
ENGINEERING NOTES

on

Radio Shack Color Computers

Jun• I July 1984
Vol. 1 Na. 3

**** *

* * *

*

*

* * * *

* * *

* * *

* * *

**** *

* *

*

*

*

* *

*

*

**

*

*

*

*

* COMPUTER THEORY

* BASIC PROGRAMMING

* OPERATING HINTS

Sl.9:5

* * * * * *** ***

* * * * ** ** * * *

** * * * * * * * *

* * * ***** * * * *

* ** * * * * * *

* * * * * * * * *

* * * * * * *** ***

*** * *** ****

* * * * * * *

* * * * * * *

* * * * * ****

* * * * * * *

* * * * * * * *

*** ***** *** * *

* ***** * * ***

* * * * * *

* * * * *

* * *** * * * ***

** * * * * *

* * ** ** * *

* ***** * * ***

* ASCII PART III

* INTERRUPTS

* POWERFUL REMARKS

* MACHINE LANGUAGE PROGRAMMING

* QUESTIONS & ANSWERS

DYNAMIC COLOR NEWS is published
monthly by DYNAMIC ELECTRONICS,
INC., P.O. Box 896, Hartselle,
AL 35640, phone (205> 773-2758.
Bill Chapple, President; Alene
Chapple, Sec. & Treas.; John
Pearson, Ph. D. Consultant; Bob
Horgan, Ph. D., Consultant.

Entire Contents Cc> by
DYNAMIC ELECTRONICS INC., 1984.
DYNAMIC COLOR NEWS is intended
for the private use of our sub­
scribers and purchasers. All
rights reserved. Contents of
this newsletter may not be
copied in whole or in part
without written permission from
DYNAMIC ELECTRONICS INC. Sub­
scriptions are $15/yr for U.S.A.
& Canada, $30 other foreign.

The purpose of this news­
letter is to provide instruc­
tion on Basic & Machine Lan­
guage programming, Computer
theory, operating techniques,
computer expansion, plus pro­
vide answers to questions from
our subscribers.

The submission of questions,
operating hints, and solutions
to problems to be published in
this newsletter are encourag­
ed. All submissions become the
property of Dynamic Electronics
the material is used. We re­
serve the right to edit all
material used and not to use
material which we determine is
unsuited for publication.

All paid subscribers are en­
titled to discounts of 107. on
hardware. and 207. on software
manufactured or produced by
Dynamic Electronics Inc. plus
"specials" mentioned in the
newsletter. To receive these
discounts use your DCN number
which is at the right of your

name on the address label.
DCN subscribers may obtain a

personalized reply to specific
computer problems or advice
on purchasing equipment. The
charge for this service is $10.

* *

* DYNAMIC COLOR NEWS *

*

*

*

*

*

*

June / July 1984

Editor and Publisher
Bill Chapple

*

*

*

*

*

*

* Secretary *

* Belinda Parker *

* *

CONTENTS

Editor�s Comments

Powerful Remarks

ASCII Part III

3

4

9

Uninterrupted Power Sources 10

Machine Language Programming 12

Operating Hints • • •

DCN Summer Specials .

14

15

EDITOR�s COMMENTS

Sometimes it is hard to decide on what would be of interest to our
readers. Since our stated objective is to provide technical
information on color computers, it would seem like there should not be
a problem. I have attended a lot of classes in my lifetime and one of
the worst feelings that I remember was to be in a class and not
understand anything that was going on. Some of you can identify with
this. That is not quite the feeling I have because this is the fifth
newsletter we have written and I am sure that those who have been with
us from the start are versed in computer terminology a little anyway.
The problem is what subject should we present next. With this issue
we are finishing our presentation on serial communications or ASCII so
new material should be considered.

The following incident occurred last month. My nephew, who has a
degree from Lauisianna State University (LSU>, got married in Nay. He
is a reporter for a newspaper in Texas and is a real poet when it
comes to writing. My son, Mike, went with me to Baton Rouge, LA for
the wedding. If you will look at your road map, you will see that the
trip is about 500 miles from Hartselle, AL. Since so much time would
be involved in travelling, why not take a computer along and operate
it from the car. Surely I could do some writing while Mike was
driving. Well how do you get the computer to operate in the car?
There are devices called power inverters that will convert car voltage
to 115 volts so the computer could be plugged into the inverter along
with a television.

I have a microcassette recorder and a set of tape files with it. The
recorder works on two AA type batteries so I did not need any power
source for it. The inverter was installed and the computer and
television turned on for an initial test. Everything worked fine so
it looked like I would be able to use the color computer on the trip.
The results were very gratifying. I was able to write the first draft
on "POWERFUL REMARKS" while Mike was driving. I could have been able
to write more except that Mike went out with one of his cousins on
Saturday night and I had to drive most of the way back while Mike
slept.

