
CoCoNutz! E-Zine.

 www.coco3.com Vol. 2 Issue 3, October 2006

An Interview with Brian “Briza” Palmer

CoCoNutz: Where do you live, have you always lived there?

Brian: I live in Broken Hill, NSW, Australia. I have been living here since 2000.
Yeap, if you are curious about the name, it is the place that Mad Max 2(Road Warrior,
Starring Mel Gibson), was filmed.
I haven't always lived here. I was Born and bred in Sydney Australia, then my family
moved to Broken Hill around 1977. We then moved to Woodberry, Newcastle, NSW,
in 1980, and lived there for 7 years. The longest place I have lived in, was
Wollongong, NSW, I lived in The Gong from 1987-1999, then moved back to Broken
Hill, and have been here ever since.

CCN: Are you married, kids, and pets?

Brian: Not married, But in a Defacto relationship. That is close to being married,
except we don't have the Black/White paper to say we are. I have 3 Kids, Tate,
Hamish, and Ada. Hamish and Ada are Twins. I have a step son Jamie, he is 18 now.
I have 2 pets, 1 Black cat called Blackie or Black Balls (Not my idea, was the Wife's),
and 1 Major Mitchell. It's a sub species of Parrot. Charlie is a gorgeous bird, and he
does have a curious mind. He learn't to whistle by listening to wild birds and people
who just happened to be going past and doing a whistle.

CCN: What are your main hobbies?

Brian: I like playing around with Cars, Stamp collecting, and House Renovations.

CCN: What are you main interest in the CoCo?

Brian: I like software collecting. Anything coco related and I'll be there for sure.
I'm that bad, I dream about my next big score in locating old Coco software. I am
starting to learn Assembly. I was doing Graphics years ago, using the Super Extended

Basic commands. I never did like using the graphic designers, instead I liked to create
the pictures using my mind, and plotting the points on the graphics screen.

CCN: What projects do you have going right now?

Brian: I'm currently working on around 4 projects. 1st major project is software
archiving to the Pc. 2nd, is porting Dragon games to the coco computers, I have
managed to get around 8 ML games over. About 3 work without any Rom patching,
the other 5 will need to be patched, before they will be 100% compatible. 3rd I am
helping other Coco websites with Forums and any other coco related topics. 4th Bob
Devries and I are going to be scanning in Old Coco Magazines produced in Oz. Then
we will put them up on a coco website for other coco users around the world.

CCN: Tell me about you and this game index of DSK files…….

Brian: I wouldn't call it an Index; I would call it a mess. Half the time, I don't know
where I have put them in my hard drives. Guess I'll have to spend at least a couple
days sorting it out. That means no internet, no chats, or anything else.

CCN: How many do you have now?

Brian: Well I have all up. So far I have imaged, scanned docs and so forth, around 3
1/2 Gigabytes worth of coco software. I still haven’t got back to scanning the rest of
my disks in yet, just been so flat-out Like a Lizard baking on a rock.

CCN: How can I get them?

Brian: When I and a few other CoConuts are finished, we'll be looking to put them
up on someone’s website. I can imagine how much fun you Guys and Gals will be
having when you look thru the Dsk images we have compiled.

CCN: Do you have a list?

Brian: I have a List half done, but still have a lot to add to it yet.

CCN: You are not just porting over CoCo games, you have managed to do Dragon
games as well, right?

Brian: Yeah, done about 8 ML games. The others are Dragon Basic games, Mixture
of Arcade, Text Adventures, Graphic adventures and so forth.

CCN: How many altogether?

Brian: Can't tell you how many, but I would say around 30 games. Some still need
to be patched to run fully on the Coco computers.

CCN: What games or programs?

Brian: Ok, In the ML games, I have got over Stone Raiders 2. (Which has already
been ported, just had to know which website had it in the DSK images. Airball (This
will be a great strategy game when patched to use coco keyboard). Cuthbert in the
Cooler. This game seems to work 100%. I tried and tested it on a real coco 3.
Fire-Force, this works but the bottom half of the screen is scrambled. I found this was
the same on the Dragon emulator. It could be an emulator problem. If so, it might be
100% on the CoCo. This game is similar to Rambo and Mission Russian assault.
Plus various other games I have managed to get loading into the emulator.

CCN: How do you do it?

Brian: When it comes to ML loading games, 1st I hope they are non-
auto executing games. If they ain't, I load them into the coco emulator, and at this
point I don't EXEC them. Instead I mount a blank image into drive 0, then I use the
Peeks to find the Start, End, Execute addresses. Then I resave the game to DSK image
using the addresses I got from the peeks.
When it comes to the Dragon Basic software, I first load the basic program into the
Dragon emulator. Then I resave the program in ASCII format to a new CAS file, and
then I load the new CAS file into the Coco Emulator and resave the file to disk. Then
I go thru the basic listing, looking for all commands dealing with Cassette usage, and
change them to Disk drive commands.

CCN: You have recently started writing a column, tell me about it?

Brian: OK, You must be talking about my Aussie Musings Blogs in Militant
Buddha's Website. http://www.militant-buddhist.com That all started when I got to
chatting with him one night. I said I wouldn't mind writing up an Aussie coco blog or
anything else that was Aussie. Militant Buddha said if I write anything send it to him
and he will host it. So now I have Aussie Blogs to do as well. It has been a lot of fun;
I reckon I have a pretty good knack for these Blog thingys!

CCN: You also help George, tell me about what you do there?

Brian: George has 2 Forums, 1 Forum is for My coco topics, and the other is for
Windows. It is used for people who have problems with windows able to leave a post
in the forum. So others who don’t know what to do to fix something can get answers,
without relying on Microsoft for answers.
 I also thought it would be a great idea to have Coco based forums all over the web,
that way old time coco users, who drop into George's website, might be curious
enough to setup their coco's again.
George's website URL is, http://os9user.blogspot.com/
But the number 1 website for coco's would have to be Roger Taylor's
www.coco3.com , Your Da man Roger!

CCN: You have recently been granted permission to scan old Australian magazines,
which ones are they?

Brian: Australian Rainbow, Australian Coco, I'm hoping to get permission for
another Magazine called The Coco-link Newsletter.
There was another Magazine, But long forgot the name of it now.

http://www.militant-buddhist.com/

CCN: Will they be available on disk or for download? Where at?

Brian: Any website who is willing to host the scanned files, if there are any Website
owners interested, drop me a line.

CCN: When will you start to do this?

Brian: Already have, Bob has started on some.

CCN: Do you have all those magazines?

Brian: No I don't, but hopefully other coco users in Oz still have copies in their
Garages somewhere. By what I have found out, Bob has quite a good collection of
Aussie coco publications in his shed.

CCN: If not where can I get a list of the ones you need?

Brian: That I'm not sure of, but I have a few ideas. I'll get back to you about that.

CCN: Is it true you would like to start up an Australian coco group?

Brian: Yeappppppppy!!! Be Awesome to have Fellow Aussie coconuts in a major
group again, I miss the days when we had The OS-9 user group, and the Coco-link
group.

CCN: Tell me about that?

Brian: Not much to say, except we could really use a Coco group in Oz. Especially if
you need hardware to be modified. That way Aussie coco users know that Bob
Devries is the man for the job, Software Librarian would have to be me, and so forth.
While in the Great USA, you have quite a few companies still dealing in Hardware
and Software.

Speaking Up!
An Interview with Classical Computing's David Dubowski

In March of 1983 a half-page
advertisement from Classical Computing
appeared in The Rainbow magazine touting
a completely software based voice
synthesizer called Speak Up! What was so
amazing about this debut was that it
retailed for a mere US$29.95 and promised
easy speech and integration into your very
own BASIC programs. In an era when
voice synthesizers were usually hardware
based and ran up to a $100.00 or more,
Classical Computing's little talker was a

breakthrough. The author of Speak Up!, David Dubowski, recently consented to an
email interview with CoCo Nutz! and was kind enough to share his memories of the
program's development, the CoCo, and what he's been up to since.

CoCo Nutz!: I suppose we should start at the beginning. What got you interested in
computers back then, when did you get your first Color Computer, what flavor was it,
and what drew you to the machine?

David Dubowski: Well, I first learned BASIC in 1973, at the age of 12, when our
junior high school had teletype connected to a mainframe somewhere, and I was
immediately hooked. It had the well-known Star Trek game, you know the one; with
<*> and >!< symbols for the Enterprise and star bases.

In 1981, when I was struggling through chemistry in college, the local Radio Shack
got a CoCo, and I was playing with it every day after class, at the store. It was
amazing that here was a little gray machine that could do BASIC just like the big
mainframe, and much more!

By the summer of 1982, I had saved up enough money to buy a 16K CoCo with
Extended Basic from one of those franchise Radio Shacks. Back then, lots of
different types of stores had a Radio Shack section, with limited items. This one was
in the back of a TV repair shop in rural Paris, Kentucky. The owner let me have it
for $50.00 off, since it had been sitting in his store without much interest for months.
But it was still $482 after tax, because it had the extended basic and 16k of memory.
This was 3 months rent!

CCN!: A software based voice synthesizer for the CoCo, using just the machine itself,
is pretty impressive. It's even more impressive when most synthesizers in 1983
required additional hardware and cost quite a bit more than that. Tell us about
developing Speak Up!

DD: I just wanted the Star Trek program from the legendary Basic Computer Games
to talk. I had gotten the MegaBug cartridge, and when it said "We Gotcha!" I knew
that a voice could be recorded and played back in software. So looking around in

Byte magazine in late 1982, the answer appeared: it gave the addresses for the cassette
input port.

I got the EDTASM editor assembler, and it was simple to record audio digitally into
that 1 bit audio input port and play it back into a speaker click port, or something. I'm
no expert, it was all done from trial and error, but the audio is 1 bit of resolution, and
something like 3000 bits per second. The audio was pretty crappy, but it really did
talk. 10 years later the bad audio solution flashed into my mind, too late of course.

In experimenting in 1982, the low volume noises in the background, like the
refrigerator running, were playing back clear as a bell. My voice at the microphone,
though, was loud but not clear. Had I just recorded the voice at really low volume,
the intelligibility would have been drastically better, but it didn't occur to me that
there may have been a way of boosting the playback volume. Had it been done that
way, it would have been so clear as to be newsworthy.

