S-9 Newsletter

Volume III No. 4

Bellingham OS-9 Users Group

April 30, 1992

Basic09 Part-7

search on, then the value of "2" will be used
as the top of the "FOR X = 1 TO field" (for x
=1 t0 2). and the second variable in the
DATA field (Last Name) will be used for the
variable FieldName.

The whole point of the Search_DB
Procedure is to provide two more variables
(fleld and FieldName) to be passed along to

Tutorial
by Scott Honaker & Rodger Basic9 Tutorial (Part7) Pg. 1

Alexander Database Search Procedure

Weu, as promised, here is the 1.2/1.4 Meg Floppies Pg. 8

SEARCH routines for our PDS High Density Drive for OS-9

Database. 1I've divided it into two

procedures and you could easily] C-Language Tutorial

simply the process by restricting Chapter 2

the field choices and eliminating

the first procedurc altogether. 1 [NW CoCo Fest Updates

did not go to the trouble of fancy

screen formatting, however 1

thought it might be a nice touch to

not clear the screen with a "PRINT

CHRS$(12)" before listing the field options, but instead
print a block of spaces to blank out the menu options and
place the field choices at that location, leaving the current
database displayed in it's original position. Then when you
search routine find the desired record, it would simply
replace the current record at the top of the screen. BUT,
I'll leave those options to your creativity and programming
ability.

HOW IT WORKS:

When you select "<F>ind" from the Main Menu, the PDS
Procedure runs "Search_DB(DB_Path,Top)”. (This is
assuming you have already opened a file and have it
displayed at the top left corner of the Main Menu screen.).

LISTING 1:

The PARAMeter line assigns the proper variable types to
DB_Path and Top variables, which were passed to the
procedure from the Main Menu. The DIMension
statement defines and assigns more fields that will be used
in the listing. CHRS(12) clears the screen and the next 11
lines print to the screen. The field varigble contains the
number 1 to 8 from the input statement and will determine
which variable from the DATA field will be placed in the
variable “FieldName". So if you selected *2) Last Name"
as the field that you want the search routine to base it's

the actual Search Procedure. Now we have
Pg.? the name of the field we want to search for
(for convenience sake) and the field number,
which is necessary for determining field
locations and lengths in are record search.

LISTING 2;

The first line defines our address variable
again with each ficld length and type
specified for our database. The second line defines the
variable types passed to the procedure from the last line
of LISTING 1. The next three DIMension statements
could have been combined but were separated in this
case for clarification. The first DIM line identifies the
string variables and their length, the second identifies
the byte variables and the third identifies rec as our
database record variable defined by the TYPE statement
in the first line of the listing,

The following PRINT statements are obvious, and the
INPUT simply assigns your query to the SearchString
variable. What follows is not so obvious, so look closely
at the comments between each execution line for an
explanation of how the database records are searched at
specific string locations and those strings are then
compared to the SearchString.

When the SearchString is found, the record it is
found in is printed to the screen. A "Press AnyKey"
prompt is displayed. At this point in the listing, the
INKEYS command is called up in the middle of a
"WHILE-DO-ENDWHILE" nested routine. When a key
press is detected, the Search Procedure is ended and we
are returned to the Main Menu.

NEXT MONTH, our final chapter (Didn't I say that last
month) will feature the Pack Procedure.

LISTING 1

PROCEDURE Search_DB PRINT "5) City"
REM database Search Routine PRINT "6) State"
PARAM DB_Path.BYTE; Top:INTEGER PRINT *7) Zip Code"
DIM field:BYTE; FicldName:STRING{12] PRINT "8) Phone Number” \ PRINT
PRINT CHR$(12) \ PRINT (*Clear Screen INPUT "Enter choice: " field
PRINT "Personal Database System - Search Database” \ PRINT FOR x=1 TO field
PRINT "Search on which field:" \ PRINT READ FieldName
PRINT "1) First Name" NEXT x
PRINT "2) Last Name" DATA “First Name","Last Name",” Address 1","Address 2",
PRINT "3) Address 1" *City","State"
PRINT "4) Address 2" ,"Zip Code","Phone Number”
RUN search(DBiPath,Top,ﬁeld,FieldName)
LISTING 2
PROCEDURE Search

TYPE address=FName:STRING{10}; LName:STRING[15]; address1:STRING

[20}]; address2:STRING{20]; city:STRING{13]; state:STRING{2}]; zip:STRING[10}; phone:STRING[14]
PARAM db_Path:BYTE; Top:INTEGER; ficld:BYTE, FieldName:STRING{12]

DIM CompareString: STRING[20]; SearchString:STRING[20}; char:STRING[1]

DIM offset:BYTE,; length.BYTE
DIM rec:address
char="" (*Used in the INKEYS routine

PRINT CHR$(12) \ PRINT (*Clear Screen

PRINT "Personal Data'base System - Search Database” \ PRINT
PRINT \PRINT

PRINT "Enter *; FiekdName; " to find"; \ INPUT SearchString
PRINT :

FOR X=1 TO field (*field = value from SearchDB Procedure
READ offset \ READ length (*reading data variables in pairs
NEXT X

FOR current=1 TO Top (*Top = mumber of records in database

SEEK #db_Path,(current-1)*SIZE(rec)+offset (*Search each record at a specific field location (offset)
GET #db_Path,CompareString (*assign variable at offset location to "CompareString”
CompareString=LEFT${CompareString length-offset) (*Crop "CompareString” var. to the proper length
IF SearchString=CompareString THEN (*Compare “SearchString" with your query ("CompareString")
SEEK #db_Path,(current-1)*SIZE(rec) (*Find the beginning of the record with the matching variable

