pins CAl and CB1 be-
have. When CA2 or CB2 are initialized
as outputs, they behave a little differ-
ently.

Let’slook at CA2 first. There are four
possible combinations of operation.
The first is when bit 4 is low and bit 3
is low. This goes low after the first
negative transition of the E clock after
the CPU reads Port A. It returns high

Register
B Location

RS! | RSO | CRA-2 | CRB-2 Selected

0 0 1 X Peripheral Reg. A

0 0 0 X Data Direction Reg. A

0 1 X x Control Reg. A

1 0 x 1 Peripheral Reg. B

1 0 X 0 Data Direction Reg. B

1 1 X X Control Reg. B

Table 1: Internal Addressing

BITS 7 6 5 4 3 2 1 0
cra | B¢ 1R emzcoma | RPF| Cora
S I S I 3 =

Table 2: Control Registers

when the interrupt flag is set (CRA-7)
by the active transition of the CAl
signal. If bit 4 is low and bit 3 is high,
it is the same, but goes high after the
first *E’ clock cycle. This mode is used
mainly as an acknowledgment of a read
(handshaking) to another peripheral. If
bit 4 is high and bit 3 is low, CA2 is low.
If bit 4 is high and bit 3 is high, CA2
is high. This mode is used when CA2 is
to be used as a latched bit to control an
external device.

Next there is CB2. There are also four
possible combinations of operation for
this output pin. When bit 4 is low and
bit 3 is low, this pin goes low on the
positive transition of the first ‘E’ clock
as a result of a write to the B port; then
goes high again when the interrupt flag
bit (CRB-7)is set by an active transition
of the CBI input. When bit 4 is low and
bit 3 is high it is the same, but goes high
again on the positive edge of the first ‘E’
clock following that write. This mode is
used when there is a need to autostrobe
or select an exterior device. If bit 4 is
high and bit 3 is low, it causes CB2 to
go low and stay low. If bit 4 is high and
bit 3 is high, it causes CB2 to go high
and stay high. This is another latched
bit to control an external device.

In Conclusion
There you have it, the internal work-

86

ings of a PIA. As I stated before, there
are two such beasts in our CoCos and
CoCo 2s. If you want to add a third
PIA, the most logical place to put it in
the memory map would be in the Spare
Chip Select area. This is at $FF40 and
is 16 bytes long. That is the same plact
that the contoller is mapped. You could
always use a Multi-Pak Interface. You
should now know enough about CPUs
and signals to interface this PIA to the
computer, but for those of you who are
still unsure, I have included some guide-
lines.

Using the pinout of the PIA in Figure
1 and the pinout of the CoCo expansion
bus in earlier articles, connect the
following signals together. Five volts to
five volts. Ground to ground. All eight
data lines to all eight data lines. The first
two address lines of the CPU to RS0
and RS1 respectively. The R/W line to
the R/W line. The ‘E’ clock to the ‘E"
clock. The RESET line to_the RESET
line. The SCS line to the CS2 line. And
finally, CS0 and CS1 to five volts. You
can connect IRQA and IRQB to the
cart line of the computer, but watch out,
this can (under certain conditions)
cause an interrupt that makes the com-
puter crash. Make sure you know what
you're doing with the interrupt routines
for the CoCo and the setting of the
interrupt pins in the PIA. A

Timing and the SAM Chip

we all know, the CPU in our
A CoCo is the MC6809E. It is

the heart of the computer. It
requires RAM and ROM and 1/0 and
Video and so on to help support it. All
these devices must be memory mapped.
They must appear somewhere in the
64K bytes of memory the CPU can
access. The proper timing and sequenc-
ing must be within the specifications of
the CPU. Normally, a handful of TTL
(74 series) logic chips take care of this.
In the CoCo one big chip takes care of
all of this and more. The chip is the
MC6883, sometimes known as the
741.S783N. The name of this chip is a
Synchronous Address Multiplexer or
SAM for short. This is a 40-pin chip
that mates the MC6809E and the
MC6847 (the video chip). This chip also
does all of the dynamic memory refresh
timing and memory mapping of all the
other major chips of the CoCo. As you
can see, this thing is a real workhorse
of a chip. By the time 1 am finished de-
scribing this chip, everyone will have as
much respect for it as I do.

The first part of this article is a pinout
of this chip. Figure I shows the pinout
ofthe SAM chip. The following is a pin-
by-pin description of the Motorola chip
number MC6883.

Pin 1 to 4 — All to A8. Address lines
All to A8 respectively from the
MC6809E. These are four of the 16
address lines the SAM requires to fuily
control the memory mapping of the
CPU.

Pins 5 and 6 — OSCin and OSCout.
These are the crystal oscillator inputs.
A crystal and supporting components
supply the SAM a master frequency of
14.31818 MHz. This is the highest
frequency available in the CoCo.

Pin 7 — VCIk. The first function of this
pin is to generate an output of 3.579545
MHz. This supplies the color carrier for
the VDG (Video Dispay Generator) Clk
pin. The second function resets the
SAM when this pin is pulled to a logic
level of 0, acting as an input. In the
CoCo, this pin is part of the reset
crcuitry.

Pin 8 — DAO (Display Address 0). The
function of this pin as described in the
Motorola manual is the least significant
‘bit of a 16-bit video display address. The
more significant 15-bits are outputs
from an internal 15-bit counter which is
tlocked by DAQ. The second function,

ISti= K 40 o vee

A0 2 s a2

AS 3 ag [A13

A8] 4 M a7 A4

OSCIN] 5 C 36 [A15
oscouT g 6 6 a5 327
VCLK . 7 8 34326
DAOC] 8 g 3325
HS]9 32[024
WE (] 10 3123
CAS 1 3022
RASO] 12 29121
ac]s 28720
Ec]14 271 s0
R/W 15 26 3 S1
A0] 16 257182
A1 17 24[JA7
A2c]18 2313 A6
A3 []19 22[3A5
CND (] 20 21 Ja4

SAM Pinout
Figure 1

not used by the CoCo, is to indirectly
enter the logic level of the VDG FS
(field synchronization pulse) for vertical
video address updating.

Pin 9 — HS. This input, connected to
the HS output of the VDG, detects the

falling edge of the pulse in order to
initiate eight dynamic RAM refresh
Column Address Strobe. It strobes the
most significant 6, 7 or 8 address bits

cycles. It also resets four least signifi-
cant bits of the internal video address
counter. _

Pin 10 — WE. This output is the write
enable pulse that enables the CPU to
write into dynamic RAM.

Pin 11 — CAS. This output is the

into dynamic RAMs.

Pin 12 — RASO. This output is the Row
Address Strobe 0. It strobes the least
significant 6, 7 or 8 address bits into
dyamic RAMs in Bank 0.

Pin 13 — Q. This output is the Quad-
rature clock used by the CPU that leads

the ‘E’ clock by about 90 degrees.

Pin 14 — E, This output ‘E’ clock, better
known as the Enable clock, is used by
the CPU. It is the main CPU timing and
is also used by most peripherial devices.
This clock determines the speed at
which the CPU operates.

Pin 15 — R/W. This input is fed from
the CPU’s R/W line. It tells SAM
whether the CPU is reading or writing
data to memory, writing to the SAM
registers or device 0.

Pins 16 to 19 — A0 to A3. Address lines
A0 to A3 respectively from the

Table 1

SAM Control Registers

Descriptions

Label
T

Neme
map
type
memory
size
cru
rote
page

5 start of

1= alt RAM

00 = slow

SEY = PAGE 81

display
address and 512 byle offeet

0 = AOM/RAM

01 = 18K 10 = 84K 11 = static RAM

01 = duai vpeed 11 = taet

CLEAR = PAGE #0

voG

- p—— J/NOD

© b— 201D
i3

o p— N0

© — WY

v MODE 1

! ouo-nun.n.n-o-n.nuownnﬂunnnnn-nui

i

]
~

MC6809E. These are the next four of
the 16 address lines the SAM requires
to fully control the memory mapping of
the CPU.

Pin 20 — GND. Return ground for the
five volts. Signal ground to which all
signals are referenced.

Pins 21 to 24 — A4 to A7. Address lines
A4 to A7 respectively from the
MC6809E. These are the next four of
the 16 address lines the SAM requires
to fully control the memory mapping of
the CPU.

Pins 25 to 27 — S2 to S0. S2 is the most
significant bit of the three device select
bits. The binary value of these three pins
selects one of eight chunks of CPU
memory map, device 0 to 7. Varying in
length, these chunks provide chip se-
lects for three ROMS, RAM, three 1/
O areas and boot area; the boot area is
not used in the CoCo.

Pins 28 to 35 — Z0 to Z7. These are the
eight multiplexed address lines needed
to access 64K dynamic RAM. With 16K
dynamic RAM, only Z0 to Z6 are used
and Z7 is RASI for a second bank of
16K chips. With 4K dynamic RAM, Z6
is not used. These lines are also used to
generate the video address refresh on
the alternate ‘E’ cycle.

Pins 36 to 39 — A1S to A12. Address
lines A15 to Al2 respectively from the
MC6809E. These are the last four of the
16 address lines the SAM requires to
fully control the memory mapping of
the CPU.

Pin 40 — Vcc. This pin requires +5
volts. It powers all the functions in this
chip.

As you can see from these descrip-
tions, the SAM chip and VDG chip are
closely linked. The SAM chip generates
data from its RAM and delivers it to the
VDG. That is one of the functions of the
SAM. It works closely with the VDG
monitoring the horizontal and vertical
syncs in order to give it the proper data
that the VDG later converts to a video
signal. The SAM has many modes in
which it delivers video data to the VDG.
These modes are selected by a set of
registers in the SAM’s memory map.
But since the SAM chip has no data
lines going to it, the registers are ac-
cessed by ‘writing to odd address loca-
tions to set the register and writing to
even address locations to clear the
register. The data written to these
locations is irrelevant. Table 1 shows all
the SAM control registers and their
functions. Most of the registers shown
are used with the VDG.

Pins SO to S2 are used to decode
chunks of memory. These so-called
chunks of memory are what memory
maps the CoCo into what we know it
to be. For instance, BASIC is one chunk
that is 8K long. Disk Extended BASIC
is another chunk that takes up 16K.
These eight chunks are decoded from
the three pins by using a 74L.S138. You
might remember this from a past article,
but if you don’t, a '138 is a three-input

to eight-output decoder; just what the
doctor ordered. Each one of these eight
outputs controls one chunk of memory,.
Table 2 shows all eight chunks and
describes where in the memory map
they appear and what use each has in
the CoCo.

In Table 2, notice that part of S7 are
the SAM control registers. Table |
describes the SAM control registers.
The SAM control registers are divided
into six areas. The following is a de-
scription of each of these areas.

The first area is the map type. When
cleared, the SAM is in the map type 0.
This is the mode that BASIC sets it up
to be. The ROMs are active and a
maximum of 32K RAM is accessible.
When set, the SAM is in the map type
1. This mode is better known as the 64K
mode or the RAM mode. In this mode
none of the ROMs are active but alt 64K
RAM is accessible. The OS-9 operating
system uses this mode.

The next mode is the memory size.
The SAM can use three types of dy-
namic memory, 4K, 16K and 64K,
When your CoCo is first turned on, a
routine in the BASIC ROM checks to see
what kind of RAM is installed and sets
the SAM chip accordingly.

The third mode is CPU rate. The
SAM has some control as to the speed
at which the CPU can operate. It has
three choices; the first is called slow. In
this mode the CPU runs at .894 MHz.
The next is the dual speed mode. De-

Chunk "Mapped Chunk Mapped
Name Area Description Name Area Description
So $0000 to $7FFF This area in a 64K ma-
0 to 32767 chine is 32K of user
RAM. S5 $FF20 to SFF3F This area is also 32
65312 to 65343 bytes long and again
S1 $8000 to $9FFF This area is occupied only four bytes are
32768 to 40959 by the 8K Extended used for a PIA to
BASIC ROM chip. which the VDG con-
trols, D/ A, cassette
S2 $A000 to SBFFF This area is occupied motor, RS-232 and in-
40960 to 49151 by the 8K Color BASIC terrupts are con-
ROM chip. nected.
S3 $C000 to SFEFF Normally this area is S6 $FF40 to SFFSF This 32-byte area is
49152 to 65279 occupied by the 8K 65344 to 65375 used with a disk con-
Disk ROM chip, but troller to control
this area can access up things like drive select,
to 16K. FDC control and
drive motors.
S4 $FF00 to SFFIF This area is 32 bytes
65280 to 65311 long. Four bytes are S7 $FF60 to SFFDF This is not used except
used for a PIA to 65276 to 65503 for the SAM control
which the keyboard registers.
HS, VS and audio se-
lect are connected. ~ 1able2

pending on where the CPU is accessing
memory, it can access it at .894 MHz or
at the faster 1.78 MHz. At the dual
speed, SO and S4 are accessed at the
slower speed, all other accesses are at

the higher speed. The third speed is the
fast speed. This is where all accesses are
done at the high speed, but at that
speed, the SAM chip does not have the
time to do video. The video screen
displays garbage.

The fourth mode is the page mode.
When the SAM is in map type 0 and is
using 64K memory chips, only half,
32K, of memory is used. The other half
is just sitting unaccessible. Setting this
register switches in the other half of

memory and switches out the first half.

The fifth mode area is a big one in
that it takes up a lot of room. This is
the display offset. This offset tells the
SAM chip where in memory to start the
video scanning. Since the smallest
memory area the SAM can scan is 512
bytes, all offsets are 512 bytes apart. The
display offset is a binary address to the
start of the video display.

The sixth area is the VDG mode.
Since graphics pages take up more
memory than text, the SAM has to scan
more memory. The amount of memory
scanned depends on the graphics reso-
lution mode required. Basically there
are three amounts of graphics memory.

The first is 1.5K memory, the second is
3K and the highest is 6K. These modes
of graphics must match the graphics
mode the VDG is set to. You will find
more detail on these modes in the BASIC
manual supplied by Radio Shack.

The last mode is reserved for future
use. Who knows what Motorola has in
store for these unused registers,

The SAM chip is a very complex
chip, indeed. I have just described only
the major parts of this chip. Complete
details on this chip are available from
your Motorola dealer. The details I have
given are taken from that manual and
the TRS-80 Color Computer Technical
Reference Manual, available at your
local Radio Shack store. I~

More on the New
Video Display Generator

l ast month I described the new
VDG (Video Display Generator)
MC6847T1 and the modes that

are possible. 1 also showed you how to

hook up a few switches in order to
access these modes. The only problem
with this is the new VDG is only avail-
able in the CoCo 2 ‘B’ model. At home,

I'have the regular white CoCo. They call

it the ‘F’ board. 1 wanted the new TI

chip in my CoCo, too. So, with the help
of Bill Warnica, 1 modified my ‘F’ board

CoCo to work with this new chip.

The new VDG and the old VDG are
very similar but not pin-for-pin compat-
ible, so you can’t just pull the old one

out and plug the new one in. It is,-

however, not too difficult to modify the
computer board to make it fit. The new
VDG also has built-in hardware that
saves two chips on the computer board.

Tony DiStefano is a well-known early
specialist in computer hardware pro-
jects. He lives in Laval Ouest, Quebec.

The chips that are saved are no longer
on the ‘B’ board. That is why the new
board is smaller than the older boards.
The two chip numbers saved are the
741.5244 and 74LS273. These chips are
TTL logic gates used to isolate the CPU
data bus from the video data bus.

Without getting into too much detail,
these two chips are now part of the
VDG and are no longer needed on the
main board. At first, it was thought that
both of these chips had to be removed
from the old PC board and the new
VDG completely rewired to fit in.
Luckily, it turns out that only one of
these chips has to be removed. This
saves a lot of wiring.

Like most of my projects, this one
requires you to open the computer and
dig inside with a soldering iron and
some tools. A good hardware hacker
with experience is needed to do this one.
To do this project, you will need a
soldering iron, tools, wire, solder and,
of course, a new VDG. More on the
parts later.

The upgrade 1did was on an ‘F’board
CoCo. As far as I know, these instruc-

89

tions work for just about every CoCo
and CoCo 2, but on certain models, the
VDG and other parts involved are
soldered directly onto the PC Board.
That means you have to unsolder the
chips and insert a socket. This can be
done, and I have done it many times,
but it requires a solder sucker or chip
remover. Soldering experience is neces-
sary. Also, before you start, be fore-
warned! The jumpers 1 will tell you to
install in the ‘F’ board may be different
on different boards. But, not all is
gloom and doom. A little trial and error
and you should find the right pin
numbers.

There are two parts you need. The
first is the VDG, Motorola part number
MC6847T1. If you cannot get this part
at your local electronics store, try Radio
Shack. The part number is MX-6551.
The next part is just a plain and simple
resistor. The resistor value is 1K or 1000
ohms quarter watt or half watt. That’s
it; the rest is a little bit of work.

Unplug the computer, undo the case,
remove the keyboard, etc. You know, all
those boring things.

Now comes the fun-part. The first
thing you must do is remove the VDG.
That’s simple. It’s the chip marked
MC6847, or U9 on the ‘F’ board. On
other boards, the U number might be
different but it will always be the
MC6847. On some boards the VDG is
soldered in. In that case, you must
unsolder the VDG and insert a 40-pin
socket. Prepare the new VDG (T1) in
the following manner. Cut the resistor
leads so that it will just fit between pins
25 and 1 1. Put the resistor across the top
of the VDG and solder one end of the
resistor to the top part of Pin 25. Make
sure the solder doesn't leak down the
pin. Next, solder the other end to Pin
11 (same precaution). Now pry out Pin
31 vertically, so it does not insert into
the socket when you plug the new VDG
in.

Insert the new VDG into the socket.
Make sure Pin | is in the right place.
Now solder a short piece of wire-wrap
wire to Pin 1 of the VDG. Don't solder
the pin to the socket. You won't be able
to get the chip out if you do. (If you
prefer, solder all connections to these
pins before inserting the chip into the

socket.) Solder the other end of this wire
to Pin 31, the one that you bent up
before. Solder a second wire to Pin 12
of the new VDG. Run this wire to Pin
10 of the SAM (Synchronous Address

“Never connect two
outputs together, and
never connect two
inputs together.”

Multiplexer). You remember oI’ SAM,
she’s the one that does all the timing in
the CoCo. I did an article on her not
long ago in this magazine. Her name is
MC6883 or SN74LS783N.

It was said, by whom I don’t know,
that you needed the new MC6885 or
SN74LS785N SAM in order to make
this new VDG work, but this rumor
turns out to be false. The old one works
just fine. As a matter of fact, | have the

old SAM in my CoCo and it just purrs
along. Anyway, back to work. Solder a
third wire from Pin 13 of the VDG to
Pin 12 of the SAM. That’s about it for
the VDG. But there is a little more work
to do.

The next stage of this project deals
with the buffer chip I mentioned earlier.
Start off by removing the chip, number
741.S273, from its socket. You no longer
need this chip, but keep it in your parts
bin for a rainy day or in case you decide
to remove the modification and replace
the old VDG chip. The modification |
did is on the so called ‘F’ board and the
74LS273 chip labeled U13 on the PC
board. It also was not soldered in. It had
a socket; all I had to do was pull it. If
you are doing this on another board and
the IC is not socketed, you must do a
little more work. First, remove the old
chip. Then solder in a 20-pin socket.
You need the socket for this next step.

Prepare eight (about 1.5 inches) short
pieces of wire by stripping 3/16 inch of
insulation off each end. Use a number
22 or 24 gauge solid wire. Old Bell wire
is best. Now insert each wire into the
pins of the 20-pin socket as follows.

Oid VDG
MC6847
VSS 1 ~ -40‘1
DD6] 2 39
oo = 3 38
OD1 . 4 37
oD2 [5 36
DD3 CJ 6 35
pDos 1 7 34
0OD5 [} 8 33
CHB] 9 32
0B CJ10 31
oA 1 30
Ms 12 29
DA (] 13 28
DA6 (] 14 27
DA7 (] 15 26
DA8 (] 16 25"
vcc 17 24
DA9] 18 23
DA10] 19 22
DA11] 20 21

Figure 1
New VDG
MC6847T1
= DD7 vss g 1 il 40 |3 oD7
) CsSs DD C§ 2 39 [Css
0 HS oos o 3 38 3 HS
=) ob4 4 37 | Fs
O rP DD3] 5 3 [RP
1 A/G DD2 f 6 35 B AG
(1 ass oor . 7 34 [NC
] C/K poo] 8 33 [VCLK
3 INV cHB 4 9 32 (3 NC
) INT/EXT B8 g 10 31 |3 INT/EXT
M GMO oA 1 30 B3 GMmo
) GM1 WwWE (] 12 29 [GMm1
(Y pocLk 13 2 3 Y
) GM2 pror] 14 271 (3 GM2
[DA4 pioe 1 15 26 ;l BURST
3 DA3 prvos 16 25 |71 BURSTPC
] DA2 vec O 17 24 [MRD
] DAt DI/O4] 18 23 3 DWOO
] DAO DI/O3 1 19 22) DAO
[J DA12 DVO2 & 20 213 pwot
"

90

One End Other End
3) 12
4 15
7 9
8 6
13 2
14 5
17 16
18 19

Pins 1, 10, 11 and 20 are left empty.
Do not connect anything to these pins.
(Pin 10 is ground and Pin 20 is the 5-
volt supply. You may use them if you
need these power connections in other
projects.)

Now, this chip is called an Octal D-
type flip-flop. If you recall, many
moons (monthly articles) ago, I de-
scribed flip-flops; they are no more than
a sort of latch. This particular chip has
eight latches. One for each of the eight
data bits of the CPU. Each of these bits
has an input and an output. I have
arranged the pin numbers in such a way
that the One End column pin numbers

are all inputs and all the pin numbers
in the Other End column are outputs.
This is important to know. Notice that
one jumper exists for every in/out pair.
If you are trying to modify a board
other than the ‘F’ board, the pin
numbers may not match. Not having
tried all the CoCos and CoCo 2s, 1
cannot print every pin diagram. Try to
wire the connections as they stand
above, but if the screen looks confused
and you do not get the same letters on
the screen you type on the keyboard, it’s
because the pinout is different.

In that case you will have to do a trial
and error method to get the right com-
bination. There are two rules to follow:
Never connect two outputs together,
and never connect two inputs together.
The first may cause permanent damage
to your computer. Jumper all eight
wires and try it. If it is not right, make
note of the combination you did and try
another. If you do combinations in
order, you will eventually get the right
combination. When you do, if you send

me the pinout combination and which
computer board you did it on, 1 will
print them in the next article I write and
give you credit for it.

That’s all there is to it! Plug every-
thing back in and turn it on. You now
have the new VDG in your CoCo. If you
want to access the new modes of the new
VDG, you will have to do a little more
work. Last month, I wrote on how to
access the new modes using switches or
software. It works for this modification
perfectly. All you have to do is follow
the instructions and use the method that
suits you best. Next month, I'll show
you how to use the new modes without
switches. All you will need are a few
electronic parts. When you change
modes from text to graphics, you won't
have to throw all your switches — the
electronics will do it for you.

For those who are interested, Figure
1 shows the pinouts of the old and the
new VDGs side by side so you can
compare the differences between
them. a

Let’s Take a Look
at the CoCo 2 B

his week [had the honor of
E repairing an old ‘D’ board Color
Computer belonging to “KISSa-
ble OS-9” author Dale L. Puckett.
Although there are a lot of old CoCos
still out there, you can’t get any more
of them. Today, Radio Shack is ped-
dling a CoCo with the letter ‘B’ in the
catalog number. 1 don’t know what the
‘B’ stands for, but there are a few
changes inside. 1 bought one at the Palo
Alto RAINBOWf(est. What I want todo
here is explain some of the changes
Radio Shack has made.

The first thing I noticed when I
opened the box is that it says Tandy on
the computer and not Radio Shack. It
also says Color Computer and not
CoCo 2. This is the smallest PCB
(Printed Circuit Board) I have seen for
a CoCo. Small is good in many ways.
First, it costs less to produce. It also has
the least parts count of all the CoCos
ever made. Not only is this good for

production costs, it’s also good for
users. The lower the parts count in a
computer, the less likely a breakdown.
Then there is the question of heat; all
electronic parts, whether digital or
analog, dissipate heat. How many times
have you heard that the computer
crashes when it is too hot? Fewer parts
mean less heat.

This computer does not have any
regulated 12 volts, the same as the other
CoCo 2s. There is no negative voltage
available except on the SALT chip,
which buffers and converts the RS-232
signals. In theory, RS-232 specifies that
the signal be +/-12 volts. This new
CoCo 2 (and all other CoCo 2s) have
only +/-5 volts. While this will work
with most RS-232 devices, check the
specifications to be sure. Again, as with
the other CoCo 2s, there are about 12
volts unregulated at the power diodes,
which can be used for devices needing
the voltage. The diodes are numbered

91

D10 and D11. Remember, the side with
the white band is the positive side.

The next interesting part in this CoCo
2 B is a PIA (Peripheral Interface
Adapter). The first CoCos had two
PIAs of the same kind. They were both
MC6821s by Motorola. The next stage
of the CoCo had one MC6821 and one
MC6822. This 6822 is called an IIA
(Industrial Interface Adapter). There is
just a small difference between the two.
Now the second PIA in the CoCo 2 B
is no longer an MC6822, but an
SC67331P. It is a Motorola part, and
compatible with the MC6822. The
difference is in the impedance matching
between the keyboard and the PIA —
custom made for Tandy, no doubt. If
you happen to destroy this part, a
regular MC6822 will work. The key-
board matrix is the same.

As with the CoCo 2 A, there are six
jumpers, J1 to J6. One of the jumpers
is used to detect the presence of 64K

memory RAM. The other five jumpers
are labeled 64K/ 128K. A lot of people
think that this means you can have
128K of RAM. This is not true. Look
again; there is only one place for ROM.
Before, there were two sockets, one for
the BASIC ROM and the other for the
Extended BASIC ROM, each ROM
being 8K long. A ROM’s capacity is
usually expressed in bits. In the CoCo,
the data bus is eight bits wide. Therefore
an 8K ROM has 8K times eight bits,
giving you 64K bits. Starting to get the
picture? Since there is only one place on
the PCB for BASIC and Extended BASIC,
a new chip with both 8K ROMs (or 64K
bits) gives you 16K or, like the label
says, 128K.

If you bought the computer without
Extended BASIC, you got a socket and
an 8K ROM in a 28-pin package. The
jumpers are set to the 64K position. If
you bought an Extended BASIC ma-
chine, you got a soldered-in 16K ROM
with the jumpers set to the 128K side.
In both cases you got a new version of
BASIC, Version 1.3. If you have Ex-
tended BASIC, then you only see the
Extended BASIC Version, 1.1. To see the
BASIC version type in EXEC 41175.

To take this further, the two ROMs
Tandy uses, 8K and 16K, are pin-for-pin
compatible with two EPROM counter-
parts. The 28-pin BASIC ROM is com-
patible with the Intel 2764 EPROM.
The 28-pin Extended BASIC ROM is
compatible with the Intel 27128
EPROM. Now you can see where the
64K /128K numbers come from. If you
have an EPROM programmer, modify
these ROMs to suit yourself and plug
them right in. Of course, if the ROM is
soldered in, you will have to desolder it
and put in a socket. Dont forget to
change the jumpers to the right place.
More on this later.

The RAM portion is quite impres-
sive. There are three ways to add 64K
to this CoCo 2 B. If you have 16K of
RAM on the computer, chances are the
chips Tandy used are two 4416 RAM
chips. These chips are 16K by four bits
each. Since the CoCo needs eight bits,
there are only two of these chips. These
chips are in the two 18-pin sockets
between the two white connectors. The
first way to upgrade this 16K computer
is to change these two chips for the 64K
counter part. The number to this is
4464. There are a lot of different
numbers that are compatible with this
chip. Just ask for a 4464, a 64K by four
DRAM or an equivalent.

CN3
Function
GND
+5V
A4
AS
A6
RAS
WE
DQI
DQO
DQ3
DQ2
GND

5:5~Doo~xo~m:awn-—§

Figure 1

CN4
Function
GND
A7
A3
A2
Al
A0
DQ6
DQ5
DQ7
DQ4
CAS
GND

o)
B

OO VOB WN -

With the computer turned off, re-
move the two memory chips and install
the two new ones. On the left side, there
is a white box marked J6, jumper 6. You
must solder a jumper across the two
pins inside this box. This tells the
software that there are 64K memory
chips installed. That’s all there is to it.

The next way to upgrade is using the
two white connectors. These connectors
consist of all the lines necessary to
connect 64K of memory. A small PCB
will be necessary. The pinouts to the
connectors are in Figure 1.

There are two reasons why I'm not
going into details on how to construct
this piggyback board. The first is that
it is available, fully assembled and
tested, from CRC Inc. (514) 383-5293
for a modest price, and the other reason
is that there is a third method of up-
grading this CoCo 2 B.

If you have some 64K chips lying
around gathering dust, you'll like the
third way to upgrade. See all those holes
filled with solder? Do you see the eight
empty IC names soldermasked on the
PCB? These eight blank areas are made
for 64K memory chips. The regular run
of the mill 4164s. All you have to do is
add eight sockets and plug them right
in. There is a small catch: The holes for
these ICs are filled with solder. You
must first empty the holes of their
solder. You can use a device such as
Radio Shack’s desoldering pump (less
than $20). Just heat up the hole to be
cleaned with a hot soldering iron. Then
bring the desoldering pump to the hole.
Remove the iron, press the pump to the
hole and press the pump button. Go
through all the holes of each pin. It
weuld be wise to solder in sockets, not
the chips directly. On some boards, the

92

eight decoupling capacitors are also
missing. Insert eight .1 UF capacitors,
As with any upgrade to 64K, don'
forget to jumper the connections at J6.
That’s all there is to it.

There are a few more changes in the
CoCo 2 B. Until now, all CoCos used
the Motorola MC6847 as a display
processor. This is the chip that gives the
text on the screen and all of the graphics
modes. Text on the screen has been
green with black letters. When typing in
lowercase letters, they would appear as
inversed blocks of black with green
letters. The new chip that Tandy uses on
this CoCo 2 B is slightly different. It is
an MC6847T1. (This chip might also
have the part #XC80652P.) This chip is
different. It has built-in real lowercase
characters and you can also get rid of
that border in certain cases. This is a
real nifty improvement to the CoCo's
display. The only problem with this is
that Extended BASIC will not let you use
these added features. Next month, I'l
get my soldering iron out and add a few
switches to change the default values.

The last change the good people at
Tandy made was in the SAM (Synchro-
nous Address Multiplexer). With all

these changes to memory, video and
circuitry, a new SAM chip is needed. It
is the SN74LS785. A Motorola part
that is upward compatible with the old
SN74LS783 or the MC6883.

Back to the 28-pin ROM. Earlier, |
mentioned that the ROM Tandy used is
pin-for-pin compatible with an
EPROM. A long time ago, a reader
asked if there was a way to add a DOS
chip inside the CoCo. Now there is.
There are many ways to do this. Differ-
ent people like to solder things together

. in different ways. I like the fastest and

easiest way. Some people like to make
it neat. The chip you must use is either
a 2764 or a 27128. All of the address
lines, data lines and power lines are the
same. The only line that is different will
be the chip select line. We'll get that line
from another chip. The chip enable line
on an EPROM is pins 20 and 22. These
are the pins that must connect to the
extra enable. The thing to do is connect

all the pins except the two enable pins.
Here is where some people differ. I used
a 28-pin socket and soldered all the pins
(except 20 and 22) to the 28-pin ROM.
I bent pins 20 and 22 up and soldered
them together, running a wire to Pin 12
of the 74L.S138. That’s the easy way.
Now, plug in the new EPROM and
the cartridge area socket will be inside
the CoCo. Some people don’t like to

solder directly to a ROM. Use a wire
wrap socket and solder a second socket
to the legs about halfway down. Cut
pins 20 and 22 from the top socket.
Solder these two pins to the 74LS138
mentioned above. Plug the ROM into
the lower socket and the EPROM into
the upper socket. The same results
happen, but it is neater. No soldered
ROM, but it is also a little more trouble.
Take your pick.)

Some Hardware Fixes
for the Video
Display Generator

ast month, I described in detail

the innards of the new CoCo B

series computer. One difference
inside this computer is a new version of
the VDG (Video Display Generator). 1
described it as being an improved ver-
sion of the old faithful VDG that has
been in the CoCo since the beginning.

To make the new VDG compatible
with the old one, the new functions of
this VDG are not readily accessible. For
instance, this VDG has a built-in low-
ercase character set. But press the old
SHIFT/0 and nothing happens. You still
get that crummy inverse video lower-
case character. So what gives?

Well, in order to get it to work, you
may have to add in a little hardware.
This is where 1 come in. Get out the old
soldering iron and dig in as I lead you
through the modifications to get the
most out of your new ‘B’ series comput-
er. Note: The letter ‘B’ must appear on
the ' model number of the computer and
not inside on the PCB. For instance, the
one | have is model number 21-3134B.

Tony DiStefano is well-known as an
early specialist in computer hardware
projects. He lives in Laval Ouest, Que-
bec.

Let's start with the basics. The old
VDG chip number is Motorola
MC6847. The new part is another Mo-
torola part numbered MC6847T]1,
though in some computers, the part
number might be XC80652P.

The first and most important change
is the lowercase capability. Normally it
is disabled, meaning you will not see the
lowercase characters when using the
SHIFT/0 on the keyboard. Instead, you
get the normal inversed character set.
You can change it in software. The pin
that controls which mode you are in is
connected to the PIA, which is memory
mapped at $FF20 to $FF23, or 65312
to 65315 in decimal. It is connected to
PB4 or Bit 4 of address location $FF22
or 65314. This bit is normally a zero.
Changing this to a one gives you real
lowercase characters. The only problem
is the routine in Extended BASIC will
change it back to a zero every time you
print something. If you want to do it in
BASIC, add this line every time you want
to change the screen to true lowercase:

16 POKE &HFF22 , (PEEK (&HFF22)
OR 16)

What this line does is change Bit 4 to
logical level one. But remember, each
time you print on the screen or change

from graphics to text, Extended BASIC
changes this back. You may want to
make this line into a subroutine. Better
yet, why don’t you do it in hardware?
It’s more permanent.

There are many ways of doing this
change in hardware. Use the one that
suits you best, but the first way I present
is the simplest. Remove the chip from
the socket. Bend Pin 30 (GMO) out so
that it does not plug back into the
socket. Solder a short piece of wire from
Pin 30 to Pin 17. Pin 17 is the S-volt
supply. This action permanently
changes the level of the pin to logical
level one, giving lowercase all the time.

If the VDG is soldered into the board
without a socket, then just cut Pin 30
at the base and pry it up. Use slim-line
cutters or a razor blade. Be careful not
to cut anything else.

The second way to make the hard-
ware change requires an SPDT switch.
Figure 1 shows two ways of wiring the
switch to this circuit. Using Figure la
as a guide, pull Pin 30 out as described
before. Solder a wire from Pin 30 to the
center of the switch. Solder another
wire from one side of the switch to Pin
17 of the VDG. Solder a third wire to
the other side of the switch and to Pin
1 of the VDG.