I was a total nerd, working on Speak Up! for about 2 or 3 months in late 1982 to early
1983 to the exclusion of all else, waking up at sunset and working until the wee hours
of the next noon, listening to Sally Jesse Raphael on talk radio advising the lovelorn!
This was in a basement apartment, totally isolated, skipping college classes and
flunking.

Figuring out and recording 37 phonemes only took a few days. Most of the
programming time was devoted to making a decent text to speech parser and easy
interface to BASIC. It had 37 phonemes of my voice recorded, and played them back
according to the rules I just figured out by trial and error. Once in a while a flash of
inspiration would just drop into my mind that would solve a problem, and I had this
big flowchart on 4 pages of old sheet-feed printer paper taped together.

CCN!: You also did an Apple II version of the program. How did that come about?

DD: I went to work at the local company Intelligent Statements, now long defunct,
which published Pogo Joe and others by the owner Mike Denman. They let me use
their Apple II to convert Speak Up! to Apple, and they were going to use my system
to make their programs talk and pay me a royalty. They didn't want it after the 2
months I was there, so I refunded their minimum wage pay and they let me keep the
Apple version. The Apple version, released in early '84, never sold well. It only sold
about 150 copies, just breaking even. Ads in the Apple magazines were really
expensive, and they never reviewed it.

CCN!: What were some of your experiences with CoCo customers and selling the
program though The Rainbow ads?

DD: The program sold about 20 copies the first month, which was great, but it got a
huge boost from a review in The Rainbow in April 1983, page 132. Someone told me
to incorporate, which I did, and Classical Computing was born, with only myself as
the president, treasurer, secretary, and only employee.

When The Rainbow review issue hit, I got 22 orders the next Monday at $29.95 in the
P.O. Box, including some from Canada and Brazil. What a thrill! (In 1983 that $630

day was 3 months rent money in one day!!) That never happened again, but I lived off
of filling 3-7 orders a day until it died out in late '84. It only cost about $2.50 to make
and mail a copy.

Each copy was made directly from a CoCo with its own serial number, written on the
manual, to discourage copying. If anyone loaded it, changed the serial number and
then made a copy of the program, the pirated copy would not work. Speak Up!
checked the visible serial number with a hidden encrypted copy of the serial number
and if they didn't match, it would erase itself in memory and not run - a primitive anti-
piracy measure that was never revealed.

About 7% of buyers took advantage of the unconditional money back guarantee, but
that was fine, I was happy to make enough money to pursue electric guitar. What
really shocked me was that for the entire run of Speak Up!, there was always a small
group of buyers who hated it, a small group who loved it and asked for more
programs, a group who liked it OK, and a group who were lukewarm on it, and a
group who were a little dissatisfied. At the time I had no idea that human opinions
form a bell curve. I thought everyone would see it the same way, either good, fair or
bad, - ha ha, I was so naive! After about 18 months, sales dropped off, ad rates had
nearly tripled. Boy was that depressing when it faded away.

CCN!: What was it like trying to market a CoCo program in 1983?

DD: Having no experience probably helped! If I had talked to anyone other than one
best friend about trying it, no doubt they would have discouraged me. But at the time,
I was living alone in a basement apartment, and had plenty of free time outside of
classes.

In late 1982 or early 1983, I saw an article in a newspaper or somewhere about a 17
year old guy who had sold 500 copies of a program he wrote for $50 each (25 grand!).
I think it was called Lock-It, or something like that. It allowed Apple II software
sellers to copy protect their software. It showed a picture of him in his parents'
driveway with a new sports car he had bought. I figured this was a hot way to make
some big money, so it helped inspire me to actually try selling Speak Up. Speak Up
was originally just for my own use, to get that Star Trek game to talk.

 I always loved buying things through the mail, especially the old Johnson Smith
catalogs. When I first found The Rainbow Magazine, I noticed that it was filled with
ads for programs and hardware parts, and many of the ads and programs looked
homemade. I thought that I could do the same.

When I called The Rainbow for information on running an ad, it was pretty cheap.
$175 for a half page ad. So, I gave it a shot. The only voice synthesizers around were
over $100, so I figured if I could sell just 7 copies at $29.95, it would cover the cost of
the ad. And if one person from each state ordered one, that would be some good
money. Remember, in 1983 $29.95 was worth about $60 today.

The first month it sold probably 30 copies. But the next month, April of 1983, The
Rainbow ran a review of it. The day after it hit the stands, there were 22 orders in the
post office box, with several from overseas! That month it sold about 200 copies, and

I moved myself and the company back to Chapel Hill, NC where I had lived before.
It sold fairly steadily for 12-18 months, but like any hit record or bestselling book, it
had a finite lifespan, and sales stopped.

CCN!: Why the name Classical Computing?

DD: Classical Computing! Yes, I had the program all finished, and named it Speak
Up!, but couldn’t come up with a good company name. I wanted something general,
so other products could be released, but unique enough to be remembered.

After a couple of days of going through lots of ideas, I finally gave up and went to the
dictionary! After going through A’s and B’s, the word CLASSICAL jumped out.
The definition said something about being well known or established, and I liked
classical music. “Well,” I thought, “it’s not great, but it’s taken too long to try to
figure out a name, so that’s going to have to do.” It turned out to be very good,
though. I liked it more and more as time went on.

CCN!: Where'd the "angry conductor" for the Classical Computing logo come from?

DD: The angry conductor is Beethoven, taken from a clip-art book. The original
picture was clearer, he’s not really angry; he’s focused and listening intently. When
the program was done, I went to a small typesetting company to make up the cassette
labels, instruction manual and the ad for The Rainbow Magazine. Back then, there
was no such thing as desktop publishing. So at the typesetting company, they had a
big book of clip art, and there it was: Beethoven conducting, royalty-free, for anyone
to use. It was perfect! A few years later I saw that same picture in another, non-
computer ad somewhere. It was probably a large typesetting supply company that
published those clip art books nationwide.

CCN!: Did you ever attend any of the CoCoFests? If so, what were your experiences?

DD: I did attend a Rainbowfest, it may have been the first one. It was in 1983, in
Chicago, a few hours drive from Lexington, KY, where I was living at the time. It
was amazing to see all those companies there with CoCo products.

I had sent 20 copies of Speak Up! to a guy who rented a big booth for the entire event
to sell various companies’ products. He was going to split the money 50/50 with me,
and mail a check. I saw him there, and he hadn’t even taken them out of the box!

I said, “Hey, let me just have those back,” and he said “Oh, don’t worry; I’ll sell them
all by tomorrow.” So I agreed, since I was only going to stick around a couple of
hours. You can guess the rest of the story, of course. I never heard from him again
and got no check in the mail. Who knows if he even sold one Speak Up!, he was
selling disk drives and high dollar items instead. But, since they only cost me about
$1 to make each, it wasn’t a biggie.

 I didn’t want to rent a booth or stay overnight; I just wanted to go see what was up.
All the other companies had lots of really good stuff, full color packaging and all. My
one product, on the other hand, was black and white in a ziplock bag! I didn’t bother

to listen to the speakers; I just milled around and looked at all the cool programs, and
left after a couple of hours.

CCN!: Were there any other CoCo folks you got to meet, correspond with or hang out
with?

DD: Oh no, recluse was my middle name! I was living all by myself at age 22 in a
basement apartment. I didn’t know anybody else who had a home computer, except
one friend who had a Commodore Pet or something similar, and he lived across town.

When the orders were coming in 5 or 10 a day, I hired a couple of friends now and
then to fill orders that had backed up, or make Speak Up! copies. I’m not quite as
much of a hermit now.

I wrote back to customers who asked questions about Speak Up!, all by snail mail. I
never had any interest in the modem or Compuserve back then. I really hadn’t heard
of e-mail until the early 90’s, because I completely lost interest in computers from
about 1988 until 1994 when the Internet went public.

CCN!: Did you ever write any other programs for the CoCo?

DD: The only other program I wrote and sold was written in about 30 minutes. It was
called Adventure Cracker, which was used to find the commands in adventure games.
I had a really fun adventure game for the CoCo from Radio Shack called Bedlam. It
got frustrating, because the player didn’t know what all the commands were.

So, to find them, I just wrote a machine language program to look at what was in
memory, displaying only ASCII characters, A-Z, that were in strings of length 2 or
greater on the screen. It worked like a charm! There was the entire catalog of
command words, right on the screen, with no garbage.

 I saved it, and just for fun one day typed up a 1 page instruction sheet, priced it at $15
and sent a copy to several magazines. 6 months later, I had forgotten about it, but
orders started coming in, maybe 3 or 4 a week for a couple of months. Apparently
one of the magazines had written a little paragraph about it and loved it. So I found it,
photocopied the paragraph and enclosed it with the Speak Up! orders, and that
generated some sales.

I wrote lots of little programs here and there for my own use, like a graphing program
and a calculus program to just try to understand Calculus III in college. It was a great
help, I had gotten a D on the first try, but re-took it and by programming in the steps
to calculate volumes and areas, the ideas sunk in and I got a B+ .

I used the CoCo to print mailing labels for orders, with a used dot matrix printer. It
saved all the customer names, addresses and purchases on cassette tape (data, not
voice)! That tape and everything else is long gone. The only thing I have left is a few
copies of The Rainbow Magazine, Color Computer Magazine, Hot Coco Magazine, 2
copies of Speak Up! For Apple II+ , and now Speak Up! for CoCo thanks to Cris’s
generosity!

CCN!: Do you still own a CoCo?

DD: No, I don’t own a CoCo. I got rid of all my CoCo stuff around 1988, during a
move. There had been no ads running, no sales, and no mail at the post office box for
several years by then.

In 1991, however, someone had a CoCo for sale in the newspaper for $25, so I went
and got it. Twenty-five bucks, and it had the works! It had 2 disk drives, extended
basic, 64 K memory, and lots of games. I played with it for a few weeks, the disk
drives were fabulous, compared to cassette tape, but it just wasn’t the same, it didn’t
hold my interest. So, after a month I donated it to the local thrift shop. Turning 30
can really bring on changes, probably at the neuronal level.

CCN!: So, what are you doing now?

