S-9 Newsletter

April 30, 1992

Volume III No. 4 Bellingham OS-9 Users Group
Basic09 Part-7 ™ — IN THIS ISSUE =
Tutorial
by Scott Honaker & Rodger Basic09 Tutorial Part7) Pg 1
Alexanger Databasc Search Procedure

Wcll, as promised, here is the
SEARCH routines for our PDS

1.2/1.4 Meg Floppies Pg. X%
High Density Drive for OS-9

search on, then the value of "2" will be used
as the top of the "FOR X = 1 TO field" (for x
=1 to 2). and the second variable in the
DATA field (Last Name) will be used for the
variable FieldName.

The whole point of the Searck DB
Procedure is to provide two more variables
(fleld and FieldName) to be passed along to

Database. I've divided it into two
procedurcs and you could easily
simply the process by restricting
the field choices and eliminating
the first procedurc altogether. I
did not go to the trouble of fancy
screen formatling, however
thought it might be a nice touch to
not clear the screen with a "PRINT
CHRS$(12)" before listing the field options, but instead
print a block of spaces to blank out the menu options and
place the field choices at that location, leaving the current
database displayed in it's original posiion. Then when you
search routine find the desired record, it would simply
replace the current record at the top of the screen. BUT,
I'll leave those options to your creativity and programming
ability.

Chapter 2

HOW IT WORKS:

When you select "<F>ind" from the Main Menu, the PDS
Procedure nuns "Search_DB(DB_Path,Top)”. (This is
assuming you have already opened a file and have it
displayed at the top left corner of the Main Memu screen.),

LISTING 1:

The PARAMgter line assigns the proper varsiable types to
DB_Path and Top variables, which were passed to the
procedure from the Main Menu. The DIMeasion
statement defines and assigns more ficlds that will be used
in the listing. CHRS$(12) clcars the screen and the pext 11
lines print to the screen. The field variable contains the
number 1 to 8 from the input setement and will detcrmmine
which variable from the DATA field will be placed in the
variable “FieldName"”. So if you selected "2) Last Name”
as the ficld that you want the search routine to base it's

C-Langnage Tutorial

NW CoCo Fest Updates

the actual Search Procedure. Now we have
Pg.? the name of the field we want to search for
{for convenience sake) and the field number,
which is necessary for determining ficld
locations and iengths in are record search.

LISTING 2:

The first line defines our address variable
again with each field length and type
specified for our database. The second line defines the
variable types passed to the procedure from the last line
of LISTING 1. The next three DiMension slatements
could have been combined but were separated in this
case for clarification. The first DIM line identifies the
string variables and their length, the second identifies
the byte variables and the third identifies rec as our
database reocord variable defined by the TYPE statement
in the first line of the listing.

The following PRINT statements are obvious, and the
INPUT simply assigns your query to the SearchString
vanable. What follows is not so obviocus, so look closely
at the comments between each execution line for an
explanation of how the database records are scarched at
specific string locations and those sirings are then
compared to the SearchString.

When the SearchString is found, the record it is
found in is printed to the screen. A "Press AnyKey"
prompt is displayed. At this point in the listing, the
INKEYS command is called up in the middle of a
"WHILE-DO-ENDWHILE" nested routine. When a key
press is detected, the Search Procedure is caded and we
ar¢ returned to the Main Menu.

NEXT MONTH, our final chapter (Didn't I say that last
month) will feature the Pack Procedure,

LISTING 1

PROCEDURE Search_DB ' PRINT "5) City"

REM database Search Routine PRINT "6) State"

PARAM DB_Path:BYTE; Top:INTEGER PRINT *7) Zip Code"

DIM ficld:BYTE; FicldName: STRING{12] PRINT "8) Phonec Number” \ PRINT
PRINT CHR$(12) \ PRINT (*Clear Screen INPUT "Enter choice: " field

PRINT "Personal Database System - Search Datsbase” \ PRINT FOR x=1 TO field

PRINT "Search on which field:" \ PRINT READ FiekiName

PRINT *1) First Name"” NEXT x

PRINT "2) Last Name" DATA “First Name","Last Name", " Address 1*,"Address 2",
PRINT "3) Address 1” *City","State"

PRINT "4) Address 2" ,"Zip Code","Phone Number®

RUN scamh(DBﬁPath,Top,ﬁcld,FieldName)