Since I haven�t read much about using battery power for operating
computers, I thought that perhaps this would be a subject of
interest. So an editorial appears in this issue that tells you some
options available for running your computer on battery power. In an
earlier issue I mentioned that a battery backup was being developed
for mounting under the keyboard. We are about to release this as a
new product and are offering it as a "SPECIAL" to DCN subscribers in
this issue. So if you are tired of power failures causing you to
loose your programs, then you will want to read that editorial.

Also this month we are starting a series on "POWERFUL REMARKS".
Basically what we will be doing is showing how remark statements can
be used as a substitute for "DATA" statements. Esentially we can say
go to statement number "X" and get the data from it. Statement X will
be a remark statement. Basic does not have an equivalent to this and
we have used this technique for our invoice program, our accounting
program, writing instructions, and writing chain letters. Also we put
machine language subroutines in remarks and carry them with our basic
programs. So if you want to learn an easy way to handle data then you
should read this section.

A customer sent us a computer to upgrade to 64K. It was an old
grey type with only 4K of memory. That was what I had to start with

3

and paid $399.95 for it. It was only 3 years ago that I bought my
first color computer and I'll have to admit that the 4K memory in the
computer refreshed my memory. It took me about a week to realize more
memory was needed. I upgraded to 16K, shortly afterwards to 32K and
then to 64K. Look at the MC-10 which sold for about $59.95 during
Christmas. It is 4K and a 16K module can be purchased for $49.95.
This is really a buy for someone wanting to get into computers
economically. What is the future for computers? My guess is smaller
disk drives, lower priced hard disks, and inexpensive tape drives with

operating systems similar to disk drives. But this is just a guess.
Of course memory chips are getting larger. I saw an advertisement for
256K chips for $50 each. That's pretty expensive but the prices are
slowly dropping. I predict that the next generation of computers will
have 2561< of random access memory. How does this effect the color
computer owners. Not very much because color computers are very
expandable. The old 4K D board can be easily upgraded to 128K or
larger and is suitable for any other kind of modifications that new
technology may introduce.

POWERFUL REMARKS
<Part 1>

WORD PROCESSING

The casual programmer might wonder "what is so great about
remarks"? Anybody knows that remarks are used to write comments about
the program and basic ignores them. The writing of comments in remark
statements is straightforward and simple. In fact it is similar to
the operation of word processors because you just type in the
information. Now if the statement numbers and the Remark sysmbol """

could be removed then we would have a word processor with each line
being the informtion in the remark statement. Remark statements can
also be used to carry data and machine language subroutines. The
purpose of these editorials will be to show how to use remark
statements for word processing, data, and machine language routines.

Let's look at data statements first. If you will recall a couple
of months ago we covered "READ" and "DATA" statements. Remember that
the data has to be perfectly ordered and to obtain data from the
middle it is necessary to read all data starting at the first data
variable up to and including the one you want. Also remember if one
data element was put in the wrong order then all the data after it was
wrong. These of course were the disadvantages. The advantage is it
is easy to use for a small number of variables or when variables are
easily ordered.

Now let's look at machine language subroutines. First of all a
subroutine is a program that can be called from another program.
After the subroutine is run then program control is transferred back
to its previous function or the first program. To run a machine
language subroutine from basic you just enter EXEC M where M is the
starting location of the machine language subroutine. For basic to
call a subroutine just enter "GO SUB X" where X is the statement
number of the start of the subroutine. A subroutine is written like
any other program except the command "RTS" is at the end of a machine
language program and "RETURN" is placed at the end of a basic
program. Well why would we want to use machine language subroutines
with basic? We want basic to run as fast as posible and machine
language subroutines are great for sorting data, finding the memory

4

location for a statement number, and terminal programs to give a few
examples.

What about remark statements for word processing? Have you
noticed how easy it is to write in remark statements. Remember for
handling data we could not use a comma because a comma is used to
separated different data elements. However when we write in remark
statements there are no restrictions. Also Basic handles the
information like any basic statement. This means that statements can
be eliminated by typing the statement number and pressing the <ENTER>
key. Also e>:tended basic' s statement editor works well for correcting
information in a statement. Everyone should agree that it is easy to
write a letter and put a statement number and remark symbol 11"' 11 at the
beginning of each setence. Now we can use basic to insert new lines
or delete lines. If we have e>:tended basic then we can edit any
line. The only problem is the removal of the statement numbers and
the remark symbol.

Now let"s look at a remark statement. Remember a O preceedes any
basic statement. The ne>:t 2 locations contain a vector pointing to
the next statement number, the next 2 locations contain the statement
number in vector format, and the next 2 contain the ASCII code for
remark and the basic token for remark. So if you will count the bytes
required to get to the first bit of information in a remark statement,
you will get 6.

