eWS

September/October 1981
Volume 1 Number

REMarks

Mait Call

Draw

Machine Lansuvase
Adventure Notes
Comment Corner
Seellit

Kid's Page

A Basic Bue
Converesence

U Boat

Super Fast Prings

REMarks

Have you ever seen a publisher panic? It's not a pretty sight, Shortly after
the last issue went out the computer bit the dust, a little later the printer dedided
to follow the act. All is now well (note crossed fingers) and as I write this we are
rlose to being hack on schedule. The postal employees had me worried for a while but
we’'re OK again for a while, (Personal note to Canadian friends! Merry Christmas!),
While on the subject of the Post Office, did you know that the 9-digit zip code is now
real on a voluntary basis. If I understand the letter they sent me correctly we will
have a "Bar-Code" return address on the back of this soon. I hope it does help the
Bulk Mail problem,

Starting in this issue we have a new column. The first is Comment Corner,
Comment Corner is just what the name implies, every issue from now on we will be
giving the comments for the Basic ROM. The column is donated by The Micro Works
staff and is terrific, There’'s a tremendious education in the ROMs with the proper
guidance and this is just the guidance we all need, For my personal use I
disassembled the ROM with their disassembler, pasted the pages into a notebook and
am now adding their comments as they send them. Please notice that they have
include the low RAM used by Basic, Thanks Bob, Andy and Ann,

Since last issue I received several new pieces of software, There is too much
to talk about all of it but I would like to share a few., Chromasette magazine arrived
about two weeks ago. The "cover® is slicks The word Chromasette is written in
"long-hand" and scrolls all over the screen in color. In addition to the cover there
are 5 game programs., My wife and kids liked Blockade the best: The Micro Works
sent two adventure games called Black Sanctum and Calixto Island. If you've never
played an adventure game these two are a real treat. If you have played adventures
before these two are among the best (Scott Adams beware you have a fierce
competitor here)s TMW also sent an Asteroids game that was excellent, Computer
Ware sent their Invaders game. The program has excellent sound, good graphics and
the invaders attack fiercely and, best of all DOESN'T require their Power Pak.

Many of you have sent in software for the Sampler series, Flease DO NOT
send software that you didn‘t write. I received a tape copy of Radio Shack personal
finance the other day from a very well meaning reader, Please understand that
giving or selling copyrighted software is very ILLEGAL: I‘m not going to get into a
discussion of program swapping or dedicate an entire issue to the subject as some
magazines have done but I strongly feel that if you copy software, Software houses
will produce "protected" software and you will lose the excellent education that
comes from examining other people’s code. I think this is the worst possible thing
that could happen to Color Computer users at this stage of the game. You have to
make the moral judgement for yourself, but try to look at it from the standpoint of
the guy who programs for a living,

I promised to announce my decision about going monthly this issue. The
response has been about equal on both sides and the reasons are about equally good.
So my choice is that we will go monthly when we have at least doubled last months’
size without sacrificing quality.

We have, as our feature artu:ll, a discussion of the DRAW command by Don
Inman, Don is best known for his books far the Model I TR§-80 and is soon to
release a book about the Color Computer’s Extended Basic. Welcome aboard Don,

Mail Call
Dear Bill,
1 really love the latest issue of CCN (July/August) The format looks much better -~
it’s much easier to read and there are far fewer errors,
Your monitor pragram is warth the price of the entire subscription. It has cleared up
a lot of confusion in my mind. It's a very valuable tool. May I make a suggestion? The
BASIC command needs a minor adjustment, When creating the "DATA" statements, it
puts a comma after every value, including the last one on the line. When the BASIC
program is executed, this "trailing comma" seems to generate an extra data value, 0,
and pokes it into memaory, The result is garbage. One way to fix this is to replace
line 8040 as follows!
8040 FOR OF=0 TO 9! A$=A$+STRS(PEEK(ADDR+OF))! IF OF<9 THEN As$=A$+"\"
8045 NEXT OF
For Extended Basic users, lines 7010 and 7020 should be replaced with!
7010 H$=H1$! GOSUB 10000
7020 DEF USR0=D
Apparently, POKE-ing the MSB, LSB of the entry point into locations 275 and 276 is
a no-no for the Ext, Basic machine. (Why doesn’t the manual say this?) Also the
variable HEX$ must have a different name, I used HE$,
I used the monitor, with the above revisions, to POKE in Tom Rosenbaum’s Invader
program (CCN July/Augh It works great! Now if I could just understand itiwe
Sincerely,
Kathy Goebel
17211 Glastonbury Rd,
Detroit, MI 48219

Thanks Kathy, poor proofing on my part.

Dear Sirs,

Believe it or not I've got one subscription already, but I want a second one, I've
found CCN to be more than a magazine, it's a tool that I write notes in, and underline
key points in, With use like that I need a working copy plus a back-up copy.

1 would like to commend Computer Plus! not only did they give me the best price on
my 16K CC but the service was very prompt, The computer has worked perfectly from
the moment it was plugged in.

Sincerely yours

Bobby Joe Harrison

107 Qakhurst

El Dorado, Arkansas 71730

Did you know that Computer Plus is the largest Authorized Radio Shack Dealer in
tha country?

Dear Sir,

I like Robert Huxter‘s "Appending Programs” in V1 #2 of CCN. I have the Extended
Basic and had to make a few changes. Address 25 is NOT a é when I power up my CC,
It is a 30 and changes with each PCLEAR command, PCLEAR 1=12, 2=18, 3=24, 4=30,
5=36, 6=42, 7=48, 8=54, I must do a PEEK (25) first and use that number in step 6 or 1
lose bath programs!

0 PRINT PEEK(25)

1 CLOAD" first program "

2 PRINT PEEK(28)

3 POKE 25, PEEK(27)

4 POKE 26, PEEK(28)-2

5 CLOAD" second program *

Mail Call
6POKE 28, value from step 0
7 POKE 26,1
If PEEK(28) yields a value <2 then step 3 & 4 are!
3 POKE 25, PEEK(27+1
4 POKE 26, PEEK(281+254
As you can see the only change to Robert’'s statements are steps 0 and 6,
Michael B: Eromeke
4308 Harper Dr. NE
Albuquerque, NM 87109

Dear Bill,

I have at hand a copy of the May/June CCN and it is my firm belief that it does fill a
wide gap for people such as myself, The CCN along with the Color Computer does fill
many of the needs of the disabled.

Let me go a little further and explain why: All good feelings and aids for living must
be intergrated into a pattern of daily life that makes life “fun again",

It seems to me that the cost/performance goes a very long way toward helping this
objective, The 6809 MPU and the surrounding chips, make it best bet for the disabled
to keep accurate records, A must to be independant,

I, for my part, have written programs to tell *where the money went*, others for
medicare and charges, When I aquire a print out devise I will be very glad to share
them with anyone interested. My typing them out is so full of errors they are
useless,

But PLEASE make it clear (in CCN) the CC is no toy but a good data processing
devise. So lets have more on data processing and much less on graphics, that, for
serious work is almost, useless. Almost.

Donn B. Jones

Dear CCN;}

I have enclosed 2 sketches, Fig.1. shows how to install a Micro Works "CBUG"
ROM on a R/8 "Diagnostics Pak" allowing switching back and forth by resetting the
computer & changing the switch on the PAK, If done as Micro Works shows you lose
the use of Diagnostics,

In Figure 2 1 show how to add 16K to a 14K computer avoiding cutting up the
PC board traces by bending pins up on U29 and Ué. Connections to U10 were made by
using wire wrap wire (#30 wire) and pushing then ends into the U10 socket pins 12
and 35, The lower RAM pins 4 were already connected to U10 Pin 12 on my PC board, I
did not use a 33 ohm resistor to the upper RAM pin 4s, perhaps Bob Lentz knows
something that I don’t,

Radio Shack has a very good service manual which has schematics and a lot of
good dope, and of course a couple of errors, Page 40 figure 15 upper right listing
change 4 S21 to 520, On sheet 3 page 73 #W of memory chip U2} should connect to
#WE not line #*RAS, Pretty obvious.

As an avocation I build electronic 170 equipment for the handicapped
(paralyzed people): No money! just fun. I just completed a TRS-80C automatic
telephone dialer controlled by one "PUFF" switch, Puff 1 starts scan of coded
numbers on CRT. Puff 2 dials the chosen number, Puff 3 picks up the receiver, Puff 4
hangs up. No modification of the computer is necessary, Entered this in the Johns
Hopkins University contest,

Your Truly,

Joe Sobieski

2277 Mencher Blvd,
Johnstown, P4 15905

DiacNosTICS' ¢ “cevg”

APDT ™Mindl SWITCH
5N ITCH 5 ELECTABLE, MeunT {:sw: BoaRe
Tueu /4" Hore OH JoINT oE Cass.
ON Rom Pack.
+£Y
' Fig |,
(%)
MicrRo Worxs® New .\ v
CaP,

e MON, Bant
e v

" HoLE
‘/-— New

<. 7| GuT TraAce
Y | —UNDer Bro,

[
>

Ceur TraAcE

on ToP OoF BRY.

