
Nay 1984
Val. 1 Na. 4

**** * *
* * * *
* * * *
* * *
* * *
* * *
**** *

* *
*
*
*
* *

*
*
**

* *
* *
** *
* * *
* **
* *
* *

* *
* *
* *
* *
* *

ENBIIEERING NOTES
an

Radia Shack Calar Camput■r■

* * * *** ***
* * ** ** * * *

* * * * * * *
***** * * * *
* * * * * *
* * * * * * *
* * * * *** ***

* *** ****
* * * * *
* * * * *
* * * ****
* * * * *
* * * * * *
***** *** * *

* ***** * * ***
* * * * * *
* * * * *

* * * *** * * * ***
* ** * * * * *
* * * ** ** * *
* * ***** * * ***

* ASCII PART II
* INTERRUPTS

* CCltPUTER TtEORY * MACHINE LAN8UA8E PR08RA191IN8
* BASIC PRDBRANttINB * QUESTIONS Ir ANSWERS
* OPERATING HINTS

DYNAMIC COLOR NEWS is published
monthly by DYNAMIC ELECTRONICS,
INC., P.O. Bax 896, Hartsell■,
AL �40, phone (20S> 773-2r.58.
Bill Chapple, President, Alan■
Chappla, Sac. • Tr••••• Jdln
P■arsan, Ph. D. Consultant, Bab
Margan, Ph. D., Consultant.

Entir• Cantants <c> by
DYNAMIC ELECTRONICS INC., 1984.
DYNANIC COLOR NEWS is int■ndad
for th• privata u- cf our sub­
scribars and purchas■rs. All
rights rasarvecl. Cantants af
this n■w■l■tt■r may net b•
capi■cl in Nhal• ar in part
without wr-itt■n parmissian from
DYNAMIC ELECTRONICS INC. Sub­
scriptions ar■ •1�/yr fer U.S.A.
• Canada, •:so athar fcraign.

Th• purpa•• of this news­
lattar is ta pr-avid• instruc­
tion an Basic • Machin• Lan­
guag• pragraat1Ring, Caaput■r
th■Dl"'y, aparating t■chniquas,
camput■r ■xpansion, plus pro­
vid• answ■r• to quastions from
our subscribars.

Th• submia■ion of quastiona,
operating hints, and solutions
to probl••• ta b• published in
thi• nawalattar ar■ 11ncaurag­
■d. All submissions become th■
property of Dynamic Electronic•
th• ■at■rial is us■d. Wa r■-

s■rva th■ right ta adit all
material used and not ta us■
material which we d■t■rain■ i•
unsuited for publication.

All paid subscriber• ar■ en­
titl■d ta discounts of 10% on
hardware. and 20% an software
manufactured or produced by
Dynamic Electronic• Inc. plus
"spacial•" m■ntian■d in th•
newal■tt■r. Ta r■c■ive th­
discaunta us■ your DCN number
which is at th■ right of your
nam■ an th■ addr••• labal.
DCN subscriber• may obtain •
p■raonaliz■d r■ply to ■pacific
comput■r prabl••• or advice
on purchasing aquipmant. Th■
charge for this a■rvic■ is •10.

.......................................

* *

* DYNAMIC CDLOR NEWS

*

* May 1984

*

• Editor and Publillhar
* Bill Chappla
•

• Secretary
* Belinda Parkar
*

CONTENTS

Editor•• Caamants

ASCII - Part II

• • • •

• • • •

Machin■ Languag■ Pr09ra-ing

3

4

<Intarrupta> • • • • • 6

In■talling Int■rrupt Switch 8

1281< M■mary Expanders • • • 9

641< l'lltfllary Solution • • • • 11

Utility Program • • • • • • 13

Operating Hint• • • • • • • 14

Question■ and Answara • • • 14

*

*

*

•

•

*

*

•

*

*

•

EDXTOR�s COMMENTS

A recent problem with my house prompted me to look at another
application for microcomputers. A couple of years ago I had my house
insulated using the Tennessee Valley Authority�s (TVA> home insulation
program. Ny electricity is supplied by TVA and this program is
supposed to reduce power consumption saving TVA the expense of
building additional power generating plants. The program works like
this. A TVA representative inspects the house and makes
recommendations as to what needs to be done. A TVA certified

insulation firm then is selected by the home owner to do the work at
an agreed price. As the work is progressing and after it is finished
TVA inspects the job to make sure it complies with their
specifications. The cost is added to the monthly electric bill over a
period of a few years.