DD: During the year and a half of Speak Up!’s commercial life, I put a lot of effort
into learning and later performing electric guitar. In the years after Classical
Computing, I did a lot of various jobs, from stereo salesman, corporate bookkeeping,
truck driving, and 7 years of pizza delivery, which was actually a lot of fun. It turns
out that I just do not enjoy doing “brain work” for others. I only enjoy it if it’s my
own idea and on the spur of the moment.

Right now, I work at home answering telephone calls for infomercials! This is a
pretty enjoyable way to make the rent money, and leaves lots of free time. I do a lot
of reading, a lot of web surfing, some gardening, and occasionally try other business
ideas, in the hopes of catching another big money wave from home, but so far, the J-
O-B’s have been the best sources of income.

CCN!: Any fond memories, funny anecdotes, or thoughts about the Color Computer
you can share?

DD: Well, it’s always a nostalgic rush to see a CoCo anywhere, but that is now pretty
much happening only on the Internet. Seeing Cris’s list of other programs brought
back a lot of cool memories of the old software games. It was a lot of fun to get that
little computer to do so much, especially with all the sound and graphics capabilities.
When friends would come over they always loved playing with Speak Up!

One amusing anecdote is when I had to buy more memory for it in back in 1982, just
to get the Star Trek game to fit, typed in from the Basic Computer Games book. The
really funny part was how you had to install the memory, you had to actually
piggyback the 8 new chips on top of the ones on the motherboard, and solder on a
jumper wire! Oh, and this upgrade, from 16K to 32K, cost $50!

Mr. Dubowski has graciously consented to release Speak Up!, free of charge, for non-
commercial use, in .dsk image format for all CoCo Nutz! to play with and enjoy.

The 32K version runs fine on 64K Color Computer 1 and 2, as well as the Color
Computer 3. Please note that the proper CLEAR statement is required before loading
and that the program is position dependent and should not be shuffled in memory.

Mr. Dubowski invites CoCo users who remember and used his program, or anyone for
that matter, to contact him at davidwhy@iwon.com.

- Cris Egger (captcpu@clubltdstudios.com)

Ahhhh Memories!!!! See if you can recognize any of
these people!

mailto:davidwhy@iwon.com
mailto:captcpu@clubltdstudios.com

Flash Backs from
Richard Crislip

Upon our arrival late Friday night, we met Chris Hawks, Mark
Marlette, and Boisy Pitre in lobby. Unfortunately, after an 8 hour
drive from Norton, Ohio at the end of a work day, we were too tired
to party with them. We could not set up our area that night because
the conference room was being used for a wedding reception.
Therefore, we retired to our room to get some rest for the big day
Saturday. Our room was nice. For seventy nine dollars a night, you
will not get the bridal suite, but our room was very spacious and
comfortable for the wife and me.
 Saturday morning was used to setup the fest displays and
vendor areas. The setup went well. Power was supplied via patched
together industrial strength extension cords. Coffee, bagels, and
doughnuts were supplied by the club for vendors and anyone else who
bought a table.
 We met Bob England, who is the author of BackUp. With this
program, any CoCo disk can be backed up. This backup program is able
to backup copy protected disks too.
 Renting a table was, for me, the best thing I ever did at a
fest. I wish that I had thought to do that much sooner. I was not a
vendor, but having that table allowed me to set up my CoCo and PC
based CoCo emulator without dominating the hotel room. It also made
me feel like I was truly part of the fest rather than a customer. It
allowed me to immediately try out my latest purchase or the latest

suggestion garnered from those who forgot more about the CoCo than I
will ever know. It provided me a place to sit without leaving the
fest area and to truly sit down and get to know the many fine folks
who were the power behind the CoCo community. The table also allowed
me to renew acquaintances.
 One of the nice things about the fest was the ability to
renew my GCCC membership. The Glenside Color Computer Club (GCCC) has
been putting on these fests ever since Falsoft bowed out of active
CoCo support. They have always done a marvelous job and this time was
no exception. I wish I lived a little closer to the area so that I
could attend their meetings.
 This year, as he did last year, Dave Keil demoed his
excellent CoCo emulator. Dave purchased quite a few older PCs and has
converted them into CoCo emulators. The average price of this
improved PCs was less than $30. Dave has written one of the best CoCo
emulators available. His emulators can run most of Sockmaster's demo
programs which will crash every other emulator as if this writing.
 Over the previous year, Roy Justice finished developing his
CoCo to SVGA video adapter. I received one of the first production
units earlier this year. While at the fest, I met Roy and he replaced
my RGB to SVGA converter for a more current model. This resolved an
image problem I didn't realize I had been experiencing until he
pointed it out. It was great to be able to switch between the PC
based emulator and the real CoCo3 using one monitor
 Chris Hawk awed us with his SVHS converter. It was marvelous
seeing the CoCo displayed on a large-screen plasma TV/monitor. Chris
was selling them at the Hawksoft table. This was another piece of
hardware developed since last year's fest.
 FWD was there again this year too. They helped us understand
what the escalated gasoline prices were doing to the traveling
vendors. Basically, it is not worth it for a vendor to travel to a
show, especially for the vendors who need to show a profit after
attending the show. Gasoline prices are becoming an attendance issue
also. The conversations on the mail-list are attesting to that fact.
 The WebCam was up sporadically. I wish I could remember who
it was that tried to keep it up and running, but alas....
 Bro Jeremy's Monk-o-Ware was also present. He had his usual
CoCo museum on display. Brother Jeremy has been able acquire an
impressive array of CoCo and CoCo hardware prototypes including proof
of concept boards.
 Cloud-9 had a reduced display this year due to their decision
to all but shut down until the SuperBoard is finished. This project
has dominated all of Mark's time and energy for at least two years
now. Cloud-9 had hoped to have the boards ready in time for the fest,
but it was not to be. In the meantime, as I understand it Boisy Pitre
has agreed to sell the remaining Cloud-9 offerings until Mark can get
the SuperBoard rolled out.

 Lunch was catered in from the Benigan’s Restaurant attached
to the hotel. The gang met for supper in the hotel restaurant party
room. Later that afternoon the GCCC no minimum bid auction was held.
Anything and everything CoCo and non-CoCo was up for grabs. Most of
these auctioned items were donated by members of the community as a
way to support the club and to pay for the fest. Which leads me to
one ominous fact; As I understand it, the year the club finishes a
fest in the red, will be the year of the truly Last CoCo Fest.
 Sunday, Bro Jeremy held his traditional Sunday morning
service. We did not attend as we usually do. The announced focus of
the service was continued prayer for the health of fellow CoCoNuts
and for those who had health issues this year. Prayers of
thanksgiving were also offered for those who had recovered from their
health issues this year.
 Again, as on Saturday morning, coffee, doughnuts, and bagels
were provided. The no-minimum bid auction was held again. We had to
leave by 2pm CST, so I'm not sure when the party truly ended. The
drive home was exciting. The wife and I decided to avoid the toll
booths by taking the shortcut through downtown Chicago. We did fine
until we hit the road constriction.. err road construction. At that
point we got to enjoy the sights and sounds of Chicago from the
vantage of the multilane parking lot called I90. We named it The
Shortcut That Wasn't. We arrived at home base around 11:30 EST.
 Our closing thoughts are:
1.Buy a table next year. If, you intend to bring your CoCo equipment;
you'll be glad you did.
2.Become part of the group by taking part.
3.The Fest can be more than just a computer flea-market.
4.Have a great time

One-Liner

Here's a short one originally submitted to The Rainbow by Greg H. Taylor of
Naperville, IL. Kaleidobox was published in the May 1985 issue of the Rainbow as
well. I like this one because it illustrates a creative way around a problem. Instead of
trying to replicate to four identical quadrants, which would be slow, the author kind of
sidesteps the whole issue. And he does it using one of the CoCo's built in commands,
achieving a certain economy, and literally thinking outside the box!

0PMODE1,1:PCLS:SCREEN1,1:FORX=0TO65536:FORY=0TO50:R=RND(129)-
1:S=RND(97)-1:C=RND(4):COLORC:LINE(R,S)-(255-R,191-S),PSET,B:NEXTY:
PCLS:SOUND160,1:NEXTX

This wasn't necessarily one of the best one liners I've ever seen, but it's fun. It turns
your CoCo into the ol' Magic 8-Ball. The program demonstrates an good technique
for selecting random items using an array without multiple IF/THEN statements.
Originally appearing in the May 1986 issue of The Rainbow and submitted by Bruce
Gerst of Omaha, NE.

10 CLS0:PRINT@229,"PRESS <ENTER> FOR ANSWER";:EXEC44539:
A$(1)="ASK ME LATER":A$(2)="FORGET IT":A$(3)="YES":A$(4)="NO":
A$(5)="IT IS CERTAIN":A$(6)="IT IS DOUBTFUL": X=RND(-TIMER):
X=RND(6):CLS0:PRINT@233,A$(X);:SOUND150,3:FORT=1TO999:NEXT:GOTO
10

 His ghost lives on!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

This is a program I found tucked inside one of Dads disks!! This is one he wrote.

