Introducing Ita

Advanced Technolgy
ANSI C Compiler

» Questions & Answers
with the Ultra C
Project Team Page 4

* On The C Side: ANSIC
Highlights

Page 6

e Ultra C Technical
Notes & Tips
Page 12

PIPELINES

Special ANSI C Issue
Volume 7 Number 3

PIPELINES is published quarterly
by:
MicROWARE SYSTEMS CORPORATION
1900 NW 114th Street
Des Moines, lowa 50325-7077
(515) 224-1929

Publication Coordinator:
David F. Davis

Editor:
Steve Simpson

Art Director:
Polly Steele

Photography:
David F. Davis

Microware Contributors:
Richard Russell Ric Yeates
Rob Beaver James Jones
Larry Crane Steve Johnson

Ellen Grant

Table of Contents
Microware’s New Compiler Technology 2
Introducing Ultra C: The Advanced

Technology Compiler from Microware . . . 2
HowtoGetUltraC. 3
Questions & Answers with the

Ultra C Project Team. 4
Optimization Strategies with UltraC. 5
ON THE C SipE

ANSI CHighlights: « ¢ 5 www o s 5 5 5 oo 6
ANSI C: Standard for a

Common Language. 8
Ultra C Technical Notes & Tips 12

On The Cover

MICROWARE’s RICHARD RUSSELL (SEATED)
and Rob Beaver discuss development of

Ultra C, Microware’s new ANSI C

compiler.

About This Issue

THis SPECIAL ISSUE OF PIPELINES 1S SOLE-
ly dedicated to providing our readers with
an overview of Ultra C. Most of the arti-
cles in this issue were written by the com-
piler design team to provide useful
technical information about Microware’s
new compiler.

This is the first of many such special issues
that will give readers an insightful look
into the development and features of new
Microware products.

In addition to new product issues, watch
for an upcoming special issue dedicated to
examples of OS-9 and OS-9000 applica-

tions from around the world.

N.E W PLUR.OCD U CUT

MICROWARE IS PROUD TO INTRODUCE
Ultra C, the next generation of ad-
vanced compiler technology. Ultra C is
an ANSI C compiler that incorporates
revolutionary compiler architecture and
state-of-the-art optimization techniques
to extract ultimate performance for real-
time applications.

Ultra C has been rigorously tested and
validated with the Plum Hall ANSI C
Validation Suite to assure quality and
ANSI compliance. And since Ultra C
and its supporting tools are portable, us-
ers can easily migrate between existing
Motorola 68XXX and Intel 80X86 mi-
croprocessors, as well as future micro-
processor designs. Together — with
Microware’s real-time operating systems,
Ultra C brings new, industry-leading so-
lutions for real-time applications.

Introducing Ultra C
The Advanced Technology

Compiler from Microware

by Richard Russell

Microware Systems Corporation

2

Special ANSI C Issue

WITH THE PASSAGE OF THE ANSI C STAN-
dard, the development of our portable op-
erating system (OS-9000, and the
limitations of Microware’s existing compil-
er, it was clear that Microware needed a
new C compiler system. This new compil-
er had to meet the following requirements:

+ Provide ANSI C compliance

- Be easily retargetable to new pro-
cessors
 Be highly-optimizing
+ Integrate well into our operating sys-
tem development and run-time envi-
ronments
« Provide support for programming
languages other than C
- Be portable to facilitate creation of
cross compilers
» Pass quality assurance standards
set by commercial standard compil-
er test suites
Microware faced several options for a new
compiler, including third-party compilers,
hybrids of in-house compiler components
and third-party compilers, or creating an
in-house compiler. After considering these
solutions, it was decided that the way we
could give our customers the best compiler
for real-time environments was to design
and develop a new compiler.

The design of such a compiler had to be
one that would enable our customers to
benefit from the latest compiler and micro-
processor technologies, build on our expe-

rience with previous OS-9 and OS-9000
compilers, and meet the requirements as
detailed previously.

Meeting the Requirements

As the project took shape, the compiler
design team identified various compo-
nents that could meet the project require-
ments:

« To make the compiler ANSI compli-
ant we designed a new language
front end and ANSI C libraries.

+ To ensure compliance we acquired
the Plum Hall Validation Suite and
used the ANSI conformance compo-
nent.

» To make the compiler retargetable
we designed the front end to pro-
duce a machine-independent inter-
mediate code, or I-code, so that this
component would not have to be re-
targeted. We designed tools to make
the job of retargeting the machine-
dependent components easier.