The job was completed and the benefits of the added insulation were

immediately realized. The additional monthly cost for the TVA loan is
obviously offset by the reduction in my electric bill. The house is

totally electric. About six months ago I begin to notice a problem.
The shingles began curling upwards and breaking off. After further
investigation I noticed that the insulation which was blown into the

attic was so thick that the air flow was greatly reduced. I will need
a new roof soon, but with a 12 year old house this is not too painful

a thought. You may ask where do computers fit into this? The answer

is for monitoring the heat in the attic. As mentioned in an earlier
newsletter it would really be nice if the computer could be made to
control and monitor devices around a home or business.

How convenient it would be if the computer could monitor my own
telephone calls. It could give me the date, time of day, and length
of each call made. Also it could control an attic fan for my air flow

problem, be a smart telephone answerer, a fancy clock, a family
message center, and a burglar alarm. These are just a few of the
obvious applications. To do these tasks requires a hardware

interface. The computer can handle these tasks on an interrupt
basis. The computer can be interrupted several times a second and
attend to these secondary tasks and return to its previous task with
no loss of data. The writing of the programs to do these tasks is
fairly easy. As stated before I think that these applications are
very promising for computers. The question is "are consumers willing
to pay for these features". There must be a reasonable assurance that
consumers want these devices before expensive development is

undertaken.

Because of the numerous questions asked us about our 96KX and 128K
memory expanders we are including editorials on both in this issue.

We are in the process of putting together a new catalog of our
products. We want it to be in a form similar to our newsletter and
will show sketches to give you an idea of how the product looks. When
it is completed a copy will be mailed to each subscriber.

We had to redesign the modules for our 128K expanders. The SAN
chip controls the refreshing of the memory chips. Some initial

circuitry placed under this chip killed the memory refresh if it was
not properly working rendering the computer useless. After we moved
this circuitry to the module under the PIA chip the problem
disappeared since even if the PIA chip failled the computer will still

operate. Our 128K modules work as well as could be expected. Read
the editorial if you are interested in this.

We are continuing with the discussion of ASCII. There seems to be

3

. .

quite an interest in bulletin boards and we are looking into starting
one. ASCII is used with word processors, printers, modems, and
terminals. If you are interested in these subjects then you should
read our ASCII section.

For our machine language section we are covering interrupts. These
can be used with basic as well machine language programs and will
allow you to stop what you are doing and run another program. For
example you can print to a printer the information that is on the
screen or exchange the information on the screen with other
information. These are just examples. The list can go on and on.
There is a 60 hertz interrupt that you can patch into and modify the
basic or keyboard routines. These can also look for levels on a port
to do the monitoring functions discussed earlier. Our interrupt
switch is an extra feature you can add·. It forces the computer to run
a machine language program when it is pushed. The program can be
anything you would like from a hard reset to a complex program. It
can be located anywhere in memory. The command for jump extended is
put in location 265 and the vectors for the program are in locations
266 and 267.

ASCII PART II
ASCII & BASIC

Last month we introduced ASCII and showed how it is constructed
for serial data transmission. For storing information or characters
in memory we have to convert the characters to numbers since computers
only work with numbers. Therefore ASCII is a standard by which each
character of the alphabet plus some printer operations are assigned
numerical values. For earlier computers it. was necessary to enter
the ASCII values of characters you wanted printed. Basic has
operations that convert characters to their ASCII value and ASCII
values to characters. We want to cover these now.

INKEY$

This command forces the computer to recognize characters from the
keyboard. Since the characters are st.rings as indicted by the "S"
sign, they can be printed on the screen. A basic program to print
characters on the screen follows:

10 A$=INKEY$
15 IF A$="" THEN 10
20 ?A$;
25 GO TO 10

Statement 10 defines AS to be the key pressed. Statement 15 says
that if no key is pressed then go back to 10. Statement 20 causes the
character to be printed.

ASC <STRINGS>

Now to convert the character to a value we
command. A = ASC (A$) will give the ASCII
Now we can store A in memory using POKE M, A.
gone from a character to its ASCII value. We
convert an ASCII value to a st.ring.

4

use the ASC (A$) basic
value of the character.

Notice that we have
need another command to

CHR$ COMMAND

If A is the ASCII value of a character stored in memory then we can
recover the character and print it on the screen with the following:

5 INPUT "MEMORY LOCATION"; M
10 A= PEEK <M>
15 A$ = CHR$ <A>
20 ? A$;
25 M = M + 1: 60 TO 10

The above program will display the characters stored in memory.

The ASCII Value of.CHARACTERS

The following program will display the ASCII value of any keyboard
character. We suggest that you type in the program and run it if you
are not familiar with the ASCII values of the characters.

10 � THIS DISPLAYS THE ASCII VALUES OF KEYBOARD CHARACTERS
15 A$=INKEY$: IF A$= 1111 THEN 15
20 A= ASC (A$) : ?A; A$
30 60 TO 15

Try the program out for upper case and lower case letters, numerics,
and punctuation symbols so you can get a good feel for ASCII values.

