
CoCoNutz!
Christmas 2005

Volume 1 Issue 4 Rev.1

2

IN THIS ISSUE

A Talk With Roger Taylor of CoCo3.com...............................4
by Mary Kramer

I Dare Ye Enter The Dungeons Of Daggorath..........................9
by Diego

The Art of BASIC Programming...11
by Robert Gault

Color Artifacting...15
by Retro Rick

Video Converter Update...18
by Roy Justus

Minesweeper...19
by Diego

Sorting OS-9 Directories With a Basic09 Program..................22
by Robert Gault

Sorting OS-9 Directories With a Machine Language Program.....27
by Robert Gault

Pegasus and the Phanton Riders.......................................34
by Richard Kelly

Show Off Your CoCo!...38
Photos of modern CoCo systems

3

A Talk With Roger Taylor of CoCo3.com
by Mary Kramer

This time around I wanted to interview or get to know someone I have
talked to quite a bit online.

Roger Taylor, as many of you know, is the creator of CoCo3.com website
and many others. He has constantly catered to the public and his fellow
CoCoNuts. He loves to come up with new ideas for the website and
especially likes to talk to others about his hobby with computers.

Roger is very active in the CoCo community and tries to keep the lines of
communication and information open so that the lost CoCo users out there
can find one another. If you have a CoCo or 6809-based website he will list
it. If you have an article he will host it. In fact, if you have anything CoCo-
related he will work something out to post it on his site for all to find and
enjoy. Roger has even started a blog section so that others can kind of see
what’s on his mind from time to time. Well on with the questions:

Where do you live?

I currently live in Kilgore, Texas which is just outside of Longview.

How long have you lived there?

I've lived here for six months now. I've also quickly learned that the weather here is not much different than that in
North Louisiana or South Arkansas, the other places I've lived in the past 12 years.

Do you have kids.....pets....?

Yes, I'm a single dad of two healthy kids of ages 5 (boy) and 8 (girl). Both of them are doing well in school, and
they like to stay in their dad's hair when they're at home. We don't own any pets at this time, but I'm sure there will
be a puppy in the picture one day.

What are your hobbies?

I really just have one hobby; programming. I usually spend some amount of time each day working on my projects;
which could be a web site, a web script, or a full-fledged application for various computers and platforms. I guess I
was born to create or I wouldn't be having so much fun developing software. Actually, my hobby extends to
learning as much as I can about various programming languages and development concepts. The more I learn, the
more I want to learn!

What kind of CoCo stuff do you currently have?

I have enough to do some serious CoCoing within a small desk area. My most prized CoCo was nicknamed the
'CoCoTower' because I repacked my 1-meg CoCo 3, 42 meg HD, floppies, and MPI, etc. inside of a PC tower
case. Although I've sold most of my CoCo equipment and materials over the years, I still have tons of floppy disks
and some hardware gadgets that I couldn't part with.

Which one is your favorite?

Out of the different CoCo models, the CoCo 3 is my favorite. There is still much untapped power in the CoCo 3 that
we might not ever see, but because it can run OS-9 Level II and handle so many modern gadgets now (thanks to

4

Cloud-9 and other dedicated hardware buffs), the power is there for anyone to unleash if !

You're the creator of CoCo3.com; how did that start out and eventually evolve?

My first web site ever was a rather simple page called "The CoCoNut Directory!”. I designed it completely using a
WebTV set-top internet box. The page was a grid at first, then later became a tower of 200x60 color banners along
with contact information for each CoCoNut (CoCo user) who submitted their info to me. After sending out tons of e-
mails to people that I knew were active in the CoCo community, I got back a handful of banners and details for me
to post. Soon, the tower of banners grew and the web site started to get requests for more features.

CoCo3.com is not really a very large site at this time but it contains what people have asked for at some time or
another so there is a chance that you will find something very interesting on your first visit or later. I work on the site
all the time looking for ways to improve it or bring in more visitors.

There are also a lot of other nice CoCo web sites out there that I frequent often, so I try to keep their links fresh on
the front page of my site.

What other websites or CoCo products do you have a hand in?

Some of my other web sites are client and family sites. Here are a few: waldenhillfarm.com,
abminiaturehorses.com, wallersminihorses.com.

I'm not really involved in any outside CoCo projects other than those mentioned on CoCo3.com, but there *could*
be a secret project or two in the works. I try not to mention any projects until they are well into development and
have a good chance of being released.

Tell me about some of your products you offer on your website.

Well, my flagship product is called Portal-9 which is software used by other developers to create CoCo and 6809
software. It's an integrated development environment (IDE) for Windows and includes a very nice and powerful
cross assembler called CCASM. You can tweak Portal-9 to do all sorts of 6809 projects and even see your
programs run instantly if you are a M.E.S.S. emulator user (www.mess.org).

Portal-9 is my way of giving back to the CoCo community what it taught me. The software is also my attempt at
helping preserve 6809-based computers of all types. By giving 6809 programmers an all-in-one easy way to write,
compile, and see results in seconds using a PC, I think development for the older computers will continue for many
years to come.

Got any specials coming up for Christmas?

Let's wait and see. Each year I try to come up with something new for the web site, and you never know what I
might dish up!

What are some of the future plans for CoCo3.com?

I am working on letting visitors submit their own articles in which I can approve using a control panel and post
easily. Submitted articles should blend in with the web site design quite nicely and automatically.

I'm also working on letting visitors submit their info to a new CoCo registry which can be searchable by the public.
You'll be able to safely e-mail each person (one at a time) without exposing their e-mail address in any way. People
will be able to describe themselves and CoCo interests and also include other optional info.

Ah, a Portal-9 project depot would be nice. So many ideas, so little time. Yes, CoCo3.com will continue to grow
and will offer what CoCo users ask for. I always enjoy improving the web site!

5

http://www.mess.org

What kind of programming do you do?

Most CoCo users know that I can do some serious things with the 6809 and 6309 CPUs, and I've been known to
crank out a mean CoCo program in my day. Today I spend more time trying to help preserve the CoCo by using
web design and even Pentium machine language programming.

CoCo3.com, Portal-9, and CCASM all three took very serious programming to pull off, and I would have to call its
kind "determined". Seriously, I dabble in it all. If it looks like fun and I can produce something quick using a certain
language, I will try it.

When it comes time for new languages I've been doing this stuff for so long that I can sit down and "learn" a
language in a small amount of time or get by on just enough of what takes to get a job done and then build on it
over time to learn more. Today I might hop between such languages as 6809 assembly, Pentium assembly, HLA
(Randall Hyde), PHP, MySQL, Perl, HTML, CSS, JavaScript and other means of coding to get the job done. Some
other languages just kind of fall into place due to similarities between them and other languages.

What was your first computer?

A 16k CoCo 2! It was right before Christmas and I also grabbed up my first Rainbow magazine that year which was
chock full of CoCo programs to type in. This was not really my first computer to play around on but it was my first to
have at home to call my own and to have full control of. This period should go down in my history as the beginning
of my "night owl" days, where I spent countless hours each night hacking and learning how to write code in various
languages for the CoCo. I created more things during the first few years of my first CoCo than I might create in the
next 10 years using any other platform.

Why did you choose that one?

If I recall, they ran a $99 special at Radio Shack and I could not resist. Besides, it was the latest model at the time
and there were lots of brand new things to go along with the CoCo 2.

What is your fondest memory of the CoCo?

The memory that sticks in my head is when I went through that first big Christmas edition of The Rainbow typing in
program after program and watching everything run. I didn't sleep much back then!

Did you ever write for CoCo magazines?

Sadly enough, no. I spent my every waking CoCo minute coming up with something new, but why I couldn't pull
something from the surprise hat and send it in to The Rainbow is beyond me. I guess I spent so much time learning
that I didn't have time to teach or tell others how it should be done - yet.

Do you ever attend any of the CoCo Fests, past or present?

I was a lot younger back when the CoCo Fests were big so I never could seem to fund such a trip, but I always
wanted to. I would read about the fests in the Rainbow magazine and drool over all the CoCo games and hardware
they would bring.

I was at a CoCo Fest "in spirit" one year when I sent a bunch of copies of Projector-3 to Carl Boll to put on his booth
table to sell. It turned out quite well and I got lots of feedback and requests to actually BE THERE the next year! :)

I also recently hosted a live web cam feed with text chat from a CoCo Fest. This was a last-minute joint effort
between me and Dave Kelly that turned out to be quite successful. Quite a few people showed up for chat with
video that updated about every 10-15 seconds. Expect things like this to happen more.

6

What is your favorite CoCo utility?

I used something called V.I.P. back in the day which had a spreadsheet, word processor, database, and several
other useful utilities all built into the same system so you could switch between them easily. This package also
included a disk "zap" program for manually repairing garbled floppy disks. You had to know the technicalities of a
CoCo file allocation table in order to really use the program, but I became a pro at it after a while and fixed many
disks that were trashed from time to time from unexplained disk drive errors.

You had a utility that made it easy to view all kinds of graphics for the coco. Tell me about that.

Yes, I originally wrote The Projector which allows the CoCo 3 with 128k to view all sorts of picture formats.
Although the color range was low, you could at least load and see some of the modern picture formats at that time,
including pictures for the CoCo, Atari, Macintosh, and PC.

The Projector later advanced to Projector-3 which requires 512k and spits out nice dithered pictures of even more
formats than The Projector. P-3 can even be extended by letting you write your own format drivers (CODECs) that
are automatically recognized when you start the program. My system allows you to load and/or save in whatever
format that contains a decoding or encoding routine. So, P-3 was to be the last picture viewer ever needed for the
CoCo 3, but because it requires a 6309 CPU, not everybody has gotten to experience the system.

How did you come up with that?

The Projector series viewers derived from my first viewer ever called Super-MAC, a Macintosh picture viewer. This
viewer displayed .MAC pictures in super detail by flickering two screens of the image very quickly. One image is
the even scan lines and the other image is the odd scan lines. When you scrolled the image, a video effect on
some monitors would result in over 500 lines of video being displayed at once. Talk about nice!

Once I realized I had I thing for graphics I started collecting specs for various popular picture formats. Soon a
system was born that let me add and remove viewing capabilities to the main program without having to recompile
the entire system (EDTASM woes). P-3 later took this to a new level by allowing not only graphics but text files and
even music to be decoded, although these features aren't really recognized or used by anyone today.

