.........................

.........................

"DEDICATED TO EXCEULENCE IN OS-@ COMPUTING”

MEMOTD

Officers:

President: Boisy Pitre
Vice President: Carl Kreider
Secretary/Tres: Debi Kreider
Librarian: Zack Sessions
MOTD Editor: Alan Sheltra

| Winter Issue 1992

The Official Voice of the OS-9 Users Group

Volume 1, Number 3 |

from the

Users Group
Editorial by Alan Sheltra

08-9

A 4

L Ant’s the holiday season already!
Where did the time go? Well, we've
got some goodies for you this menth.

Hope you haven’t stuffed your “guts”
with too much turkey this past
Thanksgiving, ‘cause we have some
desert for your OS-9 box.

A hands-on review of the new
UltraScience port of OS-9 for the
Macintosh. This is good news for Mac
owners, who can now have their favorite
operating system on their Macs.

We continue our articles from last
month on Awk and Bawk.

The 0S-9 Users Group has a new
Librarian. Scott McGee had to step
down due to personal reasons. Welcome
Zack Sessions to fill that role now.
Welcome aboard Zack!

I should also mention that the OS-9
Users Group now has a new (and Final!)
mailing address:

P.O. Box 71131, Des Moine, 1A 50325

Until next time I hope you have a Happy and
Safe Holiday Season!
Alan Sheltra - MOTD Editor

by Mark Heilpern

Recently, I had the pleasure of
examining a port of 0S-9, for the
Macintosh computer. This port is
released by UltraScience/Gibbs
Laboratories. My review is based on
my experiences with OS-9 on a Mac
Powerbook 140, System 7.0.1, and
0S-9V2.4.

The port seems to be put together
rather well. The basic scheme of
things is that to start up 0S-9, you
merely launch an application, which
does some preliminary setup to place
0S-9 in control of the CPU, and still
allows the Finder (or, Multi-Finder)
to run in the background. Also, any

(Continued Page Three)

Edior's Noles (EdioriaD
by Alan Shellral ...

Page One
Review of UltraSciences 059 far the Mac

by Mark Helper.............. Page One
Fram the Desk of Carl EdioriaD

by Carl Kreder ... Page Two
Using AWK, Complex Patterns and Regular
Expressins

by Zack CSesSHaS ..o Page Faur
Nothing to BAWK al (Part 2

by Boisy G. Pitre Page Six

by User Group Vice President
Carl Kreider

Many of you will recall that I was
the assistant librarian and then
librarian for the now defucnct OS-9
User Group. I was Founding Member
#39. I noted the passing of the group
with more than a bit of sadness. I had
put a lot of time and energy into the
group. But the pain wasn't from only
selfish reasons, I felt like the UG

provided a useful service. The library
was the best repository of public domain
software for OS-9. Later the online
services accumulated quite a bit
(including that of the UG), but in the
beginning, the UG was all there was.
We had a newsletter (admittedly
sparodic) that helped keep us up on
events. Later the 68 Micro Journal
began to cover a bit of 0OS-9, as did
Rainbow, but in the beginning, the UG
was all there was.

And now we seem to have come full
circle. Rainbow is all but gone. Don
Williams (and apparently 68 Micro
Journal) is gone. Tandy has orphaned
the CoCo. Compuserve, for one, has cut
back support for OS-9 in favor of DOS.
So it seemed like there was a need for
an 0S-9 User Group again. ,

Sure, the guys with the OS9CN were
trying to fill the void, but there are a lot
of folks out there who aren't on FIDO.
So when Boisy asked me to help, I

. agreed to become Vice President. It has

been a bit difficult to get going, but we
are moving forward. We now have
about 116 members (including overseas
members), and continue to grow. The
MOTD looks better than it ever has.
The library is beginning to shape up
nicely.

