
CoCoNutz! E-Zine

March / April 2008

An Interview with Rick Cooper from

CoCo Friends Disk Magazine

Rick Cooper’s magazine was an inspiration
that sparked an idea I wanted to continue. I
knew in the begging that dad loved CFDM
and I wanted to relive it and know why. I read
through issues of CFDM where my dad posted,
and I come to realize what was so special
about it. It wasn’t like any other magazine, it
was a family event. People here were so close
knit and held together; even though they had
probably never met each other. They shared
much more than just the color computer, they
shared a friendship. These were people who
didn’t want to lose their community and this
gave them a way to keep in contact. I wanted
to see what it was like to be part of such a
great group of people where money didn’t
stop them from giving to each other. The first
time I tried to find anything out about my dad

I had contacted Mr. Cooper via the phone and
he was very nice and spoke to me a little bit
about my dad when he had come to visit him.
He was very nice to take a strange phone call
that day and to talk with me. For that I will
always remember him and his wife for their
kindness. So Rick you truly are the reason I
got into the coco scene and you truly are the
reason I started my E-Zine. So here’s to you
Mr. Cooper! Viva la coco!

Let me preface this by saying that my answers
will be given to the best of my
remembrance…this is going back a long way!

ED: So when did you start CoCo Friends Disk
Magazine (CFDM)?

RC: I believe the first issue was January of
1993. My mother died at the end of that month
after a very short period of illness with cancer.
The February issue did come out as scheduled
despite this very trying ordeal.

ED: How did you think of the Idea for it?

RC: Rainbow was fading, the computer was
no longer being produced, and basically I was
so selfishly involved with the computer that I
did not want to let it go. There were still a lot
of talented people out there, and I thought a
significant number that still enjoyed their
CoCos. I loved to program. So these factors
probably brought on the idea, and it just
blossomed in a very short period of time.

ED: Was there anyone else who helped you
with it in the beginning?

RC: From the beginning I knew that I could
not possibly produce all the programs and
articles needed to fill the issues that were to
come. I needed help…and quality help…so, I
went thru the then recent issues of Rainbow
looking for articles and programs that caught
my fancy wrote down the author’s names and
addresses and wrote a form letter with my
plan for CFDM. I don’t remember exactly
how many responded (probably 50% at least).
A few of the responders said it sounded like a
good idea, but they had moved on. One
notable responder, Jim Bennett of New York,
was hesitant at first, but later joined us and
turned out an amazing amount of
contributions to the magazine. Probably 15-20
said "Yes" from the start…and followed that
up by contributing lots of quality material.

ED: How did you spread the word about it?

RC: Before Rainbow folded, I took out a few
ads and received good response. Word of
mouth, attending a few CoCo fests in Atlanta,
and affiliating with the few existing
newsletters at that time were about the only
ways I knew to get the word out.

ED: Who were some of the people you
remember from it?

RC: I remember many…but, I can’t attempt to
list them all here because I would leave some
out. Here are a few names though…Norm
Barson, George Quellhorst, Jim Gibbons, Jim
Bennett, Sock Master, H. Allen Curtis, Stuart
Wyss Gallifent, Arthur Hallock, Ray Berney,
Jim Davis, Jeff Vavasour, Godfrey Moll,
Keiran Kenny, Harold Moenich, Dale Kramer,
William Astle, Herb Forger, Nickolas
Marentes, Ben Walker…and the list goes on…

ED: Was there a theme that you tried to keep
with it?

RC: I guess you could say the theme was
‘Friends sharing with Friends’. Because that’s
exactly what we did. It was a medium where
you could share your creations with others
who could appreciate your talents and hard
work.

ED: What was the idea or concepts for the
disk magazine?

RC: The magazine was a disk magazine
originally with a hardcopy version (CFDM
Hardcopy) added some time after the first year.
Arthur Hallock of Texas shared with me how
he was transferring the magazine to his PC
and using his editing skills to produce a
hardcopy of the magazine. I thought it looked
good and we made a deal where he received
the first copy, made the hard copy, sent it to
me for mass production. I believe the Friends
had a choice to add Hardcopy to their
subscription for an additional fee.
We had sections to the magazine like: Active
CoCo, Advertisements, Articles of the Month,
Art Gallery, Family Tree, Forum, From the
Editor, Letters to the Editor, Potpourri,
Programs of the Month, Reviews, and
Questions & Answers.
Every issue was on a double sided disk with
the magazine on one side and programs, art,
etc. on the back. Every third month there was
a double sided bonus disk with more programs,
etc.

ED: When did you start holding the picnics?

RC: There were two picnics. I can’t recall if
they were in consecutive years or not. The
first was in 1995.

ED: What were those like?

RC: Unbelievable! I cannot describe how
wonderful it was to have the Friends visit me
in Liberty, Kentucky. We held them at the
school where I was principal. We catered a
meal. We used the library for the Friends to
display items they had for sale. We had
demonstrations and presentations or just short
talks from almost every visitor. They came
from as far as New York, Texas, and
Washington State. For the first picnic we flew
Jeff Vavasour down from Vancouver, Canada
as our special guest. Just great!

ED: How many of them did you have?

RC: Two.

ED: Did you ever meet any of the people that
submitted stuff for your disk magazine?

RC: Yes, mostly at the picnics, but also at
CoCo fests in Atlanta.

ED: How were submissions made?

RC: I had created a submission process (that
some folks didn’t follow J), with a special
submission disk format and a paper form to
explain their submission.

ED: How did the bonus disks evolve?

RC: The bonus disks came about for two
reasons. For a long time we just had too much
good material for the one side of the usual
magazine disk. The second reason was that I
felt if the Friends went to the trouble of
putting their work together and submitting it,
they deserved to be published if at all possible.

ED: What are some of your favorite
submissions about from the disk magazine?

RC: There were so many…but, I really
enjoyed much of the art from people like our
cover artists Jim Gibbons, Norm Barson, and

Jim Bennett. Jim Bennett also did some very
creative and educational programs. H. Allen
Curtis created wonderful Solitaire games!
Godfrey Moll used my jigsaw puzzle to make
enjoyable puzzles for everyone. George
Quellhorst did wonderful articles on
programming. Sock Master gave us some
unbelievable graphics demos. Stuart Wyss
Gallifent gave us stories, fractal programs, and
many other types of material. Everyone gave
of themselves even if it was just a bio for the
Family Tree section. THESE WERE
QUALITY PEOPLE!!

ED: Did you have any contest for the disk
magazine?

RC: Yes…the one that comes to mind was the
CFDM Logo contest. I wrote a little program
that the Friends used to draw a logo for the
magazine. We probably had 50 entries…many
of them very good. Then we had a vote of all
the Friends to see which would win. Jim
Bennett’s won and became our official logo.
One note here, Ray Berney had some CFDM
logo patches made and sold them probably at
cost to all who wanted one. That’s just one
example of how the Friends took the magazine
and extended it’s enjoyability!

ED: What are some of your favorite memories
from back then?

RC: My favorite memories are the people.
How wonderful they were! How hard they
worked together to make something not only
worthwhile, but ‘Oh so enjoyable for us all’!
You didn’t ask this question, but I’m going to
address it. My least favorite part of being
involved in this adventure was when I would
receive word of the passing of one of the
Friends. It would break my heart! And that
kind of news came often….I’m sure that was
because so many of the Friends were of
advanced years to begin with….
ED: Got any pictures from the picnics?

RC: Actually I hired one of my aides to video
the first picnic. I made the tapes available and
recently Jeff Vavasour took the time to put it
on DVD for me. I really enjoyed looking back
at the picnic in this way. Others took their
own personal pictures and some were shared
with me.

ED: What are some of the favorite moments
of the picnics?

RC: Putting real faces with names. Picking up
Jeff Vavasour from the airport with Stuart
Wyss and Ray Berney with me. We had no
idea what Jeff looked like (likewise for him).
We made a welcome sign (which is still taped
to a shelf about 10 feet from me as I write
this…it’s never been taken down since 1995!)
to get Jeff’s attention…..He walked right by
it!! So…my favorite moments were the
people…no question about this!

ED: Ok and now for personal info:
Where do you live?

RC: I still live at 30 Middleburg Street in
Liberty, Kentucky.

ED: Do you have kids and pets?

RC: I have a wife and 3 daughters ages 25, 21,
and 19. The oldest, Kristin, was married about
2 years ago and presented me with my first
grandchild on July 10, 2007. That’s Lauryn
Elizabeth Hendrix. Kasey and Kayla are
getting ready to start back to college at
Eastern Kentucky University. We have two
golden retrievers (Kola and Charlotte), and (at
the moment) four outside cats!

ED: How old are you?

RC: I’ll be 59 in 5 days (August 4th).
ED: What was your first coco?
RC: My first CoCo was the CoCo I. I got it in
1981 and fell in love. It cost over $500 bucks

and used a tape player for storage! I believe it
ran faster that the PCs I have today !

ED: What was your main coco setup like?

RC: 512k with 2 double-sided drives and a
printer.

ED: What are your present day hobbies?

RC: I now use only PCs. I retired from the
education system 6 years ago. I have written a
program that is used by many of the Family
Resource Centers and Youth Service Centers
in the Kentucky educational system. (About
400 of the 800 centers in Kentucky have
purchased the program.) I’m busy with tech
support and improving the program.
My other hobbies would be playing chess on
the internet and singing gospel music. I also
enjoy reading (when possible), listening to
music, watching tv, and spending time with
my family.

ED: Do you still remain active with the coco?

RC: No…sad to say but, when I turned CFDM
over to Jim Davis I decided it was best to
separate myself from the magazine and let him
finish the task without looking over his
shoulder. I do still have CoCos and CFDM
stuff all over my office. And…sometimes I
get a call out of no where for help….Just last
week Richard Hult of Texas called me. His
RGB monitor had quit and the CoCo is still
his only computer. Richard said he was 70
years old now and sure could use another
monitor. I found two in my basement and
made him a reasonable offer. He was really
grateful for the chance to continue with his
CoCoing!

ED: Did you ever attend any coco fest back
then?
RC: I attended 2 or 3 Atlanta Fests and 1 fest
in Pennsylvania.

Recursive Programming
by

Robert Gault

A recursive routine is one which calls
itself. That seems simple enough but is it? Is a
FOR/NEXT loop recursive? It does, after all,
call itself. The answer is no. In general, a
FOR/NEXT loop is not recursive but iterative;
a linear repetition. Hmmm. This could get
confusing. Perhaps it will be better to start
with some examples and then work back to
the definition. Besides, this gives me the
opportunity to demonstrate some of my
favorite graphics; the patterns in Benoit B.
Mandelbrot's "The Fractal Geometry of
Nature."