ASCII and PRINTERS

If you use a printer then you will need ASCII. Some of the ASCII
codes are used for printer control. Examples are

ASCII value

10
12

13

27

Printer function

Line feed (rolls paper down for the next line)
page feed <go to the top of the next page)
carriage return (moves print head back to column 1)
ESCAPE <used to set printer options>

The instruction manual that came with your printer will tell you what
printer codes are required for the various options. These codes can
be entered from basic by using the following:

?#-2, CHR$ <X> <ENTER>

X is ·the ASCII value in decimal.

SAVING PROGRAMS IN ASCII

You have probably read in the instructions that cuie with your
computer that basic programs can be saved in ASCII. Why would you
want to do this? What is the difference in the structure of an ASCII
basic program and a normal basic program? If you will recall from our
discussion of vectors, a basic statement is preceeded by a O plus
vectors in the next 4 bytes. The next byte contains the value
representing the basic command. On the other hand, ASCII means that

5

the program is saved in text form. It takes more space for an ASCII
basic program than for a normal basic program. The reason is that
every command has to be written out for ASCII. In basic each command
occupies 1 or 2 bytes while in ASCII each character occupies 1
byte. For example GO SUB requires 6 bytes and RETURN requires 5
bytes for ASCII. For basic the same commands require 2 and 1 bytes
respectively. To save a program in ASCII just put a ,A after the
closing quotations.

EXAMPLE: <C> SAVE "TEST", A

EXCHANGING PROGRAMS BETWEEN COMPUTERS

When programs are saved in ASCII format then they can be loaded
into any other computer that uses Microsoft Basic. These can even be
computers that use different types of microprocessors. Since the
ASCII file is just a text file then it is independent of machine
language codes. As the ASCII program is loaded into the computer,
the basic tokens are inserted and the beginning vectors are computed
and added. Each statement in the ASCII program will end with a CHR$
<13) which is the code for "RETURN" or "ENTER". The computer looks
for this code so it will know when an end of statement has occurred.
After each statement, basic needs a O plus the next statement vector
followed by the statement number vector. Rather than get into the
mechanics of how this is done let�s just say that the computer
converts the ASCII characters into basic vectors and coamand tokens.

WORD PROCESSORS - BASIC PROGRAMS

Since an ASCII basic program is a text file why can�t word
processors be used to generate and edit basic programs? The answer is
"they can and will do a nice job". Maybe we will devote an issue to
using word processors for creating and editing basic programs if there
is enough interest in this area. We used our word processor
extensively for creating and editing basic programs.

MACHINE LANGUAGE PROGRAMMING
INTERRUPTS

The use of interrupts does not seem to be well known. An interrupt
causes the computer to stop what it was doing, save all pertinent
information about its task, take on a new task, and return to the
first task without loosing any information. We now have an interrupt
switch which you can add to your computer for $9. 95. We use the
nonmasked interrupt (NMI> because it is the highest priority interrupt
and cannot be masked off (disabled) by software.

Let�s look at the state of the microprocessor when the interrupt
occurs. Let�s assume that some kind of program is in progress. The
microprocessor doesn�t recognize basic, the only language it knows is
machine language. Basic is a collection of machine language
subroutines that are designed to make it easy for the user. When the
interrupt appears the microprocessor finishes the instruction it was
doing. Next all of the registers are stored on the stack by using the
"PUSH" instruction. Remember a stack is just a designated memory
area. Information is stored on the stack with "PUSH" and removed from
the stack with "PULL". An interrupt automatically stores the entire
machine state. The return from interrupt <RTI) instruction "PULLS"

6

the previous machine state from the stack allowing the microprocessor
to resume its first task.

ENABLINS the INTERRUPT

Memory locations 265, 266, and 267 are reserved for the nonmasked
interrupt by basic. The top few bytes in the memory map are reserved
for the microprocessor�s reset and interrupt vectors. A chart showing
the interrupts and their vectors follows:

Interrupt Description

RESET
Non-Naskable Interrupt <NNI>
Software Interrupt <SWI>
Interrupt Request (IRQ)
Fast Interrupt Request (FIRQ)
Software Interrupt 2 <SW12>
Software Interrupt 3 (SW13)

Location

65535 <FFFE>
65533 <FFFC>
65531 <J=FFA>
65529 (FFFF>
65527 <FFF6>
65525 CFFF4>
65523 <FFF2>

Vector

40999
265
262
268
271
259
256

Notice that the reset vector points to 40999 which is the value you
can use to reset from the keyboard by EXEC 40999. How do we use the
nonmasked interrupt? As soon is the interr1,1pt is activated by
pressing a switch the computer begins to run a machine language
program. It goes to location 265 for its instruction. Since there
are only 3 bytes available we can only jump to some other location to
continue with the interrupt program. Let�s say that we want the
interrupt to provide a hard reset. This involves storing a O in
location 113, and then going to memory location 40999 for the reset.
Remember a hard reset requires a O in memory location 113. Let�s
write a program using basic.