1 '*******************
2 '* TIK-TAK-COCO *
3 '* BY:DALE KRAMER *
4 '* COCO ECB *
5 '*******************
6 CLS
7 PRINT@42,"TIK-TAK-COCO"
8 PRINT@11,"BY"
9 PRINT@171,"DALE KRAMER"
10 PRINT@420,"PRESS ENTER":INPUTA$
15 TT=0:X=124:Y=94:CLS
16 '
17 '
20 PMODE3,1:SCREEN1,1:PCLS
30 LINE(80,0)-(84,188),PSET,BF
40 LINE(164,0)-(168,188),PSET,BF
50 LINE(0,60)-(248,64),PSET,BF
60 LINE(0,124)-(248,128),PSET,BF
62 '
63 '
70 GOSUB200:GOSUB100:IFTT=4THEN130
80 GOSUB200:GOSUB120
90 TT=TT+1:GOTO70
100 LINE(X-40,Y-30)-(X+40,Y+30),PSET
110 LINE (X+40,Y-30)-(X-40,Y+30),PSET:RETURN
120 CIRCLE(X,Y),25:RETURN
130 E$=INKEY$

140 IFE$<>CHR$(13)THEN130ELSERUN15
150 GOTO130
152 '
153 '
200 'CURSOR
210 K$=INKEY$
220 IFK$="1"THENGOSUB380
230 IFK$="2"THENGOSUB390
240 IFK$="3"THENGOSUB400
250 IFK$="4"THENGOSUB410
260 IFK$="5"THENGOSUB420
270 IFK$="6"THENGOSUB430
280 IFK$="7"THENGOSUB440
290 IFK$="8"THENGOSUB450
300 IFK$="9"THENGOSUB460
310 IFK$=CHR$(13)THENRUN15
320 IFK$=CHR$(32)THENRETURN
321 '
322 '
330 LINE(X-40,Y-30)-(X+40,Y+30),PSET,B
340 FORT=1TO600:NEXTT
350 LINE (X-40,Y-30)-(X+40,Y+30),PRESET,B
360 SOUND55,1:GOTO200
361 '
362 '
370 'SQ SUB
380 X=40:Y=30:RETURN
390 X=124:Y=30:RETURN
400 X=208:Y=30:RETURN
410 X=40:Y=94:RETURN
420 X=124:Y=94:RETURN
430 X=208:Y=94:RETURN
440 X=40:Y=158:RETURN
450 X=124:Y=158:RETURN
460 X=208:Y=158:RETURN
461 '
462 '
500 CLS:PRINT"PRESS ENTER TO START A NEW"
505 PRINT"GAME ANYTIME. USE NUMBERS"
510 PRINT"1 TO 9 TO SELECT YOUR"
515 PRINT"SQUARE. THEN PRESS SPACEBAR"
520 PRINT"TO MARK THE SPOT. X ALWAYS"
525 PRINT"GOES FIRST!"
530 RETURN
540 END

Precision Floating Point Numbers
What They Are

and
Why You Might Need Them

by
Robert Gault

Floating Point Numbers
 There was a thread on the Maltedmedia Coco newsgroup about high precision
floating point numbers. A poster requested code for narrow range ultra high precision
without indicating why that amount of precision was needed. One reader suggested
that the requested precision was extreme overkill and could serve no useful purpose. I
suggested that perhaps it was to be used for something like Mandelbrot calculations.
This engendered a response equivalent to what's a Mandelbrot when it grows up?
 So, just what are floating point numbers and what does precision mean in this
context? You are all familiar with decimal numbers when dealing with money; $2.99
per gallon of gas. There can be any number of digits before or after the decimal point;
1234567890.0987654321 . Numbers like this or larger can be cumbersome but they
can be represented in a shorter format. For example 12,345,000,000 can be
represented by 1.2345x1010 and 0.0000000001 by 1x10-10. The decimal point has
"floated" to a new position. The Coco replaces x10 with E so 1x10-10=1E-10.
 When there is no limit on the number of digits before or after the decimal
point, the precision is infinite. Computers have limited precision which means
numbers with more digits than permitted by the operating system get rounded off or
truncated. For example if your hardware can only work with four digits, then 1.23456
will get either truncated to 1.234 or rounded to 1.235.
 On the Coco, Basic stores floating point numbers in six bytes of memory. Four
bytes are used for the mantissa, a fifth for the exponent, and the sixth for the sign.

This restricts the range of values to 1E-39<N<1E+39 with 9 digits of precision.
Larger values are truncated which can be seen when you try to print them.
10 PRINT 0.1234567890123456789
20 PRINT 1234567890123456789
results in
 .123456789
 1.23456789E+18
The smallest gap between numbers represented by four bytes or 32 bits is 2-31 or
0.00000000005 (5E-10). Basic09 uses the same range of numbers and will not let you
enter more than 10 digits in the mantissa without generating an error. The tenth digit
gets thrown away in any case. So if you enter a program line of LET a:= 1234567899
and list it, you will see LET a:= 123456789.
 To get additional precision it is necessary to use a different language. On the
Coco the C language offers both single (float) and double precision numbers. The
float uses three mantissa bytes while the double uses seven, two more than Basic or
Basic09. The range of the numbers has stayed the same 1E-39<N<1E+39 but for the
double the smallest gap between numbers represented by seven bytes / fifty six bits is
2-55 or 3E-17. This is seven more digits of precision than provided by Basic or
Basic09.

Why Does Precision Matter?
 Suppose you were assigned a bookkeeping job but had a calculator that could
not use fractional numbers. That is there was no way to represent fractions of a dollar.
If you had to add several million entries, you could be off by almost one million
dollars. For example $1.99 x 1,000,000 = $1,990,000 but your calculator would show
$1,000,000. The error would be $990,000 caused by truncation of the 99¢.
 Complex strings of mathematical operations can lead to extremely large errors
unless great pains are taken to eliminate them. When the errors in data become large
enough, no compensation can help. In similar fashion, limited precision is equivalent
to having large errors in data.

The Mandelbrot Set
 Mandelbrot is a mathematician who, among other things, studied a special
function; Z1=Z0+C. The formula is iterative, exists in the complex number plane, and
starts with Z0=0+0i. For any particular value of C, if Zn is finite after an infinite
number of iterations, then C is part of the Mandelbrot set of numbers.
 I doubt that very many people would care about this if Mandelbrot had not
decided to plot the set of numbers on a computer as a graphics image.

As if this image were not interesting enough, as you zoom in on smaller and smaller
areas at the edge of the set, the shapes become ever more complex. Change the
computer program so that values approaching the edge of the above pattern are given
colors depending on distance from the set and the image becomes a work of art.

 When the above images and a method for creating them were published in
Scientific American1, Mandelbrot became famous for his set of numbers and a
household name. Look through support magazines for the Coco and you will find
articles on generating Mandelbrot images. This also spawned general interest in
fractals (the above image is one) and Coco programs to create fractal patterns were
also published.

 What makes this relevant to high precision floating point numbers is that
attempts to zoom in on interesting areas of the above image, rapidly run into
truncation errors using low precision numbers that are easily seen in the image. Basic
or Basic09 numbers are quite limited in this fashion. Unfortunately the extremely low
vertical screen resolution versus horizontal on the Coco just makes matters worse; as
does the sixteen color palette. I think the 640x192x4 gray scale image looks as good
as or better than the 320x192x16 color image.

 The precision of the C double is good enough to produce very nice images
with high zoom factors. Generating these images is a good example of requiring very
high precision over a limited range, -2.0 to +0.5 and –1.5i to +1.5i. In fact, the speed
of the Coco in running the calculations with double precision numbers will then limit
what you can look at. It most definitely helps to run the following programs on an
emulator set for maximum speed. Even on an emulator, expect several hours per
image.

PROGRAMS
 Three programs were used to generate the above images on MESS running
Coco3 emulation. MESS made it possible to capture the images and the use of a PC
shortened the creation time by many hours. The following source code (which will
run under OS-9/NitrOS-9) combines all programs into one but needs to be recompiled
with a few line changes to recreate the three programs.

/* MANDELBROT GRAPHICS GENERATOR by Robert Gault (c) 1988
 C language source code
 formulas used:
 z(k+1)=z(k)^2 + c where z is a complex number and z^2 is defined
 z=x+iy c=p+iq x(k+1)=x(k)^2 - y(k)^2 + p
 y(k+1)=2*x(k)*y(k)+q
 gapx=side/384 gapy=side/192 rc=acorner+x*gapx ic=bcorner+y*gapy
 the math is coded as: realx=z1=x(k+1) rc=p ic=q imagy=y(k+1)
 x(0)=y(0)=0; for maximum accuracy both count and attractor >>0
*/

#include <stdio.h>
direct double acorner, bcorner, side, gapx, gapy, rc, ic, realx,
imagy;
direct double sqrx, sqry, attractor,dist;
char setcolor [] = "\x1b\x31\0\0";
char curoff [] = "\5\x20";
/* The next two lines are filled in by the program and sent to a
window
as a block of data. */
direct char forcolor [] = "\x1b\x32\0";
direct char point [] ="\x1b\x42\0\0\0\0";
direct int *xpoint,*ypoint;
direct int x,y,color,detail,total,path,i,j;
direct char ii,jj;

brkpt (sig)
char sig;
 {
 write(1,"\x1b\x21\n",3); /* return to standard output */
 exit (0); }

main()
{
/* RGB color codes
Select the correct line for black/white, 4 shades gray, or 16 colors.
*/
/*
 static char palette [] ={63,0};
 static char palette [] ={7,56,63,0};
*/

 static char palette []
={1,17,2,50,8,10,16,42,34,32,9,18,36,60,63,0};
 register int count; /* reg U inner loop counter */
 char *window ="/w2";
 pffinit(); /* allow double floating point printing */

 intercept(brkpt);
 path = open (window,3);
 if (system("xmode /w2 -pause\n\3")) {
 printf ("\xcXmode must be loaded or in the CMDS
directory.\n");
 exit(0); }
 printf ("\xcRecommended values ()");
 printf ("\nThe value for LeftEdge (-2) = ");
 scanf ("%F",&acorner); /* F = double floating point */
 printf ("\nThe value for LeftBottom (-1.25) = ");
 scanf ("%F",&bcorner);
 printf ("\nThe value for Side (2.5) = ");
 scanf ("%F",&side);
 do
 {printf ("\nThe value for Detail\n>=10 & <=1000 (100)\n\nvalue
= ");
 scanf ("%d",&detail);}
 while (detail<10 || detail>1000);
 do
 {printf ("\nThe value for xsqr+ysqr = Limit\n>=4 & <=100
(4)\n\nLimit = ");
 scanf ("%F",&attractor);}
 while (attractor>100.0 || attractor<4.0);

/*
 640x192x2 window
 if (10!=write(path,"\x1b\x20\x5\x0\x0\x50\x18\x1\x1\x1",10)) {
 640x192x4 window
 if (10!=write(path,"\x1b\x20\x7\x0\x0\x50\x18\x3\x3\x3",10)) {
*/
/* 320x192 16 color window */
 if (10!=write(path,"\x1b\x20\x8\x0\x0\x28\x18\xf\xf\xf",10)) {
 printf ("Window /W2 is not available at this time.\n");
 exit(); }
 write (path,curoff,2);

 /* redirect standard output to window for printf; write uses path #
*/
 window = freopen(window,"r+",stdout);

/* Set constants for the aspect ratio of your monitor.
You can draw a square on a 640x192 window and see if it truly is
square.
The ratio of the sides is used below to determine the value in gapx.
*/
 gapy = side/192.; /* set for 1:1 height:width aspect */
 gapx = side/384.;