All of the graphics in this article are
generated using recursion. In addition, all of
the graphics patterns have fractal dimensions.
The term Fractal was coined by Mandelbrot
and literally means broken into irregular
fragments. If a line has one dimension and a
square two dimensions, this can be rephrased.
Lines have a dimension (D) = 1, squares have
D = 2, and fractals have 1<D<=2. Fractals
therefore have very unusual properties.

Figure 1

Look at the series of diagrams in figure
1. This is the Koch curve, a famous
mathematical "monster." It is generated by
continuously pasting smaller and smaller
triangles upon the sides of the previous figure.
Each new set of triangles being 1/3 the size of
the previous triangles. The limiting curve has
infinite circumference and finite area.

Readers of Rainbow may remember
seeing the patterns in figure 1 previously on
the title page of "Fascinating Fractals" by R.
Delbourgo, July 1983. The programs
presented there were quite complex, using
many large arrays (ex. 256x256), and limited
to three or four levels of detail because
recursion was not used. Despite the art work,
the programs did not generate figure 1 at all;
perhaps because it is too difficult by non-
recursive methods. By using recursive
programming it is easy to go to 20 or more
levels of detail if needed. This could far
exceed the resolution of Coco's screen in
many cases. The final image in figure 1 uses 6
levels of recursion and has reached the limits
of screen resolution. However, one of the
images in figure 5 required about 18 levels of
recursion.

Notice that the Koch snowflake can be
broken into three equal parts; it is "three"
sided. If we can draw one side, we can draw
the curve.

This article's main program with its
modules are written in BASIC-09. Recursion
is easier in this and similar languages.
However, listing #1 is written in Extended
Color Basic so that all readers can enjoy
fractal art. With listing #1 as a guide, readers
should be able to convert the remaining data
sets from BASIC-09 to Extended Color Basic
if desired. Note that with careful planning, the
more advanced languages are not needed for
recursive programming. Run Listing #1 or

Listing #2 (first pattern). I always find the
results amazing!

Listing #1 should be easy to follow.
Notice that there is only one decision making
step. If the level (LV)= 1, then a line is drawn.
If the level is higher, subroutine SIDE calls
itself. This occurs in the GO STRAIGHT
section. Note that the recursive call decreases
the level (LV) which does not increase until
level #1 is reached and a line drawn. That is
simple enough. Now try to predict in your
head the flow of the program for three (3)
levels. Give up? Turn on the tracing function
(TRON) and run the program. This will work
best if you have left out the REM statements.
Don't feel badly if you get confused. I can't
predict in my head past two levels and I wrote
the program!

The key to recursion is the presence of
two types of variables, local and global.
Global variables allow communication
between levels of recursion. Local variables
apply to one level only. This can be a handy
concept even if you are not using recursion.

In Listing #1, only one variable is local
LG(x). Variable LV is effectively local
through a programming trick. Since the other
variables are global, a change at any level is
seen at all other levels. Length (LG) however,
has a specific value at each level. The values
of LG can therefore be calculated in the
SETUP section.

BASIC-09 makes the use of local and
global variables very easy. Parameters, which
are the contents of the parentheses () in the
RUN statements, pass variables back and forth
between the modules. When the parameter is a
variable, the parameter is global. When the
parameter is an equation, the parameter is
local to the called module.

In the Basic-09 Listing #2, there are
five types of modules SETUP, CURVE,
SIDE(s), FORWARD, and MOVE. CURVE
is designed to have one set of data statements
for each pattern. While this makes the
program complex, this newsletter does not
have to print many duplicate listings for the
large number (21) of patterns. They are
written to run in Level II Windows, not VDG
screens.

Figure 2

For the purposes of these programs,
the graphics screen has been defined using the
polar coordinate system as in figure 2. MOVE
and FORWARD convert from the polar to
Cartesian coordinates; those used by ECB and
Basic-09. SETUP, CURVE, and SIDE use the
polar system because it's easy to express a
move as a direction and length: ex. "Go one
mile NE."

To create new patterns, just add new
data-restore sets to CURVE. Data sets are
structured as follows: original direction, # of
pattern sides at level #1, # of angles in data,
angle between sides, set of angles used in
SIDE, # of data items in a SIDE sequence,
sequence length, set of sequence commands,
starting x position, y position, length, length
decreasing factor.

At the end of the article, figure 5
shows some of the initiating patterns and some
of the final patterns. Bet you can't match them
up.

It is interesting to compare the quality
of the LINE commands in BASIC-09 vs
Extended Color Basic. With five levels in the
Koch snowflake, it is easy to see that ECB is
the more pleasing of the two.

TOP: Basic ROMs

Bottom: Basic-09 OS-9
Figure 3

BASIC-09 (actually OS-9) draws a

slightly non-symmetrical line. When line
lengths approach screen resolution, noticeable
mismatches are apparent. If you draw the
following line (0,96 to 255,97) in ECB and
Basic-09, you will see how Basic-09 is
unsymmetrical; figure 3. (By the way, you can
use DISPLAY directly from OS-9 to draw
your line.)

The second half of this article will go
into detail about this line drawing problem.
These programs were written before OS-9
Level II was released and I had created
patches for CCIO rev 1.01.00. Now that the
source code for NitrOS-9 is available I might

see about patching it to get symmetrical
diagonal lines.

Listing #2 is a large program and
needs about 8000 bytes of workspace to
function. Be sure to request this room from
Basic-09. Once entered and saved, PACK the
modules to get maximum work area. If this
does not give the necessary room, you can
switch to RUNB, unlink OS-9 modules or
reduce the number of CURVES data
statements. None of the above problems
should exit if OS-9 Level II is being used.

Be sure to always run the SETUP
module first PACKed or unPACKed. If you
save or pack all modules under one name, be
sure your ordering puts SETUP as the first
module to run.

Listing 1 for the Basic ROMs
1 PCLEAR4:'NOT NEEDED FOR COCO3
HI-RES SCREENS
10 'KOCH TRIADIC SNOWFLAKE BY
ROBERT GAULT
12 'WRITTEN SEPTEMBER, 1986 BY
ROBERT GAULT
20 'THIS PROGRAM CAN BE
MODIFIED FOR OTHER PATTERNS.
SEE TEXT
22 'COCO3 USERS; RUN FROM
WIDTH32 SCREEN
23 'OR EDIT INDICATED LINES
30 REM SETUP
40 REM ************************
50 DIM LG(10)
60 CLS:PRINT"HOW MANY LEVELS OF
DETAIL? 1-10": INPUT"MAXIMUM

ACTICAL (6) #=";LV PR
70 IFLV<1 OR LV>10 THEN 60
80 PMODE4,1:PCLS1:
SCREEN1,1:'FOR COCO1 PMODE
GRAPHICS
81 'PALETTE0,63:PALETTE1,0:
HSCREEN4:HCLS0:HCOLOR0,1:' FOR

O3 COC
90 PI=3.14159265:RD=PI/180

99 REM ************************
100 REM LG STANDS FOR LENGTH,
AG FOR ANGLE, LV FOR LEVEL
110 REM POKE IS OPTIONAL
SPEEDUP
111 REM ***********************
120 POKE&HFFD7,0:' COCO3 USE
POKE&HFFD9,0
121 REM ***********************
130 REM AS THE LEVEL OF DETAIL

REASES, LG=LG/3 INC
131 REM ***********************
140 FOR I=LV TO 1 STEP-
1:LG(I)=162/3^(LV-I):NEXT I
150 AG=0
160 X=50:Y=50:' FOR PMODE
SCREEN
161 X=120:Y=50:' FOR COCO3 HI-
RES SCREEN
170 REM ***********************
180 REM POLYGON
190 REM ***********************
200 FOR I=1 TO 3
210 GOSUB330: REM SIDE
220 GOSUB630: REM TURN RIGHT
230 NEXT I
240 POKE 65494,0
250 REM************************
260 REM UNDOCUMENTED INKEY$
270 REM REPEAT PROGRAM
280 REM************************
290 EXEC &HA1B1
291 'HSCREEN0:' FOR COCO3
292 GOTO60
300 REM************************
310 REM SIDE
320 REM***********************
330 IF LV=1 THENGOSUB500:RETURN
340 GOSUB450: REM GO STRAIGHT
350 GOSUB580: REM TURN LEFT
360 GOSUB450: REM GO STRAIGHT
370 GOSUB630: REM TURN RIGHT
380 GOSUB450: REM GO STRAIGHT
390 GOSUB580: REM TURN LEFT
400 GOSUB450: REM GO STRAIGHT
410 RETURN
420 REM************************

430 REM GO STRAIGHT
440 REM************************
450 GOSUB680:GOSUB330:GOSUB720
460 RETURN
470 REM************************
480 REM DRAW AND RETURN NEW X,Y
490 REM************************
500 X2=X+COS(AG*RD)*LG(LV):'
FOR PMODE4 GRAPHICS
501 'X2=X+2*COS(AG*RD)*LG(LV):'

 COCO3 HI-RES GRAPHICS FOR
510 Y2=Y+SIN(AG*RD)*LG(LV)
520 LINE(INT(X+.5), INT(Y+.5))-
(INT(X2+.5), INT(Y2+.5)),PRESET
521 'COCO3 USERS MAKE 520 HLINE
530 X=X2:Y=Y2
540 RETURN
550 REM ***********************
560 REM TURN LEFT
570 REM ***********************
580 AG=AG-60
590 RETURN
600 REM ***********************
610 REM TURN RIGHT
620 REM ***********************
630 AG=AG+120
640 RETURN
650 REM ***********************
660 REM DESCEND ONE LEVEL
670 REM ***********************
680 LV=LV-1:RETURN
690 REM ***********************
700 REM ASCEND ONE LEVEL
710 REM ***********************
720 LV=LV+1:RETURN

Listing2 for Basic-09

PROCEDURE move
PARAM x,y,length:REAL
PARAM angle:INTEGER
DIM x2,y2:REAL
DEG
y2:=y+SIN(angle)*length
x2:=x+2.*COS(angle)*length
x:=x2 \y:=y2

PROCEDURE forward
PARAM x,y,length:REAL
PARAM angle:INTEGER
DIM x2,y2:REAL
DEG
y2:=y+SIN(angle)*length
x2:=x+2.*COS(angle)*length
RUN gfx2("line",FIX(x),
FIX(y),FIX(x2),FIX(y2))
x:=x2 \y:=y2

