
Volume 1, Issue
,77.777,.• •

GREAT OS-9 PROGRAMS
UD-CACHE II Light Speed Disk Cache

lrrproves disk access performance 2 to 100 times.
Usable with any RBF device - supports multiple devices, multiple sector access, variable sector size.
Installs in a minute - no system generation rewired.

$149.00

XSCF SCF Extender File Manager $60.00
Improves ISReadLn line editing -cursor badqpiadvance, overwrite/insert, associative recall.
Usable with any SCF path an any terminal - G-Wndows support coming soon.
Installs in a minute - no system generation required.

LSrcDbg Source Level Debugger Launcher $50.00
Routes debugger's and application's output to different terminal screens.
Requires onty one keyboard coma= to both the debugger and application.
Greatly ilrnproves debugging efficiency of screen-oriented applications.

$29.5.00 • Disk Squeezer Fragmented Disk Reorganizer
Reorganizes fragmented disk contents and files.for better access performance.
Eradicates Error #000:217 - Segment List Full.
Comes with utilities to check disk and file fragmentation.

IBF 1EEE488 File Manager Ask
Supports 1EEE488 interface bus with popular LSIs at file manager level.
HP compatible lbraty functions.
!BF needs proper porting to particular hardware platforms. Inquire for list of existing portings or
licensing conditions for new porting.

1.1)t III [300X
The OS-9 Guru Vol 1: The Facts $59.00

A new book authored by Paul Dayan of Galactic Industrial,England.
Covers basics to detailed OS internals - a timusr reference for both beginners and hackers.

420+ pages, paperback. $59.00 includes postage. Delivery may take 3-4 weeks.

*All pro_grams work on any OS-9/680x0 system (V2.2 & up). Exceptions: LSrcDbg requires a secondary terminal or window
and SrcDbg from Microware; 'BF requires LEEE488 interface hardware and properly ported device driver. UD-CACHE
disk access improvement factor varies depending on the physical device and applications.

S&H: US (48 states) orders add $4.00 for ground service
or $11.50 for FedEx 2nd day air; AK, HI and outside US
ask for quotation. CA residents add 8.25%. Send check
or money order (no charge cards or CODs) with preferred
disk format (important). Reach us by fax or mail. SYSTEMS

mic ARK Systems USA
P.O. Box 23
Santa Clara, CA95052
Phone/Fax(408)244-5359

The Internationar
0S9 Underground®

• •-• • • .• ..••••••• • • ••• ••••••••••• ••••••• ••••• •• ••••••••••••.:••••• : ••:::: i-:•::• •• • ..••••••.: .. • :•••••••••••• ••••••_ •••••• •

Magazine Dedicated to 0S9/0SK Users Everywhere!

asommommomommommommamommommommommammommommo
SUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUIUI
IUUUUUUUUUUUUIUUUUUUUUUUUUUUUUUUUUUUUUUUUUU

MUM
11111111111111.11111r'llFrillItirill7 74111:::••••, •:A111111111111 . 711111111
11111!”--'11F" • •• ••!-71 -.••• •• 1111111,- 1111
111;, 11111111111i. II
111111r.-
IOU

II IV
::: MEM

1111111C .;3 :''.*:
MOIM*

II I II I UI II 11111111V; 1111111
II I L I UI N L III 10111111111111

111
MOO,

_L INC •••••••••',. ...111111
OMMINIMMENNIMMINIMMINSM6—AL—Jamom&

111111 111111" 11111111111V-Ar 1911111111P111111"111 I ilU P t P.."111111111111
III I! —111111111 l 11111 It I ,
Mil k 1111111 1 MIR II It I IMF I Milk 'MN
III ir — JIMMIE I IUl I 11 INK 111. "tor"' UI
amilmahos...dommah mohlimilimaionamanownallo—immi...odimi

IUU 11 F P -11 F l 911r.. UUI I 11
III i r ..J UI It 11 a MN
IUU rt I ir I 11). , I EMI 1 11 11" UI
IUU. t lik 111, 1. 1111, Irk a; 111111L Al . ANIS
IUIUUUUUUUUUIIUUUUUI UUUUIUUUUUIUUULJUUUUI
1111111111111111111111IIIIV 1111P1111114111111111111 , 1111110!"111-111111 UUUUUUUUUI
IUUUIUUUUUI Ill • t J111111111111111111111111
111111111111111111111111111 II /11111111111111111111111111111
ommommommint - UUI - 1 --1171mmommammoma
IUIUUUUIUIUUUIUUUUUUUUUUUUUUUUUUUUUUUUUUUUI
IUUUUIUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUI
IIUUUUUUUUUIIUUUUUUUUUUIUUUUIUUUUUUUIIUIUUI
IUUUUUIUUUUUUIUUIUUIUUUIUUIUIUIUUIIUUUUUUUI
!!!

Also: • Header Peclarations
• Speed Mak
• Chaining In C
• C Peclaration Contest!

The 68000 Computer servthg customers worlcbwide
• , ..,i,;:: ::,::i:ii ' ...

This wt . performance . . • . ••-computer.. •as:0.4„35;.b.
for and is :.:::.::: ::::::.: -•:•::,:i.:,:::

. accepted............ . • s .0:•:•::,•:. •• industry:•,•,:::::: - -• - •• •::: .
development.* • ••• machinej .. • flexible :::,:::,.::::::::•••••.•:., , . platform

#. • . inexpensively•• • software-with the optional
• Supports• • . tii, *- - : 0:0 •-• • • .•

Prices start at $99900 with Professional OS9
:•,:„,:•::,:,,:,:,:,:,:,:,:,:,:,:,:,:,:,:,:,:,:,:•;;,:,:„.::,:,:,:,:,:,:,:,:,. :ormm vi -_,,:,,„,,,,::„:::::::„,„7.:,:•,:,:,:,:,:,:,:,:•

G —WINDOWS

for the SYSTEM IV and PT68K4/2
Multi-tasking •-• processes continue running when windows are

made inactive or are hibernating.
Windows may be re-sized, moved, overlaid, etc.

GUI to start processes by selecting an icon or, start processes from
your custom menu or from the command line.

Copy and Paste between windows.
Adds command line editing, command history, and file name

expansion.
Runs existing OSK software without modification.
Number of windows and processes limited only by your memory.

Includes GIP viewer.
Includes G-VIEW demo.

G-WINDOWS with DESKTOP $199.00
G-WINDOWS Developer's Pak $299.00

Order both for $449.00
•

flataDex,a fieet managementm data ;
• e y•steuL Nprogramming-•: language to learn Variable:feat- in' permitted.

. .. iED Sctccn B i •_..:....... ..CAL. .:.„. Spreadsheet- • ••••••••••:•:
- ::VVITt: • • . • ; oT• gr.VP

4.‘!:..Mil.0.• ::.: 00:***:::' -•:•.:•.: • . M. 6809......6809 gootatoogopo
blerEIBBUNT. The _••••••••::1_. • •••••••....Z)XSLS • i•.:_*0:i:04Pi*0###

•::i•:. 10.0• . ..: ...•: ... • 0 ;a;:,... •••••••. .• .. • •• • • - •;....... ••••i• ••fio•: •••-••••• • • V .
• . - • -thgeitMske ... P10:00..:.• ,::,::?:,,:,.,,i, -::.,i,•:,i,i,,i,i,i,i,,•••••••:,::,:,:,:,,,:,::i,i,:,,,:,:,: • •

orellildr co
Middletown Plaza - P0 Box 78 - Middletown. DE 19709

302-378-2555 FAX 302-378-2556

ColorSystems
Quality 05-9 Software for

the CoCo3 and the MM/1 from MIS

CoCo3 Software

Variations of
Solitaire $34.95

Variations Included:
Pyramid, Klondike,
Spider, Poker,
and Canfield

OS-9 Game
Pack $34.95

Package Include:
CoCothello
CoCoYahtzee
KnightsBridge
Minefield
and Sea Battle

WPShel $22.00

ISorryi ColorSystenis no longer
carries AilVlianner#

MM/1 Software

Variations of
Solitaire $49.95

Variations Included:
Pyramid, Klondike,
Spider, Poker,
and Canfield

OS—K Game
Pack $49.95

Package Include:
Flip It
Dice Poker
KnightsBridge
Minefield
and Sea Battle

Coming Soon for the MM/1:

Super Label Printer

X10 Master Control Program
and Much More!

CoCo and OS-9 Club Members: Have your Club President write to
ColorSystems to ask about our SPECIAL Club Discount Program!

Offical Member of the Interactive Media
Systems Developers Association

Shipping: FREE for Continental US, $3.00 for Canada, $5.00 anywhere else
To order send check (US Bank ONLY!) or Money Order (US Funds) to:

ColorSystems
P. 0. Box 540

Castle Hayne, NC 28429
For Additional Information call at (919) 675-1706

North Carolina residents please include t% Sales Ds

Write or call for a FREE copy
of our Catalog!

The "International" 0S9 Underground® Magazine

FAT
CAT

Compamy

Delmar
Computer Design Services
GaleForce Enterprises
0S9 Underground
MT Enterprises
Canaware
Peripheral Technology
BlackHawk
Farna Systems
09-Online
Bob van der Poe! Software
Peripheral Technology
AniMajik Productions
ColorSystems
ARK Systems

Do you have a 'Fat Cat' in your
house?
Send us a picture and we'll print

it. ..(Fat Dogs, Fat Birds, Fat
Goldfish, are welcome too!)

Publications
**N Yu p, it's time for the first

• ./ Th annual Fat Cat Contest. Please
send pictures do Fat Cat Contest.

Mewl Micbmilth...

CICAGO
1111ko gr0000mpilx

Advertiser's Index
Page

IFC
7,33
10,12,14,,24
20, 40
25
27
33
33
34
38
39
39
43
IBC
Back Cover

ThE intErnationar
0S9 UndErground® MagazinE

CONTENTS
IssuE NumbEr 6

1111111111111111111111111N111111111r- N11111

1111"11"q
I *I'
I

ICC".Al 1 11
11111111111111hEilheall-LIIIIIL
111•111111111T1, 11111111111111rrillrrirlbd
II I -El E: I NI _id -1
II P NI I 1 ' I NI I 'IV 1
OPHIPlii11111111191110111191011111E111
II ' r - 111111-1-- •1111
1111 B i e l l01 , 1-1 0 111 1 1 1 11
Ibilidw.h11111401441WWMINAAWN
11111111•11' 7- 11111 "1"1._ 111111111
1111111111111i It • 111 • ; :-Irviommos emonnEhmull—asu.gb.a".•••••
The Underground Staff
Editor/Publisher:

Alan Sheltra

Assistant Editors:
Jim Vestal
Steve Secord

Contributing Editors:
Scott Griepentrog
Leonard Cassady
Bob van der Poel
Paul Pollock
Mark Griffith
Wes Gale
Andy DePue

Art and Typesetting:
Alan Sheltra

Mail Room
(Letters to thE Edtor)

Under it All
(Edtor's Column) ----

Ultra C:
Is it all it's Hacked up to be?'

bu Scott Griepentrog

Header Dedarations
bu Bob van der Pod 1

Speed Disk in BASIC09
bu Paul Pollock 21

C Software Engineering
bu Leonard Cassadu

Chaining to new Programs
Under 059 and OSK

by Mark Griffith

Bask Training
bu Jim Vestal _______ 34

Building your own C Libraries
bu WES Gale 140

Shell Game (Cartoon) 44

C Language Declaration
Contest! 45,

461

Fat Cat Publications and The "International" 059 Underground and it's logotypes are
registersed trademarks. Subscription rates are $18.00 for 12 Issues. Single or back issues are
available at the cover price (See elsewhere for a listing of back issues). Fat Cat Publications
is located at 4650 Cahuenga Blvd., Ste #7, Toluca Lake, CA 91602 • (818) 761-4135

The International" 0S9 Underground® Magazine

Help is an
Underground
Away...
Dear Editor:
(Received from Delphi)

First off, I want to thank you for
the great support you have shown
this community since The Under-
ground first 'opened it's doors'.
Having another NEW magazine to
breathe life in the Coco/OS9/68k
community is just another good
reason to look forward to the future
we have. Also I would like to thank
you for helping me solve a problem
that millions of messages haven't
been able to do. You got my C-
Compiler running!

