
April 1984
Val. 1 No. 3

..... * *

* * * *

* * * *

* * *

• • *

* * *

**** •

....

* *

*

*

*

* *

*

*

**

ENGINEERING NOTES

an

Radio Shack Color Computar•

* * * * * ***

* * * * ** ** *

** * * * * * * *

* * * ***** * * *

* ** * * • * *

* * * * * * *

• * * * • * ***

*** * *** ****

• • * * * * *

* * * * * * *

* • * * * ****

* * * * * * *

* * * * * * * *

*** ***** *** * *

* ***** * * ***

* * * * * •

* * * * *

* * * *** * * *

* ** * * * * *

* * * ** ** * *

* * ***** • * ***

* ASCII PART I

* *

*

*

*

• •

* CDNPUTER THEORY * NACHINE LANBUASE PROBRANt'IINB

* BASIC PRDBRANMINB
• OPERATING HINTS

* Cit.EST I DNS le ANSWERS

DYNAMIC COLOR NEWS is published
monthly by DYNAMIC ELECTRONICS,
INC., P.O. Box 896, Hartselle,
AL 35640, phone (205) 773-2758.
Bill Chapple, President; Alene
Chapple, Sec. & Treas.; John
Pearson, Ph. D. Consultant; Bob
Morgan, Ph. D., Consultant.

Entire Contents (c) by
DYNAMIC ELECTRONICS INC., 1984.
DYNAMIC COLOR NEWS is intended
for the private use of our sub­
scribers and purchasers. All
rights reserved. Contents of
this newsletter may not be
copied in whole or in part
without written permission from
DYNAMIC ELECTRONICS INC. Sub­
scriptions are $15/yr for U.S.A.
& Canada, $30 other foreign.

The purpose of this news­
letter is to provide instruc­
tion on Basic & Machine Lan­
guage programming, Computer
theory, operating techniques,
computer expansion, plus pro­
vide answers to questions from
our subscribers.

The submission of questions,
operating hints, and solutions
to problems to be published in
this newsletter are encourag­
ed. All submissions become the
property of Dynamic Electronics
the material is used. We re­
serve the right to edit all
material used and not to use
material which we determine is
unsuited for publication.

All paid subscribers are en­
titled to discounts of 10% on
hardware. and 20% on software
manufactured or produced by
Dynamic Electronics Inc. plus
"specials" mentioned in the
newsletter. To receive these
discounts use your DCN number
which is at the right of your
name on the address label.
DCN subscribers may obtain a
personalized reply to specific
computer problems or advice
on purchasing equipment. The
charge for this service is $10.

* *

* DYNAMIC COLOR NEWS *

*

*

*

*

*

*

*

*

*

March 1984

Editor and Publisher
Bill Chapple

Secretary
Belinda Parker

*

*

*

*

*

*

*

*

*

CONTENTS

Editor's Comments

ASCII - Part I

3

4

Basic Programming Theory . 6

Machine Language Programming 8

Operating Hints • •

Questions & Answers .

• 11

• 12

EDITDR�s COMMENTS

Here in North Alabama Spring is arriving. We didn�t have much
snow this year although we did have a cold December. We have
received some letters from you and greatly do appreciate them as well
as the phone calls. The comments we have received are. very
encouraging and it looks like we are covering the subjects in which
you are interested.

This month we are starting a series on ASCII. This is the means
for transmitting characters over telephone lines, from the computer to
printer, and from one terminal to another. I don�t know how many
months we will devote to this, but we will continue until we think we
have adequately covered the subject.

Another subject we are considering covering is Computer
Electronics. The amount of heat generated in the computer can cause
components to fail. How many accessories can be safely added without
damaging the computer? Memory upgrades, character generators, video
reversers, disk controllers, etc. all require power and cause
additional heat. The 5 volt voltage regulator is not efficient and
generates a lot of heat. I have designed and built regulators that do
not get hot. If these are incorporated into the computer then more
accessories can be added.

