
1,0. .0 X C. X 411 4C,C01 , 01, 40 X6 X 4,,t

SERS
66, 6 ,5• 1k6, 4•4, 66.65 , 5964,Z6966,41t

GROUP
946, 4 4 6 5, 64itte , 2. *943.*611 40,4,

'DEDICATED TO EXCELLENCE IN 05-9 COMPUTING*

Officers:
President:
Vice President
Secretaryffres:
Librarian:
MOTD Editor:

Boisy 0. Pitre
Carl IC/eider
Debi &eider
Scott McGee
Alan Sheltra

Early Fall 1992 The Official Voice of the OS-9 Users Group

Bigger and Better...and More!

Editorial by Alan Sheltra

The MOM now has a new look and a new schedule. It also
has a new editor, Alan Sheltra. That's me. Scott McGee, the
former editor, has taken over as the Group's Librarian as he is in
a better position to handle the varied OS-9 formats than I was
(including OS-9000).

Originally, the MOTD was to be a quarterly newsletter, but
it was decided that with news breaking as fast as it does, it
would be better to publish with more frequency than before. The
MOTD will now be published 6 times a year (bi-monthly)
starting with this issue. Better for you, and better to let us Len
you what's happening in the World of OS-9.

I'm not new to publishing and have been involved with
advertising and graphic design since 1975. Some of you may
also recognize my name as the publisher of the "0 S 9
Underground".

This issue's submissions has us "Awk-ing" and "Bawk-ing",
with a tutorial on the OSK "AWK" utility by Zack Sessions and
an "AWK-like" utility in ASM by Boisy Pitre (Our President).
Boisy also shares a C utility, "Park.c" which will compile under
any flavor of OS-9, including OS-9000.

Just a reminder that you can submit your programs or
articles for publication in the MOTD. Please send your
submissions on a 3.5" or 5.25" format diskette (Coco or any OSK
format) to:

Alan Sheltra - MOTD Editor
OS-9 Users Group

4650 Cahuenga Blvd. Ste. #7
Toluca Lake, Ca. 91602

You can also e-mail your submission direct to
"zog!motd@abodegank.com", either case gets your submission
direct to me.

Next issue should have a report (and pix) of the Atlanta
Coco Pest. The OS-9 Users Group will be there, come and say
"Hello" to the guys!

Until next time...!
-Alan Sheltra - MOM Editor

Volume 1, Number 2

An Introduction to AWK by Zack C. Sessions

In the February 1992 issue of "68xxx Machines" (Now the
0S9 Underground), in his column Bob van der Pod talks
about solving complex problems with a few standard commands
along with one which is readily available. I was pleasently
surprised to see that Bob was talking about GAWK. I recently
was required to get more "intimate" with AWK for a college
course, and had already put some work in this artical since I, too
had gotten a copy of GAWK for my MM/1. So, after reading
Bob's article, I thought I'd finish this article.

First, some history. The AWK programming language first
came into being in 1977, being the brainchild of Alfred V. Aho,
Peter Weinberger, and Brian W. Kernighan, all of Bell Labs.
Knowing this, it is now obvious how the authors thought of AWK
as the name of the language. [Hint: Look at their last name's
oni.;;) The authors saw the powcf, yet shoricomgs of the UNIX
utilities grep, fgrep and sed. They adopted a goal of
developing a pattern-scanning language that would understand

• fields, one with patterns to match field and action to manipulate
them.

The current version of AWK was released in 1985, and is
documented in a book by Ahot, Kemighan and Weinberger called
"The AWK Programming Language", ISBN 0-201-0798-X. This
version as implemented on most UNIX systems is called "nawk"
for "new awk", and the original 1977 version of AWK remains
just "awk".