Did you publish it?

Well, I produced my own copies of The Projector and Projector-3 on floppy disk with printed manuals and shipped it
myself to people all over the world. It was a one-man effort.

Can I still get a copy?

You sure can, and like most other programs I've written in the past - it's free. You can download The Projector and
Projector-3 from CoCo3.com.

What do you plan to do about the issue of people violating the CoCo Cafe chat?

This is an interesting question because back when I announced that I was writing a live chat page for the web site I
asked a bunch of CoCo users their opinion about this. The vote was pretty much to avoid a username/password
system until absolutely necessary. I agreed that convenience would bring in more chatters than making everybody
go through some sort of hassle. In fact, it's so easy to enter chat that if your browser cookies are enabled, all you
have to do after your first visit is just return and click 'ENTER' and there you are talking live to other users.
However, this makes it easy for anybody to just come in and post anything. A language filter is in place that
catches most bad words, but this doesn't keep non-CoCo related chatters out.

What I will probably do is take another vote to see what most people would want to do about undesired chatters in
the CoCo Cafe and then come up with the software solution that is fair to everyone. I have thought about linking
the chat system with the CoCo3.com forum accounts and as long as a forum member is logged into the site, the

7

chat system will use the same username. This way, people are accounted for better than the anonymous system in
place now.

Will you bring back to CoCo Store?

Certainly! That effort was put on hold for a bit but the script just needs some tweaking before it is ready to put back
online. Actually, it's quite limited so I plan to rewrite the CoCo Store script in PHP/MySQL and maybe call it Vinties
again and allow not only CoCo goodies to be listed but stuff for other vintage computers as well. Again, so many
ideas, so little time!

What do you like to do most on your CoCos?

Today I like to step back in time by playing around with programs and games that I remember as a kid. Playing
some of those old games reminds me of how it used to be and what limitations the developers had to work with.
We are spoiled now to having everything at the click of a mouse but there was a day when you actually had to work
hard to get a program running. This made us appreciate things better I suppose.

How many personal computers do you own?

Working or non? :) Well, I use two networked PCs every day for most of my work and play. My main tower PC and
laptop are connected via Ethernet so I can swap files quick and take my work on the road if I need to, etc. I also
have several other PCs in the closet that I'm saving for a rainy week to turn into Linux boxes or something.

What is your favorite brand?

I really don't have a favorite brand, but I do prefer power from the CPU and video card. So my main PC is a
Pentium 4 with very nice video and sound capabilities. My main PC can double as a HQ entertainment center,
actually. See what I mean by being spoiled?

What is your favorite operating system? Are you a Linux guy or Microsoft guy?

I'm actually a CoCo guy, a Microsoft guy, and a Linux guy all rolled in one.

I use Windows every day so I prefer the convenience to get things done quicker with much less hassle than from
any other OS but I also like the control that Linux gives me with far less restrictions than what Windows allows. I
truly believe an operating system should be ours to customize to our tastes, especially if we paid lots of money for
it.

With the CoCo, my favorite OS would probably have to be NitrOS-9 which is a highly-customized version of OS-9
Level II. Although I've written almost everything for Disk BASIC, I prefer the power of OS-9 when I use the CoCo.

8

I DARE YE ENTER...
...THE DUNGEONS OF DAGGORATH!!!

An Article by Diego

The sword in your hand feels heavy and cold. Useless. He’s closing. You can hear the magic crackling over the pounding
of your own heartbeat. As you push your back against the wall in a dark corner, you curse the golden ring in your finger.
It's magic for sure, but without the right command word, it's useless.

"Vulcan" The ancient god. The forger, working inside the volcano, making
weapons for the Olympians. And then, you know it. The word. Just as the
wizard turns the corner, you shout "Incant fire". Now the magic flows from
your hand, filling the dungeons with unnatural light. Your are ready for the
challenge...

A 3D game in real time for the CoCo 1? Yes, and one of the best ever. In
"Dungeons of Daggorath" you are a young warrior who has to defeat a
powerful wizard and his evil army.

DOING THINGS

The game takes part in a 3D maze, but, unlike modern games you have to
type commands to get things done. "MOVE" to take a step forward, "GET LEFT RING" to pick up a ring with your left
hand, and "PULL RIGHT IRON SWORD" to get that sword out of your backpack. If it seems awkward, you can just type
"M","G L R" and "P R IR SW", but it's still a real time world.

Even as you type, the creatures are moving around, looking for you. When it's time to fight (ATTACK RIGHT if your
weapon is in that hand), you have to type fast, or die trying.

THE WIZARD'S ARMY

To get to the Wizard, you will have to defeat over a hundred creatures, from nasty spiders to armored warriors. Each
creature has its own strengths and weakness, and as you will soon learn, a characteristic noise. As you move further
down the dungeon, you will find stronger and faster creatures, but be careful... If you decide it's too dangerous, and try to
go up again, certain defeat awaits you. When you destroy one of the creatures, the power it holds is transferred to you,
making you stronger with each kill. Some of them will also hold items that will help you in the quest.

TOOLS AND STUFF

When you go into the dungeons, you are quite ill-equipped. All you get is just a torch, a leather shield (which is useless
due to a bug in the game) and a wooden sword. That's not gonna be enough! You need to get better weapons and a lot of
magic items to have any hope of survival.

Maps, potions, magic rings -- the only way to get them is killing creatures, and only the most powerful ones have useful
things.

Except from the most basic items, everything has some magic in it. To take advantage of this, you need to "REVEAL" the
real name ********

If you are not powerful enough, you still can use the item as if it was a non-magical one.

CAN YOU SEE ME? CAN YOU HEAR ME?

One of the reasons this game was (is) so successful is the way graphics and sounds are used. The game uses the
256x192, 2 colors mode. The creature's graphics are just somewhat simple outlines, without any animation, the graphics
are only scaled to indicate distance. There is also a “fading” effect that depends on which torch you are using and how far
things out that works very well. One of the reasons for the outlined graphics is that the creatures are actually transparent.
This way you can see what's behind them... usually, a lot of other creatures.

9

And then, there is the sound. Besides the great quality of the noises, the way they are used is impressive. Each creature
makes a distinctive noise that starts as a faint whisper and can become a terrifying thunder when something is just
around the corner. And instead of background music, there is the sound of your heart beating, which is also your health's
indicator. A healthy and rested heart beats slowly, but after a hard fight, or a fast flight, you can hear the heart beating
faster and faster.
After playing a few times, you get to know if the creature that you can hear closing in is to strong for you to face. And
that's were the game is really different.

JUST A HEARTBEAT AWAY

You can try to run away and loose the creature in the maze, but there is one catch. Almost everything you do, including
attacking and walking, makes your heart beat faster. That means that if after a fight, you try to run, you will probably pass
out, and while you recover, the creature has a very good chance of catching you and having an easy kill.
Also, the more powerful the weapon you are using, the hardest it is on your heart. You can pass out just by attacking to
fast. So you have to be very careful when facing a powerful creature. If you want to flee, the best choice is trying to turn
around the corners, and wait for the noises to fade away.

NO COCO? NO EMULATOR? NO PROBLEM!

The game was originally released in a “program pak” dated 1982, and was one of the last games offered in the Radio
Shack catalogs. It has been cracked for disk and cassette use, and it's easy to find in DSK files. It doesn't work fine in
some emulators, but unlike other CoCo games, that's not needed to play it in a PC. This is because it has been ported to
the Wintel platform, with slightly enhanced graphics and sounds (now in useful stereo), but basically, the same exact
game. But the best way to play it, is still on a real coco.

There is a “sequel”, actually a totally different game with a similar style, called “Castle of Tharoggad” for the CoCo 3. Stay
away from it. It has nothing to do when compared with the original. Maybe somebody will make a really good sequel? I
would for sure pay for it.

On a final note, the sound is so well implemented, that even blind people has been able to finish it without any help. How
many games can make that claim?

Links

http://members.tripod.com/~Frodpod/index-2.html
http://mspencer.net/daggorath/dodpcp.html
http://nitros9.stg.net/daggorath.html

10

http://members.tripod.com/~Frodpod/index-2.html
http://mspencer.net/daggorath/dodpcp.html
http://nitros9.stg.net/daggorath.html

The Art of BASIC Programming
By Robert Gault

INTRODUCTION

Now there's a phrase to conjure with, "the art of Basic programming". What does it mean if anything? Much
better would be to say, the science of Basic programming because to evaluate your programming efforts you
must measure them against some objective not subjective scale.

Since we are going to try to evaluate our efforts, what should we measure them against? Here are some
possibilities that we can try on for size: style (i.e. matching some instructor's "way to do things"), easy to read
source code, maximum speed of operation, easy for customers (and yourself) to use, flexibility of modification,
compactness (i.e. more function with less code). You can probably think of other measurements. Now are these
objectives or subjective goals?

Style – definitely subjective and almost impossible to quantify. If there is any benefit to having it, it may get
you a higher grade in some course. Otherwise this is of no value.

Easy to read – while this is difficult to measure and changes with the person doing the reading, this is an
objective goal. You will have no doubts that it is valuable when you revisit your code weeks, months, or years
in the future.

Speed of operation – objective. This is very easy to measure with a watch and everyone hates to wait for some
code to crank out an answer.

Easy to use – objective. This is also difficult to measure but it is easy to compare A against B and select the
better of the two. It will always help to have this evaluated by someone else who does not know how you
intended your program to be used. That's what alpha and beta testing is all about!

Flexibility for change – hard to measure but objective. If you have ever attempted to repair or enhance code and
found making any changes more difficult than a total rewrite, you will know just how valuable this goal is.

Compactness – objective and easy to measure. This is most important when disk or memory space is at a
premium as it is on most Coco systems. As an example, if you are creating a graphics program and it becomes
so large that there is no room left in memory for a graphics image, you know you have failed miserably.

EXAMPLES

OK, so we have some goals and you can add your own to the above list; now what?! We can measure the above
criterion, but how can we predict that some chunk of code will contribute towards the above goals? How can
you tell which of the following snippets of code is "best" based on the above?