1
ONTe P
sz
SW' vp Bertem,
L ¥ " -~ " i
C Bue’ See YTaas 7 OF Cmug
‘ FoLLow INSTRUCTION
w Sw.Down " CutT Pin i 1—g‘¢._m * SmEmpET
DiagrosTics oN Betrtam

OF THa Boars & Wire (N SW.
Sipe \/u.w‘ AS SHOWN,Q 18 o C Bug” SeckeT.
Sw, MeONTING

10 REM HEX/ABCII Dump of memory
20 REM (C) 1981 Gary A. Davis
30 SLOW=4T494
40 FAST=SLOW+1
S0 CL8
&0 INPUT "ENTER START ADDRESS" ;8T
70 ET=INT(BT/16)%16
80 INPUT "ENTER END ADDRESS “jEN
90 AS=RIGHTS (000 +HENS® (BT) , 4)
100 Be=RIBHTS ("O00"+HEXS (EN) , 4)
110 PRINT #-2,"Dump starting at™;8T)
"("pA83")) and ending at"j;EN)
-t-l.‘|-’.
120 PRINT #-2
130 FOR I=8Y TO EN STEP 1&
140 IF INKEY#$<>"" 8070 30
1350 POKE FABT,0
160 ABS=""
170 Le=="
180 FOR J=I TO I+1S
190 PI=PEEK (J)
200 Lo=LS+RIGHTS ("O"+HEXS (PJ) , 2)
230 IF J-INT(J/4)84=3 THEN L®=Lg$+" *
220 IF PJ<32 DR PJ>127
THEN PJ=ASC(".")
230 ASS=ABS+CHRS (PJ)
240 NEXT J
230 POKE SLOW,0
260 IF LLe=L$ B0TO 410
270 IF DL=0 BOTO 350
280 IF DL=1 B80TOD 320
290 PRINT “——")DLj
" LINES BAME AB ABOVE ---"
300 PRINT #-2,* —=="1DL}
“Lines sase as above -——-"
310 B80OTO 350
320 ADS=RIBHTS ("000"
+HEXS (I-16) ,4)+" - *
330 PRINT ADS)LL$)" 2*)AB8e; """
340 PRINT #-2,ADS$)LLS;" 8" A86) "s"
330 DL=0 y
360 Lie=Le
370 ADS=RIBGHTS ("O00"+HEXS (1) ,4)+" ~ »
380 PRINT ADSjLe;" 8" ;ABS;"s"
390 PRINT #-2,AD8;L%;" 8";ASS;"3"
400 BOTOD 420
410 DL=DL+1
420 NEXT I
430 FOR I=1 TO 3
440 PRINT #-2
450 NEXT 1
460 END

AARDVARK
TRSSOCOLOR O8I VIC64 VIC-20

SINCLAIR TIMEX

.
i e s
RAGE B o G 190 SMBIME KB e it 1 0 Foe g AckrY o
raad Taa Lok tha CHllA whe g

Sedvuntuon were 1A 9n TAEED. Drekuans yowa - ard 4 1181 dwgronnl

]

colar wd S Thay g Bk 82 061

i 1k on 30 Doveid) I8, 120 04
M 52 pweh

S [————
Jriie—
Lot
AARDVARK - 80
2382 8. Commerce, Walled Loks, Mi 45088
- 313] 660-3110 «

Phane Ordors Accepied £:00 4., 10 400 pm EST. Man..Fri.

From Computer Plus (o YOU..,

PI.US after Pl-l.ls after Pl.lls
P ==y

® HEAN=]

[E==311) o AT,

Modal 16 128 Cofor Compular 14K 4105 Model y
1 Drive 14199 W16k £ doue 1398 Woas i i
2 Drive 14799 200k & RS232 © 11899

widdK st Bawe 149}
$meh Cevang TRI
Wheal

“E—'
2 Al

Okiciato 024 4428

Color Eampulwr Disk Dive
Crive 04470 Dirve 15318

BUY DIRECT :uivstisadmmsini mndtion

coMPUTERS i DRIVE!

Wacm! H & LIV | 4509 LymiCrect Connect MIMIL - 235 n:?ma.v’u il Orve o,
oo m o 22 I ™
L1 33k BS650 lslaphane inertoce § Colol Compntut i ¢
*MICOEL 14 32K @130 REModam DG 0 Cetor Gompael O1vad ::
MCOPL H SE 914 R3 ModemiDC 210 Py maie Dk M bl
WOOFL I sl ™ Peemary Houg Otk Ml ool

Mag b 1K Dauy Wneal | M5 e
20vH 8 RS2z we Dwhaio 1335 Sorpt econde 'l
Golor Compye K 35 SMINCOINOTPIaY Whes: 8% C C jaysheks 1
Colo) Computar 1ek Epaon Mxed W9 ARAMNEC N0NSenipr
weslended bIEC 9 TRRon MXAD FT S0 gak Rom Chups =
Calot Computar 33x Epean Mx100 T ColsrComperFlea OS5 W
w exiencied baug 4w TGRS 1% Biond Newe Sabware
4Cak Compulel 32K adk DMP.400 HE senoorming

3 s Omrao 59 B3 Salwers 10% ol bs1
Pockes Compuner 2 20 OMPU00
Wxde! 18 108 1200 @ OWPam
Mecies 16 707 120 490 Miciolne 80
DF-+ Dova fevmenal e Micigine 82

Micsolng

© Mot Priviel
we nave the lowes! possidle
* Fully Warrantead Prices AND
a full compiement of Radio Shack
Software.

P nisject 1o change witaw nofice.
ol T DONUTH® b

= P&
IS ANt l temnd of fonay Cap.

DRAW
by Don Inman

Ideas introduced in this article are expanded in "TRS-80% Color Computer
Graphics", a book in preparation for Reston Publishing Company.

One of the most versatile Extended Color BASIC statements used to produce
graphics is DRAW. It may be used to draw lines by specifying the starting point, the
direction that you want the line to go, and how far you want it to go. This information
is all contained in a string that follows the DRAW,.

DRAH“lﬁQl-deﬁning string"
this string defines the conditions

In the Beginning}
In the first part of the string, you move to the origin of the desired line without
drawing anything,

ynmzaﬁe"
B for Blank™ M for MI.fe ta\.‘[coordinates

don’t draw position that of origin
follows

If you think of the DRAW statement as commanding the action of an X,Y plotter,
the Blank Move (BM) says, "Lift the plotting pen off the paper, move it to the X,Y
coordinates that follow, and then lower the pen in preparation for the next command.”

Suppose you want to draw upwards from the starting point, You would add to the
previous string as follows!

DRAW"128,961U30
start heré draw up this many positions

The semicolon before the letter U is optional, It helps to visually separate the motion
command(s) given. If the above DRAW statement were executed in a program, you would
see!

a line going from the center of
the screen upward a distance of
30 vertical screen positions

Other Directions;}
The computer can DRAW in any of the following directions when the appropriate
letter is specified followed by the distance to be drawn.

M for Move to a new position
U for draw Up4a

L for draw Left

D for draw Down g

R for draw Right—y

E for draw 45 degree angle -~

DRAW
F for draw 135 degree angle®,,
G for draw 225 degree angle L
H for draw 315 degree angle K

Any of these directions may be combined in a single DRAW statement as demonstrated
by the following program.

100 ‘SET UP GRAPHICS SCREEN
110 PMODE 4,1

120 PCLS

130 SCREEN 1,0

200 '‘DRAW AN OCTAGON
210 DRAW"BM110,40;R40{F40;D40;LA0;H40}U40;E40

300 ‘LOOP HERE TO KEEP PICTURE ON
310 GOTO 310

The program draws the sides in the order indicated.

1. R‘o
2, F40
3. D40
4, G40
S, L40
&, H&0
7. U40
8' E‘o

The Blank Move command may be used at any place within the DRAW statement.,
Therefore, you can draw a series of unconnected lines also, The statement!

DRAW"BM110,60R20D20L20U20} BM112,62F16; BM112,68E16
should draw the following figure in the order indicated.

b 1, R20

2, D20

3.L20

A 4, U20
q S Lift pen and move

6. F1é6
7. Lift pen and move

8. E16

3

In using the diagonal movements E, F, G, and H, keep in mind that the distance
specified is the diagonal of a square whose sides are the specified distance, The
diagonal drawn will have a distance of]T' times the specified distance.

Examplet
DRAW"BM100,30;E25"

DRAW
would draw a line from (100,50) to (125,25)

In other words, E25 means draw at 45 degrees to a point 25 units to the right and 25
units up.

Relative Motion
Two types of motion can be created by the motion command (M). We have shown
absolute motion in previous examples. This type of command specifies the absolute X,Y
coordinates where the drawing is to start,
250 DRAW"BM110,60R20D20L20U20"
start here
The relative motion command can be used to start a drawing at a specified

distance from the last position used in a previous command, Suppose you had just
executed line 250 (above),

last position.—(100,60)
drawn

You now want to draw another square starting 40 uvits to the left and 30 units above the
last position plotted by the statement in line 250, The necessary statement would be!

260 nmw'm};w.—aomomouovzo-
minus sign indicated inus sign indicated
start left of last start up from last
position position

The picture would look something like this!
40 left, 30 up

original

Other possibilities!

BM+40,~30 right 40, up 30
BM-40,30 left 40, down 30
+40,30 right 40, down 30

plus or minus sign is necessary before the X coordinate to indicate
to the computer that this is a relative move from the last position,

Stringy DRAW Numbers
The motion commands of a DRAW statement can be readily changed by inserting
numbers in the statement in string format,

Example!