PROCEDURE side
TYPE figure=direction,sides,
angle(5),sequence(60):INTEGER;
fraction:REAL
PARAM level:INTEGER;
polygon:figure;

os,y_pos,length:REAL x_p
DIM i:INTEGER
IF level=1 THEN
RUN forward(x_pos,y_pos,
length,polygon.direction)
ELSE
FOR i=1 TO polygon.sequence(1)
ON polygon.sequence(i+1) GOSUB

3,4,5,6,7,8,9,10 1,2,
NEXT i
ENDIF
END
1 RUN side(level-
1,polygon,x_pos,y_pos,
length*polygon.fraction)
RETURN
2 RUN side2(level-
1,polygon,x_pos,y_pos,

olygon.fraction) length*p
RETURN
3 RUN forward(x_pos,y_pos,
length,polygon.direction)
RETURN
4 polygon.direction:=
polygon.direction+polygon.angle
(2)
RETURN
5 polygon.direction:=
polygon.direction+polygon.angle
(3)

RETURN
6 polygon.direction:=
polygon.direction+polygon.angle
(4)
RETURN
7 polygon.direction:=
polygon.direction+polygon.angle
(5)
RETURN
8 length:=length*1.555
RETURN
9 RUN move(x_pos,y_pos,length*
polygon.fraction,polygon.direct
ion)
RETURN
10 RUN side(level-
1,polygon,x_pos+.0,y_pos+.0,len

ygon.fraction) gth*pol
RETURN

PROCEDURE side2
TYPE
figure=direction,sides,angle(5)
,sequence(60):INTEGER;
fraction:REAL
PARAM level:INTEGER;
polygon:figure;

os,y_pos,length:REAL x_p
DIM i:INTEGER
IF level=1 THEN
RUN
forward(x_pos,y_pos,length,poly

rection) gon.di
ELSE
FOR i=1 TO polygon.sequence(1)
ON
polygon.sequence(i+1+polygon.se
quence(1)) GOSUB
1,2,3,4,5,6,7,8
NEXT i
ENDIF
END
1 RUN side(level-
1,polygon,x_pos,y_pos,length*po
lygon.fraction)
RETURN

2 RUN side2(level-
1,polygon,x_pos,y_pos,length*po
lygon.fraction)
RETURN
3 RUN
forward2(x_pos,y_pos,length,pol
ygon.direction)
4
polygon.direction:=polygon.dire
ction+polygon.angle(2)
RETURN
5
polygon.direction:=polygon.dire
ction+polygon.angle(3)
RETURN
6
polygon.direction:=polygon.dire

lygon.angle(4) ction+po
RETURN
7
polygon.direction:=polygon.dire
ction+polygon.angle(5)
RETURN
8
polygon.direction:=polygon.dire

olygon.angle(6) ction+p
RETURN

PROCEDURE curve
DIM i,j:INTEGER
TYPE
figure=direction,sides,angle(5)
,sequence(60):INTEGER;
fraction:REAL
DIM x_pos,y_pos:REAL;

on:figure polyg
PARAM level,line:INTEGER
ON line GOSUB
101,102,103,104,105,106,107,108
,109,110,111,112,113,114,115,11
6,117,118,119,120,121
READ
polygon.direction,polygon.sides
,j
FOR i=1 TO j
READ polygon.angle(i)
NEXT i

READ j
FOR i=1 TO j
READ polygon.sequence(i)
NEXT i
READ
x_pos,y_pos,length,polygon.frac
tion
x_pos:=x_pos+x_pos
y_pos:=191.-y_pos
FOR i=1 TO polygon.sides
RUN
side(level,polygon,x_pos,y_pos,
length)
polygon.direction:=polygon.dire
ction+polygon.angle(1)
NEXT
END

i

1 DATA 60,3,3,120,-60,120,8,7
DATA 1,4,1,5,1,4,1
DATA 126.,191.,162.,1./3.
2 DATA 30,6,3,60,60,-120,8,7
DATA 1,4,1,5,1,4,1
DATA 126.,191.,94.,1./3.
3 DATA 0,1,3,0,-90,90,15,14
DATA

1,5,1,5,1,1,4,1,4,1,5,1 1,4,
DATA .0,96.,255.,.25
4 DATA 0,1,3,0,-90,90,31,30
DATA
1,4,1,1,5,1,1,5,1,5,1,4,1,4,1,1

,5,1,4,1,4,1,1,4,1,1,5,1 ,5,1
DATA 10.,96.,235.,1./6.
5 DATA 0,1,3,0,-90,90,59,58
DATA
4,1,5,1,4,1,4,1,5,1,5,1,1,4,1,5

,1,1,5,1,4,1,4,1,1 ,1,5
DATA
5,1,1,4,1,1,5,1,5,1,4,1,1,4,1,4
,1,5,1,1,4,1,4,1,5,1,5,1,4,1,5
DATA 50.,96.,162.,.125
6 DATA 60,3,5,120,-120,120,-
30,30,8,7
DATA 6,1,5,1,4,1,7
DATA 128.,170.,140.,1./SQRT(3)
7 DATA 45,4,5,90,-90,90,-
27,27,8,7
DATA 6,1,5,1,4,1,7

DATA 128.,181.,120.,1./SQRT(5)
8 DATA 36,5,5,72,-72,72,-
22,22,8,7
DATA 6,1,5,1,4,1,7
DATA 128.,181.,92.,1./SQRT(6)
9 DATA 30,6,5,60,-60,60,-
19,19,8,7
DATA 6,1,5,1,4,1,7
DATA 128.,188.,92.,1/SQRT(7)
10 DATA 0,1,3,0,-90,90,18,17
DATA
1,4,1,5,1,5,1,5,1,4,1,4,1,4,1,5
,1
DATA 30.,96.,190.,1./3.
11 DATA 0,1,3,0,-45,45,7,6
DATA 4,1,5,5,1,4
DATA 70.,46.,100.,1./SQRT(2)
12 DATA 0,1,3,0,-45,45,13,6
DATA 4,2,5,5,2,4,5,1,4,4,1,5
DATA 40.,46.,160.,1./SQRT(2)
13 DATA 0,1,3,0,-45,45,13,6
DATA 4,1,5,5,2,4,5,1,4,4,2,5
DATA 60.,86.,140.,1./SQRT(2)
14 DATA 30,6,3,60,-120,60,14,13
DATA 1,4,1,5,1,5,1,5,1,5,1,4,1
DATA 128.,158.,62.,1./3.
15 DATA 0,3,3,-120,-

120,10,9 120,
DATA 1,4,1,5,1,5,1,4,1
DATA 40.,10.,180.,1./2.
16 DATA 0,1,3,0,-60,60,15,7
DATA 4,2,5,1,5,2,4
DATA 5,1,4,2,4,1,5
DATA 18.,.0,220.,.5
17 DATA 0,4,3,-90,-90,90,16,15
DATA
1,4,9,1,5,1,5,1,5,1,4,9,4,1,1
DATA 33.,.0,190.,1./3.
18 DATA 60,1,5,0,60,-60,-
19,19,35,17
DATA
6,1,4,2,4,4,2,5,1,5,5,1,1,5,2,4
,7
DATA
6,5,1,4,2,2,4,4,2,4,1,5,5,1,5,2
,7
DATA 128.,188.,160.,1./SQRT(7)

19 DATA -90,1,3,0,-44,44,8,7
DATA 3,4,10,5,5,10,4
DATA 128.,.0,86.,.59
20 DATA 0,1,3,0,-90,90,17,8
DATA 4,2,5,1,1,5,2,4
DATA 5,1,4,2,2,4,1,5
DATA 32.,.0,191.,.5
21 DATA 0,1,3,0,-87,174,10,9
DATA 1,4,8,1,5,1,4,8,1
DATA 10.,.0,230.,.28
101 RESTORE 1 \ RETURN
102 RESTORE 2 \ RETURN
103 RESTORE 3 \ RETURN
104 RESTORE 4 \ RETURN
105 RESTORE 5 \ RETURN
106 RESTORE 6 \ RETURN
107 RESTORE 7 \ RETURN
108 RESTORE 8 \ RETURN
109 RESTORE 9 \ RETURN
110 RESTORE 10 \ RETURN
111 RESTORE 11 \ RETURN
112 RESTORE 12 \ RETURN
113 RESTORE 13 \ RETURN
114 RESTORE 14 \ RETURN
115 RESTORE 15 \ RETURN
116 RESTORE 16 \ RETURN
117 RESTORE 17 \ RETURN
118 RESTORE 18 \ RETURN
119 RESTORE 19 \ RETURN
120 RESTORE 20 \ RETURN
121 RESTORE 21 \ RETURN

PROCEDURE setup
ON ERROR GOTO 2
DIM ans:STRING[1]
DIM i,line,level:INTEGER
DIM length:REAL
DIM window:BOOLEAN
REPEAT
PRINT CHR$(12);
PRINT "Input the figure to draw
(1-21)."
INPUT "figure #=",line
UNTIL line>0 AND line<22
1 PRINT
REPEAT

PRINT "Input level to run (# >
0)"
PRINT "or sequence (0 yields 1-
5):"
PRINT
PRINT "-1 will restart program
for new figure selection"
INPUT "# ?",level
UNTIL level>=-1
IF level=-1 THEN RUN setup
ENDIF
PRINT CHR$(12)
window:=FALSE
RUN
gfx2("owset",0,0,0,80,24,1,0)
window:=TRUE
RUN gfx2("curoff")
IF level=0 THEN
FOR i=1 TO 5
PRINT CHR$(12)
RUN curve(i,line)
NEXT i
ELSE
RUN curve(level,line)
ENDIF
GET #0,ans
PRINT CHR$(12);
RUN gfx2("owend")
RUN gfx2("curon")
PRINT "Figure selected is ";
line
PRINT "Last level was "; level
GOTO 1
2 errnum:=ERR
ON ERROR
RUN gfx2("curon")
PRINT "Error number "; errnum
IF errnum=183 THEN
PRINT "Illegal window type;
must be ";
PRINT "graphics."
ENDIF
IF errnum=189 THEN
PRINT "Illegal coordinates."
IF window THEN
PRINT "Check data table."
ELSE

PRINT "Must be 640x192 window."
ENDIF
ENDIF
IF errnum=32 THEN
PRINT "Memory full; check mem
#."
ENDIF
PRINT
IF window THEN
RUN gfx2("owend")
ENDIF
END