« To make the new compiler highly
optimizing we incorporated optimi-
zation algorithms from the latest
conference proceedings, academic
research and industry information.

« To facilitate creation of cross compil-
ers, we implemented the compiler in
carefully coded portable C.

Advanced Technology Compiler

Please turn to Page Nine

How to Get
Ultra C

ULTRA C IS PACKAGED AS UPGRADES TO
existing Professional OS-9 Version 2.4,
0OS-9000 Version 1.3 Development Paks
and Version 3.2 of Microware’s C Com-
piler. The upgrade package includes the
Ultra C ANSI compiler distribution on
magnetic tape or diskette, a new 800-
page Using Ultra C manual and a 90-day
“Hotline” Support Card.

The Ultra C upgrade provides OS-9 and
(OS-9000 users a logical path to migrate
applications into the Ultra C ANSI envi-
ronment. Ultra C easily installs on OS-9
and OS-9000 systems allowing immediate
C development while still preserving ac-
cess to Version 3.2 of Microware’s C Com-
piler. Ultra C works with existing C V3.2
source code files and makefiles through
the use of its tri-modal executive. Users
can recompile existing applications with-
out source code modification to improve
speed and overall system performance.

Microware’s C Source Level Debugger
(SrcDbg) has also been updated with the
release of Ultra C. The new SrcDbg is
100% ANSI compatible and accepts both
Ultra C and C Version 3.2 source code,
symbol tables and debug files.

Ultra C upgrades and ANSI C Source
Level Debugger updates can be ordered
directly from Microware or authorized
Microware distributors, including OS-9
and OS-9000 system hardware suppli-
ers. Stand-alone copies of Ultra C for
additional OS-9 or OS-9000 machines
are available. Contact Microware for
availability of UNIX- and DOS-hosted
cross versions of Ultra C. [Msc]

Ultra C, Microware’s advanced
technology compiler.

PIPELINES

Questions and
Answers with

the Ultra C

Project Team

Q: What is Ultra C?

A: Ultra C is the new advanced tech-
nology ANSI C compiler from Microware
targeted for Microware’s real-time operat-
ing systems. It provides programmers with
a high-performance compiler that incor-
porates state-of-the-art optimization
strategies to produce fast, tight code for
real-time applications.

Q: What makes Ultra C unique com-
pared to other commercially avail-
able compilers?

A: Ultra C compiles all files into inter-
mediate code (I-code). I-code represen-
tations of application code, C libraries
and OS libraries can then be linked into
a single l-code file that can then be
passed through the I-code optimizer. This
approach provides the opportunity to op-
timize at an interprocedural level, com-
pared to older compilers that only per-
form at local or global optimization
levels.

By optimizing the entire linked applica-
tion, Ultra C allows users to perform
span-dependent instruction optimiza-
tions, in-lining and reorganization of data
areas for procedures relative to the appli-
cation. This differs from older compilers
that link after optimization in that older
compilers prevent or minimize global op-
timization.

Q: What resources did you tap for in-
formation about advanced compiler
designs?

A: We've searched through the latest
conference proceedings, academic re-
search and industry information for state-
of-the-art compiler technology. It’s im-
portant to understand that, because of
Ultra C’s architecture, we can easily im-
plement new features in the future.

Ultra C Project Team members are (back row, . to r.): Larry Crane, Vice President of Advanced
Research; Gwenna Jacobsen, cross development; Ric Yeates, compiler design; and Richard
Russell, Director of Languages and Development Environments. Front row (l. to r): Dennis Gabler,
cross development; Rob Beaver, compiler design; Ellen Grant, technical documentation; James
Jones, compiler design and Dave Lyons, debugging tools.

Q: What is the intermediate code, or
I-code, used by Ultra C?

A: l-code is a proprietary binary
representation of code that is source
language-independent and target
processor-independent. This means that
Ultra C can easily have multiple language
front ends, as well as multiple target back
ends. The I-code level also provides a
convenient place for optimizations since
these optimizations benefit all languages
and target processors.

Q: How does Ultra C integrate with
existing OS-9 and OS-9000 devel-

opment systems?

A: Ultra C will easily install on any Pro-
fessional OS-9 Version 2.4 or OS-9000
Version 1.3 system. Ultra C offers com-
patibility with Version 3.2 of Microware’s
C compiler. Ultra C’s system call libraries
are designed to be complete and consis-
tent so that system state code (including
device drivers) are easier than ever to
write.