We have made good progress in the last month by putting circuits
in modules that mount under the chips. The chip mounts in the socket
on the module. This gives a neat installation and allows more
circuits to be installed inside the computer. I am very pleased with
our 96KX-M. It consists of two modules that mount under the
microprocessor chip (6B09E> and the extended basic chip. A resistor
has to be cut and two wires connected to the ends of the break. I
like this because the software is always available and I don�t have to
find something to plug in or load. I use the software more for
trouble shooting programs than for using the other memory page in my
128K computer. In developing the 96KX-M modules I destroyed 2 SAM
chips. These are the most expensive chips in the computer so I
decided to do something about it. I built a module for the SAM_ chip
with an 8 channel amplifier. The SAM chip supplies the clock signals
to the microprocessor plus several other signals. I ran all of these
signals through an amplifier. I have had no trouble or failures
since. If you short out one of these signals either inside the
computer or on the expansion port, the SAM chip will probably fail.
With the amplifier the chances are very small that it would fail and I
haven�t had any trouble since the·amplifier was installed.

What effect does adding accessories have on the performance of a
computer? Some people seem to think that if extended basic is added
or more memory then the performance of the computer is degraded. This
is not true. When you add more memory you don�t loose any of your
previous features. Adding extended basic causes the computer to clear
several graphic pages resulting in less memory being printed when you
?HEM. You can still POKE 25, 6: NEW and then ?HEM and you will get

the same as without the extended basic chip. When you add a disk
drive then you loose about 2000 bytes because the drive has to use
some of the computer�s memory. With our 128K expanders you will have
everything you would have with any 64K computer except you would now
have the equivalent of two 64K computers. You can switch banks and run
Basic or a Machine Laguage program in the other bank. Our 96KX uses
the upper BK of ROM and does not require any of your computer�s RAM

3

for its use and allows you to use all of the 64K RAM plus retain the
Basic and Extended Basic ROMS. There are a couple of software
programs that will allow you to access the other 32K memory bank but
they have to be loaded into your RAM in both banks reducing your
usable memory.

You have to make a trade-off decision between software and hardwar•
accessories. For example should you install a lowercase hardware
character generator or purchase a software program. Once a hardware
item is installed it is always available and doesn�t require loading.
However it requires power, occupies space and causes additional heat
to be generated. There are always decisions to be made and it is
helpful if you know what options are available. I can visualize a
256K color computer with internal battery to keep the memory chips
refreshed, a bank of read only memories <ROMS) for storing a word
processor, accounting program, assembler disassembler, plus file
manager programs. I have been using a small 2" tel.evision with my
computer for about a year now. It is easy to read and could be
permanently mounted on the top of the computer. Also I have been
using a micro-cassette recorder. It too could easily be mounted to
the computer giving a small powerful portable computer. I looked at
the Radio Shack Model 100 and other portable self contained computers
but saw that it would cost too much to expand their memory because
they use static RAMS. Therefore I think that a 128K or 256K portable
self contained color computer would be the way to go.

We have had many requests for a video reverser that will work in
the graphics mode with word processors such as the Telewriter 64.
This is the word processor we are using with an Epson MX-80 printer.
I am going to look into this and see if we can develop a plug in
module for this application.

ASCII PART 1

This subject is very important when it comes to computers. In fact
it is about the only thing that is common between computers. It
defines how characters are stored in memory, how they are transferred
to a printer, or sent over telephone lines through a modem. ASCII is
also used to define printer control functions. Before we continue
let�s define ASCII. ASCII stands for the American Standard Code for
Information Interchange. It is pronounced as ask-eee or ask-key by
pronouncing only one "k".