When the switch is toward Pin 17, the

93

Pin 17 -‘——-1

Pn30 ———e” SPOT

Pint -—J

Figure 1: Lowercase Switching

Pin 17 %

PiN30 ————a”

Hole 30 ——J

SPDT

display will always show lowercase
characters. When it is the other way, it
will always display inverse characters.
Figure 1b shows basically the same way
as before, but instead of connecting the
third wire to Pin I, connect it to the
empty pinhole created when you pulled
Pin 30. This way, when the switch is
toward Pin 17, you always get lowercase
characters. When the switch is the other
way, you get whatever display Bit 4 of
the PIA is set to. This is the most
versatile way of connecting this pin.

The next change has to do with the
border. In the normal text mode you see
a big green square with black letters.
This border i1s always black in the text
mode. Now there is another alternative.
How about a green border? There is a
way of doing this in software. The pin
that controls which mode you are in is
connected to the PIA which is memory
mapped at $FF20 to $FF23 or 65312 to
65315 in decimal. It is connected to PB6
or Bit 6 of address location $FF22 or
65314. This bit is normally a zero.
Changing this to a one gives a green
border. The only problem is that the
same routine in Extended BASIC that
changes the lowercase pin every time
you print something also changes this
pin. If you want to do it in BASIC, add
this line:

1@ POKE &HFF22 , (PEEK (&HFF22)
OR 64)

What this line does is change Bit 6 to
logical level one. If you want to change
both the lowercase and the green
border, change the last value to 80 (16
+ 64). The new line to change both the
lowercase and green border would look
like this:

1@ POKE &HFF22 , (PEEK (&HFF22)
OR B8@)

But remember, every time you print
on the screen or change from graphics
to text, Extended BASIC changes this

back, so again, you may want to make
this line into a subroutine. And again,
this can be done in hardware.

One way to do this is to remove the
chip from the socket. Bend Pin 27 out
so that it does not plug back into the
socket. Solder a short piece of wire from
Pin 27 to Pin 17. This action perma-
nently changes the pin to logical level
one, giving a green screen all the time.

If the VDG is soldered into the board
without a socket, cut Pin 27 at the base
and pry it up.

The second way requires an SPDT
switch. Figure 2 shows two ways of
wiring the switch to this circuit. Pull Pin
27 out as described previously (see
Figure 2a). Solder a wire from Pin 27
to the center of the switch. Solder
another wire from one side of the switch
to Pin 17 of the VDG. Solder a third
wire to the other side of the switch and
to Pin 1 of the VDG.

When the switch is toward Pin 17, the
display will always have a green border;
when it's the other way, it will always
have a black border. Figure 2b is bas-
ically the same way as before, but
instead of connecting the third wire to
Pin 1, connect it to the empty pinhole
created when Pin 27 was pulled. This
way, when the switch is toward Pin 17,
you always get a green border and when
the switch is the other way, you get
whatever display Bit 6 of the PIA is set
to. This is also the most versatile way
of connecting this pin.

The third modification is the famous
inverse video screen. You no longer
need to add a gate to do inverse video.
The procedure is basically the same as
the others, but with different values and
different pin numbers. You can change
it in software. The pin that controls
which mode you are in is connected to
PBS or Bit 5 of address location SFF22
or 65314. This bit is normally a zero.
Changing it to a one gives you an
inverse video screen. But remember,
Extended BASIC will change it back. If
you want to do it in BASIC, add this line
every time you want to change to an
inverse screen:

1@ POKE &HFF22 , (PEEK (&HFF22)
OR 32)

This line changes Bit 5 to logical level
one. To change both the lowercase and
the inverse video, change the last value
to 48 (32 + 16). The new line to change
both the lowercase and inverse video
looks like this:

10 POKE &HFF22 , (PEEK (&HFF22)
OR 48)

Since Extended BASIC will change
this back, again you may want to make
this line into a subroutine. Don't bother
to add the green border value when
using the inverse video — it has a lower
priority and shuts off anyway. Again,
you can do it in hardware.

To make the change in hardware,
remove the chip from the socket and
bend Pin 29 out. Solder a short piece of
wire from Pin 29 to Pin 17. This per-
manently changes the pin to logical level
one, giving inversed video all the time.
(Pin 17 is the 5-volt supply.)

If the VDG is soldered into the board
without a socket, then just cut Pin 29
at the base and pry it up.

The second way uses an SPDT
switch. Figure 3 shows two ways of

Pin 17 _l

Pin 27 et

Pint _]

Figure 2: Green Border Switching

b.

Pin 17 .—_ﬁ
Pin 27 -—-—‘/

Hole 27 —J

SPDT

94

wiring the switch to this circuit. To use
the first method (Figure 3a), pull Pin 29
out. Solder a wire from Pin 29 to the
center of the switch. Solder another
wire from one side of the switch to Pin
17 of the VDG. Solder a third wire to
the other side of the switch and to Pin
I of the VDG.

When the switch is toward Pin 17, the
display will always have an inverse
video; when it’s the other way, it will
always have a normal screen. The sec-
ond method (Figure 3b) is much the
same as the first. Instead of connecting

the third wire to Pin I, connect it to the
empty pinhole. When the switch is
toward Pin 17, you always get inverted
video; when the switch is the other way,
you get whatever display Bit 5 of the
PIA is set to.

These three changes to the new VDG
add to the versatility of the CoCo’s
display. However, | suggest you wire the
three pins using the SPDT switches and
the empty hole left by each pin because,
when in any graphics mode, these three
pins are also used by the VDG to
control which graphics mode you are in.

Pin 17

T
Pin 29 SPD

RS

Pin 1

Figure 3: Inverse Video Switching

Pin 17

Pin 29 spoT

A\

Hole 29

“You no longer need
to add a gate to do
inverse video.”

If you hard wire the pins into a partic-
ular mode, you will loose certain graph-
ics modes, depending on which pin you
hard wired. If you use the most versatile
way for each switch, all you have to do
to return to the normal or default mode
when you need a certain graphics mode
is to throw a few switches.

Next month, I'll get into a step-by-
step description of how to integrate the
new MC6847T1 chip into your older
non-‘B’CoCos. I wonder just how many
original CoCos are still out there? 1
would like to thank James R. Igou of
Newark, Delaware for supplying me
with the manual and an MC6847T1
chip to work with. I would also like to
thank Bill Warnica of Barrie, Ontario,
for his assistance with this and the next
article on the new VDG chip. Q)

The No-Switch VDG

wo months ago I introduced you
I to the new VDG-TI. It came
installed in the CoCo 2 B series.
I guess I shouldn’t say “new™ any more;
the CoCo 3 is out. I have ordered mine
and, as you might well guess, I will turn
_the screw on it and see what is under the
hood. I'm sure I will be able to come up
with some hardware ideas on what we
can do with this new CoCo 3. If any of
you have a hardware idea for the new
computer, jot it down and send it to
“Turn of the Screw Wish List,” care of
RAINBOW at the Falsoft building. Mean-
while, back to the ol’ CoCo 2.

The VDG-TI1 has a lot of nifty
changes to make it better. But these
changes are not very accessible. The
changes are hidden away deep inside
CoCo. I wrote on how to dig these
changes out so that you could make use

of them. These changes included lower-
case letters, inverse screen and a colored
border. I discussed a couple of ways to
access these. One was in software and
the other was in hardware. The software
way is a pain at best. You have to insert
a BASIC line every time you printed to
the screen. If you have a machine
language program, forget it, the soft-
ware just will not work.

The hardware way is a little better.
You have three switches and set them up
the way you want. The only problem is
that the switches interfere with the
graphics modes. So when you use
graphics, you have to switch the three
switches back to their original position.
Again, what a pain. If you have a
program that switches back and forth
between graphics and text, you either

95

have to play “flip the switches,” or not
bother with them at all and set them to
their default settings. If that is the case,
why put them in, in the first place?
Don’t despair, this month I'll show you
how to eliminate the switches and still
have the best of the VDG-T].

First, let me review what the three
pins and switches do. The three pins in
question are pins 27, 29 and 30. The
Motorola specifications manual for the
MC6847T1 states that these pins are
named GM2, GMI and GMO respec-
tively. These three pins have dual pur-
poses. There is another pin on this VDG
known as the A/ G Pin (Pin 35). This pin
isaninput. It controls whether the VDG
is in Alpha/Numeric mode or in one of
the many graphics modes. When this

pin is logic state 0, or low, the VDG is
in the Alpha/Numeric or text mode.

When the pin is high it is in the graphics
mode. This is the dual mode that other
three pins can go into. In the graphics
mode (A/G = HI) these three pins tell
the VDG what graphics mode you want.
For example, you can be in the 128-by-
64 pixel resolution mode or the 256-by-
192 pixel resolution. Table 1 shows all
the different graphics combinations
available with this VDG.

In the text mode (A/G LO) the three
pins in question control in which text
mode the VDG will display the text
characters. For example, true upper-
and lowercase characters, inverse low-
ercase characters, green border or black
border. Table 2 is a description of how
the three pins affect the text display on
your screen.

The three control pins and the A/G
pin are all inputs. To control them, the
CoCo uses four pins on a PIA (Periph-
cral Interface Adapter). By now we are
all familliar with the idiosyncrasies of
Color BASIC. It controls these pins
according to the old 6847 VDG, not the
T! VDG. Two articles ago I told you
how to use switches to get around this.
In last month’s article I showed you how
to hook up the T1 VDG to an old CoCo.
This time I'll use an electronic switch to
do the same switching action. With this
modification, you won't have to fiddle
with switches. It’s compatible with all
software. This modification will work
with any CoCo that has the new T1 chip
installed. The main part you will need
is a TTL logic chip, the number is
SN74LS157. Unfortunately, it is not
available at your local Radio Shack
store, but you can get it at any good
electronics shop.

This chip is a quad 2-to-1 data selec-
tor. For each of the four gates, there are
two inputs (A and B) and one output
Y). It also has a control line. The way
it works is that when the control line is
low, the output Y is the same level as
the A input and disregards what is at
input B. When the control line is high,
the output Y is the same level as the B
input and disregards what is at input A.
Can you see it coming? We can use this
chip to control the three pins of the T1
VDG and use the A/G line to control
the selector chip.

Look at the schematic in Figure 1. It
shows the wiring to this modification.
I disconnected the three output pins of
the PIA (that connects to the VDG).
These three pins now go to the B input
on three of the four gates on the selector

. I -
SN74L 8187
wo | oo »
i
[}
" aM2 27 3 B‘_-- Al K} 27
c et S
: 2| A Switch °
M 500 10x) Gt = = = o :
f ot |2 sleoa__ . oo nlr 2] i
Sostext et] s
See text A -L:---< s
Figure 1
Table 1
GMO GM1 GM2 Description
0 0 0 64 by 64 4 Color
0 0 1 128 by 64 2 Color
0 1 0 128 by 64 4 Color
0 1 1 128 by 96 2 Color
1 0 0 128 by 96 4 Color
1 0 1 128 by 192 2 Color
1 1 0 128 by 192 4 Color
1 1 1 256 by 192 2 Color
Table 2
Pin No. Pin Name Logic Level Function
30 GMO qu Inverse Lowercase characters.
30 GMO High True Lowercase characters.
29 GM1 Low Normal green screen.
29 GM1 High Inverse black screen.
27 GM2 qu Black border.
27 GM2 High Colored border.

chip. The outputs of these three gates go
to the VDG. The fourth gate is not used.
I have also connected the control pin of
the selector chip to the A/G pin of the
VDG. When the CoCo is in the graphics
mode, this pin is high. This makes the
control pin on the selector chip high
also. When the control pin is high, the
Y output will follow the B input. Given
that the PIA pins are connected to the

96

B.inputs, when the control pin is high,
it is as if the selector chip were not even
there.

Now, when the CoCo is in text mode,
the A/G pinis low. Since the control pin
of the selector chip is connected to the
A/G pin (in the text mode), the control
pin is low. What happens when the
control pin of our selector is low? The
[Y outputs follow the A inputs. What did

you connect the A inputs to? Well, that
all depends on how you want the text
mode to look. Each of the three pins
does something different. For example,
the pin that connects to Pin 30 controls
true lowercase characters or inverse
lowercase characters. Table 2 shows
what each pin does.

When you have picked which mode
you want, you have to connect the A
input to match that mode. When that
mode requires a low, you have to con-
nect that A input to ground or Pin 8 on
the selector chip. When that mode
requires a high, you have to connect
that A input to 5 volts or Pin 16 on the
selector chip.

The construction of this modification

is typical of my projects. You need all

the regular tools. Some people dqn't
like to cut and solder directly on chxps
and PC boards. In that case you will
need a 40-pin socket. I used a socket on
this one. I hollowed out the center of it
and used the space to put the selector
chip in. If you don’t want to use a
<ncket. iust piggy-back the selector chip
on top of the VDG. If you use a socket,
Pry up pins 27, 29 and 30 so they do not
g0 back into the socket. Use the empty
pinhole as the connection to the PIA.
If you dont use a socket, cut VDG pins
27, 29 and 30 and pry them up. Make
sure you cut the pin high enough so you
can solder to the stub that is left; it is
the connection to the PIA. Either way,

make sure you don’t cut A/G Pin 35.
" Even though we are using this pin, the
VDG still needs it too. Remember, the
Y outputs of the selector chip go to the
VDG, and the B inputs come from the
connection that used to go to the VDG.

If you made last months mod that
puts the new VDG into the older CoCo,
make sure you don't break any wires. If
you used a socket to do it, you can use
the same socket in last month’s project
for this one. You save a socket.

Well, that’s it. When all the connec-
tions are done, close up the computer
and try it. Check to make sure that all
the modes work and that the text mode
is the mode you want. A

—

Taking a Look at How
Monitors Work

ell, I finally got my CoCo 3.
The first thing I needed to do
was to plug it into a monitor.

In my computer room I have various
color monitors, TVs and monochrome
monitors. I read through the CoCo 3
manual and found out it has three ways
of connecting a display to it. The first
and most common is the RF output.
This is where you connect an ordinary
TV to it. The second is a composite
color output, sometimes known as a
video output. The third is an RGB
output,

Now, most people are familiar with
the RF output. Many people know
about video outputs, but what is this
RGB stuff? It is not new to me because
I use an RGB monitor for my other
computers. With the right connector, a
piece of ribbon wire and the right
information, I connected the CoCo 3 to
my Sony RGB monitor.

Ever since I wrote an article on how
to connect your CoCo to a mono-
chrome monitor, I have been getting
calls about it. So, with the coming of the
CoCo 3, it is time to do an “everything
you ever wanted to know about mon-
itors but were afraid to ask” article.
Here it is.

I am going to start from the basics
and work my way up to RGB. Let’s
begin with some theory on a mono-
chrome monitor. The mono part of that
word implies one color. At first, all
picture tubes were white. Then green
was the “in” color and then amber
became popular, Whatever the actual
color of the tube, it is still one color,
hence monochrome. A picture tube is
made of glass. Inside this tube is a
vacuum. On the inside surface of the
display area there is a thin coating of
phosphorus. One physical property of
phosphorus is that when bombarded
with electrons (high voltage electricity)
it glows. Inside the back end (neck) of
a picture tube there are circuits that
shoot electrons at the phosphorus. The
construction of the tube is beyond this
article, but when it is on, a stream of
electrons hits the phosphorus, and
where it hits, the phosphorus glows. But
alone, all that does is make a glowing
dotin the center of the screen. Not much
good.

Since electrons are affected by a
magnetic field, putting a magnet close
to the tube will deflect our dot. The dot
would move according to the strength

97

and direction of our magnetic field. An
electric current through a wire creates
a magnetic field. The more current, the
stronger the magnetic field. A length of
wire wrapped in a coil is enough to
deflect our dot anywhere on the screen.
In most monitors, two coils of wire
wrapped around the neck of the tube are
used to move our dot around. One coil
is positioned so that a varying amount
of current makes the dot move sideways
or horizontally. The other is positioned
to give up/down or vertical motion.
Given the right amount of current
and in the proper sequence, our dot now
moves from right to left and from top
to bottom, in the same motion as read-
ing. Make that dot move fast enough
and it appears to fill the screen with
light, since phosphorus continues to
glow for a short time after the dot has
moved. Those lines you see on your
-screen are made by one moving dot.
So far, we have one moving dot that
fills the screen with light. If, while
moving this dot, you were to increase
and decrease the number of electrons
hitting the phosphorus, you would get
varying amounts of light. The amount
of light produced is directly propor-
tional to the number of electrons hitting

the phosphorus.

Things are shaping up to a picture. In
a TV monitor, there are many signals
and currents, one of which is called the
horizontal oscillator. This circuit is
connected to the coil that deflects the
dot horizontally. Figure 1 shows the
wave shape of the horizontal oscillator.
It starts off negatively, deflecting the
dot to the left. It increases linearly to a
positive position, moving the dot
smoothly across the screen. Then, it

Figure 1

Retrace
time

Voitage 4 « ~
Time— i=— 63.5 us—!

Horizontal Osciitator

jo———— 1Frame — !

{ movace
a8 i e
— nonroms —eje—— M3 i

scan +anizonis

ey wan —r
. e

o

Voitage .+
Time =

“—16.68 ms— i— 16.68 ms —|

Varticst Osclilator

quickly jumps back to the original
position. During this time the electron
flow is cut off so that it will not appear
on the screen. This time period is known
as the retrace time, and the circuit that
cuts off the electron flow is called a
blanking circuit.

Another circuit in a TV is the vertical
oscillator and yes, you guessed it, it
controls the dot vertically. The wave
shape of the vertical oscillator is basi-
cally the same as the horizontal one,
only much slower. Many horizontal
cycles fit inside one vertical cycle (more
on this later). The vertical oscillator also
has retrace time and vertical blanking
circuits. Due to its nature, one horizon-
tal cycle is called a scan line, and one
vertical cycle is called a frame.

When our dot is not doing horizontal
retrace or vertical retrace it appears on
the screen. This is known as active
video. It is during this time that our dot
gives the viewer useful information.
This information can be a picture like
ordinary TV, or computer generated
characters. In either case, the video

Video

Honzontal

P

Figure 2: A Composite Signal

\ to—— H .
L a i

blanking

Verncal
sync

—_——

\
'
M}
P e—
1 '

Honzontat
Vertical

Voltage
Time ~———=

signal is proportional to the brightness
of the picture. A higher signal produces
a brighter dot and a lower signal pro-
duces a softer dot.

In order for a picture to appear on a
video monitor, three signals are needed;
horizontal, vertical and video signals. It
is not efficient to run three signals and
a ground return to a TV receiver or
monitor. A method was developed to
combine these three signals into one.
Instead of supplying complete horizon-
tal and vertical wave shapes, the source
need only send a pulse signifying the
start of every horizontal line and the
start of every vertical frame. These
pulses are known as sync pulses. The
rest of the wave shape is then regener-
ated inside the monitor. It is then up to
the monitor to make sure that the
internal horizontal and vertical oscilla-
tors keep up with the sync pulses.

These sync pulses and video signals
are mixed together in a specific way to
form one signal called “composite

video,” for obvious reasons. Figure 2
shows part of a composite signal. In
North America, all composite video
conforms to the NTSC (National Tele-
vision Systems Committee) standard;
more on that later. In a monitor, circuits
are made to separate the video informa-
tion from the sync signals, and are then
translated to drive currents that connect
to the coils and the picture tube.

Up till now, I've been talking about:
monochrome (black and white) pic-
tures. But, there is a good reason why
Tandy calls our CoCo a Color Comput-
er — it can display a color picture.
When TV first came out, it was only in

black and white. When color came out,
a method had to be developed so that
a color signal would be compatible with
a black and white TV.

It was up to the NTSC to develop a
composite signal that would carry the
extra color signal and still be compat-
ible with the older black and white
signal. In 1953, the NTSC established
the color television standards. In these
standards, the signal is to have 525 line
interlaced scan. The horizontal scan
frequency is 15.734 kHz; the vertical
frequency is 59.94 Hz. The color infor-
mation is contained in a 3.579545 MH:
subcarrier. The phase angle of the
subcarrier represents the color, and the
amplitude of the carrier represents the
saturation. Figure 3 shows one horizon-
talline. Notice the color frequency burst
just after the horizontal sync. The phase
difference between this reference burst
and the actual signal describes what
color that particular part of the screen
should be. The amplitude of the color
signal represents how much of that
color to put on the screen.

On the monitor side, color is quite
complicated to reproduce. You have to

Figure 3: One Horizontal Line

Luminance

Horizonisl

-

1 Vol
PloP

1

H dlanking

<

'
1
r 1o Hozonal !
\
oHa

Cnroma

/

Color burst

start with a completely new tube. In-
stead of smooth monochrome phospho-
rus, the tube has to be striped with
alternate red, green and blue phospho-
rus. The smaller the stripe the better the
picture quality.

When a color composite video signal
enters a color monitor, it is first stripped
of its sync signals, and then the mono-
chrome (called luminance) and color
signals (called chroma) are split into
three signals, the red content, the green
content and the blue content. Three
separate electron beams are used to
display the three colors on the screen.
The beam carrying the red content has
to hit al} the red strips. The green hits
the green strips and so on. 1f a beam that
has red information hits any other color
than red, a wrong color results. It
requires a lot of electronic circuits to
keep this from happening. That is not
the worst part; the color frequency
carrier is 3.58 MHz. In order to isolate
the color carrier from the monochrome
signal, a filter is used that removes any
frequency higher than 3.58 MHz. This
seriously limits the resolution of a color
signal. In fact, the resolution of a color

signal, at absolute best, is about 400
lines. That is OK for the CoCo and
CoCo 2 but is not good enough for the
CoCo 3.

When you put a color signal in a
monochrome monitor, the color infor-
mation shows up as dots on the screen.
Figure 3 shows that. The frequency of
the color signal is 3.58 MHz. A mono-
chrome monitor with a 20-MHz band-
width has no filter to remove the color
carrier. The monitor will have no prob-
lems displaying the color carrier — as
an annoying monochrome mess of dots.

Now comes the CoCo 3. It has a
resolution of 640-by-192. That is very
nice but have you ever seen a 640-by-
192 screen on a regular composite
monitor? Believe me, it’s not a pretty
sight. What is Tandy to do? The only
reasonable thing is to get rid of that
color carrier and put out the color
information separately. Now that is a
great idea and for once Tandy did it
right! The CoCo 3 has an output known
as an RGB output. That's right, RGB
stands for Red, Green and Blue. No
color carrier, no filters and no sync
pulses, just clean color.

Wait a minute, that won’t work with-
out sync pulses. So Tandy added some
more lines and added sync pulses. In
fact, the CoCo 3's RGB output is the
best color picture ever for a CoCo! The
clarity is limited only by the resolution
of the monitor.

You don't have to have a Tandy RGB
monitor. However, if you plan on going
out to buy a brand X monitor at some
discount mail order house, here are a
few tips to help you get started with
fewer headaches.

First, when you select a model you
want (or can afford), make sure that it
is an RGB analog monitor with negative
or composite sync (like my Sony) with
a horizontal frequency of 15.7 kHz and
a vertical frequency of 60 Hz. Also
make sure that the bare connector to the
monitor is available. You will also need
a connector for the CoCo 3 side of it.
That requires a 10-pin female socket
connector for flat ribbon cable. And
don't forget to get three or four feet of
10-conductor flat ribbon cable. Use the
pinout supplied in the CoCo 3 manual
and match the pinout of the RGB
monitor manual to it. Now plug it in
and watch it go! Q)

PVITTITRRRRREE e

The CoCo Is Music to the Ears

converter. | explained that you can take a varying
signal and convert it into a digital value from 0 to
255. This time I'll do the opposite.

This month’s project is called a D-to-A converter, where
a digital value from 0 to 255 is converted into an analog
voltage. But that is just part of it. I'll show you how to make
two of these things. With two of these and some software,
we will be able to make music in stereo. OQur scenario starts
by making two D-to-A converters. Then, with a couple of
preamps, some connectors, a stereo system and some
software you'll be playing computer music. We'll start today
with the D-to-A converters and finish up next month with
the preamp and some music software.

You can buy a complete, two-channel D-to-A converter
chip, but they are a little expensive and most require three
voltages. This is a problem with the one-voltage CoCo 2 and
3. Besides, it's more fun building your own. Now, let’s get
into some theory on D-to-A converters.

!. long time ago, I did an article on an analog-to-digital

Remember that a digital value from 0 to 255 is made dp
of eight binary bits. Each of these bits has a value of 0

i (ground) or 1 (5 volts). If you use every combination of eight

bits, you come up with 255.

Let’s introduce another component: a resistor. Yes, the
good ol’ resistor. If you put a voltage between the two points
of a resistor, you could measure the voltage across it. If you
put two resistors in series (Figure 1) and measured the voltage
across both resistors, you would get the voltage that you put
in. For instance, in Figure 1, if you put 5 volts across both
resistors, you would measure 5 volts. If you measured across
just one resistor, you would get a value somewhat less than
S volts. If you measured the voltage across the second resistor
and added that value to the value of the first, you would get
5 volts. The voltage is divided between the two resistors. If
you had three resistors, the sum of the voltages of the three
would add up to the total voltage applied. It is a simple
mathematical equation and it depends on the resistance value

99

of the resistor. In a resistor circuit, the higher the resistor
value, the higher the voltage across it.

If we had 255 different resistors hooked up to a voltage
and were able to control which resistor had the voltage on
it, we would have an acceptable D-to-A converter. But I'm
sure you don't want to hook 255 resistors to some circuit.
Well, you don’t have to. All you need is nine resistors: eight
for the eight data bits and one used. as a voltage reference
or source. It is used as a divider. This is commonly known
as a resistor ladder.

If we use that theory, plus a bit of computer theory, we
can convert a digital binary value of eight 0- and 5-volt levels
to an analog level. A computer’s data bus is continually
changing as the computer does its thing. In order to isolate
an eight-bit value, a latch is needed. The easiest place to add
a latch is on the cartridge port. So, get out the tools and let’s
get started.

Figure 1
e ’
S
5V
R2
L
Voltage across R1 plus voltage across R2 equals
5 volts.

i

Figure 3: Standard Resistor Color Code

\— Tolerance band

Number of zeros (multipher}

Second significant figure
First signiticant figure

Color Significant Multiplying
tigure valve

Black 0 1
Brown 1 10
Red ? 100
Orange 3 1.000
Yeliow 4 10,000
Green 5 100.000
Biue 6 1,000.000
Violet 7 10,000.000
Gray 8 100,000,000
White 9 1.000.000.000
Gold L 5% tolerance

Sitver » 10% tolerance

No color 2. 20% tolerance

Red % 2% toierance

Figure 2
T
—
E 6 [] 7
TS |36 5 4
I L
4 s 2. Founnbioa
rRw {18 1 13
3 3 = Thwd Do A
A1 20 8 [~ SecondDioA
AO 19 15
Computer 1
Cannage 5 voits |9 -
Siot F_S =8
GND 33 j_l " RS = 47K
oo {10~ a2 i,
D1 11 4 4 5 R
02 12 7 4
L VY
03 13 8 s S A
D4 14 13 2 12
AN
os |15 14 ; 15
WV
D6 16 17 16
HS AN —
o7 17 18 19
At
I 2C1
T 10 = 100 pF

You will need all the usual things for a project. A
protoboard, sockets, wire and a few parts. The first two parts
are not that hard to find. A good electronics hobby shop will
have them. They are a 74LS138 and a 741.S273.

You will see the circuit and how to hook it up to the CoCo
bus in Figure 2. If you want stereo or two channels, you will
need another 74L.S273 and another nine resistors and
capacitor. In fact, this circuit can have as many as four
channels of D-to-A. All are identical to the one in this
diagram except where Pin 11 connects to the 74LS138. Also,
nine resistors are connected to cach 74LS273. The diagram
shows how to connect the other three circuits. The output
of this D-to-A converter is about .1 volts on the low end and
about 4.9 volts on the high end. The capacitor is used for
high-frequency roll-off and to dampen switching noise.

So far, there haven't been any problems, but notice that
1 haven't given any resistor values. This is where the tricky
part comes. The resistor value for R9 is simple: 47K ohms,
half-watt or quarter-watt. But the other resistors are a
different story. In theory, the value for each resistor is double
the previous value. For example, if the first resistor value is
1K ohms, the next value must be 2K and so on. Using this
method, the values are:

R! = {K ohms R5 = 16K ohms
R2 = 2K ohms R6 = 32K ohms
R3 = 4K ohms R7 = 64K ohms
R4 = 8K ohms R8 = 128K ohms

That is fine in theory, but try to find these values in any
store! It is next to impossible, but don't despair; you can get
these values by using more than one resistor for each value,
For instance, a 4K resistor does not exist (unless you want
to custom-order it in quantities of 10,000). But, if you put
two 2K resistors in series with each other, you get 4K. You

ke, resistors in series add up in value. A 10K resistor in serics

with a 22K resistor gives you 32K. Now, the trick is to find

the right combination of resistors, to match the values above.

Some may require only one or two resistors, but other values
will require as many as four or five resistors to add up to
the right value. It all depends on what value resistors your
dealer carries.

To make matters worse, the precision of the resistors has
1o be high. The ideal resistor must have a tolerance of .1
percent. Again, these are expensive and rare. If you are like
me, you have a resistor bin. I went through the bin with an
ohmmeter and measured the values and took the closest
value. If you are not sure how to read the value of a resistor,
Figure 3 shows a resistor color code chart and how to read
it. The first and second colors are the numeric value and the
third is a multiplier. For example, if you have a resistor that
has a color code of red, violet and orange, its value is 27,000
ohms or 27K. Some resistor values are just not made. Here

Ri=1K RS = 15K+ 1K
R2=2K R6 = 22K + 10K
R3=2K + 2K R7=27K + 27K + 10K
R4=68K+1.2K R8=100K +27K + 1K

Again, it is important to have the right values. If you don*t
have the right values, keep adding more resistors until you
do; they aren't expensive. Even after you get the right
theoretical values, use a precise ohmmeter to fine-tune these
resistors. Remember, the closer the values you use, the better
the sound it will make. If your resistors are not perfect, at
best, you will get a little harmonic distortion; at worst, you
will get a bad sound.

As far as the parts are concerned, you can get the
protoboard and the ICs from CRC Inc., 10802 Lajeunesse,
Montreal, Quebec, Canada H3L 2E8. The resistors you will

is a table of resistors that I found and used for my D-to-A

circuit.

have to dig up yourself.

See you next month. m

Transistor Buffers for Stereo

ast time, I showed you how to
I wire digital-to-analog conver-
ters. A D-to-A converter is a
device that, when hooked up to a com-
puter, converts (or changes) a digital
value, or number into an analog vol-
tage. In the case of the CoCo, the digital
value is from 0 to 255, represented as an
eight-bit binary value. Remember bi-
nary? Anyway, this eight-bit binary
value is converted into a voltage. The
voltage output is directly proportional
to the input value. The lowest possible
digital value (0) gives the lowest output
voltage, 0 volts. The highest digital
value (255) gives the highest voltage. In
this case it should be about 5 volts.
This time, I'll show you how to hook
up a couple of small amplifiers and get
some sound out of them. If you recall,
the outputs of the D-to-A converters are
the sum of several resistors. This has an
output of about 0to S volts. If you want
to connect this output to an external
amplifier, such as a stereo system, then
you don't need an amplifier but just a
buffer. The reason you don’t need an
amplifier is the output voltage is high

Amplification

enough to drive a stereo. In fact, it is a
bit too high. The typical input voltage
of a“line in” on a stereo is about 1 volt.
It needs to be brought down a little.
Figure 1 shows one transistor buffer. It
is an emitter-follower. It has a lot of
current gain but no voltage gain, This
is what we need. R2 in the circuit is used
to lower the voltage to a usable level for
the stereo. V1 in the circuit is used as
a volume control. If you only build one
D-to-A converter you only need one
circuit. If you build two D-to-As then
you need two circuits. But instead of
using two volume controls and adjust-
ing them separately, use a stereo volume
control that has two potentiometers
built into one.

If your stereo is too far away or you
don’t have a stereo, then you may want
to build a small amp to drive some
speakers. Figure 2 shows a circuit that
does just that. It is an amplifier module
that has just a few milliwatts. In fact it
has 325 milliwatts, just right for a small
speaker.

All of the parts are available at your
local Radio Shack store. If you used the

101

CRC Project board, then there should
be enough room left on the board to
mount all of the parts. If you want to
use a socket for the IC, then use an 8-
pin socket. There is no special care
needed in the construction of the amp,
except the usual care in dealing with
parts that can be damaged by static
electricity. The usual project tools will
be necessary; things like a soldering
iron, pliers, cutters and a drill to mount
the variable resistor. Hook up the
circuit as in the diagram. The capacitor
C2 should be as close to the IC as
possible; It’s a power supply decoupling
cap, so the closer the better. JI is just
a 4-pin connector so if you want to

.disconnect the speakers, you won't have

to unsolder the thing every time,
The way the outputs are connected
now, the signal coming from the D-to-

‘A is very square. That is to say, it is very

fast to change from one analog state to
another. This tends to make the music
very rich in harmonics, sometimes to
the point that it may sound like distor-
tion. CS in the circuit acts as a low pass
filter by shorting out high frequencies to

ground. If you like the rich sounds of
harmonics, leave out CS. Otherwise a
value from .1 uf to 1 uf will soften these
harmonics. Try several values and use
the one that you like best.

Now for the hard part. I say hard
because for a hardware buff like me,
software is a pain. But, hardware with-
out software is not much good, so I have
to deal with it. I looked around to see
what | had in terms of musical software.
After running through my old RAIN-
BOws, | found that the machine lan-
guage routines used to generate four
voices did not have listings, but only
pages and pages of DATA statements.
This makes it hard to find the driver
routines and change them.

So I decided to give basic guidelines
on how to modify them yourself. Inside
the CoCo there is a built-in D-to-A
converter. It is located at $SFF20 or
65312 in decimal. The D-to-A converter
you have just built is at SFF40 or 65344,
and if you built two D-to-As, the second
one is at $FF41 or 65345. The idea is
to find the location in memory that
matches the address $FF20 and change
it to $FF40. One thing to remember is
that the address $FF40 is divided into
two bytes, since the CoCo can only
work with eight bits of information. The
first is $FF or 255 in decimal and the
second is $20 or 32 in decimal. | wrote
a short BASIC program to locate any
presence of the address $FF20 and
“change it to SFF40. This is the program:

1@ FOR I = &H15@0 TO &HVEFF
20 IF PEEK(1)=255 AND PEEK
(I+1)=32 THEN POKE I+1,8&H40
30 NEXT I

There are a few things to remember
with this program. First, PCLEAR 1
before typing it in. Then, load in your
music driver and music and run the
* program. The memory area covered by
this program starts just after the BASIC
program and runs to the top of a 32K
machine. This is only a guideline on
how to find the memory locations;
people with good machine language
skills will be able to find it with no
problems.