DRAW

A% =430
Bs =-30

DRAW"BM"+A$+]","+B$+"RZ0E20L.20U20

The following demonstration program illustrates the changing string values, A square
is drawn at clockwise, sequential locations around the edge of the screen,

100 ‘SET SCREEN
110 PMODE 4,1
120 PCLS

130 SCREEN 1,0

200 '‘DRAW SQUARE AT UPPER LEFT
210 DRAW"BM10,10;R20E20L20U20

300 'DATA FOR DRAW STRING
310 DATA +30,0,7,+0,30,5,-30,0,7,+0,~30,5

400 'MOTION LOOP

410FORX=1TO 4

420 READ As%,B%,B

430 FORA=1TOB

440 FOR W =1 TO 200}NEXT W

450 PCLS

460 DRAW"BM"+A$+","+B$+"R20E20L20U20"
470 NEXT A

480 NEXT X

S00 ‘RESTORE DATA AND REPEAT
510 RESTORE! GOTO 410

This article merely points out some of the capabilities of the DRAW statement, There
are many more, We’ll cover them in future issues, Send any questions that you have to
the author in care of}

The Dymax Gazettee
PO, Box 310
Menlo Park, CA 94025

6809 Machine Code
by Bill Sias

Two issues age we discussed the 6809’s opcodes and last issue we wrote a
monitor in Basic, so it’'s time we started programming. For the sake of clarity I will
be using SD880C from the Micro Works, Flease do not confuse this as a plug for the
product, there are several excellent Assemblers on the market now, I happen to be
using this one because it comtains the Editor, Assembler and Monitor all in one
package and since it‘s on a ROM pack it leaves all of my RAM available for Source
code. In addition it allows me to Assemble to memory and test before saving the
Source code, The first order of business is to explain the commands in SDS80C so
that you may compare them with what you are using and note any differences in
syntax,

The Editor has several commands that we will not be using. I'll just briefly
pass over them and explain the ones will be using,

L insert Lines. Since SDS80C doesn’t use line numbers this allows adding lines to
the text buffer,

D Delete lines, This allows eliminating lines from the Source buffer.

X eXchange text, The Editor in 8DS is a screen Editor and allows several ways of
changing the text in the Source buffer.

Find string: This is an automatic search function,

Change string. Another form of F that allows automatic search and replace.
Again, Repeat function, used with F and C.

Page, Move forward one screen page, -P moves back one page.

Text, Copy block of text,

Move. Move block of text.

Jump, Jump to begin or end of text.

Write, Write Source buffer to tape.

Read, Read Source buffer from tape.

Assemble, Assemble Source code.

Recover, Recovers Source code after reset.

roUEaZagr 0

The Assembler has the following commands,
Produce a listing of the assembled Source code,
Produce a sorted symbol table,

Assemble to memory.
Assemble to tape,
Produce listing in single step format,
List to 32 column printer.
List to 40 column printer.
List to 80 column printer.
Go to ABUG without assembling.

Hoew =3 o

ABUG allows these commands.

Execute the Object codes

Memory examine and madify, .

Evalute expression. (Hex calucator allows using the symbol table and the
sembler’s expression evaluator)

Display Registers,

Transfer block of memary.

Jump ta machine language program,

Change register values,

Save machine language program to tape,

Load machine language program from tape.

Reset stack,

druoa-geE vz

6809 Machine Code
* Return to the Editor.

Compare this list with your Assembler and Monitor and make notes where
there are differences so that you will be able to make direct conversions in syntax
for the utilities that you use,

There are two schools of thought on using ROM calls in machine language
programming. I-80 and 8080 folks will tell you that you shouldn’t use ROM calls
because it limits the number of machines that your code can be used on. This
developed promarily because there is no co-operation between the manufacturers of
Intel and Zilog Micros. The folks that produce Motorola based systems haven’t had
this problem. Because of this there is a lot of compatability between machines, so
the practice of using ROM calls is common among 68XX programmers. In our
situation we are developing software exclusively for the Color Computer and all of
us have the same ROMs so we’ll be using ROM calls for things like polling the
keyboard and printing characters to the screen. At some point along the way we will
be writing software to do exactly those things so that if the ROMs do change our
software will still be compatable. One suggestion I will make is that you
disassemble the ROMs to a printer and copy the comments from "Comment Corner* to
the listing. Not only will this make using the ROM easier but it will help your
understanding of how large programs are developed,

To start off let’s write a short Basic program and them duplicate the same
program in machine code. It will use two ROM calls, Pollcat and Prinit, In Basic it
would be!

10 A$=INKEY$! IF A¢="" THEN 10
20 PRINT Asji GOTO 10

In machine language it could be!
Press L to insert lines.
0001 OE@® BDA1B1 BEGIN JSR $R1B1
000z PE@T BDAIRA JSR $AIRA
000 QEDE 2OFE8 BRA BEGIN

Press BREAK to leave Insert and press @ M <ENTERD to assemble to memory, When
ABUG! appears press G to test the program, Now type anything to see if the code
works. Amazing isn’t it (well almost)? Let make the program look a little more
professional and use some labels, Push RESET to get back to the Editor and lets do

it this way,
2201 Q200 POLCAT EQU $A1B1
820z PER0 PRINIT EQU %AJOA
2003 PE@@ BDALB1 BEGIN JSR POLCAT
2004 BEBT BDAZBA JSR PRINIT
0005 BEDE 20F8 BRA BEGIN

This works exactly the same but it shows some things that will make
programming easier later. The Assembler operation EQU allows you to assign a
value to a word so that later in the program you don’t have to remember that the
ROM routine to read the keyboard is located at $A1B1 just remember that the symbol
POLLCAT is the ROM keyboard routine, Another Assembler operation we should look
at is RMB. RME means Reserve Memory Byte(s), Let’s change the program to
remember how many times a key was pressed, Since we are using a ROM call that
waits for a key press we'll just count how many times we return from that routine,
Now change your program to read!

0001 000 POLCAT EGU $ALEL
000z P00 PRINIT ERU $ATOA
020z PeRe PRESS RME 1

2204 BE@1 BDA1B1 BEGIN JSR FPOLCAT
P0@S QE@4 7COED0 INC PRESS
200 BEG®7 BDATOA JSR PRINIT

POO7 DEDA ZOFS BRA BEGIN

6809 Machine Code
INC PRESS
JSR PRINIT
BRA BEGIN
4All we have done is to add 1 to memory location PRESS when we return from POLCAT,
This won’t get us a true count of the number of characters entered so we should make
PRESS 0 before we start typing, Add the line!
IERO CLR PRESS
between PRESS RMB 1 and BEGIN JSR POLCAT. NHow we have a counter for the
number of key presses (including spaces). Anyone care to write a Word Processar?
Did I see a hand raised in the back? O.K. So far, all we have done is input a
character and print it, now we need a way to store the created text so we can print it
later and a control code to switch from input to print, First let’s store the text in
memaory. After PRESS RMB 1 let's add TEXT RMB $FF: This will reserve 1K of
memory for the text buffer. Add after ZERO CLR PRESS!
LDX #TEXT
PSHS X
And after BEGIN JSR POLCAT add!
PULS X
STA X+
PSHS X
This will store all the text you enter in the reserve block called TEXT: Now we have
to add a control code to inform the “Word Processor” that you are done typing and
want to print the text, After BEGIN JER POLCAT add!
FRINT LDX #TEXT
LDB PRESS
LOOP LDA ,X+
PSHS B,X
JSR $ASBF
DECB
BNE LOOP
LDA #$0D
JSR $ABBF
SWI

The next thing to do would be to add comments to the code so that it can be
refered to later and still understood.This should make the entire program look like!

0001 0cD0 POLCAT EQU $A1BL BRASIC KEYBRD

* SCAN ROUTINE
000z REDD PRINIT EQU $ARIOA PRINT ROUTINE
00z PE1 PRESS RMB 1 # OF KEYS PRESSED
024 PED1L TEXT RMB $FF INPUT BUFFER
00eS 0700 7FOEOD ZERD CLR PRESS START AT @
PPRE @703 SEQED! LDX #TEXT GET BUFFER RADDR
2007 Q70E 410 PSHS X SAVE ON STACK
P20 @708 BDAiB1 BEGIN JSR POLCAT GET A KEY
0005 870B B12T CMPA #'# CNTRL CODE?
0010 078D 27@E BE@ PRINT YES! DD IT.
2011 Q7OF 3510 PULS X GET BUFFER ADDR
BA12 @711 A7E0 STAR , X+ SAVE AND UPDATE
. * POINTER
PR1T 0713 3410 PSHS X SAVE NEW POINTER
0014 0715 7COEDO INC PRESS UPDATE # CHARS
2015 @718 BDAZRA JSR PRINIT PUT ON SCREEN
PD1E B71B ZOER HRA BEGTN DO IT AGAIN
2017 @71D BERED1 PRINT LDX WYEXT GET RUFFER
eNiE 0790 FEOLOO LM PRE G THISN MANY
2019 @7.% ALED Lo LIMY o N PLT R TN 3

- AN TN, PIINTE R

£80% Machine Code

P02 8725 414
o221
a2z
2023
oDz4
2025

@727 BDRAEBF
@72R 3514
@72C SA
072D 26F4
R72F BEBGD
P0zE& @731 BDREEF
2027 @734 IF

BEGIN @708 LOOP @723

POLCAT
PRINIT A3Z@A PRINT @71D TEXT

PSHS B. X

JSR $REBF
PULS B, X

SAVE BOTH
POINTERS

PRINT#-2

RESTORE

CHARS LEFT
LaopP IF '@ DO AGRINM
#4$0D GET CR
SAEBF PRINT#-2

GO BACK TO SDSE@C
AiB1 PRESS 000
QE@1 ZERD a7ee

Type carefully, this is not a word processor actually but more of an expensive
electric typewritter that doesn’t allow corrections, You can correct the screen but
not the text in the TEXT buffer. It would be a simple matter to add it, just add code
after CMPA #'# to test for backspace and when it occurs reduce the pointer to the
text buffer by one and BRA to BEGIN again. Adding true editing could be done by
using any one of a number of techniques, the important thing would be to keep track

of where you are in the TEXT buffer.

That's it for this issue and I think it will keep you pretty busy, If you do
develop a good word processor from this, please send me a copy and we'll publish it

here.

80-U.S. Journal is a monthly publication
for the TRS-80 computer owner. The Journal
covers Busi Scientific, Educational, and
Recreational areas.

80-U.S. will keep you up to date on new
products, software and hardware. Each issue
will have listings of programs, reviews, tutorials.
80-U.S. is the complete "How to” Journal for the
TRS-80!