Jim Vestal's article "C for Begin-
ners" helped me set up my C com-
piler in no time with those two small
modifications. If I only knew it would
be that simple g. Even tho I am
currently not into C programming (I
don't plan on learning it for some
time to come as Basic is keeping me
busy), it sure is nice to be able to
actually compile some source code
for once! I wouldn't mind seeing a
series made from that article actu-
ally. I do have one suggestion tho. I
was surprised to find that Jim never
brought up the method of just using

a Disk Editor such as t2E12 or
Kwilzap to do the job. That is how I
did it as it seemed much simpler
than the other methods. Here is how
I did it with DED. I typed "red ccl"
with ccl of course being in the cur-
rent working directory.

Then hit the up arrow 14
times. Position the cursor over where
it says iddilib/cstart <the second to
last line on the page> and hit the

<Break> key to toggle ascii edit
mode. Then position the blinking
cursor over the '1' in the '/dl' and

simply type 'd' or whatever drive
you choose to use. I use my

harddrive(410) as hid so that is what
I typed. Then simply press <Enter>
to exit the edit mode. Next press 'V'

at the command line to verify it
then you are all set with the ccl

program. You can then press 'Q'
to quit at the command line. Now
with CPREP it is pretty much the
same. Enter at command line "DED
c.prep" then at the display hit the up
arrow 19 times then hit 'e' to enter
the edit mode. Then hit the down
arrow 5 times and you will be at the
line where the "/d1" is located. Hit
<Break> to toggle the Ascii edit
mode then hit the right arrow untill
you position the cursor over the '1'
and type 'd' or whatever drive num-
ber you prefer to use. Then press

•••

C Langauge Declaration Contest

Decipher the following declarations in C and identify the declara-
tion type cast. It is not necessary to include the steps you've used to
arrive at the answer.

Hint: Start with the variable name by itself- and add each part of the declaration, starting
with operators that are closest to the variable name as illustrated in the example
below.

Example:

Problem: char *a[];

[solution steps]

1). a[] is an array.
2). *a[] is an array of pointers.
3). char *a[] is an array of pointers to chars.

Answer: An array of pointers to chars.

Good luck and watch the parentheses which will change the precedence order.

Complex Declaration Contest Problems

Prob #

1). int a; 14). int **aaa[];

2). int *a; 15). int (*aaa[])[];

int a[]; 16). int *aaa[][];

4). int a(); 17). int aaa[][1[];

5). int **aa; 18). int *aa();

int (*aa)[]; 19). int ("*aaa)();

7). int (*aa)(); 20). int *(*aaa)();

8). int *aa[]; 21). int *aaa[]();

9). int aa[][]; 22). int (*aaa[p();

10). int *""aaa; 23). int **aaa();

11). int (**aaa)[]; 24). int (*aaa())[];

12). int *("aaa)[]; 25). int (*aaa())();

13). int (*aaa)[][];

3)

6)

600d Lye*/

PAGE 4 (6) Declarzlion Conees-1 deviously del/is-ea' by teon4rol 04s's401y)

The "International" 0S9 Underground® Magazine The "International" ON Underground® Magazine

C Language

Declaration Contest...
Follow the directions and fill out the answers

on the next page. Send your answers to the 0S9
Underground Magazine before June 15th. You
may send a photocopy if you like. First person
with the correct answers to all the questions will
receive a $10.00 check.

Underground Staff are not eligable to enter
Answers must be postmarked before June 15th to qualify
Winner will be announced in an upcoming issue.
Please include, your Name, Address and Phone number.
Winner will be contacted by phone on June 16th.
Send your entry to: The 0S9 Underground
 C Costest

4650 Cahuenga Blvd., Ste #7
Toluca Lake, CA 91602

...5LJELL cAmL 115Y ALAN 61--ILLTA

ha5 olthcoverecl a new error 1,n h5 5trange L15e of 12Lpe5,
recittrog the 5ervi,ce5 of a clumber a5 well a5 a computer tech.

Enter to exit the edit mode and hit
'V' to verify, like you did earlier.
Then just hit Q to exit and you are all
set It's that simple! Now keep in
mind, it still hard code the Defs and
Lib directory after whatever drive
number you choose so if you want a
different pathname, you will have to
change the whole pathname instead
of just the drive number while in
DED, but that isn't any harder so
don't worry. It's just a little more
typing©. Before! 'go', I would just
like to recommend that you have
someone write such an article for
Both the Pascal Compiler and the
level 1 Assembler since that is some-
thing that stumps many people, es-
pecially the Pascal compiler which
many people feel hopeless in getting
it set up. Also a series of articles
profiling the BBS ' that currently serve
our community <1 bbs an issue>
would be a nice touch, so that atten-
tion can be given to those that work
hard with their boards to help the
community O. Thanks again!

Chris Perrualt

Thank you, Chris, for the kind
words. An upcoming issue will fea-
ture just what you are looking for on
Pascal, Basic09 and C. BBS au-
thors are always welcome to tell us
a about their systems here. (See
below for address to contact the
0S9 Underground.) - Editor

Loves a Fight
I have been really enjoying

the auguement between Paul Pol-
lock and Ed Gresick About the pros

and Cons of 68K. Will you continue
this thread?

I, for one, an in Ed's corner
about this having had an a 68K, and
realizing the potential of the OS and
really felt Paul was talking in "world
of a few years ago".

Jim Sutemeier

In a word, 1\lcve! ! I feel
the continuation of this thread would
only continue to hurt the commu-
nity and do nothing but serve to
confuse and spread misinformation.

I will also have to side with Ed
on this one too. Paul, I'm afraid
stuck his foot in his mouth with his
rantings, of which I as editor, caught
most of the heat. So, no, I will be
VERY careful about the content that
goes into this magazine from now
on.

Jim Sutemeier, my good
friend, has also stepped down as
associate editor. Jim Vestal has is
filling that role as the new Assistant
Editor of this Magazine. -Editor

How to leave your
feedback...

Letters to the editor may be
addressed to:

0S9 Underground
Letter to Editor

4650 Cahuenga Blvd., Ste #7
Toluca Lake, CA 91602

or to either of the following Email
addresses:
"zog!sysop@abode.ttank.com"
"JS UTEMEIER @DELPHI. com"

<E0F>

PAGES

Editor's Notes:

••••••,•:::. •••••••••••• ••••••••••••••••:•

706 me it40/43/WAM Mo Sheltra
Return from Down Under

It's been a 11.4c)rig absence
but the Underground is back._ and
back to stay. Many of you may have
not been aware, but the publisher
(namely me) had serious finnancial
problems for several long months.
That compounded with a recent
death in the family, brought me to
an all time low. My choice was
simple. I had no choice but to put
the magazine on hold.

Over the last few months, I
have been working hard to get back
on my feet. I've finally gotten to a
point where I can now put the
Underground out once again, and
on a regular basis.

I must apologize to all my read-
ership for these incredible delays
you've had to put up with. and
thank you all for bearing with me.

The MOTD, of which I was
also the editor, has also been passed
on to a new editor (my term of office
was up April 1st 1993). This of
course means, I have more time
to dedicate to this magazine, in-
stead of deviding my time between

PAGE 6

2 publications.
Most of • the articles in

thisissue are about 3 to 6 months
old, but, that's about average
for most publications anyway.
In the next few issues, articles
will be much more timely and
the turn-aroundlime from author to
print will be 1 to 3 months max.

Changes in Staff
There are a few changes in the

Underground Staff. Jim Sutemeier,
who has served as Associate Editor
steps down. Jim Vestal, former
submissions editor will now serve as
Assistant Editor. Thanks to both
"Jim's" for their dedication, time
and effort to this magazine.

There may be a few more
changes shortly which I will an-
nounce in the next issue.

Next month, things will be back
on track once again. Look for a
Report on this last May's Chicago
CoCoFest. Things are looking up
for the World of 0S9!

<00F>

The "International" 0S9 Underground® Magazine
pshs x
lbsr printf
leas 8,s

* 1

leas 22,s
puls u,pc
_1 equ -98

_2 fcc 'This is a test'
fcb $0

_3 fcc "%s"
fcb $d
fcc
fcb $0

pass it
call printf
strip off parameters

clean up "main's" local variables
retore our U register and exit the program
this is the C compiler's assesment of how much stack
space is needed for our program
this can be set by one of the linker options

this is our printf 'format sting.
for the first call to printf

fcc "NUM Tod, DIGIT = Tod, ERRNO . Tod"
fcb $d
fcc"
fcb $0 second call to printf

endsect

as well as this one, for our

If you read the comments and follow what the code is doing you will see how
parameters are placed on the stack for the routine you want to call. It will also show you how
local variables are 'created' and accessed. I think this is enough for now. Next time I will have
an actual routine that does something that you can use.

Wes Gale Delphi WESGALE FIDO Net 1:153/912 or (604)589-5545 24 Hrs. STG
Net sysop@kzin or (604)589-1660 5PM - 8AM Pacific Standard Time UUCP
gale@f752.questor.wimsey. bc. ca

Keyboard Special!
• Auto-Switchable for AT/XT
• Small-Sized Keyboard, for Computing on-the-Go
• Only 12.25" x 5.75" x 1.125", Fits in Briefcase
• Works with MM/1, TC70, Kix0X0, IBM Compats
• Function Keys Fl thm F10

CALL (818) 761-4135

<E0F>

Personal Check or M.O.

Only $5996

Price Includes SStH

Available from:
AniMajik Productions

4650 Cahuenga Blvd., Ste #7
Toluca Lake, Ca 91602

The "Intermtionar ON Underground® Magazine
to know where the lowest point the stack can go is.