10 POKE 113, 0
20 EXEC 40999

Now for the machine language program we need ta pick a memory
location in which to write the program. Let�s use location 480 for
the start of the interrupt program. So in location 265 we need a JUMP
EXT to 480 instruction. At 480 we will write the equivalent of the
above program.

265 JNP E to 480

480 CLR D 113 <Put a O into location 113)
482 JMP E 40999 (Sa to the reset subroutine>
485 RTI <Return from interrupt)

Notice we used a "D" after CLR. This is the "DIRECT" addressing
mode. It only takes 1 byte and its location is referenced to the
direct page counter. Nost of the time the direct page couter is a 0
so for memory locations less than 256 we can use the direct mode.
This eliminates a zero being one of our values. This will be
important later when we show you how to carry machine programs with
basic programs in remark statements. The values of the assembled
program are as follows with the characters in parenthesis being the
HEX equivalent of the decimal values

265 <109) 126 (7E) Code for Jump extended

7

266 <lOA>
267 <10B>

480 <1EO>
481 (1E1>
482 (1E2>
483 <1E3>
484 (1E4>
485 <1E5>

1
224

127
113
126

160

39
59

(01)

CEO>

(7F>
(71)
(7E>
CAO>
(27)
(3B>

HSB of Jump Location
LSB of Jump Location

Code for Clear Direct
Location 113
Code for Jump extended
HSB of 40999

LSB of 40999

Code for Return from Interrupt

HSB and LSB are the most and least significant bytes of the location
vector <see our February newsletter for an explanation of vectors>.

Notice that the value in location 265 is 126. So to set up an
interrupt vector poke a 126 in 265 and· the HSB and LSB values of the
machine language starting location should be poked (stored) in
locations 266 and 267. If you have an assembler you might want to try
this problem and see if you get the same values as we did. The return
from interrupt routine is not needed since the computer goes through
its normal power up routine when the interrupt is enabled. Also our
values in 265-267 are erased by the power up routine and it is
necessary to re-enter them after the reset. Our 96KX software has
this hard reset feature built in.

In case you don�t know what we mean by a hard reset do the
following:

POKE 25, 200: NEW

You will receive an error message. Now enter ?HEH and you will get an
out of memory error. Now push the reset button on the rear of the
computer and again ? HEH. The computer is locked up. However if you
have an interrupt switch you can force the computer to reset with the
above program.

The nonmasked interrupt can be used to run any machine language

program. Just put the JUHP E to H values in locations 265 to 267.
As an exercise see if you can use the nonmasked interrupt to do the
display switching we presented last month.

For those of you that want to install an interrupt switch we are

including this in a special hardware section. You can make your own
or purchase a switch with eyelets from us with a cassette of programs
you can run by pressing the interrupt switch for $9.95.

INSTALLING AN INTERRUPT SWITCH

As much as possible we want to show you how to add hardware
features to your computer. However we want to warn you that you can
damage your computer with one mistake. We have blown microprocessor
chips, PIA chips, SAH chips and memory chips with simple mistakes.
The installing of the interrupt switch is fairly easy and considering
the fact that it adds a means of starting any machine language program
it is a worth while addition.

You will need a normally open push button switch, some small wire,
an optional 40 pin socket, and a hole in the computer case to mount
the switch. The switch will need to be wired across the nonmasked
interrupt input and ground. For the microprocessor these are pins 1
and 2. If you have a 40 pin socket then you can wire pins 1 and 2 to
the switch and plug the microprocessor into the socket and the socket
with the microprocessor into the microprocessor�s socket. If you

8

don�t have a 40 pin socket then you can solder directly to the
microprocessor� s pins although we don� t recommend this. We use
eyelets that fit over pins 1 and 2 on the microprocessor. However you
can � t buy eyelets at parts stores so you will have to get an extra
socket or solder to the microprocessor or the output connector.

ASSEMBLY STEPS

1. Collect the required parts A push button swith, about 1B" of 2
conductor wire, and an optional 40 pin socket.

2. Locate a place to mount the switch. We mount ours under the front
lip on the right hand side.

3. Measure the wire to go to the microprocessor. Leave about 2
inches extra and cut off the excess wire. Strip about 1/2" from each
end of the wires.