After looking through my disks of
software, 1 found that I had the pro-
gram Musica2. 1 checked the machine
language driver and found the point at
which the program referenced address
was $FF20. I changed it by typing this

Parts List
Y Part Number Description
R1 10K resistor, % watt
Erom R1 . R2 47K resistor, % watt
DtoA T1 2N2222 transistor
\'A| 10K variable resistor
3 R J1 RCA female connector
cs _l_ Vi J1
ts:xet I : E Output
> -
Figure 1
Part Number Description
R3 100 ohm resistor, % watt
R4 10K resistor, ¥ watt
C1 .1 Uf Cap., 50 volts
C2 .1 Uf Cap., 50 volts
C3 4.7 Uf Cap., 10 volts
C4 470 Uf Cap., 35 volts
C5 See text
" LM 386 audio amp
V2 10K varibie resistor
S1 2to 4 inch speaker
J2 4-pin connector
From
DtoA
>
$ R4
cs 4 .
ol]
ext
- -*
Figure 2
To make sure that two D-to-A con-
statement:

POKE &H3F?9 ,&H40

That redirected the output to the
external D-to-A 1 built. It was great. If
you are using a multipack, you must do
another poke to change the access of the
slot that the controller is in, to the slot
that the D-to-A is in. There is a simple
way of doing that:

POKE &HFF2F , ((X-1) * 16)
+(Y-1)

Where X is the slot number that the
controller is in (a number from 1 to 4),
and Y is the slot number that the D-to-
A converter is in.

102

verters work, I built two of them. I took
my machine language disassembler and
looked at how the program worked.
After a short time, I came up with a
stereo version. These are the pokes 1 did
to convert the Musica2 Play program to
use my stereo D-to-A converter:

POKE &H3FGF ,&HEG

POKE &H3F?3 ,&HEB

POKE &H3F??7 ,&HFD

POKE &H3F?79 ,&H40
SAVEM~MU2ST~,&8H3F 00, 8H3FBF,
&H3F 00

This will make the modifications
necessary to run it on my D-to-As and
save a copy of it to disk. A

The Hardware Project Basics Review

By Tony DiStefano

Rainbow Contributing Editor

ecently it was brought to my
Rattemion that some readers of

my column seem to be having a
bit of trouble constructing the projects.
When I bought my first CoCo, the first
thing 1 did when I got it home was take
the cover off to see what made it tick.
Ispent many hours inside the CoCo and
many hours reading technical manuals
on how the different components of a
computer work. I also spent alot of time
with a soldering iron, soldering things
together and taking them apart again.
In short, I have a lot of experience with
the CoCo and computers.

A lot of people use the CoCo as a
means to anend. They are not hardware
hackers. Other people are hobbyists
who want to dig in and learn all about
the insides of the computer. Whatever
background you have with computers,
or whatever electronics experience you
have, I am sure you will agree that
digging inside a computer requires a
little skill and a lot of patience. Here are
a few hints and tips on how to sucess-
fully complete a project.

The first and most important factor
to consider is the project itself. Ask
yourself, will it suit my needs? Is it
within my budget? Will I learn anything
from it? If all the answers are yes, then
you can proceed. Once you have de-
cided to tackie the project, you must
learn all you can about it before you
begin. It is important to read the whole
article before you start. Make sure you
understand the object of the project and
the skills required. If there are parts you
don’t understand, study them over and

Tony DiStefano is a well-known early
specialist in computer hardware pro-
Jects. He lives in Laval Ouest, Quebec. -

over. Refer to other articles of the same
nature or reference books that touch on
that subject. Technical data books are
readily available from your local elec-
tronics distributor. Texas Instruments
and Motorola have excellent books on
understanding microprocessors, as well
as technical data manuals. Never start
a project if you are not sure you can
finish it or if you do not fully under-
stand the whole project, start to finish.

Once you have read the article and
are confident you can finish it, the next
step is parts. Make a list of all the parts
you will need. Then do your shopping.
If you are missing a part or two, don’t

start the project. Not only is it frustrat-.

ing to have to stop because you are
missing a part, but you lose the momen-
tum of the project. Returning to a
project after a while may cause you to
skip a step. You may even lose interest
and give up the project all together. So
don’t start until all the parts are in.

Another point you must consider is
whether you have all the tools you need.
Projects that require you to build some
kind of hardware gizmo require tools.
Make sure you have all the tools neces-
sary to build your project. If mounting
parts requires you to drill a hole, make
sure you have the right size drill bit and
that it’s sharp. A sharp bit (or whatever
the tool) is easier to work with; you
dont have to force a sharp bit into a
sheet of metal. A dull bit will drift
before it cuts and may cause damage to
the project and to you.

When you are about to start a project,
take time to clear a good place to work.
The work area must be free for the
entire.time it takes to do the project. If

. itis going to take more than one day to

do, make sure that you will not need the
work place for something else. It is too

103

easy to lose or break something if you
have to put the computer and all the
loose parts aside to repair the toaster.
This way, you can continue exactly
where you left off. If the project has a
complex circuit or a lot of instructions,
it may be wise to photocopy the article
and staple the article together. This way
you don’t have to worry about getting
your magazine dirty, torn or worn.

OK, you have all the parts, a clean
workplace and all the tools necessary to
do the project. Take things one step at
a time. Build, cut, solder and do what-
ever is required of the project. At this
time, it may be wise to consider the well-
being of your computer. Some projects
may require you to cut, bend, or modify
the computer’s PCB (Printed Circuit
Board). Now, cutting a PCB may be
quite permanent. Before you cut, look
around to make sure you will not acci-
dentally cut other things. Also, make
your cut in a place that is accessible
enough that you can rewire that cut, if
you need to.

Removing ICs is a tricky task. There
are more versions of the CoCo than
there are versions of PacMan, and every
one of them is different. On the older
CoCo Is, almost all the chips are sock-
eted. The contrary is true for the newer
CoCo 3s; almost all the chips are sol-
dered directly to the PCB.

Special consideration must be given
to this situation. If the project requires
that you lift, bend or cut a pin on an IC
that is soldered in, you have two choic-
es. Both of them are a pain. The first
choice is to cut the pin and solder it to
the stub. If you don't do it right, the pin
will break off. Also be careful not to
short-circuit to the next pin.

The other way is a bit longer. It
requires ypu to completely remove the

chip, which is a very hard procedure to
follow. A lot of soldering experience is
required. Most people use a soldering
iron and some solder wick. Heat each
pin (one at a time) until the solder flows.
Remove the iron, lay the wick onto the
pin and press the iron on top. The wick
will draw the solder and leave the pin
and hole empty. Do each pin one at a
time. Then remove the chip and clean
the pins with the same stuff. Now, insert
a socket where the chip was and solder
it into place. Remember to position the
socket so that Pin I of the socket
matches Pin 1 of the chip.

When at all possible, if the instruc-
tions of the project require you to solder
to an IC or bend the pin of an IC, use
a socket instead. Remove the IC in
question, insert the IC into a good
quality socket and treat the pins of the
socket like the pins of the IC. This way,
if you break a pin off, all you have to
dois replace the socket and not the chip.

When you are finished, don’t jump
right in and try it. Take time to clean
up your bench, put your tools away and
check your work. Go over the project
step by step again. Make sure all wires
are properly soldered, components are
all in their proper places, and there are
no short circuits on your project. Before
you plug in your project, blow the dust
and shavings out of the computer. If you
don’t have anything to blow with, hold
the computer or project upside-down
and gently tap the bottom of the com-
puter. This will dislodge any bits of drill
shavings or wire that may have fallen
into the computer. Now put the thing
together and try it out.

Plug all connectors and wires in and
connect the power to the computer.
Turn the TV or monitor on first; do not
connect anything that is not necessary
for the operation of the project you are
testing. For instance, if you don’t need
to have the disk controller plugged in,
leave it out. Then if you do have a
problem, you will at least have saved
your controller from abuse. Turn the

“If you are certain
your work is good,
but it still doesn’t
function, look at the
circuit diagram.”

computer on and watch the monitor.
The familiar CoCo screen should ap-
pear. Pay close attention to the monitor;
if you suspect something is wrong, turn
the computer off right away.

Don’t panic! Go over your work step
by step. Check all your connections.
Check for chips that have been installed
backward, or transistors or diodes that
have been reversed. Depending on the
type of solder you use, a deposit will be
left behind after you solder. This can act
as a conductor at high CPU clock
speeds. It must be cleaned off. Use a
recommended flux remover. Re-
member, some of the stronger flux
remover can melt plastic. Don’t clean it
on your work table. Go outside or to the
sink in the laundry room.

If you are certain your work is good,

but it still doesn’t function, look at the
circuit diagram. There may be a way to
check only a section of the project at a
time. Fall back on the theory of the
circuit, and if you have some test equip-
ment, check for proper voltages on the
power supply and ground. If all else
fails, restore the computer to what it
was before you started and make sure
it still works. Once you know the com-
puter works, check the project carefully
and try it again.

A few articles ago, I showed you how
to interface the MC6847T1 chip into the
older CoCos. One of the chips required
rewiring. 1 had the diagram for the
computers 1 had, but not all of the
computers are the same. A couple of
readers sent me the pinouts to this chip.
I have not tried these out, but I am
passing them along to you anyway. You
are on your own to verify whether they
work.

The first is from John A. Lind of
Corona, Calif., whom I met at the Color
Expo 87. The computer in question is
the CoCo 2, Catalog No. 26-3127. The
board markings are 8709416 Rev B
DWG NO. 1700235. The jumpers for
the US (74L.S273) socket are as follows:

FROM TO
3 15
4 12
7 6
8 9
13 6
14 2
17 .19
18 16

1C8 = 8847
1C10 = 74LS273

CoCo-2 PAL version (boards numbered 20261027)

CoCo-1 E boards (boards numbered 8709137-E)

U7-8847
UB-74L 8273

ingide numbers are DIP hesder pin numbers
outside numbers are 74LS273 pin numbers

684771 DIP haad: GMIMTTT — :
or 7 repiaces 74L527)
(replaces 6847) (replaces 74L5273) trep 847) ¢)
(notich on the end
{notch on the end i (the 74L5273 nes a
nearest to pin 1) {the 74LS273 has a nearest to pin 1) notch at this end)
J, notch ai this end)
1 h 40 l
1 40 2 b 39
2 39 2 3 n 38 1 20
3 38 1 15 4 D 37 2 16 19
4 37 21 c 16 18 5 3 36 3 2 a c 15 18
5 36 3 2 15 32 6 b 3s 43 147
'y 35 c4 3 c 14 e 7 h 34 5 4 13 18
7 34 5 4 13 18 8 H 33 [] 12 18
8 a3 : : 12 1e ° b 32 7 6 114
9 2 " 1 bend up 7
bendup 4 7 103 10 = € pin 3 : ne
10 Ne— 1 s B 9 8 9 12
pin 31 9 8 g 12 bend up
penaup . 30 " 212 D 2 10 [o] n
pin12 12 » ° o 2 2
13 28 4 D 27
:: T 15 D 26
!) 8 0 25 soider & clipped-off pin
:g mmm’ r a :!:p'mm < it pin 17 24 1o this snd of the jumper
is end of jumper 18 t0 into the socket
18 10 plug into the socket 19 22: P *
21

inside numbers are DIP header pin numbers
outside numbers are 74LS273 pin numbers

104

Figure 1 shows Mr. Fox’s diagram on how to wire the
CoCo 1 ‘E’ board. Figure 2 shows how to wire the CoCo
2 PAL version. Thank you for these diagrams and infor-
mation; if I get more, I will pass them on to RAINBOW
readers.

Added notes: Pins 10, 11, and 20 are used for clock, +5V
and GND. No jumper to the SAM chip is necessary.

Zealand. Mr. Fox wrote: “Although your column did not
mention it, it is also necessary to bend up Pin 12 of the
6847T1 VDG as well as Pin 31. The reason is Pin 12 is
connected to Pin 37 (FS) on the CoCo’s main circuit board;
so if you jumper Pin 12 of the new VDG to Pin 10 (WE)
of the SAM, you will get contention between the VDG's
FS output and the SAM’s WE output.”

Q)

The second diagram is from Mr. Ralph Fox of New

An Expandable Relay Project

Camera, CoCo!” [Dec. '84]. It describes how to

hook up as many as eight lights to the CoCo and
have the computer control the on and off of each light. Ever
since then, I have been getting letters about it. Some of the
letters ask how to add more lights to the system, and other
letters ask how to connect relays and other devices to the
circuit.

Well, this article will answer a whole lot of letters with
a project that is similar to “Lights, Camera, CoCo!,” but
more expandable. The idea is to be able to put many relays
online to the computer and to be able to tell if the relay
is on or off.

The heart of the circuit is a TTL (Transistor-Transistor-
Logic) logic gate. 1 have talked about and used TTL logic
gates ever since | began writing articles, so they should not
be new to you. I have also used this particular chip many
times before. The chip is a 74LS138. Ah yes, the good ol’
138. It is a decoder — a three-input to eight-output decoder,
with three control lines. Remember binary counting? If we
have a three-bit number, it represents eight separate digits,
0 to 7. If we connect these three input bits to the lower three
address lines of the CPU, then the CPU can access eight
address locations.

Study the pinout of the 74L.S138 in Figure 1. Notice that
the three inputs are connected to three address lines of the
CPU. That determines the eight address locations to be
used. The CPU in the CoCo is an MC6809 and is capable
of accessing 64K locations of memory. We only want eight.
We can decode the other address lines to map only the eight
locations we need, or we can use the already-decoded
location in the computer.

This decoding is done'in the SAM chip inside the CoCo.
The pin that does this decoding is labeled “SCS” and is an
active low output. That means the pin is normally high and,
when aceessed, will go low. In this case, the pin will go low
when the CPU accesses memory locations $FF40 to SFFSF

’. bout two years ago, I wrote an article called “Lights,

Tony DiStefano is a well-known early specialist in computer
hardware projects. He lives in Laval Ouest, Quebec.

105

To 7 more TALSSTC chpe.
Locauom $Fe) 1o BFFa

¢ e3p9g89sg

8

Nuiows 0 10 § v The 10me a8 AV

Figure 1

(65344 to 65375 in decimal). This represents a memory area
of 32 bytes. If you have a disk drive system, it is reserved
for 1/O to the hardware of the drive. More on this later.
We use this pin to activate the 74L.S138. Since we only need
eight of the 32 locations, the other locations will become
mirror images of these eight locations and should not be
used.

The next connection we make is the R/W line. This
output line comes from the CPU and tells the hardware
whether the CPU is reading or writing. In this case, the pin
is high to read and low to write. Since our circuit controls
relays, the CPU need only be able to write. The last line
on the input side of the 74LS138 is connected to the E clock
of the CPU. The E clock is a signal generated by the CPU
to be used by hardware as a timing signal indicating when
the data is valid on a read or a write. The other eight pins
on this chip are outputs. Each of these output lines
represents one memory location and can controj one device.

Having eight locations means that you can control eight
devices.

The 74LS138 chip is used to decode eight memory
locations. Relax; we are getting closer to the relays. Now,
the data that goes around on the data bus is always
changing. The CPU is always busy. We need a component
that will hold the data we write to these locations and
remember it. This kind of part is called a latch. The one
I will use is a 74L.S374. It is an eight-bit latch.

Examine the 741.S374 in Figure 1. It has eight input bits
that are connected to the CPU data bus. It also has eight
output bits. These bits hold the value that is put into it when
the CPU writes to that location. The location is controlled
by the 74LS138. Each of these 374s has eight bits. Each of
these bits can control one device. For instance, a relay is
one device. However, the output of the 374 is not strong
enough to turn on a relay by itseif. A driver is needed. A
one-stage transistor will do in most cases. In the diagram,
only one circuit is shown, but it is to be repeated for every
relay to be used.

Finally, we get to the relays! The relay you use depends
on your needs. If you use the relay for very small current
applications, then a relay such as the Radio Shack No. 275-
243 will do. It will switch 2 amps and works directly off of
5 volts. If you need a higher capacity relay you must figure
out the details by yourself.

The transistor used in this circuit can handle about 30
volts and can sink about 200 mA. Overdriving the transistor
may damage it due to overheating. One 374 can control
eight transistors and eight relays. If you need more than
eight relays you must use another 74LS374. This will allow
you to connect eignt more relays and, tor every 374 you add,
another eight relays can be controlled. When I tried this
circuit, I used three 74LS374s but only eight relays.
Theoretically, you can connect up to 64 relays with this
circuit, but I am sure you would run into power supply
problems. You will have to drive the relays with a separate
power supply. ‘

So far, you can just write to the address locations that
control relays. The only way the software can find out which
relay is on is by keeping track of what value you stored in
that location. But, with a little more hardware, you can read
the memory locations and find out exactly which relay is
on and which relay is off. The only drawback to this is that
it limits the number of relays you can control to 32 instead
of the 64 write-only relays. The choice is yours to make.

Figure 2 shows how to make a relay system that allows
you to read the location as well as write to it. You will first
notice the changes to the 74L.S138. The A2 line is removed
and replaced with the read/ write line. This divides the eight
output lines of the 138 to four read lines and four write lines.
The four write lines connect to our transistor and relay
system just like before. But now we have four read lines.
We will need a different chip in order to read the output
of the 374s. There are many chips you can use; I chose the
741.S244. 1t is an eight-bit buffer with tri-state. The inputs
of the chip are connected to the outputs of the 374s. This
way, the CPU can see right away, by accessing a read to
the particular location, which relay is on or off by seeing
which bit is high or low. The outputs of the 244s are
connected to the CPU data bus. When the chip is selected
(by aread), the data that is on the input appears to the CPU.
It is as simple as that.

106

]
Connector . . v
£ @ vep— } 2 more THLSIT4
""———-j 028 | ygheme
o {1 L ek .
20 2 '
At LA e 3 more T4LS374
PRy Ha . NP }
‘"'h@ W
g + l 2 -
e =
o o Yo , ooft 2. 0
o1 1 ¢ o, o § 1
oe b2 18 D e o R
o |2 1 . b E
'™ 14 13 o 12 L]
o6 18 14 3 ~a L3
.u 16 17 o0 : uﬂl [}
or 12 19 orle Reloy 7
lm I,
) osv
pJ Ll
200 oo}
Boy 1 o1
Mo + oft
U] IR [
3 s ol
L] 2 o8 18
3 . oef
Bor o ot
L
Figure 2

Now for the software. As I said before, we are using the
SCS signal from the SAM chip. This signal-maps our relays
from $FF40 to $FFSF. If you are using the circuit in Figure
1, then the following structure is used:

Memory Location Write Only to Relays

$FF40 Relay 0to 7
$FF41 Relay 8to 15
$FF42 Relay 16 to 23
$FF43 Relay 24 to 31
$FF44 Relay 32 to 39
$FF45 Relay 40 to 47
$FF46 Relay 48 to 55
SFF47 Relay 56 to 63

These relays are always least significant bit first. For
example, relays 0 and 8 are on Data Bit D0 and relays 1|
and 9 are on Data Bit DI.

If you wired up the circuit in Figure 2, then it should look
like this:

Memory Location Read/Write to Relays

$FF40 Relay 0to 7
$FF41 Relay 8to 15
$FF42 Relay 16 to 23
$FF43 Relay 24 to 32

The memory locations from $FF44 to $FF47 are the same
as locations from $FF40 to $FF43, respectively.

Reading the locations $FF40 to $FF47 in Figure 1 is
allowed, ‘but the values you get will not be valid. To turn
one relay on or off you must store (POKE command in BASIC)
a value into one of the locations. What value you use
depends on where the relay is. If you want to turn on Relay
0, then you must store a value of 1 in that location. If, for

example, you also want Relay 3 on, you must add the value
of 8 to your previous value. Each bit value has a numeric
value. Remember the binary counting system; I told you it
would come up over and over again. I hope by now you
understand what binary is all about. Anyway, the values
associcated with each bit go like this:

Bit Number Decimal Value Hex Value
Do 1 I
Dl 2 2
D2 4 4
D3 8 8
D4 16 10
D5 32 20
D6 64 40
D7 128 80

The last thing I must talk about is the Multi-Pak
Interface. If you are using a Radio Shack Multi-Pak
Interface and a floppy disk controller, there is some

switching you must do first. The Multi-Pak has four slots.
Each of these slots has two memory-mapping pins. The first
is called the CTS pin. It is used to map up to 16K of memory
area. The software for the disk drives called DOS usually
resides there.

The second is the SCS pin we are using. The Muiti-Pak
has the capability of switching these signals to one of the
four slots. It also has the capability of switching them
separately. I mentioned earlier the hardware that controls
the disk drives uses this pin. It uses the SCS in the slot the
controller is in. If you want to use the relay complex with
the Multi-Pak and a disk drive controller, you will have to
do some switching before you use the relays. After you are
finished, switch back to the original slot. Place the disk
controller in Slot 4 and the relay complex in Slot 1. When
you want to use the relay complex you must first do the
command POKE &HFF2F , &H30.

When you are finished and want to use the drive again,
you must do the command POKE &HFF2F ,&H33. A

Cache

own computers, “What would you

like to add to your computer?”
Almost 80 percent of them said they
wanted more memory. This is a univer-
sal problem. It is not limited to just the
CoCo. The Apple, Commodore, Atari
and IBM PC owners all said that thay
wanted more memory, too. They want
itin whatever form they can get it: Main
memory, bank-switched memory,
RAM disk memory, ROM disk mem-
ory, ported memory — whatever the
format, they want more! Well, the CoCo
3 has up to 512K of memory bank-
switched into 8K blocks, we all know
that. RAM disk adapters are available
from several sources, including Disto
(me). ROM disks are not that popular
because they require an EPROM pro-
grammer and a knowledge of machine
language programming.

What is left is ported memory. Now
some people may say there is no differ-
ence between a RAM disk memory and
ported memory. And as far as the
hardware goes, there isn’t. The differ-
ence is all in the software. A RAM disk
and related software emulate a disk
drive. You read and write to the RAM
disk via files. To save data, you have to
open a file, output to it, then close the
file. When you want to retrieve data you
have to open the file again, read your
data and close it up when you are
finished. This process takes time. It also
uses the DOS (Disk Operating System).
Now, ported RAM is the same, but
since it doesn’t use the DOS, it is not

Irccently asked some people who

of the

restricted to using DOS and files.

You have to configure the use of the
ported RAM yourself. The ported
RAM you will see today is only 2K long.
That means you will have 2,048 bytes to
work with. Now, these bytes are only
eight bits wide. The CPU in the CoCo
can only handle eight bits at a time. So,
when you want to save a numerical
value, it can only be a number from 0
to 255. If you want to use numbers that
are greater, you must use more than that
one byte. For instance, if you want to
use a number from 0 to 65,535, you will
need two bytes. Or, if you want to use
a signed number (i.e., a number from
-32,767 to 32,767) you still need two
bytes.

If you need still bigger numbers, you
will have to go to a different type of
format. A floating-point number takes
up five bytes of memory for its mantissa
and exponent. An explanation of these
numbers goes beyond the scope of this
article; see a math book for more de-
tails. You can also store alphanumeric
characters. You need one byte for every
character you have to store.

Now let's talk about memory-
mapping. What, more memory-
mapping? I am starting to sound like a
broken record, but I still get a lot of
letters about this subject. So, here we go
again.

The CPU that is used in the CoCo is
an MC6809E. This CPU can directly
access only 64K of memory. In order to
access that much memory, the CPU has

107

Day

16 address lines. If you count in binary
numbers, 16 lines gives you 65,535
different locations, better known as 64K
memory. There are ways of fooling the
CPU into accessing more memory. The
technique is called page- or bank-
switching. Bank-switching means you
have more memory than the CPU can
use at one time, but the memory is
switched back and forth. An example is
the CoCo 3. It comes standard with
128K memory and is upgradable to
512K memory. How is this done?

There is a chip in the CoCo 3 called
the GIME. One of the functions of the
GIME is called an MMU or Memory
Management Unit.The MMU part of
the GIME has the job of accessing 512K
of memory and, at the request of the
CPU, accesses all of it a bit at a time.

A good illustration of this is a radio.
A radio can receive many stations, but
only one at a time. The CoCo 3 has the
equivalent of eight radios. Each radio
can tune in one station at a time. Each
radio (at the choice of the CPU) can
access the same station. In the CoCo 3,
each radio or page is 8K or 8192 bytes.
There are 64 of these pages in a 512K
CoCo 3 (8K x 64 = 5]12K). These eight
pages of 8K bytes represent 64K to the
CPU. There are eight control bytes in
the MMU for pages. Each byte tells the
MMU which page the CPU wants to
see. Changing the data in these bytes
changes which page the CPU can ac-
cess. That is how the CPU can access
more than 64K memory.

Now, what I am about to show you

is a mini-version of the MMU. Very
mini. For users of the CoCo 3 with 512K
of memory, this may not excite you, but
for the memory-poor CoCo 1 or 2 user,
a few extra bytes are always handy. The
amount of extra memory is only 2K
bytes. Not much by today’s standards,
but if you are working on that “does
everything” program and you need “just
a few more bytes” for something, this is
where you are going to find them. I say
mini because the “pages” are only 256
bytes long. With some special circuitry,
that means this only uses up one byte
of memory in the memory map. You
also need one control or address byte.
That is a total of two bytes in the
memory map. Not too bad for 2K of
memory. There is, however, a catch.
There are two ways of memory-

mapping this extra memory. The first is
to have a couple of latches that hold the
address of the memory. You set up the
address of the memory byte you want,
and then you read from, or write to, that
address. That is the fastest way to get
to any one byte, but you need to change
the address every time you want another
byte. The second way is to “auto-
increment” every time you access data.
For example, you read one byte, then
when you read that same location again,
you get Data Address 2; when you read
it again, you get Address 3 and so on,
until you get to the end of your memory.
This is faster than setting up the address
every time you need more data, but
slower when the data you need is at the
end of the file. If you are familiar with
the structure of BASIC files, the first is

COMPUTER
CONNECTOR

5V

GND

CRkE|oN e ad ®
]

o4 -~ I

A10 A9 A8

koo fon o= lofofxm

oo [~ (o] s vl -

e 3

19{22{23|

~fen

BN BN

RESET

__La

pXO

15
14

X1

&

A0

Figure 1

108

like a Random Access File and the
second is like a Sequential File. Both
have advantages and disadvantages.

What I have in mind is the best of
both worlds. A little bit of auto-
incrementing and a bit of address-
latching. This way, you auto-increment
by pages. I think a good auto-increment
value is 256 bytes. That just happens to
be the size of adisk sector. Ina 2K RAM
chip, there are eight 256-byte sectors,
which means you can have up to eight
pages of 256 bytes each. This is the basic
description of the hardware project |
have in mind for today. It is divided into
three parts. The first is the hardware,
the second is the memory-mapping of
the hardware and the third is the soft-
ware.

First, the hardware. In Figure 1, you
will find the schematic diagram of the
Memory Cache Project. The heart of
the project is an HM6116 memory chip.
This 1s a 2K-by-8-byte RAM (Random
Access Memory) CMOS memory chip.
It is made by virtually every memory
manufacturing company. The 6116
number will always be the same, but the
letters (which tell you which company
the part comes from) may change.

Attached to the lower eight address
lines is a binary counter. That is the
auto-incrementing part. Attached to the
upper address lines is a latch. That is the
direct access part of the circuit. The
fourth and fifth chips in the group are
decoder chips, which map the thing
properly.

The standard “‘project-building”
tools are necessary, but there is one
thing to remember. The memory chip |
used is a CMOS part. It is easily de-
stroyed by static electricity, so use a
static-free work place. Also use sockets
when trying out this circuit. It is better
than soldering the chips directly — if
you happen to burn one out, you won't
have to desolder and resolder. All of
these chips are available from your local
electronics shop or from CRC Inc. The
project board (to build your circuit on)
can also be obtained from CRC Inc.

‘The second part of this project is
memory-mapping. The circuit in Figure
I is mapped at $FF40 (65344). That, as
you know by now, is where the disk
drive and controller are mapped. If you
have a multipack interface, it is not too
bad; you can switch the multipack to the
different slot and work with the extra !
memory from there.

If you only have a ‘Y" cable, then the
circuit in Figure 1 won’t work. You need
the second part. Figure 2 contains a
circuit that decodes the address bus of

the CPU and maps it into a different
place. It re-maps the address of $FF40
(65344) to $SFF74 (65396), leaving
$FF40 free for the disk drive. This area
of the memory map may be used by
other products, so watch out for mem-
ory conflicts.

Finally, the software. It is not hard to
access this memory cache. It is in two
parts. The first part is to set up which
of the eight pages you want to use. You
do this by storing the page value at the
base location. An example of this in
BASIC is POKE X , A4, where Xis the base
address. The base address is $FF40
(65344) if you are using just the circuit
in Figure 1 and $FF74 (65396) if you are
also using the circuit in Figure 2. The
value A is the page number you want
to access.

The second part is reading data or
writing data into the 256-byte block.
Remember, it is auto-incrementing and
you have to access it 256 times to get to
the last byte. An example of writing to
the page in BASIC is:

1000 FOR /=1 TO 256
1010 POKE Y , A([)
1029 NEXT /

where / is your 256 auto-increment
value. Y 1s your base address + | and
A([7) 1s an array of data 256 bytes long,
which must be previously defined. To
read the block in BASIC, use this exam-
ple:

2000 FOR /=1 T0 256
2010 A(/) = PEEK (Y)
2020 NEXT [

where / is again your auto-increment
value, Y is the base address + |, and
A(l) 1s your data array. Remember,
though, this is just an example of how
to read and write data to the RAM
cache, just to show you how it is done.

You can use any method you choose.
One point to keep in mind: Before you
access a page, you must store the proper
page number in the base address. This
also clears your auto-increment counter
to make sure you start at the right place.
You wouldn’t want to start in the mid-
dle.

If you have a problem with the circuit
or want to make a comment on my
projects, send me your letter along with
a self-addressed, stamped envelope to
me in care of RAINBOW, and I will get
you an answer as soon as possible.
(Please remember: no envelope, no
answer.)

COMPUTER (?
CONNECTOR 16
el 6 .
a7|28 4 4
Azj22 3 L
a1l2 2 ? viE e NEWXO
AoH 1 3
] 8 oyl e NEWX!
*5v@_? T
GNDP33 i
A5} !
aral38 2
aval3l 3
Ar2p2L 4
Al30 5 g
Arok22 6
aol28 7 9
sl 10 7408133
6|25 11 ?5
A5 24 12
Aal23 13
A2} - L
L
Figure 2 A

109

Clever Uses for Memory

any years ago, when the
CoCo first came out, I was
studying the memory map of

the CoCo’s CPU. 1 had only 4K of
memory then, but soon realized that
this CPU could access a lot more. In
fact, everyone should know by now that
the CPU in the CoCo can access 64K
of memory.

1 soon upgraded to 16K; that was
easy. Then 1 read an article about
upgrading the CoCo to 32K using a
technique called “piggyback.” That was
wonderful. I now had a full 32K. Re-
member, this was before the time of 64K
chips. 1 also had BASIC and Extended
BASIC. That was another 16K, making
a total of 48K of memory. There was
16K left, which was reserved for the
cartridge slot. I started to wonder how
I could put more memory in there. I
now have a CoCo 3 with 512K, and 1
am still asking myself the same ques-
tion!

I looked in what were then the latest
catalogs on memory chips and came
across a memory chip called a 2114,
This is a 1K- by four-bit static RAM
chip. Static RAM means it does not
have to be refreshed as does dynamic
RAM. It took two of these chips to
make 1K of RAM. But I was desperate
for more RAM, so I bought 16 of them,
hoping to make an 8K RAM module for
the CoCo cartridge slot.

After many hours of work over a hot
soldering iron, I managed to make this
8K module work. It was mapped from
$C000 to SDFFF. (For you people who
still think in decimal, from 49152 to
57343.) It was great; | was the only kid

Tony DiStefano is a well-known early
specialist in computer hardware proj-
ects. He lives in Laval Ouest, Quebec.

By Tony DiStefano

on the block to have that memory. I had
many hours of fun with it.

Then came the 64K memory, and out
went the 32K piggyback memory: A
little bit of modification to the board
and a little bit of wiring to the 74L.S02,
and presto — 64K of memory. That was
great, but when it came time to use my
8K RAM module, it didn’t work any-
more. What the heck, I had 64K, so I
just left it. Then I got my disk drive. It
connected to the cartridge slot and there
was no longer room for my 8K module.
I put it on a shelf, where it gathered dust
for many years.

Just the other day, I was working on
something that required a little bit of
memory that was protected. By pro-
tected, I mean I could not write to it
when I needed. That is not the case of
the CoCo in the 64K mode. You can
write to anywhere in 64K when in the
“All-RAM” mode. I thought of using an
EPROM. It would certainly do the job,
but an EPROM is a lot of trouble. You
have to get out the EPROM burner, run
the EPROM software, and erase it
every time you have to start anew.

Well, this wouldn’t do, so I went over
to my long-term storage bin and pulled
out my old 8K RAM module. With a
bit of modification, I could make my
RAM module into a ROM module,
with just a switch to control it. Great
idea — only one problem.

When it came time to write to the 8K
module, nothing worked. I couldn’t
figure it out. Why wasn’t I able to write
to the cartridge area? After a long look
at the CoCo schematic, I figured it out.
When I had added the 64K memory
chips, I had done a modification using
the 74LS02. That modification pre-
vented the CoCo from writing to the
cartridge slot area. I was in trouble; my

110

Rainbow Contributing Editor

little 8K module was now useless.

After some thought, I came up with
a solution. It required a little bit of
circuitry, but I was able to write to the
cartridge area. For the circuit I am
presenting here, I didn’t want to use 16
chips to make 8K of memory, so I
looked into my newest catalog and
found one chip that replaced all 16 of
the old memory chips. This chip is a
6264, which 1s an 8K- by eight-bit
memory chip all rolled into one chip;
my, how technology has advanced!

Building this circuit is a two-step
process. With the proper hardware, I set
up a one-byte read/write memory latch
and a flip-flop, mapped at $FF40.
Remember them, way back when I was
explaining about TTL gates? The first
step is to store or poke a value into the
one-byte memory. I used a 741.8374 for
this, which is an octal latch. When you
store the eight-bit value to that latch,
you also preset half of a 741.S74. This
is a D-type flip-flop with preset and
clear. The output of this flip-flop goes
to one side of a dual-input OR gate. You
now have a valid byte in the latch and
have flipped the flip-flop.

The second step is to read a byte from
the 8K module. Remember that this
read is to the non-writable area from
$C000 to SDFFF, where the module is,
The read does two things; first, it selects
the 8K module. You are reading this
location using a load or a peek com-
mand. But, if you look at the circuit in
Figure 1, you will see that the output of
the OR gate goes to the R/ W (read/
write) line of the memory. Normally,
when you read from this location, the
R/W line is high, which puts the chip
in the read mode. Now that the flip-flop
is flipped, however, the R/ W line will
go low when you read from the area. So,

the memory chip goes into the write
mode.

But, the CPU is reading, and if the
CPU is reading and the memory chip is
writing, where does the data come
from? Well, remember the latch? The
output of the OR gate is also connected
to the Output Enable of our latch. The
memory chip gets its data from the
latch, which is putting its data on the
bus. There is no conflict because noth-
ing else is putting anything on the bus;
the CPU is reading and the memory
chip wants data in the write mode. This
action causes the data that we put into
the latch to be put into the memory
chip. That is how you write to an area
of memory that is not writable. To end
things, when we are finished reading, or
should I say writing, the flip-flop is
flopped back to the original state.

To summarize, every time you want
to write to a location from $C000 to
$DFFF, you must first store or poke
that data to $FF40. That loads up the

latch and flips the flip-flop. Then, read
the location you wanted to write to, to
transfer the data into it. That’s all there
1s to it! By the way, it is automatically
write-protected. You can’t write to it
and change the data — that is why I
made this in the first place.