If you haven't taken a look a1 80-U.S., here
is a no-risk opportunity to do it now. Become a
trial subscriber now under the protection of a
full money-back guarantee!

1 R
2 R
IR
i@
prd s}
0
40
5@
6@
70
eo
80
100
110
120
13
140
150
1ED
170
180

EM ROCER LOEWENSTEIM
EM 2325 E 28TH 8T
EM DAVENPORT, I0WA S2E@3
PMODE 4,1:PCLS:SCREEN 1,1
A=INT(RND (@) »255)
B=INT(RND(@)*191)
I=INT(RND (@) #4)+2Z
FOR X=0 TO 253 STEP I
FOR S=1 TO 2
COLDR 8+3,8
LINE(X+S,@)-(R, B), PSET
LINECAR, B)—(255-X-5y191), PSET
NEXT S» X
FOR Y=@ TO 15@ STEP I
FOR 8=1 TO 2
COLOR Z#5, 8
LINE(Z2SS, Y+8)~ (A, B)y PSET
LINECR, B)-(@, 192-Y-5), PSET
NEXT 8.Y
FOR R=1 TO 1S0@:
GO TO 1@

NEXT

Adventure Game Notes
by Ron Krebs

ADVENTURE GAMES' This is a subject of great interest to many computerists
and is reaching cult status with a growing number of regular players. Those of you
who have played an adventure game until three in the morning, searching for obscure
clues or hidden treasure; know the reasons for their popularity. For you others wha
have not yet joined this masochistic group, perhaps this article will answer a few
questions and enliven your curiosity.

The first thing we should do is define what we are talking about, An
adventure game is a story, much like a good novel, arranged in the form of a puzzle.
The computer serves as a story teller; basing it's response on input from the
operator, Adventure games are intricate and game strategy varies from player to
player resulting in a great variety of computer response as each segment of the game
is negotiated.

At this point you might ask,"How does the player talk to the computer?” and
the answer provides some insight into the mystique of adventure gaming. Each
adventure game incorporates a sizeable vocabulary of commaon english words which
the computer will recognize, These words are generally arranged into two groups of
verbs and nouns which the player uses to form commands. For example, you might
type the verb "open” and the noun "door". If there is a door present the computer will
likely respond affirmatively to this command and obligingly respond, "OK, the door is
open”, Keep in mind that the door in this example may be locked and your computer
will admonish you with a response such as "I can‘t, it's locked," At this time the
astute player has gained a clue - there is probably a "key" to be discovered
somewhere, A significant new noun should be noted.

So you see, in addition to resolving the puzzle, the player must probe and
study to uncover other secrets as well, As each game progresses, the adventurer will
discover new locations to visit and objects to investigate, Correct phrasing of
commands will result in information and often lengthy responses from the computer.
Maybe your flashlight batteries will become exhausted from searching a dark cavern
too long. If this occurs at 2130 in the morning, it will take a lot of willpower to go to
bed before you "unlock the door",

From the preceeding it becomes obvious that adventures are pretty
sophisticated computer programs and we can reach some initial conclusions: The first
conclusion is that adventures take a lot of memory, From this we may correctly
assume that any good adventure must be written in machine language and not Basic
which would also be too slow for our purposes. After making the above observations
we might ask a very important question - "How does one write a machine language
adventure?" One appraoch worthy of consideration is the use of a game interpreter.

Let’s assume you have just completed several months of work on your new
adventure and your friend plays it and enjoys it: You now recognize the need for a
second game but cannot bear the thought of starting all over again: This is where the
interpreter plays a very important role. The game interpreter is program that does
all of the housekeeping involved in game playing. It interprets your commands,
searches for play options, formats the caomputer response and keeps track of player
and object Jcations. In addition, an interpreter provides the important capability to
save the status of a game in progress for resumption later, Because it is written in
machine language, the interpreter uses less memory and operates much faster than a
Basic program. Now that we have the interpreter at our disposal we need not worry
about re-inventing the wheel for each new game, We can describe the interpreter
more thoraughly in a future article if reader response indicates an interest in the
subject,

The story section of a new game can now be written and this is the hard part,
Your first task is to specifically define the object of the game, This is a rule to be

Adventure Game Notes

observed in all programming and is no less important in games. The story will simply
not work until the writer determines what is to be accomplished. The next step is to
study all situations, objects and clues which must contribute to the game flow and be
interesting. The games should provide balance and challenge but must not present
unsolvable problems., A game vocabulary is developed by testing to determine which
verbs and nouns are appropriate for a variety of players, As the story portions
grows it can be played, de-bugged and modified by use of the interpreter until the
final version is resclved,

A few suggestions are in order for those who have not played an adventure,
The first suggestion is to maintain a high level of curiosity, Examine all objects and
locations thoroughly for clues and information, Secondly, be imaginative in choosing
the commands to your computer. If the computer responds,"I don’t understand your
command"”, try to come up with a synonymous phrase to achieve the same objective.
Taking notes and drawing maps can prove very helpful as you progress through a
game: Your enjoyment will grow with each discovery and each obstacle you
successfully overcome.

The preceeding comments give you a brief overview of adventure games and
their structure but no amount of reading can replace the experience of actual play.
The reader of a good novel forms powerful mental images and the same thing occurs
playing adventure games. You will experience confusion, frustration, humar, joy and
rewarding moments of accomplishment. So, load an adventure game into your computer
and see what all the talk has been about. If you happen to choose “Calixto Island
Adventure",... don’t overlook the bucket!

COMMENT CORNer

The following 1s a list of comments which could be added to a
disassembly listing of the Color Computer ROM. The section

given here is called POLCAT. and is the keyboard scanning and
debouncing routine. It is called with JSR [$A000] or with JSR $AlCl.
It returns with the A register equal to a zero if no key was

pressed. or to a key code (ASCII code) if a key has been pressed.

All other data registers are saved. It ends with a TST A so that
the call to POLCAT can be followed directly by a Branch If Equal
instruction te branch if no key was pressed.

There is a bug in POLCAT. There is no hook in POLCAT to the Extended
Basic ROM, so the bug is present in Extended Basic also. It is this:
If two keys in the same column are pressed simultaneously. they both
are entered into the rollover table but only one is processed., For
example, press "G" and "0" at the-same time. and only "G" will be
displayed.

Variables., Areas. and Routines - ALED GET COLUMN BIT

A1FQ SAVE IT
Addr Comments AlF2 START ROW COUNT AT MINUS 8
———— em————— AiF4 BUMP BY 8 EACH TIME
O11A LOWERCASE FLAG A1F6 LOOK FOR THE NEW BIT
011B DEBOUNCE CONSTANT AL1F? LOOP TIL THE BIT FOUND
0152 KEYBOARD ROLLOVER TABLE A1F9 ADD ON COLUMN COUNT
AQQOO ADDRESS OF POLCAT AIFE "@" - GO TO CONTROL
AlC1 START OF POLCAT ALFD BEYOND "I"7?
A1C8 GUTS OF POLCAT ALFF GO TO CONTROL
A223 HANDLE SHIFT ZERO A201 MAKE ABCII
A22D CHECK SHIFT KEY A203 CHECK SHIFT
A238 CHECK KEY COLUMN A0S MUST BE UPPER CASE
AZ2SS DO ASCII $21 THRU $3F A207 CHECK CASE FLAG
AZe4 LOOK UP CONTROL KEY AZOA SKIP IF UPPER CASE ANYHWAY
A26E CONTROL KEY TABLE A20C MAHKE LOHWERCASE
A2B1 LAST BYTE OF POLCAT AREA AZ0E SAVE THE CHARACTER

A210 DELAY CONSTANT
Line-by-line Comments - A213 DELAY

A216 COLUMN BITS
Addr Commants A218 TO PIA AGAIN

A21B CHECK COLUMN AGAIR
AlC) EAVE B AND X A21D SAME A5 LAST WE LOOKED?
A1C3 CALL BULK OF POLCAT A21F GET CHARACTER TO A
A1CS SET ZERO FLAG IF NO NEW KEY FOUND A221 IF NOT. FORGET IT '7?
Al1CE RESTORE B AND X. AND RETURN A222 IF IT SHIFT ZERQ?
AlCB LEAVE 3 BYTES ON STACK A225 IF NOT. RETURN
A1CA KEYBOARD ROLLOVER TABLE A227 TOGGLE CASE FLAG
A1CD INITIALIZE COLUMN COUNTER A22A CLEAR RESULT
AICF ZERO BIT IN FIRST COLUMN A22B CLEAN STACHK & RETURN
A1D1 TO PIA, B SIDE A22D BIT IN SHIFT KEY COLUMN
AlD4 READ COLUMN AQ2F TO THE PIA. B SIDE
AlDE SAVE DATA A232 GET INPUT
A1D8 FIND KEYS WHICH HAVE MOVED A235 GET ONLY THE SHIFT ROW
A1DA ONLY THOSE WHICH ARE NOW DOWN A237 RETURN
AL1CD GET THE NEW KEY PATTERN A238 GET PIA INPUT
ALDE SAVE FOR NEXT CALL TO POLCAT A23B HASK JOYSTICK INPUT
A1EQ ANY NEW KEYS A23D LOOKING AT LAST COLUMN?
AlEl GO PROCESS THEM A240 SKIP IF NHOT
A1E3 BUMP COLUMN COUNTER A242 MASK SHIFT KEY
A1ES SET CARRY BIT A244 RETURN
AlE6 HEXT COLUMN A245 FAKE ENTRY FOR "@" SICN
AlES LOOP FOR NEXT COLUMN A247 CONTROL TABLE

AlEB NO NEW KEY: LEAVE WITH A=0 A24A LESS THAN 1/

Az4C THEN CONTROL A267 SKIP IF NO SHIFT

A24E OFFSET TABLE POINTER A269 PLUS ONE IF SHIFT
A251 BEYOND “7?" A26A GET ASCII FROM TABLE
A253 THEN CONTROL A26C GO DEBOUNCE

AZSS CHECK SHIFT AZ6E UP ARROW - UNDERLINE
A297 IF >"+* THEHR INVERT SHIFT AZ70 DOWM ARROW - “C"
ARS9 SKIP - SHIFT OK Azve LEFT ARROW

A25B INVERT SHIFT A274 RIGHT ARROW - "“1"
A25D TEST SHIFT A276 SPACE BAR

A25E OK ~ GO DEBOUNCE A278 ZERO

A260 ADD $10 TO MAKE NUMERIC AZ?A ENTER

AZ62 GO DEBOUNCE A27C CLEAR - "\"

ARE4 TIMES 2 FOR TABLE INDEX A27E BREAK

A263 CHECK SHIFT A280 ran

QUESTION: I've seen games and other programs which make use of the
keyboard in unusual ways. Control keys, typamatic kays. keys which
you hold down in order to keep the spacecraft’s shields up -- how can
these things be done? Thay can't be done at all on some other
computers.