Contributions are starting to roll in.
We plan to continue to provide a way for
the remaining OS-9 lovers to stay in
contact with each other and with
vendors. We plan to continue to provide
a way for the faithful to share their
software creations. And if CDI should
take off, or OS-9000 become a cost
effective option for 486 mavens, we
could see a great swelling of the ranks.
All in all, I see a great future for the OS-
9 in general and the OS-9 User Group in
particular.

Carl Kreider
Usenet: uunet!rdelgator!syscon!carl
CIS: 71076,76
Internet : carl@syscon.rn.com

Page Two

MoOTD

(Continued from Page One)
application that is Multi-Finder tolerant
can run as well.

Rather than require an external disk
or physical disk partitioning,
UltraScience took an interesting
approach where you use pseudo-disks as
hard devices, which are seen as files on
the Mac's disk. You may have up to
eight separate logical disks for OS-9,
each of which can be any size. One of
them must be used as a bootable disk,
containing a valid OS9Boot file on it.

As for device drivers, there exists
support for using the Mac's devices with
what appears to be some type of "pass-
through" driver. I had no problems
using the serial ports on my Mac. Also,
included with the package is a driver to
allow use of a Teac floppy drive for OS-
9. (However, there is no support for
using the Mac's SuperDrive in
Universal format.) Also, OS-9 has a
special device, /m0, which allows access
to any files on a Mac format disk.
(However, since file name conventions
differ between the two os's, there is
often problems getting to files this way.)

As advertised, this version of OS-9
should provide a MacToolBox library
which allows programming of
applications that use the Mac's built-in
hardware (Quick Draw, etc.), however,
the version I tested did not have this
feature. After calling the company, I
learned that they had this working,
however, "any technical Mac user could
unravel what we have done, removing
the mystery", i.e., they don't want
anyone reverse engineering their
product. They also told me that they
were planning a release that would be
more secure and just as functional. I am
curious as to how their modifications
will affect the speed of ToolBox calls.

One abnormality I found, whenever
you fork (from the shell) a new process,
with redirection of all paths to /term,
the process appears in a new window.

This can be helpful, but they are both
device /term! I'm sure this can cause
great confusion under normal
circumstances.

I discovered an annoyance with their
terminal emulation, which runs under
the TERM type of "Mac", they have no
support for inverse characters!

Overall, I did enjoy using OS-9 on
the Macintosh, and I foresee
UltraScience improving their software
in the not-too-distant future.

Mark Heilpern

0S-9 User
Group
T ee-Shirts

It oppears that demand for
our ‘Kick butt In Real-Time® t-
shirts have surgqed. To appeal
the masses,
another run of the popular in-
your-face shirts. Only 30 have
been ordered, and some have
been spoken for already. Al
shirts are made of 30% cotton,
S50% polyester and feature the
OS-9 Users Group Logo on the
back.

Size Member Non-Member
Price Price

L, XL $R.00 $15.00

XXL $14.50 $16.50

Send your Check or M.O. to The OS-9
Users Group, Please state quantity
and size. Send to:

P.O. Box 71131, Des Moine, IA 50325

we have orderedr

!

MOTD

Page Three

Using AWK, Complex
Patterns and Regular
Expressions

by Zack C. Sessions

The GNU AWK is "fully" compliant with the
formal definition of AWK as described in "The AWK
Programming Language" by Aho, Kernighan and
Weinberger. (See my comments on this in the
previous article published last time. Z.)

We talked about gawk's command line syntax
and options, what an awk program is and what it's
basic structure is. We learned that each awk program
statement has two parts, a pattern and an action. We
also discussed a couple of different types of patterns.
We talked about the special patterns BEGIN and
END, about expressions as patterns, and simple
regular expressions.

This time we'll first talk about some of the more
complex pattern types and later we'll get into a more
detailed discussion of regular expressions.