GET #db_Path.rec
PRINT rec.FName; " *; rec.LName (*print ficlds to screen
PRINT rec.addressl

PRINT rec.address2

PRINT rec.city; ", “; rec.state; " ", rec.zip

PRINT "Phone: *; rec.phone

PRINT \ PRINT

PRINT "Press Any Key to Continue.. "

WHILE char="" DO (*INKEYS routine

RUN inkey(char)

ENDWHILE

END

ENDIF

NEXT current

DATA 0,10,25,45,65,80,82,92,106

(*Retrieve the record in the "address” format

PDS Database on DISK

The complete database is available on 5-1/4 inch 35
track, Single Sided Disk format for $1 (and that includes
postage and a fancy disk label). Mail your order to OS9
Newsletter, 3404 lllinois Lane, Bellingham, W4 98226

1.2 and 1.4 High Density Floppies on your CoCo

Instruction for modifying the ORIGINAL RADIO SHACK FLOPPY CONTROLLER

The controller MUST be the one with the full sized board, a 1793 controller chip and three adjusting potentiometers. According
to the Western Digital manual, the 1773 (used in the newer controllers) CANNOT do high density.

This modification is NOT for the faint of heart or those unexperienced with hardware modifications. If you don't know what
"piggyback” means when refering to chips, forget it! This modification requires 32 soldering connections, 18 jumper wires and
a lot of patience. Do this on you old spare controller if you can. The old controller needs 12 volts therefore you MUST have a
multipak or equivalent. This modification will allow the controller to use either 250 kbs or 500 kbs data transfer rate. This is
the difference between the standard 5.25° 360k or 3.5" 720k drives and 2 5.25" 1.2 meg or 3.5" 1.4 meg drive.

D:
174L874
17415158
1 3.9k 1/4 watt resistor
1 mini DPDT toggle switch (optional)

Wire for the jumpers. (I recommend standard wirc wrap wire as RS catries. This is very important, DO NOT use thick wire.
Wire wrap wire is 30 gauge. Just right for these kind of projects.)

The mod will be done so if a mistake is made and you want to abandon it, you can just remove all of the jumpers plug in
replacement chips for the ones piggybacked to and you'll be back to where you started. If you want this option, buy an extra
741574 and a 74LS221. There are NO trace cuts in this mod. IC pins are left out of the socket to get the equivalent of a trace
cut. If you need to reverse the mod, those pins MUST be reinserted into their respective sockets. There is ABSOLUTLY NO
GUARANTEE OR WARANTEE EXPRESSED or IMPLIED FOR THIS MODIFICATION. Now, on to the fun part!!

We will be piggybacking a 74LS74 on to the existing 74LS74 at IC1. We will also be piggybacking a 74LS158 onto the
74LS221 at IC7. Some other chips will be soldered to and some pins will be removed from the sockets for some IC's. These
instructions will be entirely verbal, no illustrations.

First, remove U1 (74LS74) from it's socket. Position a new 74L.874 on top of it with the pins EXACTLY overlapping (this is
called piggybacking). Be sure both pin 1's are lined up or it'll be poof time when you apply the power. On the upper 74LS74,
bend up pins 2,3,5,6,8,9,10,11,12 and 13 so they point directly away from the body of the IC. Pins 1,4,7 and 14 should still
be overlapping the lower 74LS74. Carefully solder these pairs of pins together being careful not to blob the solder onto the legs
of the lower 74L.S74 as you will be plugging the pair (stack) of chips back into the U1 socket when done. On the lower 74LS74,
bend pin 11 out away from the body of the chip as you did for some of the pins on the upper IC. Pin 11 will NOT be going back
into the socket. Prepare six 3" jumper wires (prepare means strip back the insulation on each end of the wire, no more than
1/16". Then tin the exposed wire on each end of the jumper). Solder the wires to the stacked IC's as follows:

One end of each wire will be unconnected.

1 jumper to pin 11 on the lower IC (the pin sticking out)

1 jumper to the lower IC pin 3 (must still be able to go into the socket)

1 jumper to the lower IC pin 6 (must also be able to go back into the socket)

2 jumpers the the upper IC pin 3

1 jumper to the upper IC pin 6

Also, prepare a 1.5" wire and solder it from the upper IC pin 2 to the upper IC pin 6 taking care not to disconnect the wire
already on the upper IC pin 6. You may now carefully plug the IC stack back into the IC1 socket making sure all pins get
seated into the socket with the exception of pin 11.

Second, we'll be doing a similar piggyback mod to the 7415221 in the U7 socket Remove the 74LS221 from the socket.
Position the 74LS1358 on top of the 74LS221 Make sure that the two IC's are properly aligned and that the two pin 1's
are aligned together. Bend up all of the pins on the upper IC EXCEPT pins 8 and 16. solder the two pin 16's together and also
solder the two pin 8's together. As before, make sure not to blob solder on the legs as the stack will be plugged back into the U7
socket. Bend pin 13 on the lower IC away from the body of the IC s0 it cannot be reinserted into the socket. Prepare four
1.5" jumpers, one 2" jumper and one 3" jumper. Solder them in as follows;

1 2" jumper to the lower IC pin 2

1 1.5" jumper from the joined pin 8's to the upper IC pin 15

1 1.5* jumper from the upper IC pin 15 to the upper IC pin 10 (taking care

to not disconnect the wire already at pin 15)

1 1.5" jumper from the tied together pin 16's to the upper IC pin 11
1 1.5" jumper to the upper IC pin 7
1 3" jumper to the upper IC pin 1

Plug the stack back ino the U7 socket making sure all of the pins are seated firmly EXCEPT pin 13 which should be sticking
out. Solder a 3.9k resistor from the upper IC pin 9 to the side of R18 (3.9k) which is the closest to the U7 socket.