LISTING 2
PROCEDURE Search
TYPE address=FName:STRING[10]; LName:STRING[15); addrexs1:STRING
[20]); address2:STRING([20]; city: STRING([13); state:STRING][2]; zip:STRING[10]; phone:STRING[14)
PARAM db_Path:BYTE; Top:INTEGER; field:BYTE; FieldName:STRING([12]
DIM CompareString: STRING[20]; SearchString:STRING{20]; char:STRING(1]
DIM offset:BYTE; length:BYTE
DIM re¢:address
char="" (*Used in the INKEYS routine

PRINT CHR$(12) \ PRINT (*Clear Screen

PRINT "Personal Data’base System - Search Database” \ PRINT

PRINT \ PRINT

PRINT "Enter "; FieldName; " to find"; \ INPUT SearchString

PRINT :

FOR X=1 TO field (*ficld = value from ScarchDB Procedinre

READ offset \ READ length (*reading data variables in pairs

NEXT X

FOR current=1 TO Top (*Top = aumber of records in database

SEEK #db_Path,(curreat-1)*SIZE(rec)toffset (*Search each record at a specific field location (offset)
GET #db_Path CompareString (*assign variable at offset location to "CompareString”
CowpareString=LEFT$(CompareString, length-offéct) (*Crop "CompareString” var. 1o the proper length
¥ SearchSiripg=CompareString THEN (*Compare *ScarchString” with your query ("CompareString”)
SEEK #db_Path (current-1)*SIZE(rec) (*Find the beginning of the record with the matching variable
GET #db_Puath.rec (*Retrieve the reoord in the "address™ format

PRINT rec.FNamne; * *; rec. LName (*print fields to screen

PRINT rec.address1

PRINT rec.address2

PRINT rec.city; *, ; rec.state; " *, rec.zip

PRINT “Phone: "; rec.pbone

PRINT \ PRINT

PRINT "Press Any Key to Continue.. "

WHILE char=""DO (*INKEYS routioe PDS Database on DISK

RUN inkey(char) The completc database is available on 5-1/4 inch 35
ENDWHILE track, Single Sided Disk format for $1 (and that includes
END postage and a fancy disk label). Mail your order to GS9
ENDIF Newsletter, 3404 lllinois Lane, Bellingham, WA 98226
NEXT current

DATA 0,10,25,45,65,80,82,92,106

1.2 and 1.4 High Density Floppies on your CoCo

Instruction for modifying the ORIGINAL RADIO SHACK FLOPPY CONTROLLER

The contraller MUST be the one with the full sized board, a 1793 controller chip and three adjusting potentiometers. According
to the Western Digital mamual, the 1773 (used in the newer cputradlers) CANNOT do high density.

This modificadlon is NOT for the faint of beart or those unexpericnoed with hardware modifications. If you don't know what
"piggyback” means when refering to chips, forget it! This modification requires 32 soldering connections, 18 jumper wires and
a lot of patience. Do this on you 0id spare controller if you can. The old controller needs 12 volts therefore you MUST have a
mulfipak or equivalent This mndification will allow the cantroller to use either 250 kbs or $00 kbs dasa transfer rate. This is
the difference between the standard 5.25" 360k or 3.5" 720k drives and a 5.25" 1.2 meg or 3.5" 1.4 meg drive.

1741874
1 74LS158
1 3.9k 1/4 watt resistor

1 mini DPDT toggle switch (optional)

Wire for the jumpers. (I rocvmmoend standard wire wrap wire as RS carries. This is very imporant, DO NOT use thick wire.
Wire wrap wire is 30 gange. Just right for these kind of projects.)

The mod will be done so if a mistake is made and you want %0 abandon it, you can just remove all of the jumpers plug in
replacement chips for the ones piggybacked to and you'll be back to where you started If you wamnt this option, buy an extra
74LS74 and a 74LS221. There are NO trace cuts in this mod. IC pins are left out of the socket to get the equivalent of a trace
cut. If you need to reverse the mod, those pins MUST be reinserted into their respective sockets. There is ABSOLUTLY NO
GUARANTEE OR WARANTEE EXPRESSED or IMPLIED FOR THIS MODIFICATION. Now, on to the fun part!!