Idd Li
lbsr _stkcheck

* char str[20];
* int digit;

get how much room we need for our local variables.
and check if we have room
the routine _stkcheck is a routine in CL1131 for checking
the stack to make sure we don't go over any boundaries

leas -22,s this moves the stack pointer down to make room for our
local variables. 20 bytes for our 'string', and 2 for the
integer. The last variable specified will be where the
stack pointer is set to. In this case:

= 0,5 (length is 2 bytes)
'str' = 2,s (length is 20 bytes)

* parameters are placed on the stack in reverse order making
* the stack pointer equal to the first parameter upon entry of
* the routine you call.
* ie.

parameter 1 = pointer to var 'text' = 0,s
parameter 2 = pointer to "this is a test" = 2,s *

• strcpy(text,1This is a test");
leax _2,per this gets the pointer to our string
pshs
leax text,y
pshs
lbsr strcpy
leas 4,s

• printrks\n",text);
leax text,y
pshs
leax _3,per
pshs x
lbsr printf
leas 4,s

• num=5;
Idd #5
std num,y

• digit=num;
Idd num,y
std 0,s

put it on the stack - our second parameter
get the pointer for the destination variable
pass it as the first parameter
call the routine to copy the string
clean up the stack - deallocate what we pushed

get the pointer to our second parameter
pass it to printf
point to our 'format' string for printf
and pass that too
call printf
clean up the stack

make 'num' = 5
offset from Y to our global variable

grab 'num'
and make 'digit' equal to it.

• printf("NUM = %d, DIGIT = %d, ERRNO = %d\n",num,digitermo);
Idd errno,y
pshs d
Idd 2,s
pshs d
Idd num,y
pshs d

grab last parameter pointer
pass it
get the next parameter pointer
pass it

grab the next parameter
pass it leax _4,per grab the first parameter pointer

NEW 68020 COMPUTER

The CD68X20 sizzles at 25MHZ processing
the most complex calculations in a flash !!!

CD68X20-25, OK RAM
1MBx9 60ns SIMM Module
Professional 0S9/020 V2.4
SCULTOR V1.14:6 for Business
Software Development

$699.00
59.00

$499.00

79.00

Systems Available!

Computer Design Services
2550 Sandy Plains Rd. Ste 320-234

Marietta, GA 30066
404/973-2170

Overview
In late '92, Microware started shipping

its first C compiler (for 059 68k & 05-9000)
that meets the ANSI standard. But as usual,
Microware did their own thing. Rather than
just creating a program that compiles code in
the usual methods, they turned the process
upside down. The result is a compiler that
should be able to make optimized code good
enough to turn PC users green with envy.
This article takes a look at the obvious ques-
tion: did they succeed?

Background
In order to understand what makes the

Ultra C Compiler (hereafter 'UCC') different.
it is first necessary to review how ordinary
compilers function. The command "cc
source. c'', for example, actually calls up sev-
eral different steps to process the code. The
source file is first converted to assembly source
(source. a), then passed through an assem-
bler to create a relocatable object form
(source. r). The .r file is then linked with the
cstart. r (which contains the c startup code that
calls the main() function), and then any other
functions still undefined are (hopefully) lo-
cated in a library and linked in. If everything
goes okay, the linker outputs an executable
module and the cc command completes.

A variation of this procedure occurs
when more then one source file is compiled

PAGE

Ultra C:
Is it all it's
Hacked up

to be?

NI Scott t. Griepentros

together. Each of the source files specified is
compiled, one at a time, through the assem-
bly to the .r form. Only after all the source files
have been individually converted to object
files are they linked together to form an
executable module. In each case where a
function is called from one object file that is
contained in another, the relative offset in the
branch instruction is set by the linker to reflect
the proper location in the executable module.
The same is done for global variables that are
linked between different source files as well.
The drawback to this method of compiling is
that every time a call to a function is made, the
same procedure must be used. Each param-
eter must be put in certain registers or on the
stack in a certain way for functions to find
them. This means that even if you call a
function like:

abs(x)
int x;

if (x<0)

return(x);
return(-x);

The entire procedure for calling a func-
tion must be included in the code. The current
stack pointer is saved, then stack space is
allocated to pass the x variable, then the
function is called, and the stack is restored. If
the -s (no stack checking) option is not used

The "International" 0S9 Underground® Magazine
/* test.c */
I* this is a do-nothing C program to demonstrate how to write assembly library routines

for the MW C compiler for 0S9 1_11 */
char text[80];
int num;

main()

char str[20];
int digit;

strcpy(text,'This is a test");
printf("ia\n",text);

num=5;
digit.num;

printf("NUM = %d, DIGIT = %d, ERRNO = %d\n",num,digiterrno);

The variable 'text', and 'num' are both global. Both 'str' and 'digit' are local to the
routine 'main'. 'errno' is a global variable contained in 'clib.I' for returning error numbers when
an error occurs in some of the standard C library routines. Global variables can be access from
anywhere, local variables are made temporarily during execution of the routine they are
contained in, on the stack. They can only be accessed from within the routine they are
contained in. Below is the assembly language code that the C compiler created from our above
C program.

This was done using two options in 'cc' - I asked the compiler to stop at the assembly
language stage, and include the C code as comments:

cc -a test.c

psect tests,0,0,0,0,0
nam tests
* global variables are allocated when you execute your program
* The C compiler uses the 't register as a data pointer, all references to
* global variables are done as an offset from

* char text[80];
vsect
text: rmb 80 this is our global variable 'text'
endsect

*int num;
vsect
num: rmb 2
endsect

this is our global variable 'num'

* main()

ttl main
main: global labels are set by placing the ':' after it
pshs u save the U register it is used by the C compiler

 PAGE 41

The "International" 0S9 Underground® Magazine The "International" 039 Underground® Magazine
BUILDING
YOUR OWN
C LIBRARIES

by Wes Gale

Have you ever wanted to write your
own C library routines? Maybe you even
wanted to write them in assembly? I would
like to share with you a few things I have
learned about doing just this, which is some-
thing I had trouble with when I was first
learning how to do it. I hope to help portray
this information in a way that is a little easier
to grasp that the information I had to go on
when I was learning.

Assembly language was the second
language I learned, the first was BASIC. I
learned BASIC under RSDOS and wanted
more speed, so I learned assembly. Once I
moved to 0S9 I learned C. Knowing assem-
bly helped making learning C a lot easier, a lot
of things in the C language are based on how
assembly language works. This is one reason
C is so easy to use for low level coding without
resorting to assembly.

Our little machine here is not exactly
a speed demon, so after learning C a little bit,
I started trying to make library routines that
were decently small, and fast. In these articles
I will show you how global and local variables
are accessed, how to pass parameters to your
routines, and how to return information back
to your program calling the routine. I will use
a few of the library routines I have written for
examples, maybe you will find them useful in
your own programs.

Some of my routines depend on hav-
ing the Carl Kreider C libraries. If you do not
have these, you should attempt to get them.
They will save you time, and make your code
a little bit smaller, and faster - many of his
routines are written in assembly. If forcing
you to have these presents a problem, let me
know, I will try and work around that in the
future.

The stack is used for all temporary
variables and for parameter passing. The
stack starts at a certain pointin you program's
memory and works its way down. The

following diagram illustrates where these are
placed in memory. The top of the stack is the
higher memory address. When something is
'pushed' on the stack, it drops the stack
pointer down (if there is room) and places the
necessary data in the memory is just allo-
cated.

Fara meter5

Var La12105

The ror of the stack,
the "zero point' This is all
of the data before qou call a
lit9rarq routine

rarameters are here when
passed to a routine

Upon entrq of the routine, the
stack points .1-ere
Local Vartal2les for that
routine are put here Once
variables are allocated, the

 (current stack is here \

I am beginning with a very simple C
program that has a couple of glabal variables,
and local ones. It also makes a few calls to the
standard C library routines to demonstrate
how parameters we passed.

Po your 039/OSK
Machine a Favor..

Subscribe to the

International"
ON Underground

Magazine

Only sigt. for 12
Issues*

4650 Cahuenga Blvd., Ste #7
Toluca Lake, CA 91602

when the code is compiled, the function
called will then call a library routine to make
sure it has enough stack for local (automatic)
variables. Both compilers (and only more
recent PC compilers) use registers to pass the
first two arguments, which saves a certain
amount of stack overhead (but only if -s is
used). But to do the comparison, jump, and
a negate (three assembly operations in abs()),
there can be a lot of overhead (as much as 10
operations). All because the code is made
easier to read by making a common opera-
tion into a function. And if this function where
called constantly, that extra overhead can
really add up!

Better Method
For a compiler to produce assembly

output near to what could be done by hand
would require knowledge of the entire C
source at one time, libraries and everything,
and a routine that could decide how to make
the best use of the registers available. Throw
in some extra features to clean up sloppy
coding, and you've got one heck of a com-
piler. That is basically what UCC does. It
first converts each source. c file to an I-Code
form source.1(somewhat like Pascal p-code).
Then all the .ifiles (still in near-source form)
are linked together, along with I-Code li-
braries, into a single .1 file, which passes
through an optimizer. After that, the .ifile is
converted to assembly, which is again opti-
mized and assembled into the familiar .r file.
Only this time the entire program is con-
tained in the one .r file, which can then be
linked with any older libraries still in .r form
to make an executable.
One of the advantages of the I-Code format
is that different 'front end' converters could
be used to interpret different languages into
I-Code. For example, a C+ + , Basic09, or
Pascal front end would add another lan
guage using the same optimization capabil-
ity and libraries. Currently, only a C front
end exists, but it wouldn't surprise me if
Microware is already working on another.
Another advantage of using this I-Code
standard in the middle is that different 'back
end' converters can be used (these convert
the I-Code to assembly for a particular
target processor). For example, back ends
for creating '030 and CPU32 specific code
come with the UCC package, in addition to
the default 68000 one.

I-Code Optimization
In the middle is the I-Code optimizer,

which implements quite a list of methods for
improving the code. The first thing it looks for
is places where variables are set to a constant
once and never changed. In these cases it can
replace the variable itself with the constant.

Next the optimizer keeps track of how
many times a variable is used and where so
that it can make the best use of registers and
eliminate cases where they are not used at all.
It also looks for ways of simplifying calcula-
tions such as the use of multiple constants
and multiple occurrences of the same calcu-
lation. Next, it looks for sections of code that
are duplicated or repeated and changes the
flow to either remove the duplications (thus
making the code smaller) or moving the
repeated section outside of the loop (thus
making the code faster). Finally, it will inline
functions whenever it can. For example, the
abs() function above is short enough that it
would actually be replicated each time it was
used. Some optimizations have an execution
speed vs. code size tradeoff, which can be set
as a ratio on the command line.

Code Changes
There are a number of things that have

been changed between the old C compiler
and UCC. The first, and most aggravating, is
the removal of it asm and #endasm (for ANSI
compatibility). In place is the new _asm()
pseudo-function, which has the drawback of
not being allowed inside of functions.

Microware supplies a deasm program
to handle the conversion, but it too only
handles assembly outside of functions. I have
found that the easiest way to take care of
#asm's inside functions is to split the function
into a separate .c file and compile it to assem-
bly with the old compiler.

Another change is the missing OSK
define. It has been changed to _OSK, which,
I was surprised to learn, was also defined in
the old compiler. The quick solution is to
change all ifdef's from OSK to _OSK and
your code will still work with either compiler.
To tell which, check for the new _UCC
define.