The Free Software Foundation, as expected, released their
version of AWK called GNU AWK, or GAWK in 1986. The
most recent version, V2.11 was released only recently. It
supposedly supports all the features and functions of AWK as
descibed in the aforementioned book. a have found a few
situations where GAWK does not fully function as descibed in
the book, but nothing major.) This version of GAWK is
available for OSK from several sources. I can send you a copy
for the cost of the disk and mailing charges. Write to me if
interested. (P.O. Box 540, Castle Hayne, NC 28429)

Okay, do I have your undivided attention? I now will
address the central and most impotant issue of our discussion on
AWK. Just what the heck is it, what does it do and what good is
it to me? Here on out, I will refer to AWK as GAWK, since all
example commands are depicted how I have used them on my
MM/1. But essentially, GAWK is AWK. I will he using the
dollar sign ($) to indicate the SHELL prompt in the example
commands.

Directory of MUM...EARLY...FALL :

Editor's Notes (Editorial)
by Alan Sheltra Page One

Introduction to AWK (Tutorial)
by Zack Sessions Page One

From the Desk of Boisy (Editorial)
by Boisy G. Pitre Page Two

Park those Drives! (Program)
by ScotthieGee and Boisy G. Pitre Page Five

Nothing to BAWK at. - Part I (Program)
by Boisy G. Pitre Page Six

From the Desk of Boisy... (Editorial)

User Group Prsident Boisy G. Pitre

OS-9000: Power to the Masses

Most, if not all OS-9 users have heard of OS-9000. In short, it is
an enhanced version of OS-9/68K with some major differences:

00 OS-9000 is written in C, whereas OS-9/68K is written in
68000 assemble language

00 Because OS-9000 is written in C, it is portable to a
number of hardware platforms, including CISC and RISC
processors.

00 OS-9000 is available for 68010 and higher processors as
well as 386/486 computers.

Prices of Intel-based computers have dropped rapidly in the past
few years. With the introduction of the Intel 586, prices on the 386
and 486 are dropping even more. From a standpoint of cost, OS-
9000 represents a tremendous value: a powerful operating system
for real-time and development applications which runs on widely-
available and relitively inexpensive hardware.

Microware's recent release of OS-9000 version 1.3 includes the
Microware C Compiler and VPC (Virtual PC) software. VPC
allows one to run DOS applications under OS-9000 while
maintaining full multi-tasking capabilities. And, OS-9000come
with an easy to use installation program which takes care of
partitioning your hard drive device and installing the OS-9000
system.

Personally, I am surprised that OS-9 hardware vendors have not
taken advantage of the tremendous market potentioal here. Imagine
if you will, a complete 386 computer system bundled with OS-
9000! An excellent sales oportunity exists. Not only could such a
n investment be a financial success, it would give OS-9 users a base
on which to grow and expand.

OS-9000 is the perfect example of a state-of-the-art operating
system that can adapt to the constant change of he computer
industry. The OS-9 Users Group is committed to the
establishing support for OS-9000 and VPC. It's an important
committment.

by Boisy G. Pitre

GAWK is a very intelligent file processor. It can process
several files with a single invocation. A typical GAWK command
would look like:

gawk 'awk program' [file(s)]

If no files are listed, GAWK read from the Standard Input Path,
making it perfect for receiving it's data from from a pipe, as you
will see later. If more than one file is listed, all files are processed,
but only one at a time, from left to right.

If the awk program is a multi-line program, or if you plan to
use it often, you would want to create the awk program in a separate
file and invoke the gawk command:

gawk awk.program (file(s))

Where awk.program is the filename of the awk program file.

The key part of either format is the "awk program". Thjat is
where all of the intelligence is. An awk program is one or more of
awk program statements. Each statement has two parts, apattern
match, and an action. Both parts are optional, but one has to be
there. So, the structuree of the awk program would be:

[pattern) [(action)]

The square brackets indicate each part is optional, and actually,
if omitted there is a default value for each of them. The action
portion of an awk program statement is distinguished by being
surrounded by curly braces. Each awk program is applied to each
record in the ASCII files. Here is a simple awk program:

(print)

This awk program displays each record read to the Standard
Output path. Since awk awk sends it's output to the standard output
path, it is perfect for piping to a child process. Here there was no
pattern, thus the default pattern "all records" was used.