ASCII generally means that information is sent out one bit at a
time. For this discussion we are going to call the device that sends
the characters the "sender" and the device that receives the
characters the "receiver". It is much harder to send information in
strings of bits than it is to send a byte at a time. Remember a byte
contains 8 bits. Before a character can be sent the receiver has to
be ready. The receiver also has to be prepared to receive at the rate
the information is being sent. For example if you send information
too fast to a printer it will print garbage. For sending information
over telephone lines two tones are used to indicate a 1 or a 0. You
might ask "well what is the advantage of using ASCII" ? The answer is
the simplicity of the hardware interfaces. It would be very involved
if we tried to send an 8 bit byte over the telephone line at one
time. We would have to have 8 tones for tnG bits or we would need 8
telephone lines. ASCII is us�d to transmit information over radio
channels and this reduces channel width and allows more stations to
operate than c�ld be allowed if a byte at a time were transferred.

4

Information can be transferred at very fast rates using ASCII.

BAUD RATE

The rate at which informated is transferred by ASCII is called BAUD.
The higher the number the faster the rate. Most bulletin boards and
modems used with home computers use 300 baud while soma use 1200
baud. Some commercial modems transfer information at baud rates up to
9600. Everyone is familiar with loading and storing information from
a cassette recorder. The baud rate for this is around 1500. So this
should give you an idea of baud rate.

7 or 8 BIT WORDS

Now let�s look at the structure of an ASCII word. For computers a
byte consists of 8 bits. However for sending characters only 7 bits
are required. With 7 bits we can have up to 127 different
characters. This includes all capital letters of the alphabet, all
lower case letters, all numbers and punctuation, plus machine codes
for printers, etc. Now if we are going to send Basic programs using
ASCII then we will need 8 bit words since we will need to transfer •11

the bits of a byte. So ASCII can send either 7 or 8 bit words.

Start & Stop Pulses

The rate at which information is sent is selected by storing
(poking> a value into a memory location or selecting the value with a
switch. As mentioned earlier both sender and receiver have to be
initialized for the same rate. The sender sends a logical 1

1 1 11 to
indicate that it is on line. The receiver responds with a ready
signal. Everything has to be properly timed. The receiver must know
when information is beginning. As soon as it senses a ch•nga from the
logical 111 11 to a "O", it begins its timing sequence. The first thing
it sees is the "start pulse". After timing the start pulse the
receiver times the first bit and remembers whether it is a 1 or a O.
It then in turn removes the remaining bits until it has received 7 or
8 bits. It then times the stop pulse which is a "1". If there are
supposed to be 2 stop pulses it times the second one also. The
character is completed and printed or stored depending on the
application. The receiver is now ready for the next character. The
chart below will show how an ASCII character is sent.

OL
VALUE 1
BIT tt

ST Bl
0 o, 1

1 2

B2

0,1
3

B3
0,1

4

B4
0,1

5

B5
0,1

6

B6
0,1

7

B7
0,1

8

BB
0,1

9

SP
1

10

SP
1

11

OL represents the on line or ready to receive state, ST represents the
start pulse which is always a o, B1 through BB represent the bits of
the character which can be O or 1, and SP represents the stop pulses
which are always 1. After the last stop pulse we are back to the
ready to receive state. Notice that there are 11 bits required to
send a character. If we want only one stop pulse then 10 bits are
required.

PARITY Bit

It may be desireable to perform a check to see if the character

5

sent was sent correctly. For text only 7 bit characters are used.
The eighth bit can be used as a check bit or parity bit. Parity is
determined by counting all of the ones that make up the character. If
there are an even number of 1�s then the parity is O and if there are
an odd number then the parity is 1. The eighth bit is then sent as a
0 or 1 to indicate the parity of the character. The receiver
determines the parity from the bits it has received. If the parity
bits agree then the received character is probably correct. This is
called "even parity". Odd parity is determined the same way except
the complement is sent. If the parity is a O then a 1 is sent.

Summary

We have covered the basics of ASCII. If you use a printer or
modem then you will use some of these terms. ASCII is also used in
Basic Programming. Characters can not be stored in memory. Computers
work with numbers and only numbers representing characters can be
stored. When a character is entered from the keyboard it is assigned
an ASCII value before it is stored in memory. When characters are to
be retrieved from memory then the numerical value representing the
character is converted into the character so it can be displayed.