On the Color Computer, the assembly language programmer has direct
access to the keys on the keyboard, In only a couple of lines of
code a program can tell if any key is down or not,

How does the keyboard work?

There is an output port at location $FFO2, and an input port at $FFOO,
Each key on the keyboard connects one output bit to one input bit.

For example, the "H" key connects output bit zero to input bit one.
To see (f the "H" key is down, write a zero to bit zero of $FFO2 and
if bit one of SFFOO is a zero, then the key is probably down.

How can 1 try this out?

With an editor/assembler Rompack such as the SDS8S80OC from The Micro
Works, try typing in the "H" code!
LOOP LDA #$FE ZERO IN BIT O
STA $FF0O2 TO OUTPUT
LDA S$FFOO GET INPUT
ANDA #2 THAT'S BIT 1
BNE LOOFP BRANCH IF "H"
RTS

You said before that the key is "probably” down. HWhy "probably"?

Hell, a zero on that input bit could mean a couple of other things.
For example, if "I", "P", and "Q" are all down this would provide an
alternate (somewhat circuitous) connection between the output bit and
the input bit., (Try this on your computer, and see if you get a
spurious "H").

What else can cause a false input?

Input bits zero and one are also connected to the right and laft
joystick buttons., If a joystick button is pressed, then that input
bit becomes zero regardless of what is written to SFFO2, This is
why pressing a joystick button sprays characters onto the screen
while in Basie.

What can be done about the joystick buttons?

The simple solution is not to scan the keyboard while the button is
down., To see if the button is down, just write all ones to $FFO2 and
see if all ones come back on SFFOO. If not, you might as well wait
since you’ll just get a spurious reading. If you're calling the

ROM routine which scans the keyboard., you can do this check and only
call the ROM if no buttons are down.

How can I check the keyboard quickly?

By writing all zeros to $FF02, you can check all the lines at once.
If any key is down, then $FFOO will have at least one zero in it.
Beware of input bit 7 (the sign bit): it is not connected to the
keyboard but to the joystick analog input and depends upon the
pasition of the joysticks.

Hhat is debouncing?

When a key is pressed, it may make and break contact several times
before finally closing for good. If a program scans the keyboard
fast enough, it may report several keypresses where only one was
intended. Owners of the early versions of the TRS80 Model I will be
very familiar with this problem. In the Color Computer, after a key
press is found, the program waits 10 milliseconds and then looks
again to make sure the key is still there. This is called debouncing.

How do I call POLCAT?

POLCAT is the routine in ROM at $AICl which scans the keyboard and
returns the ASCII code of a key that was pressed. It handles the
shift key and uses shift zero to toggle the lowercase flag. HWhen
there is no new key, it doesn't wait; it returns a zero in the A
register, It does a test on the A register as it leaves, so tha
call may be followed directly by a Branch If Equal to branch if no
key was pressed.

Sounds great. HWhy not just use POLCAT and never mess with the
keyboard input and output ports?

Polcat is fine for many programs, but it doesn’t tell you everything.
If you're programming a game, for example, you want to keep turning
left as long as the key is down, and you have to know whether or not
that key is being held down., Or if you want to have typamatic keys
(which repeat while held down) in a text editor (as does the Micro
Works editor/assembler) you can call POLCAT but then check directly
for a key being held down. Also, POLCAT does have bugs.

Hhat bugs are in POLCAT?

First. it doesn’t check the joystick buttons. This is normally not a
problem, but in some programs which mix joystick and keyboard this
could be deadly. ARAlso, it has a real bug in that if it get two keys
in one column at the same time, it will ignore one of them. Try
typing "G" and "0" at the same time. If this is a problem, then some
programming on your own is in order.

Will POLCAT work if Basic isn't running?

Suppose vou write an assembly-language program which takes over the
machine and generally runs all over Basic’s variables. Some routines
will then cease working and some won't. POLCAT can be kept alive
simply by avoiding locations $011A thru $011C and locations $0152 thru
$0159, It uses no other variables: all of its temporaries are put on
the =stack.

Hill the keyboard routines work if I'm using interrupts?

Yes. but it's a little harder. There are two problems. Reading the
input port clears the horizontal interrupt. and interrupt routines
should restore the output port.

€0 what's the horizontal interrupt?

This 1s an interrupt which can be generated each time the TV screen
completes a horizontal scan line, which is every 63.5 microseconds.
This is very fast even for machine-language programs. If you want
to use this interrupt. just beware that a read from SFFOO may clear
the interrupt request before it has taken effect, thus causing a
cycle to be missed.

And what's this about restoring the output port?

Suvpose you are reading the keyboard in an interrupt-driven routine,
say every 60th of a second, This will work fine. But what if the
program being interrupted is using the same ports? It might be
looking at the joystick buttons, for example. But fear not. The
cutput port can be read! The interrupting routine can merely read
the output port and save what it found, then do what it wants to
(such as call POLCAT), then put back what was there when it came.

All right., So what do I need to know in order to do all of these fun
things with the keyboard?

Here it is:

I (4] @ A B C D E F G <-- right joystick button here
N
P 1 H I J K L M N O <-- Jeft joystick button here
0
T 2 P @ R S T U V W
P 3 X Y Z * v < > sp (* v < > are the arrow keys)
o] (sp is the space bar)
R 4 01 2 3 4 5 6 7
T (en is enter)
] 8 9 ¢+ « , =~ . [/ (el is clear)
F (br is break)
g 6 en cl br sh (sh is either shift key)
Q 7 (joystick analog in)

L O T T
0O 1 2 3 4 5 6 7
OUTFUT PORT $FFO2

SPELLIT
by Kathy Goebel
A spelling comprehension aid for kids of all ages.
Espedially for Ken

Every week my son, Ken, brings home an assignment consisting of excercises
invalving 20 or so spelling words. The object of the excerdses is to learn the correct
spelling, pronunciation and meaning of each word. Since Ken, like many of his peers,
is not highly motivated to study by himself, I have often "helped" by drilling him on
the weekly word list. After many weeks of this (like, maybe, 2), such devotion to duty
tends to become boring, monotonous and repetitive. Boring? Monotonous?
Repetitive? This sound like a job for Color Computer!

SPELLIT is a program designed to drill a child in spelling and/or vocabulary,
The words and their definitions are input initially via the keyboard, They can then be
saved on a cassette for use in a later drill, The computer prompts for each word in
the list by printing it‘s definition, The student then types in the correct word. If the
word is misspelled, the computer will give him/her another chance. If, after 3 tries,
the word is still not spelled correctly, the computer will print the answer. A final
score is calculated based on the percent of answers which were correct an the final
try. If the score is under 65%, a sad face is drawn and a sad song is played. The
student must then try the whole list again. If the score is 5% or better, a happy
face appears and a "happy" song plays:

The critical score, 63, can be modified by changing lines 700, 710 and 730,
Currently, up to 30 wards per word list are permitted. If more are required, change
lines 90 and 140 accordingly.

The songs are, admittedly, not too hot. But I'm sure some of you who are more
adept musicans can rectify that little problem.

Our experience has been that this little program is a fun way to study an
otherwise un-fun subject. To heighten interest, try changing the pictures and/or
songs. And don't tell the kids!

i@ REM 21@ INPUT A%

2@ REM SPELLIT 220 IF ABC(A%$)=78 THEN GOTO 27@
I@ REM 230 I=VALCA$):IF I{(1 OR I)N+i
4@ REM BY KATHY GOEBREL THEN PRINT

5@ REM "ENTER R NUMBER FROM 1 TO"

E@ REM FOR KEN iN+1:060TD =210

7@ REM 240 IF I=N+1 THEN N=N+1:IF N)3@
75 CLERR SO0 THEN PRINT

8@ CLS “TOD MANY WORDS. CHANGE 'DIM’
8@ DIM W&C3IB), DECITA) tGOTO 850

1@@ PRINT @iz, "SPELL IT"% 250 GOsSUe 75@

11@ PRINT:INPUT"NEW WORDS OR OLD"3R$ 260 GOTO =00

12@ IF A$="NEW" THEN GOTD 13® ELSE 27@ PRINT

IF A%="0LD" THEN GDOTO ZE@ t INPUT"WANT TO SAVE WORDS ON TAPE®
ELEE PRINT "ENTER ° HaLd

NEW' OR *OLD® ":GOTO 110 280 IF ASC(A%) ()89 THEN 4E@

1758 INPUT "HOW MANY WORDS ({(=3@)":iM 29@ S$="'RECORD" AND 'PLAY'"
14D IF N)3@ THEN PRINT I2@ GOSUB 790

“TOD MANY WORDS. CHANGE 'DIM' *:G0TO £5@ 3I1@ OPEN "0", #-1.NAS%

15@ REM INPUT WORDS & DEFINITIDNS IZ@ PRINT #-1.N

1E@ CLS . 3I@ FOR I=1 TO N

17@ FOR I=1 TO N J40 PRINT #-1,W$C(I):PRINT #-1,D%(I)
18@ GOSUB 75@ IS0 NEXT I

190 NEXTI JE@ CLOSE

200 PRINT 370 GOTO 460

:PRINT"WANT TO MAKE ANY CHANGES?" 328 S¢="'PLAY'"

tPRINT" (ENTER *NO' DR THE NUMBER OF" 39@ GOSUB 790

tPRINT"THE WORD TO BE CHANGED)" 4008 OPEN “I".#-1.NAs

460 REM MAIN SPELL ROUTINE

FORJ=1TOEOD:NEXT

J:GOTO 4E@

74@ END

75@ REM INPUT SUBROUTINE

7E@ PRINT "WORD #"3$I5:INPUT W&(I)
77@ PRINT “DEFN #"s3I3

tLINE INPUT “? "3D$(I)