Final Asscmbly

Remove Ul1 (the 74L.5629). Solder one of the 3" jumper wires from U1, the upper 74LS74 pin 3 to the top of the 74LS629 pin
7 making sure not to blob solder. Plug U11 back in making sure ALL of the legs scat firmly into the socket. Unplug U3 (7406
or 7416). Connect the 2* wire from the lower IC pin 2 of the stack at U7 to the top of pin 1 of the IC that was in U3 (making
sure not to biob solder on the leg). Plug U3 back into it's socket making sure all of the legs seat firmly into the socket.

Solder the open end of the jumper connected to Ul lower IC pin 11 to U7 upper IC pin 4

Solder the open end of the jumper connected to U1 lower IC pin 3 to U7 upper IC pin 3

Solder the open end of the jumper connected to U1 lower IC pin 6 to U7 upper IC pin 2

Solder the open end of the jumper connected to Ul upper IC pin 6 to U7 upper IC pin §

Solder the open end of the jumper connected to Ul upper IC pin 3 to U7 upper IC pin 6

Select optien 1 - using WRITE PRECOMP bit and a SWITCH (For Hard Drive booting systemns) Mount the dpdt mini switch
somewhere handy. I mounted mine in the hole near C1 and the piggybacked 741.874's. Make sure that the switch DOESN'T
SHORT OUT any traces! I'll refer to the switch pins as follows:

1 2 Kl pin 2 toggles between pins 1 & 3
4 5 6 pin 5 toggles between pins 4 & 6

Carefully remove U12 (the 1691)from its socket. Bend up pins 9 and 16 away from the body. Put the 1691 back into the U12
socket making sure that all pins firmly seat with the exceptions of pins 9 & 16.

Prepare and solder a 4" jumper from U12 (1691) pin 9 to the DPDT switch pin 5.
Solder the open end of the jumper connected to U7 upper IC pin 7 to U12 pin 16.
Solder the open end of the jumper connected to U7 upper IC pin 1 to the DPDT switch pin 2.
Prepare and solder a short jumper from the DPDT switch pin 3 to the DPDT switch pin 4.
Prepare and solder a short jumper from the DPDT switch pin 4 (taking care to not disconnect the wire already there) to a
convenient ground (for example, IC1 pin 7 on the SOLDER side of the board).

Prepare and solder a short jumper from the DPDT switch pin 1 to the DPDT switch pin 6.
Remove US (the MC14174) and prepare a 3.5" jumper. Solder a wire to the top of pin 12 without blobing solder on the leg.
Plug U8 back in making sure all of the pins seat firmly into the socket.
Solder the open end of the jumper connected to U8 pin 12 to the DPDT switch pin 1 taking care not to disconnect the wire
already there.
Skip to check procedure below.

Select option 2 - using a DRIVE SELECT BIT

Carefully remove U12 (the 1691) from its socket. Bend up pin 16 away from the body. Put the 1691 back into the U12 socket
making sure that all pins firmly seat with the exception of pin 16.

Solder the open end of the jumper connected to U7 upper IC pin 7 to U12 pin 16.

Remove U2 (7406) from the socket. Choose a drive select line to use, either DS1 or DS2 (DS0 should not be used or you will
not be able to boot, DS3 is usually used to access the back side of double sided drives so that cannot be used either). Solder a 2"
jumper to pin 3 (DS1) OR pin 5 (DS2) without blobing solder on the leg. Plug U2 back into it's socket making sure all pins
seat firmly,

Solder the open end of the jumper just attached at U2 to U7 Upper IC pin 1.

CHECK PROCEDURE;

Now recheck the entire procedure to make sure no mistakes were made. Check all soldering joints for good connections. Check
for shorts, especially by the DPDT switch. There should be NO unconnected jumper wires! If there are, go through the entire
sequence to see what you missed. Now, we need to calibrate and test the controller.

4

Use a multipak which will protect the CPU (you need +12 anyway) in case you made a fatal wiring mistake. Plug the
controller into slot 4 as usual. Power on the multipak, then the computer. If the DISK BASIC message doesn't come up quickly
then shut the computer off immediatly and power everything off. Unplug the controller and check for shorts and recheck all
connections against the modification procedure. If all else fails, you can always remove the piggybacked stacks at Ul and U7,
carefully pull off all of the jumpers, insert a new 741874 into U1 and a new 7415221 into U7, pull out U12, carefully bend pins
9 and 16 back down and reinsert it into it's socket, remove the switch and you'll be back to where you started. Presuming
you made it past the smoke test, you will need to figure out your switch position and calibrate the controller.

TE N (Skip if drive select method was chosen)
When the switch is in the position such that pins 1 & 2 are connected together (also pins 4 & 5) the controller is in the HIGH
DENSITY enabled position (use a meter to test the connection between pins 1 & 2). When the switch is the other way, the
normal configuration is active, which means write precomp is available. Put the switch into normal position for calibration.

F .
The controller can be calibrated either with a scope or by trial and error. Either way, mark the original position of R8 so you
can reverse the modification if you can not get it to work right.

If using a scope, connect the scope to the VCO output of the 7418629 (U11) pin 7 and adjust R8 for 4 mhz. If doing the
adjustment by trial and error, put a formatted RSDOS disk into drive 0 and do a DIR from RSDOS. Turn RS until you can get a
directory. You may have to do lots of DIR commands. Try to find the extreme settings of RS that will stilt produce a directory,
then set R8 between the two extreme settings. The range in which the DIR will work will be quite small and your final setting
for R8 should be as close as possible to the middie of the range. THAT'S IT FOR THE HARDWARE.