Now for the construction of the
project. There are only four parts to it,
as you can see from the schematic in
Figure 1. In the case of the 74LS74 and
the 74L.S32, unmarked pins are unused.
Here is a list of connections to the chips
that connect +5V and GND:

IC# Name +5V GND
Ul 6264 28 14
U2 74LS374 20 10
U3 741832 14 7
U4 74L.S74 14 7

It is recommended that you put all of
these chips into sockets because if you
make a mistake and burn out one of

them, it is a real pain to unsolder all the
connections. You will also need a board
to mount the parts on. You can get such
a board from C.R.C. Computers Inc.,
(514) 383-5293. In fact, they have all the
parts you need. The standard project
building tools are necessary for this
project.

A note to people who are using a
Multi-Pak: In order to use this module
with the Multi-Pak, you must set the
switch to the slot that the module is in.
If you have a disk controller and are
using Disk Extended BASIC, you can
switch to the modules slot by software,
but you will lose Disk BASIC software,
and the computer will crash. A good
knowledge of machine language pro-
gramming and Disk Extended BASIC is
necessary to avoid crashing. The same
goes with the CoCo 3. You can use it
with the CoCo 3, but you must know
how to switch into the ROM/RAM
mode. Again, a knowledge of the ma-
chine is necessary. a

COCO BUS
CONNECTOR

U1
191 a0 DO 2
A1 01
2 a2 o2 H
A3 032
A4 Da e
21 A5 05 &
2 as 06
A7 D7
AB
2 AS
A1
+3v A11
A2
20 ! msT
'—'_—_2‘5"27 cs2
—__"!‘_ﬁ
2288 \
6264
2] p
ACS32
scs 36 .
CTs 32
. U4A
2o ¢ o=
o g @
3 ek
= -1
74LS74
1
+5v
Figure 1

111

Building an EPROM

little while ago, I had to develop
Asomc software that would runin

an EPROM in the CoCo. So, 1
took out my EPROM programmer and
a few blank EPROMs and started to
work. Soon after, I ran out of blank
EPROMs and had to wait for my eraser
to do its work. What a drag.

I started thinking that there must be
something I could do about this. The
easiest way to solve my problem was to
buy a whole lot of EPROMs. It was a
quick solution, but the problem was
only delayed. And it was also costly. |
sat and thought about it for a while,
then came up with this idea. Why not
build something that wouid take the
place of an EPROM and not take so
long to erase?

I had to make some type of RAM that
looked and programmed just like an
EPROM. RAM does not need to be
erased. You just have to write over the
top of it and, bang, it is done. If you
have a choice of programming times (or
can get into the program to change it),
you can save a lot of time programming
the emulator, too. While it takes time
to program an EPROM, you can do an
EPROM emulator in no time flat.

What about this chip? It shouldn’t be
too hard to do these days, with the
amount of memory chips available. So
I looked into my favorite memory
reference manual for some ideas. The
EPROM 1 wanted to emulate was the
2764. 1 use them a lot and they are quite
popular. The 2764 is an 8K-by-8
EPROM in a 28-pin package. I had to
find the closest match possible.

After looking through the memory

Tony DiStefano is a well-known early
specialist in computer hardware proj-
ects. He lives in Laval Ouest, Quebec.

Emulator

By Tony DiStefano

Rainbow Contributing Editor

manual, I found an almost perfect chip.
It is an 8K-by-8 Static RAM chip in a
28-pin package. I couldn’t have come
closer if I'd designed it myself. Next, I
needed to find some pins that matched.
I looked up the pinout for the 2764,
compared the two and, presto, found an
almost pin-for-pin match. What is this
mystery chip? It’s a 6264. Many com-
panies make it, and it’s not expensive.

That is the first part. But what about
retention? As soon as you power down
static RAM, you have no more memory.
Now you need a battery (a small coin-
size battery will do) and a little bit of
support circuitry.

Figure 1 shows a diagram for an
EPROM emulator. It takes an 8K
RAM chip and a battery and turns it
into an EPROM. The circuit is quite
simple, but still needs some explana-
tion. Also the construction of this is a
bit tricky. I will start with the circuit and

finish with construction tips.

But first, you must remember that
you are working with CMOS memory
chips. These are very sensitive to static
electricity. Your work area must be
static free, and the best way is with a
static-free mat. If you don’t have one,
take the following precautions. Don't
wear running shoes on a shag carpet; it’s
better if the room is damp; and before
you start to work, ground yourself by
touching a water pipe. I also recom-
mend that you use a grounded soldering
iron. You will need just the standard
project building kit for this one.

In Figure 1, you will notice that Ul
is the RAM chip. To access 8K of
memory, you need 13 address lines, AQ
to Al2. These lines are directly con-
nected to the socket. Instead of drawing
each wire separately, they are tied into
what is known as a bus. The bus is
indicated by a dark line. When members

o1 R3
A D10DE 30K

"1
270 onma Ra

47K

!5. b
M

NPN

2
€8 onme

o2
D100€E

- 8T
—— BATTERY

=

A 16
Yo A 134 vobld
v1 a 8 Y
3 op e va
nTi ancT

Figure 1: EPROM Emulator

112

go in and out of the bus, they have a
name. Members of the same name
connect together. For instance, A2 on
the 6264 connects to A2 of the 2764
socket and so on. All of the eight data
lines are also connected together.

In order for the RAM chip to retain
its data, it must be kept powered at all
times. This is where the battery comes
in. It keeps the power to the chip at all
times. The battery also keeps U3, R4
and Q1 (via R3) powered by way of D2.
This way the memory chip cannot lose
data. But this presents another prob-
lem. Touching the pins of a powered
chip may change the contents of its
memory. If you happen to touch the R/
W line and the CE line, you've just
changed memory, and you can’t afford
to change even one bit. The rest of the
circuit is dedicated to protecting the
memory.

When the emulator is powered from
the 2764 socket (i.e., it is in circuit and
the circuit is on), D1 is forward biased
and conducting, and D2 is reversed
biased and is shut off. The LED D3 is
on and supplies base current to Q1, and
Qlisconducting and brings Pin 1 of the
74HC139 low. This pin is the enable to
half of a 2 to 4 decoder. Many different
kinds of chips will work here, but 1
picked this one because it is easy to get.
With this chip enabled, the CE of the
2764 will pass through and enable the
RAM chip. When there is no power to
the 2764 socket, D2 is forward biased
and keeps power to the RAM chip. On
the other hand, D1 is reversed biased
and is shut down. This turns off the
LED and QI no longer gets base current
and becomes high impedance. This lets
Pin 1 of U3 go high. That disables the
chip, and when the chip is disabled, you
cannot change its data.

R4 is used to tie the R/ W line of the
RAM so that it defaults to a read
operation. This is so that no writes to

memory can be made when the power
changes from external to battery or vice
versa. The jumper J1 protects the chip
from writes. When you are program-
ming the emulator, you must have that
jumper in. But, when it is time to use
the emulator, you must remove this
jumper. Again, this is another method
to prevent writing to the RAM chip
when you don’t want to.

The other half of the 74HC139 is not
used. The inputs are just tied high. This
is necessary to prevent the chip from
doing things on its own, like oscillating
by itself and using up power for noth-
ing. The ground connections to the 1Cs
are not shown. You must connect Pin
14 of Ul and Pin 8 of U3 to Pin 14 of
the 2764 socket U2. Normally, the
power connections to these chips are
not shown, but in order to get the power
to the right places, I put in wires. Also,
it may seem that not all pins are con-
nected from the RAM chip to the
EPROM socket; it is true, a couple are
missing. Don’t worry about it because
they are not connected (N/C).

All the parts should be available at
your local electronics parts shop. There
are no hard-to-get parts. Your local
Radio Shack store may have most of the
parts, but not all. Note, R1 and R2 are
in a delicate circuit and should not be
substituted for a “close” value. QI is any
“high gain” switching transistor such as
a 2N2222 or a 2N3904. The battery
voltage is about 3.6 volts. It can be just
one or a combination of many, as long
as it is about the right voltage. If you
decide to use rechargeable batteries, a
300 ohm resistor across D2 will re-
charge them when the emulator is in
use. The diodes should be low-leakage
types with low, forward-voltage drop.

As far as the construction of the unit
goes, I used one trick that works well.
You need a printed circuit protoboard.
1didn’t have any around, so I cut a piece

of protoboard from one of my previous
projects. If you don’t have one, Radio
Shack does. You need one that’s about
2 by 3 inches. You can cut it down to
size later. It is better if you get the kind
that does not have any bus lines. Get the
type that has just pads; it is easier to
work with.

Now, for the socket. There are many
techniques, but the way I do it is quite
simple. Take a 28-pin socket made for
wire wrapping. Insert the socket half-
way into the protoboard and solder all
the pins. This way you get a 28-pin
socket on top and a 28-pin “plug” on the
bottom to put into your EPROM pro-
grammer. After all the pins are soldered,
locate all the pins that are not the same
on both. Solder a piece of wire just
under the top socket. Solder another
piece of wire to the bottom of the pin.
Now cut the wire in between the two
wires. This way, you get a clean cut
without reheating the pin and taking a
chance that the solder melts and the pin
goes crooked.

If you write a lot of machine language
programs that run in ROM or
EPROM, this emulator will save you
hours of time. Using the emulator is
quite simple. After the construction is
made, remove the jumper J1. Plug the
emulator in an EPROM programmer
and set the programmer for 2764. Insert
the jumper and program the emulator.
Normally, it takes a few minutes to
program. It takes time for the EPROM
circuits to change those 1Is to 0s. But, it
doesn’t take any time to program RAM.
If you can find where in the software the
program delays are, change them to 0.
You will see a great improvement in the
time it takes to program the thing. Now,
remove the jumper and remove the
emulator. All you have to do is insert
the emulator into a 2764 socket and you
have the equivalent of a 2764
EPROM. "~

Dissecting the Disk

Controller

113

WDIN— 1 20 b— vCC
02— 2 w 1904
N/C— 1 40— vDD 03— 3 D 18 — LATE
WE— 2 29— INTRQ . 01— 4 1 17 b— EARLY
€§—3 38 —DRQ STB—{ 5 6 16 }—~vCO
RE— 4 . 37 —DDEN WDOUT— 6 g 15 |— DDEN
AD—] 5 b 36 |— WPRT WG— 7 1 14 }—PD
Al—] 6 ; 35 }—iP WF/VFOE— 8 13p—PU
Do— 7 7 34}—TROO TG43— 9 12 —RCLK
D1—{8 N 33 —~WF/FOE VvSS—{ 10 11— ADD
D29 3 32 b~READY
03— 10 31 —WD 8
D4— 1 ; 30 —WG
ps—12 ., 29 —TG43
06— 13 28 F—HLD s w 18- vce
07— 14 27 |—RAW READ 04l 2 5 170w
STEP—{ 15 26 —RCLK P - 16 b— 04 PW
oRC — 16 25 RG 03— 4] 15 l— 03 PW
! EARLY — 17 24 F-CiLK i s 14 }— 02 PW
LATE —) 18 BrHLT 02—{6 3 1Bl-01PW
MR — 19 22 —TEST 51— 7 - 12 —ne
vss — 20 21 —vee 01—8 0 11 —STBIN
A GND—{9 1 10 P—~NC
[¢]
Figure 1

1 — NC. This pin has to be left N/
C though it connects to a back
bias generator.

2 — WE. The Write Enable pin tells
the FDC to write data.

3 — CS. The Chip Select is used to
map the FDC into the CPU’s
memory area.

4 — RE. The Read Enable pin tells
the FDC that a read cycle is being
done.

" 5 and 6 — A0 and Al. Two address
lines select one of the four regis-
ters of the FDC.

7 to 14 — DO to D7. The eight data
lines that transfer data to and
from the FDC and the CPU.

.15 — STEP. This output steps the

3

disk drive to the next track.

16 — DIRC. This output tells the disk
drive which direction to step.

17 — EARLY. This indicates an early
write precompensation.

18 — LATE. This indicates a late
write precompensation.

19 — MR. A low on this pin resets
the FDC completely.

20 — VSS. This line is the ground line
for the FDC.

2] — VCC.This line requires +5 volts.

22 — TEST. This pin is used for
testing and should be kept high
during normal operation.

23 — HLT. The Head Load Timing
signal is high when the head is
engaged.

24 — CLK. This input requires a free-
running IMHz. clock.

25 — RG. The Read Gate is used to
synchronize the external data
separators.

26 — RCLK. The Read Clock is a
square-wave signal derived from
the data stream.

27 — RAW READ. Data stream
directly from the drive.

28 — HLD. Head Load controls the
loading of the disk head against
the floppy disk.

29 — TG43. This outputs tells the
support circuits that the head is
sitting on a track greater than 43
(for 80-track drives).

30 — WG. Tells the drive that a write
is to be done.

31 — WD. The Write Data output
contains the data and address
marks to be written to the drive.

32 — READY. The Ready input telis
the FDC that the disk is ready for
a read or_a write operation.

33 — WF/VFOE. A bi-directional
signal. When WG=0, a low will
terminate any write command.
When WG=1, this pin remains low
until the end of the data field.

34 — TROO. This input tells the FDC
when the head is positioned over
Track 0.

35 — IP. This Index Pulse input tells
the FDC that the index hole has
just gone by.

36 — WPRT. The Write Protect
input tells FDC that you cannot
write to the disk.

37 — DDEN. Double Density pin
tells the FDC if you want double
or single density.

38 — DRQ. This output indicates
that the FDC is ready for another
byte in the write mode and that the
buffer is full in the read mode.

39 — INTRQ. The Interrupt Request
indicates that any command has
been finished.

40 — Vdd. This input requires +12
volts.

little over a year ago, I started
Aa series of articles describing the

LSI (Large Scale Integrated)
circuit chips of the CoCo. There was the
CPU, the SAM, the PIAs and the VDG
along with a whole lot of other TTL
support chips. One thing that I did not
touch upon is the disk controller. The
controller from Radio Shack also has
some LSI chips. In fact, the first Radio

Shack controller, Catalog No. 26-3022,
used a three-chip set. The later con-
trollers used more up-to-date parts.
What I intend to do this month is to
describe the older controller and the
newer controller. In both cases, you will
learn more about the FDC (Floppy
Disk Controller).

The controller chip that Radio Shack
used in their first controller is a part

114

.made by Western Digital. The FD1793-
'02 is a floppy disk formatter/controller.

That means that the controller can
format a disk as well as read and write
to it. This chip had many features: soft
sector format compatibility, automatic
track seek with verification, single and
double density, and IBM 3740 and 34
densities, just to name a few. This was
a wonderful chip. It came in a 40-pin

1 — CS. The Chip Select is used to
map the FDC into the CPU’s
memory area.

2 — RW. The Read/Write pin tells
the FDC what cycle is being done.

3 and 4 — A0 and Al. Two address
lines select one of the four regis-
ters of the FDC.

5to 12 — DO to D7. The eight data
lines that transfer data to and
from the FCD and the CPU.

13 — MR. A low on this pin resets
the FDC.

14 — GND. The ground return for all
signals.

15 — Vcc. Power supply of +5 volts
only.

16 — STEP. This output steps the
disk drive to the next track.

17 — DIRC. This output tells the disk
drive which direction to step.

18 — CLK. This clock input requires
an 8MHz. clock.

19 — RD. This input requires raw
data from the disk drive.

20 — PRECOMP. This input tells the

FDC when to use the write pre-

compensation circuit.
21 — WG. Tells the drive that a write
is to be done.

22 — WD. The Write Data output -
contains the data and address
marks to be written to the drive.

23 — TROO. This input tells the FDC
when the head is positioned over
Track 0.

24 — IP. This Index Pulse input tells
the FDC that the index hole has
just gone by.

25 — WPRT. The Write Protect
input tells FDC that you cannot
write to the disk.

26 — DDEN. Double Density pin

tells the FDC if you want double

or single density.

27 — DRQ. This output indicates

package, very compact for its day. But
it required at least two other support
thips — the WDI1691 Data Separator
and the WD2143-0]1 Four Phase Clock
Generator. Together these three chips
and a half-dozen or so other support
chips made up the controller. The power
requirements for this setup is 5 volts and
12 volts.

The chips in Figure 1 are the pinouts
of the three Western Digital parts that
make up the heart of the controller
followed by a pin-by-pin description of
the FD1793-02 controller. Overlines
indicate that the signal is an active low
pin.

The other two chips are used to
support the FDC. They connect to each
other in various ways and connect to
other TTL circuitry. It would be a little
100 long to explain each pin of these two
chips and maybe even useless. Yes,
useless, because the three-chip FDC
combination is now obsolete. Western
Digital has since redesigned the FD1793
and made a new chip called the
WD1773. This chip has the WDI1691
and the WD2143 built right into the new
FDC. That’s right, three chips in one.
Another welcomed feature of the
WD1773 is that it does not require +12
volts. It will run on a +5 volt supply
only.

This development was great for
Radio Shack because they had just
released the new CoCo 2. It was smaller,
lighter and less expensive than the
CoCo 1. Following the new CoCo 2
came a new controller. Radio Shack had
to come up with a new controller that
did not use +12 volts. It was easy with
the new FDC. Not only did it not use
+12 volts but was less expensive than the
older three-chip set. It also required less

support circuitry. Another plus for the
new FDC was that it did not have any
adjustments. The older 1793 had three
trim pot adjustments.

This new controller was great all
around. Less money, no +12 volts, only
one part, and no adjustments. It also
had one more feature: It came in a 28-
pin package. Figure 2 shows the pinout
of the WD1773 and a pin-by-pin des-
cription. Notice that functionally, the
parts in Figure 1 and Figure 2 are the
same.

Since the introduction of this new
FDC chip, many companies have used
it to make their own version of Radio
Shack’s controller. Though the exact
circuitry may vary from design to de-
sign, they have to follow certain rules.
First, the FDC has to be mapped to the
same memory area. That requires some
sort of memory-mapping chips. The
way in which the FDC and the CPU
transfer data has to be the same if it is
to be compatible.

The technique used in a Radio Shack
or compatible controller to transfer
data (a complete sector) is not too
difficult to understand. It starts off with
the CPU setting up the FDC registers
for the right track and sector. It then
turns on the proper drive motor and
drive select. Next, it gives the read or
write sector command to the FDC. It
checks to see that everything is all right,
then, it flips the bit that halts it. This is
done by hardware that pulls the HALT
line of the CPU low. When the FDC has
data ready or needs data from the CPU,
it unhalts the CPU via the DRQ line of
the FDC. The CPU then stores that byte
of data into memory on a read or fetches
another byte from memory on a write
and then halts itself again. This proce-

115

that the FDC is ready for
another byte in the write mode
and that the buffer is full in the
read mode. :

28 — INTRQ. The Interrupt Re-
quest indicates that any com-
mand has been finished.

3 1 28 — INTRQ
RW —{ 2 27 — DRQ
A0 — 3 w 26 — DDEN
A1~ 4 D 25 — WPRT
00—5 1 24— 1P
D1 —6 7 23 }— TROO
D2 —7 7 22 WD
D3 — 8 3 21 — WG
D4 ~19 - 20 |~ PRECOMP
D5 = 10 0 19 f—AD
" 0 18 |— CLK
12 17 = DIRC
13 16 t— STEP
14 15 }— vCC
Figure 2

dure is repeated until all the data of that
sector is transferred. At this point the
FDC fires the INTRQ); this signal is
connected to the IRQ of the CPU. The
IRQ routine then gets the CPU out of
this loop and continues to the rest of the
read/ write sector software.

This procedure is the same for all
controllers that hook to the CoCo.
Until now that is. Disto is soon to
announce a new controller called the
Super Controller I1. This controller will
do everything the Radio Shack con-
troller can and more. It also has a

different way to transfer data. It has
built-in RAM memory and the support
circuitry to transfer data to and from
this RAM without the use of the CPU.
In the OS-9 operating system, this is a
big boost. Data 1s transferred without
the use of the HALT line. The CPU

does not have to mask the interrupts.
That means that once the CPU gives the
command to the FDC, it is free to do
other things and return to get the data
when the FDC is finished. That means
no more missed characters on the key-
board when a disk operation is running.

Information for this column was
taken from Srorage Management Pro-
ducts Handbook 1986, Western Digital
Corporation, Literature Department,
Irvine, California, and Color Comput-
er Disk Interface, Tandy Corporation,
Fort Worth, Texas. "

A New, Improved Printer

Rainbow Contributing Editor

from a 4K CoCo 1 to a 512K CoCo

3. BASIC has improved from ho-
hum simple Color BASIC to Extended
Color BASIC, to Disk Extended Color
BASIC. That is some improvement. The
hardware has gotten faster and the
software has gotten better. There is, and
always will be, a close relationship
between software and hardware. It’s a
closed loop. The hardware cannot work
without the software and the software
cannot work without the hardware.
This is where 1 sometimes have a di-
lemma. I have many ideas for hardware,
yet do not have the time or the skill to
implement the proper software.

DOS (Disk Operating System) or, for
that matter, any software in ROM
(Read Only Memory) is a lot harder to
deal with than software in RAM (Ran-
dom Access Memory). This is because
ROM cannot be changed, but RAM
can be. So, if there’s a little piece of
hardware you want to add on, it must
be supported by software. To add on
some hardware, you can plug it into the
cartridge slot or you can plug it into a
multipack. If you are like me, you can
also solder it right in. All you need is
the hardware.

The software, on the other hand, can
be loaded from cassette or disk, or typed
in from the keyboard (if it is not too
long). But, whatever the method, soft-

Ihavc watched our computer grow

Ton)f DiStefano is a well-known early
specialist in computer hardware proj-
ects. He lives in Laval Quest, Quebec.

Adapter

By Tony DiStefano

ware may cause you problems. If it
resides in memory, no matter where it
1s, it will be erased by something else.
Inthe CoCo 1,2 and 3, thereis only 32K
of memory available for BASIC pro-
grams. The other 32K is reserved for
BASIC itself. In the case of the CoCo |
and 2, this 32K of memory space is
taken up by ROMs.

If, for example, you want to make
changes to BASIC, you need to have 64K
of memory. Then you need a routine to
transfer ROM into RAM. Only then
can you make changes to BASIC. For
instance, if you don’t like the word
PRINT you can change it to SPLAT. If
you want to change a routine, it can be
done. Of course, you will need some
knowledge of how BASIC works. But the
fact is you can do it.

When the CoCo 3 came out, good ol’
Radio Shack made it a little easier for
us. First, the CoCo 3 comes with lots of
memory — a whole 128K of it. But
BASIC can still use only 32K. The main
difference is that BASIC itself isin RAM,
which makes it a lot easier to modify.
There is one less step to do in the CoCo
3. Also, since it comes with all CoCo 3s,
there is no problem with, “Will it work
with mine?” And it doesn’t use up
memory for BASIC programs.

Now it comes down to, “What am |
going to do with this?” Well, a while
back, I made a parallel printer port that
plugs into the cartridge port. It was a
PIA (Peripheral Interface Adapter).
There were a couple of things wrong
with this adapter. First, if you had a disk

116

drive attached to your computer, it
didn’t work. Second, it had to be re-
initialized every time you pressed the
reset button. And the CoCo 3 was not
available then, so you needed driver
software, which was always in the
wrong place.

This time 1 am making a new parallel
printer adapter — a better one, in many
ways. First, it will be inside the CoCo.
Second, since I am not using a PIA, it
will not be necessary to re-initialize after
a reset. And, if you are installing it in
the CoCo 3, which always works in the
all-RAM mode, the driver will not be
erased by other software. The rest of
this month’s article will be taken up by
the construction of the adapter board
itself, and next month we’ll finish by
hooking it up to a printer and a software
driver.

As you can see in Figure 1, this is not
a big project. It only requires three
chips. I did it this way because I did not
want to use a 40-pin PIA chip, for a
couple of reasons. I've already discussed
one reason; the other is size (the smaller
the better). I think it is a little cheaper,
too, and those are magic words. Any-
way, the first chip is an eight-bit latch.
It is used to latch the data that is to be
printed. Without a latch, the data would
not be held long enough for the printer
to receive it. The chip I used in this case
is the same chip Radio Shack’s newest
controller uses to set the active drive. It
is the 741.8273.

The second chip in the circuit is a tri-
state buffer. Before data can be sent to

a printer, it is up to the software driver
to determine that the printer is not busy.
This is done with software that reads the
busy line on the printer. The second chip
in the circuit is connected to the busy
line of the printer. The output of this
buffer is connected to Bit 7 of the data
bus. When a READ to that memory
location is done, the status of the printer
is easily known. The chip in question is
a 74LS125.

The third chip in the circuit is very
important. Itis used to memory map the
printer data latch and the busy indicator
into the picture. The chip I used for this
is a 74L.S139. It is a dual 2-to-4 decoder.
Memory mapping extra devices into the
CoCo’s memory area is a very delicate
operation. There are not very many
locations available that don’t violate
someone’s real estate.

But, I have a trick up my sleeve. The
1/O area used for the disk drive hard-

- ware is mapped from $FF40 (65344) to
$FF5F (65375). That area takes up 32
bytes. You need only five of those 32
bytes to operate the disk drive. The
other bytes are wasted because they are
mirrored. “Mirrored” means you access
more than one byte but get the same
hardware being activated. In the case of
the CoCo’s map, the five bytes are all
located between $FF40 and SFF4F
(65359). The first thing this chip does is
separate the upper half of the 1/0 area
from the lower half. This is done using
half of the 74L.S139. It separates the
SCS line into two sections. The first
section, $FF40 to $FF4F, will go to the
disk controller. That is needed if you are
to use a disk drive. We will use the
second section for the printer 1/O.

The second half of this chip is used
to further decode the section into two
more sections. The first of the two
sections is used for data. This signal is
also used to strobe the data into the
printer. This is done by running a line
from this output to the Strobe input of
the printer. The second section is used
for the busy line. It is used to activate
one of the tri-state buffers of the
741.S125. The other buffers of this chip
are not used.

To recap, the new memory map looks
like this: The untouched area is from
SFF40 to SFF4F. This area has to go to
the disk drive. The next area is $FF50,
which is used for the data latch. Finally,
the third area is $FF58, and it is used
to monitor the busy signal.

Constructing this board is not a big
deal. You will need the three chips
mentioned above. It is recommended
that you use sockets for the chips (a

PRINTER
CONNECTOR

M1
o1 a
1 D2 02
03 @3
Da Qa
o5 as
D6 Q&
D> a7 .
e De Qe d
? 11 cux k) £l
v&C [Adcin .
TALSETS uz2a
7485125
<=Emﬂ—l qL
-
1
<z R &{s vob-#
-] Y1
Ye
<FLERE—— s ¥3
. TalE1d
SEE TEXT
-
S8 opt
YR
39 ¢ ¥3
4ALS$
Figure 1

20-, a 16- and a 14-pin socket). You will
also need a small board to mount the
chips on. The way I decided to put it in,
the PCB will not need an EDGE con-
nector. A 2-inch by 3-inch board is more
than enough to fit all the parts on.
Radio Shack has such a board.

As usual, there is more than one way
to skin a cat. Some may like to solder
directly, and some may prefer to use
connectors. This time I'll use a connec-
tor for the output and direct wiring for
the input. As a connector for the output,
I used a dual in-line header. This is a
connector that has two rows of pins that
are spaced at one-tenth inches between
the rows and at one-tenth inches be-
tween the pins. You will need a 26-pin
connector.

The connector should mount on the
same side as the components. It is
numbered as follows. Look at the pins
lengthwise. Pin 1 is the bottom left-
hand pin. Continue counting counter-
clockwise till you get them all. See
Figure 2 for its position. All pins not
mentioned are N/C. The construction
of the board is simple and requires only
the standard project kit. In Figure 1 the
5 volts and ground pins are not indi-
cated. The following is a list of the §
volts and ground connections:

IC +5 Volts GND
74L.S273 20 10
74LS125 14 7
7415139 16 8

Also not shown on the schematic are
three decoupling capacitors. The value
of the caps is one-tenth uf at 25 volts.
They go between +5 volts and ground,

117

U3

CONNECTOR
PIN #26

\'
0 [
J e\

T
PIN #1

PIN #13

Figure 2

o

and as close to the chips as possible.
These caps are used to decouple the
supply to the chips. There is one more
thing to do. Since the SCS line has to
be decoded to a different state, it has to
be cut. The best place to cut the line is
right at the connector. In fact, that is the
best place to get all of the signals —
right at the connector. Use the connec-
tor numbers, but solder the wires di-
rectly to the connector on the inside.

Cut the connector and pry the two
ends apart so they do not touch. The
end that goes to the connector is the
SCSOUT and the side that goes to the
PCB is the SCS. Build the circuit first,
then connect the wires to the connector.
Make the wires as short as possible so
that they won’t be in the way of any-
thing. Use four plastic screws and some
rubber cement to fix the board to the
computer.

Next month I'll finish up by making
and installing the printer cable and
getting the different drivers for CoCos
1,2 and 3. A

Finishing the Printer Adapter

ast month I started something I

I now have to finish, a parallel

printer adapter for your CoCo —
something internal to your CoCo that
will give you a parallel printer port
without using a Multi-Pak or special
controller.

Last month was the hardware side of
this two-part project, which I'll review
quickly. A small PCB that goes inside
your computer has three ICs on it and
connects to the inside of the cartridge
connector. It also has a 36-pin connec-
tor. This connector can be connected to
any Centronics type parallel printer.
The hardware uses two bytes to talk to
the printer. The first, at SFFS0, is the
latch to which the character to be
printed 1s located. The second, located
at $FFS8, is a readable bit that shows
the state of the printer, busy or not busy.
The data at the latch is auto-strobing,
which means the second the data is
latched, the printer is told about it. You
don’t have to strobe the printer sepa-
rately.

This month I will do two things: first,
I'll describe how to build (or buy) a
printer cable; second, I'll describe the
software required to drive this parallel
port.

You can get the cable in one of two
ways. The simple way is to run to your
local Radio Shack and buy a cable. Just
ask for a cable to connect a Model 100
computer to any Radio Shack paraliel
printer (Catalog Number 26-1409).

Tony DiStefano is a well-known early
specialist in computer hardware proj-
ects. He lives in Laval Ouest, Quebec.

“With the proper
driver, the parallel
printer adapter
would work with all

0S-9 software.”

The second way is a bit harder but
also less expensive. You need three
parts: a 36-pin ribbon printer connector

(Radio Shack carries it, but at a stiff
price), a length of 26-conductor ribbon
wire (if you cannot get a 26-conductor,

NAM POUT

ORG $29228

LDX $168

STX PT2+1,PCR
LEAX POUT1,PCR
STX $168

LDA #$39

STA START,PCR
RTS

START

POUT1 ©PSHS B
LDB $6F
CMPB #SFE
PULS B
BEQ POUT2
PT2 JMP $CB4A

POUT2 TST $FF58
BMI POUT2
STA SFF5g
LEAS 2,S
PSHS B
CMPA #$¢D
BEQ POUT3
INC $9C
LDB $9C
CMPB $9B
BLO POUT4
CLR $9C
PULS B, PC

POUT3
POUT4

END

Figure 1: Driver routine for any CoCo

RTS

FOR PRINTER

IS IT CR?

YES

INC CHR COUNT

CHECK END OF PRINT LINE
END?

NO

RESET CHR COUNT

ORG S$A2F7

FCB $21

ORG $A2C3

POUT TST
BMI
STA
JMP

SFF58
POUT

SFF5g
SA2DF

Figure 2: Driver routine for CoCo 3 only

CODE FOR BRN

PRINTER BUSY
YES

PRINTER DATA
CONTINUE

118

get a higher number and split the dif-
ference. A common ribbon wire avail-
able is a 25-wire. This will do just fine
since the 26th wire is not used. Just
make sure that the missing wire is not
on the pin number 1 side), and a female
26-pin dual inline header. To assemble
the cable, start by locating pin number
1 on both connectors. Usually, the
ribbon wire will come with a red stripe
on the side. Line up Pin 1 of one con-
nector to the red stripe. Push the wire
into the connector and crimp the con-
nector. Be careful that the wires align up
with the connector teeth. Next, do the
same thing with the other connector.
That's it, your cable is done. Now it’s
time to get into that “Do | really have
t0?” part of the project, yes, the soft-
ware.

Deep in the ROMs of the CoCo lies
software. This software is called BASIC,
Extended BASIC and Disk BASIC. Also
in these ROMs are drivers that control
the computer. Reading the keyboard,
displaying a character on the video
screen, getting a file from disk and
printing a character on a printer are all
software functions built into these
ROMs. These functions are sometimes
called Basic Input Output Subroutines,
or B10S, for short.

In the case of the CoCo’s printer
routine, it is in the BASIC ROM. With-
out going into too many details, the
printer routine has what is called a
RAM HOOK. If you look in the “Ma-
chine Language Subroutines” section of

your BASIC manual, you will find one
routine that is called CHROUT. This
routine will output a character to the
device specified by the contents of a byte
in memory. The value of that byte will
determine which device the character
will be sent to. If that value is -2 or $FE

as a signed eight-bit integer. that char-
acter i1s destined for the printer. But

before this character is sent to the
printer routine, it goes through the
RAM HOOK. This is a few bytes in
RAM that, if changed, can re-route the
character to your own driver. This is
where my routine comes in.

Look at Figure I, the driver routine
for my parallel printer port. It will work
with any CoCo. I wrote it using the
Micro-Works editor/assembler. You
may have to change some things around
if you use another package. The first
part, called Start, initializes the soft-
ware by changing the RAM HOOK to

POUTI. It then puts an RTS at the
beginning of the routine so it cannot be
done again. The new printer routine
starts at POUT! and checks the device
number to see if the character in ques-
tion is for the printer. If it is not, the
routine continues to where it would
normally go had we not changed the
RAM HOOK. If the character is for the
printer, the routine then moves to
POUT?2, where the printer is tested to
see if it is busy. If it is busy, the software
waits in a loop until the printer is free.
If the printer is not connected, the
software will wait forever.

After it is established that the printer
is no longer busy, the software proceeds
by sending the character to the printer.
By now you would think that your job
is finished. No way, there’s a little more
to go. First, we get rid of the return
address, because the character has been
processed and must return to whatever
software called the printer routine to
begin with, avoiding the serial printer
routine.

To stay compatible with the regular
printer routine, this software must do
one more thing — deal with carriage
returns. There are two variables used
with the regular printer routine: charac-
ter count and printer line length. Every
time a character is output to the printer,
the character count is incremented and
checked with the printer line length. If
it is equal, it is then cleared. When a
carriage return is issued, the character
count is again cleared. You may ask
yourself what use this routine might
have. Well, the printer routine itself
does not use it, but other routines like
TAB use these variables. After all this is
taken care of, the routine is finished and
returns to its caller.

A few notes to this program are
necessary at this time. If you noticed, at
the beginning of the routine there is an
ORG statement. This tells the assembler
where the software is to be loaded in
memory. The value after the ORG state-
ment is 0 to make things a little easier
for the user. While the program will not
function properly when it is assembled,
calculation of the offset is made easier.

The loading address of a machine
language consists of adding its regular
address to the offset. If the regular
address is 0, then the offset address
becomes the loading address. It is up to
the user to determine where this routine
must end. Usually, machine language

119

routines are loaded in the top portion
of memory, protected by the CLEARR
command. An offset address must be
used, in any case. Another point to this
driver is that while all BASIC programs
should work fine, machine language
programs that choose to ignore RAM
HOOKS will not work. The reason is
simple —the program does not use the
hook; therefore, there is no way that the
program will know you have added the
extra hardware.