We will be piggybacking a 74LS74 on to the existing 74LS74 at IC1. We will also be piggybacking a 74LS138 onto the
741.8221 at IC7. Some other chips will be soldered to and some pins will be removed from the sockets for some IC's. These
insthxctions will be entirely verbal, no illastrations.

First, remove Ul (74LS74) from it's socket. Position a new 74L.S74 on top of it with the pins EXACTLY overlapping (this is
called piggybacking). Be sure both pin 1's are lined up or it'l} be poof time when you apply the power. On the upper 74LS74,
bend up pins 2,3,5,6,8,9,10,11,12 and 13 so they point directly away from the body of the IC. Pins 1,4,7
be overlapping the lower 74LS74. Carefully solder these pairs of pins together being careful not to blob the solder onto the legs
of the lower 741574 as you will be plugging the pair (swck) of chips back into the U1 socket when done. On the lower 74LS74,
bend pin 11 out away from the body of the chip as you did for some of the pins on the upper IC. Pin 11 will NOT be going back
into the socket. Prepare six 3" jamper wires (prepase means strip back the insulation on ¢ach end of the wire, no more than
1/16". Then tin the exposed wite on each end of the jumper), Solder the wires to the stacked IC's as follows:

One end of each wire will be unconnected,

! jumper 1o pin 11 on the lower IC (the pin sticking out)

1 jumper to the lower IC pin 3 (must still be able to go into the socket)

1 jumper to the lower IC pin 6 (must also be sble to go back into the socket)

2 jumpers the the upper IC pin 3

1 jumper to the upper IC pin 6

Also, prepate a 1.5* wire and solder it from the ypper IC pin 2 to the upper IC pin 6 taking care not to disconnect the wire
already on the upper IC pin 6. You may now carcfully plug the IC stack back inio the IC1 socket making sure all pins get
seated into the socket with the exception of pin 11.

Second, we'll be doing a similar piggyback mod to the 74LS221 in the U7 socket Remove the 74LS221 from the socker
Posiion the 74LS158 on top of the 74LS221 Make sure that the two IC's are properly aligned and that the two pin 1's
are aligned togetber. Bend up all of the pins on the upper IC EXCEPT pins 8 and 16. solder the two pin 16s together and also
solder the two pin 8's together. As before, make sare not to biob solder on the legs as the stack will be plugged back into the U7
socket. Bend pin 13 on the lower IC away from the body of the IC so it cannot be reinserted into the socket. Prepare four
1.5" jumpers, one 2" jumper and one 3" jumper. Solder them in as follows:

1 27 jumper to the lower IC pin 2

1 1.5" jumper from the joined pin 8's to the upper IC pin 15

1 1.5" jumper from the upper IC pin 15 to the upper IC pin 10 (taking care

to not disconnect the wire already at pin 15)

1 1.5" jumper from the tied together pin 16's to the upper IC pin 11
1 1.5" jumper to the upper IC pin 7
1 3" juroper to the upper IC pin !

Plug the stack back ino the U7 socket making sure all of the pins are seated firmly EXCEPT pin 13 which should be sticking
out. Solder a 3.9k resistor from the upper IC pin 9 to the side of R18 (3.9k) which is the eloscst to the U7 socket.

Final Asscmbly

Remove Ul1 (the 74LS629). Solder one of the 3" jumper wires from U1, the upper 74L.S74 pin 3 to the top of the 74LS629 pin
7 nxaking sure not to blob solder. Plug U11 back in making sure ALL of the legs scat fiemly into the socket Unplug U3 (7406
or 7416). Connect the 2* wire from the lower IC pin 2 of the stack at U7 to the top of pin 1 of the IC that was in U3 (making
sure not to blob solder on the leg). Plug U3 back into it's socket making sure all of the legs scat firmly into the socket.

Solder the open end of the jumper connected to Ul lower IC pin 11 to U7 upper IC pin 4

Solder the open end of the jumper connected to U1 lower IC pin 3 to U7 upper IC pin 3

Solder the open end of the jumper connected to U1 lower IC pin 6 to U7 upper IC pin 2

Solder the open end of the jumper connected to Ul upper IC pin 6 to U7 upper IC pin S

Solder the open end of the jumper connevted to Ul upper IC pin 3 to U7 upper IC pin6

Select option 1 - using WRITE PRECOMP bit and a SWITCH (For Hard Drive booting systems) Mount the dpdt mini switch
somcwhere handy. I mounted mine in the hole near C1 and the piggybacked 74L.574's. Make swre that the switch DOESN'T
SHORT OUT any traces! I'll refer to the switch pins as follows:

A pin 2 toggles betwoen pins 1 & 3
4 5 6 pin 5 toggles between pins 4 & 6
——— ——— —-—

Carefully remove U12 {the 1691)from its socket. Bend up pins 9 and 16 away from the body. Put the 1691 back into the Ul12
socket making sure that all pins firmly scat with the exceptions of pins 9 & 16.