Editor’s note: any line in the previous
Basic09 program which is NOT in bold type,
is a continuation of the previous line, and
should be typed as part of that line.
P.S. this applies to all source listings in this
issue except “Numbersquare”.


~~~oooOOOooo~~~ 
 
 
 
One-Liner 
 
0 A=43350:B=140:FORS=1TO240: POKE 
B,S:EXECA:NEXT: 
FORS=240TO10STEP-15: 
POKEB,S:EXEC:NEXT:FORS=50 
TO200STEP.5: 
POKEB,S:EXEC:NEXT:FOR 
S=200TO10STEP-15:POKEB,S: 
EXEC:NEXT: 
FORS=1TO100STEP.25:POKEB,S: 
EXEC:NEXT:S=145: 
FORX=0TO1:POKEB,S:EXEC: 
X=0:NEXT 
 
Keep on Coco-in’ 
 
 
 
 
 



Derek's Pokes from the Past  
 
Did you know you can output your disk 
directory to your printer on your Color 
Computer ? Well you can by entering the 
following Poke Command. 
 
Poke111,254:DIR 
 
Did you also know you can use the same 
command in some of today’s emulators to 
output a disk image file directory to a text file 
on your PC?  
 
Here is how using the MESS Emulator. (The 
Following assumes your using the MESSGUI 
Front end that now comes in each build of 
MESS) 
 
1: Create a blank .txt file. In Windows right 
click in the directory you want the file to be 
saved in and select the New option then under 
the New Option select Text Document. You 
can name it whatever you want. I used 
coco.txt 
 
2: Load MESS and single click to select which 
ever Color Computer Model you want to 
emulate. For my example I will use Color 
Computer 3. Now on the right side pane select 
the "Device View" tab. 
 
3:  The very 1st line is "Printer" and on the far 
right side of that line is a button with three 
dots. Click on that button and select "Mount" 
now browse to the file you created in step 1. 
The coco.txt file 
 
4: Next mount your floppy disk image. In the 
same device view tab find the line labeled 
Floppy#0 and select the button with three dots 
and again use the mount command and select 
the disk image you want to use. 
 
5: In the left pane double click on Color 
Computer 3 to start the emulator. 

6: Once the emulator starts type 
Poke111,254:DIR and it will output the disk 
directory to the text file you created in step 
number 1. 
 
How to read a disk directory in DISK 
EXTENDED COLOR BASIC – Part 2 

by Bob Devries 
 
In this part of my tutorial, I am going to 
add a few lines into the code I presented 
in the first part. These lines will add to the 
programme the ability to show which 
granules were used by each file, and also 
the size of each file in bytes. 
The GAT (granule allocation table) is an 
array of 68 bytes. As we saw in part 1, the 
entry point to the chain of granules is 
provided in the directory entry for each file. 
The value that is in the cell of the GAT 
array is a pointer to the next cell, or a 
value to show that this cell is the last 
granule used by the file. This last special 
value is a value between 193 (&HC1) and 
201 (&HC9). Sometimes, a value of 192 
(&HC0) is used to show a granule is 
allocated but unused. This does not 
happen in the normal usage of DISK 
EXTENDED COLOR BASIC. 
 
To enable the sample programme to show 
the granules used and the length of the 
file, I have added three lines into the code, 
and added a subroutine of 13 lines to the 
end. 
 
The first line is added right at the 
beginning of the programme, and is there 
to allocate a numeric array to accept the 
granule numbers for each file as it is 
extracted. 
 
15 DIM GA(68):REM ALLOCATE AN 
ARRAY FOR THE GRANULE NUMBERS 
 
The next line is the command to read the 
GAT sector into a string variable. The 



GAT is on track 17 and sector 2, and is 
stored into string variable GT$. 
 
105 DSKI$DN,TK,2,GT$,C$:REM GET 
GAT SECTOR 
 
The next line concatenates the two halves 
of the sector into one string variable, 
omitting only the last byte, which has no 
value. The next line concatenates the two 
halves of the sector into one string 
variable 
 
106 GT$=GT$+LEFT$(C$,127) 
 
The last insertion is line 245, which calls 
the subroutine to calculate the additional 
values which we need. 
 
245 GOSUB 300 
Lines 300 to 420 are the subroutine which 
do the actual work of finding the granules 
that are used by the file, and its actual 
length in bytes. Line 300, the start of the 
subroutine sets some variables to 0, 
because they will be re-used each time 
the subroutine is run. 
 
300 GT=0:LF=0 
 
Line 310 gets the value of the next cell in 
the GAT array in GT$, which is pointed to 
by the variable GR which is set in line 200. 
This is placed into variable NG. 
 
310 
NG=ASC(MID$(GT$,GR+1,1)):REM 
GET NEXT GRANULE 
 
The next line tests the value of NG to see 
if this granule is the last in the chain. 
There will be more granules in the chain if 
the value of NG is less than 192 (&HC0). 
A value of 192 is actually a special case 
which rarely shows up. The granule total 
counter (GT) is bumped up by 1, and the 
length of file counter has 2304 added to it. 

Remember from part 1, 2304 is the size in 
bytes of one granule. If the value of NG is 
192 or more, then the code does a jump 
to line 350, to do the special handling of 
the end of granule chain situation. 
 
320 IF NG<192 THEN 
GA(GT)=GR:GT=GT+1:LF=LF+2304 
ELSE 350 
 
Line 330 puts the value of NG into the GR 
variable, so that it can be re-used. 
 
330 GR=NG 
Line 340 loops around to continue 
working down the chain of granules. 
 
340 GOTO 310 
 
Line 350. The code jumps to here when it 
detects an end of granule chain condition. 
Here it subtracts 193 from the value found 
in the GAT to get a value between 0 and 8; 
multiplies that by 256, which is the 
number of bytes in each sector, and adds 
the value from the LS variable which was 
calculated in line 210. 
 
350 LF=LF+((NG-193)*256)+LS 
 
Line 360 stores the granule number into 
the GA array which we created at the 
beginning of the programme. The offset 
into that array is given by variable GT, 
which is the granule total counter. GT is 
the index into the array. 
 
360 GA(GT)=GR 
 
Line 370 prints a title for the line which 
shows the granules. 
 
370 PRINT#PR,”GRANS:”; 
 
The next three lines, 380-400 are a FOR-
NEXT loop to print the values of the GA 



array one after the other on the screen or 
printer, decided by the PR variable. 
 
 
380 FOR X=0 TO GT 
390 PRINT#PR,GA(X); 
400 NEXT X 
 
Line 410 appends a linefeed to the end of 
that, ready to print more information. 
 
410 PRINT#PR 
 
Line 420 prints the length of the file in 
bytes. 
420 PRINT#PR,"LENGTH:";LF 
 
And the last line returns us from the 
subroutine back to the main code. 
 
430 RETURN 
 
Here's a sample of what the programme 
produces: 
 
FILENAME EXT TYP ASC 1ST LAST 
                 FLG GRN SECT 
EXTEND0 .BIN  2  B  0   193  
GRANS: 0  1  2  
LENGTH= 6337  
EXTEND1 .BIN  2  B  3   193  
GRANS: 3  4  5  
LENGTH= 6337  
EXTEND2 .BIN  2  B  6   193  
GRANS: 6  7  8  
LENGTH= 6337  
MENUCUST.BAS  0  B  9   153  
GRANS: 9  
LENGTH= 1689  
MENU    .BIN  2  B  10   215  
GRANS: 10  
LENGTH= 1751  
 
I hope this two part tutorial has been 
useful to you. It was fun and educational 
for me to write, because although I knew 
how to do what was needed, I had never 

written the code before. They say you're 
never too old to learn. Maybe next time I’ll 
add the code to find the START, END and 
EXEC addresses of a binary file as well. 
 
Happy Coco-ing. 
 

~~~oooOOOooo~~~ 


The CoCo/OS-9 Documentation
Archive

What is it?

The purpose of the archive is to put as much
CoCo, OS-9 and OSK information together
before it is completely lost. This includes
magazines, newsletters, ads, program manuals,
etc. While the archive does contain some files
(i.e. User Group Archives) it is mostly limited
to documentation at this point. Eventually I
expect this information to be 'folded in' with
other projects or archives so that the
CoCo/OS-9 community will have a definitive
reference source.

How did it all start?

Well many years ago, in the mid '90s, I started
a project to scan in the Bellingham OS-9 User
Group newsletter, the "OS-9 Newsletter."
Unfortunately, due to equipment and time
restraints at the time I abandoned the project.
So, fast forward to 2004 and the CoColist,
where there was some discussion about the
loss of CoCo and OS-9 Programs with the
closing of the old on-line forums. I mentioned
that I had a copy of the archive of the
Bellingham OS-9 User Group library, but to
my surprise, hardly anyone even knew of the
existence of the Bellingham UG or its
newsletter. So, as a service to the CoCo
community, the old project was reincarnated
and I started to scan the old "OS-9
Newsletter." As with a lot of projects, it
started innocently enough, but soon took on a

life of its own. After I finished the "OS-9
Newsletter" I figured I might as well scan the
manuals I could load into my sheet fed
scanner. Then I started in on some books, and
well, the rest is history.

The Contributors

Many people have contributed to the project,
by either scanning documents I didn't have, or
graciously allowing me to borrow their
manuals and magazines. I have also included
any manuals, magazines, and books I have
found hunting on the internet. There are too
many people to acknowledge here, but special
thanks go to Boisy Pitre, Tim Lindner,
Stephen H Fisher, Steve Ostrom, and Ken
Carlin for their help and encouragement. A
special thanks to Dennis Bathory-Kitsz for the
FTP site and the new CoCoList!

So what's in the archive?

Well that would be a very big list, so I'll just
list a few examples. The magazines include
CFDM, CoCo Clipboard, Color Micro Journal,
The World of 68 Micros, Micro-80, 80
microcomputing, TRS-80 MicroComputer
News, Ninetimes, OSKer, Under Color,
Uptime, and Mary Kramer's famous e-zine
CoCoNutz!. There are newsletters from the
Australian, European and US OS-9 UGs, as
well as various Delphi, CompuServe,
CoCoList and FIDO messages. The books
include some of Bill Barden's works, "Inside
OS-9”, "The BASIC09 Tour Guide" and many
others. There are more product manuals than I
can begin to name, but some would include
DISTO, Tandy's OS-9 Manuals, Various
Game Manuals, Microware OSK Manuals,
MM/1, Sub-Etha, Sundog, and the FHL TC/70.
Many categories are incomplete, but hopefully
in time the missing pieces will show up.

And last but not least, there is a separate
section for the Dragon Computer, which

includes Dragon User Magazine, Dragon
World, Stop Press, and numerous manuals and
pictures.

So where is the project now?