Ultra C provides three options for compi-
lation: backward compatible with
Version 3.2, strict ANSI mode and an
ANSI-extended mode. In the backward

compatible mode, applications originally

compiled under the Version 3.2 C Com-
piler will easily compile under Ultra C.

Q: Does my existing Source Level De-
bugger work with Ultra C?

A: No, Microware is releasing an ANSI
C Source Level Debugger (SrcDbg). This
new version of SrcDbg accepts both Ultra
C and Microware C Version 3.2 source
code, symbol tables and debug files.

Q: Will Ultra C be available on cross-
hosted development platforms?

A: Absolutely. We designed Ultra C to
be easily portable to platforms other than
0OS-9 and OS-9000 by writing the com-
piler in C. The entire compiler can be re-

compiled on the new host to target OS-9
and OS-9000 systems.

Q: Besides 68XXX and 80X86, what
other microprocessor will Ultra C
target?

A: Ultra C’s enabling design will allow
Microware to readily target emerging pro-
cessor technology including RISC, 64-bit
designs, VLIW, superscalar and super-
pipelined architectures. [MSc]

4

Special ANSI C Issue

Optimization
Strategies

with Ultra C

By Ric Yeates
Microware Systems Corporation

ULTRA C’S OPTIMIZATIONS ARE DESIGNED TO
increase the execution speed and reduce
the size of the final object code. Some op-
timizations sacrifice code space to in-
crease execution speed.

Various compiler phases perform optimi-
zations, each with their own emphasis.
The front end is primarily responsible for
translation-type optimizations such as
constant folding and loop rotation. The
[-code optimizer, in which the majority of
optimizations are performed, deals with
all the “classic” machine- and language-
independent optimizations. The back
end’s task is to translate the I-code into
optimal assembly language for a particular
processor. The assembly language opti-
mizer accomplishes processor-dependent
optimizations beyond the scope of the
back end. The assembler shrinks some in-
structions to their smallest form. Since
each phase acts as a filter to eliminate
non-optimal constructions from the pre-
vious phase, the final result is a highly-op-
timized executable.

Front End Optimizations

« Loop Rotation —the reduction of the
branching complexity associated
with do, while and for loops.

+ Constant Folding—reducing opera-
tors whose operands are constants
to the result of the operator.

I-Code Optimizer

- Constant Propagation —changing
variable references to constants if
the variable is known to contain a
constant value.

« Constant Folding—determining the
span in a function that the value of a
local variable is needed. This frees
its storage when it is not in use for
other local variables to use.

» Variable Lifetimes—adding infor-
mation to the I-code to allow the
back end to make the most efficient
use of the target register set.

« Common Subexpression Elimina-
tion — eliminating recomputation of
identical expressions.

- Pointer Tracking—examining the
contents of pointer variables when
they are dereferenced to make the
best determination of their effect on
common subexpressions.

- Useless Code Elimination — delet-
ing useless assignments and the
computation of the right-hand side

until all useless assignments have
been eliminated.

» Assignment Translation —changing
normal assignments into more effi-
cient assignment operators wherever
possible.

« Code Motion and Combining—
moving multiple copies of the same
code to a common location.

 Loop Invariant Hoisting —relocating
invariant code from the inside to the
outside of a loop.

= Induction Variable Strength Reduc-
tion — replacing multiplications in-
volving a loop induction variable to a
series of additions.

+ Loop Unrolling—making more cop-
ies of a loop body to reduce the
overhead of having to increment and
check the loop induction variable.

= Function In-lining—removing the
call to a function and replacing it with
a copy of the function.

Back End

+ Dynamic Register Set—allocating
registers for local variables that are
different for each function.

» Register Coalescing— performing
operations such that the result ends
up where it is going to be needed.

+ Register Coloring—determining the
best use of registers for a function
and putting the least used variables
on the stack.

- Data Area Layout— putting the most
frequently referenced global data
objects in the fastest storage area.

Assembler

» Branch Shortening—reducing the
instruction size on branch instruc-
tion when the distance to the desti-
nation is known to be within certain
limits.

» PC-Relative Addressing Mode
Shortening—reducing the instruc-
tion size for the PC-relative address-
ing mode when the label is within
certain limits.