BASIC PROGRAMMING THEORY
Arrays, DATA & READ Statements

Last month we introduced variables and arrays. We want to
continue with this and show how information can be organized using
this technique. The use of READ and DATA statements give us an easy
way to enter information without having to type labels for the data.
When using READ and DATA statements the information has to be
perfectly ordered. If one item is out of line the the computer reads
the wrong information. If you need information contained in the last
few data statements then you have to start at the first and let the
computer read them all including the ones you don�t want. Another
disadvantage is that double memory is required for the informa�ion.
Carrying the data within data statements occupies space in your
program. When the computer reads the data it stores it in memory so
the information is handled twice. However the procedure is easy to
understand so we will continue with this approach this month.

We are not covering all of the Basic programming operations. If
we use something that you are not familiar with then read about it in
your book that came with your computer or a Microsoft programming
book. In our computer classes we used example checkbook programs to
demonstrate concepts. So this month we want to show you how to design
a checkbook program using DATA statements. As stated last month think
of the information as if it were displayed on a chart with columns and
rows. We would like to display the check number, amount, to whom the
check was written, and the date it was written. What about deposits?
The easiest way to handle them is to consider them as negative
checks. If the check is <-> then subtracting a <-> gives a plus or
deposit. We will set up the program to subtract the value of the
check from the balance ·and give a new balance.

Also we want to display the balance after the check or deposit and
it would be nice if we could let the program search for a check either
by using the check number or entering the name of the person to whom
the check was written. The following is a program with remarks about

6

what each section does. You can eleminate the remark if you want to

type and run the program.

5 'CHECK BOOK PROGRAM USING DATA STATEMENTS AND ARRAYS
10 'SET UP ARRAY SIZES WITH DIM STATEMENT.
12 •WE ARE SETTING UP THE ARRAYS TO HANDLE 50 CHECKS
15 DIM N<50>,A(50),R$(50),D$(50),B(50)
20 'N(X) IS THE NUMBER OF THE CHECK
25 'A(X) IS THE AMOUNT OF THE CHECK

30 •R$(X) IS THE NAME OF THE RECEPIENT.
35 'DS<X> IS THE DATE THE CHECK WAS WRITTEN
37 'B<X> IS THE BALANCE AFTER THE CHECK IS SUBTRACTED OR THE
40 'DEPOSIT ADDED. NOW READ THE BEGINNING BALANCE BB
45 READ BB

48 'WE ARE USING 500.95 FOR OUR BB
50 DATA 500.95
55 'NOW READ THE INFORMATION FOR THE CHECKS
58 B=BB
60 FOR J=l TO 50: READ N(J), A<J>, RS<J>, DS<J>
61 'CALCULATE THE BALANCE AFTER EACH CHECK
62 B=B-A<J>:B<J>=B
65 •TEST TO SEE IF WE ARE OUT OF DATA
70 IF N<J>=O THEN 80
75 NEXT .J
80 •SAVE THE NUMBER OF THE CHECKS READ <NC>
B5 NC=J-1
90 'WRITE A MENUE OF OPTIONS
95 PRINT"WHAT DO YOU WANT TO DO?"
100 PRINT"l DISPLAY ALL CHECKS"
105 PRINT"2 DISPLAY CHECK tt----