If you use a higher level of software
such as OS-9, with the proper driver, the
parallel printer adapter would work
with all OS-9 software. But, unfortu-
nately, | know little about OS-9 drivers.
If there is someone out there who knows
enough about it and can write such a
driver, send it to me, via THE RAINBOW.
I’ll check it out, and if it works fine, I'll
print it in a future issue.

Figure 2 is another printer driver with
a twist. It works only with the CoCo 3.
You see, the CoCo 3 always works in the
all-RAM mode. When you turn the
computer on, it transfers all the ROM
data into RAM. While it is impossible
to write to ROM, it is possible to write
to RAM. This routine is in two parts.
The first part is one byte long and
checks to see if the serial printer is ready.
We don’t need this with the parallel
port; this byte defeats that routine. The
second part is the printer driver itself.
It is not very long — it does not need
to be. First of all, it is loaded directly
on top of the old serial driver. It does
not need to be relocated in memory, nor
does it need to be hooked into the RAM
HOOK. Next, it does not need to check
to see if the character is for the printer;
if the software gets this far, it has
already determined that it is for the
printer. And finally, it does not have to
deal with carriage returns, because the
rest of the routine does that for you.
Another advantage to this is that more
machine language programs will work,
because it is at the address normally
taken up by the serial driver.

Again, some notes for this driver are
necessary. The assembler I used for this
routine allows for more than one ORG
value. Many assemblers allow this, but
the area in between must not be filled
with zeros if your assembler does not
allow it. You can poke the value into
memory. Enjoy your parallel print-
ing!

)

Light up the controller as it writes to disk

Beginners — Add an LED

to Your Controller

hinking about the Princeton
I RAINBOWfest still excites me.
If this RAINBOWfest is any
indication of how the CoCo is doing,
then long live the CoCo! This show was
one of the best I've been to in a long
time. The CoCo 3 seems to be doing
very well. There were lots of new things
for the CoCo 3 — both hardware and
software. Look forward to seeing a few
projects from me for the CoCo 3. 1
talked to a lot of people who read this
column, and I would like to thank all
my readers for their support, without
which | would have stopped writing a
long time ago.

Talking to RAINBOWfest goers gave
me a few insights on the direction this
column is heading. I received a lot of
requests for “simple-to-do projects.”
Some people want to build something
useful. Others say they want challenging
projects. Well, why don’t you send me
your “Hardware Projects Wish List™?
I'll look them over and make the ones
I think other people might like. Send
them to THE RAINBOW, with attention to
me or “Turn of the Screw.”

This month, as | promised several
readers, [am doing a beginnérs project.
In the past, 1 have done LED (Light
Emitting Diodes) projects that have lit
up just about everything on the CoCo.
1 even did a project that lit up different
colors on your disk drive when you
accessed different sides of your drive.
Well, I'm doing another LED project,

Tony DiStefano is a well-known early
specialist in computer hardware proj-
ects. He lives in Laval Ouest, Quebec.

By Tony DiStefano

Rainbow Contributing Editor

one I saw done on a disk controller a
long time ago and have not seen since:
an LED to indicate when the disk
controller is writing to the disk.

This is a simple project requiring a
minimum amount of tools and parts.
The parts are available at your local
Radio Shack, and there are only two
needed. The first, of course, is an LED.
Radio Shack has lots of them. I suggest
you buy one that comes with its own
panel-mount holder, as it is easier to
install. The other part is a resistor.
That’s it — a simple project that costs
under a dollar.

Before 1 get into the construction of
the project, let’s look into the theory of
the LED. Figure 1 is the electrical
diagram of an LED. An LED, as the
name implies, is first a diode. A diode
is an electronic component that lets
current flow in only one direction; let’s
call it the positive direction, which is
shown by the arrow in Figure I. The
diode presents little resistance to the
current flow. When the diode is con-
ducting, it is said to be “Forward Bi-
ased.”

In the other direction, the negative
direction, the diode presents a high
resistance. Current does not flow
through the diode in the negative direc-
tion. When this happens, the diode is
considered to be “Reversed Biased.”
When a light emitting diode is forward
biased, it emits light. Quite simple, isn’t
it?

When an LED is forward biased, it
conducts current. If we were to put an
LED, forward biased, across the 5 volts
found in the CoCo, it would cause
trouble. The diode would act like a

120

short and cause the 5 volts to blow a
fuse, as well as the LED itself.

N7

Figure 1

We need something to limit the
amount of current flowing through the
LED. This is where the resistor comes
in. Current flow is measured in amps.
A typical LED can handle up to 50ma.
The term “ma” stands for “milliamp.”
It means 1/1,000th of an amp. To have
50ma means to have 50/1,000ths of an
amp, or .05 amp. Without getting into
too many formulas, we want the LED
to have about 10ma. The formula for
calculating resistance from volitage and
current is R = V / 1, where the voltage
(V) is 5 volts and the current (I) is 10ma.
The resistance is S00 ohms. The closest
value for this resistance that Radio
Shack has is 470 ohms, which will do
just fine. So, to recap the parts, you will
need one LED with panel-mount holder
and one resistor, 470 ohms !4 watt.

Next, you will need some tools. Not
many are required, but check to make
sure you have them all before you start.
There is nothing more frustrating than

starting a project and finding out that
you are missing something. You need a
soldering iron and solder, cutter/
strippers, screwdriver (to match the
screws that open your controlier), and
a drill and bit (to match the size of the
LED mounting hardware). You will
also need a few pieces of thin wire and
electrical tape or shrink tubing.

Now we have all the parts and theory
we need to start. It’s time to get prac-
tical. In the controller circuit, there is an
output that tells the disk drive hardware
to go into the record or write mode.
Like other signals that control the disk
drive, it must reach the drive itself, This
is done by the 34-wire connecting rib-
bon cable that plugs into the end of the
controller. We will monitor this write
signal with our LED. We want to hook
up our LED so that it lights up when
the controller is writing to the disk. The
write signal is on Pin 24. This signal is
available many places in the controller,
but I chose this one because it is the only
place common to all controliers, Disto,
Radio Shack or any other.

When the controllerisidle or reading,
the level on Pin 24 is high, about 5 volts.
When the controller is writing, the pin
i1s low, or ground-level. We want to
hook up our LED and resistor in such
a way that the LED is on when this
signal is low. Before reading on, think
about it and try to design it by yourself.
Does your design look like the one in
Figure 2? If it does, reward yourself with
a visit to the fridge. If it doesn’t, study
the circuit and see where you went
wrong.

Here is the theory behind why I wired
it up this way: As I stated previously,
when the controller is reading, the
signal i1s high (5 volts). The LED is also
hooked up to S volts. Disregarding the
resistor, if a diode (or our LED) has 5

volts on both sides, it cannot have any
current flow. Therefore, the LED is off.

Pin 9
Computer Side

:

Pin 24
Drive Side

Figure 2

When the controller is writing, the
signal is low. When the diode has 5 volts
on one side and ground on the other
side, it becomes forward biased and
conducts. Therefore, the LED is on and
shines brightly.

OK! Time to start constructing. Turn
the computer off and remove the con-
troller from the computer. Remove the
controller’s cover using the proper
screwdriver. Locate Pin 24 on the con-
nector that connects to the drives.
Locating this pin may be a bit of a pain.
On the top part of the connector are all
the odd numbers. On the bottom part
are all the even numbers. So, unless you
can see where the pin leads, you will
have to remove the controller from the
bottom part of the case to get to Pin 24.

121

If you are looking at the bottom part
of the connector, and the connector is
pointing upward, Pin 2 of the connector
is on your right. Count by two toward
the left until you reach 24. Solder a piece
of wire to that pin. Make sure you
solder at the base of the pin and not at
the tip. You will not be able to plug in
the connector, otherwise. Run the wire
out over the side of the controller and
replace the bottom cover. Make sure the
wire is long enough to reach the LED.
Cut the ends of the resistor to leave just
enough room to solder. Solder the wire
to one end of the resistor. Solder the
other end of the resistor to the short lead
of the LED. Now solder another short
piece of wire to the long end of the LED.

At this point you must find 5 volts
somewhere. One place where I know
that all controllers must have S volts is
at the connector that plugs into the
controller: on Pin 9 of the connector. It
is on the top this time. Pin 1 of the
computer connector is on the same side
as Pin 1 of the drive connector. Solder
the wire that comes from the LED to
this pin on the computer side of the
connector. That is all the soldering you
have to do. Use black tape or shrink
tubing to hide all of the exposed wires,
including the resistor.

The only thing you have left to do is
mount the LED. Find a suitable place
on the cover to mount it. But you have
to be able to see it when the controller
is plugged into the computer, and the
back side of the LED cannot touch the
controller. If you have a Multi-Pak, you
may want to make your hole on the end
of the controller, so that the LED will
be pointing up when it is plugged into
the Multi-Pak.

Now close up the cover, and test it
out. Set up your system and turn it on.
Make sure you get your normal mes-
sage. Put a blank or otherwise “non-
useful” disk in the drive. If this circuit
doesn’ work right, you don’t want to
destroy a good disk. If all is OK, try
entering DIR. The LED should not
come on. If all is OK, try using DSKINI
to format the disk. The LED should go
on and blink for every track the con-
troller formats. If the controller formats
the disk properly and the LED works,
allis OK. If not, go back and check your
work. If you cannot find anything
wrong, try reversing the LED. It may be
in backward.

Enjoy your new LED. I hope you
have learned a little more about the
hardware in your computer. Till next
time. Don’t forget to send in that
“Hardware Projects Wish List.” A

the September 1987 issue of
InRAlNBOW (Page 150), 1 wrote

an article on how to build an
EPROM emulator using a RAM chip
backed up with a battery. That was all
well and good, and 1 thought that was
the end of that. But it wasn’t. A reader
calied me up and told me about his
problem with the emulator — he had a
problem erasing it.

A regular EPROM has a specific
method of erasing — you need an
EPROM eraser. All EPROMs have a
window on top that allows you access
to the chip’s memory cells. Exposing
that window to ultraviolet light erases
all data in the EPROM.

When an EPROM is new, and every
time you erase it, the EPROM memory
cells contain “logical 1™; or, in the case
of an eight-bit EPROM, a Hex value of
$FF (that is. eight logical high levels).
When you program an EPROM, the
logical 1 changes to a logical 0. And
there is only one way the programmer
can change that cell back to a logical |
— use an eraser.

Since the chip I used was a RAM
instead of an EPROM, my EPROM
emulator had no window. You could not
erase it with an EPROM eraser, but that
did not seem to be a problem. Unlike
an EPROM, a RAM chip cell can be
changed to a logical 1 just by writing to
it. In most cases, all you had to do was
plug the RAM-based EPROM emula-
tor and run the programmer software.
No problem, the emulator was pro-
grammed.

There are always exceptions to the
rule. In sync with today's world of
“faster is better,” the people who wrote
EPROM programmer software were
looking for faster ways to program an
EPROM, each cell of which has to be
programmed separately. Each EPROM
cell takes a small fraction of a second
to program, which does not seem like
a very long time; but with EPROMs
getting bigger and bigger, those “frac-
tions™ add up, and it takes longer and
longer to program them.

The software experts thought of one
way to shorten the programming time:
Since an EPROM contains all $FFs
when it is new and just after it is erased,

Tony DiStefano is a well-known early
specialist in computer hardware proj-
ecis. He lives in Laval Quest, Quebec.

Build an . . .

Electronic

EPROM

Emulator
Eraser

By Tony DiStefano
Rainbow Contributing Editor

why not use that fact when program-
ming? So, when the software is pro-
gramming an EPROM., it first checks to
see if the present data byte to be pro-
grammed is $FF. If it is, the software
doesn’t bother to program that byte, as
it 1s already an $FF on the EPROM.
Instead, it goes on to the next byte. The
more $FFs there are in the data to be
programmed, the faster it goes. Makes
sense, doesn’t 1t? Right! To further
aggravate the problem, some EPROM
programmers check for $FFs and won't
even start if your EPROM isn’t right.

Now, that is a problem. You can't
erase the EPROM emulator with an
eraser, and you can’t program $FFsinto
it. You can’t even unplug the battery to
let the memory “forget™; that would
make the EPROM emulator all zeros.
What are you to do? Well, here is the
answer. Build an Electronic EPROM
Emulator Eraser. Wow, what a mouth-
ful! But it will solve your problem.

Building It

To start with, you will need the
standard tools you usually use on a
project: soldering iron, solder, cutters,
screwdrivers and the like. The parts list
shows you what you will need. Some of
these parts are not available at your
local Radio Shack store, but they

122

should all be available at a good elec-
tronics store.

Note that this project does not have
to be plugged into a CoCo to work, and
is completely self-contained. However,
it does need a S-volt supply. If you build
it on a CoCo-compatible proto-board,
you can get 5 volts from the CoCo’s
power supply. The 5-volt supply is
available on Pin 9, and ground is on Pin
33.

First, let’s start off with some theory.
The EPROM emulator is mainly a
RAM chip, so let’s review our knowl-.
edge of RAM chips. Basically, this
RAM chip has 13 address lines (AQ to
A12), eight data lines (DO to D7), one
read/write line and some ChipEnable
lines. Since this chip is emulating an
EPROM, all lines are about the same
except for the read/write line. It
changes to the program (PGM) line.
What we have to do is program the chip
for $FFs, so all DRTA lines are tied to
Vec, which is § volts and logical 1, using
the PGM pin (See Figure 1) to strobe
this data (always $FF) to the chip.

Every memory location has to be
programmed this way. The easiest way
to access every location is to do them
in sequence, one at a time. For that you
need some binary counters. Two of
them will have enough bits to cover all
addresses. In fact, if you study Figure
I, you will see the counters I am using
are 74L.S393. Each of these packages
have two 4-bit counters. I am using two
chips to give us a total of 16 bits. That
is more than enough for us to use.

Setting up these counters is quite
easy. The last bit of the first counter, Qb
(most significant bit), connects to the
clock of the next, and this is repeated
two more times to include all counters.
The clock to the counter comes from a
free-running clock. The LMS555 is a
versatile timer that can be used as a “one
shot™ or resettable timer, but I am using
it as a free-running timer. That means
that the output clocks high and low
continuously, which is necessary in our
case.

So, the output of the 555 is connected
to the clock of the first counter. The
clear (CLR) of the counters and the
reset (R) of the 555 are connected
together to an RC constant, which is
Just a capacitor that charges through a
resistor. When you first turn the power
on, the cap is discharged. Therefore, the

vece

o
5
C r—
12/ cLR oo B
‘> aCS393
R4
1K
D1
r Leo
N

Figure 1

utA .
dpa oA l-3
R3 as =
ac
1ox CLR QD] V%?C
vCcC che
c3 10 "SA% oo 12
_] tuf R2 125a oaHd R 3 l:;‘ P
= 2.2k 08 —g _l 51 A2 02 -1
} & ac p— l A3 031 2——
— Oy 320 cLr oo 8 L S aq 04—
2 R 5383 | i ra NG 05 3 F——
-2l R a2 R4 ETS ERIAY 06 13—
| 7 2.2k A 25147 07+
| e ' O £
v THR |- &) <l Al0
c1 “.E_‘ ¢ c2 GC —2 J ERRAY
o.1uf T~ L T “Tue CLR GDFE ool A12 1
= LM5S5 = 245383 gg £
27
f&a——‘ PGW \
L 13ba oAl 1 | veP
a8 2764

555 and the counter are held inactive.
When the cap charges to 5 volts, it
activates the 555 and counters. This is
done in order to give the power supply
time to stabilize and to make sure that
all the chips are properly powered
before starting. It also clears all the
counters 10 zeros.

Once the power is stabilized and the
reset releases, the 555 starts to clock.
That starts the counters. If you notice,
the first bit is connected to the PGM pin
of our 2764 socket. That programs (or
pulses) the data ($FF) into each chip.
The next 13 bits of the counter are
connected to address lines. It should be
clear to you by now that all address lines
have to be used.

The next bit on our counters is con-
nected to an LED and a resistor. Last
month I covered the theory on LEDs,
so everyone should be up on it. This
LED is used as an indicator to tell you
that the process is finished. If you let the
process continue, the LED will go off
again and then on again. This will not
hurt the chip, but it is not necessary to
do it twice — once is enough.

Constructing the project is not too
hard. It is recommended that you use
sockets for all the chips. Use a 28-pin,
ZIF socket for the 2764. If your budget
does not allow for one, use a good
quality socket, at least. Some of the
cheap sockets are good only for one or
two insertions. Figure | shows all
connections except power and ground.

The following is a power and ground
connection list for this project:

Chip Number Power (5v) Ground
Ul 14 7
U2 14 7
U3 8 1
2764 28 14

It would be a good idea to run a few
tests before you plug the EPROM
emulator into the eraser. Turn the
power on and check with a digital probe
or meter to see if the 555 is working and
if all the address lines are clocking. You
should also see if the LED lights up after
awhile. Check for the proper 5 volts and
ground on the 2764 socket. That should
be all there is to it.

Erasing an EPROM emulator is
simple. With the power to the eraser

123

turned off, insert the EPROM emula-
tor. Turn the power on until you see the
LED go on. Then turn the power off
and remove the EPROM emulator.

And that’s that. O

Part Description

U1 74LS 2393

u2 74LS 293

U3 LM 555

C1 Auf25V

C2 Auf 25V

C3 Auf 25V

R1 22K %W

R2 22K Va W

R3 10K % W

R4 1K %W

D1 Red LED

Parts List o

long time ago, when computers
Afor the consumer were just start-

ing to come on the market, large
amounts of memory were unheard of.
My first computer was a Sinclair ZX-
80. It had only 1K of Random Access
Memory, or RAM.

RAM is a temporary storage place
for data — as long as the computer is
on, RAM will remember what is put
into it. When you first power up a
computer, RAM has no set pattern. The
data in it is not valid data. When you
turn the computer off, all RAM data is
lost.

Anyway, imagine only 1,024 bytes of
memory, and half of that used for video
display — a far cry from our present
CoCos. BASIC was in Read-Only Mem-
ory, or ROM, and that was a whopping
4K ROM at that. Later, they came out
with 8K of ROM, which was a big
improvement.

ROM is memory that has been per-
manently etched into the chip at the
factory. It cannot be changed or lost.
When you power up with ROM, instant
data (or a program) appears. Every
computer needs a bit of ROM (no pun
intended). How much is a “bit™? Well,
that all depends on what that ROM has
to do.

When a computer is first powered up,
a hardware reset line delays the start of
the CPU until the power supply is
stable. Then, when the reset line lets go,
the first thing the CPU does is load a
starting address from a predetermined
area of memory. It loads this address
into its program counter and then starts
to execute the code pointed to by this
program counter. Now, what is wrong
with this picture? If this area of memory
i1s RAM, we're in trouble. On power-up,
RAM has no definite pattern; the CPU
would certainly get confused and hang
up. But if ROM were there in place of
RAM, then the CPU would see valid
code and run merrily on its way. Hurray
for ROM!

ROM is great — instant software,
and no way to lose it. But for hackers
like you and me, ROM is a downer.
Why? For the same reason that makes
ROM great — it locks us in. It cannot

Tony DiStefano is a well-known early
specialist in computer hardware proj-
ects. He lives in Laval Ouest, Quebec.

Bigger
and

Better
Eproms

By Tony DiStefano
Rainbow Contributing Editor

be changed. The code that is in a ROM
is for keeps.

The manufacturer of ROMs saw a
need for the user to be able to program
his or her own ROM. From that need
came the PROM. The PROM is a
Programmable ROM. In other words,
a PROM is a blank ROM. A special
device lets you program your own data
code into the PROM. That was great,
but if you made an error in your code,
you had to throw that chip away and
start with a new one. The chip was fine
for small runs of a proven code: It had
all the advantages of ROM and none of
the high costs of mask programming a
ROM.

But there remained a need for a
reusable chip that was easy to program.
The EPROM was introduced — an
erasable PROM. Just what the doctor
ordered. Easy to use, inexpensive and
able to be used over and over again.
When [first started learning about
computers, [wanted to customize mine.
When 1 turned it on, 1 wanted it to say
“Hl TONY.” It was that desire that
made me want to learn more about
EPROMs.

Back then, the most capacious
EPROM I could find was only a 2K by
8-bit EPROM. Its part number was
2716. The “16™ represents the number of
bits in that chip. There are 16K (16
thousand) bits. Most microprocessors
then were only eight bits wide, so

124

EPROMs were also eight bits wide.
Dividing 16,000 bits into 8-bit-wide
bytes gave us 2K (2,000) bytes of mem-
ory. But that was then, and this is now.
As technology improved, so did
EPROM capacities. After the 2716
came the 2732. Yes, you guessed it, the
2732 has 32K bits or 4K by 8 bits —
twice the capacity of the 2716.

Still improving, technology then
allowed for a reasonably priced 2764.
To me that was the breakthrough, a 64K
bit EPROM and 8K to play with. This
was great because it was the same size
as the BASIC, Extended BASIC and the
Disk BASIC ROMs to EPROMs. I was
able to customize these ROMs with
EPROMs.

Things didn’t stop there. The prices
for these EPROMs started very high,
but soon dropped very fast. Again, the
industry came out with another
EPROM — another doubling of capac-
ity. Yes, a 27128, a whole 16K of data
in one chip. Impressive as it was, it did
not stop there. Next came the 27256 and
then the 27512. The 27256 is a 32K
EPROM and the 27512 is a 64K
EPROM. Just think of it. The 6809
CPU inside the CoCo can access 64K of
memory — that is the whole 6809’
memory address in one chip! If you
think back to the 2716, it would take 32
of these memory chips to make up the
capacity of one 27512. I know that
manufacturers are making 231024s,
which are 128K by 8-bit ROMs (but I
don’t think they have them in EPROMs
— just yet, anyway).

The Project

What can you do with these bigger
and better EPROMSs? Well, I have a few
ideas. The easiest place to put EPROMs

11
AD 00
—2 A1 01 He-
—Z1a3 ospPEE
A3 03 |-
—&iAs oams-
A =
4 2]
AB 08 =e—
—21 A7 o7 18
A9
..Z.%. A10
A12
S5
—J—LXPP
2764
Figure 1

>>»
-0
[a] o]
-0
s |
W

L
e

ity

PGM
VPP

27128

Figure 2

191 a0 oo |11
- o1 H£
——-5—~7 A2 02 ——3—5
-5 - o3 &=

A4 04 KN

— a2 o8 e-

A 06 &

31 A7 o7 18
i
—&3 1 a11
A12

26 1 a13
‘20

55 CE

11 vep
27256
Figure 3

>>>»
wih=
000
wN-
q.F" iF,,H:

>
(1)}
[e)
(1]
)

s LI

27812
Figure 4

is in the Multi-Pak. And the easiest
place to map them is in the Disk BASIC
area, located from $C000 to SFEFF in
the memory map of the CoCo 1 and
CoCo 2. With the CoCo 3, you are a
little bit more limited. The mapping is
from $C000 to $FDFF, just one page
less only 256 bytes at the top of the
memory map. That is to accommodate
the extra functions of the GIME chip.
Anyway, for all intents and purposes,
this area is 16K long. Just remember the
top two pages are not usable.

Look at Figure 1, a pinout of a 2764.
I started there because I figure it is the
smallest memory chip (8K long) that is
worthwhile hooking up. Accessing this
amount of memory requires 13 address
lines, AO to A12. The CTS pin on the
CoCo’s bus accesses a total of 16K,
requiring 14 address lines to properly
decode. This leaves us with one address
line left over. In this case, we can’t use
it. Leave it unconnected. This will cause
a memory mirror. If the CPU accesses
the first half of the 16K memory area,
it gets the data. When it accesses the
second half of the memory, it gets the
same data. The only difference is that
the last address line, A13, does not
control anything. Such is the case of the
Disk BASIC ROM in the Radio Shack
Controller; it is only 8K long and is
mirrored to the second half of the 16K
area.

Now look at Figure 2, the pinout of
a 27128. It has 14 address lines, making
it 16K long. It is a perfect match for the
CTS area of the CoCo. There are no
leftover address lines. The CPU can
access a full 16K of memory with no
memory mirroring.

Figure 3 shows the pinout for a
27256. This one has one more address
line than we can handle. That is the
number of address lines it requires to
access 32K. This presents a problem.
The CTS cannot handle 32K, and we
have one address line left over, with
nowhere to connect. Figure 4 is the

pinout of a 27512. It has double the
problem, with yet another address line
we don’t know what to do with.

The 27256 represents 32K of data, but
that is just one way of looking at it.
Another way of looking at it is as two
banks of 16K. For example, let’s say you
have two pieces of software that are
each 16K long. You can put both of
them on one 27256 and select which you
want to use when you turn on the
computer. This can be done quite
simply.

Figure 5 shows a small (I mean
small!) circuit that can select between
the two banks of a 27256. It consists of
a single pole, single throw switch and a
resistor. The resistor acts as a“Pull Up.”
When the switch is in the off position,
current is fed from the 5-voit supply to
the address line via this resistor. The XX
means whichever address line is con-
nected to it, making the address line a
logic level of 1, or HI. When the switch
is on, the current is shorted to ground,
making the address line in question a
logic level of 0, or LO. The switch and
resistor become your manual bank
selector. When this circuit is connected
to Ald4 on a 27256 and the switch is on,
you get the first half of the EPROM.
When the switch is off you get the
second half. So, when you turn the
computer on, it will see one or the other.
If you happen to turn the switch when
the computer is on, chances are the
computer will get confused and hang
up. However, this does not hurt the
computer.

If you are thinking of using a 27512,
you can have four banks of software,
each bank 16K long. In that case, you
have to build another circuit like the one
in Figure S. Connect the second switch
to A15. When both switches are on, you
get the first 16K bank of software.
When the A14 switch is off and the A1S
switch is on, you get the second. When
the A14 switch is on and the A15 switch
is off, you get the third bank. When

125

both switches are off, you get the last
bank of software.

So far, the switches have been switch-
ing 16K banks of data. If most of your
software is in 8K blocks or less, you
might want to switch these EPROMs in
8K banks instead of 16K banks. You
will need yet another circuit like the one
in Figure 5.

R1
1K 1/74n

A=XX

SW1
SW SPST

Figure 5

In either the 27128, 27256 or the
27512, disconnect Al3 from the
computer side. Connect Al3to the third
switch. This switch now controls 8K
banks. When the switch is off, you are
seeing the first, or lower, 8K bank of
data at $C000 to SDFFF. When this
switch is on, you see the second, or
upper, bank also mapped at $C000 to
SDFFE When you use a 27128, you get
two 8K banks. A 27256 gets you four-
banks, and a 27512 gives you a whop-
ping eight 8K banks of software. Re-
member, though, that each one of these
banks starts at memory location $C000
and that for this software to work
properly, they must be written for this
area or be in complete relocatable code.
Also remember that to autostart soft-
ware that begins at $C000 you must
short out Pin 7 and Pin 8 on the CoCo
bus. Software that looks like a DOS
must have the first two bytes the same
as RS-DOS in order to function prop-
erly and be recognized by BASsic. DOS-
like software must not have pins 7 and
8 shorted. A

ast month we talked about high-
Lcapacity EPROMs from 8K (the

2764) all the way to 64K (the
newest member of the family, the
27512). We also talked about hooking
up these chips to your CoCo.

The 2764 and the 27128 (16K) can be
hooked up directly to the CoCo. The
2764 is easy to hook up, as it has only
8K of memory. In any ROM chip, only
the first 8K of memory is valid — the
rest of it is memory mirrored.

As we get into more memory per chip,
we are faced with more options. For
example, do we use the 27128 as one
complete 16K package, or do we split
it up into two packages of 8K and select
between the two? Do we make it selec-
table in software or in hardware, or
both? Look at the Radio Shack Multi-
Pak, which does all of this.

All these possibilities can be over-
whelming to a novice hardware hacker.
For that matter, the ramifications of
EPROMs aren't all that clear to the
pros, either. What I am attempting to
do is take a close look at large capacity
EPROMs and describe how to hook
them up to the CoCo and have a big
enough EPROM package to make a
ROM disk.

The CTS pin can access up to 16K on
CoCos | and 2, and can access up to
32K on the CoCo 3. But because only
the CoCo 3 can access 32K, I am lim-
iting my possibilities to 16K — other-
wise, we'd have to throw in another
variable, which would only add to the
confusion. Besides, the 32K mode of the
CoCo 3 1s rarely used, if at all.

Let’s start with something we are
already a little familiar with, DOS.
Now, the DOS ROM that Tandy offers
is called Disk Extended BASIC. While
we are on the subject of DOS, let me
clear up a little misconception. There
are only two versions of this DOS — the
older 1.0 and the newer 1.1. When you
power up a CoCo 3 with a Tandy DOS
in the controller, you see one of two
messages: If you have Tandy DOS 1.0,
you get the message “2.0”; if you have
Tandy DOS 1.1, you get “2.1.” You see,
the ‘2° part of the version belongs to the

Tony DiStefano is a well-known early
specialist in computer hardware proj-
ects. He lives in Laval Ouest, Quebec.

A DOS expansion project
for experienced hackers

Build a

Half-Megahyte
~ ROM Disk

By Tony DiStefano
Rainbow Contributing Editor

version of Hi-Res BASIC you have, not
to DOS — the “.0” or “.1” part of the
version belongs to DOS. I just thought
[would clear this up because I hear too
many times that someone has DOS
Version 2.1.

Well, back to work. Whatever the
version, Tandy DOS is contained in an
8K ROM. ROMs are masked at the
factory and cannot be changed, but
EPROMs are user-programmable. You
can change them any time you want, as
they are erasable. I think I have said
enough about the structure of
EPROMs. Read last month’s article for
more details.

There are a lot of people who are
familiar with DOS and would like to
expand it — add in their favorite utility,
for example. To expand DOS, you need
more memory space, so the only thing
to dois change to a 16K EPROM. That
gives you about 8K of extra space to
work with. To have more than that
requires more space.

This is where you have to start with
bank switching. Bank switching means
that you have more than one memory
chip mapped in the same area, but only
one of them is active at a time. Last
month we looked at a technique that
required a hardware switch to physi-
cally change the access to the EPROMs.
That is a simple technique, but there are
some limitations, the biggest one being
that the software will most likely get lost

126

and cause the computer to crash when
you switch it. It is OK when you want
to completely change and power down
anyway, but not too practical when you
have a lot of software already loaded
and need just a little utility.

Preventing a crash that may occur
when you turn the switch is not too
difficult if you know how. Have the
CPU turn the switch for you — this is
called a “softswitch,” and requires a
latch, some decoding and a circuit. With
this latch we can switch between quite
a few things. What 1 want to show you
is a way to access eight EPROMs of
varying sizes. Figure 1 shows the circuit
required to wire up eight 27512
EPROMSs. That gives you a total of half
a megabyte of EPROMs, or, in other
words, one big ROM disk.

Before you run out and buy all the
parts and try building the ROM disk,
keep in mind that this is one heck of a
big project. A project that should not be
tried by everyone. First of all, you must
have a lot of patience — to solder eight
28-pin EPROM sockets takes many
hours. Second, you must have lots of
money to buy eight 27512 EPROMs. In
addition to a disk drive, you must also
have a Multi-Pak. And lastly, you must
have a lot of knowledge about machine
language drivers for disk drives. So, you
see, this is a big one. If you have all the
prerequisites, let’s start.

The first thing to do is get acquainted
with the circuit. Ul simply gates the
SCS with the Read/ Write line. All this
does is prevent you from switching the
data in the latch just by reading that
memory area. So, this becomes a “Write
Only” byte. Since it uses the SCS pin,
this byte is mapped at $FF40. In fact,
it is mirrored from $FF40 to $FF47. U2
is a six-bit latch. The diagram says that
the inputs are from DI to D6, but they
are in fact connected from DO to DS,
respectively. The latch is connected to
the output of U1 and is cleared to all 0s
when the reset button is pressed.

The output of U2 is six bits that are
controlled by writing to it. Let’s look at
the last three bits first, Q4, 5 and 6. They
go to the inputs of a 3-to-8 decoder.
These three pins select one of eight
outputs. The other inputs to U3 are the
CTS pin and the E clock. The E clock
is needed to make sure the datais in sync
with the CPU.

o
et
SEET >
2>
i - E— V)
10 op 3 2
199 24101 01 —f % AQ -]
0z Gz2i—% - Al 01
12 03 Q@3 a2 o2
13 11182 o+ 8 h] 7 A3 03
14 1 1s- L/
15 3 4 05 @S 15 k] See “ Ad 04
i3 e o e p I
17 Bhcik A7 o7
L—dcin -———r:% s A8
TACETYA ” % % AS_
Al
q A2
19 [A3
A4
20 1
21 AlS
229
23 w1 &
| PN
2s o F24- 3%
26
27 0y
20 SN SPDT
29
3o b4y
N
37 A13
’3m>—;_l_
Figure 1

The CTS pin is the main select for the
external ROM area. The output YO is
connected to the Chip Enable and
Output Enable of U4. Only one
EPROM is shown. The other seven
EPROMs are all wired in parallel ex-
cept for these two pins. Y1 to Y7 of U3
connect to pins 20 and 22 of chips US
to Ull, respectively. Wow! What a
mouthful! Depending on what the
binary number is at the A, B and C
inputs of U3, one of the eight EPROMs
will be selected when the CTS pin goes
low.

Now let's look at the next two bits,
Q2 and Q3 of U2. They connect to Al4
and AlS of all the EPROMs. If you put
on your binary thinking hat, you’ll
realize A0 to Al3 comprise 14 address
lines. Two to the power of 14 gives us
the amount of data 14 address lines can
access — 16K. These two bits that are
connected to the EPROMs select four
banks of 16K. A 27512 has 64K of
memory. These two bits connected to
Al4 and AlS5 will divide the 64K
EPROM into four banks of 16K. OK,
here comes the tricky part. A13 of the
EPROMs can be connected to one of
two sources via SW1. The way it is
connected in Figure | is the way it is
required to switch 16K banks. Each of
the eight EPROMs has four 16K banks;
that gives you 32 16K banks of memory.

There is another way to wire things
up. When the switch is turned the other

way, it no longer gives you 16K banks.
With one less address line to work with,
the CPU will see two 8K banks mirrored
with the same data. By putting this
address line to another bit (Q1 of U2),
we now have three bits of bank switch-
ing. In binary, three bits give you eight
banks to choose from. You now have
eight EPROMs with eight banks each,
which gives you 64 banks of 8K of
memory. That'’s a total of 512K of
memory.

Well, that about does it for the theory
part. The construction of the ROM
disk, like I said before, is a big task. You
will need eight 28-pin sockets for the
EPROMs and three 16-pin sockets for
the other support chips. The best way
to go with this one is to get the proto-
board from CRC Inc. That is the one
I used, and it has plenty of room for all
the chips. Also needed for this project
are eleven .1 uf capacitors, one for each
chip; connect them between +5V and
ground as close to each chip as possible.
Not shown on the diagram are the +5V
and ground pins for these chips. It is
simple. For the three TTL chips, the
+5V pin is 16 and the ground pin is 8.
For the EPROMs, the +5V pinis 28 and
the ground pin is 14. That is all you need
to know to construct this board.

Now that I've shown you the hard-
ware part of this project, it’s time for the
software. You all know how much I hate
that. But, without software, hardware

127

would not be much good. Though I will
not be writing any software, you will
need to know something about the
hardware to write it yourseif. The
control byte, as I call it, for which bank
is active in this circuit is at $FF40.