Ric Yeates is a senior software engineer at
Microware. He was responsible for the I-code
and assembly optimizers, as well as the user
interface for Ultra C. During his five years at
Microware, Ric has also been involved in the
development of OS-9000 and was a training
and education instructor. [Msc]

PIPELINES

5

ANSI C Highlights

by Ric Yeates
Microware Systems Corporation

MicROWARE’S NEW ANSI C COMPILER AFFORDS THE C PROGRAMMER
with many more features than the Version 3.2 C Compiler. This ar-
ticle will highlight some of these features. For complete informa-
tion, refer to the new Using Ultra C manual and a copy of the ANSI
X3]J11 standard. The features described in this article fall into the
following four categories:

« variable type qualifiers

- function prototypes

- variable argument functions
« library routines

Variable Type Qualifiers
ANSI C adds two type qualifiers to the C language:

® const

e golatile

const Qualifier

const denotes that the storage for the object may not be modified.
In other words, if you declare a variable to be a const qualified type,
the compiler will refuse to generate code that modifies the storage.

The compiler automatically allocates storage for const qualified ob-
jects in the code space of the module. This allows large static tables
to be stored in the module itself that is shared by all processes using
the module, rather than in the data space of each process. This fea-
ture conserves memory.

For example:

volatile Qualifier

volatile specifies that the storage for an object can change at any
time and that assignments or references to the object explicitly
placed in the program must remain. volatile is often used for hard-
ware registers. This prevents the compiler from throwing away code
that looks useless. For example:

If real_time_clock had not been declared as wolatile, the compiler
could have decided to simply copy the value in timel into time2
since they appear to be getting the same value. Since real_time_
clock is volatile, it generates correct code for the above function by
reaccessing real_time_clock for the assignment into time2.

Function Prototypes

Ultra C accepts function prototypes. Function prototypes declare
the type and number of parameters that a function is to be passed.
With this facility, the compiler can ensure the proper calling of pro-
totyped functions. For example, the following code declares a func-
tion called func that returns an integer and takes two floats as its
only arguments. If you passed integers as the arguments to func,
they would automatically be converted to float.

This prototype illustrates another aspect of prototyped functions,
the “usual” argument promotions are not performed at the call site.
Normally, passing a float to another function causes it to be promot-
ed to a double before it is passed. If the prototype shown above had
been processed prior to the call, both float type arguments would
have been passed as floats.

All ANSI functions have a prototype in an ANSI header file.
Microware also provides function prototypes for system call bind-
ings in appropriate header files. This is designed to reduce the num-
ber of programming errors related to function calls.

Variable Argument Functions

Functions that take a varying number and type of arguments can
also be prototyped. The ellipsis (...) is used to denote O or more fur-
ther parameters. For example, the prototype for printf is:

6

Special ANSI C Issue

This means that printf returns an integer and takes a format string
and O or more further parameters. The number and type of the pa-
rameters is dictated by the escapes in the format string.

For example, if you wanted to write a generic function to return the
largest integer in its list of parameters you might use:

Library Routines

Ultra C has a large number of new library routines. There are both
ANSI defined routines and new system call bindings.

ANSI Functions
signal() .

signal() is used to catch various signals that the OS or other pro-
cesses can send to your process. In OS-9 and OS-9000, processes
may send one another signals to communicate (see the appropriate
OS-9 or OS-9000 Technical Manual). There are also a number of sig-

nals the OS can send to your process when certain exceptions occur.

signal() allows you to set up a handler routine, ignore or exit for a
given signal value. For example, the following code causes your pro-
gram to ignore the keyboard interrupt signal and call bus_error() if
your process gets a bus error (segment violation).

vprintf()

vprintf() is much like printf, except that only one argument— an
initialized variable argument list — is passed after the format string.
This function can be very useful for generic error printing routines.
For example, one might write error() (called in max() example) as
follows:

tmpfile()

The ANSI function tmpfile() can be used to automatically create a
unique file. This file will be deleted when it’s closed or when the
program exits via the exit() function. It returns a pointer to a FILE
structure suitable for high-level reading and writing.

atexit()

The ANSI function atexit() is used to “register” functions to be
called when a program terminates via the exit() function. These
functions could do general housekeeping such as unlinking from
modules or events. Using this mechanism you could exit cleanly
from anywhere in an application. You can “register” up to 32 func-
tion with atexit().

System Call Bindings

C functions for OS-9 system calls have been added to the standard
libraries. These functions begin with _os or _0s9. They provide a
consistent means to make system calls and receive return values.
Each system call binding returns O if successful or the error number
if not. Most bindings take pointers to areas that are filled with re-
turn values. For example:

Another feature of the system call bindings is that, in many cases,
they are compatible with the OS-9000 system call bindings. This
facilitates porting code from OS-9 to OS-9000 and vice versa.