11

Function - wait for a key press
A
…
100 IF INKEY$=""THEN100
…

B
…
100 FOR I=-1 TO I=INKEY$="":NEXT I
…

C
…
100 EXEC &HADFB
…

It will be necessary to learn how Basic works on
the Coco to predict which of the above is the
"best" code. Basic is an Interpreted language. This
means that when a program is run, the interpreter
starts at the beginning of the program, and looks
for commands or functions that have been
predefined in a reserved word list. The program
was tokenized as the program was typed into
memory but now the tokens must be looked up in
a list, their jump addresses found, and the correct
code executed. The interpreter continues line by
line through the program until finished. If any
GOTO or equivalent statements are found, the interpreter must restart at the beginning of the program until the
correct line number is found before the command can be executed.

Let's count the tokens in each example to start the process of evaluation. Line A has IF, INKEY$, =, THEN,
and a line number for a total of 4 tokens. Line B has FOR, =, TO, =, INKEY$, = , NEXT for a total of 7 tokens
but no line number. Line C has EXEC as the only token. Line C is certainly the most compact. It will also
execute faster as fewer tokens need to be looked up in a jump table.
Both lines A and B use INKEY$ but line B has the function embedded in a For/Next loop, which adds some
overhead to the program but prevents the need to search for a line number when looping. Line B probably will
run faster than line A but it really should be tested. The determining factor will be if the line number is near the
beginning or end of a large program. Line C calls an ml routine in memory that is as small as they come: a@
JSR KEYIN, BEQ a@. Since INKEY$ also uses JSR KEYIN, line C is the fastest of the three lines for
execution. Looping is done without using Basic.

Which line is the easiest to understand? That will depend on how familiar you are with Coco Basic but lines B
and C are certainly less clear than line A. Still line C is a winner on two out of three criteria and with a
comment added would easily win on all three counts.

12

========== SCAN-3.BAS ==========
by Rodney H.

This two-liner for the COCO 3 lets you scan
the display through the entire 512K address
space.

 "1" selects the text screen
 "2" selects PMODE 0 graphics
 "3" selects PMODE 2 graphics
 "4" selects PMODE 4 graphics
 UP-ARROW scrolls upward
 DN-ARROW scrolls downward

Interesting memory 'pages' to examine include
the top of 32K RAM where you can watch the
6809 stack and BASIC string space, and the
very active default start page with BASIC's
working storage.

1 A$=INKEY$:A=A-(PEEK(&H155)=&HF
7)+(PEEK(&H156)=&HF7)AND&H3FF:PO
KE&HFF9D,A/4:IFM>1THENB=&H7F AND
A:POKE&HBA,B+B:SCREEN1,1ELSEB=1:
FORI=&HFFC6 TO&HFFD2 STEP2:POKEI
+SGN(A ANDB),0:B=B+B:NEXT
2 IFM THENIFA$<"1"ORA$>"4"THEN1E
LSEM=VAL(A$):IFM=1THENSCREEN0:GO
TO1ELSEPMODEM+M-4:GOTO1ELSEWIDTH
32:M=1:A=&H380:GOTO1

SOME THINGS TO REMEMBER

Here are some things to remember about Basic which will help you write the best programs possible. They are
not in any particular order and it is hardly a comprehensive list.

1) Document everything you do in a program. If there is any doubt that you might forget why some code is
present, put in a comment. If the program is being written as a tutorial, add comments to every line of code.

It is true that comments will slow down the running speed of a program, but not to worry! Keep one copy of the
program with a comment for every line, as your source code. Remove all the comments from the copy that you
will actually be using. You can make this easier to accomplish by keeping the code and comments on separate
lines, say every even numbered line is comment and every odd numbered line is code.

2) Basic will search from the beginning of a program to the end looking for line numbers associated with
GOTO, GOSUB, THEN, and ELSE. Therefore the targets of these commands should be as close to the
beginning of the program as possible. Put another way, all subroutines should be at the beginning of your
program. GOTO should be used as sparingly as possible, as should THEN line# and ELSE line#. This will
increase the execution speed of your program. It will also reduce the chances for spaghetti code which jumps all
over your program in ways impossible to follow. It will also make it much easier to read and understand your
program in the future, when you are trying to understand what you did and why.

3) There are at least three versions of Coco Basic, more if you include Dragon and MC10. So, if you intend to
trade programs with someone, send the program in ascii format; CSAVE"name",A or SAVE,"name",A. If you
don't do this, the tokens into which your program was converted may not be readable on the other system. You
can even run some Coco Basic programs on a PC with GW-Basic if they are imported in ASCII format.

4) Study books like the Basic Unravelled series (yes, I know it's spelled wrong but that's the title used for the
series) and look for ml routines that can easily be called from within a Basic program. Your programs will run
faster. Give some thought to writing your own short ml routines to be called by your Basic programs.

5) Never define a constant with an equation. If you have a line like X=4:Y=6:A=2:B=SIN(A)*X/Y, you will be
wasting valuable time while the interpreter calculates the answer. Just say B=0.6062 and be done with it. If
there is some equation which you need to use several time in your program, either place it within a subroutine
or use the DEF FN function to define it. That should speed up your program and decrease its size.
6) Don't forget that Basic trig functions use radian notation not degrees.

7) Not all shorthand notations are equivalent. You can place ' in a Basic line as a replacement for REM. You
can do the same thing with ? Instead of PRINT. The results are not equivalent in the tokenized versions.

ASCII Token
REM $82
' $3A83
PRINT$87
? $87

While you would think that ' saves space over REM by 1/3 it actually takes twice the space when used at the
beginning of a line. However if your line is:

13

10 A=10: REM THIS IS A TEST

then

10 A=10' THIS IS A TEST

is the same size after tokenization and faster to type. That is because there is a required : before the REM so
the tokens are $3A82 and $3A83. The use of ? for PRINT does not save any space after tokenization although
there is less typing to enter the command.

8) Don't use complex code in place of simple Basic commands. For example, if you want an infinite loop or one
that will continue until some condition is met, don't forget the STEP command.

…
100 FOR L=0TO1STEP0
…
200 IF X=23 THEN L=1:NEXT L
…
The above is equivalent to DO/UNTIL.

…
100 FOR L=0TO1
…
200 IF X=23 THEN L=-1:NEXT L
…
The above is equivalent to WHILE/WEND.

Similar loops can be used to create recursive routines just as can be done with more complex versions of Basic
such as Basic09 under OS-9.

9) Well … I'll let you add your own "things of importance" to this list as you get more practiced with
programming in Basic.

14

“Color Artifacing and a CoCo version
of the IBM BASIC ‘MOD’ function”

by Retro Rick

You might know of a special function in BASIC for the IBM PC which is called “MOD”. It simply
gives you what would be the “remainder” of a variable if it was divided by the number after the keyword
“MOD”. Let’s say you gave the command:

B = A MOD 8

And let’s say that A was equal to 12. When you divide “A” by 8 - the number you see after the word
“MOD” - you get the answer “1” with a remainder of 4. The “4” part is all that’s put into the variable B.

There are many ways to imitate this function on the CoCos. The one I’ll give in the program is written
like so:

MOD=(X1>=96)*96:X1=X1+MOD

Here’s how the routine works …

1. The number for the MOD function will be called the “MOD Number”. In the program example, the MOD
Number is 96.

2. We’re using the variable X1 to do our MOD imitation with.
3. We’ll use the variable “MOD” here. ECB actually reads it as “MO”, but as long as you don’t use the MO

variable in any part of your code, you’ll be okay.
4. The variable “MOD” will equal “-1” if X1 is over or equal to the MOD Number.
5. MOD will be multiplied by the MOD Number.
6. Anytime X1 is less than the MOD Number, MOD will equal Zero. Otherwise, the MOD variable will

always equal the MOD Number multiplied by “-1”.
7. Now the MOD variable is put to work. It’s added to the variable X1.

The code used here has a limitation - If X1 is ever greater than or equal to the (MOD Number)*2, the
function won’t work right. The code never has X1 go beyond 96, so I left it like this to make the code run
faster.

This code example would fix those problems, but it does the calculations more slowly:

X1=(INT(X1/96))*96)-X1

Now, for the next half of the article. It’s purely graphics-related.

If you’ve tried to do hi-res graphics in PMODE 4, you’ve no doubt run into the “color artifacing”
stumbling block. Confound it, sometimes these colors are orange and blue, and sometimes they’re blue and
orange!

The most common way to fix this problem is to store “Orange” and “Blue” into variables, and then
show an orange or blue screen beforehand and ask the user what color it is. The code then changes the
variables accordingly. However, when you make sophisticated use of combining one of those two colors with

15

the remaining two (Black and White - or “Buff” as the book calls it), the pixels seem “mis-aligned” whenever
your code switches the orange and blue around. Argh!

Well, the good news is I’ve developed an alternative to this. The only catch is that you need to design
your images so that there’s room to shift the image left or right one pixel in PMODE 4. Not a terrible
limitation.

For CoCo 3 users, I’m sure the question is: “Why not just stick to CoCo 3 graphics modes instead, since
they have more color and better resolution anyway?” Well, the answer to that question is simple: The more
types of computers your program runs on (in this case, all three CoCo’s rather than just the CoCo 3s), the more
popular your program can become. Proof of this is an IBM PC game released in the mid 1990s called
“Mario!”. It actually ran without problems on all Windows 95 and Windows 98 machines as well as DOS-
based machines as old as the 80286s (PCs sold back in the late 1980s). Plus, the file was so small a download,
even people with extremely slow modems could download the game.

The program below draws a rotating blue slab. Graphics pages 2 through 5 are displayed, while the
images of the rotating slab are on Page 1. There’s a different “angle” of the image every 16 pixels, and the
program draws whatever image is one Page 1 from Pixels X1 to X1+15, and the last image goes from Pixels 80
to 95. 16 is added to X1 with each frame, and when the X1 coordinates are greater or equal to 96, X1 is set
back to Zero again.

Note: PEEK(275) is the micro-timer of the CoCo, which never goes up to 255 and then back to 0 again.
It goes to the next frame when 4 “tics” of this timer go by, thereby keeping the program from running “too fast”
when the High Speed Poke is enabled.