GAWK does some "pre-processing" of the records read from the
input stream before passing the data to the awk program, in fact this
is one of gawk's most impressive and useful features. Each record is
parsed and the "fields" are identified. Each field in the input is a
string of characters which does not contain a blank. So the
following line of data:

Kathy 4.00 10

has three fields. The values of these three fields can be used by
referencing special variables awk sets up for you. The format for a
field variable is $n where 'n' is the field number. In the above
record, $1 would contain the character string "Kathy", $2 would
contain the number 4.00, and $3 would contain the number 10.
Yes, awk determines if the field is alphanumeric or numeric. There
is another special variable name you can use to reference the input
line. Variable $0 refers to the entire line. In this record, variable $0
'would contain the character string, "Kathy 4.00 10". The default
action for an awk program is equivalent to (Kathy 4.00 101.

The "n" portion of the field variable can be variable itself. For
example, the following awk program will print each field of each
record in a separate line.

(for (1 = 1; 1< ++1)
print Si
1

Page Two MOTD

Note again that the field's variable names start with 1. $1 is
the first field, $0 is not. $0 is the ENTIRE current input record,
I'll talk about what NF is in just a second. You might also
notice the similarity of awk action statements to C programming

statements.
There is also a few other special built-in variables. NR

contains the number of the current input record. Since an END
pattern's action is executed after all input data has been
processed, in an end pattern's action the built-in variable NR
contains the number of records read from the input.

NF is the number of fields in the current record. So, the

variable $NF would represent the LAST field in the current input
record. There are several other built-in variables, all of which

are beyond the scope of this article. The awk programmer can

also use user defined variables simply by referencing them, as

used the variable "i" in the action example above. The data

type, string or numeric, is determined by the context. Arrarys of

numbers and strings are even supported.
All user defined variables also are automatically given an

initial value the very first time they are referenced in an awk

program statement. The initial value for numeric variables is 0,

and for string variables ". Datatype is interpeted from the

context it is used in.
The scope of variables is also important to realize, but is

also beyond the scope of this article. (No pun intended!) For

now, consider field variables as "global", known to all patterns

and actions, and variables referenced in an action are local to

that action.
The pattern portion is a little more difficult to fully

.understand especially the regular expressions, unless you are
familiar with the concepts of regular expressions a la UNIX. The

pattern may be any one of the following:

1) The string BEGIN.
2) The string END.
3) An expression.
4) A regular expression.
5) A compound pattern.
6) A pattern.

I'm not going into the last two at all, and the fourth one only

breifly. I will devote an entire artical on the last three types of

patterns.
BEGIN and END are special patterns. The indicate that

their asscoiated actions (it is of little use to have a BEGIN and

END with no action!), are only performed at special times. The

BEGIN action is always processed BEORE ANY data has been

read. The END action is ALWAYS processed AFTER ALL data

has been processed.
A pattern which is in the format of an expression is a

comparison between two expressions. All standard comparison

operators used in the C programming language are recognized, !,

!=, ==,>=, >, plus two others, > means "is matched by" and !+
means "is not matched by". I'll talk about these last two later.
A typical expression pattern would be:

$2 ›= $3

The pattern would be true if the value of field #2 is less than
or equal to the value of field #3. For each record in the input
stream that the pattern is true, the pattern's associated action is
executed. Since the default action is print), if the above
pattern were the entire awk program, then for each record which
the pattern were true, the entire record would be written to
standard output. Since expressions are allowed in the two items
to compare, the following is a valid expression pattern:

$1 /2 ›= $zt '1 $5

In this case, field 1 is divided by a constant 2. That value is
compared to the product of the values of fields 4 and 5, and the
pattern is true if it is less than or equal.

A pattern can also be what is called a "string matching
pattern". In most cases, this is usually in the form is a single
regular expression. To signify that a pattern is a regular
expression, it must be enclosed in slashed& Here's an example:

/Mary/

In this case, the pattern is true for any record which contains the
substring "Mary", and thus the pattern's associated action would
.be performed.