The format for a basic program with remarks is as follows.
byte O A zero preceedes each statement
byte 1 MSB of vector for the next statement
byte 2 LSB of vector for the ne>:t statement
byte 3 - MSB of statement number.
byte 4 LSB of statement number
byte 5 ASCII code for '
byte 6 Basic code number for remark
byte 7 First data byte

Now if we can find the memory where the statement begins (byte 1>,
then we add 6 to that value and obtain the memory where data starts.
That doesn"t seem too difficult does it?

Let's write a basic program to find the memory location for any
basic statement number.

STATEMENT NUMBER SUBROUTINE

60000 "'THIS FINDS THE MEMORY FOR STATEMENT NUMBERS
60010 INPUT "ENTER THE STATEMENT NUMBER"; SN
60015 "'FIND THE MEMORY LOCATION FOR THE FIRST STATEMENT BM
60020 BM=256 * PEEK <25) + PEEK (26)
60025 "'LOCATIONS 25 & 26 CONTAIN THE BEGINNING OF BASIC PROGRAM VECTOR.
60030 "'FIND THE FIRST STATEMENT NUMBER AND THE
60035 "LOCATION OF THE NEXT STATEMENT
60040 NS = 256 * PEEK <BM> + PEEK <BM +1>
60050 TS = 256 * PEEK <BM + 2> + PEEK<BM + 3>
60055 PRINT"THIS IS 60055 & NS="NS;" TS="TS
60060 "'NS = NEXT STATEMENT MEMORY LOCATION & TS = STATEMENT NUMBER
60070 "'DID WE FIND THE STATEMENT WE WANTED?
60080 IF SN =>TS THEN 60200
60090 "GO TO 60200 IF THE STATEMENT NUMBERS AGREE
60095 BM = NS "'GO TO THE LOCATION OF THE NEXT
60100 "'STATEMENT AND LET ITS MEMORY = BM
60110 GO TO 60040
60190 '

5

60200 PWE HAVE FINISHED SEARCHING AND THE MEMORY FOR OUR
60210 PSTATEMENT NUMBER IS BM. DATA STARTS AT BM + 6
60220 X = BM + 6
60230 PRINT'"THE MEMORY LOCATION FOR STATEMENT NUMBER "SN; "IS "X
60240 RETURN
60250 PWE USE RETURN TO ENO THIS PROGRAM SO IT CAN BE USED
60260 � AS A SUBROUTINE.

After finding the memory for the remark statements
beginning of data it is fairly easy to process it. The

and the
following

subroutine will process the data and print the characters on the
screen and /or to an external printer. The comments will show what
each section does.

60500 'THIS SUBROUTINE WRITES CHARACTERS TO THE SCREEN OR TO A PRINTER
60510 INPUT "BE6INNIN6 STATEMENT NUMBER";X1
60520 INPUT "ENDING STATEMENT NUMBER";X2
60530 'THIS WILL PRINT THE INFORMATION CONTAINED IN
60540 'ALL STATEMENTS BETWEEN AND INCLUDING THE
60550 PBEGINNING AND ENDING STATEMENT NUMBERS.
60560 SN=Xl: 60 SUB 60020
60570 PFIND THE START OF DATA. X IS THE MEMORY
60580 'WHERE DATA STARTS FROM THE SUBROUTINE.
60590 A=PEEK<X>: AS=CHRS<A>
60600 'LET P S CHECK TO SEE IF A=O INDICATING END OF STATEMENT
60610 IF A=O THEN 60650
60620 PRINTAS;: IF P=l THEN PRINT#-2, AS;
60630 'IF P=l THEN THE PRINTER 15 ON. WE WILL
60635 'DETERMINE THIS FROM OUR MAIN PROGRAM
60640 '60 TO THE NEXT MEMORY LOCATION (X+l)
60645 X=X+1: 60 TO 60590
60650 'X IS A ZERO. LET'S CHECK STATEMENT NUMBERS
60660 'TO SEE IF WE HAVE FINISHED.
60665 PRINT: IF P=1 THEN PRINT#-2, " "
60670 M=PEEK<X+3>:N=PEEK<X+4>: AA=256*M +N
60680 'AA IS THE NEXT STATEMENT
60690 X=X+7 'THIS IS THE DATA IN THE NEXT STATEMENT
60700 IF AA> X2 THEN RETURN
60710 �REMEMBER X2 WAS THE ENDING STATEMENT NUMBER
60720 60 TO 60590
60730 'THE ABOVE STATEMENTS TELL THE PROGRAM TO GO
60740 'TO 60590 IF THE NEXT STATEMENT NUMBER AA IS
60750 'NOT GREA�ER THAN OUR ENDING STATEMENT NUMBER X2
60760 'ALL INFORMATION AFTER ' IN ANY STATEMENT CAN
60770 'BE ELIMINATED AND THE PROGRAM WILL STILL RUN
60780 'BASIC IGNORES THIS AND GOES TO THE NEXT
60790 'STATEMENT.