The first of the more complex patterns I will
discuss are known as Compound Patterns. These are
expressions which combine other expressions with
logical ANDs, ORs, and NOTs. For example, you can
have:

$1 =="Mary" && $3 > 100

Again, standard C operators are used, &&, ||
and ! for and, or and not. In this case, the pattern is
true for any record where the first field contains
exactly the string value "Mary" and the third field is
greater than 100, when considered as a numeric
variable. This reminds me of something I glossed over
in part one of this series on AWK. Let me digress for
a second. While a field which contains a "pure"
numeric value is considered as a numeric field, it can
be referenced in the context of a string variable.
When used so, the value of the variable is converted
to a string variable before the value of the variable is
referenced. This is also true with alphanumeric
variables, in fact. That is, a string variable
refernenced in a numeric context, it's ASCII values
are converted to an numeric value. The effect is
analogous to an atoi() or an atof{) function call in C.
Let me finish this digression by commenting that it

should be obvious that variables are referenced more
efficiently in the context of which the are defined as.

Oh yes, let me finish describing the previous awk
programming statement by saying that for all records
which the complex pattern is true, the entire record
will be displayed to the standard input. Actually,
since no action is specified, the default action is
processed for all records which match the patter. That
action is:

{print $0}

So, the previous example is a shorthand form of the

following awk programming
statement:

$1 == "Mary" && $3 > 100 {print $0}

Range Patterns are two patterns separated by
commas. The range pattern is true for all records
starting with a record for which the first pattern is
true and then continuing sequentially through the file
up and including a record, if found, for which the
second pattern is true. If the first pattern is never
true, no records will be processed. If the first pattern
is ever true, and the second pattern is then never
true, all records starting with the one which matched
the first pattern through to the end of the input are
processed by the range pattern's associated action.
Each of the two patterns may be of any of the
different types of patterns. For example:

[Alfred/, /Karen/ {print $1,$2}

This is two regular expressions as the first and
second pattern. In this case, the first record found which
contains the substring "Alfred" and all records after it up
to and including a record, if found, which contains the
substring "Karen" are processed by the patterns’
associated action.

Also, a valid range pattern is:

NR >3, NR>10

This shows that the two a parts of a range pattern
can be expressions as well as regular expressions.
(Remember the difference between an expression and a
regular expression?) In this case the 4th through the
10th record are all processed by the patterns' action. 1
had to think about this one for a second. Remember,
after the first pattern is true all records are processed
UNTIL the second pattern is TRUE.

Here's something similar:

$3 > 100, $3 < 200

In this case, if a record is found which has its third
field greater than 100 then that record and all
subsequent records will be processed by the action, until
a record is come upon which has the third field less than
200. That record will be processed, too, but none after it.
This one deserves a second thought also, but I'll let you
handie that. Another interesting use for a range pattern
would be this:

$1 == "Mary", $NF ==

Page Four

MoTD

In this case, the first record found to have the first
field equal to the character string "Mary" and all records
after that will be processed until a record is found
whose LAST field contains a value of zero. That will be
also processed, but none after. Note that using the NF
variable to denote
the LAST field in a record, a file with variable numbers
of fields in the records would be no problem.

A range pattern may not be part of another pattern.

Last time I talked about simple regular expressions.
Let's get back into them. The type of pattern which
contains a regular expression is called a "string
matching pattern”. A pattern can contain more than one
regular expression. It will contain either a single regular
expression, or a regular expression used in conjunction
with an expression. To indicate a regular expression, it
is surrounded by slashes. This string matching pattern
must fit one of the following three general formats:

1) Iregexp/ - Matches with the current input |
ine contains a substring matched by the
regular expression regexp.

2) expression ~ /regexp/ - Matches if the string
value of expression contains a substring
matched by the regular expression regexp.

3) expression I~ /regexp/ - Matches if the
string value of the expression does not
contain a substring matched by the regular
expression regexp.