Prepare and solder a 4" jumper from U12 (1691) pin 9 to the DPDT switch pin 5.
Solder the open end of the jumper coanegted to U7 upper IC pin 7 to U12 pin 16.
Soldcr the open end of the jumper connected to U7 upper IC pin 1 to the DPDT switch pin 2.
Preparc and solder a short jumper from the DPDT switch pin 3 to the DPDT switch pin 4.
Prepare and solder a short jumper from the DPDT switch pin 4 (laking care to not discoansact the wire already there) to a
converient ground (for cxample, IC1 pin 7 on the SOLDER side of the board).

Prepare and solder a short juroper from the DPDT switch pin 1 to the DPDT switch pin 6.
Remove UB (the MC14174) and prepare a 3.5" jumper. Solder a wire to the top of pin 12 without blobing solder on the leg.
Plug U8 back in making sure all of the pins seat firmly into the socket.
Solder the open ¢nd of the jmmper connectad to US pin 12 to the DPDT switch pin 1 taking care not to disconnet the wire
already there.
Skip to check proceduse below.

Select option 2 - using a DRIVE SELECT BIT

Carefully remove U12 (the 1691) firom its socket. Bend up pin 16 away from the body. Put the 1691 back into the U12 socket
making sure that ail pins firmly seat with the exception of pin 16.

Soldes the open end of the jumper connected to U7 upper IC pin 7 to U12 pin 16.

Remove U2 (7406) from the socket. Choose a drive select line to use, either DS1 or DS2 (DSO should not be used or you will
not be able to boot, DS3 is usuatly used to access the back side of double sided drives so that cannot be wsed cither). Solder a 2"
Jumper to pin 3 (DS1) OR pin 5 (DS2) without blobing sokder on the leg. Plug U2 back into it's socket making sure all pins
seat firmly,

Solder the open end of the jumper just aftached at U2 to U7 Upper IC pin 1.

v

CHECK PROCEDURE;

Now recheck the entife procadure to make sure no mistakes were made. Check all soldening joints for good connections. Check
for shorts, especially by the DPDT swiich. There should be NO unconnected jumper wires! If there are, go through the eatire
sequence o se¢ what you missed. Now, we need to calibrate and test the controlier.

4

Use a multipak which will prosect the CPU (you need +12 afqyway) in case you made a fatal wiring mistake. Plug the
controller into slot 4 as usual. Power on the multipak, then the computer. If the DISK BASIC message doesn't come up quickly
then shut the computer off imediatly and power everything off. Unplug the controller and check for shorts and recheck all
cunnections against the modification procedure. If all else fails, you can always rcmove the piggybacked stacks at Ul and U7,
carefully pull off all of the jumpers, insert a new 741574 into U] and a new 741.5221 into U7, pull out U12, carefully bend pins
9 and 16 back down and reinsert it into it's socket, remove the switch and you'll be back to where you started. Presuming
you made it past the smoke (est, you will noed to figure out your switch position and calibrate the controller.

TE N (Skip if drive select method was chosen)
When the switch is in the position such that pins 1 & 2 are counected together (also pins 4 & 5) the controller is in the HIGH
DENSITY cnabled position (usc a meter 0 test the connection between pins 1 & 2). When the switch is the other way, the
normal configuration is active, which means write precomp is available. Put the switch into normal position for calibration.

F .
The controller can be calibrated either with a scope or by trial and error. Either way, mark the original position of R8 so you
can reverse the modification if you can not get it to work right.

If using a scope, connect the scope to the VCO output of the 74LS629 (U11) pin 7 and adjust R8 for 4 mhz. If doing the
adjustment by trial and error, put a formatted RSDOS disk into drive 0 and do a DIR from RSDOS. Turn R8 uniil you can get a
directory. You may have to do lots of DIR commands. Try to find the extreme scttings of R8 that will still produce a directory,
then set R8 between the two extreme settings. The range in which the DIR will work will be quite small and your final setting
for R8 should be as close as possible to the middle of the range. THAT'S IT FOR THE HARDWARE.