USING SUBROUTINES

When writing Basic or Machine Language programs
it is advisable to use subroutines. A subroutine is a program that

can be called from another program. It ends with a "RETURN" command
in Basic and a "RTS" or return from subroutine command in machine
language subroutines. If you have a task you need done then write
the task in the form of a subroutine and call it from the main program

6

when it is needed.
Now if we are going to print the information contained between two

remark · statements then we will need the two subroutines we just
wrote. The 2 tasks we need to do are:

1. Find the memory location for the statement number. This is what
the subroutine at 60000 does.

2. Print the information contained within the remark statements
until a O is encountered. Then check the next statement number to see
if it is greater than the ending statement number. Return if we have
finished. This task is done by the subroutine at 60500.

WORD PROCESSING PROGRAM

Now that we have developed the subroutines for recovering
information from remark statements, the writing of the program is
fairly easy. For using the subroutines we use the basic commands "GO
SUB X" where X is the statement number of the first statement we want
to use in the subroutine. For example with the subroutine at 60000
if we "GO SUB 60000" then the program asks us to enter a statement
number in 60010. Suppose we want to designate the statement number
before going to the subroutine. For example we define the statement
number before we go to the subroutine. Then we can enter "60 SUB
60020" instead. All of the subroutine will be executed until a
"RETURN" command is encountered. Then the program will return to the
next command in the first part of the program after the "60 SUB 60020"
command.

The following program prints all information between two remark
statement numbers:

50000 7 THIS PROGRAM PRINTS ALL CHARACTERS BETWEEN 2 REMARK STATEMENTS
50010 INPUT"ENTER A 1 FOR PRINTER";P
50015 GO SUB 60500
50020 7 THIS IS ALL WE NEED TO ENTER AS THE SUBROUTINE
50030 7 AT 60500 WILL DO THE REST
50090 END

Notice the power of Basic. The program consists of only 2
statements 50010 and 50015. These statements set up for printer use
and do the "housekeeping". Housekeeping means to keep track on what
is going on. By using subroutines the actual task of keeping things
in order is greatly simplified. In case you didn�t follow everything
that was done, all of the program sections need to be entered. When
you enter run, the first statement is 50000 which we used for the
master program with subroutines in higher statement numbers. Text can
be put anywhere in memory below 50000. The first statement in your
program should be "60 TO 50000" if you have statements that are not
remarks.

Also notice how easy it would be to write a chain letter to
multiple addressees. You can use "FOR NEXT" loops and reserve
statement numbers for the names and addresses of the people receiving
the letter. Also a different group of statement numbers can be used
for the body of the letter. There are many ways the program can be
organized and basic is very powerful for controlling this.

OTHER USES FOR REMARKS

7

We use remark files for our bookkeeping, invoices, writing chain
letters, and sometimes for printing instructions. We have a master
program that operates on a basic remark file program. Instead of
using basic to find the memory of the statement numbers, we use
machine language subroutines. This speeds up the process considerably
since sometimes it takes basic a while to find the memory for the
first statement number desired especially if it is preceeded by a lot
of statements. Notice that we can obtain the information contained in
just one statement number. This is quite an improvement over DATA and
READ statements since we don "' t have to have knowlege of any ordering
of information. We will continue with this subject next month.

The following is the complete program with data in statement
numbers 20 to 50. We eliminated all comments. You can put anything
that you want printed in remark statement numbers before 50000 and can
edit your writing by using the basic and/or extended basic commands.
For example if you want to change what is in a statement number then
retype the statement or use extended basic "' s editor.

1 ,.

20 "My name is Bill and I live in
30 "'Hartselle, AL.
40 "Where do you live?
50 "'This is a test program to see what can be done.
50000 "'

50010 INPUT"ENTER A 1 FOR PRINTER";P
50015 60 SUB 60500
50090 END
60000 "
60010 INPUT "ENTER THE STATEMENT NUMBER"; SN
60020 BM=256 * PEEK (25> + PEEK (26>
60040 NS = 256 * PEEK <BM> + PEEK <BM +1>
60050 TS = 256 * PEEK (BM + 2) + PEEK<BM + 3)
60055 PRINT"THIS 15 60055 & NS="NS;" TS="TS
60080 IF SN =>TS THEN 60200
60095 BM = NS
60110 60 TO 60040
60190 "
60200 "
60220 X = BM + 6
60230 PRINT"THE MEMORY LOCATION FOR STATEMENT NUMBER "SN; "IS "X
60240 RETURN
60500 "
60510 INPUT "BEGINNING STATEMENT NUMBER";Xl
60520 INPUT "ENDING STATEMENT NUMBER";X2
60560 SN=X1: GO SUB 60020
60590 A=PEEK<X>: A$=CHR$CA>
60600 "