1 GOTO1000
10 FORI=-1TO0:P=(PEEK(275)/4):FORY0=32TO15STEP-1:PMODE3:

GET(X1,Y0)-(X1+15,Y0+Y),A:PMODE3,2:PUT(X0,0)-(X0+15,Y),A:GOSUB999:
Y1=Y1+1:IFINKEY$>""THEN50

20 FORW=-1TO0:W=P=INT(PEEK(275)/4):NEXT:P=INT(PEEK(275)/4):NEXT
30 Y1=Y0+Y:FORY4=0TO191:PMODE3:GET(X1,Y0)-(X1+15,Y1),A:PMODE3,2:

PUT(X0,Y4)-(X0+15,Y4+Y),A:GOSUB999:IFINKEY$>""THEN50
40 FORW=-1TO0:W=P=(PEEK(275)/4):NEXT:

P=(PEEK(275)/4):NEXT:I=INKEY$="":NEXT:GOTO10
50 END:RUN
999 X1=X1+16:MOD=(X1>=96)*96:X1=X1+MOD:RETURN
1000 PMODE0:PCLEAR5:PMODE0:PCLS0
1010 DIMA(256):PMODE4:COLOR1:Y0=15:Y1=Y0+Y0-1:

LINE(6,Y0)-(9,Y1),PSET,BF:PMODE3:COLOR3:
LINE(22,Y0)-(24,Y1),PSET,B:PMODE4:COLOR1:LINE(25,Y0)-(26,Y1),PSET,B

1020 PMODE3:COLOR3:LINE(34,Y0)-(44,Y1),PSET,BF:COLOR0:
LINE(45,Y0)-(45,Y1),PSET:COLOR3:LINE(48,Y0)-(63,Y1),PSET,BF

1030 LINE(66,Y0)-(78,Y1),PSET,BF:COLOR2:LINE(64,Y0)-(64,Y1),PSET:COLOR3:
LINE(88,Y0)-(90,Y1),PSET,B:COLOR0:LINE(86,Y0)-(86,Y1),PSET

1040 PMODE3,2:PCLS2:COLOR0:LINE(0,0)-(254,8),PSET,BF:PMODE4,2
1050 DRAW"BM86,0;C0;R1D6L1R2U6R2D1R1D1L1D1;NL1;D1R1D1L1D1L1;

BR5;U6R1D6R4;BR3BU1;U5R1D6R3U6R1D5;BD1BR3”
1060 DRAW"NU6;R1;NR4;U3;NR2;U3R4;BR3;BR10;BD6"
1070 DRAW"BR3;L1U1L1U1L1U2R1;ND1;U1R1U1R1;BR3;ND2;

16

R1D3R1D3R1U3R1U3R1D2;BR3BD4"
1080 DRAW"R1U2R1D1U2R1U2R1D1U2R1;BR3;ND6;R1D2;ND4;

R1D1R1D1R1;NU4;D2R1U6;BR3;R1D1R1D1R1D2L1;NU1;
D1L1D1L1;BR6;BR2;R1;BU2;L1U1R2U1R1U1L1U1L3D1L1"

1090 SCREEN1,1:PMODE4:FORT=-1TO0:I$=INKEY$:T=I$<>"Y"ANDI$<>"N":NEXT:
A=-(I$="Y"):FORX=80TO0STEP-16:GET(X,Y0)-(X+15,Y1),A,G:
PUT(X+A,Y0)-(X+A+15,Y1),A,PSET:NEXT

2000 Y1=Y0+1:Y=Y0+1:Y2=88:Y3=Y2+16:X0=120:X1=0:GOTO10

Rom to Ram
By Rodney Hamilton

This one-liner for he CoCo 1 or
CoCo 2 copies the ROMs to RAM,
patches the RESET vector to return
to RAM mode and change the “OK”
prompt to “ok”. (requires 64k ram)

For the Dragon 64, you will need to
change the address of the “ok”
prompt in the 4th line from “ABEE” to
“82EC”. If you don’t want to modify
the prompt, delete the six bytes
encoded as “CC6F6BFDABEE” and
reduce the loop count from 52 to 46.

8 CLS:FORI=0TO52:POKEI+1017,VAL(
"&H"+MID$("12B7FFDF6E9CF71A508E8
000B7FFDEEC84B7FFDFED818CFF0025F
1CC6F6BFDABEE865597718E03F99C722
706DC72ED1E9F721CAF39",I+I+1,2))
:NEXT:EXEC1024

17

Hello Fellow CoCoists;

I am writing this short video converter update for Mary's newsletter. The design and schematic of
the converter have been finalized pending feedback from all my beta testers. The feedback so far
has been very useful. Rodney Hamilton made a great contribution fixing the problem of a weak
contrast ratio. I have included several pictures.

First is my "lab". I'm not trying to scare you but if you enter here check to see if you have all
your body parts before you leave. :) You can see my binocular microscope, soldering/de-soldering
station, oscilloscopes, voltmeter and coco3 of course with SVGA and monochrome sub monitor. I
will be spending a lot of time here depending on demand for the unit. I have concentrated on
streamlining assembly of PC board and enclosure. I have templates of front and back panels
showing where to drill and cut complete with bit sizes and connector positions. Next picture is
the converter itself. It measures 6 inches square. Very compact and neat configuration and it

works quite well. This particular unit is destined for Mark at cloud9.

The next picture is a screen shot of the working unit. A test pattern is on the SVGA monitor displaying all 64 colors at once
by dynamically switching the GIME registers on the fly. It is a very demanding test for the unit which gives a rock solid display.

 Before I start taking orders from the general public I am going to contact the people who attended the last fest who indicated
their interest in the converter. After that it will be first come first serve. I am also going to try to have a few units to sell at the fest. It
all depends on the demand. Also the price is set at exactly $48. Could go up or down slightly in near future depending on availability
and price changes of components as time goes by.
Till then:

LONG LIVE COCO!!!!
Roy R Justus

18

Minesweeper
By Diego

This game is based on the popular "minesweeper" that's included with Windows since version 3.1.
It should work in any CoCo, but will need a few small changes to run on Standard Basic (at least, the
PLAY commands). It also needs a joystick. Sorry, if the coding is a bit messy. It's the way I like to
program ;-)

10 WIDTH 32:REM NOT NEEDED ON COCO 1&2
20 POKE 65497,0:REM REPLACE FOR 65495,0 ON COCO 1&2
30 GOSUB 3000:REM INTRO & INSTRUCTIONS, NO NEED TO TYPE LINES 3000 TO 3230
40 DIM M(27,14)
50 MR=45:ML=45:REM MR IS MINES FLAGGED, ML MINES REALLY LEFT
60 FOR X=1 TO 27:FOR Y=1 TO 14:M(X,Y)=0:NEXT Y,X:REM CLEAR MINEFIELD
70 BL=0:HS=5000
80 FOR A=1 TO 45
90 X=RND(25)+1:Y=RND(12)+1
100 IF M(X,Y)=0 THEN M(X,Y)=9 ELSE 90
110 NEXT A
120 CLS 0
130 PRINTCHR$(161);STRING$(25,CHR$(163));CHR$(162)
140 FOR A=1 TO 12
150 PRINTCHR$(165);STRING$(25,CHR$(160));CHR$(170)
160 NEXT A
170 PRINT CHR$(164);STRING$(25,CHR$(172));CHR$(168)
180 TIMER=0
200 REM MAIN LOOP
210 H=INT(JOYSTK(0)/2.56)+1
220 V=INT(JOYSTK(1)/5.3)+1
230 S=PEEK(1024+V*32+H)
240 POKE 1024+V*32+H,223
250 FOR LO=1 TO 10
260 BT=PEEK(65280)
270 IF BT=254 OR BT=126 GOTO 500
280 IF BT=251 OR BT=123 THEN GOSUB 900
290 A$=INKEY$:IF A$="" THEN 320
300 IF A$=" " GOTO 500
310 IF ASC(A$)=13 GOSUB 900
320 NEXT LO
330 POKE 1024+V*32+H,S
340 GOTO 210
500 REM IS THERE A MINE?
510 PRINT@219,"TIME";:PRINT@251,INT(TIMER/60);
520 X=H+1:Y=V+1:C=0
530 IF S=191 AND M(X,Y)<>9 THEN MR=MR+1:PRINT@28,"LEFT";:PRINT@60,MR;
540 IF MR=0 AND ML=0 THEN TT=INT(TIMER/60):GOTO 4000
550 IF M(X,Y)=9 THEN GOSUB 2000:GOTO 210
560 FOR A=X-1 TO X+1
570 FOR B=Y-1 TO Y+1
580 IF B<2 THEN NEXT B
590 IF B>13 THEN GOTO 630
600 IF A<2 THEN NEXT A
610 IF A>26 THEN GOTO 640
620 IF M(A,B)=9 THEN C=C+1
630 NEXT B,A

19

640 IF C=0 THEN C=31:REM TO GET A SPACE IN THE NEXT POKE
650 IF Y=1 OR Y=14 OR X=1 OR X=27 THEN 670
660 POKE 1024+(Y-1)*32+X-1,C+112
670 IF C=31 AND Z=0 THEN GOTO 750
680 IF Z=1 THEN RETURN
690 GOTO 210
750 REM THE SQUARE WAS CLEAR
760 REM SO, SHOW ALL AROUND
770 Z=1
780 FOR CX=H TO H+2: FOR CY=V TO V+2
790 C=0:X=CX:Y=CY:GOSUB 560
800 NEXT CY,CX
810 Z=0
820 GOTO 210
900 REM PUT A FLAG
910 IF S=191 THEN RETURN
920 PLAY"T32EFE"
930 POKE 1024+V*32+H,191:MR=MR-1
940 S=191
950 IF M(H+1,V+1)=9 THEN ML=ML-1
960 IF MR=0 AND ML=0 THEN TT=INT(TIMER/60):GOTO 4000
970 IF ML=0 THEN PLAY"T12CDEFCDEFCDEF"
980 IF MR=0 THEN PLAY"T8FCFCFC"
990 PRINT@28,"LEFT";:PRINT@60,MR;
1000 RETURN
2000 PLAY"O1V31T8BDV<T>ACV<T>GA"
2010 PRINT@448,"YOU BLASTED A MINE";
2020 PRINT@480,"KEEP GOING ANYWAY (Y/N)?";
2030 A$=INKEY$:IF A$="" THEN 2030
2040 IF A$="N" THEN 2110
2050 IF A$<>"Y" THEN 2030
2060 BL=BL+1
2070 PRINT@448,STRING$(28,CHR$(128));:PRINT@480,STRING$(28,CHR$(128));
2080 PRINT@443,"MINE";:PRINT@474,"BLASTS";:PRINT@507,BL;
2090 GOSUB 900
2100 RETURN
2110 FOR X=2 TO 26:FOR Y=2 TO 13
2120 IF M(X,Y)=9 THEN PRINT@32*(Y-1)+X-1,"M";
2130 NEXT Y,X
2135 PRINT@448,"PRESS ANY KEY TO CONTINUE";
2136 EXEC 44539
2137 CLS 6
2140 PRINT@32,"YOU WERE ABLE TO FIND";
2150 PRINT@64,"A TOTAL OF"45-ML"MINES";
2160 GOTO 4080
3000 REM INTRO
3010 CLS 0:SCREEN 0,2
3020 PRINT@10,"'MINE CAMP'";
3030 PRINT@32,"DO YOU WANT INSTRUCTIONS? (Y/N)";
3040 A$=INKEY$:IF A$="Y" THEN 3060 ELSE IF A$="" THEN 3040
3050 RETURN
3060 PRINT@32,STRING$(32,CHR$(128));
3070 PRINT@64,"LAND MINES ARE ONE OF THE";
3080 PRINT@96,"GREATEST DANGERS CIVILIANS FACE IN AREAS WERE THERE IS, OR WAS AN
ARMED CONFLICT.";
3090 PRINT@192,"BEFORE BEING DEPLOYED TO HELP UNAND RELIEF CONVOYS, YOU MUST";
3100 PRINT@256,"COMPLETE YOUR BASIC MINE-HUNTINGTECHNIQUES AT THE 'MINE CAMP'";