/* The next line uses 2, 4, or 16 depending on the size of the
palette for respectively black/white, gray scale, or colors. */
 for (ii = 0; ii <16; ++ii) {
 setcolor [2] = ii;
 setcolor [3] = palette[ii];
 write (path,setcolor,4); }

/* adjust forground */
 write (path,"\x1b\x32\xe",3);

/* For 640H screen, change all x3a to x54. Also change all %11.10 to
%17.16 */
 printf ("\xc\2\x3a\x20Acorner =\x2\x3a\x21%11.10f\n",acorner);
 printf ("\2\x3a\x23Bcorner =\x2\x3a\x24%11.10fi\n",bcorner);
 printf ("\2\x3a\x26Side =\x2\x3a\x27%11.10f\n",side);
 printf ("\2\x3a\x29Detail =\x2\x3a\x2a%d\n",detail);
 printf ("\2\x3a\x2cAttractor=\x2\x3a\x2d%3.0f\n",attractor);

/* switch to graphics screen at path # */
 write (path,"\x1b\x21\xd",3);

/* enter main program: Mandelbrot Set with contour lines color coded
*/
 xpoint=&point[2];
 ypoint=&point[4];

/* For 640H screen change the x+=2 to x+=1. */
 for (x = 0; x <384; x+=2) {
 rc = x * gapx + acorner;
 *xpoint=x;
 for (y = 0; y <192; ++y) {
/* Screen 0,0 is upper left. Convert to normal graph coords at lower
left.*/
 *ypoint=191-y;
 realx = imagy = sqrx = sqry = 0;
 ic = y * gapy + bcorner;

 for (count = 1; count <= detail; ++count) {

 imagy = imagy * realx * 2 + ic;
 realx = sqrx - sqry + rc;
 dist = (sqrx=realx*realx)+(sqry=imagy*imagy);

 if(dist>attractor){

/* When running 640x192x2 remove the next 7 lines through forcolor.
*/
 if(count>255)
 i*=.01;
 else if(count>50)
 i*=.1;
 else
 i = count;
 forcolor [2] = i&15;

 write (path,forcolor,10);
 break;}

 }
 }
 }
 pause(); /* keep picture until seen; may need save routine */
 write(1,"\x1b\x21",2); /* return to stdout */
 }

 The above program has limited error trapping so don't deliberately make
illegal entries. If you want to enhance the program, think about ways to make data
entries by outlining an area of the screen with the joystick.
 For those readers that don't have C, you should be able to convert this program
to Basic or Basic09 without too much effort. That will however, reduce the ability to
zoom in on details of the image.

1. Dewdney, A.K. ``Computer Recreations.'' Scientific American, August 1985,
December 1986, July 1987, November 1987, February 1989, May 1990

A Basic09 Tutorial
by Bob Devries

 Another problem area for programmers recently converted to Basic09 is the TYPE
statement. This is used when a programmer needs to lump together several variables
to be referred to as one unit. Let me give you an example. Say I want to write a little
database programme (as my earlier version in C) to keep names, addresses, and phone
numbers. Here's what the start of the programme would look like:

 PROCEDURE Program
 TYPE record=surname:STRING[20]; firstname:STRING[20]; street:STRING [20];
city:STRING[20]; state:STRING[3]; postcode:INTEGER; area:STRING [3];
 phone:STRING[7]
 DIM address:record

 So here I have the same database record as I have used previously (a series of
articles starting March 1989). A database entry is a complex variable called address of
TYPE record. That is, the variable record has in it all the variables referred to in
record. So to refer to the city field in the database entry, I would call it address.city,
easy see?

 If I want to fill each of the variables of the complex variable address, I could do
this:

 address.surname = "DEVRIES"
 address.firstname = "BOB"
 address.street = "PO Box 319"
 address.city = "DALBY"
 address.state = "Qld"
 address.postcode = 4405
 address.area = "07"
 address.phone = "46696412"

 If I want to write a database entry to a disk file, I would merely do this:

 PUT #file, address

 This will put all the variables which make up the complex variable address into the
diskfile one after the other. Of course the diskfile must have been opened first.

 Similarly, to read an existing entry from a diskfile, I would use this line:

 GET #file, address

 If the disk file was 20 entries long, and I wanted to get the fifteenth one, I would
first seek to the fourteenth (all records start at the zeroeth) record like this:

 SEEK #file,14 * SIZE(address)

 Then I would read the entry as before.

 Here is a sample piece of programme which sets up the database record in memory
using TYPE, and fills it, and then displays it in an overlay window. One thing you
should be aware of, you MUST initialise variables in Basic09, because all variables
are filled with garbage after being dimensioned.

 PROCEDURE Program
 TYPE record=surname:STRING[20]; firstname:STRING[20]; street:STRING [20];
city:STRING[20]; state:STRING[3]; postcode:INTEGER; area:STRING [3];
 phone:STRING[7]
 DIM address:record
 DIM file:INTEGER
 DIM a:STRING[1]

 PRINT CHR$(12)

 address.surname="Bentzen"
 address.firstname="Gordon"
 address.street="8 Odin Street"
 address.city="Sunnybank"
 address.state="Qld"
 address.postcode=4109
 address.area="07"
 address.phone="3443881"

 RUN gfx2("OWSet",1,9,4,32,11,1,0)
 RUN gfx2("OWSet",0,10,5,30,9,0,1)

 PRINT "Surname:";
 PRINT address.surname
 PRINT "Firstname:";
 PRINT address.firstname
 PRINT "Street:";
 PRINT address.street
 PRINT "City:";
 PRINT address.city
 PRINT "State:";
 PRINT address.state
 PRINT "Postcode:";
 PRINT USING "i5",address.postcode
 PRINT "Area code:";
 PRINT address.area
 PRINT "Phone:";
 PRINT address.phone
 a=""
 WHILE a="" DO
 RUN inkey(a)
 ENDWHILE

 OPEN #file,"DATABASE":UPDATE
 SEEK #file,0
 PUT #file,address
 CLOSE #file

 RUN gfx2("OWEnd")
 RUN gfx2("OWEnd")

 I'll give you a run-down on what is in this programme.

 First, we look at the TYPE command; setting up the memory image of the database
record. Next, dimension the complex variable, as well as some other useful variables.
Then I filled the various parts of the complex variable with data for one record of the
database with Gordon's name, address etc. No doubt you'll understand now that to
access each part of the database record, its identifier is 'address.xxxxxxx' where the x's
are the various sections of the record, e.g. city.

 Now to display the record, I open an overlay window big enough to display the
fields of the record, and print them. Notice the use of PRINT USING for the postcode
field. For this, you must use a format length of one more than the length of the
variable, hence, 'i5'. Next I wait for a keypress before closing the overlay, and writing
the record, and quitting. In this example, the record is always written to position zero
of the file.

 Next month, I'll show you how to convert programmes from other BASIC
languages, including RSBasic, GWBasic etc. I'll include a working example, in both
the original format, and the converted Basic09 programme.

Regards, Bob Devries

“Wipeout Revisited”
Written by Mark McDougall

Back in Volume 1, Issue 2 Richard Kelly presented “Wipeout” – a program to wipe a
screen randomly pixel-by-pixel. He presented a technique to ensure pixels are only
chosen once, so that the program does not stall waiting to randomly choose the last
few pixels on the screen.

The purpose of this article is to introduce an alternate technique that avoids the
original problem altogether, and at the same time requiring absolutely no storage
(arrays) at all. Without having to access arrays, generation is much faster - when
implemented purely in BASIC, the program was benchmarked at 26s to generate the
random sequence, whilst in pure assembler, it runs in about 1/10s.

Of course the generation of such random sequences need not be limited to wiping the
screen – they also find utility in all sorts of game programming. One example would
be shuffling a deck of cards, where you can’t deal the same card again until you’ve
been through the entire deck.

Linear Feedback Shift Registers

The Linear Feedback Shift Register (LFSR) has long been used in the generation of
pseudo-random sequences. Plenty of information on LFSRs can be found on the
internet so I’ll only delve into them briefly here. Basically an LFSR is simply a shift-
register with a feedback term that is calculated from the current round and fed into the
input of the shift register in the next round. The feedback term is the exclusive-OR of
a number of specific bit-positions (called ‘taps’) of a given LFSR.

Figure 1 – LFSR with taps in bit positions 11, 13, 14 & 16

The upshot of all this is that an LFSR seeded with a random value will produce a
‘pseudo-random’ output each time it is ‘clocked’. Note however that eventually it will
repeat the sequence ad-infinitum.

For our purposes we’re actually interested in a specific type of LFSR called a
Maximal Length LFSR. A Maximal Length LFSR of N bits produces a unique
sequence of 2N-1 numbers (the complete range of numbers, excluding zero) before
repeating. In contrast, some LFSRs repeat well before they reach 2N-1 numbers.

Wipeout

In order to clear 512 screen locations, we need a 9-bit Maximal Length LFSR, which
repeats after generating 511 unique numbers (1-511). It turns out that there are many
different 9-bit Maximal Length LFSRs (people have compiled lists of them on the net)
– but the simplest (and hence quickest to calculate) only has 2 taps in the feedback
term – bit positions 9 and 5 (bits 8 and 4).

LFSRs are trivial to implement in hardware. In assembler, they’re not too painful to
implement either. Unfortunately, as I discovered soon after deciding to research this
article, Coco BASIC is about the worst possible language you could choose to
implement them! There’s absolutely no bit-manipulation functions whatsoever, and
we really could use bit-shift and bit-wise XOR.

However all is not lost, and although there’s some terribly messy and inefficient
maths to do, it’s still several times faster than having to access arrays.

Where are all the CoCoNuts???????????????????????

The code to the right takes about 26s to
‘wipe’ the screen. Note that position 0
must be explicitly wiped because an LFSR
can’t produce the value 0. For simplicity’s
sake, I decided to wipe position 0 at the
start of the procedure (line 15). Also, I’ve
chosen the value 66 to seed the LFSR
(simply because it’s ‘42’ in HEX). Ideally,
you would choose a random seed using
RND() for example.