60610 IF A=O THEN 60650
60620 PRINTA$;: IF P=l THEN PRINT#-2,A$;
60645 X=X+1: GO TO 60590
60650 "'

60665 PRINT: IF P=1 THEN PRINT#-2," "
60670 M=PEEK(X+3):N=PEEK<X+4>: AA=256*M +N
60690 X=X+7 "'THIS IS THE DATA IN THE NEXT STATEMENT
60700 IF AA> X2 THEN RETURN
60720 60 TO 60590

8

ASCJ:J: PART ::::S

This is the last of our discussions on ASCII in this series. In
the preceeding discussions we showed that ASCII is used for serial
data communications where characters are sent out one bit at a time.
This is similar to the familar Morse Code where dits and dahs are sent
out and combined to form characters. Early teletypes used serial
communications where the character was composed of 5 bits plus start
and stop bits. They used a code called "Baudot". With 5 bits there
are only 32 possibilities. A code was sent to shift from "figures to
letters" and the machine remembered that this had been sent. This
allowed about 60 different characters to be available for sending. It
is much nicer now with the ASCII code since an B bit byte can be sent
or all 128 ASCII characters.

INTERFACING ASCII DEVICES

Last month we showed how ASCII is used with Basic for storing
numbers representing characters in memory. This month we want to.
explain what is involved when ASCII devices are connected together.
How do you connect a terminal, printer, or modem to a color computer?
How do we know that the external device is ready to receive
information? There is a signal in most ASCII devices which is called
"handshaking". This means that the device sends the handshaking
signal when it is ready to receive a character. Let�s assume that our
device is a serial printer. If the printer is not ready to receive
characters from the computer, then the computer is put in a "hold
state" until the printer sends the proper handshaking signal. If you
have a printer and do not have it "ON LINE" then the computer is put
in a wait state until the printer sends the ready signal. If you have
a printer then you have probably observed this.

CONNECTING TWO COLOR COMPUTERS TOGETHER

If you have two color computers then they can be connected together
and programs or information can be passed from one to the other. A
terminal program is required for each computer. A cable needs to be
made up to plug into the printer jack on each computer. The cable can
be made with flat cable like the type that goes from the disk drive
controller to the disk drive. On each end of the cable, 4 pin DIN
plugs are required. The wiring of the plugs is as follows:
Color Computer 1 Color Computer 2

pin * Color wire goes to pin * Color Wire

1 yellow (not used on either>
2 green 3 red
3 red 2 green
4 white 4 white

How are programs transferred? Let�s assume that a terminal program
is loaded into each computer in an area not used for programs. There
are several terminal programs available and we will use our "DYTERM"
as an example since we are very familiar with it. Now let�s load the
program to be transferred into the first computer. After the program
is loaded either from a cassette or disk, record its beginning and

ending basic vectors in locations 25 to 28. Then switch to the
terminal program. If you don�t know how to stack programs see the
multiprogram manager in Volume 1, No. 1. You can pick a memory

9

location that is not being used to load in the second program. To
initialize basic for a new memory location do the following.

1. If M is the location for the new program poke a zero into M-1.
2. Let the vector in locations 25 and 26 point to M and type "NEW".

The second computer should be initialized for the same beginning
memory location as the program to be transferred. This means that the
values in 25 through 28 for the second computer should be the same
values as for the first computer. Poke the zero into M-1. Then the
terminal program can transfer the loaded program a byte at a time
until all of the program is transferred. After the transfer is
completed the second computer can run the program.

Before attempting to transfer data between two computers send a few
characters to make sure that everything is working properly. You need
to initialize the ASCII parameters. That is you need to select the
baud rate, word length, parity, and number of stop bits. Use the
fastest transfer rate you can so the transfer will be completed
quickly. For transferring programs or data you need to send 8 bit
ASCII characters.

RS-232

The RS-232 port is generally used for ASCII signals on terminals,
printers, MODEMS, and computers. The definitions of the pins is a
standard but the way they are used is confusing. Some of the pin
connections for a RS-232 port is as follows:

pin # Function

1 chassis ground
2 TX <transmit data>
3 RX (receive data>
4 RTS (request to send>
5 CTS (clear to send>
6 DSR (dataset ready>
7 SG (signal ground>
B DCD (carrier detect)
20 DTR (data term. ready)
21 RI (ring indicator>

The definition of the functions of the pins is standard but the use-of
handshaking signals is not. So when interfacing two RS-232 ports it
is important to connect the proper handshaking lines. Examples are
usually given in the instructions of the equipment.

