
ENBINEERINB NOTES

an

Radio Shack Colar Computers

F■bruary 1984
Val. 1 Na. 1

* *
* *
* *
* *
* *

* *
* *
* *
*
*
*
*

* *
*
*
*
* *

* *
* *

** *
* * *

* **
* *
* *

• *
* *
* *
* *
* *

*
* *

* *

* *
* *
* *

*
*
*
*
•
* *

* *

** **
* * *
* *
* *
* *
* *

* *
* *
* *
* *
* *

*
*
*
*
*

* *
* *

* *
* *
* *

* *
* *
** *
* * *

* **

*

* *
* *

* *
*

* *
* *

*

*
*

* *

* * *
* * *

** **
* *

*
* *

*
*
*
*
*

* CONPUTER THEORY * MACHINE LANBUABE PR08RAMNINB

* BASIC PROBRAMNINB

* MEl'10RV EXPANSIONS

* PRORAMNINB STACKING

* QUESTIONS & ANSWERS

* VECTORS & NEl'1DRV MAPS

*MUCHMORE

DYNAMIC COLOR NEWS is published
monthly by DYNAMIC ELECTRONICS,
INC., P.O. Box 896, Hartselle,

AL 35640, phone (205) 773-2758.
Bill Chapple, President; Alene
Chapple, Sec. & Treas.; John

Pearson, Ph. D. Consultant; Bob
Morgan, Ph. D., Consultant.

Entire Contents <c> by

DYNAMIC ELECTRONICS INC., 1984.
DYNAMIC COLOR NEWS is intended

for the private use of our sub­
scribers and purchasers. All

rights reserved. Contents of

this newsletter may not be
copied in whole or in part

without written permission from

DYNAMIC ELECTRONICS INC. Sub­

scriptions are $15 for 12
issues, $20 outside U.S.A.

The purpose of this news­

letter is to provide instruc­

tion on Basic & Machine Lan­

guage programming, Computer

theory, operating techniques,
computer expansion, plus pro­
vide answers to questions from

our subscribers.

The submission of questions,

operating hints, and solutions
to problems to be published in
this newsletter are encourag­
ed. All submissions become the
property of Dynamic Electronics
Inc. and the person submitting
material will be recognized if
the material is used. We re­
serve the right to edit all
material used and not to use

material which we determine is
unsuited for publication.

All paid subscribers are en­
titled to discounts of 107. on
hardware. and 207. on software
manufactured or produced by
Dynamic Electronics Inc. plus
"specials" mentioned in the
newsletter. To receive these
discounts use your DCN number
which is at the right of your
name on the address label.

DCN subscribers may obtan a
personalized reply to specific
computer problems or advice
on purchasing equipment. The
charge for this service is S10.

* *

* DYNAMIC COLOR NEWS *

* *

* February 1984 *

* *

* Editor and Publisher *

* Bill Chapple *

* *

* Secretary *

* Jo Ann Shamblin *

* *

CONTENTS

Editor•s Comments • 3

Statement of Purpose • • 4

Basic Programming • • 5

Basic Programming Theory • • 6

Multiprogram Manager <MPM> • 7

MPM Program Listing • • • • • B

Machine Language Programming 9

Questions & Answers .

Operating Hints • •

13

14

A glance at the calendar tells me that it is already
February and we should be working on the March issue. Let me

thank those of you who subscribed to this service before seeing
what we have to offer. Also I want to thank those who gave us
suggestions and asked questions about computer problems. With­
out this interest we would not have begun this project. I am an
electronics engineer and engineers are not supposed to know how
to write. However I am certainly not a journalist but I know
that the concepts we are going to cover are important and I
hope that my teaching experience will help in explaining
computer concepts so they can be understood. To make sure it
is not too technical, it will be read by my secretary. Also I
am an electronic circuit designer. My experience ranges from
an electronics technician, to an electronics Jr. College in­
structor, to an electronic engineer and now computers. I was

forced to learn computer hardware design because micro­
processor components were taking over digital circuit design. I
learned machine language programming before I was exposed to
Basic. I knew Fortran fairly well so Basic was not hard to
learn. I like Basic better than Fortran because Basic does
everything Fortran does plus it allows powerful handling of
word files.

The applications for computers are endless. Setting infor­
mation arranged so that it can be computerized is a big
problem. Most of the time the computers are idle waiting for
us to enter information. The use of interrupts is not well
known. An interrupt causes the computer to stop what it was
doing and do a different task after which it returns to its
initial state. Many monitoring and control operations can be
performed with interrupts without any awareness to the user.
The future topics we will cover depend on your response. Write
and let us know what you would like to see.