20

3110 PRINT@320,"USE THE RIGHT JOYSTICK TO MOVE";:PRINT@352,"THE MARKER, THE RED
BUTTON OR";
3120 PRINT@384,"THE space KEY TO DIG FOR MINES,";
3130 PRINT @482,"* PRESS A KEY TO CONTINUE *";
3140 A$=INKEY$:IF A$="" THEN 3140
3150 CLS 0
3160 PRINT@0,"AND THE BLACK BUTTON OR THE";:PRINT@32,"enter KEY TO PUT A FLAG AND
MARKA MINE.";
3170 PRINT@96,"EVERY TIME YOU DIG, A NUMBER";:PRINT@128,"WILL INDICATE YOU HOW MANY
MINESARE THERE IN THE SURROUNDING";
3180 PRINT@192,"TERRAIN";
3190 PRINT@258,"'MINE CAMP' V. 1.0, NOV 2005";
3200 PRINT@293,"DO YOU WANT TO SEE THE";
3210 PRINT@323,"INSTRUCTIONS AGAIN? (Y/N)";
3220 A$=INKEY$:IF A$="Y" THEN CLS0:GOTO 3060 ELSE IF A$="" THEN 3220
3230 RETURN
4000 CLS 6
4010 PRINT@9,"CONGRATULATIONS";
4020 PRINT@39,"YOU FOUND THEM ALL";
4030 PRINT@64,"IT TOOK YOU ";TT;"SECONDS"
4040 PRINT@96,"";
4050 IF BL=0 THEN PRINT"AND YOU DIDN'T BLAST ANY MINES"; ELSE PRINT"AND YOU
BLASTED";BL;"MINES";
4060 SC=TT+(BL*25):PRINT@128,"YOUR TOTAL SCORE IS"SC;
4070 IF SC<HS THEN 4110
4080 PRINT@192,"THE HIGH SCORE SO FAR IS"HS;
4090 PRINT"BY "HS$;
4100 GOTO 4140
4110 PRINT@197,"YOU HAVE THE HIGH SCORE... SO FAR"
4120 INPUT"WHAT'S YOUR NAME";HS$
4130 HS=SC
4140 PRINT@416,"DO YOU WANT TO PLAY AGAIN (Y/N)?";
4150 A$=INKEY$:IF A$="N" THEN PRINT:PRINT"BYE":END
4160 IF A$="Y" THEN 50
4170 GOTO 4150

21

Sorting OS-9 Directories
With a Basic09 Program

By Robert Gault

There have been several messages on the Maltedmedia newsgroup asking for programs that sort OS-
9 directories. While you can find such programs on RTSI, this offers a perfect opportunity to learn some
Basic09 programming.

Basic09 is a good choice of language because it is easy to learn and is almost as fast for this purpose
as any other language that runs under OS-9. In addition, it is not that hard for users of Disk Basic to convert to
Basic09.

To write a program of this type, it helps to divide it into parts. These parts help to keep things simple
and serve as templates for more general use. After all, any mixture of items can be sorted, not just directories.
Towards this end, the program has been divided into three parts: 1) general input to place data to be sorted
into an array; 2) Shellsort - the sorting routine to be used which is simple to program and middle of the road
efficiency; 3) a comparison routine specifically for OS-9 directories.

The study of the sorting process can be a lifetime work and many volumes of textbooks have been
written about this subject. I won't attempt to justify the choice of shellsort but merely say that its speed is
related to N^1.26 where N equals the number of items to be sorted. By comparison a bubble sort is an N^2
process and both quick and heap sorts are N*log2(N) processes. So for 40 items to be sorted: bubble=1600,
shell=104, quick or heap=147. In the context of our project, shellsort holds it's own against the competition and
could be the fastest sorting procedure.

To make any progress, we must know the structure of an OS-9 directory. All OS-9 directories have a
one sector header (which we can ignore) and as many more sectors as are needed to contain the file entries.
Each file entry consists of a file name left justified in a 29 character field and a sector address of 3 bytes. The
last character of the name has $80 added to it.

directory entry ASCII value
shell $73,$68,$65,$6C,$EC,$00,$00,$00, etc.
 $6C+$80

Directories can contain traces of entries which have been deleted. These are never removed but have
the first character of the name changed to $00. All directories have .. and . as the first two entries.

Our sorting process will skip over the ../. entries so there is no chance of moving them. All upper case
entries will move towards the start of the list and all deleted entries will move towards the end of the list. Since
the OS-9 convention is to have directory names in upper case and files in lower case, all subdirectory entries
will move to the front of the list.

The comparison routine must take two directory entries and compare each character until they can be
labeled as smaller or larger. To reduce the comparison time to a minimum, the process should stop
immediately if either test case is a deleted entry or if the end of either name has been reached.

The terminated name strings cause the comparisons to be more complex than expected as shown
below.

Straight ASCII comparison:

arc < arctype

22

String terminated comparison:

arc > arctype because $61 $72 $E3 is larger than
 $61 $72 $63 $74 $79 $70 $E5

Compenstate string terminated comparison:

arc < arctype when string terminator found MOD(character,128) used

The modulus function in effect subtracts out the $80 for a normal comparison but prevents generation of
negative values. Modulo math actually divides by the modulo value (mv) and multiplies the remainder by the
mv; ex.

MOD(231,128)=(1.8047-1)*128=103
MOD(103,128)=.8047*128=103
MOD(359,128)=(2.8047-2)*128=103

Quirks of Basic09 and OS-9

The following procedures are entered and saved in Basic09 exactly as written except for the
PROCEDURE lines. Use the same names (dirsort, shellsort, and compare) until you understand the language
well enough to modify them. Once saved (save* dirsort), pack them into intermediate code (pack* dirsort). The
packed modules will become a single merged file in your command directory.

A quirk of Basic09 makes the first module in a packed file the main line. Therefore enter the following
procedure in the order given.

Some examples of usage with stock OS-9 are:

dirsort (".")
dirsort ("..")
dirsort ("/dd/cmds")

If you just enter 'dirsort' a help message will appear. If you are using Shell+, or NitrOS-9 (which should
have Shell+ installed), the ("") is not necessary and the syntax will be:

dirsort . dirsort /dd/cmds

!!!! CAVEATS !!!!

Be sure to proof read carefully before running this program on a directory. If something goes wrong,
you may lose the contents of the directory or a disk/drive.

It is simple and useful to modify the module dirsort to store the sorted directory list to a file. That will
permit proving the program works without altering any directories. Change the following lines:

(* Write the sorted names back to the directory. *)
OPEN #path,dname:WRITE+DIR
(* Skip over the .. and . entries. *)
SEEK #path,64
FOR i=1 TO v
PUT #path,directory(i)
NEXT i
CLOSE #path

to these new lines:
(* Write the sorted names back to the file dirsorted *)
CREATE #path,"dirsorted"

23

FOR i=1 TO v
PUT #path,directory(i)
NEXT i
CLOSE #path

The new file dirsorted can be examined with dEd or Dump and compared to the actual directory.
When you are sure that the program is working safely, restore the original lines. Delete dirsorted before each
new run because attempting to create a file that already exists will give an error.

PROCEDURE dirsort
(* This program takes a directory name as a parameter. *)
(* The default directory is the current one. The directory *)
(* will be sorted with Upper case first then Lower case. *)
(* This will put subdirectories at the beginning of the directory. *)
DIM path,char:BYTE; i,v:INTEGER
(* All directory entries are 32 bytes with the name in the first 29, *)
(* followed by the lsn address. *)
TYPE filename=name(29),lsn(3):BYTE
(* This allows for 500 names in a directory. If you have more than *)
(* this amount in one of yours, you need to reorganize your drive. *)
DIM directory(500):filename
(* Trap a missing parameter. *)
ON ERROR GOTO 30
PARAM dname:STRING[80]
IF dname="" THEN
dname="."
ENDIF
(* If the directory does not exist, report an error. *)
ON ERROR GOTO 20
OPEN #path,dname:READ+DIR
(* Remove error trap *)
ON ERROR
(* Skip past the .. and . entries. *)
SEEK #path,64
i=0
(* Loop until entire directory has been read. *)
(* In Basic09, EOF is Boolean so can't be used as *)
(* FOR I=1 TO EOF(#path) *)
WHILE NOT(EOF(#path)) DO
i=i+1
GET #path,directory(i)
ENDWHILE
(* Save the number of entries. *)
v=i
IF v=0 THEN
CLOSE #path
PRINT "The directory is empty."
END
ENDIF
(* Sort the array of directory entries. *)
(* Pass the parameters to program shellsort. *)
RUN shellsort(directory,v)
(* Write the sorted names back to the directory. *)
OPEN #path,dname:WRITE+DIR
(* Skip over the .. and . entries. *)
SEEK #path,64
FOR i=1 TO v
PUT #path,directory(i)
NEXT i