788 RETURN

790 REM TAPE I/0

800 CLS:INPUT "NAME OF FILE=":iNAR$

818 PRINT: PRINT "POSITION TAPE AND "
82@ PRINT "PRESS "+8%

838 PRINT

PINPUT "HIT 'ENTER' WHEN READY":;A$
B840 RETURN

B5@ END

470 CLS:PRINT @12, "SPELL IT“;
4ED S=D 5% 6010 50
490 FOR I=1 TO N 10 SET(H1,Vi,
500 F=0 20 SET(H1,Vi~1,0)
51@ PRINT:PRINT "#"3;I:D$(I)3:INPUT W$ 30 BET (H1=1,V1,0)
520 IF WS OWS(I) THEN F=F+1:IF F(I THEN 40 SET{H1+1,V1,Q)
PRINT "WRONG. BUCKO. TRY RGAIN “:G0TO 510 4% RETURN
ELSE PRINT "ANSWER IS:"sW$(I) 50 RS=03 LH=0
530 IF F=@ THEN S5=5+1 55 CLSO)
540 NEXT I a0 PRINTS480," tplEpn
S50 IF F)@ THEN FORJ=1TO4@D:NEXTJ 13RS
SED0 S=10@+5/N TO V1=27:Hl=15:H2=47
‘570 FOR I=0 TD & 80 GOSUB 10
58@ CLSC(I) 90 Hi=H2
590 PRINT @198, "YOUR SCORE I&"; 100 GOSUE 10
IPRINT USING “###, ##" 1S3 :PRINT "%y 4460 V=RND(20)+3
600 SOUND 2@%(I+1),5 470 A=RND(2)
610 NEXT I 480 IF A=1 THEN 500
620 REM GRAPHICS ROUTINE 490 BOTO 730
€32 PMODE 4, 1:PCLS 500 FOR H=i TO 63 STEP 2
642 SCREEN 1.1 510 SET(H,V, O
650 CIRCLE (128,9€),50 520 GOBUE 560
EE@ CIRCLE ¢153,77).5 S50 RESET (M, V?
670 CIRCLE (1@3,77).5 540 NEXT H
688 CIRCLE (128,96):5 545 GOSUE 560
690 IF 8)=E5 THEN CIRCLE ¢128,9€), 550 GOTO 460
IS:s1r.ds. b ELSE CIRCLE (3128, 14E), me0 BePEEK (65280)
35! b 1! . 5! . S
700 IF 8)=ES THEN A$="TILA4DZF_SGHGH#OIL continued on page 33
4CHCHLEFFLAFCHLBCHOZLAGHGHLEFF"
:PLAY A$ -
710 IF S(ES THEN A$="T4D2LIZFLBFL1B-"
1B$="02LIFL4B-03L2D" r"For Your Color Computer
tPLAY A$+B&+"PZ+B$+E$+B$ L
;20 cuEs coonmoJASTER CONTROL e
30 IF S(ES THEN PRINT 2224, o e
"1 THINK YOU'D BETTER DO IT OVER!'"j b S it

2. Dwecr contiel of metor, race
and audio $om Kewodn
A Mtornati 0 MTeng.
A Progiommatiie Cusiom Kay.
« § Diect fun Button
& Kavooaid ovariay o eaw oo
vHaNofocRrNol-N- BN R RTINS,
T Basy enity of evilin Commans
e Cirger

Lood Manar Cantrol nfo yout ma:
chinm Then e
progronn of load cna
ioedt Cuts

S0 o e

oo 1 BASC
1 hom ape:
PHRAGHNITING R

" 42498

For Ihe Rodo Shack
Color puler

SR
e

J - LT
50 PROGRAMS
In One Package

Ligwanmad by

BEIIL T hoTon A,
S T P Sl

Kid's Page

This issue we have a few donated programs from the Kids., I'm surprised that
mast of you guys are writing educational programs,

1 'KATHLEEN O’ BRYRAN
Z 'AGE 10

3 '2738 N. BENNETT

4 'TACOMA. WA 984087
5 "RANDOM COLORS

1@ CLS

2@ LET X=0

3@ LET Y=0

4@ LET Z=RND(3)-1
S0 SET(X,Y. 1)

7@ X=X+1

B0 Y=Y+1

9@ IF Y=32 THEN Y=1
100 IF X=E2 THEN X=1
11@ IF 2= THEN Z=0
12@ GOTO 4@

1Z@ END

1 'MR. DONALD WHITE

2 '44 DOW COURT

I 'FAIRFIELD:, OH 435014

1@ X=RND(100000@) : Y=RND (1220000)
15 N=@

20 PRINT" "X"+"Y"="1INPUT A

3@ IF A=X+Y THEN 1@

4@ N=N+1

5@ IF N=2 THEN 108

6@ SOUND 101,10

* PRINT"WRONG TRY RGAIN": GOTO =@
122 SOUND 101,20

: PRINTIIHRBNGIIKH+llvll=nx+Y

118 PRINT"SORRY TRY AGAIN"

+ GOTO 10

5 REM BETH NORMAW AGE 11

1@ CLS: CLERR 588

15 PRIMT"WELCOME TO ADDAUIZ; :
IHPUT"DO YOU MEED INMSTRUCTIONS";
A¢: IF LEFT$CAS, 1 0="HN" THEW 28
ELSE 17

17 PRINT"I WILL GIVE YOU A
PROBLEM, TYPE IM THE AMSWER AMD
THEM PRESS <EMTER>. 1 WILL TELL
¥OU IF ¥OU ARE RIGHT OR WRONG.
IF YO ARE WROMG, I'LL TELL YOU
WHAT THE RIGHT AMSWER IS, IF NOT
I’LL JUST GO OW."

20 INPUT"HOW MANY GUESTIONS DO
YO WANT B : C=@

30 H=RNDC 20):Y=RMD{ 20)

35 PRINT"WHAT IS"X"+"y"7?":
INPUT D+ IF D=x+Y THEN 36

ELSE 37

36 PRINT"CORRECT!" :C=Cal:

IF 03 THEMW 38 ELSE 49

37 PRIMT"WRONG. THE CORRECT
ANSWER IS"K+Y"."+ C=C+1: IF C<B
THEM 30 ELSE 40

48 PRIMT"CONGRATULATIONS! 'vOU
REALLY FIMISHED THEM ALL! DD
YOU WANT TO DO IT AGAINT!:
IMPUT E$:' IF LEFTSCES,10="N"
THEW 41 ELSE 1@

41 FRINT"SCAREDY-CAT!": END

A Basic Bug
by C. J+ Roslund

One of the first tasks the users group I am working with undertook after we
got our Color Computers was to disassemble and analyze the BASIC interpreter in
them: Overall, we are very impressed with the Color Computer and feel it is one of
the most powerful and versatile home computers available, This article provides a
brief description and should be of use to all Extended Basic Calor Computer users.
It describes one of the BUGS in Extended Basic and provides a means of working
around the BUG.

The PCLEAR command is used to reserve a specified number of graphic (1.5K)
pages of RAM. In addition to reserving graphic pages of RAM, PCLEAR does the
following tasks!

1, Moves the entire Basic program up or down in memory so that it will begin
immediately following the last page of graphic RAM reserved,

2, Does a RESTORE to move the DATA pointer to the beginning of the
relocated Basic program.

3, Clears all variable tables (Simple, Array & String) by initializing all
variable table pointers with respect to the relocated Basic program.

4, Voids the processor hardware stack pointer (S-Register). This means a
PCLEAR cannot be called by a GOSUB.

After the above tasks are complete, execution of the Basic program continues
with one major flaw! A pointer located at $A&,8A7 (% indicates a HEX value) did not
get moved with the rest of the Basic program. This pointer is used by the Basic
interpreter to locate the next byte in the Basic program to execute. The failure to
move this pointer causes the Basic interpreter to continue to execute the original
Basic program {or what's left of it), not the relocated Basic program: This will most
likely lead to a SYNTAX ERROR when the pointer ($A4,$A7) runs into an area where
the relocated Basic program wrote over the original Basic program or the original
Basic program area is changed by some other means (such as a PCLS) A sample
program that causes this to occur is listed at the end of this article,

Luckily there are a few other Basic commands that will adjust the $A5,8A7
painter for us! RUN and GOTO.

After the program crashes due to this BUG, entering RUN again will initialize
the $A4,$A7 pointer to the beginning of the relocated Basic program and all is well
from there on. This is not what I would call an elegant solution (let the program
crash and then RUN it again).

GOTO provides us with the best solution. GOTO has two modes of nperatmn.
One for going to forward referencing lines and one for going to reverse referencing
lines,

For forward referencing lines, the GOTO resets the $A&,$A7 pointer to point
to the line called by the GOTO. This doesn‘t do us any good.