4. Remove the microprocessor amd solder one end of the wires to pins
1 and 2 of the microprocessor or socket.

5. Drill a hole and mount the switch to the computer.
other ends of the wires to the two tabs on the switch.

Solder the

6. Plug in the microprocessor. If a socket
microprocessor into the socket and the
microprocessor�s socket.

is used then plug the
socket assembly into the

The installation is complete. You can arm the reset button by
entering values into locations 265 - 267 as discussed previously.

12BK MEMORY EXPANDERS
PRODUCT INFORMATION EDITORIAL

What can you expect from our 12BK memory expanders? If I were
considering purchasing one then I would want to know what it would · do
for me. Let�s look at the operation of the computer first. The
computer � s memory is partitioned so that the lower 32K bytes are
random access memories (RAM> and the upper 32K bytes are read only
memories <ROM>. This is the normal power up mode and is called memory
map type O. If you have a 32K computer then you can fully use the 32K
of memory. However if you have a 64K computer then you are not much
better off than with the 32K arrangement. Some word processing,
basic, and machine language programs partition the memory map so that
all of the memory is RAM. This is called memory map type 1. They
transfer the information in the ROMs to the RAM. However this is a
duplication and wastes 16K bytes for the basic and extended basic
ROMs. So you have from SK to 16K more of memory you can use with this
method.

We designed our 96KX expander so that both 32K memory banks can be
used while retaining the upper 32K of ROM. Word processors, file
manager programs, and basic programs can be modified not to configure
the memory as all RAM. Patches need to be made to allow text or data
to be stored in the other 32K of memory which can be accessed by
software programs or our 96KX modules or cartridges.

Now back to the 128K and larger sytems. Since most software is

9

designed for a 64K or smaller computer, then it is not directly
compatible with larger systems. There are chips available for
managing memories up to a couple of million bytes. We had to decide
on which approach we were going to take. Do we want the additional
memory to only be used for storage or do we want the added feature of
being able to write programs in any of it? The first option would be
similar to a disk drive. We could load and save programs to the extra
memory. However this takes additional software similar to the disk
drive controller.

The latter approach is the one we decided upon. Since the computer
contains software for initilization of memories in the basic ROH, we
can use this for initializing the second bank. When the power switch
is turned on the computer goes through a hard reset routine and
conditions the memory for basic operation. With a 128K memory system
configured as two 64K memory banks, only one bank will be initialized
when the computer is turned on. We include a 3 position switch with
our memory assemblies so that in the " LEFT" position bank 1 is
selected and in the "RIGHT " position bank 2 is selected. In the
"CENTER" position the banks can be switched by software. After the
first bank is initialized we need to move the switch so the second
bank can be initialized. We will need to push the reset button after
the second bank is selected to force it to be initialized for basic.

Now we can run two independent programs in either bank. We can�t
run both at the same time because both use the same microprocessor,
SAM chip, and video display chips. As long as we are doing the same
thing in both banks we can switch back and forth at will with no
problems. Let�s assume that we are running basic programs in both
banks. Suppose we have a finance program in bank one and a telephone
program in bank 2. Now suppose it is necessary to stop and make a
telephone call. All that is needed is to press the "BREAK " key and
then switch to the telephone program. After we enter "RUN" we are in
the telephone program. Everything we were doing with the finance
program is saved in the other bank including all variables and
vectors. After we have finished with the telephone program we can
return to the finance program and continue with no loss of data.

Well what about software control of the two banks? We have
arranged it so that you can go under software control from one bank to
the other. Also you can transfer variables or data from one bank to
the other. To switch banks involves two memory pokes. If both banks
are in the "RUN" mode then the banks will switch and the program will
continu in the second bank. A variable can be transferred by poking a
value into a memory location that is common to both banks and peeking
this location after the bank switch. Of course all of these pokes are
included in the instructions.

What about word processors that use graphic displays? You need to
load the software into each bank. If both programs are doing the same
thing then you can manually switch banks. For instance suppose we are
writing this article in one bank and we want to stop and edit a
brochure or write a letter. We can switch banks and use the second
bank without distrubing our text in the first bank.

Now can word processors be in one bank and basic programs in the
other bank? The answer is "yes " if you can configure the SAM chip
and VD6 chips to be the same in both banks. This is automatically
done if basic or the same word processor is run in both banks.

You may wonder what is included in our 128K expansion kits?
Because we did not have to write additional software since we depend
on basic for our additional bank�s initialization, we were able to
produce a compact control circuit in two modules. These modules mount

10

under a PIA chip and the SAH chip. Connected to the modules is the 3
position switch which can be mounted in a 1/4" hole under the front
lip, plus a 64K bank of memory chips with sockets mounted to them. If
you have a 64K computer then your chips fit in these sockets in our
HE-128-64. For the other upgrades we supply all of the memory chips.