24

CLOSE #path
END
20 PRINT "Directory does not exist"
END
30 PRINT "Syntax: either a dot entry or full path is required."
PRINT "Example: dirsort ."
PRINT " dirsort /dd/cmds"
PRINT "Usage: Sorts a directory in ASCII order."
END

PROCEDURE shellsort
(* Sorts an array *)
(* Based on "Sorting Algorithms for Microcomputers" BYTE, May 1983 *)
(* by T.Barron and G.Diehr *)
TYPE file=name(29),lsn(3):BYTE
DIM tx:file
DIM a,b:BYTE; d,i,j,match:INTEGER
(* Get array which may be partially full and number of entries. *)
PARAM entry(500):file; n:INTEGER
(* Basic09 syntax for base2 logs *)
d=2**INT(LOG(n))-1
WHILE d>0 DO
FOR i=1 TO n-d
(* Compare to items to see which is smaller. *)
RUN compare(entry(i),entry(i+d),match)
IF match<=0 THEN 20
tx=entry(i+d)
entry(i+d)=entry(i)
IF i<=d THEN
entry(i)=tx
GOTO 20
ENDIF
FOR j=i-d TO 1 STEP -(d)
RUN compare(tx,entry(j),match)
IF match>=0 THEN 10
entry(j+d)=entry(j)
NEXT j
10 entry(j+d)=tx
20 NEXT i
d=INT(d/2)
ENDWHILE

PROCEDURE compare
(* Compares two directory entries *)
(* Returns -1 if a<b, 1 if a>b, 0 if a=b which can only *)
(* happen with two deleted entries. *)
(* Deleted entries [first byte=0] are considered high *)
(* so that they are pushed to the end of the directory list. *)
TYPE file=name(29),lsn(3):BYTE
PARAM entry1,entry2:file; match:INTEGER
DIM a,b:BYTE; i,j:INTEGER
match=0
(* Scan through a full 29 character name. *)
FOR i=1 TO 29
a=entry1.name(i)
b=entry2.name(i)
(* Quit immediately if either entry was deleted. *)
EXITIF (a=0 OR b=0) AND i=1 THEN
IF a>0 THEN

25

(* Only B was deleted so match is Low. *)
match=-1
ENDIF
IF b>0 THEN
(* Only A was deleted so match is High. *)
match=1
ENDIF
ENDEXIT
EXITIF a<b THEN
(* Take into account a string terminated by adding $80 to last *)
(* character. *)
IF MOD(a,128)<MOD(b,128) THEN
match=-1
ELSE
(* False < because of last character in entry2. *)
match=1
ENDIF
ENDEXIT
EXITIF a>b THEN
IF MOD(a,128)>MOD(b,128) THEN
match=1
ELSE
(* False > because of last character in entry1. *)
match=-1
ENDIF
ENDEXIT
NEXT i
END

26

Sorting OS-9 Directories
With a Machine Language Program
By Robert Gault

Previously I presented a Basic09 program that sorted OS-9 directories. It had
some limitations as it depended on runB being present. It was not "user friendly" with
parameter entry unless Shell+ was installed. The program assumed that directories were as
large as 500 entries which meant it required 16K of data memory regardless of directory size.

Converting the program to assembly language makes it simple to correct the above. The size of the
directory to be sorted is obtained and data memory requested as needed. Parameter entry, regardless of the
version of Shell in use, is now exactly like that for the dir command. No support programs such as runB are
required. Of course speed has increased not only because runB does not need to be loaded but because it is
machine language.

The source code is heavily commented so little needs to be added here. One interesting problem
occurred which caused me much head scratching. The answer is applicable to any OS-9 ml program that uses
OS9 F$Mem, a request for more data memory.

When an OS-9 program is started, the registers have the following meanings:

------------------------------- <-Y
| Parameter Area |
------------------------------- <- X,S
Data Area
Direct Page
------------------------------- <- U,DP

regD= size of parameter area, regPC= module entry point

The minimum data plus DP area is 256 bytes, or zero if no data space is requested. Looking at the source
code, you will see that the end of the requested data is indicated by Size equ . and it was assumed that the
stack pointer starts at the value of size. However, since data space is allocated in integral pages, the exact
location of the stack pointer is not at Size.

Since many programs do not request more data space, the location of the stack is usually safe.
However, dirsort does request more data space to hold the sort buffer. When the content of the directory was
read into the buffer, the stack pointer was over written causing the program to crash in spectacular fashion. To
prevent this, the second instruction in the program relocates the stack to make sure it cannot be in the area of
the directory buffer.

You may remember that the Shellsort routine required the use of natural logarithms. I can just hear the
wails of despair, "Oh no, not only do I need to learn ml programming but I have to write code for logarithms!"
Not to fear, because this is a dedicated program and not a general purpose math program.

It was easy to see that for any reasonable sized directory, there were very few answers to the equation
D=2^LN(n) –1. You can see a table of n vs D values at the start of the program. Only eight entries were
needed to cover directories of up to 2980 files.

This should be your standard technique for any programming that requires limited values from complex
equations. Precalculate the results and use a table lookup. The size and complexity of your program
decreases as the speed significantly increases.

27

I hope you find a one to one comparison of Basic09 vs Assembly code interesting. Examples of this
type make learning assembly programming much easier than most other techniques.

* This is an asm version of a Basic09 directory sort
* that was published here earlier.
* Original and ml routine by Robert Gault, Nov. 2005

 nam dirsort
* This ensures the assembler knows predefined OS-9 terms
 ifp1
 use /dd/defs/defsfile
 endc

TyLg set Prgrm+Objct program object code
* Re-entrant means multiple users possible
AtRev set ReEnt+Rev re-entrant, revision 1
Rev set 1

* Create module header, needed by all OS-9 modules
 mod Eom,Name,TyLg,AtRev,Start,Size
* Data area
DPptr rmb 2 pointer to our direct page
dirsize rmb 2 size of the directory less 64 bytes
count rmb 2 number of directory entries
entryI rmb 2 pointer to nameI
entryJ rmb 2 pointer to nameJ
entryID rmb 2 pointer to name(I+D)
Tx rmb 32 buffer for transfer
i rmb 2 index
j rmb 2 index
NminusD rmb 2 holds last value of FOR I/NEXT loop
path rmb 1 value for path to the directory
D rmb 2 shellsort constant
 rmb 40
stack equ .
Size equ . This initial data space will be increased as OS-9
* assigns space in pages of 256 bytes. Initially the stack will
* not be here.
buffer equ . This will be the start of the data array in memory
* to be requested from OS-9 as needed.

Name equ *
 fcs /dirsort/
 fcb 1 edition number
* Ego stroking :) identifier
 fcc /Written by Robert Gault, 2005/

* Default directory name, dot, or current directory
default fcb C$PERD,C$CR

* Solutions for N,2^INT(LN(N)) -1
* We don't need general logs just specific values so
* they were pre-calculated
Dtable fdb 2,0
 fdb 7,1
 fdb 20,3
 fdb 54,7

28

 fdb 148,15
* If your directory has more entries than several hundred, you
* need to learn how to organize your disk/drive.
 fdb 403,31
 fdb 1096,63
* This next could exceed memory limits
 fdb 2980,127
DTEnd equ *

Start equ *
 stu <DPptr save the direct page pointer
 leas stack,u put the stack where we want it or it will be
* inside the directory buffer and crash the program.
 cmpd #0 are there any parameters?
 beq noprm
l1 lda ,x+ skip over spaces, if any
 cmpa #C$SPAC
 beq l1
 cmpa #C$CR if only spaces, same as noprm
 bne a1
noprm leax default,pcr point to default directory, dot
 bra a9
a1 cmpa #'? if "?" then show syntax
 lbeq syntax
 leax -1,x backstep to first character of directory
a9 lda #%11000011 directory, single user access, update
 os9 I$Open attempt to open a path to the directory
 lbcs error
 sta <path save the path #
 ldb #SS.Size get the size of the directory
 OS9 I$GetStt size reported in regs X&U
 cmpx #0 MSB of size
 lbne Tlarge too big to sort
 tfr u,d evaluate the size
 cmpd #128 two entries other than .. and .
 lblo getreal can't sort 1 item or less
 subd #64 reduce size by 64 bytes for .. and .
 std <dirsize save size in bytes
 addd #Size we need current data + directory buffer
 os9 F$Mem request space for the buffer
 lbcs Tlarge can't get enough memory
 lda <path recover path to the directory
 ldx #0 MSB position
 ldu #64 LSB, past the entries .. and .
 os9 I$Seek skip over the entries
 ldu <DPptr recover DP pointer
 ldy <dirsize data size in bytes
 leax buffer,u point to our buffer
 os9 I$Read transfer the directory information to buffer
* Calculate the number of directory entries
* Divide size by 32 bytes per entry. INT(size/32)must=size/32 or
* the directory is corrupted. So, ignore remainder.
 ldx #0 initialize counter
 ldd <dirsize
l2 leax 1,x division is multiple subtractions
 subd #32 size of each entry in bytes

29

 bne l2
 stx <count the number of names in directory
 leax Dtable,pcr precalculated constants
 leay DTEnd,pcr
 pshs y
 ldd <count
l3 cmpd ,x
 bls a4 if fewer or equal # of entries get
D
 leax 4,x move to next table entry
 cmpx ,s have we exhausted the table?
 bne l3
 leas 2,s restore the stack
 lbra Tlarge should not be possible to get here
in code
a4 leas 2,s restore the stack
 ldd 2,x get shellsort D from table
 std <D save working value
* Sort starts here
* Directory entries can't have duplicate names or the
directory
* is corrupted. That means a<b is as good as a<=b when
testing.
s2 ldd #1 initialize FOR/NEXT loop
 std <i
 ldd <count same as n in Basic09 program
 subd <D
 std <NminusD save value
* calculated pointer for entryID
s6 ldd <i FOR i=1 TO n-D STEP 1
 addd <D get pointer for entry(i+D)
 lbsr point get the pointer value
 stx <entryID
 tfr x,y
* calculate pointer for entryI
 ldd <i
 lbsr point
 stx <entryI
* Compare the entry pointed to by regX against that for
regY
 lbsr compare is name(i) < name(i+D)
 bcs s20
 ldx <entryID
 leay Tx,u shellsort swap name holder
 lbsr movexy name(Tx)=name(i+D)
 ldx <entryI
 ldy <entryID
 bsr movexy name(i+D)=name(i)
 ldd <i
 cmpd <D
 bhi s4 this was a Basic09 IF/THEN
 ldy <entryI inside the IF/THEN
 leax Tx,u
 bsr movexy name(i)=name(Tx)
 bra s20 ends the IF/THEN
s4 ldd <i initialize FOR/NEXT loop
 subd <D
 std <j
s5 bsr point FOR j=i-D TO 1 STEP -D

Xenion by Michael Duncan,
Sold by Diecom Inc

Review by Brian Palmer.