10 L=66
15 POKE 1024,128
20 FORI=1TO511
30 C1=INT(L/256)
40 C2=INT((L-INT(L/32)*32)/16)
50 L=L*2
60 IF C1<>C2 THEN L=L+1
65 IF L>511 THEN L=L-512
100 POKE 1024+L,128
200 NEXT I
210 IF INKEY$=”” THEN 210

Listing 1 – Pure BASIC implementation

Lines 30 & 40 look pretty cryptic, but all they’re doing is extracting bits 8 and 4 from
the current LFSR value (L). Even the MOD() function would’ve been useful here!
Line 50 does the shift whilst line 60 calculates the feedback term by in effect XORing
the taps (bits 8, 4) and then feeds it back into the input of the shift register.

TIP: Just cut-and-paste the listing into MESS!

Speeding things up

Curiosity got the better of me and I decided to see how much improvement I could get
by implementing the LFSR (lines 30-65 in Listing 1) in assembler.

Intcnv: equ $b3ed ; convert FPA0 to int (D)
givabf: equ $b4f4 ; convert int (D) to FPA0

start: equ $2000
 org start

 lbsr intcnv ; convert USR arg to int
 tfr d,x ; save LFSR
 aslb
 rola ; left-shift
 exg d,x
 lsrb
 lsrb
 lsrb
 lsrb ; get bit 4
 stb carry,pcr ; temp store for XOR
 eora carry,pcr ; XOR with bit 8
 bita #1 ; feedback term
 tfr x,d ; restore LFSR
 beq skip
 addd #1 ; add feedback term
skip: anda #$1 ; discard overflow bits
 jmp $b4f4 ; store (FP) return value

carry: rmb 1

 end start

Listing 2A – Assembler Implementation of the LFSR

The shift register itself is implemented
in only a handful of lines of assembler
– that should run rings around the
multiple floating point operations in

the BASIC code. Disappointingly, this
code wipes the screen in about 8s.

Turns out that for each USR0() call the
routine must convert the argument

from floating point to integer, then
back again to pass the value back to
BASIC. Technically, the current LFSR
value could be stored internally and not
be passed in from BASIC, but that had
no perceptible affect on the
performance. It would seem that the
limiting factor is how quickly the basic
interpreter can execute the remainder
of the code.

Listing 2B is a BASIC program that
runs the assembler implementation of
the LFSR.

10 A=8192
20 I=0
30 READ D:IF D=256 THEN 100
40 POKE A+I,D
50 I=I+1
60 GOTO 30
100 DEFUSR0=A
110 L=66
120 CLS:POKE 1024,128
130 FOR I=0 TO 511:L=USR0(L):POKE
1024+L,128:NEXT I
998 IF INKEY$=""THEN 998
999 END
1000 DATA 23,147,234
1001 DATA 31,1
1002 DATA 88
1003 DATA 73
1004 DATA 30,1
1005 DATA 84
1006 DATA 84
1007 DATA 84
1008 DATA 84
1009 DATA 231,141,0,18
1010 DATA 168,141,0,14
1011 DATA 133,1
1012 DATA 31,16
1013 DATA 39,3
1014 DATA 195,0,1
1015 DATA 132,1
1016 DATA 126,180,244
2000 DATA 256

Listing 2B – Run Assembler LFSR

Finally, I implemented the entire ‘wipe’ routine in assembler. Without any delay loop,
it runs in no time at all – my estimate is about 1/10 of a second. I had to add a delay to
get a visible ‘wiping’ effect.

start: equ $2000
 org start

 ldd #511
 std count,pcr ; loop counter
 ldx #$0042 ; LFSR seed

loop: equ *
 tfr x,d ; get LFSR
 aslb
 rola ; left-shift
 exg d,x
 lsrb
 lsrb
 lsrb
 lsrb ; get bit 4
 stb carry,pcr ; temp store for XOR
 eora carry,pcr ; XOR with bit 8
 bita #1
 tfr x,d ; get LFSR
 beq nofb
 addd #1 ; add feedback term
nofb: anda #1 ; discard overflow bits
 tfr d,x ; save new LFSR value
 anda #$1
 ora #$4 ; construct screen address
 tfr d,y

 lda #$80
 sta ,y ; poke black square

 lda #$80 ; delay value
delay: deca
 cmpa #$00
 bne delay

 ldd count,pcr ; decrement loop counter
 subb #1
 stb count+1,pcr
 bcc loop
 suba #1
 sta count,pcr
 bcc loop
 rts

count: fdb 0
carry: rmb 1

 end start

Listing 3A – Pure Assembler Implementation of ‘WIPEOUT’
Here’s a BASIC listing that runs the above code.

10 P=8192
20 READ D:IF D=256 THEN 40
30 POKE P,D:P=P+1
35 GOTO 20
40 DEFUSR0=8192
45 CLS:POKE 1024,128
50 D=USR0(0)
98 IF INKEY$="" THEN 98
99 END
1000 data 204,1,255
1001 data 237,141,0,72
1002 data 142,0,66
1003 data 31,16
1004 data 88
1005 data 73
1006 data 30,1
1007 data 84
1008 data 84
1009 data 84
1010 data 84
1011 data 231,141,0,57
1012 data 168,141,0,53
1013 data 133,1
1014 data 31,16
1015 data 39,3
1016 data 195,0,1
1017 data 132,1
1018 data 31,1
1019 data 132,1
1020 data 138,4
1021 data 31,2
1022 data 134,128
1023 data 167,164
1024 data 134,128
1025 data 74
1026 data 129,0
1027 data 38,251
1028 data 236,141,0,17
1029 data 192,1
1030 data 231,141,0,12
1031 data 36,196
1032 data 128,1
1033 data 167,141,0,3

1034 data 36,188
1035 data 57
1036 data 0,0
2000 DATA 256

Listing 3B – R

un Assembler ‘WIPEOUT’

BTW all my assembler in the above examples should be position-independent code,
which means one could use the same DATA statements and relocate the code to
another address, and reserve memory for it properly, for example.

Other uses of the LFSR

As I mentioned earlier, pseudo-random sequences generated by LFSRs have many
other uses in programming. Whilst maximal length LFSR are particularly useful when
generating sequences of unique numbers - it is important to recognise their limitations
as well. I mentioned using a maximal length LFSR to shuffle (deal) a deck of cards.
One would simply choose a random seed for the LFSR and deal the deck from there.
However, it should be obvious that this would result in a rather limited number of
scenarios (<64 in fact) because given a particular seed, the sequence never varies.
How to deal with such a problem is outside the scope of this article.

When using this technique as we have to wipe a screen however, the limited
variability is not so important – it’s not even perceptible in this case.

I last came across an LFSR when studying the circuit schematics of the arcade game
Galaxian. If you fire up MAME and have a close look at the scrolling star field, you’ll
see that it is far from random – the stars scroll off the bottom of the screen and back
onto the top, shifted across by 1 pixel.

Galaxian uses a maximal length LFSR (with taps at bits 4 & 16), implemented in
hardware, to generate the star field pattern. The LFSR is clocked for each pixel drawn
during the video raster scan. However, rather than using the LFSR as the screen
location as we did in WIPEOUT, instead the LFSR value determines the pixel colour.
The exact logic used is designed to paint a black pixel most of the time, otherwise
choose a random colour for a star (I won’t go into the ‘blinking effect’ here).

Furthermore, the scrolling effect comes ‘for free’ and is a direct by-product of the fact
that the period of the LFSR is one less than the number of pixels on the screen.

Finally, I’ve implemented a crude ‘Star Field Scroller’ to illustrate the effect. Note
that due to the orientation of the Coco monitor, the field scrolls right-to-left rather
than top-to-bottom. Nonetheless, it gives an idea of how it works in Galaxian.

start: equ $2000
 org start

 ldx #$0042 ; LFSR seed
 ldy #$0400 ; screen offset

loop: equ *
 tfr x,d ; get LFSR
 aslb
 rola ; left-shift
 exg d,x
 lsrb
 lsrb
 lsrb
 lsrb ; get bit 4
 stb carry,pcr ; temp store for XOR
 eora carry,pcr ; XOR with bit 8
 bita #1

 tfr x,d ; get LFSR
 beq nofb
 addd #1 ; add feedback term
nofb: anda #1 ; discard overflow bits
 tfr d,x ; save new LFSR value
 lda #$80 ; black square
 bitb #$2E ; should we draw a star?
 bne skip ; no, skip
 addb #5
 comb
 orb #$8F ; come up with a pretty colour
 tfr b,a
skip: equ *
 sta ,y+ ; poke black/coloured square
 tfr y,d
 anda #$05 ; wrap screen address at $05FF
 tfr d,y
 bra loop

carry: rmb 1

 end start

Listing 4A – Assembler source for Scrolling Star Field

nd, so you can see it running in a matter of seconds: A
5 I=8192
10 READ X
15 IF X=256 THEN 100
20 POKE I,X
30 I=I+1
40 GOTO 10
100 DEFUSR0=8192
110 U=USR0(0)
200 END
1000 DATA 142,0,66
1001 DATA 16,142,4,0
1002 DATA 31,16
1003 DATA 88
1004 DATA 73
1005 DATA 30,1
1006 DATA 84
1007 DATA 84
1008 DATA 84
1009 DATA 84
1010 DATA 231,141,0,40
1011 DATA 168,141,0,36
1012 DATA 133,1
1013 DATA 31,16
1014 DATA 39,3
1015 DATA 195,0,1
1016 DATA 132,1
1017 DATA 31,1
1018 DATA 134,128
1019 DATA 197,46
1020 DATA 38,7
1021 DATA 203,5
1022 DATA 83
1023 DATA 202,143
1024 DATA 31,152
1025 DATA 167,160
1026 DATA 31,32
1027 DATA 132,5
1028 DATA 31,2
1029 DATA 32,202
2000 DATA 256

Listing 4B – Run ‘Scrolling Star Field’

BTW, this routine will never return to BASIC so you’ll have to RESET your
Coco/emulator to get out of it. You should see something like this…

Some tips

Here’s a few tips I learnt when writing this article. I haven’t written a Coco program
in – quite literally – 20 years (as is probably evident by my 6809 code), so I was
loathe to ramp up on EDTASM etc.

• I found a free cross-assembler (A09) and wrote my machine code on the PC
and assembled under A09 to produce a listing. I then wrote a very small C
program to parse the .LST output and display numbered lines of BASIC
DATA statements. I then fired up MESS, loaded the most recent version of my
BASIC test program, and then simply cut-and-pasted the lines from my
command prompt into ECB – overwriting the old DATA statements from the
last version.