Well, the last official DVD release was V3.1,
which was a special release strictly for the
CoCoFEST! I donated a number of copies to
Glenside to help with the FEST!, however I
want to stress that the archive is strictly a non-
profit venture for the benefit of the community.
I make nothing off of this, and it actually costs
me money to do the DVD releases. Most of
the information in the archive has been
uploaded to the maltedmedia FTP site, but due
to my being on dial-up I just can't upload all
the magazines. Release 4.0 is scheduled for a
December or January release.

Currently the DVD set (5 DVDs) is only
distributed to major contributors. If you want
a DVD set, you'll have to warm up your
scanner or allow me to borrow documentation
to scan (all documents are returned.) This is
my way of rewarding people since scanning
documents is not exactly a fun task. I don't sell
the set because I promised the contributors
this would be a community project so it would
be inappropriate for me to be involved in any
kind of distribution (even for just the cost of
the DVD media.) Perhaps Glenside would be
willing to make copies available at the next
CoCoFEST!, but that is something I'll have to
discuss with them. Ideally, I would like a
separate on-line home for the archive, but
finances do not allow that at the moment. So,
if anyone has a lot of server space and
bandwidth free I would be highly appreciative.

How do I Contribute?

Anybody who wishes to contribute can
contact me at 'os9project@1stconnect.com'
and put 'archive' in the subject line to make
sure I see it. Any kind of documentation is

welcome, from flyers to CoCo related
magazine articles! Also, anyone who is
working on a similar project, please contact
me so we don't duplicate our efforts.

Dean Leiber

Drawing Diagonal Lines
with

Computers

If you have tried both of the fractal
generating programs, you will be aware of the
differences in the line drawing routines of
Extended Color Basic and OS-9/Basic09. I
will be using the programs to demonstrate
those differences, but you can just look at the
figures.

 There are several ways to draw lines with a
computer. An excellent discussion of these
methods is available in "Microcomputer
Displays, Graphics, and Animation" by Bruce
A. Artwick, 1985, Prentice-Hall. Other
references are available in stores and libraries.

There are two techniques used by
Coco to draw lines. The first, used in
Extended Color Basic (ECB), is the Octantal
Digital Differential Analyzer (OctDDA). The
second, used in OS-9/Basic09, is the
Quadrantal DDA (QuadDDA).

These tongue twister names mean that
the programs do not use fractions or floating
point math. Instead, the slope of a diagonal
line is represented by a delta-x and delta-y
value. An error term is maintained that
measures the difference between the desired
line and the actual line. As each point making
up a line is generated, the error term is
adjusted using the delta-x and delta-y values.
The delta terms are the difference between the

start and finish points of the line in the
horizontal and vertical directions. By using the
error and delta terms, the DDA line drawing
procedures (there are several variants) are able
to produce a stair step line that is a good
approximation of the desired diagonal line.

The resolution of the graphics screen is
the prime factor in line quality, but other
factors are also important. Four additional
criteria are fit, symmetry, reversal, and
overlap. Reversal means the line is identical
regardless of which end you start. Symmetry
(or lack of) can be seen in figure 3. Fit and
overlap are shown in figure 4.

Figure 4

QuaDDA produces lines with one
pixel overlap. The overlap increases apparent
smoothness, but also makes the lines appear
thicker than horizontal or vertical lines. As
implemented in OS-9, the error term is started
at zero which can cause a non-symmetrical
line (fig. 3.) OctDDA as used in ECB is
started with the error term half the value of the
appropriate delta term. This gives correct
symmetry. Since OctDDA has no stair step
overlap, apparent ECB diagonal line thickness
is closer to horizontal or vertical line thickness.
The line, however, may not appear as smooth
as with QuadDDA, a slight deficiency.

The best approach to solving this
problem would be to alter the NitrOS-9 source
code to incorporate system wide changes to
OS-9 that would cover both VDG and
Windows drawing routines. While selection of
QuaDDA vs OctDDA is a matter of personal
taste, the error term should be initialized at 1/2
delta.

Figure 5

Wizards Den:

Game information & Download :
http://nitros9.lcurtisboyle.com/wizardsden.htm
l
Published by: Tom Mix Software
Author: Matt Harper
System Requirements: Color Computer 1, 2 or
3 Disk Drive, 64K RAM,
Joystick Support: Yes
Genre: Arcade, RPG

Ratings:

Graphics: 5/5
Sound: 3/5
Ease of Play: 5/5
Originality: 5/5
Fun Factor: 5/5

Wizards Den is an arcade and rpg type game
produced by Tom Mix Software. In the game
you play the role of a stoic adventurer out to
recover the Gem of Damocles. The graphics
are excellent. When you are outdoors there are
trees and bushes to dodge around. Your
character wields a mean looking sword and
the graphics of the monsters are very well
done. Once you enter the temple the graphics
give you the real feeling of being in a classic
RPG dungeon setting.

The sounds when you shoot your fireballs was
a nice touch and when you were taking
damage from the monsters the sounds were
timed perfectly. One bothersome thing I found
was as your health ticked down each second a
sound would play and repeat every second and
after a few minutes of play the repetitive
sound was unwanted. There was no music in
the game which I think could have added to
the mood.

The game was very easy to start. The ability to
play using a joystick was a real joy (pun
intended). I found myself on the 1st level
which is an outdoor area filled with trees, piles
of bones and dens of bad guys. There were
plenty of monsters to hunt and some goodies
to find like magic rings and potions. I also
found myself challenged when I would find
areas where I could see monsters and treasures
on the other side of a wall that was not easily
accessible. I found myself needing to find my
way in to slay the beasts and grab the loot.
Once inside the temple and subsequent
dungeon levels the game became more of a
challenge as there were more monsters and
suddenly I as the hunter became the hunted.

Overall this is a great game! If you enjoy
games like Gauntlet, this game is for you. I
highly recommend taking some time to enjoy
this game. Now I am off to find that elusive
Gem of Damocles.

* Game was reviewed using the MESS
Emulator under the TRS-80 Color Computer 3
selection. Please send any questions or
comments to dml_68@yahoo.com.

“Rat Attack”

Game authors: Wayne Wood and Gerry Casey

Publisher: T&D Software, Issue #28, July
1984

Runs in PMODE 4 in all 32K+ CoCos

Review by Richard Kelly

Introduction: There are lots of Nibbler
wannabes out there, and not just in the CoCo
market. This is my favorite of the bunch,
though. Both the graphics and the sound are a
step above Nibbler, as is the gameplay.

For those who haven’t played Nibbler, the
game involves eating all the gems before your
bonus runs out. The more you eat, the bigger
your tail gets. If you bite your tail, you die.

In “Rat Attack”, you eat rats on the board
instead of gems; some are alive and running
around, while others are quite dead, displayed
upside-down and not moving at all. There’s
also a “thru” exit where you go through one
side of the maze, and come out the other. One
more thing is added, too: A computer player
that can be a real nuisance if you’re not
careful. He’s a snake whose tail is just as
deadly as yours.

Graphics: A. What can I say? The graphics
top the Nibbler arcade game, and even that of
many CoCo 3 games out there. The game
isn’t sparse on detail one bit; yet it’s not
overcrowded with decoration, either. The
wire-thin font doesn’t look very good, but
that’s about all there is to complain about. No
one could ever be convinced that this game

was home-grown; it has all the qualities of a
real professional here. You’d swear this game
was published by Tom Mix Software! No
joke.

Sound: C+. No melodies of any sort, no
music, and nothing’s heard during the actual
gameplay except snake-like drumbeats. Until
I actually took the time to review this game
though, I never really noticed, and I’ve played
it for over ten years. So I guess the problem
isn’t too bad.

Animation: A-. Since the game was color-
artifacted, the authors couldn’t get away with
animating the game the same way east and
west as they did north and south. It just didn’t
show up on the CoCo this way. Maybe they
flat ran out of time to change the east and west
animation so it moved the same as the north
and south animation. In any case, it’s not the
same, and the inconsistency did bug me
sometimes. Thankfully, I only have to play a
level or two before I’m too excited about the
game to let the animation bother me. And
you’re hearing this from a big animation fan.

Game engine: A-. The game is color-
artifacted, yet there’s no Reset until the Screen
Is This Color feature. For CoCo 3s, this isn’t
a problem, I suppose, but what about the rest?
You’ll be stuck with the game being the
wrong color half the time, and to be honest,
there’s no real way to know what the game’s
“right color” is supposed to be.

Also, the game is often very picky about the
player not getting too close to the computer
snake’s head. It gets very annoying at times.

Add to this, the graphics coding. Even though
the game doesn’t lag at any point, the code of
the game does show its age a little, in that the
game was written for a cassette-based system,
and not a disk-based one. Like Grabber and a
number of other ML-based games, this one

has the “flashing colored line” problem – a
problem on disk systems that shows up
whenever an area near the northwest corner of
the screen is drawn over. In Rat Attack, that
would be every time the maze is redrawn.
After a while, the game just stops working
altogether.

Lastly, here are some features in the game that
are going to give you a pause: “No Sound”
and “Sound On”. What’s up with that?
Doesn’t every TV the CoCo is hooked up to
have a volume control? I thought so. It seems
someone has been writing for a different
machine for so long, he/she forgot that CoCos
don’t need a “Sound On/off” feature.

Gameplay: A. The game was more interesting
to me than Nibbler, despite how fond I am of
the arcade game. First, there are three types of
rats – The dead, the white-bellied, and the
black-bellied. The white-bellied ones will
often reverse direction and run right into your
mouth. The black-bellied rats, on the other
hand, are much smarter, and you have to trap
them in order to eat them up. You can do this
pushing them into a corner, trapping them
where they’ll get blocked by a dead rat, trap
them in the Thru exit where you can eat the rat
and go through to the other side of the maze,
or you can trap the rat with your own tail (and
die in the process if your bonus isn’t high
enough to have your tail bonus tallied up).

Another improvement is the number of mazes.
It has a far greater number of levels than the
Nibbler arcade game. In fact, I remember
once going over Level 11 and the mazes still
weren’t repeating! Maybe the game gives you
new mazes forever? I doubt it, but it sure has
enough to keep me entertained for a while.

Another great thing about the gameplay is the
computer-controlled snake. With him often
getting in the way (and you having to find a
way to maneuver around him or away from

him), the same game never plays twice, even
though the layout of all the mazes are the
same. Thus, more replay value!

Overall: A. Not much to say that I haven’t
said here already. So I’ll simply conclude the
review by saying: It’s high-quality programs
like this that made me so fond of T&D
Software in the first place. Cheers!