110 PRINT"3 DISPLAY CHECKS BEGINNINB WITH THE LETTER --- 11

125 INPUT X
130 ON X 60 TO 200, 400, 600
140 'STATEMENT 130 IS THE EASY WAY TO DO MULTIPLE BRANCHES.
150 'IF X=1 THEN WE 60 TO 200. IF X=2 THEN WE 60 TO 400, ETC.
200 PRINT"THIS DISPLAYS ALL CHECKS
205 'SET UP LOOP TO DISPLAY INFORMATION
210 B=BB:PRINT:PRINT"BEGINNING BALANCE="B
215 'WHEN STARTING CALCULATIONS LET THE BALANCE BE
216 •EQUAL TO THE BEGINNING BALANCE
220 FOR J=l TO NC
225 PRINT
230 'REMEMBER NC WAS THE NUMBER OF THE CHECKS THAT WE HAVE
235 PRINT N<J>;.,TO "R$(J);" ON "DS(J)
240 B=B-A<J>:B<J>=B
245 PRINT"FOR"A<J>,"BAL="B
250 'SLOW THE DISPLAY DOWN
255 FOR K=l TO 200: NEXT K
260 NEXT J
290 GO TO 2000
400 ?"THIS DISPLAYS ONE CHECK
410 INPUT"CHECK #";N
415 IF N=O THEN 100
420 PRINT
430 FOR J=l TO NC-1
450 IF N(J)=N THEN 460 ELSE NEXT J
455 PRINT .. NO SUCH NUMBER":60 TO 410

7

460 PRINTN;"TO ";R$(J);" ON "D$(J)
470 PRINT"FOR "A(J},"BAL="B(J>
475 PRINT

480 PRINT"DO YOU WANT TO LOOK AT ANOTHER CHECK #?"
490 A$=INKEY$: IF A$="Y" THEN 400 ELSE IF A$="" THEN 490
495 GO TO 100
600 PRINT"THIS DISPLAYS CHECKS BEGINNING WITH A LETTER

610 INPUT"LETTER";L$
620 FOR J=l TO NC

625 'STRIP THE LEFT CHARACTER FROM THE RECEPIENT R$(J)
630 X$=LEFT$(R$(J),1)
640 IF X$=L$ THEN 660 ELSE NEXT J
650 60 TO 690

660 PRINTN(J);" TO "R$(J>" ON "D$(J)

670 PRINT"FOR $"ACJ),"BAL="B(J)
675 PRINT

680 NEXT J

690 A$=INKEY$:IF A$="" THEN 690 ELSE IF A$="C" THEN 600
695 60 TO 100
700 '

705 >you CAN PUT DATA STATEMENTS ANYWHERE IN YOUR
710 'PROGRAM. WE ENTERED THE INFORMATION FOR ONE
720 'CHECK OR DEPOSIT AS ONE STATEMENT. HOWEVER WE
730 'COULD HAVE COMBINED THE INFORMATION FOR SEVERAL
740 'CHECKS INTO ONE STATEMENT.

750 'THE BEGINNING BALANCE IS IN STATEMENT 50
760
800 DATA 101,125.50,JAMES SMITH,3-10
810 DATA 102, 35.2,WATER DEPT.,3-12

820 DATA 10,-250,DEPOSIT,3-12
830 DATA 103,50.50,SEARS,3-14

840 DATA 104,110.50,ELECTRIC DEPT.,3-15
850 DATA 105,5.95,PAPER BOY,3-15
860 DATA 106,79.33,CREDIT UNION,3-17
870 DATA 12,-235.50,DEPOSIT,3-19
880 DATA 107,125.33,CHEVRON,3-21
890 DATA 109,25.50,CABLE TV,3-22

990 'STATEMENT 999 ENTERS A O FOR EACH VALUE INDICATING END OF DATA
999 DATA,,,,,
2000 A$=INKEY$:IF A$="" THEN 2000 ELSE 100
2010 'STATEMENT 2000 IS A SUBROUTINE THAT WAITS FOR
2020 'A KEY TO BE PRESSED. IT ALLOWS YOU TO 60 OVER
2030 'THE CHECKS BEFORE CONTINUING.

MACHXNE LANGUAGE PROGRAMMING
DATA RELOCATION

Last month we introduced indexed addressing. This month we want to
continue and give you a program that you can use to relocate data.
Have you ever wished you could save the information on the screen for
later use? Or have you ever wanted to print the information on the
screen? Machine language subroutines are very handy for these
applications. This month we will give you a subroutine to e>:change
the information on the screen with information stored in a designated
memory area. This subroutine can be called from basic with the EXEC
command as we will show.