The interest in 05-9 has caused us to take a look at this
operating system. Maybe next month we will be in a position to
comment on it. We are very familar with CP/M which is an
operating system for ZSO based computers. Modifications to
these systems are almost imposible, but if they are used for
their designed purpose then they do a terrific job. The same is
true of word processors, spread sheets, and other dedicated
programs. There are some technniques we use for handling
information using Basic and Machine Language programming which
we will cover in future newsletters. The advantage of using
Basic programs is that you can modify them to suit your needs
and they can be saved on both tape and disk.

3

STATEMENT OF PURPOSE

As with most new publications the intention and purpose of
the publication is usually stated in the first issue. So as a
start we will state our purpose for this new endeavor. We intend
to provide technical information on Radio Shack Color Computers,
instruction on Computer Theory, Basic Program development,
Machine Language Programming, Hardware expansion techniques,
plus provide a Consulting Service where we answer questions in
this Newsletter or provide individual answers to your questions
for a small fee. We want to fill the technical void left by the
Magazines.

You may wonder why these Computers are so popular. The
answer lies in the versatility of the machines and their
powerful microprocesor. They can be learning tools, business
Computers, Industrial Controllers, Word Processors, Telephone
answers, a means of communicating with the Deaf, music composer

or instruments, printer spoolers, burglar alarms, etc. The
list is endless and no matter what your need or interest is,
these Computers can serve your purpose.

What about the structure of these computers when compared
to others? Are they Business Computers or Personal Computers?
It would be natural to presume that Radio Shack Color Computers
are not as powerful as the so called "Business Computers" in
the $2000+ price range. It is true that the screen does not
have as many characters as "Business Computers". If you want
more than the standard 32 Characters by 16 lines then you can
add "Character Expanders" and increase the number of
Characters on a line to 42 or 64 or more. If you want better
resolution then you can get a high resolution television or a
Video. adapter for a Video terminal.

How do the integrated circuits compare with the more
expensive Computers? Let�s answer this with a question. Did you
know that the same integrated circuits are used in "Home
Computers" and "Business Computers"? The 16K 4116 Memory Chips
and the popular 64K 4164 Dynamic RAM Chips are used in both.
The microprocessors are similar in speed and performance and
Input/Output CI/0) circuits are similar. Well what is so
different about them? Generally Computers designed for Business
use have powerful Software for accounting and word processing
needs. The operation is designed so an untrained Secretary or
Clerk can learn to use the Computer�s features without knowing
programming. Also the units are completely contained in one
cabinet with dual disk drives and video display.

Color Computers can support several disk drives and
software equal to that used on Business Computers is available
for Color Computers. A Color Computer�s memory can be expanded
so that it has the same or more memory than Business Computers.
Because of its ease of expansion Color Computers can be made to
equal the performance of computers costing much more. Let�s
look at another aspect of these computers. The games that can
be played on Color Computers are second to none. The joystick
ports allow items to be moved horizontally and vertically
across the screen. Games come in plug in cartridges, on
cassettes, or on disks. You can change games easily by
inserting a new cartridge, cassette, or disk.

When we look at the joystick ports from an engineering view

4

point we see Analog to Digital Converters. Immediately
accessories of a different nature from games come to mind.
Analog circuits are continuous where Digital Circuits have
discrete steps. Voltages from Oto 5 volts are converted into
digital steps of from Oto 63. These can be used to indicate
temperature, pressure, voltage, power, etc. The cassette motor
is controlled by a relay which can be used for other things
such as controlling temperature in a home in conjuction with
the Analog to Digital Converters accessed through the Joystick
Ports. The cartridge expansion port is a gold mine when it
comes to designing accessories. All of the microprocessor
signals plus 3 supply voltages appear on the cartridge
connector. Almost anything can be designed using this port
which can easily be verified by observing the accessories
advertised in leading Color Computer Stores and magazines.

BASIC PROGRAMMING

Each month we want to cover one phase of Basic
Programming. Basic is a very powerful programming tool and can
be used to write any kind of program ranging from serious
business programs, games, learning programs, engineering
programs, statistics, word processors plus much more. There are
many ways to write Basic Programs and some have advantages over
others. So we will point out these advantages as we cover
various techniques. This month we are going to cover the
Immediate Mode of operation, Vectors, plus give you a powerful
Basic Program that will allow you to handle several programs in
your computer at the same time.

THE IMMEDIATE MODE

This is a mode of operation that is mostly unknown perhaps
because of its simplicity. Host of the Basic Commands are
available from the keyboard without having to write a program.
The best know are MOTOR ON, AUDIO ON, CSAVE, CLOAD, LOAD,
SAVE, + various other Disk Drive commands such as DIR, and
?FREE, etc.