To complete the madification you peed to apply my IPATCH file "cc3diskhigh.ipc” to the ORIGINAL Radio Shack cc3disk
edition 9 (CRC $759161). You will also aeed one or both of the following disk descriptors: d7_1.2.dd (high density 5-1/4 inch
drive) and d1_1.4.dd.(high density 3-1/2 inch drive) The patched cc3disk detects the old 8inch drive bit in IT.TYP in the
drive descriptor and uses it to switch the data transfer rate.

Make a new OS9 boot with the new CC3Disk and the appropriate drive descriptor(s) to match your high density drive(s).
After booting put the switch (option 1) into the HIGH DENSITY ENABLED position and you're ready to go. For use in
RSDOS, the switch (option 1) should be in the normal position. Note, the high density drive is not usaable in RSDOS.

P.S. please send any aymments or clarifications to the me on the TC*3 UG board. 612-422-0824 Robert E. Brose II 12-1-90

EDITOR'S NOTE: The IPATCH file (cc3diskhigh.ipc) and the high density drive descriptors (d]_1.2.dd and d]_1.4.dd) are all

in an archived file called CCIDIS.AR found on the COLUMBIA HTS. BBS (206-425-5804) and OS-9 TACOMA BBS (206-

566-8857. Theses are both FidoNET Bulletin Boards and there is no Mrﬂr downloading thises files.
e ———— e ————

pwd and_i)xd mysteries revealed

Copyright (c) 1991, Zack C. Sessions, ColorSystems

OK, so there isn't an OS-9 System
Call which returns your current data
or execution directory. So, just how
do pwd and pxd do it?
This document will attempt to
explain that so that you will
understand it. Also, understanding
how pwd and pxd work will also
further your knowledge of OS-9
Disk Structure,

Let us begin our discussion with
the pwd coremand, first. Once
itsoperation is explained and
understood, the operation of pxd
will be a relatively simple matter to
understand.

First off, a small discussion on
0S-9 Disk Structure. The
basic entity which is contained on
any disk, 0S-9 ot otherwise is
knownas a file. Actually, the
information stored on a disk is
storedin fixed length segments
normally referred to as sectors.
The operating system involved
organizes information stored in
these sectors into discernable units.
These are the files comtained on that
disk. Special information is stored
by the operating system on the disk
which indicate to the operating
system how many files there are on
a disk, what their names are,

5

where they are located on the disk,
and how large they are. Thisis the
basic amount of information which
would be required.

0S-9 and other operating systems
also store various other information
about each file such as the date of
creation, date last modified, and so
forth. With Disk Extended Color
Basic, this information was stored in
part of Track 17. In this
manner, you are limited to the
number of files the disk can store
by the amount of space allocated to
this special storage area. OS-9 and
other operating systems allows for a
greater capacity by storing this

“overhead" file information in areas
which are dynamically allocated.
These arcas are normally referred
to as "directories” and their related
data structures,

A directory is nothing more than
a special file manipalated only by
the operating systera. In the case of
08§-9, there is also a special sector
allocated to each file 1o store special
information. This sector is called
the file descriptor sector. In
actnality, withOS-9, the only
information stored in the directory
file is the name of the files it
contains and for each file a pointer
tothe file's file descriptor sector.
File descriptor secto’s existon a
one to one correspondence with all
files on the disk.

A file's file descriptor segment
can be amywhere on the disk,
it'sactual location is irrelavent in
regards to the relative position of
the directory which contains the
file's name or to the data which the
file contains. One special
characteristic =~ of the OS-9
disk structwre which is shared by
several ather operaking systems is
that a directory can comtain a
directory. This is possible since a
directory is nothing more than a
file. Therefore a directory file, just
as any other file has its very own
unique file descriptor sector. This
means that the directory structure on
a disk can ke on a hieraschical
structure, 2 structnre which can be
compared ¢o a tree. The leaves are
the individual non directory files.
The branches are the directories. All
this has to start somewhere and as
in a tec this special directory
is called the "root” directory. 1t is
the uitimate parent of all other
directoriecs on the disk. The
directory file which
contains another directory is
referred to as the "parent” directory
of that directory.