Now, on to some actions! An action is one or more valid
awk action statements. These look much like C programming
statements, and indeed, some are identical and function the
same. Perhaps the most common action of the awk action
clauses is to output something with either a print or a printf
function. "printfl works exactly like the C function does. The
print statement command:

print("%s %s %s/n",$1,$2,$3)

The fields are automatically separated by a space. This
example assumes that the three fields are all strings. Awk is
smart enough to know the difference. Note that the print also
does an implied new line at the end of it's data. Awk program
actions can also "if' (with optional "else"), "while", "for", "do
while", "break", "continue", "next" and "exit" statements.

I'll go deeper in subsequent articles. Now at risk of making
Bob mad at me, I'm going to analyze his awk programming
skills using his February, 1992 article as a guide. His first awk
program is a simple one:

$1 < /bsr/ { print S2

MOTD Page Three

AWESOME BOOTHLE EDITOR!

Well, nothing I can say about that. Short, sweet and fuctional.
But looking ahead I see that this awk program is intended to be
run on several different files and since it's short, it is being run
supplied on the command line itself. In a UNIX environment,
that is fine, but on my MM/1 using GAWK, there is something
to consider. Each time you run a command like:

gawk '$O < /Asia/ (print $3, $4 * $5)1 countries

there is a file created in the Ald/TMP directory which contains
the awk program. Each time it is run, a SEPARATE file is
created, even if the awk program being executed over and over
and over is exactly the same program. So, every so often, you
need to clear out the /DD/TMP directory. So, in Bob's
procedure, for this reason, I would have extracted the awk
program for both the gawk commands to go out into an external
file and use the -f option.

Next program, I got a few observations. Bob uses a BEGIN
pattern merely to initialize a variable to 0. Since all variables
are given an initial value the very first time they are ever
referenced, and if they are used in the context of numerical
expression, they assume the value of 0. So, the BEGIN pattern
and it's action are redundant and not needed. I can't reall
improve on the rest of the second awk program.

I will finish up with an awk success story which strengthens
Bob's premise in his article, that is to use the tools you have. I
have just downloaded several files and I wanted to set the
attributes of the files to public read/write. Thhese files were the
only files in the directory which were created on that date, but
there were other file in that same directory I didn't want to mess
with. So consider the following command:

•

dir -e! gawk 32 == "92/03/11" print $7)t attr -z -pr -pw

Actually, that is not how I first did it. My first attempt was
even cruder:

dir -e grep 92/03/11 gawk 'f print $7)' attr -z -pr -pw

Actually, if grep is already in memory, the second version
would probably run faster, um, nope, I was thinking we would
save a lot by having grep do the pattern matching, but gawk will
still parse the entire record before even processing the pattern, in
this case, process all records. But, the overhead of creating the
fourth process needs to be considered also. It was pretty to
watch in a procs display in another window!

Next time, more on the complex pattern types and regular
expressions.

Zack C. Seesions

KWIKGENvio,
Still using OSOGen, Cobbler, or Config?

Get a real bootfile editor!

EzGen v1.09 vs. KwikGen v1.01
5 minutes 40 sec. 44 SECONDS!'

" Identical operations performed on identical fragmented boot disks
- 2 deletes and one insert performed by -both utilles

- Elting done in memory

- Load boot from disk or memory

- Patch modules
- Change order of modules

in seconds

- 100% assembly code

- Make multiple boot disks
in one session

- Eck existing boot files
in place catty

- Load kernel from disk or mem.
and write to disk

KwikGen requires 059 Level I, or II. $24.95

KWIKZAP
- display updating is instantaneous

- 'smart verify command

- work on Me or stack

- searching functions

- 100% assembly code

KwikZap requires 059 Level

- configurable environment

- dynamic sector stack

oPows ()citing of nibbles
or half bytes

• built in help - easy to use

$24.95

Experience GALE FORCE speed!

Cheeks: Allow 4 - 6 weeks for delivery.
Money orders: processed iminedintely for

KWIK delivery.

Shipping and handing is $400.
Call or write for our free catalogue
Please col for Canadian prices.