Does the upgrade cause additional heat and is it hard to install?
Anytime you add more chips you will create more heat. However the
control circuit does not require much power and the unselected bank is
automatically placed in a power down state where it draws about 1/10
of its regular power. The whole assembly draws less power than a
piggy backed 32K memory upgrade. The instailation is easy. Remove
the PIA and SAH chips plus the memory chips and install our assembly
in the vacant sockets. Next plug the PIA and SAH chips into the
sockets on top of the modules. Then mount the switch at any
convenient location.

In summary the 128K expanders mount inside the computer, support
all software, do not require any soldering or trace cutting for
installation, allow banks to be switched by software or manually, and
allow variables and program control to be transferred from one bank to
the other. When used with our 96KX-H it has the same computing power
as 4-32K computers.

64K MEMORY SOLUTION
96KX PRODUCT INFORMATION EDITORIAL

You have just purchased a 64K computer and can�t use all of the
memory. When you ?HEH you get a value between 22000 and 30000. It
would seem logical to have at least 50000 for a 64K machine. To find
out what is happening you ask your Radio Shack dealer but he does not
give you a satisfactory answer. Next you turn to the magazines and
find an article here and there telling you how to use BK more of the
hidden memory which is your other 32K.

The purpose of this article is to explain the problem and show how
we solved it. The engineers who designed the color computers chose a
powerful memory controller chip the HC6BB3 which is known as the SAM
chip. SAH stands for synchronous address multiplexer. The 16K - 4116
and the 64K - 4164 chips are called dynamic RAHS. RAH stands for
Random Access Memory. Dynamic RAHS require refresh signals at minimum
specified time intervals to keep from loosing the information stored
in them. The SAH chip provides these signals plus the clock signal
for the microprocessor plus it selects which memory devices are to be
turned on. When you turn the computer on then the Basic ROH is
activated by the SAH chip.

There are two modes of operation for the SAH chip. The first is
called memory map type o. In this mode the memories are arranged by
the SAH chip so that the upper 32K of the memory map is occupied by
ROH and the lower 32K is occupied by RAH. Now for 64K computers this
means that there are two banks of 32K RAH in the lower memory. This
is the normal mode of operation for Color Computers. The two banks
are called memory page O and memory page 1. Don�t confuse this with
graphics pages since we are talking about 32K memory pages. Now the
only thing common to both pages is the ROM memory area. So software
is needed in the ROH area to access both memory pages.

The Basic ROH initializes the first page for operation when the
computer is first turned on. However it does nothing to the second
memory page so Basic is not initiliazed for memory page 1. We solved

11

this problem by putting a ROM in the upper BK of the ROM memory.
There are 4-BK memory blocks that can be used for ROMS. The first is
for the Extended Basic ROM, the second is for the Basic ROM, the third
is for the expansion or cartridge port and the fourth is generally not
used. By being able to fully use all 64K of RAM plus having 32K of
ROM, the Color Computer becomes a 96K computer. So we called our ROM
Software the 96KX.

In order to put an operating system in page 1 it seemed logical to
transfer all of page O to page 1. Since page O automatically
initializes for Basic, when we transfer each byte to the corresponding
byte in page 1 then we should have Basic also in page 1. This is one
feature of our 96KX. To switch to page 1, it is necessary to poke any
value into location 65493. Basic works fine except the screen does
not work. So we decided to see if we could exchange the bytes in page
0 with those in page 1. If this works-then we would be able to always
operate in page O where we could see our results on the screen. So we
wrote a machine language program to do this exchange. This was
incorporated into the 96KX software.

Sometimes it is advantageous to have more memory for data storage.
It would be nice if we could transfer files from one 32K memory page
and store them in the other 32K memory page. So to take care of this
need we wrote subroutines to pass blocks of data from page O to page
1 and from page 1 to page 0. This we incorporated into our software.

Now that we have both 32K pages at our disposal, we noticed that we
had quite a bit of ROM memory left. So we'decided to incorporate
routines to aid in the everyday operation of the computer. We added a
memory scan routine that displays the values stored in memory in
decimal, hex, vector, or ASCII formats. We can also change any value
stored in memory, change any one statement number, enter data in mixed
decimal or hex, convert decimal to hex and hex to decimal. These
saved us from having to load a utility program when we need to develop
or fix programs.

One thing that has always been a hassle is determining the
beginning, ending and execute address of machine language programs.
So we included this in the software. Sometimes our computer would
hang up and we couldn�t reset it with the reset button. So we added
an interrupt switch and software to allow a hard reset when the
computer is interrupted by our button. This works even when the
computer displays an out of memory error. For example POKE 25, 200:
NEW. You will get an error message. Then ?MEN and you will get an
out of memory error. Previously we had to turn the computer off
before we could get it to run again. The interrupt switch allows a
hard reset and restores the computer even when an out of memory error
occurs.