First let us review a little. The index registers are pointers or

8

vectors that point to memory locations. We have 2 index registers
that can be used for this application. They are the X and Y

registers. The microprocessor has two working registers which are A
and B. We can load a register with the value in a memory location
defined by one of the inde>: registers. We can also store the value in
a register referenced to one of the index registers. When we say
referenced to the index registers we mean we have all of the options
covered last month in the chart on page 9. The address that we
actually used is the address the index register is pointing to plus
the offset. Also the inde>: register can be incremented or decremented
after the operation is completed.

Branching and Conditional Tests

Before we continue with the problem we need to cover branches. We
need to tell our subroutine when it is finished. In Basic we can use
the IF (action> THEN (do something). For example we could have
statements similar to

200 IF X=1536 THEN GO TO 10
250 IF X<1536 THEN 15

To do these operations with machine language we have to
operations. First we have to compare the register with a value.
is the "IF X=1536" part. Then we have to put a branch command
test is true which is the "60 TO" part.

The Compare Instruction

do 2
This

if the

This is easy to use. The symbols are CMPA, CMPB, CMPX, CMPY, CMPD,
CMPU, CMPS. With each compare instruction you need to designated the
addressing mode, which is Inde>:ed, Direct, Extended, or Immediate. So
to do the first part of statement 200 we can enter

CMPXI 1536

We will use the immediate mode since we will give the number to
compare X with. Always use the immediate mode of addressing when you
have the numerical value to use.

Branch Instructions

We will always need branch instructions when we are writing machine
language programs so we w�ll go ahead and introduce them now. The
list is as follows:

BCC Branch on carry clear
BCS Branch on carry set
BEQ Branch if equal to zero
BGE * Branch on greater than or equal to zero
BGT * Branch on greater
BHI Branch if higher
BHS Branch if higher-or the same
BLE * Branch on less than or equal to zero
BLS Branch on lower or the same
BLT * Branch on less than zero
BMI * Branch on minus
BNE Branch if not equal to zero

9

BPL * Branch on plus
BRA Branch always
BRN Branch never
BSR Branch to subroutine
BVC * Branch on overflow clear
BVS * Branch on overflow set

The branch instructions are similar to GO TO in basic. The
limitations are the number of bytes you can branch to. Remember last
month our discussion of 2�s complement numbers. We want to be able to
branch backwards in memory as well as forwards. So we use numbers
from Oto 127 for positive branches and 128 to 255 for negative
branches with 2's complement numbers.

Also we are fortunate to have the capability of longer branching.
To indicate. long branching an L is placed in front of the branch
instruction. For example LBPL means to long branch on plus. With
long branching you can branch to locations from -32768 to 32767 from
your present location.

Now back to our original problem.
1024 to 1535. Let's reserve 12000 for
our information and let's use 13000
language program. First let's write a
information in the two locations.

The video display area is from
the area we are going to store
as the beginning of our machine
basic program to exchange the

10 X=l024: Y=12000
20 A=PEEK<X>: B=PEEK<Y>
30 POKE X, B: POKE Y, A
40 X=X+l: Y=Y+l
50 IF X <> 1536 THEN GO TO 20
60 END

For our machine language program we will use a similar approach.
Let's do the equivalent of statement 10.

13000 LOX I 1024 (Put the value of 1024 in X)
13003 LDY I 12000 <Put the value of 12000 in Y>

Now the equivalent of statement 20 is

13007 LDA X R + 0 (Load A inde>:ed to X with no offset)
13009 LOB y R + 0 (load B indexed to y with no offset>

The equivalent of statements 30 and 40 is

13011 STA Y
13013 STB X

R +

R +

(Store A in Y's location and increment Y)
(Store B in x�s location and increment X>

Now we need
statement 50

to see if you have finished which is the equiv8lent of

13015 CMPX I 1536
13018 BNE 13007

(compare X with 1536)
<Branch to 13007 if not equal>

To finish the program we need to put a Return from subroutine

10

CRTS>

instruction.