Send check or rrooey oter :
Gale Force Enterprises

P.O. lox 660:16 Station T, Vancouver,
B.C., (1.6, V5N 11.4

(rir f..7c1f1:i „11 (tr it t

AM - S I'M PST (voice)
SPM /1 AM (support 1313S)

Productions

NEW!
CLOUD_09 - by Albert P. Marsh

The BEST Graphics/Animation Editor for the
CoCol Tools include: Line, Box, Ellipse, Fill,
Pencil, Brush, Flow, Spray, Text, FatBlox, Palette.
Work with up to 8 animation pages. Copy one page
to another. Complete control of animation speed.
Edit/Save/Load VEF picture files.

Reg: 0S9 Level 2, Multi-Vue and 512K 34.95

TSbell V3.13.02 - by Paul Pollock

A revolutionary New Program... "TShelr does most
of what Multi-Vue does at up to 5 times the speed!
TShell will run most programs with one keypress
and use standard MY MF files. Delete. Copy.
Rename files all with 1 or 2 keystrokes! Many
utilities included.

WINDINT and Multi-Vue NOT required!
Req: 059 Level 2 512K

1She11 (with printed manual) $39.95

TShell• (with "printer-ready" manual TDoc
Included to make the job easy0
You print IL.. you save! $29.95

(„.„(!

OTTIW ,S, I411

SunDialer "WarGames" Dialer - by John Powers
(Includes versions for ACM and SACIA)
Req: 059 Level 2 and 512K $19.95

DCom Basic09 Decompiler - by Wayne Campbell
Req: 059 Level 2,512K $24.95

Coming Soon!
TAKENOTE
COCOVICOON 512.0
COMDEX
MEMMATCH
SIG Net V4

(Prices Subject to Change without Notice)

Send Checks or MO.'.

4650 Cahuenga Blvd. Ste #7

Toluca Lake, Ca. 91602

(818)
761-4135

Page Four MOTD

Park Those Drives!
by Scott McGee & Boisy G. Pitre

Park, a utility by Scott McGee and Boisy G. Pitre for parking
not only your hard drives, but your Disk and Tape drives as well.

The C listing below should be able to compile on the 6809 C
Compiler or those used on os9-68K and OS-9000.

Happy Parking!

/*
* Park - Resets an RBF device's read/write heads .

• This utility uses the _ss_rest() call to restore an RBF device's
• read/write head to track 0. Park works on most RBF devices,
• including floppy disk drives. For SBF devices, park rewinds the
• tape

For 6809 C compilers, the Kreider library must be linked to
reslove the ss rest() function.

•••••••

Written by: Scott McGee & Boisy G. Pitre
(C) 1992 - The OS-9 Users Group

*

extern int errno;

#include <stdio.h>
#include <errno.h>
it:Include <modes.h>
Wdef 0S9000
itinclude7 <sg_codes .11>
ifelse
itinclude <sgstat.h>
ifendif

Mndef TRUE
#define TRUE 1
#define FALSE 0
#endif

main(argc, argv)
int argic;
char *orgy[];

int quiet = FALSE;

if (argc == 1) ShowHelp();
while (argv[1])

if (argv[1][0] ==
switch (toupper(argv[1][1]))

case 'IQ' : quiet = TRUE;
break;

default : ShowHelp();

else ParkDev(argv[11, quiet);
4.-forgy;

3

MOTD Page Five

ParkDev(device, quiet)
char *device;
int quiet;

int path;
char namebuff[32);

strcpy(namebuff, device);
if ((path = open(strcat(namebuff, n@n), 1)) == -1)

fprintf(stderr,"Can't open %s\n", device);
exit(errno);

if (_ss_rest(path) == -1) (
fprintf(stderr, "Can't park %s\nn, device);
exit(errno);

if (!quiet) printf("%s parked...\nn, device);

close (path);

ShowHelp()

fprintf(stderr,
fprintf(stderr,
fprintf(stderr,
fprintf(stderr,
fprintf(stderr,
exit(0);

3

"Park - RBF device parking utility\n");
(C) 1992 OS-9 Users Group\n");

Usage: Park [-(1?] [idev] [...1\n");
-q = Quiet - no output\n");
-? = Show this help message\n");

Vt

Nothing to BAWK at. - Part One
by Boisy G. Pitre

[Editor's Note: Due to space limitations, BAWKASM will
continue in the next issue of the MOTD.]