To complete the modification you need to apply my IPATCH file "cc3diskkigh.ipc” to the ORIGINAL Radio Shack cc3disk
edition 9 (CRC $759161). You will also need one or both of the following disk descriptors: d7_1.2.dd (high density 5-1/4 inch
drive) and dI_I.4.dd.(high density 3-1/2 inch drive) The patched cc3disk detects the old 8inch drive bit in IT.TYP in the
drive descriptor and uses it to switch the data transfer rate.

Make a new OS89 boot with the new CC3Disk and the appropriate drive descriptor(s) to match your high density drive(s).
After booting put the switch (option 1) into the HIGH DENSITY ENABLED position and you're ready to go. For use in
RSDOS, the switch (option 1) should be in the normal position. Note, the high density drive is not usuable in RSDOS.

P.S. please send any comments or clarifications to the me on the TC”3 UG board. 612-422-0824 Robert E. Brose I1 12-1-90

EDITOR'S NOTE: The IPATCH file (cc3diskhigh.ipc) and the high density drive descriptors (d!_1.2.dd and d! _1.4.dd) are all
in an archived file called CCIDIS.AR found on the COLUMBIA HTS. BBS (206-425-5804) and OS-9 TACOMA BBS (206-
566-8857. Theses are both FidoNET Bulletin Boards and there is no for downloading thises files.

pwd an(ﬁ)xd mysteries revealed

Copyright (c) 1991, Zack C. Sessions, ColorSystems

OK, so there isn't an 0S-9 System
Call which returns your current data
or execution directory. So, just how
do pwd and pxd do it?
This document will attempt to
explain that so that you will
understand it. Also, understanding
how pwd and pxd work will also
further your knowledge of OS-9
Disk Structure.

Let us begin our discussion with
the pwd command, first. Once
it'soperation is explained and
understood, the operation of pxd
will be a relatively simple matter to
understand.

First off, a small discussion on
089 Disk Structure. The
basic entity which is contained on
any disk, 0S-9 ot otherwisc is
knownas a file. Actually, the
information stored on a disk is
stored in fixed length segments
normally referred to as sectors.
The operating system involved
organizes information stored in
these sectors into discernable units.
These are the files contained on that
disk. Special information is stored
by the operating system on the disk
which indicate to the operating
system how many files there are on
a disk, what their names are,

5

where they are located on the disk,
and how large they are. This is the
basic amount of information which
would be required.

0S-9 and other operating systems
also store various other information
about each file such as the date of
creation, date last modified, and so
forth. With Disk Extended Color
Basic, this information was stored in
part of Track 17. In this
manner, you arc limited to the
number of files the disk can store
by the amount of space allocated to
this special storage area. 0S-9 and
other operating systems allows for a
greater capacity by storing this

"overhead” file information in areas
which are dynamically allocated.
These areas are normally referred
to as "directories” and their related
data structures.

A directory is nothing more than
a special file manipulated only by
the operating system. In the case of
0S-9, there is also a special sector
allocated to each file to store special
information. This sector is called
the file descriptor sector. In
actuality, withOS-9, the only
information stored in the directory
file is thename of the files it
contains and for each file a pointer
to the file's file descriptor sector.
File descriptor sector's existon a
one to one correspondence with all
files on the disk.

A file's file descriptor segment
can be anywhere on the disk,
it's actual location is irrelavent in
regards to the relative position of
the directory which contains the
file's name or to the data which the
file contains. One special
characteristic of the OS-9
disk structure which is shared by
several other operating systems is
that a directory can comtain a
directory. This is possible since a
directory is nothing more than a
file. Therefore a directory file, just
as any other file has its very own
unique file descripior sector. This
means that the directory structure on
a disk can take on a hierarchical
structure, a structure which can be
compared to a tree. The leaves are
the individual non directory files.
The branches are the directories. All
this has to start somewhere and as
in a tree this special directory
is called the "root" directory. 1t is
the ultimate parent of all other
directories on the disk. The
directory file which
contains another directory is
referred to as the "parent” directory
of that directory.

The name of the root directory is
the same as the name of the
device on which it resides. Thus the
name of the root directory on a hard
disk who's name is /hO is /h0, This
concept is a little more confusing
with a floppy disk drive. f you have

two floppy disk drives, /d0 and /d1,
then the name of the root directory
of a floppy disk which is in device
/d0 is /d0, but the name of the root
directory of that very same floppy
disk when the disk is placed in
device /d1 is /d1. Root directories
are a little more capable than that of
a tree, since it can contain not only
directories (branches) but also non-
directory files (leaves).

The root directory is
automatically created on a disk
when thedisk is formatted.
subsequent directories which are
created onthe disk are created by
the OS-9 System call ISMakDir. A
simple user interface to this system
call is oprovided with the
Shell command makdir. The first
directories created on a disk
must firt reside in the root
directory. Once a directory is
created in the root directory, a
directory can then be created in
that directory. Any or all of these
directories can contain non-
directory files or other directories.
A lot of this may be review for many
readers of this file, but please bear

with me 1 am leading up to the

important point here. That is, every
directory always contains two
special files which are
created automaticaily by the
ISMakDir System Call. These are
"hidden" files since the Shell dir
command doesn't report their
existance, but therearc there
nonetheless. Actually, they aren't
really files, but merely special
entries in the directory file. This
will become apparent shortly.