Refer to the new Using Ultra C manual for more information on
these functions and many more. [MSc]

PIPELINES

7

ANSI C:
Standard
for a

Common
Language

By James Jones
Microware Systems Corporation

WHY DID THE AMERICAN NATIONAL STAN-
dards Institute (ANSI) bother to create a
C standard? There are several reasons.
The de facto standard, Kernighan and
Ritchie’s The C Programming Language
(called “K&R” henceforth), is vague in
some areas. Existing compilers aren’t nec-
essarily good de facto standards, since
nothing stops different implementers
from interpreting ambiguities differently.
Also, an implementation may even devi-
ate from K&R —at least two discrepan-
cies between a commonly-used C

preprocessor and K&R have become “fea-
tures” that many applications count on.

Also, the language has changed in the
years since K&R was written. A strict
K&R compiler, with a single name space
for structure and union members and
without any unsigned types save un-
signed int, would probably strike many C
programmers today as intolerable. These
extensions, whether linguistic or library,
provide yet another chance for compilers
to differ and make programs less portable.
Variance between compilers leads to
questions like: Which does your library
have, index() or strchr()? Are you sure
you haven’t picked a variable name that
happens to be the same as that of some
important library routine that standard
/O counts on?

For these reasons, and others such as in-
ternationalization and catering to opti-
mizing compilers, the ANSI X3]J11
committee developed a standard for C.

Formalizing the C
Language

ANSI C formally defines some common
C linguistic and library extensions or, in
the cases of the aforementioned prepro-
cessor features, provides a well-defined
way to achieve the same effect. [t explic-
itly states the stages that an “abstract
compiler” and “abstract machine” should
go through to, respectively, compile and
execute a C program.

In theory, then, a user can sit down with
the ANSI C standard and information
specific to a particular compiler, and an-
swer any questions that might arise about
the behavior of the compiler when faced
with a program. Further, assuming the
program conforms to the standard, the
user can answer any reasonable question
about how it should behave when com-
piled and run.

In practice, an actual compiler and ma-
chine can take shortcuts as long as the
implementers guarantee the results to be
the same as if the abstract behavior were
adhered to. For example, a C interpreter
might perform various phases of compila-
tion in a single program and not have a
separate preprocessor, or a compiler may
decide not to actually do the “usual arith-
metic promotions” if the results are un-
changed thereby.

New Features in ANSI C

ANSI C also adds several new features
including:

« Explicit quoting and “token pasting”
operations to build up new tokens
from old.

« The operands of #include and #line
directives may now contain text sub-
ject to preprocessing (e.g., macro
expansion).

» “Function prototypes” so that refer-
ences to functions other than their
definitions can describe the number
and types of their parameters. This
can add some of the checking for-
merly done by separate programs
such as lint.

+ A new specification for optional ar-
guments is part of the standard,
avoiding the old tricks used to imple-
ment optional arguments and giving
the compiler a chance at more effi-
cient calling conventions.

+ ANSI| added the “type qualifiers”
const and wolatile to allow for im-
proved optimization while keeping
optimizations out where the compil-
er could not otherwise tell they'd
break one’s code.

« Library functions have been stan-
dardized and significantly extended,
and header files are now explicitly
required to be safe for repeated in-
clusion.

* The open-ended locale library rou-
tines, along with “wide characters,”
“multibyte characters” and routines
that manipulate them, support “in-
ternationalization.” Internationaliza-
tion allows for writing code to sell in
varying markets with different lan-
guages, character sets and mone-
tary units.

+ Standard I/O in ANSI C has an im-
proved way to specify buffering, and
even looks ahead to mass storage
of a size that may not be represent-
able in a long int.

James Jones is a senior software engineer
at Microware. His work on the new compiler
included creating the ANSI-conformant
front end and code generation methods of
the back end. James has been with Micro-
ware for six years. [Msc]

8

Special ANSI C Issue

Advanced Technology Compiler

Continued from Page Three

« To ensure high quality we used the
testing component of the Plum Hall
suite. Then, we employed extensive
alpha and beta testing programs.

To complete the design, we planned for
the future in all areas of the new compiler
so that it could be continually upgraded
with new and better optimizations, more
features to benefit the operating systems,
and fitted with the newest programming
languages.