This will conclude our discussion of ASCII or serial data
transmission. Remember the ASCII code is a standard which assigns a
value to each character of the alphabet. Also when bytes are
transmitted by ASCII, both the sender and receiver have to be set for
the same baud rate. If you need to know more about ASCII then with
the information we have given you should be able to read other
material and understand it.

UNINTERRUPTED POWER SOURCES

You have been working hard developing that special program. It is
almost finished and suddenly the power goes off. All of that work is
lost. If a program was being saved to a disk, what happens to the
disk? Is there a solution to this dilemma? The use of backup power
sources is not well known to most microcomputer owners and users.
There are several ways that backup power can be used and we want to

10

show some of the options.

POWER INVERTERS

First let�s briefly discuss the power requirements for computers.
Most require 115 volts alternating current (ac> at a frequency of 60
hertz. This is what is available in the outlets of most homes and
businesses in the United States. The voltage is constantly changing
direction and it can be represented by a sine wave equation. This was
designed for maximum efficiency back at the turn of the century for
transmitting power from generating stations to consumers. The
advantage of this type power is that it can be converted into
different voltages by transformers. Within each color computer on the
left side is a power transformer that converts the 115 volt line
voltage into levels needed by the computer. A transformer also
provides isolation from the power line making it safer for the
operator.

The most common source for backup power is the 12 volt direct
current (de) storage battery as used in automobiles. Now if this
could be converted to 115 volts ac then the computer could be powered

·from the battery. This is true but let�s point out some problems that
need to be resolved when using this approach.

1. The battery needs a source to recharge it. This is no problem if
it is operated in a vehicle with a built in charging system, but can
be a problem if operated in a home or office. A regular car battery
charger will not work because it will overcharge the battery unless
one is selected with overcharge protection.

2. The correct inverter type needs to be selected for the particular
requirements. Most inverters put out a square wave voltage with a
varying frequency that depends on the load. This will not work with
disk drives which require a relatively stable frequency. These are
fairly inexpensive and will run a television or monitor and the
computer. So if you don�t need a disk drive then this is acceptable.
Special inverters are available that put out a sine wave at the
correct 60 hertz which can be used with disk drives but they are much
more expensive.

3. A method of turning on the inverter when power is lost must be
designed into the system. You don�t have time to throw a switch. It

has to be done quickly and automatically so all of the memories in the
computer will be saved.

4. An inverter has to be selected that is large enough to power the
computer and any other required accessories. A 100 watt inverter will

power a color computer and a small television. You figure the total
power required by adding the power for each accessory. A television

usually has the power required on the back somewhere. You can
generally figure 25 watts for the color computer. So if the computer
requires 25 watts and the television 30 watts then a total of 55 watts
will be required. Get an inverter about twice as large as the power
required so you will have plenty of margin for additional accessories.

After you have the inverter, battery source, and control circuit
installed, it is a good idea to try it out before power actually
fails. Load a program into the computer and remover commercial
power. The uninterrupted power system should take over and the
information should stay in the computer. Restore power to the
computer and the uninterrupted power should disappear.

MOTOR GENERATORS

Motor generator assemblies are available that produce 115 volts
ac. These consist of gasoline motors connected mechanically to an

11

electrical geneator. Basically they are not very practical for
computer back up because of the noise they make and the problem of
getting them to start. Something is needed that automatically starts
and takes over before the computer can loose the information in its
memory. Motor generators would be useful in case of emergencies where
power is lost for a long time or for backing up larger computer
systems. For this application the motor-generators should be equipped
with an electrical starter and a control circuit to start the motor
when power fails and turn it off when power is restored. This might
be used with a back up battery system for extended power failures.

BATTERY BACKUP POWER

Since the power transformer converts the 115 volts ac to a low
voltage de, can batteries be installed in the computer to provided the
de voltage required when power fails? For 64K computers the power
required is 5 volts de. There are 6 volt recharageable batteries
available that will mount under the keyboard. The battery needs to be
charged by the computer, but not overcharged. A control circuit is
required that switches the battery to the 5 volt regulator to provide
the battery power when commercial power is lost. Also a switch is
n�eded to disable the control circuit when the computer is shut down.
This prevents the battery from discharging everytime the computer is
turned off. So the requirements for an internal battery backup system
are

1. The
length of

2. A

recharageable battery must supply 5 volts for the required
time which could be 30 minutes, 1 hour, or more.
switch is needed to disconnect the battery when the computer

is shut down.
3. A control circuit is needed to charge the battery when the

computer is on, to prevent it from overcharging, and switch the
battery to the input of the 5 volt regulator when power fails.