The names of these entries are "."
and ".". The names of these
entries do not actvally contain the
surrounding quotation marks, they
names are just the periods. I will
surround them with quotation marks
to separate them for clarity. These
entries could be better referred to as
"pointers” to files which already
exist. The entry "." is a pointer to
the directory itself and the entry ".."
is a pointer to the parent directory of
the directory. Maybe an example
will help to clear up any questions.
Let's say we have a disk named /h0.

6

It's root directory’s file
descriptor sector is located at LSN
25. (T keep this simple and use all
decimal numbers for LSN, but in
actuality LSNs are stored as 3 byte
binary integers.)

Now, let's say we create a
directory in the root directory
called /hO/TEXT. Let's also say that
the file descriptor sector for
the directory is located at LSN 50.
The /O/TEXT directory will
automatically have those two special
entries "." and "..". The LSN of the
file descriptor sector for the "." entry
will be 50 and the LSN for the file
descriptor sector for the ".." entry
will be 25. An important thing to
remember is that the entry for ".."
and ".* for the root directory are the
SAME, because the parent of the
root directory is the root directory
itself.

These entries are really
"synonym" file names. So, if your
current data directory is /hO/TEXT
and you ask for a directory of file
*..", then you are really asking for a
directory of /h0. The entries "." and
®.." can be used ANYWHERE that a
directory name can be used.
For example, you can also "chd ."
to change your data directory to
the parent of the directory you are
current in.

Now, just how does pwd make use
of this information to
determine your current data
directory? Well, pwd first opens the
directory file ".", the current data
directory, and reads the entries
*_"and ".". This gives pwd the LSN
of the file descriptor sector for the
parent directory and the current
directory. If these are equal, then
pwd has finished it's job, it is now at
the rootdirectory. If they are
unequal, then we need to determine
the name of the "." directory. This is
the main processing loop for pwd.
The name of the "." directory is
done by changing the current data
directory to the directory "..". It then
checks to see if the LSNs for "."
and "." are equal. If they are, pwd is
done. If they are unequal, it reads
through the directory searching
for an entry whose file descriptor

sector LSN is equal to the
file descriptor sector LSN for the
previous "." entry. When that
is found, we have the name for the
previous “." entry. That name saved
away. We now have the file
descriptor sector LSN for this".”
entry, so we start the process over by
changing directory to"." again.
When it finally finds a directory
whose file descriptor sectors LSN
are equal, it determines the name of
the device with alI$GetStt
SS.DevNm System Call and
displays the completed result.
You'll probably have to read the
previous paragraph a few
times before it becomes clear to you
just how this process is done. Once
you understand it, it will be obvious
to you that to perform the similar
pxd command, all that needs to be
done is to access the directories with
the execution bit set! In fact if you

compare the pwd program with the
pxd program, there are only 4 bytes
which are different! (Not counting
the 3 CRC bytes, of coursel) And
two of thosede four are the internal
names of the programs! So
actually, there are only two bytes
which are effectively different for
the two programs and these are the
two bytes which control the
access mask for the I$Open of the
. directory and the ISChgDir to
the ".." directory.

If you can read C, I have included
the equivalent code in C for the pwd
command and the pxd command.
While it would be
extremely inefficient for you to
compile and actually use these
programs they are included for
instructional purposes only. See, the
original pwd and pxd commands are
written in ASM, which makes their
binaries much smaller! If you wish

to incorporate the code from these
two programs in a program you are
writing to avoid forking pwd
and/or pxd commands, you are most
welcome to do so! They were
written in a form as to NOT require
any special library, they will
compile and work just fine with the
stock clib.l which comes with the
Microware C Compiler for OS-
9/6809. In fact, even though pwd
could have been written slightly
simpler using the Kreider Lib, pxd
would not cvenbe possible, since
there is no option with the opendir()
function to open the directory with
the execution bit set, which is
required by the pxd function.

I hope this file and the associated
C program sources has helped
increase your knowledge and
understanding of OS-9 and its disk
file structure.

—-“_~ “

C Tutorial
Chapter 2

T B

Type in the listing named ONEINT.C and display it on
the monitor for our first example of how to work with data
in a C program.

NE :

alrn

nt index:;s

1indmx =~

printt("mh- value of the
index im td\n" indax) s

in .x -

g ti"rh. values of the index
im d\n" ndox))

-
print!("rh. value of the index
}- sAaA\Nn" , index) s

Listing 4

The entry point "main" should be clear to you by now as
well as the beginning brace. The first new thing we
encounter is the line containing "int index;", which is used
to define an integer variable named "index”. The "int" is
a reserved word in C, and can therefore not be used
for anything eclse. It defines a variable that can have a
value from -32768 to 32767 on most microcomputer

—

—
implementations of C. Consult your users manual for the
exact definition for your compiler. The variable name,
"index", can be any pame that follows the rules for an
identifier and is not one of the reserved words for C.
Consult your manual for an exact definition of an
identifier for your compiler. The final character on the
line, the semi-colon, is the statement terminator used
inC.

We will see in a later chapter that additional integers
could also be defined on the same line, but we will not
complicate the present situation.

Observing the main body of the program, you will notice
that there are three statements that assign a value to the
varigble "index®, but only one at a time. The first one
assigns the value of 13 to "index", and its value is printed
out. (We will see how shortly.) Later, the value of 27 is
assigned to "index", and finally 10 is assigned to it, each
value being printed out. It should be intuitively clear
that “"index" is indeed a variable and can store many
different values. Please note that many times the words
"printed owt" are used to mean "displayed on the
monitor”". You will find that in many cases experienced
programmers take this liberty, probably due to the
"printf” function being used for monitor display.