CHECK BOOK BALANCING

The Immediate m�de allows the Computer to be a powerful
calculator. Variables can be assigned for several entri•s and
then the variables added to form the final sums. This is much
better than using a calculator because all of the transactions
are displayed on the screen. example: Lets assume a check
book has the following transactions. The beginning balance is
$255.37 and checks <-> and deposits (+) are
+23.35, -57.98, +125, -15.19, -119.5, +598.77, -121.35,
-98.20, -7.65, -25.50, -11.25, -3.59, -8.99, +25, -3.21,
-45.49, -87.22. Now enter the following: A=255.37 -23.35

-57.98 +125: ?A <ENTER> The Sum of 299.04 will appear on
the screen and the Computer has assigned this value to the
variable A. Now enter
B= A -15.19 -119.5 +598.77 -121.35 -98.2 -7.65 : ?B <ENTER>
The sum of 535.95 will be displayed. Notice that this is
the result up to the last entry or -7.65. Now enter
C= B -25.5 -11.25 -3.59 -8.99 +25 -3.21 -45.49 -87. 22 : ?C

5

<ENTER>

The final sum is 375.78. Notice that all entries appear

on the screen so that they can be verified. This is a quick way

to check the arithmetic in check book programs or any other

application involving a calculator. The values of the Variables

A, B, and C will be retained by the Computer until power is
removed or a program is RUN. Of course any of the other
arithmetic functions such as * or / could be used as well as
parenthesis.

THE IMMEDIATE MODE WITH A PRINTER

Suppose you want to write a letter that you do not need to

edit. To print to the printer use the command ?#-2, "THIS

PRINTS CHARACTERS TO THE PRINTER" <ENTER>. The printer will

print the characters inside the quotations. This is the
equivalent of an electronic typewriter where you compose a line
and then send it to the printer. This method is very handy for

personal letters or addressing envelopes. We use it when we

need to change the mode the printer is set for. We use an Epson

MX-80 and sometimes we need to change the type size or add
emphasize or double strike. So we just send the printer
commands directly from the keyboard.

BASIC PROGRAMMING THEORY

VECTORS

This month we want to introduce Vectors. We picked the
subject of vectors because of their importance. What are
vectors? In Physics and Engineering vectors are quantities that

give magnitude and direction. For Computers vectors can be
defined as variables that "point to memory locations". It takes

two bytes to define a vector. Since most microprocessors have 16
address lines then it takes two 8 bit bytes to equal 16 bits.

The Computer Vector is broken down into two parts called the

least significant byte <LS> and the most significant byte <MS>.
For Motorola 6800 family microprocessors the most significant
byte occupies the lower memory location and the least
significant byte occupies the upper memory location. To obtain
the value of a vector the following formula is used. V is the

value of the vector and MS and LS are the most and least

significant bytes.
V=256*PEEK(MS>+PEEK(LS>

When we designate the location of a vector we give the
location of the MS. For example the vector that shows where a

BASIC program starts is located in location 25. To find the
value of this vector we use the formula

BE=256 * PEEK(25) + PEEKC26)

The vector that points to the end of BASIC is located in
memory location 27. There we can let EN be the end of Basic
Vector and calculate it as follows.

EN = 256 * PEEK<27> + PEEK<2B>
If you want to know how long your program is then just

subtract BE from EN. It is a good idea to put these vector
calculations at the beginning of your program so you can tell
how long your program is when it is run. An example of how to do
this follows:

6

10 BE=256 * PEEK(25> + PEEK(26>: EN=256 * PEEK(27) +

PEEK<2B>

15 ?"THIS PROGRAM STARTS AT "BE; "AND ENDS AT "EN: ?"IT

USES "EN-BE ;"BYTES OF MEMORY"

VECTORS IN BASIC STATEMENTS

Each Basic Statement has a vector at the beginning

preceeded by a "O". The vector points to the memory location of

the next basic statement. For example suppose the PEEK(25>=6 and

the PEEKC26>=1 then BE=256*6 + 1= 1537. Then NS=256 * PEEK<1537)

+ PEEK(153B) where NS is the start of the next statement. The

second 2 bytes are the statement number. After this is the Basic
Commands. So Basic is arranged as follows.

BYTE #
0

1

2

3

4

5

FUNCTION

a 11 011 seperates Basic Statements

MS of next statement vector
LS of next statement vector
MS of statement number

LS of statement number
Start of Basic Commands

This knowlege of the Basic program structure will allow

you to patch up defective programs. You can scan the characters
in a Basic Program and look for the zeros at the start of each

statement. Then the vectors can be verified and changed if
necssary to cause the program to work.