13020 RTS

The numbers to poke into memory if you want to try this subroutine
are as follows in decimal and he>::

13000 142 32C8 SE
13001 04 32C9 04

13002 0 32CA 00
13003 16 32CB 10
13004 142 32CC BE
13005 46 32CD 2E
13006 224 32CE EO
13007 166 32CF A6
13008 132 32D0 84
13009 230 32Dl E6
13010 164 3202 A4
13011 167 32D3 A7
13012 160 32D4 AO
13013 231 32D5 E7
13014 128 32D6 BO
13015 140 32D7 SC
13016 6 32D8 06
13017 0 32D9 00
13018 38 32DA 26
13019 243 320B F3
13020 57 32DC 39

After you have entered the program you can use it any time from the
keyboard by entering "EXEC 13000 ENTER". The display you have will be
exchanged with the contents of 12000-12512. The first time you use
the program you will probably get garbage on the screen. Clear the
screen and e>:ecute it again and your original screen should return.
The program is position independent which means you can put it
anywhere in memory. I t was desi9ned to operate on a 16K machine.

OPERATING HINTS

DI SABLE ROM PORT

You can disable the expansion port by poking 65314,
doing this you can plug in a cartridge and it will not run.
the cartridge EXEC 49152.

To restore the expansion port POKE 65315, 52

HEX TO DECI MAL AND DECI MAL TO HEX

54. After
To enable

I n you have extended basic you can convert hex to decimal by
?&H**** where **** are the he>: characters. To convert decimal to hex
?H$(*****> where ***** are the decimal characters.

11

ML PROGRAM ADDRESSES

You can copy machine language programs.
(C>LOADM "NAME". Calculate the vectors.

First load the program with

BE=256*PEEKC487)+PEEKC488>
EN=256 * PEEKC126) + PEEKC127J-1
EX=256*PEEI< < 157) + PEEK< 158)

Then to make the copy type (CJSAVEM "NAME",BE, EN, EX <ENTER>

QUESTIONS AND ANSWERS

These are questions that we have been asked about computers. If you
have a question send it to us and we will answer it here. If we can't
answer it we will ask for help.

Question: Will OS-9 work if I upgrade my computer with one of your
128K upgrades?

Answer: When you add more memory you do not loose any of your
capability. If the software was not designed for 128K then it might
not be easy to adapt it to fully utilize the extra memory. You have
to be able to poke memory locations to access the additional memory
and it may be hard to modify software to allow these pokes, especially
if it is in machine language. However if you have the same thing in
both 64K memory banks then you can manually switch and everything
works. For instance we can load our word-processor into both 64K
banks and can switch at any time from one editoral to another. Also
if we have Basic programs then we can switch to the other bank by
software or with the switch with no problems.

We need help on the following question. If you know of a solution to
the problem we would appreciate hearing from you. This question was
submitted by E. J. Haas.

Gentlemen:

I am operating a 64K Color Computer with a Tandon double density
double sided disk drive and have noticed frequent formatting errors on
side two when running DSK IN I and more so under the OS-9 FORMAT
command. The make of disk does not appear to be of significance and
the sectors in error are not consistant. This gives rise to two
questions:

(1) Can you advise me of what adjustment to make? (2) Do you know
where I may purchase a service manual for this drive.

DYNAMIC ELEC TRONIC INC-

HARDWARE PRODUCTS - DCN Subscribers can deduct 10% from these prices.

96KX expanders allow you to use all 64K of your memory in 64K
Computers. Transparent until accessed, it works with disk drives and
multicartridge selectors. Simply EXEC 57701 from Basic to access its
powerful software. In addition to managing both memory pages, the
software performs many of the everyday operating and program writing
requirements and aids in troubleshooting defective programs. Your 64K

12

computer becomes two 321< computers.
the 96KX software is in permanent ROM
Extended Basic ROMS.