H

To kecp our promise, let's return to the “printf”
statements for a definition of how they work. Notice that
they are all identical and that they all begin just like the
"printf” statements we have scen before. The first
difference occurs when we come to the % character. This
is a special character that signals the output routine to

stop copying characters to the output and do something
different, namely output a variable. The % sign is used to
signal the start of many different types of variables, but
we will restrict ourselves to only one for this example.
The character following the % sign is a "d", which
signals the output routine to get a decimal value and
output it. Where the decimal value comes from will be
covered shortly. After the "d", we find the familiar "\n",
which is a signal to return the video "carriage”, and the
closing quotation mark. All of the characters between
the quotation marks define the pattern of data to be
output by this statement, and after the pattern, thereisa
comma followed by the variable name "index". This is
where the "printf” statement gets the decimal value which
it will cutput because of the "%d" we saw earlier. We
could add more "%%d" output field descriptors within the
brackets and more variables following the description to
cause more data to be printed with one statement. Keep
in mind however, that it is important that the number of
field descriptors and the number of variable definitions
must be the same or the runtime system will get confused
and probably quit with a runtime error. Much more
will be covered at a later time on all aspects of input
and output formatting. A reasonably good grasp of this
topic is necessary in order to understand the following
lessons. It is not necessary to understand everything
about output formatting at this time, only a fair
understanding of the basics.
Compile and run ONEINT.C and observe the output.

ow
Load the file COMMENTS.C and observe it on your
monitor for an example of how comments can be added to

a C program.

C E

®» ism a comment ignorad by
the compililer ww/

main¢) /% This is another commant
Agnored by the compiler =/

printf(*Wwe are looking at how
commeants are “); /* A comment is

allowed to be

continued on

anotherxr line @»/

printf("used in C.\n*):s

5 One more ocomment Ffox efrfect

programming practice would include a comment prior
to the program with a short introductory description of
the program. The next comment is after the "main()"
program entry point and prior to the opening brace for the
program code itself,

The third comment starts after the first executable
statement and continues for four lines. This is perfectly
legal becanse a comment can continue for as many lines
as desired until it is terminated Note carefully that if
anything were included in the blank spaces to the left of
the three continuation lines of the comment, it would be
part of the comment and would not be compiled. The
last comment is located following the completion of the
program, illustrating that comments can go nearly
anywhere in a C progmm. Experiment with this
program by adding comments in other places to see what
will happen. Comment out one of the printf statements by
putting comment delimiters both before and after it and
see that it does not get printed out.

Comments are very important in any programming
language because you will soon forget what you did and
why you did it It will be much easier to modify or
fix a well commented program a year from now than
one with few or no comments. You will very quickly
develop your own personal style of commenting.

Some compilers allow you to "nest" comments which
can be very handy if you need to "comment out”™ a section
of code during debugging Check your compiler
documentation for the availability of this feature with you
particular compiler. Compile and run COMMENTS.C at
this time.

D F
Load the file GOODFORM.C and observe it on
your monitor. It is an example of a well formatted

program.

Listing 5

Comments are added to make a program more readable
to you but the compiler must ignore the comments. The
slash star combination is used in C for comment
delimiters. They are illustrated in the program at hand,
Pleasc note that thc program does not illustrate good
commenting practice, but is intended to illustrate where
comments can go in a program. It is a very sloppy
looking program.

The first slash star combination introduces the first
comment and the star slash at the end of the first line
terminates this comment. Note that this comment is prior
to the beginning of the program illustrating that a
comment can precede the program itself Good

DFORM.

malin Main program mstarts
hexrs w/
<

pPrintf("Good foxrwm ")

Prince ("c-n mia in
l')

princt

("und-r.eundinq "
PpProgram. \n"v)

printtf ("Ana pad form ")’

Printe ("can make
- perra: bl J¥ J

("unresadable.\n")

)

Listing 6

Even though it is very short and therefore does very
little, it is very easy to see at a giance what it does. With
the experience you have already gained in this tutorial,
you should be able to very quickly grasp the meaning of
the program in it's entirety. Your C compiler ighores all
extra spaces and all carriage retumns giving you
considerable freedom concerning how you format your
program. Indenting and adding spaces is entirely up to
you and is a matter of personal taste. Compile and run
the program to se¢ if it does what you expect it to do.

Now load and display the program UGLYFORM.C and
observe it. How long will it take you to figure out what
this program will do?

one, except for the formatting. Don't get too worried about
formatting style yet. You will have plenty of time to
develop a style of your own as you leam the language. Be

observant of styles as you see C programs in magazines,

This should pretty well cover the basic concepts of
programming in C, but as there are many other things to
learn, we will forge ahead to additional program structure.

main * Main program starts
nere w/(grintt ("Good form
") rprint

("oan aid in
LA] printz ("und.z’-tnndinq -
progr-m - ')
rprinte("And baa torn
")y rprintf("can make
printfunreadable. \n"

?2091.—.::! "y

Listing 7 P ING

. 1. Write a program to display your name on the monitor.
It doesn't matter to the compiler which format style you 2.Modify the program to display your address and
use, but it will matter to you when you try to debug your

phone number on scparate lines by adding two

program. Compile this program and run it You may be additional "printf" statements.
surprised to find that it is the same program as the last

NW CoCo Fest UPDATE

The Best Western Bayview Inn. in Bremerton is offering us a special group rate. They have set aside 20 rooms for CoCo nuts
and their companions until the end of May. A si room is only $55. A double is $58. To get these special rates, contact:

"Betty", Groups Coordinator Besides the nicely appointed rooms there is an indoor pool and hot

Best Western Bayview Inn tub. Several couples mentioned how relaxing that was last year. There isa
CoCo Fest 11 Convention park for walking (a2 moming run) just two blocks away. There are also
5640 Kitsap Way discount tickets for the gym that is right next door to the Bayview. Of

course, there is a lounge and fine restaurant right in the Inn for those who
want to stock up on calories instead of deplete them.
Bremerton is the home of the Puget Sound Naval Ship Yard and again

Bremerton, WA 98312
1-800-422-5017 or (206) 373-7349
Fax: (206) 377-8529

the hoine of the battleship USS Missouri. It is only about 10-15 minutes
from the CoCo Fest I Conference site. Let Betty know that you are interested in the tourist attractions when you call or write.