MUL TIPROGRAM MANAGER <MPM>

With this knowlege of Vectors we wrote the "Multiprogram
Manager" which allows programs to be stacked in memory. This

program is listed at the end of this section and is available
on tape to DCN Readers for $6.95 including shipping or you can

type it in. It uses a technique with which we have been very
successful. We call machine language subroutines from Basic
when we have a task that is best done by machine language

programs. About 200 bytes of memory are used before the

beginning of the program to store the vectors for the various
programs plus the machine language subroutines. To get maximum

usage from the program do the following.
POKE 25, B: POKEB*256, 0: NEW <ENTER> if not using a disk

drive. POKE 25, 15: POKE 15*256,0: NEW <ENTER> if a disk drive
is connected. Load in the multiprogram master <MPM> and type
RUN <ENTER>. The vectors for the MPM will be displayed in MS,
LS format. You can load another program by picking a beginning
vector greater than the ending vector of the MPM. The easy way
is to take the MS of the ending vector and add 1 or 2 to it and
use this value for the beginning vector of the new program. The
idea is to start in lower memory and add programs above the

last entered one. This program is user friendly and displays
the vector components of each program as programs are added. The
MPM was designed to handle 5 programs plus the MPM. When used
with our 96KX you can load and run 5 programs in both page 0
and page 1.

After you have loaded
program it is desireable

the MPM and are running another
to return to the MPM if you want to

7

change programs from the MPM menue. The MPM can then be
accessed by EXEC 510 <ENTER>. We wrote a machine language

subroutine that saves the program vectors for the program you
were running and exchanges them with the prGgram vectors for
the MPM. The machine language subroutine also calls the RUN
subroutine from the Basic ROM c�using the MPM pro£ram to run.

MPM INSTRUCTIONS

We designed the MPM not to use a lot of memory. It uses
les� than 2000 bytes. It is menu oriented but we will give
some steps for using it. The program is very useful for both
Disk and cassette systems. The steps follow:
1. Ty�e in beginning vectors as discussed above.
2. Load the MPM from a cassette or disk
3. Type "RUN ENTER" • The program menu will be displayed.

Notice the values of the vectors for the MPM. They will be
listed similar to the following.

0 PGM MGR 20 20 1 27 204
4. The next to the last number (27) is the MS of the ending

vector. Add 2 to this number for the MS of a new program.
5. Press any key for the menu
6. Select (5) to transfer the machine language program to

memory. This only has to be done the first time you come

to the menu.
7. To load a new program select (1). It then prompts for the

value of the MS of the starting vector for the new program.
This is the value determined in (4). After entering this
you are returned to Basic.

B. You can load another program, run it, or do anything else
you want. If you desire to return to the MPM then

EXEC 510 ENTER
9. The MPM runs and the vectors from the last program you were

running are saved. This program can be combined with the
others on the MPM menu by selecting (2) from the menu.

10. To combine a new program you will be asked for a program
number. This is a number between 1 and 5. Then you will be
asked for an B character name. It requires 8 characters so
if your name is less than 8 use the space bar to fill in
the rest of the characters. The menu is returned with the
last program combined.

1 1. Any program on the menu can be selected by selecting (3).
12. After running another program return to the MPM by EXEC 510
13. A program can be deleted from the menue by selecting (7).
14. All of the programs can be saved by (6). To load them again

you must put the beginning and ending of basic vectors at
the same beginning location as they were when the programs
were saved.

15. The MPM can be used in both pages of a 64K system with our
96KX.

MULTIPLE PROGRAM MANAGER <MPM>
PROGRAM LISTING

1� MULTIPLE PROGRAM MANAGER <MPM>
2� COPYRIGHT <c> 1984 by DYNAMIC ELECTRONICS INC.
3� ALL RIGHTS RESERVED
10 ?"MULTIPROGRAM MANAGER <MPM>

8

15 A=PEEK(25): B=PEEK<26): C=PEEK<27): D=PEEK(28)
20 PS=256*A+B: PE=256*C+D: U(l>=PS-100: U(2)=U<1>+12:

U<3>=U(1)+24:U<4>=U(1)+36:U<5>=U{1)+48:U1=U<1>+50:U2=U1+25
25 MS=INT(U1/256):LS=U1-256*MS:POKE510,126:POKE511,MS
30 POKE 512,LS:?"TO ACCESS THIS PROGRAM EXEC"; U1
40 POKE 504,A: POKE 505,B: POKE 506,C: POKE 507,D
100 ?"THESE ARE THE PROGRAMS":?" 0 PGM MGR ";A;B;C;D