BAWK Edition 3 - (Boisy's Awk) - Line processing utility

* (C) 1992 Boisy G. Pitre

• BAWK is a line processing utility "similar", but not exactly the
* same as the UNIX counterpart. For one, this version of BAWK is NOT
* a processing language. Its a line processing program. Don't get
* BAWK confused with AWE. They are two totally different programs.

• BAWK takes advantages of "fields" in lines of text. A field is a
* word or symbol, separated by whitespace. Each field is numbered
* sequentially from left to right. An example of how BAWK see's
* fields in lines of text:

1 2 3 4
my name is boisy

The numbers above the words in the line represent the field
* numbers. BAWK can extract any or all of these fields by their
* field number in any order, for a wide variety of useful formats.
• The formats can then be piped to another program or to a file
* for processing.

* Usage: BAWK [-at -d? -1 -f -F] "format field" [file] [...]

* NOTICE: Options are CASE SENSITIVE!
Be aware of this when using BAWK,

Opts:
-d? = the optional delimiter you wish to use.

Ex. to use a colon as a delimiter in addition to
the already used space, use -d:

• -at = Anchor start field to fth column.

= prints lines even if the field doesn't exist.
This option tells BAWK to print the format string
even if the specified field is not found on the
line. Default is OFF.

• -1 = Prints the name of the file currently being scanned.

-f = Forks a shell with the expanded line as a parameter.
The expanded line buffer is NOT printed.

-F = Forks a shell with the expanded line as a parameter,
and prints the expanded line to StdOut.

• The format field can contain any characters you wish. The
* special * character 1$' is used to denote field positions.
* (Fields are from 1 to 255).
• If you wanted to extract the 5th field in a line, you would
* include $5 in the format string. BAWK would interpret this to
* be the fifth field, and would then expand it appropriately.

Looking at the previous example:

•

• NOTE: there is a special field, $0, which denotes the ENTIRE
* input line.

• To tell BAWK to print the 3rd field in that line, the
* following command line would work:

1 2 3 4
my name is boisy

echo my name is boisy I bawk "$3"

Note that the format string is ALWAYS contained in I". quotes.
You may also include non-specific info as part of the field.

I use the following line in my /DD/SYS/CRONTAB file to stop my
BBS at 7:00 each morning:

procs I fgrep "tsmon" I bawk -f "kill $1"

This line uses PROCS' output, and pipes it into FGREP. FGREP
then throws away any lines that don't contain the word tsmon.
The remaining lines that do contain the keyword are then piped
to BAWK. BAWK takes the first field of that line (the Process
ID number of tsmon), and combines it in a format whose output
looks like: kill 3 (assuming 3 is the ID of the tsmon process).
Finally, that line is used as a parameter for shell execution.

You may also specify a filename or a list of them AFTER the
format string. When using filenames, you can tell BAWK to print
the name of the file it is currently scanning (to StdOut) using
the -f option.
To use 1$ 1 as a regular character in a format string, use $$.

BAWK does not interpret this as the '$' field specifier.

You can mix and match any number of fields for interesting
combinations. If you prefer military time instead of DATE's
regular output, try this:

date 1 bawk -d, "$2 $1 $3"

Page Six MOTD

•

• This example also introduced the -d option. This option allows
* you to specify another delimiter in addition to the already used
* space character. A good example of this would be finding the 5th
* field in the /DD/SYS/PASSWORD file, whose delimiter is a comma,
* NOT a space.
• Another useful option is -i. This allows the inclusion of
* printing the format string even though that field is not found on
* the line. Take the previous example again:
•

1 2 3 4
my name is boisy

•

The following command line would print nothing:
echo my name is boisy I bawk "Name $5"

•

• BUT this line will output 'Name
• echo my name is boisy I bawk 'Name $5"
•

• Keep in mind that if the -i option is not used, NO lines will
* be printed unless ALL fields are qualified.
•