Xenion was the first CoCo 3 space
game written to showcase the graphics
ability of the CoCo 3 and was
programmed in 1987.

This game was different to any other
game in this genre. This game had a
lot of detail done for background
scenes. Most other games had sparse
scenery, but not this one. From start to
finish, there is great detailed scenery;
from flying over the Alien Cities, to
flying in space, to battling Tanks and
force fields on the ground. Two players
can play, two types of special bonuses
can be found, smart bomb icons, and
energy shields.

The only fault I have found in this
game is the sound effects could've
been better. Then again the graphics
make up for this.

This game is a cross between F16
Assault and Zaxxon, but had more
Baddies to Kill, and better all round
action. This is a must have game for
any serious game player. When you
get a copy, watch for how many alien
ships look like fighter planes from
Movies like Battlestar Galatica to
StarWars.

30

 stx <entryJ
 tfr x,y
 leax Tx,u
 lbsr compare is entry(Tx) > entry(j)
 bcc s10
 ldd <j
 addd <D name(j+D)
 bsr point
 tfr x,y
 ldx <entryJ
 bsr movexy name(j+D)=name(j)
 ldd <j NEXT j
 subd <D STEP -D
 std <j
 cmpd #1 stop if less than 1
 bge s5
s10 leay Tx,u
 ldd <j
 addd <D
 bsr point
 exg x,y
 bsr movexy name(j+D)=name(Tx)
s20 ldd <i NEXT i
 addd #1 STEP +1
 std <i
 cmpd <NminusD
 bls s6 stop if i>(n-D)
 ldd <D D=D/2
 lsra
 rorb
 std <D
 cmpd #1
 lbhs s2 WHILE D>0
 lda <path rewind to just after .. & .
 ldx #0
 ldu #64
 os9 I$Seek
 lda <path
 ldu <DPptr
 leax buffer,u write out sorted directory
 ldy <dirsize
 os9 I$Write
 clrb
 os9 F$Exit release memory, close paths, and return to OS-9

movexy ldb #32 move the entry pointed to in regX to
sw1 lda ,x+ that pointed to by regY
 sta ,y+
 decb if not finished, continue
 bne sw1
 rts

* Converts an index in regD to a memory offset in regX
point pshs y
 leax buffer,u
 ldy #-32 initialize offset, convert base1 to base0
p1 leay 32,y calculate offset=index*32 -32
 subd #1 update index
 bne p1 continue if not finished

31

 tfr y,d
 pshs x
 addd ,s++ add offset to buffer pointer
 tfr d,x regX now points to name
 puls y,pc

compare ldb #29 size of name field
 pshs b save counter
cloop ldb ,y+ get character
 lda ,x+ get character
 beq c1 if deleted go
 tstb
 beq c2 if deleted go
 tsta
 bmi c5 if last character go
 tstb
 bmi c6 if last character go
 pshs b
 cmpa ,s+
 beq c4 if equal, test next character
 bra cx
c1 clra
 bra cx return +
c2 coma
 bra cx return -
c3 anda #$7f
 andb #$7f
 pshs b
 cmpa ,s+
 rts
c5 bsr c3
 beq c2
 bra cx
c6 bsr c3
 beq c1
 bra cx return result
c4 dec ,s
 bne cloop
 clra should not be able to get here in code
cx puls b,pc return result

error leax nodir,pcr
 ldy #endnd-nodir
write lda #1 screen
 os9 I$Write
 clrb
 os9 F$Exit
nodir equ *
 fcc /Directory does not exist!/
 fcb CCR,CLF
endnd equ *

Tlarge leax big,pcr
 ldy #endbig-big
 bra write
big equ *
 fcc /Either the directory is too large or there is insufficient /
 fcc /memory./

32

 fcb CCR,CLF
endbig equ *

getreal leax huh,pcr
 ldy #endhuh-huh
 clr ,-s
 bra write
huh equ *
 fcc /Get real! You can't sort less than 2 items./
 fcb CCR,CLF
endhuh equ *

syntax leax usage,pcr
 ldy #enduse-usage
 clr ,-s
 lbra write
usage fcc /USAGE: dirsort will sort any directory. If no directory/
 fcb CCR,CLF
 fcc / name is given, the current directory will be sorted./
 fcb CCR,CLF
 fcc /EX: dirsort dirsort . dirsort ../
 fcb CCR,CLF
 fcc " dirsort /dd/cmds"
 fcb CCR,CLF
enduse equ *
 EMOD
Eom equ *

33

“Pegasus and the Phantom Riders”
Game author: David Figge (a.k.a. The Snail)

Publisher: Tandy (Version 1.0) and Snail Corp. (Version 3.0)
Runs in PMODE 4 on 64K+ CoCo’s

Review by Richard Kelly

Introduction: Let’s say you’re looking for a game that plays somewhat like the Joust arcade game, but
you want it enhanced a bit. If you have a CoCo, this is basically the only game you have to choose
from.

“Pegasus” exists in at least three
versions. There’s the RS-DOS version,
where you start the game by using the
LOADM and EXEC commands. This is
the newest version available, and was
not sold in the U.S. as far as I know. The
version was sold in Brazil, and probably
in other areas outside of North America
as well.

The second version is the most popular –
the U.S. official version which you started
up either by entering in the DOS
command, or – if you had DECB 1.0, you
could use this command as an
alternative:

RUN”PEGASUS”

 A third version exists which is basically a cracked version. The “cracked” credit message
appears along with the name of the game when the program reaches the title screen.

When the title screen does appear, note
the color of certain lines of text. They
should be either blue or “red” (displaying
on all TVs as orange, to be honest). Start
the game when the text is blue, and the
background of the game screen will have a
blue sky.
If you select a two player game, you have
the option of playing “Duel” or “Cooperate”
Mode. Duel Mode is like Joust – The two
players can kill each other as well as the
enemies. Cooperate Mode allows the
players to pass through each other, so
Player 1 and Player 2 can’t kill each other
by accident.

34

You start the game flying a Pegasus, and the “Phantom Riders” fly into the scene from a mountain to
do battle. Your opponents are killed by making contact with you when your head is above theirs. If
the opposite is true, then you’re the one who dies.

The level starts with two halves of a hill on the bottom left and right, and a deeper level of ground in
between the two. There’s quite enough room
to get your Pegasus a full running start
before you start flying.

Pass two levels, and you enter the second
phase. There’s a closer view of the water
and the mountain, and you now see sharks
swimming around. The ground below has a
“gap” in it where you can fall in the water,
although it’s a little too easy for you to avoid.
Turns out your enemies can fall in the water
themselves, and often do.

Pass two more levels, and you enter Phase
3. Now there’s an even more detailed
mountain view, plus there’s a water beast

that breathes fire into the air to kill your Pegasus. The “gap” is still exactly the same size as before,
and it evens appears in the same place.

If you manage to pass a few more levels after that, you’ll get a sort of “Challenge” stage, where you
come in full view of the waterfall. There’s no ground where you can run around. In fact, you appear
on a small platform that disappears only seconds after your Pegasus comes into view. If you
manage to pass this stage without losing any lives, you get a bonus.

If you have a Sound-Speech Cartridge, then the game will talk to you. Supposedly the sound effects
are more realistic with the cartridge as well, but I personally noticed no difference at all in the sound
when I played the game.

Graphics: C+. The graphics always do the job fairly well, but for a game with this sort of color setting,
the graphics look rather blocky. The background is always blue (or “red”), which means you’ll never
get those ultra-sharp images you’d see if there was white on a black background, or vice versa. It
sort of defeats the purpose of giving the game a PMODE 4-based color scheme in the first place. It
would probably look just a good with the screen in PMODE 3, and you wouldn’t have that color
artifacing that makes the first two CoCo’s so infamous.

Sound: C+. No sounds seem to be out of place here, but they’re nowhere near as impressive as
ones I’ve heard in many other CoCo releases. There’s just no sound in this game that really grabs
your attention. Also, Steve Bjork has proven (with the game Megabug) that the CoCo’s PCM sound
can “speak” better than the Sound-Speech cartridge can.

35

Animation: B+. This has some nicely animated sequences. Take the Pegasus running off the hill
and jumping down, or turning very smoothly from one direction to the opposite one. Let’s not forget
those swimming sharks I mentioned earlier. Not to mention the monster popping its head out of the
water, then breathing a few fireballs in your general area. But my personal favorite bit of the
animation here would be the view of the waterfall in the challenge stage. *Very* nicely done.

So why not give the animation an A+? Well, the flying “bats” from the mountain will abruptly change
into Phantom Riders, rather than zoom in the image a little more, then smoothly turn left or right, like
Player 1 and Player 2 do. The Riders’ entering of the battle seem kind of patchy this way, since no
other sprite in the game is animated like this.

Game engine: A. There’s no obvious bugs
of any kind, and the frame rate never
decreases. It does show its limits in higher
levels though, when you realize that there’s
never more than four Phantom Riders on the
screen at one time.

And here’s another problem: *Very* stupid
enemies. In a nutshell, they pretty much fly
up and down, and rarely do little else. They
never change their attack patterns … not
even to avoid drowning. Given this, it’s a
small wonder that the “challenge stage”
wasn’t much of a challenge to me, since
there’s no ground in the level to save these airheads from drowning out of their own stupidity.

Gameplay: C. The best part about the gameplay is that the animation enhances it. Since the
Pegasus takes time to turn around, it forces you to adjust your gameplay a little bit, and plan ahead a
bit more, lest you find yourself in an impossible situation. This is the way that the truly best game
animation works.