105 FOR J=1 TO 5:M=U<J>:A=PEEK<M>:IF A>128 THEN 130
110 PRINTJ;:FOR K=O TO 7:A=PEEK<U(J)+K>:IF A>128 THEN 130
115 A$=CHR$(A): PRINTA$;: NEXT K
120 ?" ";:FOR K=8 TO 11:A=PEEK<U<J)+K>:?A;:NEXT K:?
130 NEXT J:?:?:?"PRESS A KEY TO CONTINUE
150 A$=INKEY$: IF A$="" THEN 150
200 ?"SELECT A FEATURE":? 111 LOAD A NEW PROGRAM?":?"2 COMBINE

LAST LOADED PROGRAM?":?"3 RUN A DIFFERENT PROGRAM":?"4
RETURN TO PREVIOUS PROGRAM":?"5 TRANSFER ML PROGRAM TO
MEMORY"

205 ?"6 SAVE ALL PROGRAMS": ?"7 DELETE PROGRAM FROM MENUE
210 INPUTX:ON X 60 TO 400,300,600,250,800,950,1000
250 EXEC U2

300 ?"THIS ADDS LAST LOADED PROGRAM TO THIS SET OF PROGRAMS.
310 INPUT"PROGRAM NUMBER";PN:?"ENTER 8 CHARACTER NAME
325 FOR·K=O TO 7
330 P$=INKEY$: IF P$=" 11 THEN 330 ELSE IF P$=CHR$ <13) THEN 330
335 ?P$;: A=ASC(PS>: POKE<U(PN>+K>,A: NEXT K
340 FOR K=O TO 3: M=U<PN)+8+K: A=PEEK(500+K>: POKEM,A: NEXT K
350 60 TO 10
400 PRINT"THIS CONDITIONS FOR ADDING A NEW PROGRAM.

ENTER THE MOST SIG. BYTE OF THE START VECTOR?
410 INPUT MS:POKE500,MS: POKE501,1: POKE502,MS: POKE503,3
420 POKE 256*MS,O: ?"LOAD NEW PROGRAM":EXEC U2:END
600 INPUT "NUMBER FOR PROGRAM"; Y
610 FOR J=O TO 3: PM=U(Y)+J+8: A=PEEK<PM)
620 M2=500+J: POKEM2,A: NEXT J : EXEC U2
BOO PRINT"ML PGM GOES INTO RAM JUST BELOW THIS PROGRAM
805 PRINT"WHEN PROGRAMS ARE SWITCHED RAM FROM 500 TO 508 IS

USED FOR TEMP STORAGE.
810 FOR J=O TO 38: READ X:M=U1+J: POKEM,X: ?"MEM="M,"VAL="X:

NEXT J:60 TO 10
900 DATA 158,25,191,1,244,158,27,191,1,246,190,1,248,159,25,

190,1,250,159,27,126,174,117,18,18
910 DATA 190,1,244,159,25,190,1,246,159,27,126,174,117,57
950 ?"THIS SAVES ALL PGMS AT ONCE AS A ML PROGRAM
960 INPUT"8 CHAR NAME FOR PGMS";C$
970 INPUT"MSB OF ENDING VECTOR OF LAST PGM";MS:INPUT"LSB OF

ENDING VECTOR OF LAST PGM";LS
975 E6=256*MS+LS
977 INPUT"ENTER 1 FOR CASSETTE AND 2 FOR DISK";XX
978 IF XX=O THEN 977 ELSE IF XX=l THEN 990
980 SAVEM C$, U(l), EG,U(l) :GO TO 30
990 CSAVEM C$, U(l), EG, U<1>: 60 TO 30
1000 INPUT "NO OF PGM TO DELETE"; X
1010 POKE U<X>,255: 60 TO 10

9

MACHINE LANGUAGE PROGRAMMING

As we introduce this subject, we want to take an approach
that is perhaps different from the standard method of teaching
mach ine language programming. Rather than confuse our readers
with the vast number of mnemonics (symbols for commands) we are
going to take a small portion at a time and show h ow to use what
we h ave covered. Since our readers will have a vast d ifference
in knowlege on this subject, we will tailor our presentation so
that those with no knowlege will be able to und erstand the
concepts.

The introduction to vectors elsewhere in this newsletter
will be beneficial h ere. Whether we use BASIC or Machine
Language, the knowlege of vectors and free memory will be
equally advantageous. If you don�t know what memory is available
then you can�t use it no matter wh at programming language you
use. Therefore vectors will also be used here to point to memory
locations and will consist of two memory locations (bytes) with

the most significant byte in the lower memory and the least
significant in the upper memory. Also let us point out that the
computer operates on "mach ine language codes". Basis is just a
translation of simple English commands to machine language
codes. This is why Basic is slower. It takes time for the
translation to take place.

WHAT IS a MICROPROCESSOR?