We have developed a back up battery system with the required
control circuit. The battery mounts under the keyboard or it can be
externally mounted. A switch is included to enable the system while
it is being operated and to disable it when the computer is shut
down. We are offering this as a "SPECIAL" to DCN subscribers. See
our offer near the end of this newsletter.

HACHINE LANGUAGE PROGRAMMING

Last month we introduced interrupts. Perhaps we should continue
along this line for a while and show exactly what happens when an
interrupt occurrs • As a matter of review the 6809E microprocessor
contains the following registers:

X Index Register (16>
Y Index Register (16>
U User Stack Pointer (16>
S Hardware Stack Pointer (16>
PC- Program Counter (16)
A - Acccumulator (8)
B - Accumulator (8)
DP- Direct Page Register (8)
CC- Condition Code Register (8)

The numbers in parenthesis show the size of the register. When an
interrupt occurrs everything about the operation of the microprocessor
has to be preserved if it is to continue after the interrupt. To
understand what happens we need to look at the hardware stack register
<S>. The stack register contains a vector that points to a memory

12

location. We store a byte in that location by using the "PUSH"
instruction and we recover the byte from a stack by using the "PULL"
instruction. The terminology generally used is to say "a byte is
stored on the stack or pushed onto the stack". What this means is
that the byte is stored in the memory location designated by the stack
pointer. After a byte is stored on the stack the stack pointer is
decremented (decreased) by 1. To recover information from a stack we
use the "PULL" command. The stack pointer is then incremented
(increased) by 1.

So when an interrupt occurrs all of the registers are pushed onto
the hardware CS> stack or stored in memory locations designated by the
stack pointer. So everything about the microprocessor's operation is
preserved. This means that you can be running a basic program and an
interrupt can cause you to run a different program. After the
interrupt is completed, since everything about the microprocessor was
preserved, the first program continues like nothing has happened.

The process of storing information on a stack is as follows. The
stack pointer points to the memory location where the next byte can be
stored. After that byte is stored, the stack is decremented by 1 and
points to the next lower memory location. So to push data the stack
pointer decreases after each byte. To recover information on the
stack, the "PUL" command is used. To Pull data the byte the stack
pointer is pointing to is pulled and then the stack pointer is
incremented by one. The ordering of information on a stack is "the
last byte pushed" is the "first byte pulled". So if we pushed A, B, &
DP and wanted to recover the information one byte at a time we would
PULDP, PULB, PULA.

Now when the interrupt occurs, the microprocessor automatically
pushes all of the registers onto the hardware stack so that everything
the microprocessor was doing is saved. The interrupt program is a
machine language subroutine which is ended by a return from interrupt
command CRTI). When the microprocessor sees the code number for RTI
it then pulls all of the registers from the stack so it can proceed
with the first task it had before being interrupted.

INTERRUPT EXAMPLES

You might wonder how or when can an interrrupt be used. Last
month we showed how to install a hardware interrupt switch. The
switch connects pins 1 and 2 together on the microprocessor. This is
called the nonmasked interrupt (NMI> because it can not be masked off
(disabled) by software. The basic ROM in color computers uses memory
locations 265, 266, and 267 to allow a machine language subroutine for
the NMI. It is pretty hard to write a machine language subroutine in
only 3 bytes but a jump e>:tended command can be pl aced there. So the
command for jump extended (126 or hex 7E) can be placed in location
265 and the vector for the location to jump to can be placed in
locations 266 and 267.

Now what kind of program can be executed with the interrupt
switch? The answer is any machine language program. The only
requirement is that it must end with the RTI command. Here are some
examples of interrupt programs.

1. Print the contents of the screen to a printer.
2. Exchange the screen display with the display in a designated

memory location.
3. Exchange program vectors so a different basic program can be

run.
4.
5.

to u�e

Find the memory for a basic statement.
Provide a hard reset for the computer. Last month we showed how

the nonmasked interrupt for a hard reset. This is the only

13

hardware interrupt that is not used by the color computers. Have you
noticed that when you plug in a cartridge the computer automatically
runs the program in the cartridge? This is because a hardware
interrupt occurs which forces a machine language program to run at the
cartridge memory area. Also the timer used with the extended basic is
clocked by a hardware interrupt.

There are 3 software interrupts available which are SWI, SW12, and
SW13. Last month we showed that the vectors for these point to memory
locations 262, 259, and 256 respectively. There are 3 bytes at these
locations available for the software programs. What you have to do is
to put a jump extended command in the first byte and the vector for
the location of the interrupt subroutine in the second and third
bytes. After the software subroutine is run then the program returns

to its previous function. The advantage in using these is that all
of the registers are pushed onto the hardware stack. This saves
everything that was happening in the main program and makes for easy
machine language programming.