• You can use the same method to cut-and-paste the entire BASIC listings from
this article into MESS. No typing, no messing with virtual disk utilities.

• My debugging was all done on the DEBUG build of MESS.

Enjoy!

Lonnie Falk Reading Center
By Mary

We all know how much Lonnie Falk loved his books and magazines, so it
pleases me to read on the Prospect Kentucky website about a Reading center he
opened up for his community. They of course named the city’s reading center after
him and in memory of him. He was presented with a proclamation honoring the city
of Prospect upon the opening of the Lawrence Falk Reading Center from a
representative of the County Judge Rebecca Jackson. The reading center was
officially opened March 25 2002.

The Lawrence Falk Reading Center is always taking donations of books to fill out the
shelves. If any of you have any old books you would like to donate to them, I will be
taking the donations and ship them out in one shipment each month. I will pay for the
cost of shipping if you cannot afford to send them to me. I would like to see all of
you sending at least one book to donate to them in memory of Lonnie Falk and his

passion for learning and reading. He would have continued to stock the shelves if he
were still alive. I would also like to donate any extra copies anyone may have of the
Rainbow to the library so that other can see what his life before he became Mayor was
like.

Special Backup Utility
for a Coco3

Using Full 512K RAM
by

Robert Gault

 Disks should be backed up frequently to prevent loss of data and as a means of
saving multiple versions/revisions of critical projects as a history. However, backups
with a single disk drive are actually painful. Even with multiple drive systems,
copying disks using the Disk Basic command or the OS-9 command could be a more
pleasant procedure.
 This utility requires a 512K Coco3, uses the full 512K RAM for the backup,
and makes single drive backups simple. The utility has been optimized so that both
Disk Basic and OS-9 disk copying is faster than using the stock commands. This
speed increase is the result of reading sectors in the order that they exist on the disk
rather than in sequential order from 1-18. If you do not use default skip factors when
formatting disks, you should modify the sector tables at the end of the source to match
your disks. If you do not, the speed of this program can decrease significantly.
 This program is not intended for use with emulators but can be made to work
with a change to one line in the source code in RDWRDK. It is not intended for use
with drive numbers higher than 3 and will need patching to be used with RGBDOS or
HDBDOS drives 4 or higher. It would be very easy to extend the program usage to
drives from 0-9 by changing one value in KEYTST. More extensive changes would
be needed for drive numbers higher than 9.

USAGE
LOADM"BACKUP"

EXEC

 You will be asked if your drives are 6ms or 30ms, if the disk is 35 or 40 track,
and if it was formatted for Disk Basic or OS-9. You answer with a single key press or
BREAK to restart or quit.
You are then asked which drive contains the original disk. Once inserted, the full disk
is read into memory and you are then asked which drive contains a blank disk. Once
indicated, you are asked to change disks and the backup copy is written. You will then
be asked if you want to make more copies of this disk. You can keep inserting new
disks to get additional copies without rereading the original.
 The program leaves Disk Basic set to the selected stepping speed. This is a
side benefit which will speed up all subsequent disk access. While the program is
running, you will be in 40 column high res. text mode but the program when finished
will return to the screen width found at startup.

SOURCE CODE

 The following source code is fully commented and can be assembled with
most of the available programs for the Coco. It will be necessary to change some of
the labels, if you are using Disk EDTASM. EDTASM does not like A@ local labels
although my patch EDTASM6309 does use them.
 The program is a good demonstration of how you can use routines already in
the ROMs to write text on the high resolution text screens, run disk I/O, sample the
keyboard, determine if a Coco is a model 3, how much memory it has, and make use
of the MMU to access memory beyond the range of 0-64K.

SKIP FACTORS
 Skip factors are described and shown for Disk Basic in the "Color Computer
Disk System Owners Manual & Programming Guide" on page 58. In essense, the
Disk Basic skip factor of 4 indicates "that the computer should skip 4 'physical'
sectors between each 'logical' sector. OS-9 uses a default skip factor of 2.
 The purpose of a skip factor is to attempt to coordinate sector locations with
the speed of the operating system's disk access so that as soon as the OS needs a
sector, it is just reaching the drive head.
 Machine language programs being faster than Basic programs typically benefit
from smaller skip factors. Backup obtains maximum speed by matching expected
default skip factors.
===

 TITLE BACKUP

* This version of Backup is for a 512K Coco3 only!
* An entire disk is read in one pass.
* Both RSDOS and OS-9 skip factors suported for
* maximum speed of disk access.
* Multiple copies can be made with single read.
*

* DEFINITIONS
CURSOR EQU $FE00 hres cursor
CR EQU $0D screen carriage return
SCREEN EQU $2000 mapped location of screen
LINES EQU 80 bytes per screen line
CHAR EQU 2 bytes per character
* BASIC entry locations
GETKEY EQU $A1B1 get key into regA
PUTCHR EQU $A30A print to screen
* DSKCON variables
DCOPC EQU $EA operation code
DCDRV EQU $EB drive number
DCTRK EQU $EC track number
DCSEC EQU $ED sector number
DCBPTR EQU $EE buffer pointer
DCSTAT EQU $EF error status
HRMODE EQU $E6 high resolution graphics mode value
SCRTYP EQU $E7 high resolution text mode
* Disk Controller I/O registers
CONTRL EQU $FF40
CMDREG EQU $FF48

* TEMP SPACE
TEMP EQU $4A
SCRIMG EQU $4B scrtyp image
LOGSEC EQU $4C logical sector

 ORG $E00

 LBRA EXEC execution address

COPYRT JSR $F6E0
 LDU #SCREEN+2*LINES+15*CHAR
 LBSR HPRINT
 FCC "BACKUP"
 FCB 0
 LDU #SCREEN+4*LINES+6*CHAR
 LBSR HPRINT
 FCC "Copyright (c) 1990, 2006"
 FCB 0
 LDU #SCREEN+6*LINES+10*CHAR
 LBSR HPRINT
 FCC "By Robert Gault"
 FCB 0
 RTS

**
* GETDRIVE find drive number
* ENTRY: none
* EXIT: A=drive #; or return to DOS
GETDRV JSR GETKEY
 BSR KEYTST
 BCS COLD BREAK key
 BEQ GETDRV
 JSR PUTCHR
 SUBA #'0
 STA <DCDRV
 LDU #SCREEN+12*LINES+1*CHAR
 LBSR HPRINT
 FCC "Insert disk then press any key."
 FCB 0
 JSR GETKEY
 BSR KEYTST
 BCS COLD
 RTS

COLD LDS <$DA get master return
 LDD #$403A
 STA $F80F restore cursor
 STA $F84F
 STA $F7A3
 STB $FFA2
 CLR <HRMODE
 LDB <SCRIMG
 DECB
 BEQ A@
 BPL B@
 JMP $F652 WIDTH32

A@ JMP $F65C WIDTH40
B@ JMP $F679 WIDTH80

* KEYTEST
* ENTRY: A contains value
* EXIT: carry set on BREAK ; A=NA
* equ set on illegal; A=0
* carry clear on legal; A=value
KEYTST CMPA #3 BREAK KEY
 BNE A@
 COMA set carry
 RTS
A@ CMPA #'0
 BCS B@
 CMPA #'4
 BHS B@
 ANDCC #$FE clear carry bit
 RTS
B@ CLRA set equals
 RTS

**
MMU PSHS CC
 ORCC #$50
 STB $FFA2 set block at $4000-$5FFF
 LDU #$4000
 PULS CC,PC

* ERROR test error type; print message
* ENTRY: A=error code
* EXIT: message
ERROR TSTA
 BPL A@
NTREDY CLR CONTRL
 LDU #SCREEN+18*LINES+5*CHAR
 LBSR HPRINT
 FCC "Drive not ready."
 FCB 0
L@ LDU #SCREEN+20*LINES+5*CHAR
 LBSR HPRINT
 FCC "Press any key."
 FCB 0
 JSR GETKEY
 LDS <$DA reset the stack
 LDB <TEMP
 CMPB #2
 LBEQ SDRIVE
 LBRA DDRIVE
A@ CLR CONTRL
 LBSR CLEAR2
 BITA #$40
 BEQ B@
 LDU #SCREEN+18*LINES+5*CHAR
 LBSR HPRINT
 FCC "Write protected disk!"
 FCB 0
 BRA L@
B@ LDU #SCREEN+18*LINES+5*CHAR
 LBSR HPRINT

 FCC "I/O Error."
 FCB 0
 BRA L@

*
CLEAR LDU #SCREEN+10*LINES+1*CHAR
 LBSR HPRINT
 FCC / / 40
SPACES
 FCB 0
 LDU #SCREEN+11*LINES+1*CHAR
 BSR HPRINT
 FCC / / 40
SPACES
 FCB 0
 RTS

CLEAR2 PSHS A
 LDU #SCREEN+18*LINES+1*CHAR
 BSR HPRINT
 FCC / / 40
SPACES
 FCB 0
 PULS A,PC

**
HPRINT STU CURSOR
 PULS X pull text location into X
A@ LDA ,X+
 BEQ B@
 JSR PUTCHR
 BRA A@
B@ TFR X,PC jump to next opcode

**

EXEC CLR CONTRL stop drives
 STS <$DA save stack pointer
 LDX $FFFE
 CMPX #$8C1B Reset on Coco3
 BEQ A@
 LEAX <M@-1,PCR
 JMP $B99C Print string to screen
M@ FCC "SORRY! THIS IS NOT A COCO3."
 FCB CR
 FCC "THIS PROGRAM WON'T RUN!!"
 FCB CR,0
* test for 512K memory
A@ ORCC #$50
 LDD #$3A30 MMU blocks
 STB $FFA2 $4000-$5FFF; 128k 0 page
 CLR $5000
 CLR $FFA2 512k $00000
 STB $5000 will change data in a 128K coco
 STB $FFA2
 LDB $5000 test for ghosting
 STA $FFA2 reset MMU
 ANDCC #$AF
 TSTB 0=512K
 BEQ B@