The heart of microcomputers is the microprocessor. You have

heard these terms but e>:actly what are they? The microprocessor
h as been called "the computer on a ch ip" and rightly so. However
it takes support circuitry and h ardware before it can be useful
as a computer. It need s memory ch ips, input/ output (l/0) chips,
a keyboard, a monitor, plus other support items.

Now let�s look at the internal structure of the 6809
microprocessor used in Color Computers. It contains the
following:

X-Index Register (2 bytes>
Y-Ind ex Register (2 byte)
LI-User Stack Pointer <2 bytes>
S-Hardware Stack Pointer <2 bytes>
PC-Program Counter <2 bytes>
A-Accumulator (1 byte>
B-Accumulator (1 byte)
DP-Direct Page Register (1 byte>
CC-Condition Code Register (1 byte>

The X and Y registers are used to hold vectors. Memory
locations can be determined and operations performed using these
registers as a reference.

The U and S Pointers <vectors) point to memory locations
reserved for the microprocessor. These locations are called
stacks. The pointers keep track of the last location used so it
is not necessary to give a location when storing information.
The process of storing information on a stack is called "PUSH"
and the process of retreiving information from a stack is called
"PULL".

10

The PC is the program
location of the next command.

counter and points to the memory

The A and B accumulators do the calculations. They are the
working parts of the microprocessor. They can be combined for
some operations and the combination is called the 11D" register.

The DP register breaks the memory locations into 256 pages
of 256 bytes. This reduces the length of code required if
programming is done within a 256 byte span.

The CC register contains "flags" that indicate the
of an operation. Suppose you added two numbers. It would
to know if a carry occurred. This is obtained from one
bits of the CC register.

result
be nice
of the

The procedure for writing machine language commands is
similar to programming a calculator. You load a register with
the first number and add the second number to it. The result is
retained in the register. The 6809 allows addition, subtraction,
and multiplication but not division. Most microprocessors do not
allow multiplication which is one of the factors contributing to
their slowness. The numbers that the A and B register can handle
are values from Oto 255. There are no such variables like
"strings" in machine language programming. Everything has to be
calculated using integers from Oto 255.

let 7 s say we want to add the numbers 25 and 140. We can
load A with 25 and add 140 to A. Now the sum of 165 will be in
A. To eliminate confusion we are going to only use Decimal
Numbers and not HEX. It is impressive to other programmers if
you show a thorough knowlege of hexidecimal arithmetic and make
what you are doing to seem as complicated as possible. We are
not trying to impress anyone so will only use decimal arithmetic
to make our examples easier to understand.

For the example just discussed the operation we did is similar
10 X=25
20 X=X+140

We will try to relate machine language operations
to Basic as much as possible. We could have also performed the
calculation by loading A with 25 and then adding 140 from a
memory location to A. Then the result would have still been in A
but our program would have the memory location as part of it.
This would be similar to the following Basic program.

10 X=25
20 X=X + PEEK(M) PM contains the value 140

Now let 7 s look at ways we can load a register. If we
designate in the program the value to put in the register then
this is the "Immediate" mode and we will designate this by "I".
The load command will be designate by "LD". So to load register
A with 25 would be written in machine language mnemonics
(symbols) as

LDA I 25 It would appear in memory as
1000 machine code for LDA I
1001 25

An assembler would translate the LDA I to a numberer machine
language code for this command. The value of the machine command
would be put in 1000 and the value of 25 would be put in 1001.
For the immediate mode the value is always in the next memory
location.

Notice the format of the comand in 1000. The left 2
characters designate the command, the third character designates
the register and the right character designates the mode for the

11

to

operation.

Now suppose you want to load an accumulator with a value in
memory somewhere. The "EXTENDED MODE" <E> allows the value to be
anywhere in the memory map. So let�s consider the Extended mode
now. Let�s say our data is in memory location 20000. The vectors
for 20000 can be calculated as follows.

MS=INTC20000/256> : LS=20000-256*MS
Now we can write the command at location 1000 as

1000 LDA E 20000 This command means we are going to
location 20000 and get the value stored there and put it into
accumulator A. The program memory would look like th is

1000 Machine code for LDA E
1001 MS byte of 20000
1002 LS byte of 20000

Don�t worry about wh at is put where. That is what
assemblers are designed for. Our d ecimal assembler CDISASM>
looks up the machine code for LDA E and stores it in 1000. It
then calculates the MS and LS for the extended location and

stores these values in the next 2 bytes as shown in the example.
Th is command takes 3 bytes of memory.

