

"RAINSCW

January 1993 9

% F;

158 PRINT@284. USING"IZ

I";0P¢;

151@ PRINT@23B,""::1F T=-1 QR §=
-1 THEN PRINT™ "5 GOTQ 1528

ELSE PRINT USING"{# ##":T.,5;
152@ PRINT@264,"";:1F G=-1 THEN
PRINT" ";:G0T0 1538 ELSE PRINT

23
1530 PRINT@293,"";:1F 0=-1 THEN
PRINT™ "::G0TO1E4Q ELSE PRINT

D;

154@ RFTURN

1558 °

1568 ST=FIX(G/2)

1578 IF G>33 THEN ST=ST+1

1588 IF G/2=FIX(50/2) THEN SS=1:M

=0 ELSE SS=1@:M=%

159B FS=5S+8

1688 FOR Z=55 TO ES

1618 5=Z:T=5T:GOSUB 1488
1628 GOSUB 1818

1638 DSKI$D,ST,Z,CH(7 H),D$(Z-M)
1648 GOSUB 17919

1658 NEXT Z

1668 RETURN

1670 *
1688 S5T=FIX(G/2}

169¢ 1F G»33 THEN ST=5"+1

1788 IF G/2=FIX(G/2) THEN $%=1:M
=@ ELSE SS=1@:M=%

1718 ES=55+8

1728 FOR Z=55 TO ES

1730 5=2:T=ST:GOSUB 1488

1745 GOSUB 1819

1750 DSKOED,ST,7.C$(Z2-M).D$(Z-M}
176@ GOSUB 1790

1778 NEXT 2

1782 RELTURN

1792 IF PEEK(&HFFFF)=27 THEN POK
£ 65497, ELSE POKE &65495,8

1888 RETURN

1818 IF PTEK(AHFFFF)=27 THEN POK
E 05496, ELSE POKE 55494.8

1828 RETURN

POKE

TIM KIENTZLE

When is an
Interpreter Better?

Many programmers routinely dismiss
BASIC for a reason that has nothing 10 do
with the language itself: Typically BASIC iy
implemented onmicrocomputersas a fairly
simple interpreter, and it has thus earned a
repulation as a slow language even though
BASIC compilers can be used to create pro-
grams that run just as fast as their counter-
parts in other languages. Curiously, other
interpreted ianguages have not ezmed this
repultation. PostSeript, APL, Smalltalk and
Forth are all typically interpreied {in some
fashion), but none of these 1s considered
notoriously slow as is BASIC. To understand
the ditference, let’s go back to the early
days of computers and consider the contro-
versy thal omce surrounded subrontines.

At one time all programming was done
in machine code for computers that were
puny by roday’s standards. Programmers
stirelched every bit of specd and meniory
efficiency by carefully rearranging and
combining opcrations to take best advan-
tage of whatever partial roatines might al-
ready be available. Eventually a trick was
discovered that allowed programs to have
only one copy ol certain roulines — this iy
what we now call subroutines. The draw-
back was that it takes time to call a subrou-
tine and return from it, and many program-
mers thoupht this additional time would
result in unduly slow programs, However,
they discovered that in a 1ypical computa-
tion_ almosi all the time required was spent
performing the instructions within the sub-
routine, and that the time to call and return
frotn the subroutine made the program only
slightly slower. It was clear that the mem-
ory savings of using subroutines far out-
weighed the slight additonal time needed
for the program to run, and the technique
became common. Eventually users began
loading collections of widely-used subrou-
tines into the machine with every program.
and rhese collections of subroutines be-
came what we now call operating systems.

Although few people loday would ques-
tion the value of a subroutine, almost ex-
actly the same sitnation occurs with an

interpreted language. Each stutement of the
program being interpreted is really just a
subroutine that results in a subroutine call
wilhinthe interpreler. Lnhis sense, the only
difference between an interpreter and
compiler is that an interpreter figures out
which subroutine 1o call as it reads each
line. whereas a compiler figures this out
onee, and the compiled program simply
callsthe subroutines. What makes the intet-
preter slower is that it 1akes fime to figure
out which subroutine to call. H this time is
a sigmficant percentage of the total time,
the interpreted version of the program is
much slower. On the other hand, il the
interpreter spends most of its time in the
subroutines {i.e., actually doing the work),
then the interpreted and compiled programs
run at about the same speed,

The time needed to determine which
subroutine o call is often referred 1o as the
interpretation overfedd. In a language like
BASIC, a typical satement might cause two
numbers to be added and stored in a vari-
able. Since adding and moving numbers is
very simple. the interpretation overhead
does tend to take most of the time. In APL,
a typical statement might cause o malrix (©
be inverted. Since inverting & matrix tukes
a very long time compared to the interpre-
tation overhead. interpreted APL runs very
nearly as fast as if it were compiled.