Overview of Ultra C’s
Design

In general, Ultra C has seven major com-
ponents as shown in the illustration below.
It’s important to understand these compo-

I-Code Linker

|-Code Optimizer

Back End

Assembly Optimizer

Assembler

nents and their individual functions to
fully understand the capabilities available
with Ultra C.

The Language Front End

The front end translates the source lan-
guage to intermediate code. For C lan-
guage, we developed an ANSI C front
end to perform this translation phase.

The intermediate code, or [-code, that
the front end produces is a machine-
independent and source language-
independent binary representation of the
source file. The use of I-code allows the
language front ends and target back ends
to remain fully independent. In this way,
enhancements can be added to the
compiler system without writing a new
compiler for each language or target
processor.

Intermediate Code Linker

The intermediate code linker (or ilink)
functions like object code linkers with
which most people are familiar. However,
instead of producing an object code rep-
resentation of the program, it produces
an I-code representation. ilink allows
partial linking of a program, as well as full
linking including I-code libraries. ilink is
also the builder of I-code libraries.

I-Code Optimizer

The I-code optimizer is a language- and
machine-independent optimizer. iopt, as it
is called, applies optimizations on the fol-
lowing levels: local (within straight line
code), global (across straight line code but
within a function) and interprocedural
(across functions). Since the optimizer is
language- and machine-independent, any
improvements or new optimizations auto-
matically benefit all source languages and
all target processors. Since ilink can pro-
vide an intermediate code representation
of the whole program (libraries and all),
iopt can “see” all functions and data within
the program and optimize it as a whole.
This is a distinct advantage over compilers
which can only optimize one function or
one file at a time.

Target Back End

The back end translates I-code into the
target assembly language. The job of the

back end is to lay out the data area, select
the code to be generated according to
time and space knobs, assign registers ac-
cording to the greatest need, and, finally,
generate code. Again, since we can repre-
sent an entire program in I-code, the back
end can generate code which uses the
most efficient methods to access global
data because it knows the final offset the
object linker will assign.

Assembly Optimizer

The assembly language optimizer per-
forms machine-specific optimizations.

PIPELINES

9

These optimizations are fairly trivial giv-
en the optimizations previously per-
formed by iopt and in the back end. The
assembly optimizer “cleans up” sequences
of code which the back end cannot do,
such as merging duplicated sections of
code into one common section.

The Assembler

The assembler performs the traditional
translation of assembly language to ma-
chine language. A new feature of the
680X0 assembler is that there is now one
assembler to handle all processor family
members. An option is used to specify
the member for which it is assembling.
Also, the assembler can now perform
span-dependent optimizations. This
means that when the assembler “sees” the
program as a whole (because it had been
previously linked at the I-code level) it

I-Code Optimizer |-Code Optimizer

Back End Back End

Assembly Optimizer

Assembler

Assembler

can produce code in which all code refer-
ences are of the optimal size. This greatly
increases speed and decreases size on
large applications.

The Object Code Linker
and Librarian

The object code linker performs the tradi-
tional linking of program object code and
library object code into the final execut-
able module. A new feature of the linker is
that it now accepts a new type of library
format; a pre-linked library built by a
librarian utility called libgen. libgen takes
relocatables and builds a “pre-linked”
library with a table of contents. libgen can
create libraries from existing old-style
libraries as well. libgen also has an option
to display the contents of a new formal
library. Given this new feature, the linker

|-Code Optimizer
Back End
Assembly Optimizer

Assembler

now does its job much more efficiently. We
have seen increases in link speed of up to
six times using the new libraries. The
librarian utility solves the problems associ-
ated with library ordering found when try-
ing to create large old-style libraries since
the librarian automatically orders the
libraries. The linker is backward compati-
ble to the extent that it accepts both old-
style and new-style libraries.

New Libraries

The new libraries which come with Ultra

C are clib.l, 0s_lib.l and sys_clib.l.

clib.l contains all the C language func-
tions as defined by the ANSI C specifica-
tion. clib.l has been shown to be
conformant to the ANSI standard using
the library test part of the Plum Hall Vali-
dation Suite. clib.l has been almost totally

I-Code Linker
I-Code Optimizer
Back End
Assemly Optimizer

Assembler

10

Special ANSI C Issue

rewritten. The C high-level 1/O functions
have been improved to such an extent that
using the OS’s [/O system calls directly
provides almost no advantage and, in most
cases, the high-level I/O is much more ef-
ficient. This is because of improved buffer-
ing schemes and in-line macros.