CALLING MACHINE LANGUAGE PROGRAMS from BASIC

We want to pause here to point out th at the EXEC Basic
command allows machine language programs or subroutines to be
called from BASIC. We want to write some elementary programs by
poking values into memory and using th is EXEC Command to run the
programs. From th e keyboard you can type

EXEC 10000 <ENTER> and a machine language program at
10000 will be run. Don�t do it yet as we don�t have a program
there. Now let�s write a machine language program to add two
numbers. Let�s put our program at 10000 and put the numbers at
500 and 501 and let our result be at 502. We will write a Basic
program to h and le the operation. Th e "STORE" (ST> Command is
equivalent to Basic�s "POKE" Command. So to put the result of
our calculations in a memory location we will need to write

STA E 503 We need to define th e ADD Command wh ich will

be written as
ADDAE 501 This command means to ad d to A (the fourth

character) the value in 501. The left 3 characters are for
ADD, the 4th is the "A" register and the 5th character is the
Mode wh ich is Extended for this example. The following pieces
are needed:

1. 182 is the machine code for LOA E
2. 185 is the machine code for ADDAE
3. 183 is the mach ine cod e for STA E
4. th e vetors for 500 are MS=1, LS=244
5. The vectors for 501 are MS=1, LS=245
6. The vectors for 502 are MS=l, LS=246 Here is the

assembled version of our program
10000 LOA E 500
10003 ADDAE 501
10006 STA E 502
10009 RTS The RTS means to return from a subroutine, the

same as "RETURN" in BASIC. Th e values stored in memory for the
subroutine are:

10000 182 (machine code for LOA E)
10001 1 CMS of 500)

12

10002 244 <LS of 500>
10003 187 <machine code for ADDAE>
10004 1 <NS of 501>
10005 245 (LS of 501)
10006 183 <machine code for STA E
10007 1 <MS of 502)
10008 246 <LS of 502>
10009 57 <machine code for return from subroutine>

Type in the follDNing basic program.
10 FDR J=10000 TD 10009: READ X: POKE J, X: NEXT J
20 DATA 182, 1, 244, 187, 1, 245, 183, 1, 246, 57
30 ?"THE MACHINE LANGUAGE PROGRAM HAS BEEN ENTERED.
40 ?"NON ENTER THE VALUES TD PUT IN 500 AND 501.
50 INPUT X, Y: POKE 500, X: POKE 501, Y
60 ?"NOW CALL THE MACHINE LANGUAGE SUBROUTINE TD DO THE

CALCULATIONS.
70 EXEC 10000
BO ?"LET"S SEE IF THE CALCULATION IS CORRECT"
90 Z=PEEK(502): ?"THE SUM IS "Z
95 ?"PRESS ANY KEY TD RUN THE PROGRAM AGAIN

100 AS=INKEYS: IF AS= 1111 THEN 100
110 GD TD 10

Next month we will continue with this approach. You may
wonder about the rest of the machine language codes. We will
cover them and give you a chart or list. Programs can be
assembled by hand as we did but an assembler is much better. For
those interested we are putting our decimal assembler <DISASM>
on special for S9.95 postpaid. It uses the same approach as we··
are using here.

QUESTIONS & ANSWERS

TheSeQre questions that have been asked us. If you have a
ques�1on please send it in and we will answer it in a future
issue. If we can"t answer it then we will ask for help from our
subscribers.

Question: I want to purchase an assembler but have heard that
they can d amage •Y computer. Is this possible?

Answer: No you cannot damage your computer with a program. The
worst that can happen is the computer may latch up and you may
have to turn off the power to reset it.

Question: Is it safe to plug in a cartridge with the power on?
Answer: No you can d amage the microprocessor or the SAM chip.

However if you must d o this hold the reset button to keep the
computer inactive.

Question: How can you advertise solderless memory expansions
when other require soldering?

Answer: We d esigned our memory expansions so that traces do
not have to be cut. We get around this by making a complete
assembly with wires soldered to pins as needed.

13

Question: I have a 64K computer but it only gives about 24000
when I ?HEM. What is th e problem.

Answer: 32K is about all you can use at a time. The way you
use your extra memory is to write programs in 32K blocks <pages)
and exchange them with other memory pages. Another way is to
use the other pages for files or d ata and pull the information
you need from them.

Question: How can Basic programs be
understand that Basic programs cannot
reserved for ROMS

put in a cartridge? I
be run in the area

Answer: You can run programs in the upper memory area

reserved for ROMs. This has a great advantage as it leaves all
of your memory free and does not require any loading. The
beginning of th e cartridge area is at 49152 <192,1) . The
beginning of basic vectors in 25 and 26 must point to this
location.

Question: Can programs be moved down from a cartridge into the
computer�s random access memory?

Answer: Yes the vectors have to be corrected for the final
location of th e program. Extended Basic will do th is for you
with the PCLEAR command. The basic beginning & end ing vectors
must point to the beginning & ending of th e program in the
cartrid ge if the PCLEAR method is used.