Other additions are the volatile and
const typecasts. To prevent the compiler
from optimizing a variable incorrectly (such
as one modified by a signal service routine)

 PAGE 9 PAGE 40 • U.a. Only, $23 Canada, $27. Overseas

NitrOS9

VipairatifiNGO Tezt :Yon=:Neff
The latest addition to our OS-9/6800e product line is the most powerful text formatter available.
Vprint will work with any printer from files produced by your favorite editor. Proportional
character sets are fully supported as well as most of the special features newer printers have. It
even works with laser printers.
Standard features include margins settings, indents, headers, footers, etc. Advanced features
include multiple column output, repeats, powerful macros with optional parameter passing,
internal number registers with many output formats, true footnotes, automatic indexing and table
of contents generation, future event testing...
And if that's not enough, Vprint has a complete string manipulation language It supports
documentation via change bars, marginal notes and boxed sidebars; and permits 1/0 redirection to
and from pipeline.

Send for a mu sample printout demonstration some of the many advanced features!

Vprint comes with a 100 page manual and loads of sample files. It can be configured by any user to
any printer. Vprint costs only $59.95, plus $39° shipping and handling. To order please send your
check or M.O. and preferred disk format to:

Bob van der Poe! Software
P.O. Box 355 P.O. Box 57
Porthill, ID, USA 83853 or Wynndel, BC
USA 83853 Canada VOB 2N0

Phone (604) 866-5772

SCULPTOR FOR 0S9

V1.14:6 of the well-known development software package,
SCULPTOR, is available for all 0S9 computers. Two high-
level languages plus a complete set of support programs,
including utilities, are included with a detailed manual and
program disk. 0S9 (any version) and one floppy drive are
required; a hard disk is recommended. SCULPTOR is sold
"as is" but may be returned within 5 days if you are not
satisfied. Quantities are limited.

SCULPTOR V1.14:6 $79.00 + $7.00 UPS Ground

COMPUTER DESIGN SERVICES
2550 Sandy Plains Rd. Ste. 320-234

Marietta, GA 30066
404/973-2170

The Intermtionar 039 Underground® Magazine The "International" ON Underground® Magazine

PRINT "Press any key"
GET #0,key
PRINT CF111$(12)
PRINT "Border Colors"
PRINT "
PRINT
FOR counterA TO 8
RUN color(torder,code(counter))
PRINT "This is "; code(counter)
FOR time_delayA TO 9000
NEXT time_delay
NEXT counter
RUN color("border,"black")
END
DATA "white","black",7red","green","yellow","blue","purple","cyan"

<Eor>

09-Online Systems
Spring/Summer Modem Sale
US Robotics Sportster 14,400 Modem External Version
CCITT V.32 bis with V.42 bis throughput up to 57,600 bps

Special sale price: $250.00 (add $5 for UPS shipping)

Send your paid order (check/money order), or inquiries to:

09-Online Systems
c/o Jim Vestal
221 E. 17th #31
Marysville, CA 95901

Ask to be placed on mailing list for a free shareware catalog.

make the compiler allocate constant vari-
ables or arrays (that aren't changed) in the
program space (instead of making a copy in
data space), use the const qualifier.

Compiling Options
There is way too many options to this

compiler to go into them here, but certain
ones are very interesting. For example, the -
mode-1=c I compat I c891 option actually
switches the meaning of all the other options.
By selecting compat, you can use all the
familiar options of the old compiler and still
have the benefits of UCC. The c89 mode
provides ANSI standard options, and the ucc
mode gives you full control of the compiler.
All the following options are for the ucc mode.
The options I have been using are -r (no stack
check), -j (include I-Code libraries), -o-7
optimization 0-7), 2 (time/speed optimiza-
tion at 2:1), and -tp-68kc (compile for 68k

w/word code references). I also add -ill -/ddi
uccilibisys_clibil to make the compiler rec-
ognize the 'old' library functions. This is
necessary because the default libraries have
either or in front of many of the
functions. For example, write() is now
_os_write()

Put to the Test
To find out just how much better the

UCC compiler is, I took a few programs I had
just lying around and timed how long they
took to compile and run. All three programs
just crunch data in memory (no I/O), all times
are in seconds, sizes in bytes, and all tests
were performed on a 33Mhz 68030 Heurikon
V311). The UCC versions where compiled
with the options -mode- ucc -r -j -o-7 -t-2 -
tp.-68kc, except for #3 which also needed -
beb,--300k because of it's size.

OLD UCC Change

Program #1(46 lines)
Compile time: 11 343 31 times longer

Execution time: 45 22 half the time
Code size: 13694 19018 39% larger

Program #2 (280 lines)
Compile time:

Execution time:
Code size:

Program #3 (6439 lines)
Compile time:

Execution time:
Code size:

15 351 19.5 times longer
1185 1140 less than 4% faster

14802 20218 over twice the size

149
1.908
57126

1332
1.815

60646

almost 9 times longer
5% faster
6% larger

The first program consists of a simple and the larger the memory and the bigger
repeated loop with several sub-functions (in- the hard drive the better. UCC comes on
cluding abs()). UCC is able to inline several
of the functions, resulting in a considerable
speed increase. But what is disappointing is
that it does not improve complex programs
by as much. Having looked through the
assembly code generated by program #2, I
am quite certain I could speed it up by at least
25% if I took the time to rewrite it in assembly.

Installation Procedure
Before installing UCC, you need a 68k OS-9
machine with at least 2 meg of ram and 5 meg
free on a hard drive. The faster the machine

seven 3-1/2" or 5-1/411720k (OS-9 'Univer-
sal' format) disks. It comes with it's own
install program. In fact, you MUST install it
using their program as the disks are in some
sort of tar format. Now, I realize that this
installation program is a generic routine that
can and is used for different packages, but
it has some serious problems when used to
install UCC. On a package of this size (UCC
is a little over 4 Meg) and complexity (scripts
are used to copy existing defs and lib direc-
tories), this half-baked install program just
doesn't cut it.

NITRO S9
Version 1 .07

0S9 Level II expediter

Give 0S9 Level ii what it really needs,

A little speed...

N IT 0S9 offers :

-Faster Interrupt handling
-Optimized System calls
-Faster graphics
-Smoother multitasking
-Faster text
-Faster floppy/hard disk I/O

Upgrades to NITR0S9 version 1.xx will be made available
for FREE through Delphi and Compuserve and other BBS 1.

• If you do not have access to these online services,
upgrades can be ordered for only a small handling fee.

NTIROS9 requires - 0S9 Level II
- an HD63B09E installed in your 0000

N IT R 0 S9 software only $34.50
N IT R 0 S9 Kit $49.50
- comes with complete installation instructions plus necessary hardware
(minimal soldering experience required)

Experience GALE FORCE speed!

Shipping and handling is $4.00. Call or write
for our free catalogue. Please call for

Canadian prices.

Chocks, Allow 1 • 6 wooks b r dolivory.
Monoy orclors• orocossod Immodlotoly for

KWIK dollvery.

Send cheque or money order to :
Gale Force Enterprises

P.O. Box 631, Surrey, BC,
Canada, V31 519

(604) 5 9-1.660
8 AM - 5PM PST (vole.)
5 PM - 8 AM PST (support BBS)

NEXT I
(5 change the value of word to the new value, passed to the calling program 6)
worth--new
END
PROCEDURE demo
(6 A demo program for use with the procedure OS-9 Color 6)
(5 By Timothy J. Mohr 6)
DIM code(8):STRING[15]
DIM control:STRING[15]
DIM counter:INTEGER
DIM time delay:INTEGER
DIM key:STRING[1]

(6 read color names into an array 6)
FOR counter.-1 TO 8
READ code(counter)
NEXT counter

counterA

(5 clear the screen *)
PRINT CHR$(12)
PRINT "Foreground Colors"
PRINT"
PRINT
FOR counterA TO 8
RUN color("foreground",code(counter))
PRINT "This is "; code(counter)
NEXT counter
PRINT
RUN color("foreground","white")
PRINT "Press any key"
GET #0,key
PRINT CHR$(12)
PRINT "Background Colors"
PRINT"
PRINT
RUN color("foreground","black")
FOR counterA TO 8
RUN color("loackground",code(counter))
PRINT "This is "; code(counter)
NEXT counter
RUN color("foreground","white")
RUN color("background","black")
PRINT

PO

PACE 37

The "International" 039 Underground® Magazine The "International" 0S9 Underground® Magazine
IF code.-"black" THEN
color:=2
ENDIF
IF code:--"red" THEN

ENDIF
IF code2green" THEN
color=3
ENDIF
IF code2yellow" THEN
color:=5
ENDIF
IF code="blue" THEN

ENDIF
IF code.--"purple" THEN
color=6
ENDIF
IF code="cyan" THEN
color:=7
ENDIF
IF command<>$FF AND color<>$FF THEN
seq:=CHKesc)+CHRVcommand)+CH14(color)
PUT #1 ,seq
ENDIF
END

PROCEDURE to lower
(* to_lower procedure by Jim Vestal and Tim Mohr, this can be used in any *)
(1' to convert the passed string to all lowercase *)
PARAM word:STRING \(t word is passed from calling program *)
(1 new is the "new" word and should be all lowercase *)
DIM new:STRING
DIM I:INTEGER \(* Loop counter *)

I:=0

(" change all uppercase letters to the lowercase counterpart")
FOR TO LEN(word)
IF M13(word,1,1)>---2A" AND MIDS(word,I,1)<.-"Z' THEN
new:.-new+CHKASC(MIDS(word,1,1))+32)
ELSE
new:-.new+MIM(word,I,1)
ENDIF

First, the installation takes a full 45 minutes
on an '030. That's over six minutes per disk
- and it doesn't even take a minute to copy in
a single floppy! Using dsave would take a
fraction of the time and would still only use 7
disks. Second, you must install it straight to
/dd or the scripts fail. Is this specified in the
installation instructions? No. Like most
people who like to keep stuff on their hard
drive somewhat organized into subdirectories,
1 first tried to install it to idd/UCC and got all
kinds of error messages.
Although the scripts attempt to make a copy
of your old compiler's modules and files (in
case you want to go back to it), it will mess

them up completely if everything doesn't go
right on the first try. And since what the
scripts are doing is not echoed to the screen,
it took me a bit to trace down what happened
the first time I tried installing it. To put it
nicely, this installation program bites.
For the poor unfortunates who are faced with
performing this installation, I provide the fol-
lowing procedure. This assumes that the
installation disk is /d0 and you wish to place
UCC in its own directory (to make it easier to
switch back and forth). To install perma-
nently, skip straight to running idO/install and
enter /dd as the destination directory instead.

makdir idd/UCC
makdir idd/UCC/DEFS
makdir idd/UCC/LIB
chd iddidefs;dsave -e kid/um/clefs
chd iddilib;dsave -e iddiuccilib
chd /d0;install

(enter destination device) iddiucc
(enter pathlist to target installation directory) iddiucc
(ignore errors)
(select option by number) 2 (overwrite pre-existing files)
(are you sure) y
(ready for volume 2) go
(... repeat for 3-6 ...)
(ready for volume 7) go

(this sets the modules with the same name as non-sticky to prevent conflict)
chd iddiucc/cmds
attr -w cc r68 168 make fixmod rdump
fixmod -ua=8001 cc r68 168 make fixmod rdump
chd iddicmds
attr -w cc r68 168 make fixmod rdump
fixmod -ua=8001 cc r68 168 make fixmod rdump

(finally, edit the kid/startup file and add the following lines:)
load -d iddiucc/cmdsics1
load -d iddiucc/cmds/bootobjstfpu (use fpu040 on a '040)

iddiucc/cmds/p2init fpu

To make it easy to select ucc over the old compiler, 1 have also come up with this quick C program
that goes with my installation procedure. When run, it chains to a shell with the proper environment
set to run the new compiler using the same commands (default to -mode =compat). This way you
can just cc your old code just like before. You can also run make, but it will not link source together
in 1-Code form first

PACE 13

KWIKGEN
Version 1.