• One other option worth noting is the -a option. This option
* sets an "anchor" to the #th column. Using our infamous example:
•

1 2 3 4
my name is boisy

•
• The following command line would print 'name' because the
* anchor is set to the 3rd column (which is a space, ignored by BAWK):

echo my name is boisy bawk -a3 "$1"
•
• To print the names of all the modules in block $3? using MDIR:

mdir e I grep "3F" j bawk "Module: $8"
•
• BANK has very useful applications, making it a worthy addition to
* your OS-9 toolbox. In addition to these features, BAN% works GREAT
* with Shell+'s wildcards!
•

* By: Boisy G. Pitre
• Southern Station, Box 8455
• Hattiesburg, MS 39406-8455
• Internet: bgpitreeseabass.st.usm.edu
•

nam BAWK
ttl Line processing utility

if p1
use iddidefs/defsfile.dd
endc

mod Size, Name, Prgrm+Objct, Reent+1, Start, Finish

Name fcs /bawk/
Ed fcb 3 Edition #3

Anchor rmb 1
Path rmb 1
IncTlag rmb 1 Inclusion Flag
FileFlag rmb 1 Show File Flag
ForkPlag rmb 1 Fork Shell Flag
FEFlag rmb 1 Fork Shell and Echo Flag
Delis rmb 1 Delimiter storage
FileBuff rmb 60 Filename buffer
Format rmb 250 Format buffer
Line rmb 250 Line buffer
ExpLine rmb 4096 Expanded line buffer
Stack rmb 200
Params rmb 200
Finish equ

...•••••••••••••••••••••••••••••••••••••••

* Saves filename in buffer and print it

* Entry: X - Address where filename is
•
* Exit: None. File is stored in FileBuff
•

SaveFile pshs x
leay FileBuff,u

SaveF2 lda ,x+
cmpa #$20
bne SaveF3
Ida #$0d

SaveF3 eta ,y+
cmpa #$0d
bne SaveF2
puls x
rts

••

* Sets the anchor
•

* Entry: X - Address of line
•

* Exit: X - Points to the EOLN char at the
* end of the line
•

AncLine pshs b save counter
tat Anchor Anchor to a column other than 1 or 0?
beq Return Nope, process at first column

AncLoop ldb Anchor else move X to anchor point
Anc2 lda ,x+

cmpa #$0d
beg BackUp
decb
bne Anc2

BackUp leax -1,x
Return puls b

rts

••
* Prints filename to StdOut
•

* Entry: None
•

* Exit: None

* Prints a file header to StdOut along with
* the filename.

PrnFile pshs x
leak FilaHead,per
Ida #1 •
ldy #FileHLen
os9 ISwrite
lbcs Error
leax FileBuff,u
lda #1
ldy #60
os9 ISWritLn
lbcs Error
puls x
rts

HelpMess fcc /Usage: BANK I-d? -i -I -at] "format_string" [file] I...)/
fcb $0d

Shell fcc "Shell'
fcb $0d

FileHead fdb $0a0d
fcc "*** File: "

FileHLen equ *-FileHead

••

* Subroutines

••

* Str2Byte - Converts an ASCII string to a single byte
•

* Entry: X - Address of first char in string

* Exit: B - Converted byte
X - Last number in string + 1

Str2Byte clrb
cnvloop lda ,x+

cmpa #'9
bhi cnvdone
suba # 10
blo cnvdone
pshs a
lda #10
mul
addb ,s+
bra cnvloop

cnvdone leax -1,x
rts

(Continued Next Issue)

See us at the Atlanta CoCo Fest!

October 3rd & 4th

MOTD Page Seven

.... - . - ,,,,-.: . „...,i-..-,•:;i,.... .
•••,- •••••:,c..41.,c4.:••

• :VBDIIINI1W;10• •••••,i• ;:,..: •••,::',"::,••••::.1.: ... ,•..::::;.•:* ... ; . - .. : .
• --SM,P•I'oit ., ..,-_ :Deedo t: itatt " • • •M6809 • 9:

dellimr co

G-WINDOWS
for the SYStEM IV and PT681C4/2

Multi-tasking - processes continue running when windows are
made inactive or are hibernating.