Question: Sh ould I buy a disk drive?
Answer: After 2 crashed disks it is tempting to say no. If you

have a lot of information you need to h andle, long programs, and
can afford the cost then they are nice. You can destroy all of
the information on a d isk at a time. Th is can not happen with a
cassette system because information previously recorded can not
be destroyed. We use both and it is nice to let one system back
up the o.ther.

OPERATING HINTS

We will publish operating h ints you send in. All persons
sending in information will be recognized if the,� material is
publish ed.

EASY MOTOR OFF: You can stop you cassette without typing "MOTOR
OFF". Just type an unauthorized command such as "Z <ENTER>
creating an error and the motor turns off.

DISK DOUBLER: You can double the information you can put on
d isks by cutting notches in the opposite side and punching extra
h oles in the middle. Several kits with a template are available
for th is purpose.

EASY DISK BACKUP: Conditioned your disks for operation on both
sides as previously explained. When you save someth ing just
flip the d isk over and save it on th e other side. You then have
2 copies, one on each side.

14

Easy Cassette Load: You do not have to give a name for the
program you are going to load. Just type "CLOAD ENTER" and the
next program will be loaded.

DYNAMIC ELECTRONIC J: NC - Products

DCN Specials good through March 1984. We pay shipping on
specials. These are available to DCN subscribers only. Use
your DCN subcription number when ordering these specials.

1. Multiprogram Master
tape. $6. 95.

<MPM> featured in this issue. Cassette

2. Decimal Dissassembler- Assembler <DISASM> $9. 95 .

NEW PRODUCTS

DCN Subscribers can take 10X off the cost of these new
hardware items. Add $2 shipping.

96KX-M • • • Our famous 96KX software in a plug in module that
mounts in the extended basic socket and the extended basic chip
plugs into the module. Nothing to load just EXEC 57701 when you
want to move data or use the other 32K memory bank in 64K
systems. As a bonus the powerful software is useful for
entering data in decimal, hex, ascii or vector formats plus many
other useful features. Uses upper BK of memory in ROM area and
allows basic to be run in either of the 32K banks or pages.
Solderless installation for D & E Computers, 2 wires to solder
for later version computers. $59. 95

96KX-C The ·same as above except in a plug in cartridge.
Excellent for cassette systems or disk systems with multipack
expanders. $49. 95

Interrupt switch • • • Allows the computer to be interrupted and
run a machine language program. Use for computer reset when the
normal reset fails. 96KX software includes this reset feature.
Mounts in 1/4 11 hole with instructions. Only $9.95

ME-128-64 • • • If you have a 64K computer you can upgrade it to
128K with this upgrade kit. Consists of a set of 64K chips with
sockets for your 64K chips, control circuit board for hardware

or software 64K bank selection, plus a 3 position toggle switch
that mounts in a 1/4 " hole for manual bank selection. $199

We want your suggestions. Solutions to software or hardware
problems, questions to be answered, topics you would like for us
to cover, or any other suggestions will be appreciated.

15

* *

* Pl•••• aign m■ up far an■ y■ar far th■ DYNAMIC COLOR NEWS SERVICE. I*
• underatand I will r■c■iv■ a monthly n•w• l■tt■r, Diacount• an DYNANIC *

* ELECTRONIC INC. Camput■r products plu• th■ Individual R■ply ta my*
* Caaput■r probl■■s far a sp■cial of •10 ■ach. Also I und■ratand that*
* th■r■ will b■ no charg■ far l■tt■ra print■d with·answ■ra in th■*
* Newal■tt Cast •15 USA & $20 foreign. Start with __________ iaau■• *
* *

*Name--- Nail payment ta *
* Addr••• ------------------------------------- Dynamic El■ctranica Inc*
* City --- P. O. Bax B96 *
* Stat■ & Zip --------------------------------- Hart■■ll■, AL 35640 1 *
* Enclaa■d i• • ch■ck \

•

: charg■ ta VISA ___ MC ___ Nulllb■r _________________
\

________ Exp. _____ :

DVNAMXC ELECTRONXCS XNC.

P. O. Bax B96 (205) 773-27�8
Harta■lla, AL 35640

	1984-02_Page_01
	1984-02_Page_02
	1984-02_Page_03
	1984-02_Page_04
	1984-02_Page_05
	1984-02_Page_06
	1984-02_Page_07
	1984-02_Page_08
	1984-02_Page_09
	1984-02_Page_10
	1984-02_Page_11
	1984-02_Page_12
	1984-02_Page_13
	1984-02_Page_14
	1984-02_Page_15
	1984-02_Page_16