Still using 0S9Gen, Cobbler, or Config?
Get a real boottile eclitori

EzG en vl .09 vs.
5 minutes 40 sec.

KwikGen v1.01
44 SECONDS!*

• Identical operations performed on identical fragmented boot disks
- 2 deletes and one insert performed by both utilities

- Editing done in memory - Make multiple boot disks

- Load boot from disk in one session
or memory

- Patch modules

- Change order of modules
in seconds

- 100% assembly code

KwikGen requires 089 Level I, or II. $24.95

- Edit existing boot files
in place easily

- Load kernel from disk or
mem. and write to disk

KW 1K ZAP
Version 1 .2

- Display updating is instant

- 'Smart' verify command

- Work on file or stack

- Searching functions

- 100% assembly code

- Configurable environment

- Dynamic sector stack

- Allows editing of nibbles
or half bytes

- Built in help - easy to use

KwikZap requires 089 Level II. $24.95

Experience GALE FORCE speed!

Shipping and handling Is $4.00.
Call or write for our free catalogue.

Please call for Canadian prices.

Send check or money order to :
Gale Force Enterprises

P.O. Box 631, Surrey, BC, •
Canada, V3I 519

Checks: Allow 4 - 6 weeks for delivery.
Money orders: processed Immediately or 8 AM - 5 PM PST (voice) K 1 1K delivery.

5PM - 8 AM (support BBS)

(604) 5(2941.660

•

The "International" ON Underground® Magazine
PROCEDURE color
(* OS-9 Color *)
(* Version 2.0 by Jim Vestal *)
(* Version 1.0 by by Timothy J. Mohr *)

et control is the string "foreground","background", or "border *)
(* code is the name of the default 8 colors, "white", "black", "red", "green", "yellow",
"blue", "purple", and "cyan" *)
PARAM control,code:STRING[15]
DIM new:STRING
DIM count:INTEGER
DIM seq:STRING[3]
DIM esc,fg,bg,bd,color BYTE
DIM command: BYTE
seq.-
(* set values to maximum for error checking *)
color:$FF
command:4F
esc:$1B \(* escape display code *)
fg$32 \(* foreground color display command *)
bg-433 \(* background color display command *)
bd$34 \(t border color display command *)

(* Convert control to lower case *)
RUN to_lower(control)

(* Compare control to "foreground", "background", and "border commands *)
(* and set control to corresponding value *)
IF controkloreground" THEN
command:4g
ENDIF
IF controWbackground" THEN
command4pg
ENDIF
IF controWborder THEN
commanckbd
ENDIF

(* Convert code to lower case *)
RUN to_lower(code)

(* Compare code to valid color names, set color to corresponding color *)
IF code2white" THEN
color:4
ENDIF

PAGE 35

The "International" 0S9 Underground® Magazine The "International" 039 Underground® Magazine

BASIC
TRAINING
Structured
Programming
in Basic

by Jim Vestal

This month I present a proce-
dure called OS-9 Color. This proce-
dure requires 8asic09 in an OS-9
Level 2 window on a CoCo 3, and it
assumes the default palette values.
It allows you to change the current
foreground, background and bor-
der colors to any of the standard 8
colors by name. It may be executed
as a stand alone program from the
shell with the parameters of which
color to be changed and the name of
the color, or it may be used in any
program in order to change your
screen display color. For example,
for shell plus users:

color foreground green

This command will change the
foreground color to the color green
(palette 3).

You may also call this routine
from any basic program. For ex-
ample:

run color(foreground' b'gellow')
run color(al,ackgrouncl','1,1ue')
run color(al,order','purple')

These program lines will change the :
foreground color to yellow (palette

PAGE 34

5), the background color to blue
(palette 1) and the border color to
purple (palette 6).

Reader Input
Needed

I need input from you readers
about what you would like to see in
this column. Do you want small
useful programs, or would you rather
have tutorial discourse? Please send
me email or write me at the following
mailing address:

Jim Vestal
221 E. 17th #31
Marysville, CA 95901

You can send me email me on
the following networks:

Internet:
sysop@narniacitrussacca.us
StG network: SysOp@Namia

RETURN OF THE RASCAN DIGITIZER!!!
The BEST CoCo Video Digitizer is now again available!'
320)(200 to 640x200, color scans with 512K and filters!
Plugs into joystick ports. See Rainbow review. Dec.

1990. pg. 83. INTRO SPECIAL: Send $40 down and get a
Rascan for only $140! Shipped from Australia; allow
8-10 weeks. Full payment only $135. Offer expires

30 Nov. 1990. REGULAR PRICE: $175

NEW TrEM: 05-9 Invoice/Inventory Manager. Print
invoices by typing customer info then selecting part
number from list? Complete with Basic-09 source.
Multi-user Level I or II. Requires Basic-09. $24.95

OTHER PARRA ITEMS
The CoCo Family Recorder - genealogy system. CC3. 80

column monitor. 2 drives- $24.95
08-9 Quick Reference Guide- desktop reference?- $7.95
Patch 08-9 - 2 disks of most used patches&utilities.
auto patches w/512K, minimum of 2 40T DS drives.

$5.00 w/QRG, $7.50 alone
Little Black Book- address/phone database- $7.50

Video Tape Organizer- video library database- $7.50
& VTO- both only $12.50!!

Keep-Trek- general accounting CC 1.2.3- $24.95
Accounts Receivable for K-T- $10 ($20 alone)

Omega File- menu driven database. CC 1.2.3- $24.95
Programming the 6809- Assembly language book

recommended by Motorola & Marty Goodman- $22.95
NOTE: 0S-9 %WV IF V9t" rtD. 0134Agi DEe.B

FARNA Systems

904 2nd Avenue, Warner Robins, GA 31098
Phone 912-328-7859 Add $1.50 S&H (GA add 5% tax)

••••

/* UCC.0 - fork shell to use ucc */
/* StG 93/01/31

char *malloc();
char *getenv();
int chain();

extern int errno;
char *env[16);
char *args0={"shell",0};

set(e,v)
char *e,*v;

static char **envp=env;
char *new

new=malloc(strlen(e)-1-strlen(v)42);
if (!new) exit(errno);
strcpy(new,e);
strcat(new,"=");
strcat(new,"v);
*envp-4--+=new;
return(0);

main()

char *temp;

set("PATH","/ddiucc/cmds:/dd/cmds");
set("CDEF","/dd/uccidefs");
set("CLIB","/ddiuccilila");
set("PROMPT',"UCC: ");

if (temp=getenv("CC")) set("CC",temp);
else set("CC","compat");

if (temp=getenv("PORT)) set("PORT",temp);
if (temp=getenv("HOME")) set("HOME",temp);
if (temp=getenv("USER")) set("USER",temp);
if (temp=getenv("IERM")) set("TERM",temp);

os9exec(chain,*args,args,env,0,0);
1

Conclusion
Currently, considering the price, hardware
requirements, time to compile, and lack of
substantial return (i.e. faster code), UCC may
not be a worthwhile acquisition quite yet
The next release is supposed to improve
optimization and fix a few minor problems. It

should be available in the Fall of '93, at which
time I will run the same tests and post the
results. In the meantime, the ANSI compat-
ibility and improved source checking features
may prove worthwhile to those with the nec-
essary funds and equipment - StG

PAGE 15

The "International" 0S9 Underground® Magazine

Header
Files
and
Function
Declarations
by Bob van de. Poet

So, here we are:
starting a new year, folks
continue to use their
Color Computers, folks
continue to get into 0S9/
68000, and authors
(like me) continue to
make mistakes... So,
what's new?

One sharp reader questioned
a comment I made in part II of my
series on using termcap to build a
simple menu program (UG, July/
92, pg. 22). In that article

I stated that I included the file
umalloc.h" to keep the compiler
happy. The reader felt that my ex-
planation was lacking, plus he didn't
agree with the file. So, let's discuss it
a bit more.

C compilers make a lot of as-
sumptions when compiling a pro-
gram. One of them is that any func-
tion, unless it is specifically declared
to do otherwise, returns an integer
value. This assumption permits the
following code to compile and work
properly: (See Example 1)

PAGE 16

.,•••••

._••••••

(Example 1)
main()

int a,b,c;
a=22;

c--,•multiply(a,b);
printf("%d times %d leiod\n",a,b,c);

1
multiply(a,b)
int a,b;

return a*b;

Of course, this isn't the most
useful of programs—but it demon-
strates the point.

Now, what happens when we
use floats instead of integers? Apart
from the obvious detail of changing
all the "int" declarations to "float"
and changing the "%d"s in the printf0
to "%f" we need to do one other
very important thing. We need to tell
the compiler that multiply() is re-
turning "float". If we don't an error
will result—the function multiply()
will convert the result of the "a*b"
operation to an integer (possibly dis-
carding part of the value)—we didn't
tell it to return a float; this integer
value will be assigned to "c".

For this to work properly we
need to end up with code which
looks something like: (See Example 2)

Advertise your Wares
(Hard or Soft!)

In the 059 Underground
Ask for Ad Rate Card or
call for more information

(818) 761-4135

••••••

•••••••

68XXX COMPUTER
PRODUCTS from
Peripheral Technology

- a company with n
reputation for quality

PT68K4-16, 11\4B
PT68K2-10, 1 N4B
A ILT86 for PC
Compatibility
Professional 0S9

$299.00
$199.00

$199.00
$299.00

1480 Terrell Mill Rd. #870
Marietta, GA 30067

404/973-2156

••••••••••••.:::••_•.*:::•••.:•••••••••••••
• • • ••••••••••••:-.:::

•••••.:::••••••••••••••••••••••••.:.•:ii.......:.•••••ii..:::••••••••••••••••••:.....:••••;••••::::::?:::•••••••••••••••••••••••••••:::::.:•;•:::,:i...
•••••••• • • • • • •

•

:-:::•••.:::•••.::::::::::*:::::•:•:::••••••••••..:::•••.::••••••.::::••.::::•••.:::::::••••••••• • •
••••• •

• ••••••:•:::••••••••• • • .. • .. • .. • . ••. 49........ f•:••••••••••••••••••:•••.•
OS-9 6809 OSK

• •••••• • •

• •• • •

Ved
VPrint
DML9 Mail List Mgr

Basic09
Subroutines
MiniBanners
CheckBook+

$25
$30
$25
$25

$20
$25

Ved
VPrint
The Zapper
CheckBook+

BGFX

$40
$60
$30
$35

$40

NOW IN STOCK
DATADEX!