Any expression mgy be used in place of /regexp/
in the context of ~ and !~. Here's examples of more
complex string matching patterns: '

$4 ~ Mary/

This is an example of type 2 above. In this case,
field #4 of the input record must contain the substring
"Mary" for the pattern to be true. Consider the
following;:

$1~8$3

In this case the /regexp/ is replaced by an
exs)ression, in this case, the field variable $3. This can
only be done in the context of ~ and !~. The ! operator is
use as a NOT modifier. Here is an example of its use:

$5 I~ /Phil/

This pattern would be true for all records which did
NOT contain the substring "Phil". But, we have really
only touched on what came come between the slashes
for a regular expression. So far, all examples with
regular expressions contained only a character string.
There are many special charagters called
"metacharacters” which can be used to ipdicate special
processing.

For example, the "~" character matches the
beginning of a string and the "$"character matches the
end of the string. These metacharacters may appear
alone or in combination in a pattern. Consider the string
matching pattern:

$1 ~ /AChicago$/

In this case, the regular e)éﬁression says to match
with a string which starts with the C, and ends with the
o0, and has an hicag in between. So, only records whose
first field is the string "Chicago” (not just contains the
substring) will match and the pattern be true. The ™"
character matches any size string of any characters, and
the "?" character matches zero or one occurances of the
previous character. Example:

$2 ~ nZ*/

This pattern would be true for all records in which
the second field BEGAN with the character "Z"
(UPPERCASE Z), followed by zero or more of any
character. Consider this example:

$4 ~ fing$/

This pattern would be true for all records whose
fourth field ENDS with the substring "ing". Here's
another:

$5 ~ IA?/

This pattern would be true for any record whose
fifth field contained either the value "A" or "AA". The

last metacharacter I will discuss is the [} pair. The {]
contains one or more individually considered characters
in it. It can also specify a range. For the pattern to be
true, the string must match only the characters listed
within the [}'s. For example:

$1 ~ NABC)/

This pattern is true for all records whose first field
starts with one of the characters, "A", "B", or "C", and is
followed by zero or more of any characters. Note that
the comparison is VERY case sensitive! Here's an
example of a range:

$2 ~ /MNa-zA-Z)/

This pattern is true for all records which has a
second field which has as its first character a letter,
upper or lower case. It may have zero or more
characters after the initial letter. Be careful when using
combinations of metacharacters! Consider the following
example:

$2 ~ /M[a-zA-Z]"/

Now, at first glance, you might think that this does
the same thing as the previous pattern. Uh, uh, it
doesn't!! In fact, it will match on tield two no matter
what field two contains! You see, the first metacharacter
is the dual character range which matches only a single
character. Let's say that the range does match the first
character. Then, no matter what is next, the "*"
metacharacter will match it. But, let's say that the range
does not match. Then no matter what is next the ™"
metacharacter will match it!

So, this pattern matches anything, which nullifies
the reason to even attempt the first character
verification. So, use the "*" metacharacter carefully!!

Multiple ragges may also be specified. For example:

$2 ~ NO-9][A-Z]$/

MOTD

Page Five

In this case, only records in which the second
field starts with a numeric character and ends with
an upper case alphabetic character.

This is as deep as I want to get with regular
expressions. I'll end this time with a quickie awk
program which may help to illustrate a technique.

You want to know how many total bytes are
used by the files in the current directory. Consider
the command:

$ dir -e gawk 'NR >3 { tot += $6 } END
{ print "Total bytes", tot }'

While the actual use of this command is a
waste of time if you have a copy of the Is
command which can supply file size totals, it
illustrates how you can interpet system function
displays by awk programs. In this case, the first
three lines are ignored, and all subsequent lines,
the 6th field, the size in bytes, is summed to the
variable tot. At the end of file, the total is
displayed. An equivalent command line would be:

$ dir -eu ! gawk '{ tot +=$6 } END
{ print "Total bytes", tot }’

This example also shows an arithmetic
expression | haven't mentioned. ie, the use of the
"+=" arithmetic operator. As you might expect, all
C type arithmetic expressions are supported in
awk programs, including the auto pre or post
increment.