os_lib.l contains C language level system
call functions for OS-9 and OS-9000.
This library contains all the functions
available in the Kernel in a consistent
calling syntax modeled after the OS-9000
design. These functions are ANSI C
compliant since their names do not
“pollute” the C namespace. Now, a
programmer does not need to write C
bindings for system calls as os_lib.l
provides access to all system calls and
parameters.

sys_clib.l contains all functions that previ-
ously existed on OS-9 and OS-9000 but
are not a part of the ANSI C specification.
These functions are here for backward
compatibility and are not linked automat-
ically except in the compiler’s “backward
compatibility” mode. There are new
equivalent ANSI C compliant functions
available in clib.l and os_lib.l.

Math Support

Ultra C now generates code which as-
sumes (in the 680X0 family environment)
that the 6888X math architecture is
present. This means the compiler gener-
ates the same “in-line 6888X” code for the
whole 6888X family. When math hard-
ware is not present, OS-9 will have a math
emulation module to emulate the 6888X
math coprocessor. And when math hard-
ware is present, the program runs most ef-
ficiently with in-line math instructions
without recompilation. Ultra C also will
“in-line” function calls to trigonometric
functions with the actual 6888X instruc-
tions for the greatest efficiency.

Compatibility

Ultra C is compatible with Microware’s C
V3.2 compiler. This is accomplished using
Ultra C’s tri-modal executive. This execu-
tive is really like having three executives.
The backward compatibility mode is used
when one wishes compatibility with C
V3.2. This mode “looks” exactly like the
C V3.2 executive and provides C source
code and makefile compatibility with C

V3.2. C89 mode is an executive modeled
after the POSIX P1003.2/D11.2 draft for a
program to compile ANSI C source. This
mode provides a standard UNIX-like ex-
ecutive for porting UNIX makefiles or for
general use. The last mode is UCC mode,
which is brand new, and is our most pow-
erful and flexible mode. This mode pro-
vides access to all the features of Ultra C.

Extensive Documentation

The new Using Ultra C manual contains
800 pages of documentation on Ultra C
and the new libraries’ 550+ functions.
Also available is a new Ultra C Quick Ref-
erence Guide which documents the com-
piler, command line options and all the
library functions.

New Source Level Debugger

Microware’s C Source Level Debugger has
been updated to be fully compatible with
Ultra C and fully reflect the ANSI C
standard. Knowledge of ANSI C’s function
prototypes, type qualifiers and semantics
have been added. The C Source Level
Debugger is fully backward compatible, so
it will debug C 3.2 and older compiler-
generated programs.

Testing and Validation
The Plum Hall ANSI C Validation Suite

is used to guarantee conformance of the
compiler to the ANSI C standard and for
general testing of the compiler. The Plum
Hall Test Suite is a collection of C pro-
grams for testing with each section build-
ing upon the previous sections. The
Conform section tests for ANSI C con-
formance, or various levels between Ker-
nighan & Ritchie and ANSI C. The
standards that are tested are ANSI
X3.159-1989 and ISO/IEC 9899:1990.
The Cowver section generates self-checking
C code to check all permutations of oper-
ators and data types. The Limits section is
used to determine the hard limits of the
compiler, such as how many characters are
significant in an identifier. Finally, since it
is impossible to test all possible legal ex-
pressions, a sampling approach is taken.
The Stress section uses generated self-
checking C code which contains complex
self-checking expressions.

Plum Hall has also been chosen for con-
formance testing of ISO/IEC 9899:1990
by the British Standards Institution (BSI)
and the JMI Institute of Japan. This un-
derlines the quality level of the test suite
and the quality level of testing for Ultra C.

The Future

With Ultra C, Microware is offering a
state-of-the-art compiler system. Howev-
er, this is only the beginning and this re-
lease only reflects a small part of what is
possible with this compiler design. Here
are some of the areas we are already look-
ing at for the future:

+ Ability to debug optimized code:
This helps cut down on compiling
since there is no need to keep opti-
mized and debugging versions of a
program.

» Future Processors: Support for
RISC, 64-bit processors, super scal-
er and VLIW.

« New optimizations: The main areas
of emphasis in this area will be inter-
procedural optimizations. These in-
clude interprocedural register allo-
cation, custom procedure calling
conventions, global variables which
are kept in registers across func-
tions and instruction scheduling.

« Support for other programming lan-
guages such as C++.

 Further support for Microware’s op-
erating systems: Extensions include
shared subroutine module language
support.