Free Form DataBase

Multi-User Version
Single-User Version

$300
$130

DATADFA: Mow
HARDWARE

MM/1 Extended Kit $975 3 Meg Memory Upgrade $120
MM/1 Personal Kit $795 MM/1 Case/Supply $125

Send SASE for PD Offerings and Comilete Catalog

The "International" 039 Underground® Magazine
by changinit to a NULL. Adding the
extra space fixes this little bug in the
OSK version of chain. The OS-9/
6809 version is a little different You
may have to add a space at the BE-
GINNING of the parameter string. If
your chain call does not work and you
are chaining to a shell, play around
with spaces at either end of the param-
eter string. However, don't have any
spaces in there if you are directly call-
ing an executeable module or it will
fail.

All this is pretty simple so far.
Under OSK, it becomes slightly more
difficult The OSK chain() works like
this:

spelled the name of the program wrong,
pmit_report instead of print_report,
the chain would fail with a "file not
found" error. However, the calling
program is now no longer in memory
and the error cannot be returned to it
How is one to know the chain failed?
The answer is the parent process of the
one making the call gets notified. Usu-
ally, you run a program from the shell
which might in turn chain to another
program. If that chain failed, the par-
ent of the chaining program—the
shell—would get the error notification
and print it

chain(modname, paramsize, paramptr, type, lang,datasize, prior)
char *modname, *paramptr;
int paramsize, type, lang, datasize, prior;

The only new parameter is
"prior", with which you can specify the
priority of the new process. Set it to
zero if you want the chained process to
run at the same priority as the calling
process. Otherwise, the OS-9/6809
and OSK versions of chain() work the
same.

The OSK chainc() function is
the same as chain() with the addition
of yet another parameter "pathent" to
specify the number of opened paths to
pass to the new process. Usually this
is three, for stdin, stdout, and stderr.

Notice that there is no need to
explicitly exit the calling programabove
Remember, chaining causes the cur-
rently running process to terminate.
Although you are very careful in set-
ting up your chain function call, it is
possible that it might fail for some
reason. In the above example, if you

Under 05-9/6809, chain can
be very useful when trying to write the
"killer app" in • the tiny 64K address
space given to each program. By
dividing up the application into a logi-
cal sequence of modules and then
chaining to each of them as the pro-
gram runs, you can create the illusion
of a much larger program. Careful
thought must go into this though since
variables cannot be passed along.
Writing a program state to a disk file to
be used by the next module might be
acceptable on a hard disk system, but
too slow on a floppy based one.

Next month we'll discuss the
features of forking another process
that runs concurrently with the parent
process. Until then.

/* /\/\ark */

(Mark Griffith)
<1110F>

.4

main()

float a,b,c;
a=22;
b--44;
c=multiply(a,b);
printrod times %d is 13/0dM",a,b,c);

float multiply(a,b)
float a,b;

return a*b;

The "International" 039 Underground® Magazine
ustdio.h", "strings.h", "time.h", "math.h",
etc. These files, in addition to other
things, declare the return values of
various functions. For example, if
you list the file "math.h" you will dis-
cover that sin°, cos(), and many other
functions all return a "double" value.
If you are going to do math using
these functions you include the
header file alerting the compiler of
what is really going on.

(Example 2)

The "float" type specifier
added to multiply() does two things:
It lets main() know that multiply() is
returning a "float", and it forces
multiply() to actually return a "float".

So far, all is simple. But what
happens if we use separate files to
compile our code, or if multiply() is
a library routine?

As written above, main() will
NOT know that multiply() is return-
ing a "float". Since we didn't tell it
otherwise it assumes that an "inte-
ger" is being returned. Since a "float"
is being returned, chaos is assured.
The sithple solution is to declare our
troublesome function in main°.

Changing
the first line to:

float a,b,c,multiply();

will work.

From this evolves header files.
If you look at any C code you will see
that various header files are included
in the code via the "ttinclude <xyz.h>"
directive. Common include files are

So what does this
have to do with
malloc()?

Malloc0 is a function which
returns a "pointer to char". In
most environments (including
0S9/6809 and 059/680xx) the
internal size of an integer and a
pointer are identical (2 bytes on
the 6809, 4 on the 680xx). Be-
cause of this, programmers have,
historically, been quite cavalier
about converting between inte-
gers and pointers. But, this prac-
tice is dangerous.

What happens when you port
your program to an environment
where pointers and integers are NOT
the same size? Yup--problems.

Neither C compiler pack-
age from Microware (6809 or
68K) include a header file for the
malloc0 function. The manuals
advise that malloc0 (and associ-
ated functions) return a "pointer
to char". So, to do things cor-
rectly when you use malloc0 you
should have a statement some-
where in your program which
looks something like:

PAGE 17

The "International" 089 Underground® Magazine

extern *char malloco;

This works well—so let's save
a bit of typing and create out own
header file for malloc(), etc. We'll call
it malloc. h:

char *malloco,
*calloc(),
*realloc(),
*dark°,
*ibrk(),
*sbrk();

Including this file in our pro-
grams make them nicely "legal".
More importantly, they become
more portable.

Now, we can have code like
this:

#include <malloc. h>
foo()

char *p;
p=malloc(1234);
••••

But what happens if we want
malloc0 to allocate space for some-
thing other that "char"? Maybe we
need to allocate memory for an ar-
ray of integers. In this case we need
to do something like:

itinclude <malloc.h>
woof()

(Example 3)

int I;
i=malloc(100*sizeof(int));
• • • •

In this case we are allocating
memory for an array of 100 inte-
gers. However, when we compile
the program we get a warning of an
"illegal pointer/integer combination".
The compiler expects malloc() to
return a "pointer to char", but here
we are assigning that to a "pointer to
int". Something's fishy.

One solution is to use a cast in
the assignment:

i= (int *) malloc(...

will keep the compiler happy—
and will force the compiler to do any
necessary conversions, if necessary
(none are needed in this case).

However, if you are using
0S9/68000 or a compiler com-
pliant with the ANSI standards
there is another way. This "new"
C introduces a "generic pointer"
which can point at anything. This
new pointer is the type "void *".
Declaring functions like malloc()
to return "void *" instead of
"char *" moves you along the
path to ANSI C. It also saves a
whole bunch of casts in your
program. In ANSI C functions
like malloc() are declared in the
file "stdlib.h". If you are porting
UNIX programs, you'll find that
the more traditional flavor of C
used assumes you have a
"malloc. h" file. So why not have
a "stdlib.h" which starts off by
including "malloc.h"—the best
of both worlds.

If we change the declara-
tion our "malloc.h" file from
"char *"to "void *" we can avoid
the cast statement above. The
following will work fine:

ing is chain°. OSK adds another
"C" function called chainc(). In this
discussion we'll just talk about imple-
menting a chain in "C". Chain for
OS-9/6809 is called as:

The "International" 089 Underground® Magazine
shell

To chain to another program
called "print_report", we can set up
ourtest program like so:

chain(modname, paramsize, paramptr, type, lang, datasize)
char *modname, *paramptr;
int paramsize, type, lang, datasize;

Where "modname" is a pointer
to the name of the program to run,
paramptr" is a pointer to the pa-

rameter string for that program, and
" paramsize " is the length of the pa-
rameter string. "Type" is the type of
program to run, usually set to zero to
mean any type. "Language" is usu-
ally set to one to indicate a native
code (machine language) module.

The different types of mod-
ules, their codes and language codes
can be found in the file "module.h".
Below is an extract of the language
types:

itdefine ML_ANY 0
#define ML_OBJECT
ltdefine MLICODE 2

Most of the time, you'll be
using ML_OBJECT as both the type
and language values. Datasize is
usually set to zero to let the new
program setup its own data area.
Any value given for "datasize" must
be in pages (256 byte chunks) and
not bytes. This value is then used to
calculate additional memory for the
new process. This is essentially the
same as adding the extra memory
pages option to the command line
when running a program from the

<module.h>

main()

char *prgnam = "print_report";
char *parms = "-p IA";

I" do some processing here */

r ready to chain to the print_report
program "I

chain(prgnam, stden(parms), parms,
ML_OBJECT, MLOBJECT, 0);

Lets now say that the
print_report program is a shell script
Since it is not a machine language
program or BASIC09 I-Code, it
much be called so as to use a shell to
interpret it To do this, you make the
name of the program to run "shell"
and add the "print_report" shell
script as part of the parameter line
like so:

char *prgnam = "shell";
char "pans = "print_report >ip ";

This is also a good method to
use to run BASIC09 I-Code files.
Just use "mnb" as the program name
and the I-Code file as part of the
parameter string. Notice the extra
space at the end of the parameter
string. This is required for this to
work. Apparently, chain or shell
(I'm not sure which one) lops off the
last character in the parameter string

PAGE 31

The "International" 0S9 Underground® Magazine The "International" 0S9 Underground® Magazine

gPAPPIP4
TP
PP9CPPOPP
!APPPR 9PP

9PP;

BY MARK GRIFFITH

One of the nicest and most
useful features of the OS-9 operat-
ing system, like its 'UNIX counter-
part, is the ability to start another
program, or process, from within a
currently running program. All corn-
puter systems do this to some de-
gree. MS-DOS, for example, runs a
program called "command.com" at
bootup which puts up the "C:>"
prompt and waits for a user to enter
a command to run. Command.com
then loads the program given and
jumps execution to the beginning of
that program. When this program is
finished, control returns to
command.com. RSDOS on the
CoCo does something similar ex-
cept it runs commands that are in
ROM which in turn load and ex-
ecute a program. The end result is
the same. The difference between
single-tasking operating systems like
those running MS-DOS and multi-
tasking systems is both programs
can run at the same time. The
relationship between the two is com-
monly termed the "parent" and
"child" and the procedure for start-

PAGE 30

ing another program is called "fork-
ing" or "chaining", depending on
how you do it.

This month, we'll cover chain-
ing to another process. Forking will
be covered in the next issue.

Chaining to another program
means to start the new program in
place of the one you are running
now. This is similar to what the
single-tasking operating systems do,
with the exception that when the
new program is finished, control
never returns to the program that
called it since it is no longer in
memory.

The best reason to use chain,
especially within OS-9/6809 sys-
tems, is it allows the programmer to
start another program on a system
with limited memory. It also uses
less processing overhead so it is
slightly faster then a fork system call.
The majority of the time, fork is the
preferred method to start a child
process, but there time when chain
is more suited. One situation would
be if the programmer does not want
execution to ever return to the pro-
gram calling chain. This is useful for
utilities such as login.

Chain passes on any opened
data paths, such as standard out, in,
error, and any disk I/O paths. How-
ever, using anything other than the
standard I/O paths is not for the faint
of heart and you'd better be sure of
what you are doing. It's best to just
open the paths you need within the
new process.

Chain first quits the currently
running process and then starts the
new one in essentially the same
memory space. The system call to
do this isFSChain and the "C" bind-

Itinclude <malloc.h>
woof()

int *i;
char *p;
i---:.malloc(100*sizeol(int));
p=nalloc(1234);
••••

This is not completely legit
if we want to follow the
Microware manuals; however, it
will not create any unwanted side
effect, it makes our programs
more compliant with the move
to ANSI C, and it saves some
typing.

Ultimately, the choice in
how to handle declarations (and
a whole bunch of other stuff) lies
with you, the programmer. "Ex-
perts" (which I don't consider
myself to be) can only suggest
and show alternates. The best
way to learn is by doing, making
mistakes, and learning from the
mistakes.