OPERATING HINTS

LOAD DEFECTIVE PROGRAMS

Sometimes you can load programs that have errors near the end of
them by resetting the computer be+ore it reaches the bad part of the
program. For example for a cassette you can time the loading until
the computer indicates an error. rhen rewind the tape and try loading
it again. Watch the time and reset the computer before the error
occurrs and the good part of the program should be in the computer.
You will have to scan the program with a utility program to find a
good place to put the end of basic vector (locations 27 and 28>. This
will also work with disks but is harder because of the fast transfer
rate.

ASCII BAUD RATE

Locations 149 and 150 determine the ASCII baud rate. For sending
information to a printer, modem, or other terminal the proper baud
rate has to be sent and received. The following chart shows the
values to poke for various baud rates. You can trim the rate if
necessary by slightly varying the values in 150.

Rate 149 150 Rate 149 150

so 4 88 1800 0 25
75 2 227 2000 0 23

110 1 246 2400 0 18
150 1 110 3600 0 10
300 0 180 4800 0 7

600 0 87 7200 0 3
1200 0 40 9600 0 1

You may have noticed that we called this the June / July issue. We
were behind on our first issue and dropped further behind with this
issue. So we decided to combine June and July. You will still get 12
issues because we will add one month to your subscription. IT you
order our hardware or software products and want to take advantage of
your DCN discount please indicate this when you place your order. On

14

your shipping label next to your name is your DCN number followed by
numbers representing the last issue you will receive.

DCN SUMMER SPECIALS

These specials will be good through August 1984. Add $2 shipping
in US & Canada & $3 for other foreign subscribers.

HARDWARE SPECIALS

Uninterrupted power source CUPS)

A 6 volt, 2 ampere hour rechargeable battery with electronic
control circuitry to charge the battery & prevent overcharge plus a
small toggle switch to enable the UPS. Battery can be mounted under
the keybord to power your RAMS when commercial power fails. Requires
soldering one or two wires. fhis is a new product. List price
$59. 95, DCN subscriber�s introductory price $39. 95. Allow 2 to 3
weeks for delivery.

VIDEO REVERSERS

Video reversers reduce eye strain by providing bright characters
against a dark background. They are automatically disabled in the
graphics modes. Excellent for normal computer operation.

VR-1 • • An integrated circuit with eyelets that mounts on the 6847
chip. A 3 position toggle switch is included that provides (1) All
characters reversed. (2) All characters reversed and displayed as
capital letters. (3) The normal display. List $19. 95. DCN special
$14.95.

VR-2 • Same as VR-1 except in a plug in module. List $24. 95. DCN
special $19. 95.

VR-3 • A plug in module that provides all characters reversed. No
switch. List $19. 95. DCN special $14. 95

SOFTWARE SPECIALS

We are increasing our discount on software during this period from 207.
to 307.. Now is the time to stock up on the software you need.

DYTERM - inexpensive
boards. List $14. 95,

terminal program allows
DCN Special $10.45.

access to bulletin

DISASM - 6809 Decimal Machine Language Assembler & Disassembler.
List $19. 95, DCN Special 13. 95.

MPM Multiprogram Manager allows up to 5 programs to be loaded into a
16K or 32K computer. List $14. 95, DCN Special $10. 45.

UP-1 Utility program that does many of the everyday operating
requirements. List $14. 95, DCN Special $10. 45.

15

******************************* ... ********* ... ************* ... **************
* Please si gn me up for one year f or the DYNAMIC COLOR NEWS SERVICE. I *
* understand I wi ll receive a monthly news l etter, Discounts on DYNAMIC *
* ELECTRONIC INC. Computer products plus the Ind i vi dual Reply to my *
* Computer problems for a speci al of S10 each. Al so I understand that *
* there wi ll be no charge f or letters printed wi th answers in the *
* Newsl etter. Cost $15 USA & Canada, $30 f oreign. *
* *

* Name --- Mail payment to *
* Address ------------------------------------- Dynami c El ectroni cs Inc *
* City _________ ____ P. O. Box 896 *

* State & Zi p _ ______ ___ _ ___ Hartsell e, AL 35640 *

* Encl osed is a check *
* charge to VISA ___ MC Number __________________________ Exp. _____ *
* *

************* ... ** ... ** ****

DYNAM I C ELECTRON I CS I NC -
P. O. Box 896 (205) 773-2758

Hartsel l e, AL 35640

	1984-06and07_Page_01
	1984-06and07_Page_02
	1984-06and07_Page_03
	1984-06and07_Page_04
	1984-06and07_Page_05
	1984-06and07_Page_06
	1984-06and07_Page_07
	1984-06and07_Page_08
	1984-06and07_Page_09
	1984-06and07_Page_10
	1984-06and07_Page_11
	1984-06and07_Page_12
	1984-06and07_Page_13
	1984-06and07_Page_14
	1984-06and07_Page_15
	1984-06and07_Page_16