Next time, we'll concentrate more on the action
part of AWK programming statements.

Zack Sessions

sessions@seq.uncwil.edu

University of North Carolina at Wilmington

"Good health is merely the slowest form of dying."

ADVERTISE N THE MOTD

CONTACT ALAN S5LEL TRA
MOTD Ebitor) FOR MORE.
INFORMATION ABOUT AD
RATES AND AD SlIZE 5.

e8) 76+4p5

H
AWK AT

(Part 2 of 2
by Boisy G. Pitre

ARAEAERRRETEARRARARR KRR IR TR E KRR

* Strips leading, spaces

.

* Entry: X - Address of line

* Ext: X - Points to first non-space character

EatSpace pshs a
Eat2 ida x+

chpa *#$20

beq Eat2

leax X

puls Qa

rts

teoscccsse tescccsccces eevsecsevecssssrnce

* Entry of progran

Start decb any parans?
beq Help nope, exit w/ error
cr Path assure stdin upon entry
clr IncFlag Clear (OFF) nclusion flag

cr FileFlag Clear printing of {ilenames
d o Anchor Anchor to first column

cr FEFlkag Clear Fork/Echo flog

cr ForkFiag Clear Fork flag
ida *#$20 put space as extra delniter
sta Delm

scesesssecrsesscncrnne Ry R N Y Y)

* Command line parsing is done here

Parse bsr EatSpace
da x+
cripa *$0d
beq Help
cMpa -
bne IsitQ
* Dash options parsed here
lda Xt load A with char
wpa *Q 15 it. the anchor option?
bne IsItF
bsr Str2eyte
stb Anchor
bra Parse
IsILF crpa »'f
bne IsitUpF
lda *3ff
sta ForkFlag
bra Parse
ISILtUpF cmpa #F
bne [sItL.
da #${f
sta FEFiag
bra Parse
IsitL crpa *'|

Page Six

MOTD

bne Isitl

da »S$FF
sta FileFiag
bra Parse
Isitl rpa Y Is 1t the inclusion option?
bne Isith
da »$ff set Inclusion Flag
sta IncFiag
bra Parse
IsitD cmpa =d delirter?
bne Nelp bad opuon -- error out
da xt else load character after
the D'
sta Detn save it...
bra pParse then 9o back to parsing the
hne
* Fornat String detected here
IsiL@ cpa L [s it a' format string?
bne Help nope, must be an error
* Save the format string
SaveFnat leay Format.u
Savefnt2 da X+ Pont to char after
first "
cnpa *$0d
beq Nelp
<pa ' 15 It the second “'?
bne Savefrnt3 no, save char
da *30d
sta 4
bra ChkFile
Savefmt3 sta g else save char
bra SaveFrmt2
ChkFile tosr EatSpace Check after last '™ for a
filenane
ida X
pa #$0d if no filenare, execute from
Stdln

beq Mainline
bra Openfile

R R R Y R R)

* Nelp Routine

Nelp leax NelpMess,pcr Show Help message
ida *2
os9 ISWritLn
bra Done
° Check for EOF
EOF cpb *ES$EOF
bne ‘Error
lda path
0s9 IsClose Close path
puts X and restore the cmnd line
pointer
tst fath
beq Done
bra FilePrs
* Exit Here

.

bone cirb
Error 059 F$Exit

R R Y Y R YRR XY Y]

* DAWK qoes here if files are on the crd line

FilePrs tosr EatSpacc eat spaces
ida X check char
cnpa *$0d if CR.
beq Done
Openfile Ibsr Savefile
. da *read. else assume a file namne
0s9 8Open and try to open it
bcs Error
sta Path
tst FileFlag
beq MainLine
osr ProFile

D R Y R N R R Y R YY)

* The foliowing lines are the “heart” of BAWK's processing

MainLine pshs X save pointer to cnd lne

*eeserrerererssarrsererrrIeIUTIITLIIITQOTITIOT

* The line of input is read fromn here.