If you have any comments on
this subject, or other columns I've
written drop me a note. I can be
reached at PO Box 355, Porthill, ID
83853 or PO Box 57, Wynndel,
BC, Canada VOB 2N0 or
Compuserve 76510,2203.

-Bob van der Poel

< SOF >

REVIEW
DataDc

Review
by Leonard Cassady

I've seen many data management
programs over the course of time. Few
programs live up to the claims stated in the
advertising. DATADEX proves to be an
exception.

While DATADEX will not fulfill all the
database management needs of a small busi-
ness, it does indeed emulate a Rolodex card
file system with such ease of operation, sim-
plicity, and efficiency it is hard to imagine a
better implementation.

DATADEX requires a OS9/68000 sys-
tem with at least 100k ram available plus
whatever additional ram is needed for your
favorite text editor. A terminal or monitor
with at least an 80 x 10 display, and you're
ready to run. A hard drive is also recom-
mended for faster media I/O, although it is not
necessary as during operation, the files are
loaded into memory.

DATADEX comes on a 3.5 micro
floppy using the "univ" format. The install file
automatically copies the necessary files to the
destination device you supply via the com-
mand line.

Developed with 0S9/68000 v2.4, I
immediately expected problems as my sys-
tem uses the v2.3 operating system. This
trepidation proved to be unfounded.

The author wisely supplied a second
version of the program with the I/O routines
already linked for those using a different
revision of the operating system.

The manual is clear, concise, and
takes a functional approach, which is a relief
from the ones that give you endless examples
without much practical information. There is
a number to call in case of difficulties encoun-
tered, however, the manual should answer
any questions.

My only criticism of the manual is the
assumption that the user will have practical
working knowledge of the termcap file or that
other programs have already supplied some

PAGE 19

The "international" 0S9 Underground® Magazine The "international" 0S9 Underground® Magazine
of the necessary key definitions and

screen control codes. Keep your operating
system manual handy just in case.

The setup utility "dcbcsetup" and a
supplemental utility, "dcbctermtest", notify you
of any missing, or conflicting termcap entries.
There is also an alternate method to re-define
the key sequences in the event your terminal
doesn't have function keys or they have non-
standard definitions. There is an termcap
example for the MM1 and KWindows sup-
plied which can be used as a guide.

Once the termcap file is properly setup,
DATADEX is extremely user friendly. The
HELP lines along the bottom of the screen
inform you of what options are available and
the key strokes for those particular functions,
(functions vary depending on the screen you
are using).

Next, you must setup various envi-
ronment variables, all of which are outlined in
the manual in the technical information sec-
tion, along with the necessary termcap defini-
tions.

You are given your choice of which
text editor to use. I don't recommend using
"UMacs" with DATADEX, as UMacs forks a
shell upon exit and won't return to DATADEX
unless you implicitly kill the UMacs process.
The line editor "EDT" works just fine and
considering the nature of the DATADEX
management program, seems to make an
ideal team.

The X_Cmd function, (external com-
mand), is touted to be one of the most
powerful features of DATADEX. When the
command is forked, DATADEX will pass up
to ten user defined parameters. DATADEX
handles the piping and data format sent to the

Cmd for you. Two C source code ex-
amples are included on the disk, and may be
used as a guide for writing your own X_Cmds.
Again, this shows the authors' foresight in
that you may compile the X_Cmd using the
your operating system version level.

The utility, "ddx2txt”, allows you to
extract or "stack" cards for backup to a text
format file for spell checking. The utility,
"ddxpr" , allows you to send the card data to
a printer for hardcopy. Both of these utilities
may be invoked from within the X_Cmd
function. Also included is a utility,
"maktkidx", that will translate text files into
the DATADEX format, (with minor prepa-
ration to the text file). The ability to fork

PAGE 20

a shell comes in handy at this point, although
most of the functions desired may be ac-
cessed through X_Cmcl. Spell checking us-
ing the public domain port of "ISpell" was
flawless. Any spell checker that uses an
ASCII format should work equally as well.

One particular function that may be
very useful is the Global Search. DATADEX
searched through one hundred cards for a
target string within two seconds. A very
impressive performance.

DATADEX showed the same efficient
performance running under GWindows, once
the termcap file was properly setup. Unfortu-
nately, KWindows was not available for this
review, although I have little doubt that any
difference could be noted.

The Multi-user version will be of inter-
est to those running BBS's, and at the list
price for the single-user version, DATADEX
is well worth the price, a true bargain. I highly
recommend it over the more expensive
datamanagers for the power, user -friendli-
ness, versatility and cost.

Leonard Cassady (Maudib)

<E0F>

SUBMIT!
Submissions to the 0S9
Underground are always
welcome from you.

Submissions may be sent
to the Magazine by Email
or on Disk by regular Mail
to our address (See Table of
Contents page).

Please send your Email sub-
missions to:
zog!sysop@abodatank.com
zog@delphi.com
or "ZOG" on Delphi

•

string array assigned to it.
This next example of a BASIC

program dimensions an array that
will hold up to 51 strings. A loop is
entered and user input is received
from the keyboard on each pass.

10 DIM A$(50)
20 FOR X= 0 TO 50
30 INPUT A$(X)
40 NEXT X

A possible C version is:

main()

int x;
char *a[51], *malloc();

for(x 0; x <= 50; ++x)
gets(a[x] = malloc(256));

However, this translation is
wasteful. The input string probably
won't be 255 characters in length.
To eliminate the wasted memory
Space, a better version would look
like this:

main()

int x;
char *a[51], b[256];

for(x 0; x <= 50; -1-4-x)

gets(b);
a[x] = malloc(strlen(b));
strcpy(a, b);

Of course this example assumes
you won't be performing any other

operations on the pointer, such as copy-
ing another siring to the end of the input
string. The memory allocated is big
enough only for the input string.

As stated earlier, the "calloc("
function does about the same thing as
the "mailoc() "function, except that it
sets the bytes in the reserved memory
block to zero, or initializes the memory
block This aspect is very handy for
resetting the variables in a structure or
union.

The "reailoc() "functionchanges
the size of the memory block previously
allocated by either "maitoc(" or
"calloc() ". Ifthenewsizeissmallerthan
the old size, the unused portion of the
memory block is discarded. If the new
size is larger than the old size, all of the old
contents are preserved and new memory
space is lacked onto the end. If the new
memory space cannot be allocated, no
new space is allocated and "realloc0"
returns a
null pointer.

After the memory block is allo-
cated, used, and no longer needed, it is
always desirable to return the memory
space back to the system. The general
rule should be, if you don't need it any
more, get it out of the way. If this isn't
done, we could possibly run out of
memory or overrun the stack The
"free0" function releases the allocated
memory and sets the pointer to a nut

Pointers operations in C make up
a large part of the it's flexibility. The
unusual nature of pointers can cause a
BASIC programmer much confusion at
first Once you begin to understand
pointers, you will see the power and
flexibility they provide and miss them
if you find yourself in an environ-
ment that doesn't support them.
Maudib (Leonard Cassady)

The "International" 089 Underground® Magazine

Software
ngineering

by Leonard Cassady

MEMORY ALLOCATION

• Pointers can be made to point
to any area of memory. Usually, the
locations pointed at have already
been written to or is already in use
by the program or the operating
system. When the need for an area
of memory set aside specifically for
storage of a large amount of data
and pointer access is desired,
memory allocation comes into use.
This can be done by declaring a
large char array, but array space has
limits. Once used up, the space must
be enlarged, (if possible), or another
method is needed.

The standard C function set
includes the memory allocation func-
tions, "malloc("calloc() ",
"realloc(and "free(which
allow areas of memory to be set
aside and accessed by a pointer,
resized and returned to the operat-
ing system for other uses. The func-
tions attempt to locate an area of
memory not in current use. When
an area or block is found, the func-
tion allocates or marks the desired

'PAGE 28

number of sequential bytes as being
used and returns a pointer to the first
byte in the block.

While there may be other
memory allocation functions avail-
able for your compiler, they are not
part of the standard C language set,
and may not be portable to other
systems.

The "malloc()" function al-
locates a block of memory and as-
signs a pointer to the first byte. Noth-
ing is done to contents of the block,
so whatever garbage was there be-
fore the allocation still resides there.
The "calloc() "function does about
the same thing except that it clears,
or sets to zero, each byte in the
block

The following C program dem-
onstrates the use of "malloc(".

main()

char *a, *malloc();

a = malloc(100);
strcpy(a, "0S9 Underground"

The example sets aside a block
of 100 bytes. the char pointer "*a" is
assigned to the the first byte in the
block using the memory location
return by "malloc0 ". The next line
uses "strcpy0 " to copy the string
assignment to the memory location
pointed to by pointer "*a".

While it is unwise to copy any-
thing to pointers because it could
result in an overwrite of memory
already in use, pointer "*a" now has
100 bytes reserved for it's usage.
Plenty of memory storage for the

•

•

•

by Paul Pollock

OK folks, some of you have
asked me to put some programming
where my mouth has been <grin>.
So for your programming enjoy-
ment, what follows is the docfile*
and program-source for BSpeed
r1.01. This program has been
published on StG-NET before, but
for those of you who didn't pick it
up, here's everything you need to
know about it.

I don't program in machine
language ('C', Pascal-object, As-
sembler; etc.), so I've made it my
business to find ways of doing
interesting things with Basic09, with-
out sacrifice to speed or efficiency.
You'll find the utilities I write work
every-bit as easily and fast as ma-
chine language programming. And
because they're Basic09, you can
understand them, and modify them
to your heart's content.

Normally my source files
are only lightly sprinkled with re-
marks. But for this article, I've gone
back into the program to thoroughly
comment it. This is done so that you
may understand every algorithm
inside the program. I hope you can
not only use the program, but that
it helps you Basic09 newcomers to
do your own programming better
Just for your edification, BSpeed
r1.01, is the fastest drive through-
put benchmark in 0S9 Level-2.
Period 0!

NOTE: This program is
intended for 0S9 Level-1 and
Level 1-2. Those of you who
have 0S9/68000 system, may

find this program useful after
patching it to operate on longer
buffer, media lengths and altering
the LSNO data appropriate to your
system. It has already been tested
on a FlIL-TC70, after some rework,
and it is known to work. OSK users
may find the program more effi-
cient by extending the buffer from
25k to 50-100k Also extend the
media read from 1 meg to 20-40
meg, to take into account the much
faster drive throughput. Especially
important on hard disk drives.
Floppy drives will require few of
these changes as the drives are me-
chanically the same throughput in
OSK as they are in 0S9 Level-1 and
0S9 Level-2.

Mote: Because of space consid-
erations, the Entire DOC File for
BSpeed will be made available
on the Underground-on-Disk or
may be downloaded from our
BBS directly. Our BBS Number
is (818) 769-19381

PROGRAM
DESCRIPTION

'BSpeed' is a Basic09 pro-
gram which can calculate the actual
throughput of ANY drive media.

'BSpeed' handles all the in-
ternal housekeeping, including the
obtaining of the requested drives'

PAGE 21

The International" ON Underground® Magazine
storage capacity from LSNO, the
storing of start-time and end-time, in
a manner which has no interference
with the actual drive read. Also
handled is the procedure of starting
the media read, by presetting the
heads at track-0/sector-0, then pro-
ceeding to read all available media
(up to and including 1000 KBytes);
in 25-KBYTE size blocks.