Windows may be re-sized, moved, overlaid. etc.

GUI to start processes by selecting an icon or, start processes from
your custom menu or from the command line.

Copy and Paste between windows.
Adds command line editing, command history. and file name

expansion.
Runs existing OSK software without modification.
Number of windows and processes limited only by your memory.
Includes 01Iz viewer.
Includes 0 -VIEW demo.

0 -WINDOWS with DESKTOP
0 -WINDOWS Developer's Pak

Order both for

$199.00
$299.00

$449.00

90 S')FTWARE
...... , . 1: „. . , •:

..
rog*uidessgued to keep records like
risbic record slam imittest

...
• ,•••••:••••••gi;

Intlitunra Plus -90 Boa 79 - Middletown. DR 19709
302-379-2550 FAX 302-371-2756

Vprint/68000 Text Formatter

Do your 0S9/0SK Machine a favor...

Subscribe to:

The "International
059 Underground
Magazine Dedicated to 0S9/0SKUsers Everywhere!

One Year Subscription (12 Issues) $18.00
($23.00 Canadian, $27.00 Overseas)

OS-9 User's Group Members Get 2 Extra issues! (14 in all!)

The latest addition to our 05-9/68000 product line is the most powerful text
formatter available. Vprint will work with any printer from files produced by
your favorite editor. Proportional character sets are fully supported as well
as most of the special features newer printers have--it even works with laser
printers. Standard features include margins settings. indents, headers,
footers, etc. Advanced features include multiple column output, repeats,
powerful macros with optional parameter passing, internal number registers
with many output formats, true footnotes, automatic indexing and table of
contents generation, future event testing... And if that's not enough, Vprint
has a complete string manipulation language; it supports documentation via
change bars, marginal notes and boxed sidebars; and permits i/o redirection
to and from pipelines.

Send for a free sample printout demonstrating some of the many advanced
features!

Vprint comes with a 100 page manual and loads of sample files. It can be
configured by the user to any printer. Vprint costs only 859.95. plus $3.00
shipping and handling. To order please send your check or money order and
preferred disk format to;

Bob van der Poel Software
PO Box 355 PO Box 57
Porthill, ID or Wynndel, BC
USA 83853 Canada VOB 2N0

Phone 604- 866-5772

Advertise in the NOM Now!
Reasonable Rates!

Contact Alan Sheltra 0 (818) 761-4135 for more information

"The 059 Underground Magazine"
Fat Cat Publications

4650 Cahuenga Blvd.. Ste #7
Toluca Lake, Ca 91602

ColorSystems
Quality OS—.9 Software for

the CoCal and Ike MM/I from IMS

CoCo3 Software

Variations of
Solitaire $34.95

Variations Included:

Pyramid, Klondike,

Spider, Poker,

and Canfield

OS-9 Game
Pack $34.95

Package Include:

CoCothello

CoCoYahtzee

KnightsBridge

Minefield

and Sea Battle

WPShel $22.00

iSetryi CelerSpiellal a. beater

rattles Mnialaller0

MM/I Software

Variations of
Solitaire $49.95

Variations Included:

Pyramid, Klondike,

Spider, Poker,

and Canfield

OS-K Game
Pack $49.95

Package Include:

Flip It

Dice Poker

KnightsBridge

Minefield

and Sea Battle

Coming Soon for the MM/1:

Super Label Printer

X10 Master Control Program

and Much More!

CoCo and OS-9 Club Members: Have your Club President write to
ColorSystems to ask about our SPECIAL. Club Discoid t Program!

Offical Member of the Interactive Media

Systems Developers Association

Shipping: FREE for Continental US, 13.05 for Canada, 15.10 anywhere else
To order toad check WS Bask OPIUM or Mosey Order WS Funds) to:

ColorSystems
P.O. Boa 541

Castle Bayne, NC 21429
For Additional Inforneation call at 019) 675-1706

North Carolina residents please Include 616 Sales 2kr

Write or call for a FREE copy
of our Catalog!

111

Page Eight MOTD