After developing the 96KX software we put it in a cartridge with an
output connector and an interrupt switch. This worked as expected
with disk drive and accessories. The software proved so useful that
we looked at putting it inside so it would always be available. We
developed a couple of modules that mount under the microprocessor chip
and the Extended Basic ROM. This is really nice as the software is now
a part of our computer. We mounted a push button switch under the
front lip of the computer to provide the hard reset feature.

Ip summary I believe the 96KX is the best product we have
developed. It allows us to use all 64K of RAM plus retain the Basic,
Extended Basic, and 96KX ROMS. It is a permanent part of our computer
and a real asset.

12

UTILITY PROGRAM

This handy program can be used if your main program bombs out. For
exampl e suppose you are running a finance program and for soma unknown
reason a hard reset occurs. When you l ist you get a screen ful l of
odd l ooking characters that doesn7 t at al l resembl e your program. You
have spent quite a bit of time on this program and don7 t want to have
to start over. If you coul d just sal vage part of it then al l of the
work woul d not have been in vain.

When the hard reset occurred then zeros
of the program. Basic considers a string
program. What you wil l have to do is to
find a pl ace where the program has not
pl ace val ues in memory l ocations 25 -28 so
part of the program.

were put into a l arge part
of zeros to mean the end of
search through memory and
been al tered. Then you can
that you can save the good

The program we are going to give wil l al l ow you to peek into memory
and find the good parts of the program. This may not be too easy a
task but it is better than l oosing your work. The util ity program
wil l need to be l oaded into a memory l ocation that you do not normal l y
use for programs. ? PEEK <25) wil l give the most significant byte
<HSB> of the basic starting vector and ? PEEK (27> wil l give the HSB
of the ending vector. If the val ue in 25 is 30 or 38 then the
util ity program can start in a l ower l ocation such as 20. If you have
a 32K or l arger computer then it can start at 90. Remember the
starting vector is 256 * PEEK <25> + PEEK (26> . The val ue in l ocation
26 is usual l y 1.

Let7 s assume our util ity program is going at 20, 1. Each basic
statement has to be preceeded by a O so we need to POKE 256 * 20, O.
Now enter "NEW" and when you get an OK you can enter the fol l owing
program.

107 THIS UTILITY PROGRAM AIDS IN PATCHING
PROGRAMS

15 INPUT "ENTER STARTING MEMORY LOCATION OR THE
MSB OF THE VECTOR; M

20 IF M < 255 THEN M=256 * M + 1
25 A = PEEK <M> : AS= CHRS <A>
30 V = 256 * A + PEEK CM + 1)
35? M ; A; AS; V
40 l'1 = l'1 + 1
45 X$ = INKEY$: IF X$ = 111'1 11 THEN 15
50 IF XS = "C" THEN 60 ELSE 25
55 if X$ = "V" THEN BO
60 INPUT "LOCATION TO CHANGE"; L
65 INPUT "ENTER DECIMAL VALUE"; X: M=N-10
70 POKE L, X : GO TO 25
BO ?•THIS DETERMINES THE NS AND LS OF A VECTOR
85 INPUT" ENTER VECTOR VALUE ";VV
90 MS = INT CVV/256> : LS = VV - 256 * NS
95 ?"V= "VV;"NS = 1

1 MS; "LS="LS
100 ?"PRESS A KEY TO CONTINUE
110 VS= INKEY$: IF VS='"' THEN 110
120 60 TO 15

Statements 15 - 35 gets the val ue from the memory and from the next

13

location and displays the memory location, value stored, the ASCII
character the value represents and the vector stored in location M.
You can look at these values and see how your original program is
constructed. In fact it is a good idea to use this program on a good

basic program or on itself so you can get a feel of how a basic
program is constructed.

All locations are not vectors. You should recognize the statement
numbers in the vector column when the program advances to a good part
of your previous program. After finding the first part of your
program that is good make a note of its location. Then scan the rest
of your program looking for a string of zeros. These you will want to
replace with 32 which is the ASCII value of a space. Press the "C "
key if you want to change a value. After you have patched the program
you can put the vectors in locations 25 - 28 and save the program on a
cassette or disk.

Since each basic statement is preceeded by a O it is easy to spot
the beginning of a basic statement. The next location will give the
vector to the next basic statement, and the third location after the 0
will be the basic statement number which is in vector format. Become
familiar with the program before you need it and you will have it when
it is necessary to patch a program. The utility program can be saved
on disk or tape and loaded when you need it. Our 96KX software has
the equivalent of this program included with it as one of the
features.