'BSpeed' actually reads the
drive faster than the 'Megaread' pro-
gram, by Bruce Isted, since it reads
in larger blocks of data than
'Megaread', and can take advan-
tage of fewer program and system
interruptions to data flow.

PROGRAM
OPERATION

'BSpeed' is used like any stan-
dard utility. But its syntax
variesslightly, depending on whether
the user has the standard SHELL or
SHELL+.

For users of standard shell (or
in Basic09);

059:BSpeed("idevicename") <ENTER>
(ie, /d0,/h0,/r0; etc)

For users of SHELL+ (any
type);

0S9:BSpeed klevicename <ENTER>

'BSpeed' then titles the screen,
gets the media capacity from the media
under test. Correct storage capacity,
will be calculated, even when drives
have media installed, which have been
formatted to standards which differ

PAGE 22

from the potential of the hardware.
It then sets the drive-under-test to
'0-0', sets the start-time, and begins
reading the media under test. Once
the media is read, it then sets the
end-time, and calculates the total
throughput per second.

PROCEDURE BSpeed
(* BSpeed r1 .01
(* Copyright (c) May 1991, Paul Pollock,
(* All Rights Reserved
(st
(* BSpeed properly reads any size disk,
(* in a serial fashion, without damaging
(* the disk being tested; at the maximum
(st speed of the drive under test.
(*
(* BSpeed is a smart interface that uses
(* this test in a fashion which allows the
(* testing of any size drive and media.
(*

BSpeed will calculate media size, time
C to read up to 1000 KBYTES, and then
C calculate total thmput in KBYTES per
(* second.
(t
BASE 0
ON ERROR GOTO 1000

PARAM drvin:STRING
(*
DIM buffer(25600):BYTE
(* I Note two buffers. One for buffer

DIM LSNO(256):BYTE
C I loads to read maxi(Other to
(* gather LSNO sector data.
(*
DIM a$,Kdrvptr:STRING
DIM bufferK,maxK,entry,tot,a,b,c,d:REAL
DIM path:BYTE
C Following is explanation of all above
C variables a$,IDS is dateVs.
(* drvptr is tranfer variable for 'drvin'.

ENC9 Is A SIMPLY TWO
ENTRY DIABASE WHICH YOU
CAN USE TO STORE PHONE
NUMBERS & ADDRESSES,
RECIPES, DEFINITIONS OR
ANYTHING ELSE YOU'VE SEEN
AN ENCYCLOPEDIA USED FOR.
STORE OVER 250,000
RECORDS OF 8000 BYTES
EACH.
FEATURES MLLE:
• bUILT-IN TEXT EDITOR
• IMPORT/EXPORT TEXT FROM/TO EXTERNAL

TEXT FILES
• PRINTOUT INDIVIDUAL ENTRIES OR THE

FULL Dt\TAbASE
• ADD, DELETE, RETRIEVE AND SEARCH

RECORDS

REQUIRES OS 8 LEVEL 11/C00O3 NI 512E
80 COLUMN MONITOR, RUNb, SYSCALL, DISPLAY AND
TMODE.

Only $21.
$29.95 (CDN) + $2.00 SON + 7% GST

ONT. RES ADD 8% PSI
FOREIGN ORDERS $1.00 SOH

SEND CHEQUES OR MONEY ODERS To,
CANN/AARE

1378 CREDIT WOODLANDS COURT
MISSISSAUGA, ONTARIO, L5C 315 CANADA

(116) 279- 1395

(U.S.) + $2.00 SOH

The International" O$9 Underground® Magazine
a,----VAL(MID$(4,10,2))*3600+

VAL(MIDS(4,13,2))*60+
VAL(RIGHTS(4,2))

b.--VAL(MIDS(bS,10,2))*3600+
VAL(MIDS(413,2))*60+
VAL(RIGHT$(14,2))

C Above two lines convert dateS's to
(* numeric data, for later calcs.
(* The extremely large MID$ arguments
(* are done to allow proper program
(* usage, no matter what time of day!

IF b<a THEN
(* This repairs conditions if the times
b.:b+86400.
(* I gathered, between one day and
C another.
ENDIF

(t This is it! Elapsed time calc!
PRINT
PRINT "Total time in seconds=";
PRINT USING "r11.2>"; c
PRINT "Thruput in KBYTES/Sec= ";
PRINT USING "01 .2>"; entry/c
END

- Paul Pollock

(* What follows is the program error-trap. Used mostly to print help message
(* if drivename not provided as param; or is attempted incorrectly.
1000 er..ERR
IF er-..211 THEN 10
(* I Impossible! Left in as SAFETY.
PRINT
PRINT "USAGE:"
PRINT" 059:BSpeed("devicename"")"
PRINT "devicename.../d0, /ho, /cid, /r0; etc."
PRINT
ON ERROR
ERROR er \ (* Hint: Forces fork to FSPerr Systemcall.
END

PAGE 26 <E0F>

The International" 0S9 Underground® Magazine
bufferK is size of 'buffer', in kbytes.

(* maxi(is size of drive-read, in kbytes.
(* entry and tot are transient reused
(* variables for drive-calcs and buffer
c* reads. a,b,c,d are transient variables,
(* d is a loop variable, a,b,c are mostly
(* time-calcs, path is used to open the
C drive under test.

\Wm' \drvptr=.'"'

\tot4 \entry:--0

C Soft-items. Change these to alter
(* bufferK=25. I global factors.
(* Note: change 'buffer' maxi‘,1000.
(* AND 'bufferK' as a pair!
(* 'maxi(' is simple stuff.
(*
(* PRINT
(*PRINT "BSpeed r1.01"
(* PRINT "Copyright (c) May 1991,

Paul Pollock"
PRINT "

(*
drvptrArvin Used to trip Error-Trap

PRINT "Device name="; drvptr

OPEN #path,drvptr+"@":READ
C This stuff used to open
SEEK #path,0
C drive 'raw-mode', and get
GET #path,LSNO / (* LSNO on drive.
SEEK #path,0 / (It Note:Drive stays open!
entry---.FLOAT(LSNO(0))*65536.+

FLOAT(LSNO(1))*256+LSNO(2)
(* Above line is the initial calc, determines
(* number of sectors on drive. Used later
(* for 'tot'; etc.
(It
PRINT
PRINT "Total sectors on media= "; entry

Sector,.256by1es. Sectorik-Kbytes.

entry.entry/4

(* Sectors on drive/4.--number of kbytes
(*on drive.

PRINT" KBYTES on media= "; entry
IF entry>maxK THEN
(* Ensures program tests up to but not
C exceeding 1 meg(maxK).
entrr-maxK \ (*lmaxK'
GOTO 5 \ (* must be multiples of 'bufferK'.
ENDIF

tot.--entry \ (* All else failed.
entry..-FIX(entry/bufferK)*bufferK
C This rounds to nearest possible
(* 'maxKlibufferK'.
IF entry>tot THEN
entrpentry-bufferK
ENDIF
tok-entry
PRINT" KBYTES under test= "; tot
toMotibufferK
C Determines # of buffer-loads.
4...DATES
(* Ensures that timing of drive-read begins
(* at a rollover of second!
REPEAT
UNTIL DATES<>a$ I

(* First stored time! Used to find
(* elapsed time used after second
(* stored time.
a$..DATES
C Actual drive-read! This is the main
CI reason for whole program!
FOR d.-.1 TO tot
GET #path,buffer
NEXT d
CLOSE #path I

C Enter your clock reset routine here!
10 1*-DATES
(*Second stored time. Determines Elapsed
(* Time! PAGE 23

Also available from Gale Force

From Clearbrook Software Group

MSF

IMS

Erina

Serino

MSDOS file manager for 0S9 - makes transferring
files between MSDOS and 0S9 a snap.
Requires 0S9 LII and SDISK3.

$35.00

Complete and powerful database for 0S9 LI and LII
Previously retailed for $169.0011 65.00

Program debugger. Very powerful and loaded
with features. For 0S9 Level I and $45.00

System module debugger. Find those hard to track $65.00 bugs in device drivers and other system modules.
For 0S9 LEvel I and

From D.P. Johnson

LI Utility Pak

1.11 Utility Pak

BootFix

SDisk

SDisk3

Forth 09

A very extensive collection of useful
utilities. You will wonder how you ever
managed without them.

An extension of the Li Utility Pak
More useful utilities.

Boot from a double sided disk under
0S9 Level I. Requires SDISK.

A replacement floppy disk driver for
0S9 Level I. Allows the use of double
sided drives.

A replacement floppy disk driver for
0S9 Level II_ SDisk3 has provisions
for reading non-0S9 disks.

Complete Forth compiler for
0S9 Level I and LEvel II.

$49.95

$39.95

$9.95

$29.95

$35.95

$150.00

Experience GALE FORCE speed!
Shipping and handling is $4.00. Call or write

9 /1.1 for our free catalogue. Please call for
Canadian prices.

Ch•cks, Allow 4 • 6 w••ks or d•liv•ry.
Money orders, proc•ssed Irrim•dlotely or

KWIK d•Nvory.

Send cheque or money order to :
Gale Force Enterprises

P.O. Box 631, Surrey, BC,
Canada, V31 5L9

(604) 5;194660
8 AM - 5PM PST (voice)
5 PM - 8 AM PST (support BBS)

••••••

Optimize Utility Set 1:
e0 Optimize your floppies and hard drives quickly and .easily! m* Includes utility to check file and directory fragmentation.

-* Works alone or with Burke & Burke repack utility. .4 One stop optimization for any Level 2 OS-9 system.
$29.95; Foreign Postage, add $3.00

Optimize Utility Set 2:
k4 Check and correct any disk's file and directory structures without any technical mumbo-jumbo.

-+ Run periodically to maintain the integrity of your disks as well as the reliability of your data.
N4 Especially useful before optimizing your disks.
$19.95; Foreign Postage, add $3.00

Optimize Utility Set Pac:
N4 Get both packages together and save!

• $39.95; Foreign Postage, add $4.00

Nine-Times:
In each issue:

The bi-monthly disk magazine for OS-9 Level 2.
• Helpful and useful programs
• C and Basic09 programming examples
• Hints, Help columns, and informative articles
• All graphic/joystick interface

- • Can be used with a hard disk or ram disk
One Year Subscription, $34.95;
Canadian .Orders, add $1.00; Foreign Orders, add $8.00

Back-Issues: From May 1989. Write for back issue contents.
$7.00 each; Foreign Orders, add $2.00 each

Magazine Source: Full Basic09 code and documentation for the presentation
shell'used•with Nine-Times.
$25.95; Foreign Orders, add $5.00

Tet'huiral Assist an(e
C216)-75B-7694

WT Enterprises
5755 Lockwood Blvd.

Youngstown, 01I 44512

Copyright (C) 1992

RAINBOW

OS-9 is a trademark of Microware Systems Corp. and Motorola, Inc.

Foreign postage excludes U.S. Territories and Canada.
These products for OS-9 Level 2 on the CoCo 3. Sorry, no
CODs or credit cards; Foreign & Canadian order s,please
use U.S. money orders. U.S. checks, allow 4 weeks for
receipt of order. Ohio residents, please add 6% sales tax.