There are two different ways the
control byte works, depending on which
way the switch SWI is set. The two
options are this — 32 16K banks and 64
8K banks. For the option of 64 8K
banks, DO, D1 and D2 of the control
byte select eight banks per EPROM.
D3, D4 and DS select one of eight
EPROMs. So, U4 has bank numbers 0
to 7, U5 has 8 to 15, U6 has 16 to 23,
and so on. Each bank will appear from
$C000 to SDFFF. The 16K banks are a
little different. DO is not used; D1 and
D2 select four 16K banks; and D3, D4
and D5 again select one of eight
EPROMs. This time U4 has bank
numbers 0 to 3, U5 has 4 to 7, U6 has
8 to 11, and so on.

The choice to use 8K or 16K banks
is yours, of course, but think of this: If
you use 16K banks, you lose 256 bytes
per bank in CoCos | and 2 and 512 bytes
per bank in CoCo 3 because of the
addressing of the CoCo. Those bytes are
reserved for I/O.

I hope that I have given you enough
information to think about and act on.
It is a big project, but for the right
people, it can be quite rewarding.

"

ack in February 85, 1 wrote an
Barticle describing how the Tandy

Muiti-Pak worked. 1 followed
that up with a project involving a little
circuit that could decode the latched
bits and drive some LED digits to tell
you which slot was active. Since there
were two active areas of memory avail-
able in the Multi-Pak, you needed two
LED digits and two driver chips. It
worked well for a time but, as always,
Tandy likes to throw some curves —
they changed the insides of the Multi-
Pak.

In order to make the Muiti-Pak less
expensive to make, and therefore less
expensive to buy, they took many of the
chips, grouped them together and made
one big custom clip. This was great for
them, as the price for the Multi-Pak
went down and they sold more of them.
Good for them, but not so good for my
circuit — it no longer worked. Those
latched bits 1 used to get the data to
drive the LEDs are no longer there.

When this new Multi-Pak came out
in 86, I got a few letters asking if there
was anything I could do. At the time I
thought it would be too much trouble
to redesign the circuit, too many chips
and too much work for it to be worth-
while to build. But lately I've had some
calls about this one again. So here goes
another big project.

Reviewing the Muiti-Pak

Let’s recap what was said in that
article. The first half of the article
described the functions of the Multi-
Pak and the second half described how
to hook up LEDs to tell you which slot
is active. The two active areas in the
Multi-Pak are the CTS and the SCS
areas. The CTS is mapped from $C000
to SFEFF for CoCos | and 2 and from
$C000 to $FDFF for the CoCo 3. The
SCS is mapped from $FF40 to $FFSF
on all three CoCos. These mapped areas
can be switched to any of the four slots
of the Multi-Pak, together or independ-
ently. That means you can have the CTS
in Slot 4 and the SCS in Slot 2 if you
want,

These memory areas can be switched
both in hardware (via the switch on the
front of the Multi-Pak) or in software

Tony DiStefano is a well-known early
specialist in computer hardware proj-
ects. He lives in Laval Quest, Quebec.

Using LEDs to
see which slot on your
Multi- Pak is active

Multi-Pak
LED Update

By Tony DiStefano
Rainbow Contributing Editor

(via one memory location). The switch
is simple to operate; before turning the
computer and Multi-Pak on, slide the
switch to the desired slot number. When
you turn the computer on, the active
area (or slot) is identical to the slot
number on the switch in front. The
hardware switch cannot change the
SCS and CTS separately, only both of
them at the same time. Sliding the
switch to another slot number with the
power on will change slot access, and
probably crash your software program
at the same time. There is, however, a
time when the switch no longer works
to switch these areas.

Let’s go back to the software switch.
It, too, can change the active slot area;
it does so by writing a number to aread/
write byte in the memory map, the byte
at $SFF7F. This byte is divided into two
nibbles (a nibble is four bits); the lower
nibble controls the SCS area and the
upper nibble controls the CTS. A value
of 0 to 3 in any of these nibbles selects
slots 1 to 4, respectively. One interesting
thing this memory byte does, once
you've written to it, is lock out the
hardware switch. Sliding the switch on
the front panel does not work after you
have changed the slot access from
software.

Now, both the newer and older
Multi-Paks do the same thing. But
because we don't have access to the
latched bits on the newer board, the
project I did back in 1985 will not work

128

on the new Multi-Pak. The circuit 1
have come up with now works just like
the older Multi-Pak’s circuit, allowing
you to hook up the LEDs as before.

The Project

This circuit requires just five chips.
These chips can be mounted on a small
PCB that you can get from any Radio
Shack. It does not require an edge
connector, because it does not connect
to the slots of the Multi-Pak. Instead,
you have to open up the thing and insert
this circuit inside. This is not too bad,
because you have to open it up anyway
to get the LEDs in there.

Figure I shows the circuit in question.
A step-by-step description will help you
understand it. Let’s start with Ul and
U2: These chips are used to decode the
memory map into one byte, Byte
$FF7F, which is 16 bits long. Out of
these 16 bits, 15 of them are 1s and only
one of them is 0. The 74LS133 (Ul)
takes care of 13 of them. When all of
these are high, the output goes low. This
output goes to Ul, a 74LS138, where
the E clock, read/ write line and the rest
of the address lines are decoded. Only
one output is used to write to the
74LS173, which is a four-bit latch used
to record what slot is active. ‘

The 741.S368 is a six-bit buffer (we
will use only four bits, however) whose
input comes from the switches on the
front of the Muiti-Pak. You can get
these signals from the 64-pin chip inside
the Multi-Pak. The A pin in Figure [
connects to Pin 21 of IC 6, and B
connects to Pin 22 of the same chip.
These two signals are split to form the
four bits necessary for the LEDs. This
1s where the four connections of the
LEDs project connect to. Here is the
connection list for these pins:

Pin No. U13 of LEDs Project
C 2
D 3
E 14
F 13

This chip (U5) will output the status
of the front switch when the Multi-Pak
is first turned on, due to the U4, a
74LS74. This is a D-type flip-flop. On
power-up or reset, the Q (Pin 5) output
of this chip is low, which activates US5.
At the same time, *Q (Pin 6) is high,

Ses Text. See Text.
A . 2]
1A1 1Y1
- —- 142 1Y2
[—=&]143 113
| 144 1v4 -
124241 2v1 pH
2A2 2v2
1
16
—8g 18
= aL53
’ 3
19 I L e
1 14 02 @2 -
T £103 a3 |
D4 G4
A
1 ‘ D dvin
% vo pi5- ——‘tzgg,,
) v1 b | G1
c Y2 prE— 4 G2
¥3 pls CLR
Y4 L
& G1 vs pio = 74L5773
G2A Y6
——=2q G288 Y7
acsT
vce
19 u2 j’
a l U4A
3 kS 4
- DB G
T 3 betk
2 12 ta
1]
] 1 2 , 74LS74
74,5133
EsT>05 ,
Figure 1

which keeps U3 in activated (tri-state).
U3 has to be kept in this state because
no data has been assigned to it; that
would give random values to the LED:s.
On the other hand, US is activated to
give the status of the switch, which
conforms to the old Multi-Pak.

The output of Ul also goes to the
clock input of U4, so when your soft-
ware program writes to $FF7F, to
change the active slot for the first time,
it flips the outputs Q and *Q. This, in
turn, deactivates US (connected to the
switches) and activates U3. The new
values just entered into the latch at U3
are now valid, and the flip-flop action
of U4 brings this data out to the LEDs.
From then on, changing the switch has
no effect on the LEDs. The switch will
have no effect until one of two things
happens: Either a reset occurs or the
power is turned off. Pressing the reset
button will again flip U4 back to its

original state and therefore re-enable
the switches. Turning the power off also
flips the condition of U4,

This project for the newer Muiti-Pak
is not very difficult, but you must have
done (or do now first) the project from
1985 for this one to be useful. The
standard project builder’s kit is neces-
sary. These parts are not available from
Radio Shack, but are at most well-
stocked electronics shops. Active Elec-
tronics is my best source for almost all
the electronics parts 1 buy.

There is one more thing yet todo; The
program 1 use to generate the circuit
diagram in Figure 1 does not put in the
pin numbers for 5 volts and ground.
Figure 2 shows a list that explains which
pin goes where in the power and ground
department.

In the Multi-Pak, you can get 5 volts
from Pin 9 of the connector and ground
connections from pins 33 and 34.

129

Chip# +5Volts Ground
Ul 16 8
U2 16 8
U3 16 8
U4 14 7 .
Us 16 8
Figure 2

In my January 1988 column (Page
144), 1 requésted that my readers send
in a hardware projects “wish list.” I have
gotten a few responses.

Some have been good, and I will get
to work on them, but some are a bit far-
fetched. Try to keep your ideas limited
to small projects — some guys asked to
do a project that would cost several
times the price of the computer, the
Multi-Pak, my drives and then
some! A

oCo 1| and 2 users, remember
‘ when the CoCo 3 came out? One

of the good things built right
into the CoCo 3 is an 80-character-by-
24-line display screen. I guess you must
have felt left out in the cold. If you have
a CoCo 1 or 2 with a Multi-Pak and are
using OS-9, your luck will change; you
too can now have an 80- by 24-character
display.

I say this is a big project not because
it is hard to build, but because the
overall project will take a bit of time and
some hardware considerations. For
instance, if you want an 80-by-24 dis-
play, you must have a monitor capable
of displaying 80-by-24 characters. That
requires an RS-70 compatible monitor
of about 20 MHz resolution. You will
also need a Multi-Pak and software.
(You know what I think of software —
leave it to the programmers.) CRC will
send you OS-9 Level I Version 2 soft-
ware to drive this display for about $10.

In the old days, an 80-by-24 character
display required many chips, starting
with the display chip. For many years,
the most common display chip was the
Motorola MC6845, back then a very
powerful chip. It had a bunch of regis-
ters and counters that would divide a
high-frequency clock into two lower
frequencies. The higher of the two was
the horizontal frequency, usually about
15 KHz; the other was the vertical
frequency, at about 60 Hz. Also coming
from this display chip was a character
address. Part of this address went
directly to a character-generator ROM.
Now, a character-generator ROM is
nothing more than a ROM with bit-
mapped graphics of what letters and
numbers are made of.

The other part of the character ad-
dress went to the address lines of one
side of some dual-ported RAM, which
was ordinary RAM with some extra
circuitry allowing two devices to read
and write data to the same RAM. Also
included in this circuitry was a circuit
to switch between the two.

The other side of the dual-ported
RAM usually was connected to a CPU,

Tony DiStefano is a well-known early
specialist in computer hardware proj-
ects. He lives in Laval Ouest, Quebec.
Tony's username on Delphi is DISTO.

An 80-column
adapter project for the
CoCo I and 2

Increasing
Character
Display

Rainbow Contributing Editor

like the MC6809 CPU that is in all
CoCos. The data lines of the RAM fed
the rest of the address lines of the
character ROM, and the ROM’s data

lines fed into a parallel-to-serial shift

register. This shift register is the dot
pattern that flows out of the display
adapter and onto your screen. This dot
pattern is mixed with the vertical and
horizontal frequencies, called sync
signals, into one signal that is called
composite video.

Sound a little complicated? It might
be at first, but read it again a couple of
times and you’ll understand it. Think of
it like this: The CPU writes data char-
acters into RAM, one character per
byte of memory. The display chip, along
with its support circuitry, reads this
data and converts it into a stream of
dots. With these dots come the signals
necessary to control your monitor’s
circuitry to keep these dots in sync so
that, to you, they look like characters
such as letters and numbers.

What I have described requires a
display chip (such as the MC6845), a
character ROM, a RAM chip, about 20
other TTL support chips like the shifter
and dual port circuitry. That makes
quite a big job to design, let alone to do
the board space and the wiring. But in
the past, that’s the way that technology
was used.

Today things are different. Super LS1
(Large Scale Integration) chips are here:

130

The CoCo 3is proof of that. The GIME
chip is a video display adapter, a mem-
ory map decoder and a memory man-
agement adapter all in one. Chips like
that contain thousands of TTL equiva-
lents.

To make this 80-column display, I
will use an LSI chip made by Standard
Microsystems Corporation (SMC), the
CRT 9128. This chip by itself does most
of the work I described above. It has
built-in character ROM, all porting
circuitry, and all decoding and shifting
chips. The only support chip it requires
is RAM. Add that and a couple of
decoding chips, and you are done.

As you can see from the diagram in
Figure 1, there are not many compo-
nents in this project. Ul is the SMC
chip, U2 is the RAM chip. A 6116is a
2K-by-8-bit RAM chip. U3 is used for
decoding, and U4 is used for the video :
output and mixing to form composite
video. In the diagram all the pins of Ul
are numbered and have abbreviated
names. Most of the names are self-
explanatory; the ones that are not are
listed below:

Pin No. Name Function -

7 VID serial video data
18 HS horizontal sync
19 VS vertical sync
20 CS composite sync, (HS
and VS combined)
8 INT intensity pin

Before I get into the project’s con-
struction, a little information on the
SMC chip in needed. The SMC chip has
internal registers that control the many
aspects required to display characters
on the screen. In order to talk to this
chip, we must know where it is in the
memory map below:

Location Direction Function
$FF54 Write Writes to data
register
$F554 Read Reads from
data register
$FF55 Write Writes to ad-
dress register
$FF55 Read Reads status

register

The CPU communicates with the
video chip via seven registers. Access to
these registers is made by first storing
the register number in the address

i i
uz
ok
Y1 N =
€€ _ DA10 A0
13 £3 AT "DAs £ £6+ A9
R/W DAB as >
DA7 a7 o7
XT1 DAB AG D& :q
XT2 DAS AS bs N
x1 DA4 A4 D4 ~
o> DOD DA3 A3 03 ~
; 90z bmr a8t
10.820 MHZ B892 DialEz as 28
D04 oB?
Cos DB
OD6 DBs
=
&+ VIU DB2 (k&
3 HS DB
VS DBO
uaa fRr owR L
= TRYSTZS
vee
0
@1
2N3904
J1 330 OHMS
RCA_JACK R4 74,504
10 OHMS
R3 .
470 OHMS Flgure 1
) =

register and then accessing the register’s
data through the data register. The
following is a list of the addresses and
functions of available registers.

Address Register Function
$6 Chip Reset
$8 TOS Add
$9 CUR Lo
$A CUR Hi
$8 Fit Add
$C ATT Dat
$D Character
$E Mode Register

For example, if you want to address
the CUR Lo register, store the value $9
at $FFSS then store the CUR Lo byte
at $FF54. Each of the seven registers
has a specific function:

Chip Reset — The first thing done
after powering up the chip. Stores $6 in
$FF55 then stores a 0 value in the data
register.

TOS Add — TOS stands for Top Of
Screen. Top of screen address bits are
DA10 to DA4, for D6 to DO, respec-
tively. DA3 to DAO are internally set to
0, forcing the first address at the begin-
ning of each row to be 00, 16, 32 and
so forth.

CUR LO — Cursor low address po-
sition of flashing cursor. This is the first
eight bits of the cursor address.

CUR Hi — Cursor high address
position of flashing cursor. Bits D2 to
DO are DA10 to DAS, respectively.
Other bits set to 0. .

Fil Add — Fills address locations
starting from cursor position to the fill
address. Bits D6 to DO are addresses
from DA10 to DAJ, respectively. As

with TOS, the least three bits are always
0.

ATT Dat — Attribute Data, a regis-
ter that changes the way things appear
on the screen. The attribute byte:

D7 = 1 Enables block graphics
= 0 Enables Alpha Mode
D6 = 1 Disables cursor (Invisible)
= 0 Enables cursor (Visible)
D5 = 1 Underlines cursor
= 0 Blocks cursor
D4 = 1 White screen and black
characters
= 0 Black screen and white
characters
D3 = 1 Enables video suppress
= 0 Allows character blinking
D2 = 1 Hi intensity
= 0 Lo intensity
D1 = 1 Character underlined

= 0 Character not underlined
DO = 1 Character in inverse video
= 0 Character in normal video

Character — Register where the
ASCII character is placed to appear on
the screen. If Bit D7 is set, the attributes
described in the above byte (bits D3 to
DO0) will take effect on that character.

Mode — Auto increment mode. If Bit
D7 is set to 1, the cursor address will
automatically increment by one every
time a byte is written to the character
byte. If D7 is set to 0, the auto increment
is disabled.

The basics for this display chip ought
to be enough to get you started. If you
want more detail, contact SMC at 35
Marcus Blvd., Hauppauge, NY 11788.

131

For this project you will need all the
parts shown in Figure 1 and sockets for
all the chips. The following is a list of
socket sizes and the pin numbers for
+5V and ground:

Chip Socket
No. Size +5V GND
U1 40 21 4
U2 24 24 12
U3 16 16 8
U4 14 14 7

You can get the SMC chip, project
board, OS-9 software driver and RAM
chip from CRC. Call (514) 383-5293 for
prices.

There is one more interesting thing
about the project. If you happen to have
a Disto Super Controller or Disto
Super Controller I, you can wire this
project to the MEB connector. Two
changes to the diagram in Figure | are
necessary: Instead of A4, connect Pin 3
of U3 to VCC. Then, instead of A3,
connect Pin 5 of U3 to GND. The rest
of the connections appear on the bus.
Instead of a project board, you can use
just about any double-sided PC board.
You will need, however, a 17-pin single
inline female header. This way, you will
not need a Multi-Pak. ,

Regarding the Multi-Pak, remember
that when using the addresses from
$FF40 to $FF5F, you must do a slot
swap to whatever slot your hardware is,
and swap back after you are finished. If
you are in a multitasking environment
remember to turn off the interrupts
before swapping slots, and turn them
back on again afterward. "

ive years ago | introduced to the
FCoCo Community a piece of

hardware called the Disto con-
troller. It is compatible with Radio
Shack’s controller, as well as others.
One of its interesting features is an
internal mini expansion bus (MEB).
This bus allows internal expansion of a
peripheral card. Two of the adapters
available for this controller are more
popular than ever these days. The first
is the clock/parallel adapter. This
allows the user under OS-9 to have the
real time at hand without having to type
itin every time and to be able to connect
a parallel printer to the CoCo without
having to use an adapter. The second is
a hard disk/serial adapter, which allows
the user to connect a hard disk to the
CoCo. It also has an RS-232 interface
that is somewhat compatible with the
Radio Shack Deluxe RS-232 Pak.

Until now, only one of these adapters
would fit into the controller at one time.
If you wanted a second, you needed an
MEB carrier or a RAM disk along with
a Multi-Pak Interface. Very expensive!
If you had a CoCo 3, you also had to
have the Multi-Pak modified. More

" bucks. As for myself, 1 have two sys-
tems, a CoCo 1 with an unmodified
Multi-Pak and monochrome monitor,
and a CoCo 3 with no Multi-Pak and
a Sony RGB monitor. [don’t intend to
buy another Multi-Pak for my CoCo 3
system, so where does that leave me?

There were a couple of reasons for
writing this article. The first is that if |
do something for myself and find that
it helps me do something else better,
faster or more easily, I think that other
people must have the same needs; most
of the time I am right. This is why I
began writing articles in the first place.
The second reason is that Radio Shack
has discontinued the RS-232 Pak and
may discontinue the Multi-Pak in the
future. What will we do?

If you take alook at the two adapters
described above, they represent a lot of
1/0: serial, parallel, hard disk and
clock. To be able to have all those things
without the Multi-Pak would be great.
Getting the Super Controller or the
Super Controlier I1 is a good start, but
you can still only put one of the two
adapters inside the controller. This is

Tony DiStefano is a well-known early
specialist in computer hardware proj-
ects. He lives in Laval Ouest, Quebec.
Tony's username on Delphi is DISTO.

A project to fit two
adapters into your
controller —
at the same time

Two for One

By Tony DiStefano
Rainbow Contributing Editor

where I come in. I decided that I wanted
both of these adapters in my second
system’s controller. So 1 took out my
soldering iron, and this is what I came
up with.

Before you get started, let me give you
the drawbacks to this project. First of
all, when all is said and done, you can
no longer close the cover of the con-
troller. An even bigger problem is
power: When both of these boards are
plugged in, the current draw is a little
over the recommended limit of 300mA.
A separate regulated supply must be
built to handle the extra demand on
power. Apart from these hurdles, a little
soldering experence is needed.

Let’s review some theory before tak-
ing out the ol’ soldering iron, however.
The MEB is a 17-pin connector that has
data, address and control lines. The
following is a description of these pins:

Pin# = Description
1 Reset
2 E Clock
3 A0
4 Al
) DO
6 D1
7 D2
8 D3
9 D4
10 D5
11 D6
12 D7
13 CE (Chip Enable)
14 GND
15 R/W
16 ~ +5V
17 A2

132

Study the pins carefully; it is a stand-
ard memory-mapped area. If we added
another area to this, the only thing to
change would be the CE. All other lines
— data, address and control — would
be the same. A piggyback technique
here will do fine, except for the CE pin,
which will go to another memory-
mapped area. This is not too hard since
the controller is already decoded: all
you have to do is fish out the CE. Later,
I'll tell you how to patch the OS-9
software, as well.

Not much to the theory, is there? In
fact, this project is more mechanical
than anything else. Now, it is time to get
started. Please don’t do any of these
modifications with the power on. All
the modifications are done on the hard
disk/serial adapter. There are two cuts
to do on this board, or only one if you
have a modified power supply and itcan
stand the extra drain.

The first cut is to disable the CE from
the board. Look at the component side
of the board. Locate Pin 13 onthe MEB
connector. Follow the trace to the first
hole and cut the trace just before that
hole. For the +5V, locate Pin 16 on the
same connector. Follow its wide trace to
the first hole about one inch away, and
cut the trace just before you reach that
hole.

On the solder side, solder a set of 17
short male single inline header pins to
the botton of the MEB connector. The
clock/parallel adapter board will sit on
these pins. Now, solder one side of a 4-
inch wire to the hole just after the first
cut. For all versions of the Super Con-
troller I, solder the other end of this wire
to Pin 7 of the 74LS139 chip just below
the 74L.S04. For the Super Controller
I1, solder the wire to Pin 3 of J3 on the
controller; you also have the choice of
putting on a jumper instead of soldering
it. One limitation is that you must use
the alternate, eight-byte area for this
modification; the other area is only four
bytes long, so it cannot be used.

For the power, solder the plus side of
a +5V regulated power supply to the
hole above the second cut you made on
the adapter. Locate Pin 14 on the MEB
connector, follow it to the first hole, and
connect the ground return of the power
supply to it. Insert the clock/parallel
board piggyback on Pin 17 that you just
installed. Plug the hard disk/serial
board into the MEB connector. Con-
nect the controller into the computer.
That is all there is to the hardware part
of this project.

12 DC Adepter

7805 Regulator
+

|470 uf 25v

A2 vo

ozo

c1

1
T

1

c2

+ 5 Volts
Ground

uf 25v

Figure 1: 5-volt Power Supply

Now for the software patches for the
0S-9 drivers. One of the great things
about OS-9 is the ability to adapt
software to hardware. In most cases, the
way designers connect devices to a
computer is very similar. Where these
devices are connected, as far as the
memory map goes, can be very differ-
ent. The writers of OS-9 had this in
mind when they wrote it. Along with the
necessary software drivers, the fathers
of OS-9 created small blocks of memory
called descriptors. These descriptors
have information on the physical as-
pects of the hardware they control —
things like how many tracks on a disk
or what baud rate the device works at.

One of the pieces of information
included in these device descriptors is
the memory location of the hardware.
This tells the software driver exactly
where in memory the hardware can be
found. Now, what 1 did above is change
the hardware location of the hard disk
registers and the serial (RS-232) regis-
ters. The only way the software driver
knows this information is through the
device descriptor. All we have to do now
is change the values in the proper device
descriptors to the new memory loca-
tions, and we are home free.

Since the clock and parallel hardware
is not changed, no changes to the de-

scriptors are needed. However, we do
need to change the hard disk and serial
descriptors. Let’s start with the hard
disk adapter. A little knowledge of OS-
9 is needed to make these changes. On
the disk that came with this adapter are
drivers and descriptors. The 7h@ de-
scriptor used for the hard disk adapter
needs to be changed. To change it, we
will use the OS-9 command Debug. As
part of the descriptor, there is a three-
byte address that represents the area in
the memory map where the hardware
resides. This data is set for the hardware
memory; but since we changed the
hardware, we must now change the
software. The third byte in this address
is $53. You now have to change this
value to $5A. To do this, execute Debug
and link to the -h@ module. Press
ENTER until you pass the series of two
bytes, $07 and $FF, when you see the
next value, $53, type =5A to change it
to the right value. Press Q to exit.

The other device descriptor to change
is the serial one. Follow the same proce-
dure as above, except use the /T2
descriptor. The byte to change may be
one of two values. If it is the original,
unmodified Tandy descriptor, the value
to look for is $68. If you have already
changed this value, you will know that
itis $54. In either case, change it to $5C.

If you want to make this change per-
manent, the OS-9 manual will describe
just how to do this.

There will be a lot of cables protrud-
ing from this contraption: the disk drive
cable, the hard disk cable, the printer
cable, the RS-232 cable and the power
cable. 1 bent and shaped all the cables
so that they were parallel to the drive
cable, and then I bundled them together
with a tie-wrap. As | mentioned before,
the cover will no longer fit; so I made
another cover from a small piece of tin,
bending, cutting and shaping it to fit. |
did not bother to paint it, but you
might.

The only thing left is the power
supply. Radio Shack has all the parts
necessary to build a regulated power
supply. You will need all the parts listed
in Figure 1. Most of the parts are not
too critical and can be substituted for
the nearest part. The transformer you
must use is a DC adapter. A 12-volt
adapter at about I50mA will do just
fine.

I have recently joined Delphi. You
can find me there as DISTO. Drop me a
line if you have any problems or if you
just want to say “hi.” I'm not on at any
regular time, but look for me in the OS-
9 and CoCo SIGs.)

133

(:ommunication is important in
today’s world. We understand
what other people are saying
because we all know the rules of com-
munication. This set of rules is a sort of
English protocol. When we hear the
word “apple” (perhaps a bad example!)
we immediately think of a red, ball-like
object that can be eaten. If you say the
word to anyone who knows the English
protocol, he or she too will think of a
red, ball-like object that can be eaten.
This is a form of communication.

A set of rules has to be followed in
communicating with a computer, too.
This time you cannot use the English
protocol, because the computer does
not understand that — yet! To com-
municate with most computers, you
have to press a number of switches
arranged in a way that is familiar in
human communications: the keyboard.
We press these switches in an order that
makes sense to us, but to the computer
this is just a sequence of pressed
switches. It compares this sequence to
aknown sequence in its memory banks.
If a match is found, the computer then
proceeds according to its programming.

The keyboard is an interface between
a person and a computer, but there are
times when we want one computer to
communicate with another computer in
order to transfer some kind of informa-
tion the user needs or is sending. This
computer-to-computer communication
also has to follow a certain protocol.

There are many of these, ranging
from simple serial communications to
high-speed networks to parallel main-
frame workstations. The protocol most
used in the CoCo is serial. In this case,
serial means to transfer data one bit at
a time. The CoCo’s internal memory is
organized in eight-bit chunks called
bytes. To transfer one byte of data from
one computer to the other serially
requires eight bit transfers. But that is
just the data. In order to keep errors at
a minimum, a start bit and a parity bit
must also be included.

The CoCo has no special hardware to
communicate in a serial fashion. In-
stead, it has a few bits on a PIA that is
used by the CPU to simulate a real serial

Tony DiStefano is a well-known early
specialist in computer hardware proj-
ects. He lives in Laval Ouest, Quebec.
Tony's username on Delphi is DISTO.

Communicating
computer-to-computer

All About
Serial
Packs

By Tony DiStefano
Rainbow Contributing Editor

A 8
€87 xT1 —8—
—<{cso xT2(7Z
A1
13 Ao RES 24—
27 £ RXC p—>—
28 | r W
TRG -2
18
15 57 >0 H 8-
<902 RXD H &~
D3 RIS —g—
£2 1 pa CTS o—
—2£3 1 pg BsR (H-Z
24 De BChD 16
25 | g7 gTR
RE551 '
Figure 1

(Asynchronous Communication Inter-
face Adapter) chip. This chip has all the
necessary circuitry to interface the
parallel data of the CoCo’s CPU to the
standard RS-232 serial protocol and is
capable of baud rates of 50 to 19,200.
(Baud rate is the speed at which the bits
are transferred.) It is also capable of
word lengths from five to nine and has
a programmable number of stop bits
and parity detection. In fact, it is a great
chip for our use. Figure 1 shows the pin-
out of the R6551; a pin-by-pin descrip-
tion of this 28-pin chip appears in
Figure 3 on the next page.

| 851 | RSO | __ WRITE | _ BEA
o <] Xmit Deta Rmit Date
jater R

o 1 Reseot Status
Regleter

h] Q Commandg Register

1 1 Lontrol Register

Figure 2

port. This makeshift port is limited in
speed and performance. Also, with the
exception of the CoCo 3, there doesnt
seem to be any good software that
supports this “bit banger,” especially if
you want to communicate at 1200 baud.
The CPU simply does not have enough
time to take care of the serial 1/O and
still do the rest of its chores. This led
Tandy to introduce the Deluxe RS-232
Pak.

Inside it lies the hardware for a real
serial port and true RS-232 protocol. At
its heart is the Rockwell R6551 ACIA

134

From Figure 2, we see that the R655!
has four registers. The first is the data
register. This 1s data going to and from
the different computers. The next reg-
ister is the Control Register. Bits 0
through 3 control the baud rate of the
ACIA. Here is a list of the baud rates:

Bits Baud Rate
3210 Generated
0000 EXTERNAL
0001 50
0010 75
0011 109.92
0100 134.58
‘0101 150
0110. 300
0;14‘! 600
1000 1200
1001 1800
1010 2400
1100 3600
1101 4800
1110 9600
1111 19200

Bit 4 controls the external clock, with
1 being baud rate and 0 being external.

is 7, 10 is 6 and 11 is 5. Bit 7 high is two

ister, is used to control the specific
stop bits, and Bit 7 low is one stop bit.

transmit and receive functions shown in

Bits 5 and 6 are word length. 00 is 8, 01 The next register, the command reg- Figure 4.
Pin No. Name Description Pin No. Name Description

1 GND Signal and power ground. 12 RXD Receive data input pin used
All signals are referenced to to transfer data from the
this pin. external device.

2 CSo Active low-input chip selects 13 RSO First of two register select
the device. When this pin is lines connected to CPU ad-
low and CS1 is high, the chip dress lines. Used to select
is selected. various internal registers.

L . See Fi 2.

3 CS1 Active high-input chip se- ce Fipure

lects the device. 14 RSI Second of two register select
. . lines. See Figure 2.

4 RES Active low input resets and 15 Vee Ilr?git f: ccfmunrccted to +5
initializes internal registers volts. It powers the chip’s
to zero. internal circuits.

3 RSC Receive C]?Ck pin is bi- 16 DCD Data carrier detect input pin
dnreptlon?li6scr\llcs as the used to indicate to the chip
receiver of 16X clock input the status of carrier detect
or output. output of the external de-

6 Xtall This pin and Xtal2 are nor- vice.
mally directly connected to 17 DSR Data set ready input pin
an ?xtema] crystal to derive used to indicate readiness
}’:erc';:]u:n:;ufo:attﬁz'sfgy::’g state of the external device.
rates must be 1.8432 MHz. A low indicates a “ready.

- D its DO th h D7,

7 Xtal2 Connected to other side of 18-25 re:l;aectt)ilvsely' bi-é?r‘;%tional
the crystal. lines used to transfer data to

8 RTS Request to send output used and from the CPU to the
to control the modem from chip.
the processor. Output of this 26 IRQ Interrupt request pin is an
pin is determined by con- open collector (drain) out-
tents of the command regis- put used to flag the CPU
ter. when the chip has finished

9 CTS Clear to send input pin used using data. IRQ status bit
to control transmitter oper- allows many pins to be con-
ation. Transmitter section of nected to the same IRQ line
the chip is automatically to the CPU.
disabled if CTS is high. 27 E E clock input to this pin used

10 TXD Transmit data output pin to gate all data transfers to
used to transfer serial data and from the CPU.
to the external device. The 28 R/W Read/write input pin used
least significant bit is trans- to control direction of data
mitted first, with rate deter- transfers between the CPU
mined by baud rate selected. and the chip. A low on the

11 DTR Data terminal ready outpin R/W pin allows a write to
pin used to indicate status of the chip.
the chip. A low on DTR
indicates the chip is enabled.

This bit is controlled via Bit
0 in the command register.
Figure 3

135

Description
0 Hi= Enabled DTR
- Lo= Disabled DTR

1 Hi= IRQ Disabled
- Lo= IRQ Enabled

Xmit IRQ RTS Other

Disabled
Enabled
Disabled
Disabled

Hi -

Lo -

Lo -

Lo Xmit BRK
Hi= Echo

- Lo= Normal

Operation

Parity Disabled

001 Odd Parity

011 Even Parity

101 Mark Parity Xmit Check
Disabled.

Space Parity Xmit Check
Disabled.

Figure 4

The final register is the status register.
These bits in the status register indicate
to the processor the status of the various

it Low
No parity error
No framing error
No Overrun error
Receive buffer
-Not full
Transmit buffer
-Not empty
DCD detect
DSR ready
No IRQ

W — O

E =N

~ W

Figure §

Hi

Parity error detected
Framing error detected
Overrun error detected
Receive buffer

-full

Transmit buffer
-empty

DCD not detected
DSR not ready

IRQ has occurred

R6551 functions as outlined in Figure
5.

The R6551 is the heart of the pack,
but not the only part. Its job is to take
the eight-bit data to and from the CPU
and transmit it at the right baud rate
and parity, but that is not all. This chip
has a high level of § volts and a low level
of ground, or 0, volts. RS-232 standards
require that the voltage for serial com-
munications be a high of +12 volts and
a low of -12 volts. This is done through
two chips known as level shifters. The
first, the MCI1488, is a shifter that
changes 5/0 volt levels to 12/~12 volt
levels. The other, the MC1489, does the
opposite: It shifts the 12/-12 volt inputs
to 5/0 volt.

Other parts include decoders and
buffers, resisters and capacitors. Soft-
ware in a ROM is also included. This
software gives the CoCo the ability to
communicate with other computers. It
is OK as far as “dumb terminals™ go, but
it lacks the power for good data
transfers. Most people use other third-
party software to drive this pack.

I have designed an equivalent to the
above-described RS-232. It functions
the same except that it has no built-in
software — no great loss, since most
people do not use it. If you are using
0S-9, the software driver is already
included and is compatible with my
pack. For prices and delivery, call CRC
at (514) 383-5293. A

Summer
Cleanup

his month we will look at two
Tshort items. The firstis an update

on an earlier project, and the
other is a hardware patch for the Multi-
Pak's IRQ problem.

In a two-part project in November
and December of 1987, I described
making a parallel interface and building
it right into the CoCao. It turns out that
some people are having problems. Paul
Anderson of SD Enterprises said that
the DWP 430 printer from Radio Shack
requires a longer strobe pulse width
than my circuit delivered. At 2 MHz
(the double speed for the CoCo 3), the
problem was even greater.