Purchase your Coco Mug from Coco3.com

The 17th Annual "Last" Chicago
CoCoFEST!

April 12 & April 13, 2008
Saturday 10am-5pm; Sunday 10am-

4:30pm

HOLIDAY INN & SUITES ELGIN rates
are $80.00 plus 10% tax. YOU MUST
REGISTER UNDER "COCOFEST!" to
get this rate, so be sure to ask for the

Glenside "CoCoFEST!" rate.

RESERVE YOUR ROOM EARLY as
there is a limited block of rooms held until

April 4th 2008
 These rooms will be released to the

general public and will not be available for
the fest attendees.

Call the Elgin HOLIDAY INN & SUITES at
1-847-488-9000 for reservations.

General admission-all attendees:
 Saturday & Sunday: $15.00 1st -
$10 2nd & more.
 Sunday
Only: $10.00 1st - $5 2nd & more.

******* Children 10 and under - FREE

For further information, general or
exhibitor, contact:

Tony Podraza, GCCCI Brian
Goers, GCCCI

847-428-3576, VOICE 708-754-
4921, VOICE

tonypodraza@juno.com
briang0671@sbcglobal.net

Double Back:

Published by: Tandy, Radio Shack
Author: Dale Lear
System Requirements: Color Computer 1, 2 or
3, Disk Drive, 4K RAM, 1 or 2 Joysticks
Joystick Support: Yes
Genre: Arcade, Puzzle

Game information:
http://nitros9.lcurtisboyle.com/doubleback.ht
ml
Play online here:
http://members.cox.net/javacoco/ (Doubleback
is under the BIN tab)
Download here: http://discover-
net.net/~dmkeil/coco/software/files/26-
3091.ace

Ratings:

Graphics: 4/5
Sound: 4/5
Ease of Play: 5/5
Originality: 5/5
Fun Factor: 5/5

Doubleback is a game of speed and skill. The
object of the game is to encircle different
objects that appear using your joystick without
touching them. The objects include roller
skates, cherries, apples and magnets. This is
not as easy as it sounds because the lines you
make to encircle objects shrink as you try to
encircle them, some of the objects move and if
you’re not quick enough you will get too
many items on the screen at one time which
makes avoiding contact tough. Having
multiple objects to encircle at one time can be
a good thing as well, because you get a higher
score if you encircle multiple objects.
Graphics are nice (considering that the game
can run on a 4K Coco), the game sounds and
music are enjoyable and are used in such a
way as to not become overly repetitive. The

concept of the game is excellent; it takes the
best of a game like Qix and adds to it with
extra features and graphics. Most important it
is a fun game that can be played solo or in 2
player mode. My 3 children and I spent a good
45 minutes playing this game with each other
and had a great time! A very family friendly
fun game.

* Game was reviewed by Derek Loughrey
using a 128K TRS-80 Color Computer 3 with
2 Deluxe Radio Shack Joystick. Please send
any questions or comments to:
dml_68@yahoo.com.

Licensed Pac-man Developed For the CoCo?

by Retro Rick

Pac-man is an arcade game ported
(and/or ripped off) more times on
more computers than any other game
I can think of. The only games that
even come close to having this many
wannabes are Space Invaders, Nibbler,
Pong, and Galaxian.

For those who don’t know exactly
what the original Pac-man is, you’re
this circular, moving mouth that’s put
in a maze to eat up dots. There are
these Ghost Monsters after you that
are various colors, except blue. As
long as this is the case, their touch
kills you. You change this situation
by eating a “Power-pellet”, and all the
ghosts turn blue temporarily, allowing
you to eat them almost as casually as
you do the dots.

A bonus item appears in the middle of
the screen from time to time. If you
eat it before it goes away again, you
get a small bonus.

The goal of the arcade game is to pass
the mazes by eating up all the dots in
each level. You should try to make as
many points as possible while doing
this.

“Pacman” for the CoCo is the ultimate
trivia question of all time, in that it
seems there really was a licensed
version of the game developed for the
Tandy Color Computer. If I remember
the name on the label correctly, I
found it on a disk called “Games 17F”.
This disk series appears to have
several sources from where it receives
its games, and the software doesn’t
necessarily have a company name
coming with them. So I have no idea
where the CoCo game “Pacman”
originally came from.

At any rate, this game has the words
“unfinished prototype” written all over
it. It has loads of silly bugs, very
limited sound effects, and lots of
missing animation sequences
(although the animation to Pacman
himself is great). Added to this,
Pacman is also very hard to control;
I remember several times pointing the
joystick towards an upcoming turn in
the maze, and Pacman stopped
moving abruptly, thinking that I was
trying to move through a wall. There
aren’t any Power-pellets or bonus
items in this one, either.

So what happened with Pacman?
Why wasn’t it finished? My theory is
that the designers were told to make
this for a 16K system, and ran out of
memory (and money) in the middle of
development. This would explain why
there’s such a long list of features
missing that you’d expect in a

licensed version, including things as
simple as a title screen.

Whatever the case, even though this
game isn’t fully functional, at least it’s
playable. And CoCo folks now know
that there actually was a genuine,
licensed Pac-man clone being
developed for the CoCo, even if it
never was complete.

Making assembler files from machine code

programmes, using Disk Basic.
By Bob Devries.

Recently, in my quest to preserve colour
computer software, I had a need to re-
assemble a file into a different format. The file
in question was quite short, thankfully, but
rather than typing all the code in (which does
require a certain amount of knowledge about
the programme you’re trying to modify).

Although the file I originally worked on was a
single-origin file; that is, it had one load
address, and a number of sequential blocks, I
knew that I would eventually come across a
file with multiple origins, such as those
produced by Tandy’s EDTASM. These files
are split into blocks of 128 bytes, each with a
pre-amble and post-amble.

I heard somebody ask: What’s a pre-amble
and post-amble?

To explain: For the DISK BASIC to know
where an ML file should be copied into
memory, and how many bytes (characters)
should be copied, there is some extra
information saved along with the file. At the
beginning of the file, one byte is used to
identify that the file is indeed, an ML file.
This byte must be 0. ($FF or 255 is used for a
BASIC file). After that, there are two bytes
that give the length of the file (0 – 65535).

Then there are two bytes to show where in
memory the file is to be loaded.

At the end of the actual data in the file, there
is a similar 5 byte packet which is the post-
amble. It consists of one byte ($FF or 255) if
the file is now at an end, or 0 if there are more
chunks, then for the former, two bytes of 0,
and then the execute (or run) address. If there
are more chunks, then the post-amble becomes
the pre-amble of the next chunk.

So, my programme needed to deal with the
pre- and post-amble data.

The aim of my programme is to produce
assembler code such as this:

 FCB $86, $01, $B6, $FF, $22, $C6,
$FE, $20

I remembered, however, that there are a
number of different assemblers in use (even
by me!), and some, like EDTASM do not like
multiple FCB data on one line. For that, I
needed a different output.

 FCB $86
 FCB $01
 FCB $B6 etc.

Also, EDTASM likes to have line numbers,
which makes for further complications:

000010 FCB $86
000020 FCB $01 etc

So, four different variations are available, and
the programme asks which you want. The first
few lines are REM lines with introductions
and usage explanations.

The programme sends it’s output to a file on
the disk in the drive which you specify, using
the same name as the original ML file, but
with an extension of /ASM.

Here’s the BASIC programme:

10 'CONVASM+/BAS (C) 2007 BY
BOB DEVRIES
20 'PLACED IN THE PUBLIC DOMAIN
30 'FOR NON-PROFIT USE ONLY
40 '
50 'USAGE:
60 'ALL PROMPTS ARE SELF
EXPLANATORY
70 'EXCEPT:
80 'FILENAME, WHICH DEFAULTS TO
THE
90 'EXTENSION "/BIN" IF NOT
GIVEN
100 'USING EDTASM (Y/N)
110 'WHICH DETERMINES IF
MULTIPLE FCB
120 'STATEMENTS PER LINE WILL
BE USED
130 'EDTASM DOES NOT ALLOW THIS
140 'LINE NUMBERS (Y/N)
150 'INSERTS LINE NUMBERS AT
THE FRONT
160 'OF EACH LINE. EDTASM

UIRES THIS REQ
170 'OTHER ASEMBLERS MAY ALSO
180 '
190 CLEAR 1000:
PT=1:OF=0:WIDTH40:PRINT
200 INPUT"SOURCE DRIVE";SD
210 IF SD<0 OR SD>3 THEN 200
220 INPUT"SOURCE FILENAME";SI$
230 INPUT"TARGET DRIVE";TD
240 INPUT"USING EDTASM
(Y/N)";YN$
250 IF YN$="Y" OR YN$="y" THEN

1 ELSE ED=0 ED=
260 INPUT"USE LINE NUMBERS
(Y/N)";YN$
270 IF YN$="Y" OR YN$="y" THEN
LN=10 ELSE LN=0
280 IF TD<0 OR TD>3 THEN 230
290 IN=INSTR(1,SI$,"/"):IF IN=0
THEN IN=INSTR(1,SI$,"."):IF
IN=0 THEN SI$=SI$+"/BIN"

300 IF IN=0 THEN
IN=INSTR(1,SI$,"."):IF IN=0
THEN IN=INSTR(1,SI$,"/")
310 SO$=LEFT$(SI$,IN-
1)+"/ASM:"+CHR$(48+TD)
320 SI$=SI$+":"+CHR$(48+SD)
330 PRINT"CONVERTING
";SI$:PRINT"TO ASSEMBLER
SOURCE":PRINT"USING
FILENAME:";SO$
340 OPEN"D",#1,SI$,1:FIELD #1,1
AS A$
350 OPEN"O",#2,SO$
360 IF LN>0 THEN
GOSUB660:LN=LN+10
370 IF ED=0 THEN PRINT#2,";";
380 PRINT#2,STRING$(10,"*");
390 PRINT#2,SO$;STRING$(10,"*")
400 GET#1,PT:IF A$<>CHR$(0)
THEN CLOSE #2:CLOSE
#1:PRINTSI$;" IS NOT A BINARY
FILE":KILLSO$:END
410 PT=PT+1:
GET#1,PT:LE=ASC(A$)*256
420 PT=PT+1:

#1,PT:LE=LE+ASC(A$) GET
430 PT=PT+1:

1,PT:SA=ASC(A$)*256 GET#
440 PT=PT+1:
GET#1,PT:SA=SA+ASC(A$)
450 IF LN>0 THEN
GOSUB660:LN=LN+10
460 PRINT#2,CHR$(9)
;"ORG";CHR$(9);"$";RIGHT$("000"
+HEX$(SA),4)
470 PT=PT+1:LC=1
480 GET#1,PT
490 IF LC=1 THEN IF LN>0 THEN
GOSUB660:LN=LN+10
500 IF LC=1 THEN
PRINT#2,CHR$(9);"FCB";CHR$(9);:
ELSE PRINT#2,",";
510 PRINT#2,"$";
RIGHT$("0"+HEX$(ASC(A$)),2);
520 PT=PT+1:IF PT>LE+5+OF THEN
560

530 IF ED=0 THEN LC=LC+1 ELSE
PRINT#2
540 IF LC<=8 THEN 480
550 LC=1:PRINT#2:GOTO 480
560 GET#1,PT:IF ASC(A$)=0 THEN

PT-1:GOTO400 OF=
570 IF ASC(A$)=255 THEN PT=PT+3
580 GET#1,PT:EX=ASC(A$)*256
590 PT=PT+1:
GET#1,PT:EX=EX+ASC(A$):PRINT#2
600 IF LN>0 THEN
GOSUB660:LN=LN+10
610 PRINT#2,CHR$
(9);"END";CHR$(9);"$";RIGHT$("0
00"+HEX$(EX),4)
620 IF LN>0 THEN GOSUB660
630 IF ED=0 THEN PRINT#2,";";
640 PRINT#2,STRING$
(10,"*");"END OF
FILE";STRING$(10,"*")
650 CLOSE#1:CLOSE#2:END
660 PRINT#2,RIGHT$
("0000"+RIGHT$(STR$(LN),LEN(STR
$(LN))-1),6);
670 RETURN

A Basic09 Tutorial
by Bob Devries

Here is the BASIC code for the numbersquare
programme from 'Microcomputing', June
1981. It is written in vanilla BASIC, but is
suitable for Extended Colour Basic with minor
modifications, in lines 140,490, 760, 920, 960
and 1450. Can you work out what to change?
(Note please that a colon “:” is used instead of
a REM)

0010 : Number square game
0020 : ver 4.0 - 12 nov 79
0030 : Marc I. Leavey, M.D.
0040 LINE= 0
0050 DIGITS= 0
0060 PRINT "N U M B E R S Q U A R E S"
0070 PRINT "---------------------------"
0080 PRINT

0090 PRINT "WELCOME TO THE WORLD
OF"
0100 PRINT "CONFUSION. THERE ARE
TWO"
0110 PRINT "VERSIONS OF NUMBER
SQUARES:"
0120 PRINT " 1 - SEQUENTIAL"
0130 PRINT " 2 - MAGIC SQUARE"
0140 INPUT "WHICH IS YOUR
PLEASURE",T
0150 IF T=1 GOTO 310
0160 IF T<>2 GOTO 140
0170 :
0180 : SET UP MAGIC
0190 : SQUARE BOARD
0200 :
0210 FOR I=1 TO 4
0220 FOR J=1 TO 4
0230 READ M(I,J)
0240 LET B(I,J)=M(I,J)
0250 NEXT J
0260 NEXT I
0270 DATA
1,6,15,8,12,11,2,5,10,13,4,3,7,16,9,14
0280 LET I1=4
0290 LET J1=2
0300 GOTO 440
0310 :
0320 : SET UP SEQUENTIAL
0330 : BOARD
0340 :
0350 DIM B(4,4)
0360 FOR I=1 TO 4
0370 FOR J=1 TO 4
0380 LET B(I,J)=(I-1)*4+J
0390 NEXT J
0400 NEXT I
0410 LET I1=4
0420 LET J1=4
0430 :
0440 : NOW SCRAMBLE THE BOARD
0450 : TWO HUNDRED TIMES
0460 :
0470 PRINT "I AM NOW SCRAMBLING
THE BOARD..."
0480 FOR Q=1 TO 200

0490 LET M=INT(1+RND*4)
0500 ON M GOTO 510,560,610,660
0510 IF I1=1 GOTO 490
0520 LET B(I1,J1)=B(I1-1,J1)
0530 LET B(I1-1,J1)=16
0540 LET I1=I1-1
0550 GOTO 700
0560 IF I1=4 GOTO 490
0570 LET B(I1,J1)=B(I1+1,J1)
0580 LET B(I1+1,J1)=16
0590 LET I1=I1+1
0600 GOTO 700
0610 IF J1=1 GOTO 490
0620 LET B(I1,J1)=B(I1,J1-1)
0630 LET B(I1,J1-1)=16
0640 LET J1=J1-1
0650 GOTO 700
0660 IF J1=4 GOTO 490
0670 LET B(I1,J1)=B(I1,J1+1)
0680 LET B(I1,J1+1)=16
0690 LET J1=J1+1
0700 NEXT Q
0710 :
0720 : PRINT BOARD
0730 :
0740 LET M9=0
0750 : OUTPUT A "HOME UP"
0760 PRINT CHR$(16);
0770 PRINT "---------------------"
0780 FOR I=1 TO 4
0790 FOR J=1 TO 4
0800 PRINT": ";
0810 IF B(I,J)=16 PRINT " ";:GOTO 840
0820 IF B(I,J)<10 PRINT " ";
0830 PRINT B(I,J);
0840 NEXT J
0850 PRINT ":"
0860 PRINT "---------------------"
0870 NEXT I
0880 :
0890 : ERASE REST OF SCREEN AND
0900 : BEEP FOR INPUT
0910 :
0920 PRINT CHR$(22);CHR$(7);CHR$(7);
0930 :
0940 : INPUT MOVE

0950 :
0960 INPUT "MOVE WHICH PIECE",M
0970 LET I1=0:J1=0
0980 FOR I=1 TO 4
0990 FOR J=1 TO 4
1000 IF B(I,J)=M THEN I1=I:J1=J
1010 NEXT J
1020 NEXT I
1030 IF I1=0 THEN PRINT "I CAN'T FIND
THAT NUMBER":GOTO 940
1040 LET I2=0:J2=0
1050 FOR I=I1-1 TO I1+1
1060 IF I>4 GOTO 1090
1070 IF I<1 GOTO 1090
1080 IF B(I,J1)=16 THEN I2=I:J2=J1:GOTO
1170
1090 NEXT I
1100 FOR J=J1-1 TO J1+1
1110 IF J>4 GOTO 1140
1120 IF J<1 GOTO 1140
1130 IF B(I1,J)=16 THEN I2=I1:J2=J:GOTO
1170
1140 NEXT J
1150 LET M9=M9+1
1160 PRINT "NOT A VALID
MOVE":GOTO 940
1170 LET B(I2,J2)=M
1180 LET B(I1,J1)=16
1190 ON T GOTO 1210,1320
1200 :
1210 : SEQUENTIAL SOLUTION
1220 :
1230 LET C=0
1240 FOR I=1 TO 4
1250 FOR J=1 TO 4
1260 IF B(I,J)<C GOTO 720
1270 LET C=B(I,J)
1280 NEXT J
1290 NEXT I
1300 PRINT "YOU GOT IT!"
1310 GOTO 1450
1320 :
1330 : MAGIC SQUARE SOLUTION
1340 : CHECK
1350 :
1360 FOR I=1 TO 4

1370 FOR J=1 TO 4
1380 IF B(I,J)<>M(I,J) GOTO 720
1390 NEXT J
1400 NEXT I
1410 :
1420 : A WIN IS DECLARED!
1430 :
1440 PRINT "THAT IS THE CORRECT
SOLUTION!"
1450 INPUT "LIKE TO PLAY ANOTHER
GAME",I$
1460 IF LEFT$(I$,1)="Y" THEN RUN
1470 END

The game is a fairly simple one based on the
use of multi-dimensioned arrays. Note the use
of colons at the beginning of REM lines,
which is also possible in DECB. Now comes
the tricky part, the conversion to Basic09.
Firstly I'll show you the code as I rewrote it,
then I will explain it.

PROCEDURE numbersquare
BASE 1
(* version 4.0 - 12 NOV 79
(* Marc I. Leavey, MD
(* Basic09 version By Bob Devries April 91
DIM t:INTEGER
DIM i,j:INTEGER
DIM b(4,4):INTEGER
DIM i1,j1:INTEGER
DIM q,m,m9,c:INTEGER
DIM mm(4,4):INTEGER
DIM lop:BOOLEAN
DIM valid:BOOLEAN
DIM solution:BOOLEAN
DIM newgame:BOOLEAN
SHELL "tmode -pause"
newgame=TRUE
WHILE newgame=TRUE DO
 PRINT CHR$(12);
 PRINT "N U M B E R S Q U A R E S"
 PRINT "---------------------------"
 PRINT
 PRINT "Welcome to the world of"
 PRINT "confusion. There are two"

 PRINT "versions of number squares:"
 PRINT " 1 - sequential"
 PRINT " 2 - Magic Square"
 INPUT "Which is your pleasure ? ",t
 IF t=1 THEN
 RUN setupssb(b,i1,j1)
 ELSE
 RUN setupmsb(b,mm,i1,j1)
 ENDIF
 PRINT "I am now scrambling the board..."
 FOR q=1 TO 200
 lop=FALSE
 WHILE lop=FALSE DO
 m=1+RND(3)
 IF m=1 THEN
 IF i1<>1 THEN
 b(i1,j1)=b(i1-1,j1)
 b(i1-1,j1)=16
 i1=i1-1
 lop=TRUE
 ENDIF
 ENDIF
 IF m=2 THEN
 IF i1<>4 THEN
 b(i1,j1)=b(i1+1,j1)
 b(i1+1,j1)=16
 i1=i1+1
 lop=TRUE
 ENDIF
 ENDIF
 IF m=3 THEN
 IF j1<>1 THEN
 b(i1,j1)=b(i1,j1-1)
 b(i1,j1-1)=16
 j1=j1-1
 lop=TRUE
 ENDIF
 ENDIF
 IF m=4 THEN
 IF j1<>4 THEN
 b(i1,j1)=b(i1,j1+1)
 b(i1,j1+1)=16
 j1=j1+1
 lop=TRUE
 ENDIF
 ENDIF