ReadLine lda Path
Iy *250

aet path
max chars per line

leax Lineu point Lo kne buffer
[e13% I$Readln and read the lne
bes EOF check EOF if error

D R R Y TR)

* The Process of Expansion starts here.

ProcLine leax
leaqy ExpL.ine,u
expansion iine

Format.u
Position ¥ Lo

Parsefmt ida Xt

wpa »'$ Is it the ‘¢ field character?

beq FieldPar Check Field Paraneter
PFMt2 sta gt

chpa *$0d

bne Parsefmt

tst ForkFlag

bne PFML3

bsr Print

tst FEFiog see if the fork/echo flag is
set

beq ReadLine
PFML3 bosr Fork

bra Readbine
FieldPar Ida X+ qel char after ‘¢
wpa *'$ Is it another?
beq PFMt2 yep. store it
leax -4x
FieldP2 losr Str2tyte convert the number
tsto check the number to see if it's O
bne Fieldl

0000000000000 099000 0000000000000 00000

* The entire line is copied at. the direction of $O

-

pshs X

leax Line.u at this point we copy the
entire...

Ibsr AncLine Anchor the line

MOTD

Page Seven

CopyAt lda
line

chpa
30

beq

sta

bra
Fieldl pshs
bsr
tstb
beq
tst
bne
puls
bra
bsr
pus
bra

Field2
Fieldd

Xt and transfer the rest of the
*$0d line since we've encountered a
Fieldd and continue parsing

+
dopy
X save position n format string,

SetField Position to the proper field
was there an error?

Field2 no, continue with expansion
IncFlag is the inclusion flag set?
Field2

X
ReadLine

Expand

X aet position in format string
ParseFmt and continue expanding...

ssesesescscsassasessnrsssscncsseensesss

* SETFIELD - This routine positions the X pointer to the

correct field

* Entry: B - Number of the field

*Exit: © - clear if field was found, set if it wasn't found
. X - Address of bth field (Points Lo EOLN if B s
set)
Setfield leax Line.u
losr Ancline Anchor the line
Skip lda Xt
crpa #3$20
beq Skip
chpa Delrm
beq Skip
cnpa *$0d
beq Leave2
decb
beq Leave
EatField Ida Xt
chpa #3$20
beq Skip
wpa Dein
beq Skip
wpa *$0d
beq Leave2
bra EatField
Leave cib
Leave2 leax Lx
rts
* EXPAND - This routine “expands” the field into the

expansion buffer

Ida
crpa
beq
cpa
beq
cnpa
beq
sta
bra

rts

Expand

ExExit,

Xt
*$20
ExExit
bein
ExExit
*$0d
ExExit

Expand

D A Ry Y Y I

* The expanded line is printed to StdOut here

Print leax ExpLine.u
expanded lne buffer
oy *500
ida *|
os9 I$Writln
bcs Error
rts

Point X Lo the
nax chars SO0

write to stdout

R R Y PR Y Py XY

* The expanded line is used

as a paranter to a shell

Fork pshs XU

da *Prarm+Objct

b *6 Use 6 pages (K) of data

leax Shell.pcr Point. to name of
Shell

idy *4096

leau ExpLine,u Point X to the
expanded lne buffer

os9 FsFork Fork it/

Ibes Error

0s9 FshNait

puls Xu

rts

emnod
Size equ *

end

KICK BUT
NaEaL?

[IDAYE

T HJ !u 54 Iy

!

mamemﬂBmp

-

M -

Page Eight

	MOTD
	Season's Greetings
	Review of Ultrascience's OS-9 for the MAC
	Review Con't
	From the Desk of Carl
	Using AWK, Complex Patterns and Regular Expressions
	Nothing to BAWK at... (part 2 or 2)