There is nothing to load since
the same as the Basic and

* I nitilizes the second 32K memory bank so basic can be run in it.
* Transfer blocks of data within or between either bank.
* Enter data in DECI MAL, HEX, VECTOR or ASCI I formats.
* Copy machine language programs from magazines in HEX.
* Allows mixed HEX and DECI MAL entries for data storage.
* Performs HEX to DEXI MAL and DECI MAL to HEX Converions.
* Displays program statement numbers and their memory locations.
* Change statement numbers one at a time.
* Gives the beginning, ending, & e>:ecute addresses of ML programs.
* Software is included for our interrupt switch for a hard reset.
* Uses top BK of memory in the ROM memory area.

96KX-M A plug in module that mounts in the extended basic
socket and the extended basic chip plugs into the module. Solderless
installation for D & E Computers, 2 wires to solder for later version
computers. $59.95

96KX-C The same as above except in a plug in cartridge. Use
with cassette or disk systems with multipack expanders. $49. 95

I nterrupt switch • • • Allows the computer to be interrupted and run a
machine language program. Mounts in 1/4 inch hole with instructions.
Only $9. 95

Video Reverser • • Reduces eye strain. Solderless assemblies
position switch to give you (1) All characters reversed,
characters reversed and displayed as capital letters & (3) the
display. $19. 95

with 3
(2> All
normal

Sam Buffer - I ntegrated circuit that mounts on
protects it against shorts due to memory upgrading.

the SAM
$8. 95

chip and

Solderless & Reversible Memory upgrades without trace. cutting. 64K
upgrades require a 1. 1 ROM. EXEC 41175 <ENTER> for your ROM type.
State board or computer type when ordering.

ME-3 • • • D, E, & 285 from 16K to 32K
ME-4F • • • F or 285 and COCO 2 to 64K
ME-4 • D & E Computers to 64K

$36. 95.
$79. 95.
$89. 95.

ME-128-64 . I f you have a 64K computer you can upgrade it to 128K
with this upgrade kit. Wired assembly consists of a set of 64K chips
with sockets for your 64K chips, control circuit board for hardware
or software bank selection, plus a 3 position toggle switch that
mounts in a 1/4 11 hole for manual bank selection. $199

YOUR BASI C OR ML PROGRAMS I N A CARTRI DGE • We can put your
programs in a cartridge and you will have all of your memory. To
access these you POKE 25, 192: RUN for Basic or EXEC 49152 for ML
programs. Nothing to load, faster than tape or disk. Send a cassette
with 2 copies of your program on it. Don�t use PCLEAR command. Up to
BK $29.95.

13

* *

* Please sign me up for one year for the DYNAMIC COLOR NEWS SERVICE. I*
* understand I will receive a monthly news letter, Discounts on DYNAMIC*
* ELECTRONIC INC. Computer products plus the Individual Reply to my*
* Computer problems for a special of $10 each. Also I understand that*
* there will be no charge for letters printed with answers in the*
* Newsletter. Cost $15 USA & Canada, $30 foreign. *
*

* Name
* Address
* City

_____ Mail payment to
------------------------------------- Dynamic Electronics

P. 0. Box 896
* State & z· lp --------------------------------- Hartselle, AL 35640
* Enclosed is a check

*

*

Inc*
*

*

*

* charge to VISA __ _ MC ___ Number __________________________ Exp. _____ *
* *

DVNAMXC ELECTRONXCS
P. o. Box 896 (205) 773-2758

Hartselle, AL 35640

	1984-04_Page_01
	1984-04_Page_02
	1984-04_Page_03
	1984-04_Page_04
	1984-04_Page_05
	1984-04_Page_06
	1984-04_Page_07
	1984-04_Page_08
	1984-04_Page_09
	1984-04_Page_10
	1984-04_Page_11
	1984-04_Page_12
	1984-04_Page_13
	1984-04_Page_14