OPERATING HINTS

If you have an operating hint you would like to share then send it
to us and we will print it here.

DELETING CHARACTERS

When editing basic statements using the extended basic editor and you
need to delete several characters, don�t bother to count the number of
characters just press the 11 D 11 key to delete one character at a time
while observing the characters on the screen.

The cursor�s
the cursor up
136 and 137.
this.

HOVE THE CURSOR

vector is in memory locations 136 and 137. You can move
N lines by subtracting 32 * N from the value stored in

You can write a basic or machine language program to do

QUESTIONS AND ANSWERS

If you have a question you would like to have answered send it to us
and we will answer it here.

Question: Are your 128K memory expanders compatible with my existing
software? I don� t want to have to buy more software.

Answer: Yes. We designed them to be completely compatible with all
software. See our editorial in this issue.

14

Question: I have a friend who has a Model-4 from Radio Shack. Will
his programs work on my color computer?

Answer: It is doubtful that you can use the programs easily.
However if they are programs that do not use any special ROM calls,
require printing to specified memory locations, or obtain information
from designated memory locations, it may be possible to use them. You
need a terminal program so the Model-4 programs can be downloaded to
you in ASCII basic format. The Model-4 uses a different
microprocessor but still uses Microsoft basic so programs can be
transferred by ASCII. See our editoral on ASCII in this issue.

Question: My computer works for a while but after a few minutes the
screen does funny things. What could be the problem?

Answer: One of your chips could be going bad. The suspects are the

Microprocessor chip (6809E>, the PIA c�ip (6821) , and the SAM Chip
(6883) . The cheapest of these is the 6821 and there are two of them.
The microprocessor i_s next and the most expensive is the SAM chip.
The microprocessor is a good candidate. It is a good idea to have a
spare set of chips, at least one of each of the 3 mentioned. Replace
them one at a time until the problem disappears.

NEW ADVANCED COLOR COMPUTERS

These are the most advanced color computers you can buy. The 96KX-M

allows you to use all of the memory in 64K and 128K computers plus its
powerful utilities are available for program development. It is
installed so you always have this feature. We are the first to
advertise 128K memory expanders and are offering these installed.
With the 96KX-M and 128K memory you have the equivalent computing
power of 4-32K extended basic computers. Also included is our
multiprogram manager software which will allow you to load up to 5
programs in each 32K memory bank giving a total of 10 menue selected
programs you can use in 64K computers and 20 for 128K computers about
as much as a disk drive. With the _ 128K computers the banks can be
hardware selected with the front mounted toggle switch or software
selected.

NEW 64K coco 2 NEW 128K coco 2

EB 64K CC2 $299.00 EB 128K CC2 $299.00
96KX-M 59.95 96KX-M 59.95
VR-2 19.95 VR-2 19.95

11PM SOFTWARE 14.95 MPM SOFTWARE 14.95
LABOR 10.00 ME-128-64 199.00

------ LABOR 10.00
TOTAL VALUE 403. 85
DEi PRICE 325.00 TOTAL VALUE 602.85

DEi PRICE 495.00

Computers are shipped by UPS. Add $5 for shipping. DCN
Subscribers take 107. off of these prices.

15

--·-·---

*********************************** ... **** ** ... �•··••**** ... *iHt*********
* Please sign me up for one year far the DYNAMIC COLOR NEWS SERVICE. I *
• understand I will receive a monthly news letter, Discounts on DYNAMIC •
* ELECTRONIC INC. Computer products plus the Individual Reply to my *
• Computer problems for a special of $ 10 each. Also I understand that *
* there will be no charge for letters printed with answers in the *
* Newsletter. Cost $ 15 USA & Canada, $ 30 foreign. *
* *

* Name
* Address
* City
* State & z· lp ---

* Enclosed is a check

Nail payment to
Dynamic Electronics

P. O. Box 896
Hartselle, AL 35640

*

Inc *
*

*

*

* charge to VISA ___ HC Number ___ Exp. __ _ *

* *

** ... *******************

DVNAMXC ELECTRDNXCS XNC-

P. O. Box 896 (205> 773-2758
Hartselle, AL 35640

	1984-05_Page_01
	1984-05_Page_02
	1984-05_Page_03
	1984-05_Page_04
	1984-05_Page_05
	1984-05_Page_06
	1984-05_Page_07
	1984-05_Page_08
	1984-05_Page_09
	1984-05_Page_10
	1984-05_Page_11
	1984-05_Page_12
	1984-05_Page_13
	1984-05_Page_14
	1984-05_Page_15
	1984-05_Page_16