I have an Epson FX-80 printer. When
I tested my circuit on it, it worked fine.
The pulse width for the strobe signal

(even at 2 M Hz) is wide enough to make
it work. If you look back to the circuit
in the November '87 RAINBOW, you see
that the signal connecting the data into
the latch is also the signal that drives the
strobe signal of the printer. That signal
is derived from the memory mapping of
data from the CPU. This makes the
width of the signal directly proportional
to the clock speed of the CPU. The
faster the CPU is clocked, the shorter
the strobe pulse is. For my printer this
is no problem, but for slower strobe
printers like the DMP 430, it is a
problem that must be addressed.

To solve this problem, I looked at the
spec sheets of several popular printers.
Much to my surprise, 1 found out that
printers have a wide range of strobe

136

An update on the parallel
interface and a hardware
patch for the Multi- Pak

pulse widths, from .5 microseconds to
a full 2 microseconds. Not only that, 1
also found out some printers require
that data be valid up to 1 microsecond
before the strobe line goes active. If you
look again at my circuit, the strobe line
is active at the same time as the data.
Oops! 1 guess 1 should have done my
homework before putting out that
article. Well, fortunately, 1 have a good
fix. After looking through my TTL data
books, I came up with a circuit that will
give the strobe signal both a I-
microsecond delay and a pulse width of
2 microseconds. That should be enough
to satisfy any printer’s needs.

The chip 1 decided to use is a
74HC123, which is a dual retriggerable
monostable multivibrator — a mouth-

tul, but not that complicated. Basically,
there is an input signal and an output
signal. An R/C (resistor/capacitor)
constant determines how long the pulse
is. Every time the input is strobed, the
output becomes active for the duration
of the pulse width, which is controlled
by the R/C constant. I chained the
output of the first multivibrator to the
input of the second, which then goes to
the strobe of the printer. The first gives
me the delay to set up the data; the
second gives me a pulse width that is
controllable by the R/C constant and
not the clock speed of the CPU.

Construction of this,] hope, won't be
too hard. If you have already built the
parallel printer adapter and have
enough room to fit one more chip and
four components, you’re home free. If
you have not built it yet but want to, just
make sure that you have enough room
to place one more chip. The rest of it
is the same as in the November 87 issue.

If you don’t have enough room, you
have two choices: Start over again, or
make a small piggypack board. | sug-
gest that you start over, since it makes
for a cleaner job and is easier to trace
if you have a problem.

The circuit in Figure 1 is the fix only
and does not include the rest of the
circuit needed to make the complete
parallel adapter. The 74HC123 chip
requires +5 volts on Pin 16 and ground
on Pin 8. To interface it into the rest of
the original circuit, follow these instruc-
tions:

1) Remove the wire that goes to Pin
1 of the printer connector.

2) Connect that wire to the point
marked “input” in Figure 1.

3) Connect the wire marked “output™
in Figure | to Pin 1 of the printer
connector left vacant by Step 1.

4) Connect +5V and ground to the
chip.

With this modification, no other
changes are required; the software
remains the same, and all printers
should work at either slow or fast speed.

The second part of this article deals
with interrupts and the Multi-Pak.
Many people may never come acoss this
problem, which will show up only in
certain cases. First, I think that explain-
ing what the Multi-Pak does will help
you understand the problem.

The Radio Shack Multi-Pak has four
slots and was Radio Shack’s original
idea to expand the CoCo; the idea was
that people who bought the expander
would plug four game packs into it. As
we all know, Radio Shack game packs
auto start. That means when you plug
in a pack (without a Multi-Pak) and
turn the computer on, the game (or
whatever) starts to play all by itself. To
do that, the computer must be able to
sense the presence of the pack. One pin
on the connector connects to the CPU’s
interrupt pin via a PIA. On an auto-
starting game pack, this pin is con-
nected to the Q clock. The Q clock is
a signal coming from the internal cir-

cuits that runs at 1 or 2 MHz, depending
on the mode of the computer. This
signal is fed into the interrupt pin of the
CPU. The CPU responds to this inter-
rupt by a small routine in ROM that
jumps to the software inside the game
pack.

In making the Multi-Pak, Radio
Shack wanted to be able to handle four
packs instead of one. To choose which
one of the packs works requires a
switch, so a four-position switch was
added. The first part of the switch is a
block of memory known as CTS. This
block, as long as 16K, is found from
$C000 to $FEFF for aCoCo 1 and 2 and
from $C@00 to $FDFF for the CoCo 3.
The second is another block of memory
known as the SCS area and is mapped
from $FF 40 to $FF SF on all CoCos. The
third part of the switch reroutes the
interrupt signal from the selected slot or
game pack to the CPU.

To make the Multi-Pak software
selectable as well, Radio Shack made
one memory location, $FF?F, into a
software switch. The 8-bit location was
divided into four 2-bit decoders, two of
which control which of the four slots are
active. Since the two memory blocks are
controlled separately, the CTS block
can be selected to one slot and the SCS
block to another. This was a good idea,
since the CTS block usually contained
software and the SCS block usually
contained hardware 1/0.

At this point Radio Shack decided to
tie the interrupt router to the same
circuitry that controls the CTS, so that

IRBUT_ >

V%C

(5K

CEXT
C2

’1\1 OO0pf
> Z | REXT/CEXT

———2d A
f—r

R2

22k

A q CLR

Q
o

H&———<ouTEuT]
74AC123

5

1A
14

_r———" CEXT

c1
R1 100pf
15 | REXT/CEXT

10K

4HC1

‘ id A
B
CLR
==

Figure 1

13

137

whatever CTS slot is active originates
the interrupts. This arrangement is OK
for game packs, since changing the
switch to another slot means that
whichever slot has the interrupts also
has the right software. Good for game
packs, but not so good for OS-9 users
— 0S-9 relies heavily on interrupts.
Most hardware handshaking is done
with interrupts. OS-9 uses the all-RAM
mode, so the CTS signal is not used. But
with the Multi-Pak, the software switch
still switches the interrupt signal. The
problem is mostly seen when someone
uses the Deluxe RS-232 Pak.

Under OS-9, drivers and hardware
devices can be added and left out to suit
the owner’s particular needs, but no one
driver knows what else is using the
hardware. When one device driver
needs the interrupt line, it changes the
software switch to the slot the hardware
is in. If another driver needs the inter-

ver notice that my articles run in
Epatterns? Usually, I start with a

simple project for the beginner,
move on to a harder, longer project and
then finish with an electronic lesson.
Well, it’s time, once again, for a be-
ginner’s project. It is always hard to
design a simple project that actually
does something. As an electronics stu-
dent in college, 1 did a lot of labs. They
were simple, but they were boring. (Set
the power supply to 10 volts. Put two
resistors in series. Measure the voltage
across the two resistors. Compare the
values to that of the calculated voltage
values.) Those labs were enough to put
you to sleep in the middle of a lab.

For this column, 1 had to design a
project that is simple but not boring. |
checked to see what beginners wanted
as a starter project. Most said they
wanted something that worked in front
of them — something that buzzed,
beeped, moved or lit up. In the past, |
have had projects using an LED to
indicate that power is on, the disk drive
i1s on, etc. LEDs are always a good
project, and this beginner’s project
makes the computer control up to eight

Tony DiStefano is a well-known early
specialist in computer hardware proj-
ects. He lives in Laval Quest, Quebec.
Tony s username on Delphi is DISTO.

rupts, it switches it back; this is where
the problem starts. When you change
the software switch away from one slot,
the interrupt has a chance of getting
lost. The problem gets worse when a
device like the RS-232 Pak is online.
The registers for this pack are memory-
mapped in an area not covered by the
software switch, while the interrupts are
covered by the software switch. So if
one driver switches the software switch
away from the slot the RS-232 pack is
in, it can no longer produce an inter-
rupt. Even though the registers are still
in the memory map, data is lost and
things start to get confused.

One solution for this i1s a small mod-
ification in the Multi-Pak. Interrupt
signals in non-game packs are usually
“open collector,” meaning that more
than one signal can be connected to-
gether to form an “OR™ type of config-
uration. A simple way to avoid the

Finally, a beginner’s
project that does
something

A Simple,
Expandable

LED Project

By Tony DiStefano
Rainbow Contributing Editor

LEDs. (Note: Even though this project
is for beginners, some electronics
knowledge is required. Read the article
and judge for yourself if you understand
enough of it to try it.)

I will continue this project for a few
months and make it grow into a mini-
ature control center. This project will
show the beginner how to turn on
LEDs, small motors, relays, sensor
devices, etc. If you come up with a few
ideas, let me know. You can write to me

138

problems is to connect all the interrupts
together, so that no matter which slot
the interrupt comes from, the signal
comes through. This mod is simple and
quick. A little soldering experience, a
few tools and a short piece of wire are
all you need. Unplug the Multi-Pak and
remove the bottom screws. Remove the
top and disconnect the power to the
board. Now, remove the screws that
hold down the PC board. Carefully
remove all the pins that hold the bottom
shield to the board. Locate Pin 8 on
each of the four slot connectors. Solder
a piece of wire from one to the other
until all slots are done. Reassemble the
Multi-Pak in reverse order, and that’s
all there is to it.

With this modification you should be
able to use the RS-232 Pak under OS-
9 with any one device that changes the
software slot switch and without losing
characters on the Pak. ~\

in care of THE RAINBOW or reach me on
Delphi.

As with any project, you need tools.
How far you want to go with this project
will determine how many tools and
parts you will need. To begin the proj-
ect, you will need the following parts:

Part # Description

Ul 7418273

Ci Juf 10 volts

R1to R8 470 ohm !4 watt

Dl to D8 LED (just about any
kind)

Misc.: 20-pin socket and wire.

You may already have some of these
materials, and most are available at
your local Radio Shack. You may need
to get some parts through a mail order
service. Many companies that have the
parts advertise in RAINBOW.

The first thing you need is a project
board. Radio Shack has dropped this
item. 1 suggest you check RAINBOW's
advertisements to find a board. I get my
boards through CRC, but the board is
available through other companies. At
this time, the only tools you will need
are a soldering iron and some solder.

It should take less than two hours to
assemble this project. We will do it
together, step by step. Don't start until
you have all the parts. It’s no fun to let
a project sit, incomplete, because some
of the parts are missing.

Before we begin, it is important to

Rt 1
AAA Ealal
470 OHM z‘sso
2 12
"? ? ;;O OHM lagD
RE 115 AAA }'”
<Pa P l
h% ;ZO OHM EED
57112 AAA 22
e
ANN— N’f
@Q§ 470 OHM LED
R6 os
ANA N""
;;O OHM B;D
vCce
T 2
vee AN\ Z
8 470 OHM LED
R8 D8
<GhE P2 1 AAA 22
<GhgPA—4¢ Iﬂuf 10 Volts 470 oHm LED i_
Figure 1
| to Box GND. All points marked GND
Ri R8 are connected.
Pin #1 % % While it is not obvious on this small
. l] II [I U D U D U D I] diagram, the way the diagram is pre-
- sented makes the schematic easier to
. 0‘1 OO0OO0O0O0O00O0 read. Instead of wires everywhere,
— ¢ $ labels are used. (Please note: Though
] D1 D8 not marked on the diagram, Ul has a
CoCo D VCC at Pin 20 and a GND at Pin 10.
Connector | — Now, let us begin the project.
] First, put all the parts on a clean
|| table. If you are using a CRC project
] board, make sure you have the right side
- up. A small #1 is printed next to Pin 1.
] This is the top. Pin 2 is directly below
: Pin 1. Pin 3 is next to Pin 1, Pin 4 is
L] below Pin 3 and next to Pin 2, etc. All
parts will mount on the top.
Figure 2 Mount the 20-pin socket in the top of

understand how a schematic diagram
works. Look at Figure |, and examine
UI. The pin numbers are not drawn in
any order. They are arranged so the
diagram is easy to understand. All the
inputs are one side, and all the outputs
are on the other.

On the actual board, the pins are
arranged in order. Begin with Pin I,
which is identified by a notch or dimple.

The next pin in a counter-clockwise
direction is Pin 2. The other pins are in
the same counter-clockwise order. The
boxes on the left of Figure 1 are the pin
descriptions for the CoCo’s pin connec-
tor. The numbers above the wires are
the pin numbers. Pin +5V leads to a box
labeled VCC. That means every point in
the diagram hooked up to VCC is really
hooked up to that pin. This also applies

the protoboard. For proper placement,
follow the plan in Figure 2. Make sure
that Pin [is the pin closest to the edge
connectors. Solder all the pins of the
socket, and mount the resistors and
LEDs. Make sure that the short lead of
the LED is positioned away from the
resistors. They are polarized, and the
short lead is the negative side. Bend the
leads so that no part falls out. Insert the
capacitor next to the socket, and bend
the leads of this part as well.

139

The rest is just wiring. You know the
pin numbers and positions. One at a
time, solder a wire between the points
in the schematic. Every time you place
a wire, mark it off on the diagram. This
serves two purposes: that you don’t miss
any points and that you don’t try to do
any point twice.

Let'sdo the first few together. Follow-
ing the schematic, solder one end of the
wire to Pin 10 on the connector. Cut the
wire so that it just reaches Pin 3 of Ul,
and solder that end of the wire to Pin
3 of Ul. Mark off this wire on the
schematic. Next, solder an end of the
wire to Pin 11 of the connector. Cut the
wire so that it just reaches Pin 4 of Ul,
and solder that end to Pin 4. Mark off
that wire on the schematic. Now finish
off the rest of the wires one at a time.
When you are finished, recheck all your
work. Remember to check the VCC and
GND of Ul. Insert the 741.S273 into the
socket, and make sure that Pin #1 is in
the right place.

That’s all there is to the hardware part
of it. Plug it in, turn on your computer
and check for the normal power-up
message. If you do not, turn off the
computer and check your work again.

Now that you have built it, let’s see

how it works. Look at Figure 1. The
main part in this project is U1, an eight-
bit D-type flip-flop. All the D’s are
inputs and all the Q’s are outputs. When
the CLK input is strobed, the binary
level on D is transferred to Q. Thus, if
all D’s were at Level 1 when the CLK
was strobed, all the Q’s (outputs) are
now at Level |. The D’s are now at Level
0. The CLK that I am using is the
CoCo’s SCS pin. It is mapped at $FF40
to $FFSF. Since 1 am not using any
address lines, mirroring will occur
throughout this area. Next month,
when we expand, I'll use the address
lines to add more to this project.

Since they are all connected to iden-
tical circuits when any Q has 0 volts, no
current can flow because the other end
of the circuit also has 0 volts (GND).
The LED is off. When any Q is high,
roughly three to five volts, current flows
through the resistor and the LED.

Since each LED is represented by one
bit on the CoCo's bus, D0 on the CoCo
controls LED I, DI controls LED 2,
etc. Since it is memory-mapped on the
CoCo’s bus, a simple BASIC poke com-
mand will turn on the LEDs. Thus, if
you type POKE &HFF4@, 255, all the
LEDs should go on. (Wow! It works.)

If it doesn’t work, check all your
wiring. Did you put all the LEDs in the
right direction? Try reversing one and
see.

If it is working, continue by typing
POKE &HFF40, 1. Only one LED should
be on. Now try typing 2 instead of 1,
then 4, 8, 16, 32, 64 and finally 128.
Each LED should light up, one at a
time. Now try 72 (8 + 64). Adding two
LED values together will cause both
LEDs to come on. Use a FOR/NEXT loop
to write a program that makes a chaser.

Those of you with Multi-Pak Inter-
faces must remember that the SCS pin
is switched. In order to poke the values
at $FF40 in the right slot, you must
change the slot access. You can do this
by going into the all-RAM mode and
turning the switch in front of the Multi-
Pak to the project’s slot. You can also
make sure that your disk controller is
in Slot 4, then put your project in Slot
I and type POKE &HFF?F, &H30. This
will change the SCS access to Slot | and
leave the CTS, or DOS, access in Slot
4. Remember to return to & H33 before
trying to access the disk.

In my next column, I'll expand this
project to include more goodies that
beep, boop and buzz. A

N\ = 2 ale] u3 2
10 Q 3
[e] D1 @1 D1 a1
T 11 ij" 3{o2 823 1 402 G232
Sz 1% D3 63|85 03 o3& scE
< Y y] D4 Q4 |—=3 3 04 04 2"
e oS 3105 95H8- || see text 4105 0548 TEXT
— N 06 @6 e 506 QB &~
=] o7 a7z E E: B? Q7 5q
7 pe a8 oe ae 2
11 bk 11 berk
<EET)PS dq cCr dq cLr
273 aALs273 vee
2 The§ Thes TS T
xT 112 11 To bl 1ok $ 1ok
a0 218 vi bl ua) > wA
JR/w 8 c vz pl3- 0o 2 . = g
Y3 — 3 1 ;; 1 :; a | ==} '—7'_
Ya 1 1 -—
Q [o] : E g - ..._5:___(
Sae] ideia YepS NE 21173 IAIE ===y BR
2gesRe Sdces v~ L . 1
A& N SW DIP-4 =
ST
vee
vge
t2V¥ c1
33 Tuf 10 v

{m

N7 NIN

NI

N
K

Figure 1

TO MORE SWITCHES
OR OUTPUTS

140

l ast month, we started a one-chip
beginner’s project that turned on
some LEDs. Let’s expand that

idea to a four-chip project that controls

more than a few LEDs. We will begin
with a short explanation of the elec-
tronic theories used in this project. Once
you understand what we are doing, all

you will need is a little patience and a

few parts to complete this project.

If you look at the diagram we will use
for this project (Figure 1), you will see
that it differs in several ways from the
one we used for the first part of the
project. First, because there will be no
changes in the circuit that involve the
LEDs, I removed ali the LEDs and their
resistors from the diagram. This gives
me more room to work and makes the
schematic less cluttered. Leave the
LEDs on your board, just expand it.
Next. in the original diagram 1 used
separate wires to connect the pins on the
connector to the corresponding pins on
the computer (i.e., DO on the computer
to DO on the chip). During that phase
of the project, each wire went to only
one place.

When I expand, however, | must use
a technique known as bussing to con-
nect one pin to more than one other pin.
To illustrate this change in the diagram,
I used a thick line called a Bus line. This
line indicates that several wires are
grouped together. In such a grouping,
the wires generally have something in
common. In this case, all the wires are
data lines. Bus lines may also carry
address lines, control lines, etc. This
technique saves space and makes things
look neater. To identify these wires as
they enter or exit the bus line, the wires
must be labeled (see Figure 1).

In this project, we will use the same
chip we used in the last phase, and we
will change only one wire on this chip.
If you begin with last month’s project,
the only wire you will need to change
is the one connected to Pin 11.

Now look at U2 — a TTL chip
74LS138. It is a 3-t0-8 decoder. In
binary, one bit has two different condi-
tions, two bits have four and three bits
have eight. U2 takes a three-bit binary
input and decodes it into eight different
combinations. The three inputs are A,

Tony DiStefano is a well-known early
specialist in computer hardware proj-
ects. He lives in Laval Ouest, Quebec.
Tony's username on Delphi is DISTO.

Use last month’s project
to power your
imagination

Project
Expansion

By Tony DiStefano
Rainbow Contributing Editor

Y7. Normally, all but one of the outputs
are high. The low output depends on the
condition of the three inputs and the
three control lines. The output is dis-
abled (all high) unless G2A and G2B are
low and Gl is high.

Look at the six inputs and their
connections on the schematic. We can
see from the three control lines that the
outputs will work only when the follow-
ing conditions are met:

I — The SCS pin (G2B) is low. When
this occurs, we can access the I/O area
of the CoCo, located from $FF40 to
$FFSF.

2 — The A4 pin (G1B) is low. This limits
access. When A4 is low, we can access
$FF40 only to $SFF4F — half of the
previous area. If we decode more ad-
dress lines, we can limit it to a smaller
area, but that is not required now.

3 — The E pin (G1) is high. This ensures
that the data is valid when we use more
than one chip. The CPU specifications
manual states that data and address is
valid during the high portion of the E
clock.

Let’s look at what we have so far. The
chip select is properly active between

$FF40 and $FF4F. Inputs A and B are’

connected to A0 and Al respectively.
This decodes to one of four memory
locations (represented by Y0 to Y3 if
our third input (R/W) is low, and Y4
to Y7 if R/ W is high). If you look at the
function of the R/W line, you will
understand the final stage of this IC. In

141

the CoCo, when the R/W line is high,
the CPU reads in data from whatever
address area the address bus dictates
(represented by the PEEK command in
BASIC). When the R/W line is low, the
CPU writes data to whatever address
area the address bus points (represented
by the POKE command in BASIC).

Instead of the one memory location
to which you could write in last month’s
project, you now have four memory
locations to which you can write (Y0 to
Y3) and four from which you can read
(Y4 to Y7). (More about the read loca-
tions next time.) Looking at Figure 1,
you see that YO is connected to Ul’s
CLK. Writing (or poking) data to
$FF40 will transfer that data to Ul and,
in turn, light up the LEDs. That much
of our project remains the same. Now,
however, we have another data latch —
U3. Because U3 is the same chip
(74L5273) as Ul, it presents the same
output characteristics as Ul. However,
we want to control more fun things than
LEDs with this chip.

Unfortunately, the 74LS273 chip
cannot supply much current, so we will
need another buffer chip that can. We
will use the 7406 chip, which is a hex
open-collector inverter/buffer chip. As
an open collector, the chip can only act
like a SPST (Single-Pole, Single-
Throw) switch with one side connected
to ground. It cannot supply voltage. As
an inverter, the chip inverts the incom-
ing signal, and as a buffer it can supply
a larger sum of current. When the input
to one of these inverters is high, the
switch (output) is considered closed.
When the input is low, the switch is
opened. With this information, we can
use our circuit to control small DC
devices.

Look at Q1 of U3. It is connected to
an input of one of the hex buffers (Pin
1 of U4). The output (Pin 2) goes to the
negative side of a small DC motor. The
other side of the motor connects to
VEE. Connecting VEE to the CoCo’s
VCC puts 5 volts on the motor.

Before you connect any motor to our
circuit, however, there are a few rules to
follow. These important rules must not
be broken. 1If they are, permanent
damage may occur to your circuit and
to your computer.

The chips on this board have a 5-volt
control voltage. This voltage comes
from the CoCo through Pin S on the
connector. According to Tandy, the

N
o
>
[+]
-

SEE TEXTY

4
o
o
o
L]

TO LED CIRCUITS

M1
DC MOTOR

VEE

K1
o1 o *
1N4004 [S——
4

U4

e
(e}
W
Q
W

Vv
o}
T}
o
o

11

1
l.

U g
EEE
SN

1
uf 10 Voltas

RELAY SPDT
7406
vege

7415273

Figure 1

U4E

S
2y

uxzer

7406

Uar

74086

current limitation on this supply is 300
ma (milliamps). It takes 1000 milliamps
to make 1 amp, so 300 ma is .3 amp.
Drawing more than 300 ma from the
computer may damage the power
supply. So how does one know when the
limit 1s reached? When the computer
smokes — tust a joke, but drawing more
than 300 ma isn’t. If you have a meter
that can measure current, you're in luck;
if youdon't, you'll have to calculate how
much current you are using. TTL chips
generally draw about 10 ma each. De-
pending on what you have on at the
same time, you are left with about 250
ma. When the LEDs are on, they draw
approximately 50 ma more. That leaves
you with about 200 ma for the rest of
the circuit.

The amount of current drawn by
small devices (e.g., motors, relays and
buzzers) is usually marked on the de-
vice. To be completely safe, you should
not go over 300 ma for all connected
circuits. Unfortunately, that may not
leave you with many connected circuits.
In that case, make sure you turn on the
circuits one at a time.

Another solution is to power the
devices with an external power supply.

Radio Shack sells several DC adapters
— some with multi-voltages. If you
power your devices externally, make
sure the device and adapter you use are
the same voltage. Connect the negative
side of the adapter (usually black wire)
to the ground of the project circuit and
connect the positive side (usually red
wire) to the point marked VEE on the
device — not to the VCC of the com-
puter. The maximum voltage you can
use externally is 15 volts. More than
that risks damage to the buffers. In
addition, each buffer can sink only
about 50 ma.

I got the small devices that I used
from the Radio Shack catalog. 1 used
the relay (Cat. No. 275-243), but look
through the catalog; there are many
things you can hook up. Use your
imagination to control a robot arm,
electric race car, train set, etc. But
remember, it’s important to match the
voltages and not exceed current limita-
tions. Most Radio Shack items mention
voltages and currents.

Anything you use will connect in the
same way — the negative (black wire)
connects to the outputs of the buffers,
and the positive (red wire) connects to

142

the VEE source (either the VCC of the
computer or the plus of an external DC
adapter). The schematic shows only six
buffers, because there are only six
buffers in one chip. If you need the other
two outputs of U3, you will need
another 7406 chip.

To construct this project, continue as
you were instructed in the last column.
If you plan to use many small devices,
leave room for other control circuits by
using a multi-pin connector and mount-
ing the devices on a separate board.
When you build this, remember that
Figure 1 does not show the +5 volt and
ground connections shown for Ul to
U4. Those connections are listed below:

IC +5 volts GND
Ul 20 10
U2 16 8
U3 20 10
U4 14 7

Well, that’s it for this time. Enjoy
your new toys. Next time we’ll look at
some input devices the computer can
read. A

Part 1 of this project (November 88,
Page 157) explained the basics of start
up. We started with a big project board
and put two TTL circuits and a few
LEDs on it. I used the first part of this
project to show you how to output to
the board and turn each LED on and
off. In Part 2 (December 88, Page 146),
I expanded the board to control things
that required more current (like relays,
buzzers and motors). This required
another TTL chip like those used in Part
1 and an additional chip capable of
carrying more current.

The first two parts of the project dealt
only with outputs. You could turn
devices on and off, but then you could
not read the condition of the devices
(like switches). In order to do that, you
need a circuit able to read in data via
the data lines DO to D7. This, in turn,
requires the proper decoding circuitry
and a device that will buffer the
switches. Study the circuit in Figure 1.
It is a continuation of the circuit used
in the last part of our project. In order
to save space, I removed the details of
the first and second parts. Any parts
that wili not be changed, I removed. The
LEDs of Part ! and the motors and
buzzers of Part 2 have been removed. 1
left the buffer chips there, so you can see
how the circuits work.

The first thing we need in order to be
able to read in some data is a decoder
able to decode the Read/ Write (R/ W)
line. Chip U2 of Figure 1 is the decoder
chip we have been using. It is a
741.S138, a three-to-eight decoder. By
now, you should be familiar with this
chip, but let’s review what lines are
connected to it. The most important line
is the SCS from the computer. This is
connected to one of the select lines of
U2, the G2B. This line is used to select
a block of memory from $FF40 to
$FF5F, which is the normal 1/O area
for disk drives. The second line going to
G2A is an address line. Since this is an
active low input, when A4 is low, the
chip will be selected. When A4 is high,
the chip de-selects. This limits our
memory area to 16 bytes and leaves the
other 16 for future expansions. The
third connection to our chip is the E

Tony DiStefano is a well-known early
specialist in computer hardware proj-
ects. He lives in Laval Ouest, Quebec.
Tony's username on Delphi is DISTO.

Adding input devices to
an expansion board

Do You
Read Me?

By Tony DiStefano
Rainbow Contributing Editor

clock from the CPU. It connects to G1
of our chip. This is an active high input.
So when the E clock is high, our chip
is selected again. The E clock signal
from the CPU is sort of a “data valid”
indication. All data is valid when the
CPU is writing to a device and the E
clock is high. When the CPU is reading,
the data is latched (or swallowed) on the
falling edge of the E clock.

Those three signals control the select-
ing of the chip. The next three lines |
describe determine which of the eight
outputs will be selected, a three-to-eight
decoder. Inputs A and B are connected
to A0 and Al, respectively. Two address
lines in binary represent four locations.
The third line is connected to the R/ W
line of the CPU. Connected to the C
input, it divides the eight outputs into
two groups of four. The R/ W line of the
CPU is high for reading and low for
writing. This makes one group a write-
only select and another group a read-
only select. YO to Y3 is the write-only
group. We know this because we have
already used two of the four lines with
the controls for the LEDs and motors.
The other group, Y4 to Y7, are read-
only selects. We will use one of these
read-only lines today, to read in data.

That takes care of the decoding part
of today’s project. We now have a read-
only chip select. For the second part, we
need a chip we can use as a buffer. Since
this chip interfaces to the CPU’s data
bus, it must conform to some rules. The
main rule is that when it is not selected,
it must not interfere with the data bus.
This condition is called rri-state. That

143

means when the chip is not selected, it
must be electrically disconnected (high
impedance). Since the CoCo uses an 8-
bit bus, we might as well use an 8-bit
buffer. Looking through the TTL parts
manual, I came across a chip that meets
all our requirements — a 74L.S244. It is
an 8-bit, tri-state buffer.

U4 in Figure 1 is a 74L.5244. It has
eight outputs connected to the CPU’s
data bus. It also has eight inputs. These
are our eight readable bits. Let’s look at
the two control lines. There are two
because this chip can be controlled as
both two 4-bit buffers and one 8-bit
buffer. This makes the chip a little more
versatile. For our project, we want it to
be a single 8-bit buffer, so we will tie
both control lines together. The TTL
manual states that when the control line
of a 741.S244 is high, the outputs are in
tri-state mode. This is good because
when the 741.S138 is disabled, all out-
puts are high. The manual also states
that when the control line of this chip
is low, the signal level appearing on the
chip’s inputs will appear on the chip’s
output. This is perfect for our project.

When the CPU is reading the proper
location, the 74L.S138 will respond by
putting Y4 low. This will cause the
741.S244 to generate whatever level
(high or low) it has on its inputs to the
CPU. If we tied all the inputs of the
741.5244 to ground, the CPU would
read $00 or all zeroes. On the other
hand, if we tied the inputs to +5 volts,
the CPU would read $SFF or all ones.
This is good, but soldering the wires to
this chip every time we want to change
the condition is a drag. Let’s use a
switch instead. SW1 in Figure | is a
quad switch. The diagram shows that it
1s a PC board-mount DIP switch. This
type of switch is generally found on a
modem or printer as an option switch,
and you can get them at a good elec-
tronic shop.

A switch is not the only thing needed
for this project. You also need a resistor.
Look at the diagram again, and you'll
see why. One side of the switch is
connected to the input of the 7415244,
and the other is connected to ground.
When the switch is on, a direct connec-
tion to ground is made. The chip will see
that as low, but when the switch is off,
no connection is made anywhere. The
input to the 74LS244 is just floating —
a condition of uncertainty. When the
chip is called upon to give the state of

the input, it may give a reading of high
or low. It all depends on exterior con-
ditions, such as how close it is to
another wire. In order to make sure the
input is high, we use a resistor to tie it
high. Therefore, when the switch is off,
the resistor supplies +5 volts to the input
of 74L.S244, and the chip reads high.
When the switch is on, the current is
shunted to ground, and 74L.5244 reads
low.

The SWI switch is only a quad
switch. That means there are only four
switches in that package. The 741.S244
chip has eight inputs. As you can see in
Figure 1, 1 have connected the other
four inputs to the outputs of the other
chips. This is a way to monitor the
output conditions of the other circuits
in this project. The wiring in Figure |
is just an example. You may not want
to monitor the LEDs or motors | have
selected; you can make any changes you
want. For instance, you have a program
that turns the first LED on and off in
Ul in several places. (See Part | of this
project for proper connections of the
LEDs.) Using this read-only circuit, you
are not certain at any time if the LED
1s on or off. Using the circuitry dis-
cussed in this column, you may now
determine the condition of your LED.
The same can be done with motors and
buzzers.

Now that the theory is clear (I hope),
let’s look at the construction. You will
need different parts for any application,
so I'll just describe them and let you
decide what you need. First, you need
the board you used for the first two
parts. For this application, you need
one or two 741.S244 chips and one or
two 20-pin sockets, depending on how
many bits you need to read. For I to 8
bits, you need one; for 9 to 16, you need
two.

Next, you'll need switches. You can

use any quantity of DIP switches. The
diagram shows four, but you can use
any number from one to 16. You can
also use individual switches and run
them off the board, but the wires should

Bit Decimal Hex Binary

DO 1 01 00000001
DI 2 02 00000010
D2 4 04 00000100
D3 8 08 00001000
D4 16 10 00010000
DS 32 20 00100000
D6 64 40 01000000
D7 128 80 10000000

Table 1: Bit Values

be no longer than about 10 feet. In
addition, don’t run the wires outside. If
lightning hits the switches, you'll find
yourself shopping for a new computer.
You'll need one resistor for every switch
you use. As the diagram says, a 10K, ¥-
watt resistor will do.

Mount the 1Cs, switches and resistors
close to each other and close to the
CPU s data bus. Construction is not too
critical, but keep your work neat — it’s
better for trouble shooting. Try not to
spread out your work. Next month I'll
add something you might want to add
as well. Check your work before turning
on the computer. If something feels
wrong, turn the computer off right away
and check it again. Remember, my
diagram does not include power and
ground to the ICs; they must be con-
nected. The two 1Cs you are adding this
time require +5 volts at Pin 20 and

. ground at Pin 10. Also, use two more

.luf capacitors close to the ICs.
Finally, let’s discuss the software.

This project uses the CoCo’s SCS pin.
This maps all 1/O from $FF40 to
$FF5F. (Remember, the dollar sign
means it's a Hex number.) To enter a
Hex number on the CoCo, just put the
characters &H in front of the number.
Now, when you want to read the 8 bits
connected to U4, the address is SFF40.
The following is an example of a line in
BASIC to read the 8 bits at U4:

100 X = PEEK(&HFF40)

The value returned in X is a value
from zero to 255 or $FF. Each of the 8
bits contribute to the value. If the value
returned is zero, then all bits on that IC
(U4) are off. In order to find out which
particular bit is on or off, you can use
the AND command in BASIC to mask the
other bits. This command will change
any bit that is zero to zero. A full
explanation of the AND command can be
found in your BASIC manual; I will not
go into detail here. I will, however, give
you an example of how to do it. Look
at U4 in Figure 1. | have connected Pin
13 of U4 to Pin 2 of Ul. That means
reading U4 and looking at D4 will give
you the condition of whatever you
poked at Ul DO. If Ul Pin | is high, then
when you read U4, D4 will also be high.
The following is an example of this:

10 POKE &HFF40,1

20 X=PEEK(&HFF40)

3@ IF X AND &HB < @ THEN PRINT “D4 IS
HI”

The first line makes DO of Ul high;
the second line reads U4; and the third
line masks all bits except D4. If D4 is
equal to zero, then there is something
wrong. To check other bits one at a
time, use the values in Table 1 with the
AND command.

That’s it for now. See you next time
when we’ll add new input devices. 7R\

Note: See Page 140 for Figure

144

#1.

his is the end of our project.
TRemembcr, though, we’ve just

touched the surface of CoCo’s
abilities. You can go beyond this simple
project — the possibilities are endless.
This time Il show you how to connect
afew more inputs. To do this, we’ll delve
into the world of optics — light. We can
use light to monitor time or trespassers
(i.e., determine when it grows dark
outside or when someone walks into the
light).

Let’s start with some electronic the-
ory. Look at Figure 1. Q1 is a symbol
for a photo transistor. This one is an
NPN. (The N stands for Negative and
the P for Positive.) A transistor has
three pins — a base, a collector and an
emitter. Figure 2 shows a typical NPN
transistor switching circuit. I use the
term switching because we use it as a
simple transistor switch. A simple
switch is an SPST (Single-Pole, Single-
Throw). The two contacts are the col-
lector and the emitter. Current can only
flow from the collector, through the
transistor, to the emitter. Examine the
circuit in Figure 2. If Point A were
connected to ground, there would be no
base current flowing from the base of
the transistor to the emitter. This causes
a high impedance between the collector
and the emitter of the transistor (no
collector-emitter current). The voltage
at Point B would be about the same as
VCC.