Another highlight is that you get extra points if you catch the falling crosses *before* they hit the
ground. It encourages you to enhance your strategy, so if simple survival isn’t enough for you, that’s
something extra you can focus on.
However, the variety of enemies in Pegasus is very low. And although Phase 3 *looks* different, the
layout of the level is exactly the same; there’s a fire-breathing monster in the water added in, and
enemies that haven’t come in to attack you yet are still flying around the mountain in zoomed-
outform. But these things are just here to disguise the level for what it truly is – Phase 2 with a
different background.

Even worse – there’s only three phases. After that, you’ll get a challenge stage every once in a while
(starting at Wave 11), but otherwise you’re just playing the same levels in Phase 3 all over again.
The enemies don’t speed up after a certain wave, they never attack in a larger group than four, they
don’t get smarter … there’s just nothing more to see.

At least in the Joust arcade game, there were structures that crumbled away, adding at least some
variety. Joust also had more types of enemies. The fact that “Pegasus” has neither of these features
really hurts the entertainment value. When the player makes progress, he isn’t rewarded with new

36

types of experiences in the game. Instead, he finds himself brought through an endless set of levels
that never vary.

Overall: C+. This game seems to be based upon the idea of enhancing the concept of the Joust
arcade game, and I think the enhancement concept was a pretty good idea, even though I’ve always
enjoyed the original Joust as-is. Tragically though, it’s my impression that “Pegasus” kind of had its
development cut short, and was released before the author finished what he really wanted to do with
the game.

The first tell-tale sign of this is where you see the Phantom Riders flying in - how they abruptly
change from “bats” to flying black Pegasus. The second piece of evidence would be Phase 3, where
the level layout replicates Phase 2 rather than enhances upon it. The third and final bit of proof is the
poor variety of enemies, and lack of increased difficulty in the higher levels.

I suspect that Tandy said to the author somewhere in the middle of production: “Hey, this product is
taking too much time and money to develop. Just finish it up so we can get it out the door.” So the
author did just that. Wasn’t his fault if that’s the case – he was just doing what he was paid to do.

So as far as “Pegasus and the Phantom Riders” is concerned, what we’ve got here is pretty much an
average game. I say, borrow a copy for a day just so you can get a few kicks out of it. Then, dig out
a copy of MAME and try a better enhancement of Joust – the arcade game “Joust 2: Survival of the
Fittest”. You’ll be glad you did.

37

Show Off Your CoCo!

Boisy Pitre

Guys,

I have an elaborate CoCo setup that is hard to capture in pictures, but I'll try to give you some idea
of how it looks and works.

This is officially "Lab South," the southern
extension of the Cloud-9 enterprise. Overall, I
think that I have over 10 different CoCos in this
little area. For product development and
testing, I keep a CoCo 2 and a CoCo 3 up and
running; the rest are spares, and also come in
handy for other projects from time to time.

The first picture is of my development CoCo 3. I
have a CM-8 as the active display with a
Commodore 1084 on the side for backup
purposes. The shelf, built my my wife's uncle,
works well to suspend various components above
the CoCo system. You can see a 3.5" and 5.25"
drive pair in an FD-502 case, as well as a hard
drive, LS-120 and a CD-ROM drive sitting atop the bare power supply. The CoCo 3 is underneath.
Since its a development machine, the top stays off. It has a Cloud-9 512K memory board with
Protector+ and 6309, as well as a Cloud-9 PS/2 keyboard adapter. The Multi-Pak contains a Sardis
floppy controller and a SuperIDE.

38

The second picture is my 64K CoCo 2 setup. LIke the CoCo 3, it has a shelf with two displays. One
is a 14" RCA TV with S-Video and composite connections, the other is a green monochrome monitor
with composite input, useful for Word-Pak displays. The CoCo 2 has a Multi-Pak with TC^3 SCSI
Controller, Disto HD2 controller and Disto Super Controller (floppy). A single 5.25" floppy drive is
connected
to the system.

Also on the shelf are four hard drives and a CD-ROM drive that connect via the TC^3. The drives
range in size from 200MB to 1GB and are all formatted for use on the CoCo. And yes, the CoCo 2 is
connected to ALL FIVE of these drives. This actually serves as a testbed for SuperDrivers, HDB-DOS
and other software that Cloud-9 sells.

To give you an idea of where these CoCos sit
relative to my shop, I've taken a third picture.
The pegboard allows me to conveniently hang
tools, parts and other things that I need for
testing and development. A PC system
running Linux sits in the corner, and holds all
sources for the NitrOS-9 Project, ToolShed
and Cloud-9 products. I can easily build a
bootable floppy disk (3.5" or 5.25") on this
Linux system, put the floppy in a CoCo and
boot up to test drivers and other software. I
think that Linux is a great system for doing
CoCo development.

At the very top I've placed shelves to hold
spare CoCos in the box. I also have a Dragon computer up there. Speakers are on either side and I
have a Sony receiver (hidden by the metal cabinet door at the bottom right of the picture) so I can
listen to music while I work. Speaking of that, I have two metal cabinets full of CoCo parts,
software and other collectibles.

On the floor under the bench I have a 25" Sony Professional Monitor that I've modified to hook up to
a CoCo 3's RGB output. It is VERY heavy, but it puts out a GREAT and HUGE picture. 80 columns on
a CoCo 3 never looked so good!

See that little box on the top right side mounted on the stud with the little black antenna
protruding from the top? That's a 1900MHz digital packet repeater. I had to purchase one of those
in order to use my Sprint PCS phone in the building, since the metal was killing signal inside the
shop. This little gadget sprays signal all over the shop area, allowing me to talk to Mark back at
Lab North while working. We collaborate on the phone quite a bit (thanks to free Sprint-to-Sprint
calls).

39

Cloud-9 'Lab South'

All of this is in the back of a 40'x50' shop that I built behind our house. This is where the CoCo
magic happens! I keep busy in here quite a bit, and always am testing new ideas for the CoCo. Of
course, the SuperBoard will be party born here over the next few months. It's the perfect place to
tinker, try new things, and have fun with a great machine.

40

Richard Ivey
A CoCo - Texas Style!

I got my first Color Computer 2 for Christmas 1984 with a CCR-81 tape player. We had just moved to a much larger town
and I was pretty bummed out, so my parents got me this to help make up for moving me. I was hooked. At that point, my
NES and Atari 2600 pretty much went into hibernation. I got a 5 1/4 drive for my birthday 5 months later and a Multi-Pak
Interface and Speech Pack the following Christmas.

My first games were Popcorn and Polaris (not the worst Missle Command clone). I never got that good at programming.
I could program in BASIC and somewhere in a Rainbow magazine issue is a submission from me. As I got older and
started chasing girls and went to college, the computer got packed up. About 5 years ago, I unpacked it and started
playing with it.

I had bought a Color Computer 3 in 1987 but had sold it in a garage sale, so I bought one off ebay for $5. It got packed
up again and recently unboxed since I bought a house and have more room. I have since bought another floppy drive,
some games, and a Silver Case CoCo 1 still in the box. I have 3 deluxe joysticks and about 4 of the crappy black kind. I
hope to upgrade the keyboard and memory in the CoCo 1 at some point in the future. I have also gutted a dead CoCo
and put in a ps2 keyboard and it is now hooked to my docking station at work.

I am currently adding a 3 ½ inch drive into my 501 enclosure to transfer my old stuff off aging 5 ¼ media.

41

John Schuster
One photo won't really do it, but here is my main CoCo/emulator setup. The second picture is my main pc and my
original CoCo 1 where I waste incredible amounts of time playing Mega-Bug. LOL.
John

42

Mary Kramer's CoCo
I have the basics, the CM-8 monitor, Multi-Pak interface, 2 floppy drives(5 ¼ and 3 1/5) and of course my CoCo 3.
I have got to have the laptop for M.E.S.S in there too.

The second picture is of my second CoCo. He is my baby; see how he likes to sleep under his blankie! This CoCo is
much younger than my machine CoCo. Baby CoCo is only 6 months old right now. Make sure you take careful notice of
my budding artists’ work hung nicely on the wall behind my coco. Jacob loves to show off his paintings, who knows
maybe I will sell them on ebay when he is older!

Bob Devries aka: Aussie Bob

This is a CoCo - Aussie Style!

43

Diego’s System

My first CoCo was a 16 Kb CoCo 2 (ca 1985). I had it for about a week, until I realized that very few games would work on
it. I swiftly changed it for a 64 Kb model. About a year and a half later, I upgraded to a CoCo 3. I used them with a CCR-
81 and standard joysticks. In the early 90s I was able to buy the Orchestra-90 and the Sound/Speech pack.

When I moved to the USA, I had to leave them all behind, but as soon as I found e-bay, I was getting CoCos. The one
I'm using all the time is a 512 Kb CoCo 3 from Cloud9. For storage, I have a FD-502 controller, and 2x360 drives in a 501
case, plus a trusty CCR-81 (mostly to save games). In the MPI there is an Orchestra-90 and a S/S, leaving me an empty
slot for games (backgammon anyone?).

The printer is a DMP-106, which is running short on ink, but still enough to print my listings. I have the 4 styles of joystick
that AFAIK were available from RS, plus a 1 button mouse and a koala touch pad. This is a problem ,since all of them use
the joystick ports. That means a lot of switching plugs. I have to build some kind of multi-port adapter.

The saddest part of the setup is the monitor. A Commodore that only does composite and distorts the image at the
bottom. I'm hoping for a SVGA adapter. The DC-3 Modem and the "plug 'n power" are just for display. I don't have a
phone line, nor the data cable for the p'n'p. Most of our time together is using BASIC, but sometimes we go for Nitros/OS-
9. I'm looking for a hard drive to really get NitrOS-9 going.

44

Whew! This issue was cutting it close to the deadline. I just want to
say thanks to all that contributed. Thanks to you guys, this issue has
once again been a big success. I will keep this going as long as there is
a reader and people that contribute for it. Remember this is a community
event! People from all around the world contribute to this. I think my
dad would be very proud of me for providing a means for most of you to
start actually using your CoCos again and taking interest in rescuing
others off of ebay!

Some of you fellars are beginners with all this like I am! I would
like to see more from you guys as you progress with your skills and
learning of programming, etc. I do not write this newsletter... I simply
compile a bunch of works of many others into one simple format. (although
there wasn’t much simple about this issue format!) J

So thanks again and let’s get more people involved in this, and pass
on the love of our machines! So enjoy this issue and please give me both
negative and positive feedback.

Your Editor,
Mary Kramer

45

46