 ENDWHILE
NEXT q
(* print board line 720
solution=FALSE
REPEAT
 m9=0
 RUN gfx2("cwarea",29,12,22,12)
 PRINT "-----------------"
 FOR i=1 TO 4
 FOR j=1 TO 4
 PRINT ": ";
 IF b(i,j)=16 THEN
 PRINT " ";
 ELSE
 IF b(i,j)<10 THEN
 PRINT " ";
 ENDIF
 PRINT b(i,j);
 ENDIF
 NEXT j
 PRINT ":"
 PRINT "-----------------"
 NEXT i
(* input move
valid=FALSE
WHILE valid=FALSE DO
 i1=0
 j1=0
 WHILE i1=0 DO
 RUN gfx2("bell")
 INPUT "Move which piece ? ",m
 IF m=0 THEN
 RUN gfx2("cwarea",0,0,80,24)
 PRINT CHR$(12)
 SHELL "tmode pause"
 END
 ENDIF
 FOR i=1 TO 4
 FOR j=1 TO 4
 IF b(i,j)=m THEN
 i1=i
 j1=j
 ENDIF
 NEXT j
 NEXT i
 IF i1=0 THEN

 PRINT "I can't find that number"
 ENDIF
 ENDWHILE
 i2=0
 j2=0
 FOR i=i1-1 TO i1+1
 IF i>=1 AND i<=4 THEN
 EXITIF b(i,j1)=16 THEN
 i2=i
 j2=j1
 valid=TRUE
 ENDEXIT
 ENDIF
 NEXT i
 IF valid=FALSE THEN
 FOR j=j1-1 TO j1+1
 IF j>=1 AND j<=4 THEN
 EXITIF b(i1,j)=16 THEN
 i2=i1
 j2=j
 valid=TRUE
 ENDEXIT
 ENDIF
 NEXT j
 ENDIF
 IF valid=FALSE THEN
 m9=m9+1
 PRINT "Not a valid move"
 ENDIF
 ENDWHILE
 b(i2,j2)=m
 b(i1,j1)=16
 IF t=1 THEN
 c=0
 FOR i=1 TO 4
 FOR j=1 TO 4
 IF b(i,j)<c THEN (* reprint board
 solution=FALSE
 ENDIF
 c=b(i,j)
 NEXT j
 NEXT i
 IF solution=TRUE THEN
 PRINT "You got it!"
 ENDIF
 ENDIF

 IF t=2 THEN
 FOR i=1 TO 4
 FOR j=1 TO 4
 IF b(i,j)<>mm(i,j) THEN
 (* reprint board
 solution=FALSE
 ENDIF
 NEXT j
 NEXT i
 IF solution=TRUE THEN
 PRINT "That is the correct solution!"
 ENDIF
 ENDIF
 UNTIL solution=TRUE
 INPUT "Like to play another game ? ",i$
 IF LEFT$(i$,1)="n" THEN (* rerun game
 newgame=FALSE
 ENDIF
ENDWHILE
RUN gfx2("cwarea",0,0,80,24)
SHELL "tmode pause"
END

PROCEDURE setupssb
BASE 1
PARAM b(4,4):INTEGER
PARAM i1,j1:INTEGER
DIM i,j:INTEGER
FOR i=1 TO 4

FOR j=1 TO 4
b(i,j)=(i-1)*4+j

NEXT j
NEXT i
i1=4
j1=4

PROCEDURE setupmsb
BASE 1
PARAM b(4,4),mm(4,4):INTEGER
PARAM i1,j1:INTEGER
DIM i,j:INTEGER
FOR i=1 TO 4

FOR j=1 TO 4
READ mm(i,j)
b(i,j)=mm(i,j)

NEXT j

NEXT i
i1=4
j1=2
DATA 1,6,15,8,12,11,2,5,10,13,4,3,7,16,9,14

OK, so here we go. First, I used the command
BASE 1. This is because all the arrays in the
BASIC programme start at 1, and Basic09
usually starts at zero (actually, BASIC does
too, but I see no reason to waste valuable
memory). Next, I dimensioned all the
variables and arrays, including a variable type
which you may not have seen before, the
BOOLEAN type. This variable may only
contain either TRUE or FALSE! I used the
SHELL command to turn off the OS9 screen
pause, so that the programme won't sit there
waiting at what it thinks is the end of a screen.
That can get a bit confusing!

The next thing you must realise is that I have
used NO LINE NUMBERS! This is really the
best way to programme. Sure, Basic09 will
allow their use, but the code is much more
elegant without them, if a little more difficult
to write. I set up a loop to allow the choice of
whether to play another game which is done in
line 1450 in the BASIC version. I used a
WHILE loop here so that all I need to do is
make a variable FALSE to exit the loop.

Next, after clearing the screen (printing a
formfeed character), I print the opening
message and ask the player for his choice of
game. This follows through to line 160 of the
BASIC programme. On the basis of the
player's answer I RUN either the procedure
'setupssb' or 'setupmsb'. You may notice a
slight variation here, I only tested for a '1' to
select sequential, and any other key would run
the magic square option. Then the next 38
lines do the same as lines 480 to 700 in the
BASIC programme. You will notice that the
BASIC programme uses quite a large number
of GOTOs in this piece of code to break out of
various parts of the code to continue the FOR-

NEXT loop. I simply set a variable (lop) to
TRUE and again used a WHILE loop. All the
other variables have the same names, although
you can of course use any name, and are not
limited to two significant characters as in
BASIC.

To make the screen easier to display, I used in
this case a gfx2 command 'cwarea'. This
command limits the area of the screen to be
printed to, and means I don't need to use
cursor manoeuvering code at every print line.
I simply re-sized the screen to a 22 by 12
character box in approximately the middle of
the (80 by 24) screen. So next I print the
scrambled array to the screen with one space
so that pieces may be moved around. The
game is played by entering the number of the
square which you want to move into the space.
The programme checks to see if the number is
one of the ones adjoining the space. A tone is
sounded, and you are prompted for input.
Pretty standard here, 'though I could just have
used 'PRINT CHR$(7)', but the gfx2 'bell'
command is nicer. If the player enters zero,
the programme resets the screen back to its 80
by 24 size, and clears the screen and quits.

The rest of the code is fairly straight forward,
again the original uses many GOTOs to quit
out of FOR-NEXT loops (not a good practice
in my opinion, even in BASIC), and I have
used boolean tests for this purpose. For every
move made, the programme checks the array
against the solution, and if the last move
solves the puzzle, it prints the necessary result.

One of the hardest parts of the conversion is
keeping track of the variables, and the various
loops. Basic09 is a bit unforgiving about
'UNMATCHED CONTROL STRUCTURES'
so you can't stop doing a conversion such as
this in the middle, without generating a series
of error messages when you quit the editor.
One way around this is to use a text editor
(like VED or SCRED or SLED) to create the
source code first, and then to load it into
Basic09. The only thing you MUST do in this
case is to make the word 'PROCEDURE' in
UPPERCASE the FIRST WORD in the file.
The letter P of procedure must be the first
character in the file, or Basic09 will not
recognize it.

OK, so there you have it. I would love to hear
from you regarding your own trials and
tribulations with Basic09 programmes, even if
you don't really want to start out on
conversions of this type, but are having
difficulties managing some aspect of Basic09.
Please write to me care of the newsletter
editor and let 'Professor Bob' help sharpen
your programming skills.


~~~oooOOOooo~~~ 
 
 
 



The Gizmo Project 
 
Gizmo is a program that allows us to make 
phone calls over the Internet. It can be 
downloaded FREE at gizmoproject.com. If 
two computers are running Gizmo then the 
call is free. A few months ago I did this with 
Boisy and it worked great, and I have talked to 
others such as Dave Kelley. If you are calling 
to somebody’s land line or cell phone then 
there is a small charge. I think is one or two 
cents a minute. I just went to the Gizmo site 
and the price of calls to landlines and mobile 
phones is 1.9 cent per min. 
 
Once you’ve installed it and set it up with a 
username and password and get connected on 
the internet you get this log in window. 
 
 
 

 
 

 
 

Once the connection is made you will get the 
window below from which you can make calls. 
 
Another option with Gizmo is the ability to 
make conference calls. I think this could be a 
good way to have non-local club members 
join in on our meetings. We’ve tried this once 
or twice and it hasn’t worked very well. The 
number I have proposed is 1-222-222-2626. 
The first 222 is required by Gizmo. The 
second 222 is the letter C on the key pad and 
that can stand for Color Computer Club, and 
the 2626 can stand for CoCo. 
 
 
 

~~~oooOOOooo~~~ 


NEW MEMBER
DALE KRAMER

 NOW THAT I HAVE A COUPLE OF
CFDM ISSUES UNDER MYBELT I
BELIEVE I CAN INTRODUCE MYSELF
BETTER. I AM GLAD TO JOIN THE
REST OF YOU IN CFDM-LAND.

 I AM DALE KRAMER AND I JUST
MOVED FROM FLORIDA TO ALABAMA.
I AM SINGLE AND ENJOY THE
GUITAR, CHESS (NO ONE WILL PLAY
ME), THE MIAMI HURRICANES, THE
MIAMI DOLPHINS, ELECTRONICS,
THE PARKS, AND COCO.

I WAS BORN IN MIAMI BEACH,
FLORIDA BUT RAISED IN ILLINOIS
AND HAVE LIVED IN MISSOURI AND
GEORGIA. I MAKE ALL THE
BEACHCOMBERS MAD BECAUSE I
DON'T USE ANY CHEMICALS TO TAN
WITH AND DON'T LAY ON THE BEACH
TO GET A TAN. INSTEAD, I SWIM
ALMOST THE WHOLE TIME

I AM THERE AS THE SALTWATER
GIVES THE BEST TAN (ONLY THE
NATIVES KNOW THIS! HA!).

I AM INTERESTED IN A CAREER IN
POLLUTION CONTROL AND HAVE A
WASTEWATER TREATMENT PLANT
OPERATORS LICENSE FROM INDIANA
AND ALABAMA (CURRENTLY SEEKING
A GEORGIA LICENSE). I INTEND TO
RELOCATE IF NEEDED TO PURSUE
THIS FIELD.

MY 512K COCO3 WITH A DUAL FD-
501 DISK SYSTEM AND CM-8
MONITOR ACTS AS MY PRIMARY
MACHINE. I'M WAITING FOR A PAL
CHIP FOR THE MULTI-PAK (#26-
3124). A DWP-230 DOES MY
RESUMES AND A DMP-105 DOES THE
GRAPHICS PRINTING. A COCO 1, A
COCO 2, JOINS THE JOYSTICKS AND
THE MOUSE ON MY EQUIPMENT LIST.

 MY MAIN SOFTWARE IS COCO
MAX III, COLOR GRAPHICS
DESIGNER PLUS, AND VARIOUS
GAMES. NO ONE EVER HAS AS MUCH
SOFTWARE AS THEY WANT.

 I LOOK FORWARD TO THE NEXT
CFDM AND HOPE TO CONTRIBUTE
SOME (SIMPLE) PROGRAMS.