We’ll introduce a base current by
raising Point A to VCC. Current will
now flow through Resistor R5 and the
transistor base and out the emitter,
which causes the transistor to conduct.
The impedance of the collector-emitter
will lower, and current will flow from
the collector to the emitter. When this
happens, the voltage at Point B lowers
as well. If there were enough current
flow through the transistor, the voltage
at B would drop to 0 volts. The amount
of collector current depends on the
amount of base current and the gain of
the transistor. The gain of a transistor
is the amplification factor.

The transistors and opto-isolators we
will use work in the saturation mode,

Tony DiStefano is a well-known early
specialist in computer hardware proj-
ects. He lives in Laval Ouest, Quebec.
Tony's username on Delphi is DISTO.

Light detectors really
brighten this final
modification

Lights
Out!

By Tony DiStefano
Rainbow Contributing Editor

where we design the transistor to be
either fully on or fully off. Look at
Figure 2 again. When you ground Point
A (no base flow), point B is high. When
you make Point A high (when base
current flows), Point B is low.

Now that we understand the switch-
ing transistor, let’s look at the photo
transistor. The photo transistor is like
a regular transistor. It has two pins and
a window. The two pins are the collector
and the emitter, and the window is like
the base of a regular transistor. Exam-
ine the circuit surrounding Q1. It looks
like the transistor circuit in Figure 2 but
has a window instead of a base circuit.
This window acts like the base circuit
but uses light instead of current. When
there is no light in the window, there is
no base current; when there’s no base
current, there’s no collector current.
The point at which the photo transistor

_and resistor meet is high. When there is

light, that same point is low. We now
have a light-activated switch.

The output of this light switch is
connected to Pin 2 of U6 (one of eight
inputs of a 74L.S244). The circuit in
Figure 1 is similar to the circuits in the
previous three parts. I just deleted a few
ICs to make room for the new circuits.
U2 is the same; I just added another
741.S244 chip to Pin 9. The software
created in the previous parts of this
project is also the same. However,
today’s additions will use different
addresses.

145

Now that we have the photo transmit-
ter, we need an opto-isolator. An opto-
isolator is a photo transistor and an
LED (Light Emitting Diode) together
in one package. As the name implies,
this device is used to isolate an incoming
signal. This device is used in many
places. The most common is in televi-
sions with separate video and audio
inputs. In today’s TVs, there are no line-
voltage transformers. Therefore, many
components inside a modern TV can
have the potential of 117 volts. This is
dangerous and can shock you. Any
connection made to the TV is made
using isolators similar to the one used
here. Electrical signals are converted to
light signals by an LED and are re-
turned to electrical signals by a photo
transistor.

As in all TVs, my circuit is powered
by a separate supply. This supply has to
be isolated from the 117-volt AC via a
transformer. The circuit surrounding
ISO1 in Figure 1 is used in places
requiring isolation. It is just a switch
(SW1) isolated from the rest of the
Color Computer. This switch can be
used outside or over long distances of
wire without the worry that static
electricity or lightning will damage the
CoCo. The DC adapter is a standard
toy adapter found almost anywhere. If
you use more than one opto-isolator,
you can use the same adapter. I used a
1K resistor in R3, but this resister may
be a different value, depending on the
maximum current for the LED inside
the opto-isolator and the voltage of the
adapter. To calculate the resistor value,
use the equation R = V/1. In this equa-
tion, R is the value of the resistor
needed; V is the voltage of the adapter;
and I is the current needed to turn on
the LED. You will get this value from
the specs on the opto-isolator. When the
isolator is wired up, close the switch.
This causes current to flow through the
LED, which in turn activates the photo
transistor. When on, the output is low.
When the switch is open, the LED is off
and the output is high.

There are many photo transistors and
opto-isolators on today’s market, and
they all work the same. You may have
to change the values of resistors to
match the different types, but you’l
need only a volt meter to make sure it’s
running right. A wide variety of transis-
tors and isolators are on the market;
pick one for yourself. They come in

\ 2 % T
1Y A
N g2 a3 712 14
N o8 a4 TEXT
2Y1 2A1
§ 06 Ge SEE TEXT 2v2 2A2
07 a7 2vs 2a3
08 a8 2va 2aa
CLK 16
<JETRS —1dcLr 2c gfé:ﬂ
vge
9 1v1 a1 &
T
1A3
1 1 R
A Yo 1Y4 1A4
[4 Y2 2Y2 2A2
va ple— 2va 2a3
Y4 2va 2a1
G2A Y6 16 Ny, a1
5‘2: . Y7 - 2c ;ﬁ ¥ [PHOTO NPN
vGe i
vee =
c1 A4
<GNP 1uF 10 V

DC ADAPTER
9 to 14 V

R3
AN\
swi1 1K
o-
SW SPST

Figure 1: The Circuit Board

R2
10K

1801
2 OPTO ISOLATOR

-

different shapes and sizes. Some have
built-in lenses or tubes. Some can be
mounted on doors or motors, and some
come with reflective mirrors. Choose
the one you need or want to try. There
is an entire series of infrared photo
transistors and LEDs. You can build a
gadget and write software that reads
your television’s remote control and
duplicates it, so your computer controls
your television or VCR. Wire your
house for security. You can use a couple
of IR pairs and have two CoCos talk to
each other without wires — your imag-
ination is the only limit.

Now we need only to create the
software. Since we are still using the
same SCS pin on the CoCo, the ad-
dressing area remains from $FF40 to
$FFSF U6 is a read-only device, so only
the PEEK command will work in BASIC.
If it is connected to Y6 of U2, U6 is
located at $FF42. The same software
that read the other locations works
here. The same condition applies with
the bit positions. In Figure 1, QI is
connected to DO, and ISO1 is connected
to D1. Mix and match these inputs as
you like. If eight inputs are not enough,
you can use another 741.S244 and get

R4
RESISTOR

-]
Collector
RN
Emitter

RESISTOR

Typlical NPN Transistor
Clroult

Figure €2

Figure 2: Typical NPN
Transistor Circuit

146

another eight inputs. With U2, you can
have 32 (4 x 8) inputs and 32 (4 x 8)
outputs. If you need more, add another
74L.S138 and an inverter.

Constructing the project is simple —
just add to the existing board. Add
more sockets and chips as you need
them. Many electronics stores carry
photo transistors and opto-isolators.
Radio Shack stores have a limited
selection.

In Part 1 of this project, I told you
to keep things neat and tight, and this
is why. If you have many wires coming
off the board, look into a multiwire
connector. It helps prevent wires from
breaking when you turn the board
upside down to work on it. You may
want to start again. Design your own
circuit to suit your needs. With the
experience you now have, you can make
it the perfect size. If you are having
trouble reading the photo transistors,
use a volt meter to measure the output.
Make sure the voltage on the collector
is at Jeast 3 volts when no light shines
on them and no more than .5 volts when
there is light. If this is not the case, use
a different value resistor between the
collector and the VCC. "\

For many enthusiastic computer
users, understanding the mechanics of
their hardware is as essential as pen and
paper to a writer. The following article
will begin a basic explanation of the 40-
track disk drive. Articles to follow will
elaborate on various other drives.

First, to define a disk drive: A disk
is similar to a cassette tape and a drive
is like a cassette player. Both systems
use the principal of magnetism, and in
both cases the media is made of plastic
material coated on one or both sides
with a substance containing iron oxide.
This makes it sensitive to an electro-
magnet, called a head. Both cassette
players and disk drives have heads.

In a cassette player the tape is
dragged across the head by a motorized
mechanism. In the record mode, a
magnetic field is created by the record
electronics. This field varies in intensity
proportional to the signal it is record-
ing. The varying intensity leaves iron
particles in the tape aligned in a specific
order. Simply stated, the tape is magnet-
ized while in the record mode. Then the
tape dragging across the play head
makes tiny magnetic fields that are
transfered to electrical signals. These
are then amplified to an audible level.

A disk drives electronics works much
the same way. The mechanism, ob-
viously, is different in that it is made
with a computer in mind. A cassette is
made for continuous music, which
makes it inconvenient when you want a
small piece of data at the end of a tape.
A disk drive, though, is made with the
ability to access any part of it quickly.

Let’s take a closer look at a disk. It
is commonly known as a floppy disk,
because of its flexibility. The disk most
used by the CoCo community is SV-
inch square and consists of four parts.

The first is the actual media. It is a
round piece of plastic, a little over 5
inches in diameter, with a 1!4-inch hole
in the center. Better-quality disks have
a second piece of plastic glued to the
inner side of the disk to reinforce the
mechanism that holds and spins the
disk. More on that later. It also has a
second hole, about 1/16 inch in diame-

Tony DiStefano is a well-known spe-
cialist in computer hardware projects.
He lives in Laval Ouest, Quebec. Tony's
username on Delphi is DISTO.

Heads, sleeves, jackets
and index pulses . . .

The
ABCs
of Disk
Drives

By Tony DiStefano
Rainbow Contributing Editor

ter, that is about a half-inch from the
edge of the inside hole. This is called the
index hole.

The third part of the disk is called the
jacket. The jacket serves two purposes.
First, it is a protective cover for the
media. Touching or bending the media
can damage it or completely destroy
data. Except for one slot, the jacket
completely covers the media. This slot
has to be left open so that the read / write
head can access the media. The jacket
also has a hole on both sides to expose
the index hole and another hole to
expose that part of the media pinched
by the mechanism.

The second purpose is to protect the
media from being erased. In the upper
right-hand corner of the disk is a small
notch. When this notch is left uncov-
ered, the disk drive is able to write to
the disk whenever the software “tells” it
to. When it is covered with opaque tape
the disk drive cannot write to the media,
even if the software “tells™ it to.

The fourth part of a disk is the sleeve,
a paper envelope that protects the
media from fingers or dust and cigarette
smoke. Most people don’t realize it, but
cigarette smoke creates a thin film of tar

147

that attracts dust, putting extra wear on
the drive heads. Sleeves cover every-
thing from the index hole to the access
hole. Whenever a disk is not being used,
it should be stored in its sleeve. Never
leave a disk in a drive with the door
closed over a long period of time. It puts
a dent in the media.

Now let’s discuss the drive. 1t is a
mechanism used to read and write data
to the disk. The first thing a drive does
is spin the disk inside the jacket. When
you close the door of a disk drive, a
plastic hub pinches the disk to the metal
hub and shaft of a motor. Older drives
had a capstan and were belt driven by
a separate motor. Now drives have the
motor built right into the hub. When the
drive is selected, the motor spins the
disk at about 300 rpm (revolutions per
minute), give or take S rpm. Older
drives took up to five seconds to come
up to speed; the newer drives can come
up to speed within two revs. That's
about two-fifths of a second.

The next responsibility of the drive is
to properly move the head. The read/
write head is mounted on a movable
assembly that can move across the
access hole in the disk jacket. The heads
rub on the moving media. Open the
door of a drive and peek in just after a
DIR and you will see the back-and-forth
motion. The assembly moves with the
help of a stepping motor. The head
movement is done in steps, with each
step being called a track.

With 40 of these tracks on each side
of its disk, the 360K drive is today’s
most commonly used drive. The drive
is double-sided, meaning that there are
two read/write heads, one for each side
of the disk. Tracks are numbered from
0to 39, Track 0 being on the outermost
area of the disk and counting up as
tracks move toward the center. The
head can move back and forth on a pair
of rails controlled by a stepper motor
that receives one of two signals from the
controlling hardware.

The two signals are “step™ and “direc-
tion.” The direction is set according to
where the head is and where you want
it to go. Then the step pulse is applied,
and the head moves the distance of one
track in the specified direction. In the
case of the 360K drive, the distance
between two tracks is about one-forty-
eigth inch. That is 48 tracks per inch.

A hardware switch positioned to turn
on when the heads are at Track 0 tells

the controller where the head is. The
proper way to position the head to
Track O1s to give the controller a restore
command or to step and test for the
switch until Track 0 is detected. Some
software steps in 40 times without
testing; but if the head is not at Track
40, then it bangs against the Track 0
stopper and can possibly become mis-
aligned. A register in the controller
keeps track of where the head is. If the
controller confuses where the heads are,
it restores to Track 0 and then steps to
the desired track.

Another duty of the drive is detecting
index pulse. The little hole in the disk
is used to give the controller a reference
point. Inside the drive on one side of the
hole is an IR (infra-red) LED. On the
other side there is an IR detector. When
the disk is spinning, most of the time the
light emitted by the LED is blocked by
the disk. Every revolution of the disk,
the hole appears in the path of the LED
and detector. This in turn gives a short
pulse to the controller. By this signal the
controller can determine a reference
point to the rotational position of the
disk.

This position reference is used when
formatting new disks. Formatting di-
vides the disk into small blocks called
sectors. Each sector has a unique ad-
dress or ID number. They are assigned
by track number, sector number and
side. Some controllers, however, do not
use side but, instead, have greater sector
numbers.

As mentioned earlier, tracks are
numbered 0 to 39. In CoCo’s case,

Stepping into the world of
40- and 80-track drives

The DEFs
of Disk
Drives

sectors contain 256 bytes of data each.
There are 18 sectors per track per side.
Radio Shack DOS is written to handle
a single-sided drive with 35 tracks at 18
sectors per track. That gives you a total
of 256 bytes x 18 sectors x 35 tracks =
161,280 bytes per disk.

Since most drives today can step 40-
tracks and are double-sided. This is a
waste of data area. Some third-party
DOS:s get around this by changing it to

Pin # Function

2 N/C

4 N/C

6 D4 Select

8 Index Pulse
10 DO Select
12 D1 Select
14 D2 Select
16 Motor On
18 Direction
20 Step
22 Write Data
24 Write Gate
26 Track 00
28 Write Prot
30 Read Data
32 * Side Select
34 N/C

Table 1: Standard Connector for
2 360K Drive

In last month’s column, I covered the
ABCs of how a disk drive works — its
mechanical parts and how it accesses the
data available on the disk. I'll continue on
that track, giving more detail to the differ-
ences between 40- and 80-track drives.
Part of the article will concentrate on de-
signing a small circuit that allows CoCo
users to read standard CoCo disks with an
80-track drive.

The need for 80-track drives came about
with the need to store more data on one
disk. If a 40-track double-sided drive can
hold 360K of data, then an 80-track double-
sided drive should hold 720K of data. In
fact, it does. But instead of going back to

148

handle double-sided and 40 tracks.

When formatting, the controller does
one complete track at a time. The index
pulse is used to start the writing head
up and then to shut it off. This keeps
the write head from writing over the
part already written on.

So far, I have been talking about the
mechanical parts of a disk drive, but

there is more — the electronics part.

A disk drive has several electronic
sections in it. Though the actual elec-
tronics varies, there are standard pro-
tocols that make drives made by differ-
ent companies compatible. This is
called the interface. All drives use a 34-
pin edge connector to transfer all elec-
tronic information to and from the
controller. All the pins do basically the
same thing. You can virtually unplug a
Panasonic 360K drive and plug in a
Tandem without any problems.Table |
shows a pin list of the standard 360K
drive connector.

All odd pins are ground returns.
These signals completely control the
drive. The electronics needed for this
task are speed regulation for the spin-
ning of the drive, stepping the head in
and out, electronics to power the write
head and erase head, and amplifiers to
read the small signal of the read head
and to light the “drive in use” LED.

Now you should have a good idea of
how a disk drive works. Next time, I'll
discuss how an 80-track drive is differ-
ent and include a circuit on how to
double-step the drives so it can read
standard 40-track disks.)

the 8-inch drive, which has more data
storage, the manufacturer decided to double
the amount of data by doubling the amount
of tracks on the same-size disk. The only
problem with this is that it becomes in-
compatible with the 40-track drives. The
differences make it impossible for an 80-
track drive to read a 40-track disk.

One difference between the two is
obviously the number of tracks. But how is
that possible, when both are 5'4-inch drives?
Well, the difference is in track size. On a
40-track drive the track density is 48 TPI
(Tracks Per Inch). At 48 TPI, it takes just
under one inch to make 40 tracks. If you
look at a disk, one inch is about enough

room to fit 40 tracks. If 40 tracks take up
one inch, then 80 tracks take up two inches;
that's too much to fit on a S%-inch disk. So
the disk drive manufacturers decided to
make the tracks thinner and closer to-
gether. To make them fit on the same size
disk, the track density was doubled to 96
TPI. That allows 80 tracks to fit on the
same size disk.

This, however, causes a few problems
for both the drive and disk manufacturers.
So the read and write head had to be made
thinner and the stepping mechanism more
accurate. This adds to the cost of the drive.
In addition, the disk has to hold twice the
data and be of better quality. Since the
track size is smaller (thinner), the mag-
netic surface is smaller. In order to get the
same reliability, the quality must be better
— both with the heads and disks. When
using 80-track drives, it is recommended
that you use 96 TPI-rated disks. If you
don't, you may not have any problems
while the disks are new, but in the long run
valuable data is safer with this type of disk.

Now, lets step back a little. The mecha-
nism that steps the head back and forth is
usually a motor called a stepper that can
precisely rotate within certain speed lim-
its. When Radio Shack first started selling
drives, it took 30ms. (milliseconds) to
make each step, but as motors improved,
drives had shorter stepping times. Today
an average 40-track drive has a stepping
time of 6ms. When the 80-track drives
came out, the manufacturer wanted it to be
just as fast, so they increased the stepping
time again to 3ms.

Look at Figure 1. It shows a few tracks
on a typical disk. On the left side of the
drawing are tracks made by a 40-track
drive at 48 TPI. The track on the outeredge
is Track O; the next is Track 1, then Track
2 and so on. Tracks made by an 80-track
drive are twice as thin as those of a 40-
track drive. Notice, though, that Track 0, is
on the outer edge on both sides.

Take a disk formatted in a 40-track
drive and place it in an 80-track drive. If
you step the 80-track drive to Track 0, you
canread it; trouble starts when you want to
read the next track and so on. Look again
at the right-hand side of Figure 1. Imagine
that you step the 80-track side one track
inward to Track 1. Now move over to the
right-hand side and see where you are. On
the 40-track side, you are still on Track 0,
yet the software expects Track 1. Now step

in again. The software expects Track 2 but
gets Track 1. For every track stepped, the
result is half of what you expect. If you
step up to Track 10, then you only get
Track 5.

Stepping in or out, the ratio is always 2
to 1. Knowing this, I thought I could make
acircuit that would generate two pulses for

every one that came in. It would then be
possible for an 80-track drive to read a

standard 40-track disk. After a few experi-
ments I came up with a doubling circuit.
For every step pulse coming into the drive,
two pulses come out.

When stepping a standard 40-track drive,
the CoCo’s controller waits a minimum of
6ms between steps. For an 80-track drive
with a 3ms step rate, this is relatively slow.
In fact, it can step twice as fast, so the
circuit has time to step between steps.

Examine the circuit in Figure 2 used to
make the double stepper. It consists of two
TTL chips and a handful of passive com-
ponents.

First it takes one pulse that comes in
and changes it into two pulses. U2B acts as
a buffer so that the second pulse doesn’t
trigger the circuit into oscillation. Ul is a
dual monostable multibrator. The first part
(U1A) is used as a delay. The pulses that
come in on STI are very short and are
coming in at every 6ms. I say short be-
cause they are short compared to the cir-
cuit’s delay of 3ms between pulses. That is

half the time between incoming pulses.
(Remember that an 80-track drive can step
every 3ms.) When a pulse enters into the A
input of U1A, Q* (Pin 4) goes low and
stays low for 3ms. Nothing happens until
Q* goes high again. The B input of U1B
circuit starts on the rising edge of Q*.
When this pin gets a rising edge, it starts
timing a much shorter pulse, about 4ps,
the same pulse length as the incoming step
pulse.

Now let’s look at what happens 1o the
STO point in the circuit. The first (origi-
nal) pulse happens; STO sees one pulse;
that triggers a pulse at UlA; about three
milli-seconds later, a pulse triggers U1B.
If the switch S1 is closed, the short pulse
generated by U1B (4ps) goes through U2A
and appears at STO. At that point the drive
gets asecond pulse to step. If S1 is opened,
the pulse goes nowhere.

Construction for this project is not dif-
ficult. Besides parts, it requires opening
your drive case and modifying the drive,
which takes some electronic skills and
should be done only by someone with
experience in soldering and circuit modi-
fying.

Concerning parts, look at the circuit in
Figure 2. These are all the parts you need
— four resistors, four capacitors, two chips
and one switch. You’'ll need a small proto-
board on which to mount all the parts.
These are available at any Radio Shack

48 TPI

96 TP!

gfdlwWiNn =20

Figure 1

149

vGge
R1
10K
uz2e
* 20.<3Yg) vee
7417 .
10K
U2A
r I 1
vee
e 7417
0
U1a MR S1
CEXT
R3 _E_T:—;—ﬁw CEXT R2 >
[47 180
(.:?uf oK .047u¥f 33pfF
N REXT/CEXT REXT/CEXT
3 13 A 03
=Q A Q 7 5
34 2Lk gl lgd R g
acsi
74AL5123 1
c2
Jluf
Figure 2

store, unlike some of the other parts.

Connect all the pins to the chips; un-
mentioned pin numbers should be left un-
connected. Pin 16 of Ul and Pin 14 of U2
should be connected to +35 volts. Pin 8 of
U1 and Pin 7 of U2 should be connected to
the ground. After all the components are
mounted on the small board, it's time to
mount the whole thing into your drive. |
can only give you guidelines since the
great variety of 80-track drives makes it
difficult to be exact.

First you need to find a place to fit the
board — once fitted, you have to connect

Dynamic
Random
Access
Memory
Explained

S volts and ground. A voltmeter here is
handy but not necessary. Locate the power
connector to the drive. There are 5 volts,
12 volts and ground at the connector. Pin4
is 5 volts and pins 2 and 3 are ground. The
nextstep is to find the 34-pin edge connec-
tor. Locate Finger 20 and a convenient
location, then cut the trace that leads to it.
Solder the connection labeled STI to the
side of the cut that leads to the finger, and
solder another connection labeled STO to
the other side of the cut. Mount the switch
somewhere on or near the front of the
drive, then reassemble the drive assembly

Making refresh and page
modes everyday conversation

Just about everyone and his brother in
the computer business knows about RAM,
Random Access Memory. But how much
do you really know about it? Most users
know enough about it to get by and how
much RAM is needed to do certain things.
Some years ago, many programs required
only 16K. Then there was the 32K mem-
ory craze, with everyone using the piggy-
back technique. Moving on to 64K was
then the limit for the CoCo. When the

150

and turn everything on.

Now insert a 40-track disk in the 80-
track drive, turn the switch on, and type
piR, If it’s not working, check your work;
if you have a digital probe, use it.

Now that you have the circuit working,
you need to know how to use it. While in
0S-9, leave the switch off. This allows
you to access all 80 tracks. (You must use
the 80-track descriptor.) When you want
to read standard 40-track disks, turm the
switch on, use a 40-rack descriptor and
read the disk. Do not try to write on a 40-
track disk with an 80-track drive. It will
not work properly. I~

bank-switching technique arrived, every-
one used it, breaking the 64K barrier. The
CoCo 3 brought 128K, expandable to 512K.
But as a hacker, you must know more than
just how much memory your computer
has. It is important to know the kinds of
RAMs available and how these work. 1
will quickly review the basic concepts of
RAM, then discuss the finer details of
DRAM, or Dynamic RAM.

Let’s start by reviewing a static RAM.
Figure 1 shows a 2K-by-8 static RAM chip
in a 24-pin package with Vcc and GND.
The Vcce is 5 volts, all that is needed to
power this chip. There are eight data lines

labeled DOto D7, then 11 address lines, AQ
to A10. To understand why there are 11
address lines, remember binary numbers.
Each line has two states, Hi and Lo; for
every extra address line added, the amount
of memory doubles. For 11 lines it is 2
times 2 times 2, eleven times. That gives a
total of 2K or 2048. There is also a sole
Read/Write line and two Chip Enable (CE)
lines. This accounts for 24 lines.

That is how a static RAM chip works.
When the CPU reads or writes to RAM, it
puts out an address first. Any data written
into a static RAM chip stays there until
power is removed from it or it is changed
by the CPU or other device. Each memory
location is made up of a flip-flop circuit.
When flipped, it stays flipped; when flopped,
it stays flopped — thus the name static. It
takes up two transistors and a support cir-
cuit for each cell, as well as a lot of room
on the chip, adding to its cost. This is one
of two major differences between static
and dynamic memory.

In general, dynamic memory has a much
higher capacity than static memory, over
100 times greater than the 2K static RAM
chip. There is not enough room on a small
IC chip for all those transistors so the IC
designers made a small change in the de-
sign to save both room and money. The
standard flip-flop memory cell was changed
to one transistor and capacitor, the capaci-
tor becoming the new memory cell. When
the memory cell was given a Hi, the ca-
pacitor was charged; when requiring a Lo,

—21 a0 0o {2
& A1 01 (K]
5 A2 o2 EEN
21 A3 03 5
2 A4 D4 e
31 AS oS KL

—-f‘— AB (=] V2R

—_—={ A7 o7

—£3 1 a8

—-221 AS

18 ' aj0

18

21 aE

2016
Figure 1:

it was discharged. When reading the data,
a sense amplifier reads voltage across the
capacitor, which, if above a certain volt-
age, is considered to have a Hi. If not, it has
a Lo. This worked well to lower cost and
real estate.

However, one small problem is that
when the capacitor memory cell is not
accessed for a while, the capacitor dis-

charges due to leakage. When the sense
ampreads the voltage, itis not high enough
to convince the amp that it is Hi, so data is
lost. The designers added extra circuitry to
refresh (recharge) the capacitor occasion-

ally before voltage gets too low. The volt-
age across the capacitor is dynamically
changing, dropping when it leaks and ris-
ing when it’s recharged — thus the term
dynamic refresh.

This took care of price and space for
higher-capacity memory chips, but there
is also another problem. The small chip
needs a small package, but with high-
memory capacities come many address
lines. For instance, a 256K-by-1 memory
chiprequires 18 lines for addressing alone.
Add the data and control lines and you
have a big package. In order to cut down
on address pins, the chip multiplexes these
lines. The dictionary definition of multj-
plex is: “equipped to transmit two or more
sets of signals in one or both directions
simultaneously over the same wire or ra-
dio band.” We are not dealing with radios,
but the rest of the definition applies, cut-
ting the address lines almost in half. There
now is a need for other control lines to
allow the chip to recognize when it’sthe
first set of address lines and when it’s the
second. The savings are great enough to
warrant the extra circuitry both inside and
outside the package.

Those are the major differences be-
tween static and dynamic memory. For
more details on how dynamic memory
works, study the diagram in Figure 2,
which shows the pin-out of the well-known
41256 memory chip. It is the 256K-by-1
memory chip commonly used in the CoCo
512K, IBM PC, AT, PS/2, Atari ST,
Comodore Amiga, Apple MAC, SE, MAC
ITand all the clones. It is also used in video
processors, VCR electronic pauses, TV
Screen on Screen, video freeze frames,
laser printers, electronic typewriters, tele-
phone systems, musical electronic key-
boards and so on. No wonder there was a
shortage! But this chip has just 16 pins and
only one data bit. That is to say, it requires
eight of these chips to make 256K-by-8
memory.

When we compare this chip with the
2K-by-8 static RAM chip in Figure 1,
there are many similarities. Both share
Vcc and GND, address and data lines, as
well as the R/W line. But instead of Chip
Enables, there are RAS and CAS lines that
serve many uses. They are used for re-
fresh, multiplexing address lines, and serve
as Chip Enables. Information about these

151

areas is necessary for a good understand-
ing of the dynamic memory chip.

Since the address lines are multiplexed
and are the first thing the memory chip
needs to operate, let’s look at these first,
while following the block diagram in Fig-
ure 3. Fully decoding 256K requires 18
address lines, AOto A17. The 41256, with
only nine address lines (A0 to A8) uses the
RAS (Row Address Strobe) line to strobe

5 14
—51 A0 DO
—Z 1 aq >
-—.% A2 DI —2-
1] 43
4
=3

e L

ﬁgg 2333

Figure 2:

the addresses A0 to A8 into the DRAM
chip. It is the responsibility of the com-
puter’s support circuitry to generate all the
signals required by the DRAM chip. (Criti-
cal timings are not discussea nere 1n oraer
to keep things simple. Remember, though,
timing is very important and must be re-
spected by the support circuitry if the
DRAM chip is to work. For example, in
the CoCo the GIME chip takes care of all
timing requirements for the DRAM.)

First the address signals must be stable
on the address bus, then the falling edge of
RAS locks the lower address into the row
address buffer. After the RAS line has
done its job, the CPU’s A0 to A8 must be
taken off the chip and replaced with the
CPU’s A9 to A17, which is accomplished
by the CPU's support circuitry. When A9
to A17 appears on the DRAM’s address
bus, (A0 to A8) the CAS (Column Address
Strobe) does its job. On the falling edge of
CAS, the upper address is locked into the
column address buffer. These buffers (row
and column) feed into the row and column
decoders that access the sensing amps and
then the memory cells themselves.

When the RAS/CAS sequence occurs,
the chip is selected and, depending on the
Read/Write line, a read or write cycle is
completed. If a read cycle was executed,
the DOUT pin will have the data from that
cell; if a write cycle was executed, the data
present at DIN is transferred into the ac-
cessed memory cell. When all is finished,

the cycle starts again, first with the RAS,
then CAS; then data becomes valid. All
this is known as one memory cycle.

A typical DRAM chip can handle sev-
eral different modes: Read-Modify-Write,
RAS Only Refresh, Hidden Refresh, Page
Mode, and Nibble Mode. They are all
slight variations of the same Read/Write
cycle, which you will understand better as
we continue.

Reading and writing data is all the CPU
does as far as memory goes, but the DRAM
has one more requirement — refresh. |
explained why the DRAM needs refresh
and will now show you how it’s done.

Most DRAMs on the market today re-
quire RAS Only Refresh. If you look at
Figure 3, you can see that the Row De-
coder has only eight lines, meaning that
only 256 refresh cycles are required in
order to keep all data refreshed in the
DRAM chip, keeping the refresh circuitry
to a minimum. An eight-bit counter along
with its support circuitry is required.

There are many ways of refreshing a
DRAM chip, depending on design factors.
As long as each of the 256 RAS locations
are accessed once every 4ms, the refresh is
satisfied.

In software the CPU simply has to make
256 reads or writes every 4ms. This is low-
cost but not very practical because it takes
up a lot of CPU time. If the CPU has the
time, great. The most common way is to
let the video circuitry do the work since
most video circuits are bit-mapped, or
have at least one bit-mapped plain. If video
is unavailable, an independent circuit usually
does the trick. Again, there are a couple of
ways to approach this. One is to put in a
refresh cycle when the CPU doesn’t need
the memory. The only problem is that
there needs to be at least 256 free spots
every 4ms. Another way is to make the
CPU wait every time you refresh.

The Hidden Refresh method involves
strobing in a refresh cycle in the middle of
the CAS cycle. Since the CAS buffer is
latched relatively early in the CAS cycle
while the DRAM is fetching data, the
cycle can be squeezed in. With CAS al-

vCC O——>
GNO O—>
R/N
Gate Oata IN e ODIN
CAS O—pN© 2 CLoOck
Generator [Deta OUT | »O00UT
| Buffer |
Column Column
Address 10 Decoder
AD | uffers (9)
AY
:g O— 1024
A4 O——> |
:g 8‘-_—-—: | R t:n.. Amp
o . ow
A7 Gating
Address
uffers (9) 8
L—T_——‘ R D
o o 1024
- w c©
o 1 Clock g
Generator Py Memory
RAS O——»n e 256
Array
Figure 3:

ways low, the CAS address is taken off the
address bus, and the Refresh data counter
is presented to the DRAM’s bus. The RAS
strobe is then fired and the refresh cycle is
completed.

Page Mode is for faster I/O more than
anything else. The mode may be used
when many column accesses are needed
within the same RAS area. This is done by
latching the RAS as usual but then doing
many CASes without deselecting the RAS
signal. This mode is used when speed is
needed without an increase of power.

The Nibble Mode operation allows faster
successive data operation on four bits. The
first of four bits are accessed as usual.

152

Then by keeping RAS low, CAS can be
accessed four times to get the four bits
each in the next three pages at a rate faster
than accessing them separately.

Not all these modes are available on all
DRAMs. You must refer to the data sheets
of each particular chip in order to see if the
feature you need is available. This article
by no means includes all the data on DRAMs.
I have left out timings, chip loads and
many other small details. If you want to
design a circuit involving DRAM, make
sure you know a lot about the chip itself
and the system you are designing it for
before starting. More specific details can
be found in the DRAM data manuals. /~\

	Cover
	A Full Turn of the Screw
	Table of Contents
	Introduction
	Poke Speedup
	Finger Saving Circuit
	Green on Black Video
	Reduce RFI on Your Monitor
	Close Look at Memory
	Make ROM Port "Y" Adaptor
	Parallel Printer Interface
	Interfacing the GI Sound Generator
	Project Odds & Ends
	Build a Speaker/Amplifier
	Installing a ROM Switcher
	Upgrading Guide for the CoCo 2
	Program Pak Connection
	Add Function Keys to Keyboard
	A 12 Volt Power Supply for CoCo 2
	Design a Video Monitor Output
	Phoneme Speech Synthesizer
	Dueling cassettes
	Popular Misconceptions & Common Problems
	The Halt Pin and it's Function
	The Modem to Printer Connection
	Force a Cold Start from Reset Project
	Lights! Camera! CoCo!
	Intro to the Inside of teh CoCo 2
	How the Multi-Pak Interface Works
	Construct 16K of EPROM for Controller
	Adding Numeric Keypad to your CoCo
	Hookup a Voice Synthesizer from RS
	Follow a Memory Map
	Look Ma, No Switch!
	Switching Double Sided Drives
	CoCo! with More LEDs
	Analog to Digital Converter Pt1
	Analog to Digital Converter Pt2
	What is VDG?
	Beginner's Hardware Course Pt1
	Beginner's Hardware Course Pt2
	Introduction to Timing
	Memory, How it Works
	Exploring Memory Cells
	The CPU
	Investigatig the PIA
	Timing & the SAM Chip
	The New Video Display Generator
	The CoCo 2B
	Hardware Fixes, Video Display Generator
	The NO Switch VDG
	How Monitors Work
	CoCo! Music to Your Ears
	Buffers
	Hardware Projects Review
	Expandable Relay Project
	Cache of the Day
	Uses for Memory
	Build an EPROM Emulator
	Disk Controllers
	Improved Printer Adapter
	Finishing the Printer Adapter
	Add a LED to your Controller
	Build an Electronic EPROM Emulator Eraser
	Bigger & Better EPROMS
	Build a Megabyte ROM Disk
	Multi-Pak LED Update
	Increase Charcter Display
	Project Adapter "2 for 1"
	Serial Paks
	Summer Cleanup
	A Simple Expandable LED Project
	Project Expansion
	Do You Read Me?
	Lights Out!
	The ABCs of Disk Drives
	The DEFS of Disk Drives
	Dynamic RAM Explained