For reverse referencing lines, the GOTO resets the $A4,$A7 pointer to the
beginning of the relocated Basic program (SUCCESS!'!) and begins it's search for the
called line from there.

This gives us a solutions The PCLEAR must be followed by a reverse
referencing GOTO (eg. 20 PCLEAR1:GOTO10)

One more thing to be careful of is not to allow the relocated Basic program to
write over the section of your program with the PCLEAR and GOTO in it A general
rule is if you are PCLEAR'ing more graphic pages (eg. PCLEARS) put the PCLEAR &
GOTO at the beginning of your program. If you are PCLEAR'ing fewer graphic pages
(eg. PCLEAR1) put the PCLEAR & GOTO at the end.

SAMFLE FROGRAM FOR FCLEAR BUG

A Basic Bug
Step 1! In direct mode enter PCLEAR4

Step 2! Enter following program’
10 PCLEARS
20 PMOED3,2
30 SCREEN1,1
40 PCLS8s
50 GOTOS0

Step 3! RUN the program, What you should see is a nice light blue screen, but
“SURPRISE"!" you've got a SYNTAX ERROR,

RUN the program again (without Step 1) and it works. The second RUN
initialized the $A4,$A7 pointer to the beginning of the relocated Basic program.

FIX FOR SAMPLE PROGRAM
Add the following lines!

3 GOTO10
7 GOTO20
15 GOTO7{'REVERSE REFERENCING GOTO

Now you may RUN the program with or without step 1 and it works, These

extra GOTOQ’s are a bit bothersome but they do provide a fix for this BUG.

“

continued from page 28

E70 IF 8=126 OR §=2854 THEN 580 E 780 BOTO 460

LSE 630 790 LS=L8+1
580 FOR M=25 TO V BTEP-1 BOO SOUND 220, 1180UND 100,1
S90Q SET(15,M,0) 810 IF L8=12 THEN %00
&00 IF H=15 AND M=V THEN 7%0 820 RESET (H,V)
610 RESET (15, M) 830 GOTO %5
420 NEXT M B840 RB=RS+1
&30 B1=PEEK (65280} 850 SOUND 200, 1:SOUND 178,1
640 IF 81=125 DR 81=253 THEN 650 860 IF RS8=12 THEN 900
EL.BE 700 870 GOTO 820
650 FOR Mi=285 TO V STEP-1 900 SOUND 89,3
660 BET(47,M1,0) 210 SOUND 108,3
670 1F H=47 AND Mi=y THEN B840 920 SOUND 125,3
680 RESET (47,M1) 930 SOUND 147,3
690 NEXT M1 940 FOR D=1 TO 100sNEXT D
700 REM 950 SOUND 125,3
720 RETURN - 960 SOUND 147,3
730 FOR H=63 TO 1 STEP-2 970 CLS(O)
740 BET (H,V, O 580 PRINT®480," "aLEy "
750 BOSUR 560 1y RE
760 RESET (H,V) 990 INFUT "TRY ABAIN?'"jA%

770 NEXT H 1000 IF As="Y" THEN & ELBE END

CONVERGENCE
by Warren White

Now we all know that the color computer is about the neatest little computer to
hit the market, High power processor, a good BASIC interpreter, and super graphics.
Only one little problem remains (well, probably more than one but...): That '#"$%%$#E
TV set just doesn’t hold up to the hi-res modes and the text is really cleaner on the old
12" black & white set. You say that the letters and lines smear on the edges of the old
TV? Ghost images on the screen? (to the tune of Ghost Riders in the Sky)? Well what
can be done about it? I've already diddled the controls on the set to the point that the
family can’t watch soaps without gagging at the purple faces.

Seriously, one of the weakest links in the computer is the use of a standard TV
as the monitor. At NCC this Spring I saw many color displays which were startling for
their clarity, The secret was the use of color monitors which are specdifically designed
to interface to computers. Lacking the $400 to $2000 to purchase one of these beauties,
I have been investigating ways of maximizing the performance of a standard color TV.

A little theory may help before we proceed. A color TV generates the picture we
see on the screen by sweeping three streams of electrons across the face of the screen.
These electrons pass through holes in a metal mask just behind the face of the screen
and due to their slightly different angles, strike phosphor dots that glow in red, blue,
or green, Each beam is modulated as it sweeps across the screen to vary the intensity
of the glow of its color, Since the dots are very small, your eye merges the glow of the
dots into a single color at each point on the screen.

Problems occur when we try to feed the TV with a computer signal because maost
TVs are not aligned to respond to abrupt changes in color, Most changes in color are
more gradual in pictures or, when they are not, the total gestalt of the picture draws
your attention away from the blurred details. Two places where this does not ocour are
when text or fine line graphics are on screen, These are common occurances in computer
use but not in TV watching,

To minimize the distortions on the TV set manufacturers have included controls
on the back of the set and inside which will optimize the tracking of the electron beams
across the screen. Most sets are fairly well aligned at the time they are sold, but, they
are not aligned to the standards required for computer use. Some improvement is
almost always possible,

WARNMNMINMG! THE FOLLOWING ADJUSTMENTS TO YOUR TV REQUIRE
OPENING THE SET. UNLIKE MOST OF THE STICKERS WARNING OF HIGH VOLTAGE
THE ONES ON YOUR TV ARE FOR REAL. COLOR TV SETS HAVE VOLTAGES OF 20,000
TO 335,000 V. PRESENT WHICH CAN REALLY HURT YOU.

Before we continue I suggest that you obtain a TV signal generator or enter the
program CONVERGE that follows (after all, what do we have in the CC but a TV signal
generatar):. The program uses Extended BASIC, I don‘t know how you could duplicate it
in Color BASIC. My other suggestion is that you obtain the manufacturers’ service
literature or a copy of SAMS PHOTOFACTS for your set. Unless you are used to
working on TVs, the descriptions of convergence proceedures will be necessary.

All set? OK, now carefully remove the back of the set making sure that it is
unplugged first. On most sets the line cord is clipped into an interlock that unplugs the
AC cord from the set back, Either use a jumper cord or take off the metal clip and use
the set cord to plug in the set, Keep your fingers out of the set for now and let it warm
up.

NOTE: When I say SMALL adjustments I mean it, if the TV is giving good
pictures on broadcast signals, the adjustments required will be very small, Mave the
controls very small amounts at each try,

We will first set the grey scale. Tune the set to a good strong station. Using
the controls on the front of the set, turn the color off. Using the brightness and

contrast controls, blacken the screen until only the highlights are still grey or white
(black background):s On the back of the set find the color gun controls marked red; blue
and green drive. Very very slowly adjust these one at a time until the set shows no
colar cast in the white part of the screen. When this is done leave the controls set as
they are now.

Now hook up your computer to the set and load in the CONVERGE program.
Select the single dot pattern from the menu, Refer to the set instructions looking for a
section called Convergence proceedure, The first step is called static convergence.
This consists of removing as much color fringing as possible from the center. On the
back of the picture tube are a set of magnets, These mave the individual beams around
on the screen. Refer to your literature to find which controls which. Very slowly move
the beams around to the point where they overlap as much as possible (you probably will
not get them perfect), It helps to move only one at a time as the do interact quite a bit.

When you have obtained the best possible dot, white with little or no fringe of
other color, change the program to the dat filled screen. On most TVs there is another
board or group of controls called a dynamic convergence panel, This adjusts the
combined tracking of the three beams across the screen. Generally there are controls
which separatly adjust the top and bottom, sometimes other controls affect the left and
right sides of the screen. Referring to your set literature, adjust these controls to
reduce color fringing on screen one section at a time., Again, these controls may
interact somewhat so work slowly in small increments.

When you have achieved the best compromise, switch to the crosshatch section of
the program and tweak the adjustments a bit if needed.

Put the set back together. You are done. Without modifying the set you have
done almost everything possible to improve the performance of the TV, At this time I
am attempting to bypass the RF modulator in my set and the TVs tuner section for
composit video input. This is a much more involved operation which I hope will increase
resolution a bit more. If successful, I will report the results in a later issue,

18 CLS:PRINT"ENTER THE NUMBER FOR"

40 PRINT"33 DOT SCREEN"
50 GOsUBL9B
€9 PCLS:PMODE4, 1 SCREENL, 1

PRINT"13 CROSSHATCH"
PRIWNT"23 DOT IN CENTER"

ON A GOSUB 120,200,220

GOTO18
END

AE=INKE'Y¢: [FA$="" THEWN 108
A=YALL A%) : RETURN
FORX=1TO1925TEFZ20

LINE ¢8,K)-(255,%),FSET
HERXT

FORY=BTQ2355TEP20
LINECY, @ o=0Y, 1531), PSET
NERT

GOSUB199

RETURM

CIRCLEC128,55),1
GOSUB183 : RETURN
FORK=5TOZSBSTEP2G
FORY=3TO15985TERZO
CIRCLECK, 'Y 3.1
HEXTY , ¥

GOSUB198: RETURN

U-Boat and Orian War
By James Guilford

The relative famine of prewritten software for our favorite computer is
showing some early signs of relief. Computer Simulations Company seems to be
making efforts to reach the untapped Color Computer software market with more
cassette-based programs available from them than from any other single source I
know of,

Twa of their early efforts are U-Boat and Orion War both designed by Stan
Schriefer, I'm not sure if designed by means that he wrote the program or just
proposed the idea for it but his is the only name credited.

The two games are very similar in their basic layout with a gun or U-Boat
controlled by the user located at the bottom of the screen and with targets moving
left to right across the screen. In the case of Orien War the gun fires (using the up
key} rockets at a probe which descends after each pass across the screens Left/right
control of the gun position is so sluggish that the user might as well leave the firing
position in one place. You only get one chance per pass of the probe to fire your
weapon, If you miss, the probe will descend one more level until finally it crashes
into a mountain on the right-hand side of the screen and blows
up--everything--game over.