 LDU #SCREEN+18*LINES+10*CHAR
 BSR HPRINT
 FCC "Sorry! You need 512K"
 FCB CR
 FCC "to run this program."
 FCB CR,0
 RTS
B@ ANDCC #$AF
 LDB <SCRTYP
 STB <SCRIMG
 CLRA
 STA $F80F remove underline
 STA $F84F " "
 STA $F7A3 " "
 JSR $F65C start 40 column screen
 JSR $F6E0 clear screen
 LDU #SCREEN+10*LINES+1*CHAR
 LBSR HPRINT
 FCC /Select <F>ast 6ms or <S>low 30ms drives/
 FCB 0
 LDU #SCREEN+11*LINES+15*CHAR
 LBSR HPRINT
 FCC /Speed ?/
 FCB 0
L@ JSR GETKEY
 CMPA #'F
 BNE C@
 CLRB
 BRA D@
C@ CMPA #'S
 BNE L@
 LDB #3
D@ LDY $C004
 PSHS B
 STB <$61,Y restore
 LDA $B7,Y seek
 ANDA #$FC
 ORA ,S+
 STA $B7,Y

L@ JSR $F6E0 clear screen
 LDU #SCREEN+10*LINES+1*CHAR
 LBSR HPRINT
 FCC "Select <3>5 or <4>0 track drives."
 FCB 0
 LDU #SCREEN+11*LINES+11*CHAR
 LBSR HPRINT
 FCC "# of tracks ?"
 FCB 0
A@ JSR GETKEY
 CMPA #3
 LBEQ COLD return to Basic
 CMPA #'3
 BEQ B@
 CMPA #'4
 BNE A@
 LDB #40
 STB TRACK+1,PCR
B@ JSR PUTCHR
 LDU #SCREEN+14*LINES+1*CHAR
 LBSR HPRINT

 FCC "OS-9 Disk? <Y> or <N> -->"
 FCB 0
 LEAX LGSEC1,PCR
C@ JSR GETKEY
 ANDA #$DF
 CMPA #3
 LBEQ L@
 CMPA #'N
 BEQ D@
 CMPA #'Y
 BNE C@
 LEAX LGSEC2,PCR
D@ STX <LOGSEC

* SDRIVE get source drive and read data
SDRIVE LBSR COPYRT
 LDU #SCREEN+10*LINES+1*CHAR
 LBSR HPRINT
 FCC "Indicate Source drive number -->"
 FCB 0
 LBSR GETDRV
 LDB #2 read sector
 STB <TEMP
 LBSR RDWRDK

* DDRIVE get destination drive and send data
DDRIVE LBSR COPYRT
 LDU #SCREEN+10*LINES+1*CHAR
 LBSR HPRINT
 FCC "Indicate Destination drive number -->"
 FCB 0
 LBSR GETDRV
 LDB #3
 STB <TEMP
 BSR RDWRDK

* ask for duplicate copy on extra disks
 LBSR COPYRT
 LDU #SCREEN+10*LINES+1*CHAR
 LBSR HPRINT
 FCC "For duplicates insert fresh disk."
 FCB 0
 LDU #SCREEN+11*LINES+12*CHAR
 LBSR HPRINT
 FCC "Hit any key."
 FCB 0
 LDU #SCREEN+13*LINES+7*CHAR
 LBSR HPRINT
 FCC "<<Hit BREAK to quit!>>"
 FCB 0
 JSR GETKEY
 LBSR KEYTST
 LBCS COLD
 LBRA DDRIVE

* RDWRDK read or write to disk
* ENTRY: COMMAND must be set for read or write
RDWRDK CLR <DCTRK clear track

 CLR <DCOPC 0=restore to track#0
 LDY $C004 get DSKCON address
 JSR ,Y restore to track#0
* Use with real Coco.
 LDA #$C0 read head address on disk
* Use with emulator.
* Does not really tell if disk is ready and formatted but that does
not matter
* with most emulators.
* LDA #$D0 forced interrupt
 STA CMDREG
 LDX #$4000
A@ LEAX -1,X wait for drive to read address
 LBEQ NTREDY
 LDA CMDREG check status
 BITA #1 ready?
 BNE A@ loop if not ready
 BITA #$10 record not found
 LBNE ERROR
 LDD #$100 initialize the sector counter, track 0
L1 PSHS D
 LDX #$4000
L2 STX <DCBPTR buffer address
 STA <DCSEC sector
 STB <DCTRK track
 LDB <TEMP
 STB <DCOPC read or write
 JSR ,Y access disk
 ORCC #$50 kill interrupts
 LDA <DCSTAT check for errors
 BEQ C@ go if no errors
 BITA #$40 write protected
 LBNE ERROR
 LDU #SCREEN+18*LINES+1*CHAR
 LBSR HPRINT
 FCC "Format/copy protect error; continuing."
 FCB 0
C@ INC ,S next sector
 LDX <DCBPTR point to buffer
 LEAX $100,X next sector in buffer
 LDD ,S recover sector counter and track#
 CMPA #19 normal sector max=18 total
 BEQ D@
 PSHS B,X save track and buffer pointer
 LDX <LOGSEC get table
 TFR A,B put sector counter in regB
 ABX point to actual sector number
 LDA ,X regA = sector to access
 PULS B,X recover track; buffer loc.
 BRA L2
D@ LBSR CLEAR2
 PULS D
 LDA #1 reinitialize sector counter
 INCB update track value
 LBSR MMU get fresh memory
TRACK CMPB #35 max track; default 35 can be modified
by program
 BNE L1
 CLR <DCOPC restore head to track 0
 CLR <DCTRK track 0
 JSR ,Y return head to track 0

 CLR CONTRL turn off drive
 RTS

* format skip factor equals 4 for Disk Basic
* LGSEC1 Lists sectors as they actually are placed on the disk.
* Fastest backup must access sectors in this order.
* FCB 0 is a place holder and not a sector.
LGSEC1 FCB 0,1,12,5,16,9,2,13,6,17,10,3
 FCB 14,7,18,11,4,15,8

* format skip factor equals 2 for OS-9
* LGSEC2 Lists sectors as they actually are placed on the disk.
* Fastest backup must access sectors in this order.
* FCB 0 is a place holder and not a sector.
LGSEC2 FCB 0,1,7,13,2,8,14,3,9,15,4,10
 FCB 16,5,11,17,6,12,18

 END EXEC

Graph
submitted by Roy R Justus

The following program will automatically generate a graph of any two
variable function of the form y=f(x). Simply place your own X-Y
function in place of the example function in the line 1000
subroutine.
Works on coco 1/2/3.

Enjoy

10 'WIDTH 32 :'OPTIONAL STATEMENT FOR COCO3
20 CLS :PRINT"ENTER DOMAIN (LEFT THE RIGHT)" :INPUT D,D2 :IF D>D2
THEN A=D :D=D2 :D2=A
25 DM=(D2-D) :SX=255/DM
30 N=255 :'RESOLUTION
40 DIM NY(N) :NX=DM/N
50 CLS :PRINT"PROCESSING...PLEASE WAIT"
60 FOR C=0 TO N :X=C*NX+D :GOSUB 1000 :NY(C)=Y :IF C=0 THEN YL=Y
:YH=Y
70 IF Y<YL THEN YL=Y
80 IF Y>YH THEN YH=Y
90 NEXT C
100 R=YH-YL :SY=191/R :'RANGE CALCULATION
105 PMODE 4,1 :COLOR 0,1 :PCLS :SCREEN 1,1
110 FOR C=0 TO N :XB=INT(C*NX*SX) :YB=191-INT((NY(C)-YL)*SY)
:LINE(XB,YB)-(XE,YE),PSET :XE=XB :YE=YB :NEXT C
120 SOUND 100,10
130 GOTO 130
1000 ' ===== ENTER YOUR FORMULA HERE =====
1010 IF X=0 THEN RETURN :'TEST FOR ERROR CONDITIONS
1020 Y=X*SIN(1/X) :'EXAMPLE FUNCTION
1030 RETURN

…
One liner by Richard Kelley
It's this little black box, and it's come to wipe away
everything on the text screen, then disappear just as
quickly as it came. And the oddest part - the cursor
of ECB is right where you left it when you started the
program. Enjoy. :-)

10X=1535:POKEX,138:POKEX+0,138:POKEX,128:POKEX+0,128:FORX=1534TO1024S
TEP1:POKEX,138:POKEX+1,133:POKEX,128:POKEX+1,143:NEXT:X=1024:POKEX,13
3:POKEX+0,133:POKEX,143:?

Well another newsletter has come out for your
viewing. I just barely made the deadline on this one.
This month we have seen a lot of people come out of
the woodwork and I would love to see more. I like the
idea of Diego’s award, and Rogers CoCo DVD, and
all other things that keep the CoCo new and alive. I
especially love all the preservation projects going on
like Brian Palmer and his Dsk archiving.
I also love how all of us come together in prayer or in
best wishes to help others. Like when Bob’s wife

Lesley had a heart attack many of us came together in prayer, and
even for non-Christians they came together in hoping for the best.
That is what this is all about; Family, community, and friendship.
That is why I love this newsletter/e-zine. Look at what it has
accomplished, more people are telling me how they got a coco or
dusted theirs off. People are helping other with theirs, and new
people are emerging and starting to dabble in them all over again.
By the way did you notice the file size on this issue! It is getting
bigger every time. I just love reading all the articles weather or not I
have a clue what you are talking about. I still learn a little bit. I have
achieved what I set out for and that was to find out why those boxes
of disks were so important to him. It was because in his darkest times
of his life when he lost his family he had a whole new family to keep

him company. It is like all you guys took over and kept him sane. I
love every single one of you guys that I have met. And it is sad to
know I can’t ever spend Christmas with my dad again or that he will
never meet his only grandson. But because of those disks, and all of
you, my son will be able to understand my dad better when he is
older. One day when I can learn how to use different programs to
view all his graphics on I will see more of what he was like in his own
mind. I think this one says a lot though.

	A Basic09 Tutorial
	“Wipeout Revisited”
	Linear Feedback Shift Registers
	Wipeout
	Listing 1 – Pure BASIC implementation

	Speeding things up
	Listing 2A – Assembler Implementation of the LFSR
	Listing 2B – Run Assembler LFSR

	Listing 3A – Pure Assembler Implementation of ‘WIPEOUT’
	Listing 3B – Run Assembler ‘WIPEOUT’

	Other uses of the LFSR
	Listing 4A – Assembler source for Scrolling Star Field
	Listing 4B – Run ‘Scrolling Star Field’

	BTW, this routine will never return to BASIC so you’ll have
	Some tips

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