So.now we see that aninterpreter can be
very fast when the basic commands of the
language perform very complex tasks. In
PostScript. asingle command can result in
a very sophisticated (and time-consuming)
graphics operation. 'This means that when
sclecting a language for writing a program,
we should pay attention to how well the
fundumental operations of the language
match our job. Color BasIC, for example,
does fairly well when the program empha-
sizes string, Iloating-point, and cerain lypes
of graphics operations. These arc all rela-
tively time-consuming operations that can
be accomplished with only a few statements,
BASIC does relatively poorly, however, when
interpreting a program that performs exten-
sive memory operations, since those are
fairly simple aperations,

As we've seen, an interpreted language
need not be significantly slower than a
compiled one. In fact. interpreted languages
havc advantages. Compiled programs are
typically larger than their original source
code, and interpreters usually use less space
for storing programs. It is also casicr to
make interpreters work interactively. which
makes it easier to debug and test programs.
Finally, compilation itself can be fmc-
consuming, so interpreters are often pre-
ferredifthe resulting prograr is going to be

run only a [ew times, as is the case with
PostScript.

Even for languages that lack powcerful
fundamental operations, we shouldn’t
completely dismiss interpreters since ma-
jor advances are being made that allow
interpreters o run much faster. Forth and
Smalltalk usvatly perform part of the inter-
pretation once. storing some of the uscful
information. This is scmetimes cailed
pseitido comyrifing. This kind of technice s
being pushed to the lmit by companics
writing emelation pregrams. Emulators are
interpreters that interpret the ma - ine code
of another machine. For example, coila-
tors have been devetaped that run MS-D0OS
software on Macintosh. Unix, Atari and
other computers. Since machine isstruc-

tions perform very simple operations.
emulalors are ngnally the slowest kind of
interpreter. Methods being developed now
tomake emulitors usably tast will probably
be vsed someday te help interpreters of
BASIC and other languages run more yuickly.
Tndeed. it seems certain thal interpre:ern
will be rore and more important as com-
pater technelogy improves.

Tim Kienzle is curventdy pursuing a doc-
torate in sthemiatios at the University of
Califoriia ut Berkeley. He is the author of
V-Term and has worked with the Color
Cemmpneter siviee 1982,

from:
Are you feeling lsoclated on your CoCo?
Would you like be to part of a nation wide support?
Or just widen you present support?

Receive the "UPGRADE"

4.
That's
£19.00 VS
$3.00 sample disk

The "UPGRADE"

Terry Simons

"Mld fowa & Country CoCo”

Now in our third year as a National Diak newsletter,
Join subscribers
in over 16 states plus 3 provinces of Canada!
Disk newsletter

combining 16 coclor graphice with articles from RSDO5S Basic
to 05~%, editorials and product reviews. PLUS! Your MI&CC
meabership opena our library of 150+ disks of select.

Fublic Domaip and Shareware to you and more!
Mi&CC is pnow planning a "Mid America CoCeo Fest"

Your RAINBOW Package deal includes:
1. 1 year menberahlp in MI&CC
2. UFGRADE Disklettsr subscription
Req: 128K CC3, W/l drive, RGB, or TV
J. HOME-EAC >>FAST-CHECK Shwre, CC3 disk
(Reviewed, best of it's kind on CeCo)
Plus a surprise Bonus disk!
3 disks on your first mailing !

$24 Canada

Natlonal Diskletten
"Mid Towa & Country CoCo” (non~profit)
Editor/ Treasurer
1328 48th Des Moines,

(6-8 annually)

March 93

331 Foriegn Alr
Check or M.O.

IA 50311