Richard Russell is the director of languag-
es and development environments for
Microware and was the project leader for
the Ultra C ANSI C compiler development.
In addition to overall project design and
management, Richard was specifically in-
volved in the processor back end design
and implementation. During his seven
years at Microware, Richard has also held
the position of manager of compiler devel-
opment and was involved in the design and
implementation of the C Source Level De-
bugger and UniBug, and the implementa-
tion of the ROM debugger. [MSg]

PIPELINES

11

Ultra C
Technical
Notes & Tips

b Rob Beaver

Microware Systems Corporation

MIGRATING TO MICROWARE'S ~ NEW
compiler will give users smaller, faster
applications. Ultra C offers three options
for compilation: backward compatibility
with Version 3.2 of Microware’s C
Compiler, strict ANSI mode and an
ANSl-extended mode that takes

advantage of extensions by Microware.

issue that will be encountered even in
backward compatibility mode, as well as a
few tips to start your migration toward a
strictly ANSI-conforming program.

Compatibility Issue With V3.2

Assembly language escapes are handled
differently under the new compiler be-
cause of ANSI standard restrictions on
preprocessor directive handling. The
#asm and #endasm directives or the @
sign will no longer work and will return
error messages when code containing
them is compiled under the new compil-
er. The new format is as follows:

The string constant may contain format
escapes in the form %<n> where <n> is a
decimal digit from 0 to 9, or %% which
will generate a literal percent sign (%).
The escape is replaced by the result of the
<n>th expression, which must be a nu-
merical constant. More than one %<n>
with the same <n> may appear in the
string constant and will be replaced each
time with the same value.

Here is an example of 68000 Assembly
code using the Assembly language es-
capes available under Ultra C:

A utility, deasm, is supplied with Ultra C
which will convert these items from the
old format to the new format.

Strictly-Conforming ANSI
Programs

Ultra C provides an option that lets users
compile source code in a strict ANSI
compliant mode. A stepwise migration

from K&R to fully-compliant ANSI code

can be achieved fairly easily.

» Convert all references to non-ANSI
functions to the equivalent ANSI
function (e.g., replace calls to in-
dex() with calls to strchr()).

Benefit: Your code can be migrated
to ANY platform with an ANSI C
compiler.

 Put prototypes in individual files for
all functions declared in the file.
Benefit: The compiler can type
check the parameters you are pass-
ing to functions internal to the file.

« After trying the prototypes in the in-
dividual files move them to your
header files where they will be glo-
bally seen.

Benefit: The compiler can type
check parameters for all calls to glo-
bal functions in your application.

« Ifalibrary call is used, the correspond-
ing header file must be included.

Rob Beaver is a senior software engineer at
Microware. His areas of work on Micro-
ware's new compiler included the assem-
bler, linker, librarian, libraries and floating
point math support. Rob has been with

This article describes a compatibility Microware for four years. [MSc)
® & Bulk Rate
W U.S. Postage
MICROWARE SYSTEMS CORPORATION PA-lD
Des Moines, IA
1900 N.W. 114th Street Permit #2864
Des Moines, lowa 50325-7077

	Pipelines
	Table of Contents
	On The Cover
	About This Issue
	Microware's New Compiler Technology
	Con't

	Introducing Ultra C
	Con't
	Meeting the Requirements
	Advanced technology Compiler
	Con't

	Overview of Ultra C's Design
	The Language Front End
	Intermediate Code Linker
	I-Code Optimizer
	Target Back End
	Assembly Optimizer
	A Compiler from the Real-Time Experts
	The Assembler
	The Object Code Linker and Librarian
	New Libraries
	Math Support
	Compatibility
	Extensive Documentation
	New Source Level Debugger
	Testing and Validation
	The Future

	How to Get Ultra C
	Questions and Answers With The Ultra C Project Team
	Optimizaion Strategies With Ultra C
	Front End Optimizations
	I-Code Optimizer
	Back End
	Assembler

	On The C Side: ANSI C Highlights
	Variable Type Qualifiers
	const Qualifier
	volatile Qulifier

	Function Prototypes
	Variable Argument Functions
	Library Routines
	ANSI Function
	signal()
	vprintf()
	tmpfile()
	atexit()

	System Call Bindings

	ANSI C: Standard for a Common Language
	Formalizing the C language
	New Features in ANSI C

	Ultra C Technical Notes & Tips
	Compatibility Issue With V3.2
	Strictly-Conforming ANSI Programs