Bob van der Poel is the first major speaker to confirm. He will attend the entire event. He will be available for
personal chats, be our keynote speaker, and will give a special presentation about the language C. Bob is the author of the
highly respected and used Ved Text Editor, Vprint Text Formatter for OS9, and the every popular Telewriter word processor
for the CoCo.

Finally, the planning people want to let you know that there is a second in the series of CoCo Fest mugs coming. A new
design, a new collectable. With your registration they are only $5 apiece, $25 for a set of six. The mugs will be $6 at the Fest.
mmwﬂlalsobcafabu!omenmdw_c_trlmom!Wedon‘twanttogiveawayallmemxprissl

} — w

S

Club Activity Report

Bellingham OS9 Users Group - Longview CoCo Club
Mt Rainier CoCo Club - Port 0'CoCo Club - Seattle 68xx Mug

with a black board, video tapes, First order of business was to have

Sellingham 088 Users §roup

T he First Official Meeting of 1992
was held at the Bellingham Public

Library on Wednesday, April 22.
The room was perfect for our needs

overhead projectors, large table, etc.
Unfortunately we were very few in
numbers. Only 5 were in
attendance. But this was only the
first mecting and it takes time to get
the word out. Right?!

9

each attendee introduce themsclves
and tell the others about their
Computer systems and what they
wanted to gain from the club. It was
interesting that everyone had several
CoCo systems and and IBM Clone.

S o BN Y S

REGISTRATION FORM
NAME:
MAILING ADDRESS:
CITY: ST/PROV: ZIP/POSTAL CODE:
EVENT INCLUDED SEPARATELY
FRIDAY EVENING
7:30p.m. Notable Video Tape Presentations YES $3.00
9:00p.m. Public Domain/Sharcware Swap YES $3.00
SATURDAY:
7:30a.m. Saturday Swap Meet setup time n/a n/a
8:15a.m. No Host Breakfast about $5.00 $6.00
9:00a.m. Computer Swap Meet YES $3.00
10:30a.m. Preliminary speakers YES $3.00
(Speakers to be announced)
12noon Luncheon & Keynote Speaker YES $12.00
- featuring Bob van der Poel -~
1:30p.m. Workshops YES $3.00
Session 1: to be announced Session 2: to be announced
3:00p.m. Workshops YES $3.00
Session 3: to be announced Session 4: to be announced
REGISTRATION FEE: $20.00 $30.00
(Remember, Saturday No Host Breakfast $5/86 extra)
Nojthwest CoCo Festival Items Available Order Now AtFestll
CoCo Fest 11 Mugs $ 5.00 $ 6.00
B Set of Six $25.00 $30.00
T-Shirt (Meén's M L EXL) $ 8.00 $10.00
Extra Extra Large add $2.00 Your Name as part of design add $2.00
Desired Name(s): (size)
Second name: (size)
Third name: (size)

(All amounts are U.S. Currency only)

Northwest CoCo Festival 3046 Banner Rd. SE., Port Orchard, WA 98366 (206) 871-6535

Advertisement went out
announcing that this was a Color
Computer Club, yet everyone was
‘nterested in their CoCo because
they wanted to learn more about
089.

Second order of business was to
display the club offerings and
benefits, from the Newsletter to the
Public Domain Library, to technical
assistance.

Third order of business was all
the recent gossip the NW CoCo
Fest. We are all very excited about
Bob van der Poel, and at least four
of are planning on going.

Last order of business was a
review of Multivue and the currently
available upgrade files and patches.
Shell+ was reintroduced and a hard
drive boot disk with the Multivue
Term and windows was created
using Burke & Burke's EZGEN.

Next month a demonstration will
be provided by Rodger Alexander on
the ways to use AIF files to improve
the performance of Multivue.

— Rodger Alexander

Mt. Rainler Cofo Club

Our April meeting started off with a
demonstration by Randy
Kirschenmann of his "C" program
that will display a text file
backwards on the screen. The
members stated several uses for this
program which included a good
exercise in using "C". Randy then
showed the source code and
explained how each line worked.
Chris Johnson then brought the club
up to date on the upcoming N.W.
CoCo Fest I1. It will be even bigger
and more interesting than last years
Fest. So clear you calendars for
June 26th and 27th and plan to
attend.
The rest of the meeting was devoted
to open discussions of several
subjects. Michael Stokes' series on
"C" had to be delayed by a month so
he will begin it at the next meeting.
It should be great for both the
iginner and experienced "C"
programmers.

-- Alan Johnson -~

foattls 88xxx Mug

The April meeting was very
informative. First on the agenda
was a hardware presentation
showing how to add a second drive
to a Color Computer System.
Normally this is no big deal and
very easy to do. However, in this
case the two drives used were the
two worst possible cases. The first
drive was a new FD-502. The drive
configuration jumpers are located
under the circuit board and without
any labels. Also the jumper pins are
arranged in a 90 degree angle and
not in the usual configuration. The
jumper positions are parallel to the
back edge of the drive rather accross
the jumper pins as with most drives.
It actually boils down to trial and
error. Note the defanlt position of
the jumper and them move the
jumper down two pins.