Sound effects include a constant beeping tone which increases in pitch until
the crash occurs with a shower of colored screens and random tones and a "boop"
tone each time one of your rockets detonates (whether or not it hits the probe)

Orion War is okay for the first play but the user quickly learns the proper
timing and can soon learn to hit the target every time.

Although similar in general design; U-Boat is much more of a challenge and
quite absorbing even though both games are in low-resolution mode and fit inside a
4K memory,

In U-Boat the up arrow fires torpedos at targets which, again, move left to
right, But the ships move at different speeds from one another, you can keep up with
the progress of the ships by moving your U-Boat with left/right arrow controllers,
Mines drifting between the U-Boat and the target ships often get in the way of an
otherwise clean shot,

The player plays against a timer which is affected by what happens on the
screens If a torpedo hits a mine, time is added to play time, The further away from
the U-Boat a target is when it is hit, the more points are awarded,

Again, movement of the U-Boat is sluggish and only one torpeda is allowed on
screen at one time but these problems seem to add to the challenge. You‘ll find
yourself cursing the mines and the near-misses and jamming the fire key harder than
necsessary to hit the low-resolution targets.

Sound effects are short sequences of musical tones and have little bearing
upon what is happening in the game.

Neither of these games is sophisticated, or what one might call "thrilling" or
"dazzling", Neither game comes close to the potential that a CC with Extended Basic
and 16K (or better) memory can offer. But that doesn’t mean simplicity can’t be fun,

The greater play potential is definitely with U-Boat which I highly
recommend. At only $5,95 I have already got my money’s worth in entertainment,
Orion War is too simple, too easy and will quickly bore the user and is the same price
as the better offering.

Computer Simulations
305 Hammes Ave.
Joliet, IL 50436

HERE IS A PROGRAM WHICH
GEMERATES PRIME HUMBERS.

IT HAS WRITTEN ON THE COLOR
COMPUTER USING THE MICRO
HORKS SDSBOC - THE POHERFUL
EDITOR/ASSEMELER ROMPACK.

THIS PROGRAM USES AN ALGORITHM
WHICH INVOLVES ONLY INTEGERS.
THERE 1S NO DIVISION, AND NO
EXPLICIT MULTIPLICATION. IT
1S FAST - IT GEWRERATES THE
FIRST S00 PRIME NUMBERS IN

S SECONDS (B SECONDS IF YOU
DISPLAY THEM AS YOU GO).

THE PROGRAM COULD BE MADE EVEN
FASTER, BUT AT THE EXPENSE OF
CLARITY.

THIS 1S THE ALGORITHM USED:

PROGRAM PRIMES:
CONST NUMPRM = 500,
VAR PRIMES,CCNT =
ARRAY [1..NUMPRM]
OF INTEGER;
I.MP,TEST = INTEGER:

REPEAT
TEST != TEST + 1,
PRIMESCMP] t= TEST:
CCNTCMP] 1= TEST.:
I t= Q4
REPEAT

I 1= [+ 1,

WHILE CCHTCIJ < TEST DO
CCNTCI] := CCNTCLI] +
PRIMESCI):

UNTIL CCNTCI) = TEST:
IF I=MP THEN

BEGIN

WRITELN (TEST):

MP t= MP + 1,

END.

UNTIL MP > NUMPRM.
END.

¥ ok % ¥ % k& ok 3k ok k & & ok % ok % ok ¥ ok ¥ & 3k ok %k ok ok ok % % K ok F &k & o ¥ ok @ ok % %k ok ¥ % & % ¥ &

0001 136D) NAM PRIMES
*
WRITTEN FOR THE MICRO
*+ WORKS BY ANDREW E. PHELPS
C, 1981 THE MICRO HORKS
*
0002 136D HUMPRM EQU 500 NUMBER OF PRIMES
* TO CALCULATE

0003 136D . CCNT RME 2#NUMPRM CURRENT

0004

0003

a00e

Qo7
0008
Q009
0010

0011
o012
0013

0014
0013
0ole

0017

oole

0019
0020

0021
ooz22
0023
0024
00235

ooze

0oe?
ooz28
o029
0030

1755

1E3D

1E3F

1B41
1B44
1B47
1B4A

1B4D
1B50
1B53

1B36
1B59
1BSD

1B61

1E64

1B66
1B6B

1B6D
1E71
1B75
1B79
1BE7C

1B7E

1BE80O
1Ba3
1B85
1B87

CCO001
FD1B3D
CCQO00
FD1B3F

FC1B3D
C20001
FD1B3D

BE1B3F
ED891755
EDB9136D

8EFFFE

3002

10A389136D
2311

EC89136D
E3891755
ED89136D
FC1B3D
20E8

26E4

BC1B3F
26C8
3002
BF1B3F

* MULTIPLE OF EACH

* FPRIME

PRIMES RMB 2%NUMPRM PRIMES WHICH

* HAVE BEEN DISCOVERED

* S0 FAR

TEST RME 2 HUMBER BEING TESTED
* TO SEE IF IT IS PRIME

MP RME 2 HUMBER OF PRIMES

* FOUND SO FAR

L2222 st a i Rttt Sttt il

»

% START HERE

#®

START LDD #1
STD TEST
LDD #0
STD MP

=k k% ¥

EXPRM LDD TEST
ADDD #1
STD TEST

LDX MP
STD PRIMES.X
8TD CCNT.X

LDX #-2
*

INITIALIZE LOOP
ZERO FOUND S0 FAR

OUTER LOOP - TRY NEXT NUMBER
TO SEE IF IT 1S PRIME

NEXT CANDIDATE

INDEX INTO TABLE
1= TEST
TIMES ONE

TO START AT ZERO

INNER LOOP - TRY FACTORS

*
HEXTES LEAX 2.X

BUMPQ CMPD CCNT.X
BLS NOBUMP

LDD CCNT.X
ADDD PRIMES.X
STD CCNT.X
LDD TEST

BRA BUMPQ

NOBUMF BNE NEXTES
END INMER LOOP:

* %k % % &

CMPX MP
BHE NEXPRM
LEAX 2.X
STX MP

*

COUNT THRU TABLE
MULTIPLY OK?

IF NOT NEEDED
ADD 1 MORE

RESTORE D
TRY AGAIN

NOT PRIME IF O

WAS IT PRIME?
IF THE FACTOR WAS ITSELF,
THEN IT 1S A PRIME.

MADE IT TO END?
NO, LOOP
INC. # OF PRIMES

IF THE NUMBERS ARE TO BE

0031

0032
0033

0034
0035

0028
037
oo3e

0039
0040
0041
0042
0043
0044
00435
0046
0047
0048
0049
0050

0051
0052
0033
0054

0055
0056

BUMPQ

1EBA

1ESC
1BBF

1B91
1B92

1893
1E99
1B99

1B9B
1B9D
1B9F
1BAl
1BA3
1BAS
1BA?
1BAD
1BAB
1BAE
1BBO
iBB2

1BB4
1BBES
1BE9
iBBB

1BED
1BCS

BDO7

B8CO3E8
25BC

3F
39

3416
208D0024
327F

6FE4
6CE4
A384
24FA
E381
3406
AG62
8B2F
BDA30A
3506
6D01
26E7

860D
BDA30A
3261
3596

271003E800 TABL1O

1B66 CCNT
NEXTES 1B64 NOBUMP 1B7E HNUMPRM OlF4 OUTPUT 1B93
PRIMES 1755 START

136D MP

* ook ok K %k

BSR OUTPUT

PRINTED AS THEY ARE CALCU-
LATED. THEN THE FOLLOWING
STATEMENT PRINTS THE NUMBER
IN D (WHILE SAVING X),

IF JUST A TABLE 1S NEEDED,
THE CALL IS OMITTED.

PRINT NUHEBER

CMPX #2#NUMPRM DONE?

BLO NEXPRM

* ¥ ¥ k % &

EXAMINED OR SAVED.
SHI

RTS

IF NOT. LOOP

THE SWI STATEMENT CALLS THE
ABUG MONITOR BEFORE THE
RETURN TO THE EDITOR., SO
THE TABLE OF PRIMES MAY BE

RETURN TO EDITOR

333 32 9 3300 A0 RN

SAVES D.X.

O % % &k % % & ¥ % %

UTPUT PSHE D.X
LEAX TAB10,PCR
LEAS -1.8

Ae CLR 0,8

Be INC 0.8
SUBD 0.X
EHS Be@
ADDD , X++
PSHS D
LDA 2.8
ADDA #'0-1
JER $A30A
PULS D
TST 1.X
BNE A®

LDA #$0D
JER $A30A
LEAS 1.8
PULS D.X.PC

END START

1B41 TAB1C 1BBD TEST

BASE 10 OUTPUT ROUTINE

PRINTS NUMBER IN D IN BASE 10
(UNSIGNED) WITH CARRIAGE RET.
USES NO GLOBAL STORAGE.

CALLS $A30A FOR SCREEN PRINT,

SAVE RECISTERS
ROOM FOR COUNT

CLEAR COUNT
COUNT SUBTRACTS
TRY SUBTRACT
BRANCH IF IT FIT
ADD 1T BACK ON

GET COUNT
MAKE ASCII
QUTPUT CHAR

END OF TABLE?
LOOP IF NOT END

CARRIAGE RETURN
CLEAN UP STACK

FDB 10000,1000,100,10,1,0

1B3F NEXPRM 1B4D

1B3D

	Front Cover
	Contents
	REMarks
	Mail Call
	Draw
	Machine Language
	Adventure Notes
	Comments Corner
	Spell it
	Kid's Page
	A Basic Bug
	Convergence
	U Boat
	Super Fast Primes

	Back Cover