The second drive was an original
35 track, single sided drive that had
no drive select jumper setting on the
circuit board at all. However, three
solutions are possible. The first one
is the Radio Shack method: Get an
old Radio Shack drive cable with
the card edge connectors that have
the missing contacts. The end
connector has it's contacts pulled to
configurc the drive for Drivel,
while the second connector has it's
contacts pulled for Drive 0.

The second method is to cut the
wires on the cable to the drive
disabling the Drive0 and Drive3
circuits,

The third method is to cut the
trace lines on the circuit board that
connect to the card edge connector,
again disabling the Drive0 and
Drive3 circuits. We tried this
method and it worked!

Next on the agenda was the PDS
Database. A sample SEARCH
Procedure was displayed on an
overhead projector. Everyone
participated in debugging the
sample code until it was determined
to be perfect. This is the SEARCH
procedure featured in this
Newsletter. However, it took

several more modifications to get it
to actaully work properly!!!!

Donald Zimmerman from the Port
O'CoCo Club was present at the
meeting and updated us regarding
the NW CoCo FEST in Port
Orchard on June 26th and 27th.
Donald also was seeking
suggestions for improving the
format and/or subject matter. Most
of those in attendance indicated
their intentions to attend.

Finally, Rodger Alexander took
orders for a special purchase of
720K floppies and 20Meg Hard
Drives. The final tally was 7
floppies @ $20 each, 1 Hard Drive
for $85 and 2 Hard Drive controller
cards for $12 each.

- Rodger Alexander --

Port 0-Colo

Itwaslikcafairytalegoneawry.
Of course, it had a happy
ending. That's a given. It had a cast
of notable people. Those stories
always do. There was drama, action,
disappointment, and goodness
overcoming all at theend. Well,
that was April's meeting.

There was a plan, a storyline.
Guests speakers had been
invited, repeatedly. Publicity had
been created and delivered to the
harolders of the day, the

newspapers. The grapevine had

" been used to spread the word,

everyone had been called about tlns
great event.

Now for the drama. The guest
speaker was contacted 20 minutes
before the meeting to make sure al
was well m the kingdom. It wasn't
His new chariot had blown a
transmission. Goodness would have
it that he had an extended warranty
on it (we won't give names here).
So the focal point of our meeting
had just gone dead in the water.
Well, life will continue.

A few people had said that they
had equipment they were thinking
of liquidating, . . . for a price. You
never know if they are going
to materialize or not. Two of them

never did. There were three boxes
of CoCo "stuff” at the home of one
member. The night before ‘the
meeting it was discovered that he
was out of state because of a family
death. Attempts were made to got
the stuff to the meeting anyway,
maybe.

Seven pm rolled around and it
looked like a national meeting
of veterans of the Civil War. If we'd
been holding hands with each other
I would have been hugging myself.

But then then the light began to -

show on this dismal story.
People started wandering in between
7 pm and about 8:15. And the
group grew to arespectable 16
people. The CoCo "stuff” arrived.
Tom Brooks, in his time of sorrow,

had seen that the CoCo stuff **

collected by the Computer Bank.
Charity was on its way to the
meeting. A young man who had
had an extensive system came
looking for a way to clean out some
of his space by getting rid of
his CoCo stuff, several bonesoflt
We made_atrangements for him to
donate everyﬂnng to the Computer
Bank Charity who in tam would

allow the Port O’ CoCo group to scll
it for supporting funds for the
charity. The bidding started slowly,

_ very slowly. But a spark occurred
' and things started picking up. And

before it was all said and done $160
was raised for the CBC. And alot
of people held in their clutches
hardware, software, and other stuff
they REALLY wanted.

A major part of the meeting was
devoted to talking about the
upcoming CoCo Fest II. The date
has been set for the 26-27th of June,
The facility has been committed and
the dinning arrangements have been
selected. The event will be in Port
Orchard at the HiJoy Bowl. Things
will begin Friday evening with
presentations until they throw us
out. There is a NQ_ HOST

v;breakfastSamrdayatabtham

and then a luncheon at noon with a
keynote speaker. We discussed the
desirability of various novelty items
for the FEST. Even though we had
a mug last year, just about everyone
wanted another mug. So we will
have the second edition of the CoCo
Fest mug. Also we will have a T-
shirt, A T-shirt, if 1

- advance.

so. Discounts will be available
for everything when ordered in
(See registration form
elsewhere.)

Although the meeting was
nothing like it was planned,
goodness or success triumphed over
chaos. We had a very worthwhile
mecting.

But that's not the topper! When 1
got home I found out that Bob
van der Poel, called me to accept the
invitation to be the CoCo FEST
keynote speaker. He will also attend
the whole event so everyone will
have a chance to talk with him on a
1:1 basis. Bob is the author of the
famous VED Text Editor & Vprint
Text Formatter. He offered also to
talk at one of the workshops on the
language C.

So this story has a more than
happy ending. It has the potential
of a fantastic convention for the
CoCo community and a significant
contribution ($160) to the Computer
Bank Charity. What more could we
want? "And so they lived happily
ever after.”

- Donald Zimmerman ~

NW CoCo Festival 11

June 26th - 27th

Port Orchard, Washington

0S-9 Newsletter
3404 [R L detere
Bellingheampt Wik 98036

	OS-9 Newsletter
	Basic09 Tutorial (Part 7)
	1.2/1.4 Meg Floppies
	pwd and pxd mysteries revealed
	C-Language Tutorial
	NW CoCo fest Updates
	Club Activities Report