The name of the root directory is
the same as the name of the
device on which it resides. Thas the
name of the root directory on a hard
disk who's name is /hO is /h0. This
concept is a little more confusing
with a floppy disk drive. If you have

two floppy disk drives, /d0 and /d1,
then the name of the root directory
of a floppy disk which is in device
/d0 is /d0, but the name of the root
directory of that very same floppy
disk when the disk is placed in
device /dl is /dl. Root directories
are a little more capable than that of
a tree, since it can contain not only
directories (branches) but also non-
directory files (Jeaves).

The root directory is
automatically created on a disk
when thedisk is formatted.
subsequent dirextories which are
created opthe disk are created by
the OS-9 System call ¥MakDir. A
simple user interface to this system
call is provided with the
Shell command makdir. The first
directories created on a disk
must first reside in the root
directory. Once a directory is
createdin the root directory, a
directory can then be created in
that directory. Any or all of these
directories can coatain non-
directory files or other directories.

A lot of this may be review for many
readers of this file, but please bear
with me I am lcading up to the

‘impontant point here. That is, every

directory always contains two
special files which are
created automatically by the
ISMakDir System Call. These are
"hidden" files since the Shell dir
command doesn't report their
cxistance, but thereare there
nooctheless. Acumlly, they arem't
reglly files, but merely special
entries in the directory file. This
will become apparent shortly.

The names of these entries are "."
and "..". The names of these
catrics do not acwmally contain the
surrounding quotation marks, they
naraes arc just the periods. 1 will
surround them with quotation marks
to separate them for clarity. Thase
entrics could be betier referred to as
"pointers™ to files which already
exist. The entry "." is a pointer to
the directory itseif and the entry *.."
is a pointer to the parent directory of
the directory. Maybe an example
will help to clear up any questions.
Let's say we have a disk named /hO.

6

It's root directory's file
descriptor sector is located at LSN
25. (TH keep this simple and use all
decimal pumbers for LSN. but in
actuality LSNs are stored as 3 byte
binary integers.)

Now, let's say we create a
directory in the root directory
called /hO/TEXT. Let's also say that
the file descriptor sector for
the directory is located at LSN 50.
The /O/TEXT directory will
automatically have those two special
entries "." and "..". The LSN of the
file descriptor sector for the ".* entry
will be 50 and the LSN for the file
descriptor sectar for the ".." entry
will be 25. An important thing to
remember is that the eatry for *.."
and ".* for the root directory are the
SAME, because the parent of the
root directory is the root directory
itself.

These entries are really
"synooym" file names. So, if your
current data directory is /MO/TEXT
and you ask for a directory of file
*..", then you are really asking for a
directory of /h0. The entries "." and
*.." can be used ANYWHERE that a
directory name can be used.
For example, you can also "chd .."
to change your data directory to
the parent of the directary you are
current in.

Now, just how does pwd make ase
of this informakion to
determine your current data
directory? Well, pwd first opens the
directory file *.", the corrent data
directory, and reads the entries
"."and ".". This gives pwd the LSN
of the file descriptor sector for the
parent directory and the current
directory. If these are equal, then
pwd has finished it's job, it is now at
the root directory. If they are
unequal, then we need to determine
the name of the *." directory. This is
the main processing loop for pwd.
The name of the " directory is
done by changing the cusrrent data
directory to the directory "..". It then
checks to see ifthe LSNs for "."
and "." are equal. If they are, pwd is
done. If they arc unequal, it reads
through the directory searching
for an entry whose file descriptor

sector LSN is equal to the
file descriptor sector LSN for the
previous "." enwy. When that
is found, we have the name for the
previous "." enwry. That name saved
away. We now have the file
descriptor sector LSN for this™.”
eniry, so we start the process over by
changing directory 10°." again
When it finally finds a directory
whose file descripfor sectors LSN
are equal, it determines the name of
the device with alISGetSit
SS.DevNm System Call and
displays the completed result.

You'll probably have to read the
previous paragraph a few
times before it becomes clear to you
just bow this process is done. Once
you undersand it, it witl be obvious
to you that to perform the similar
pxd command, all that needs to be
done is to access the directories with
the execution bit set! In fact if you

compare the pwd program with the
pxd program, there are only 4 bytes
which are different! (Not counting
the 3 CRC bytes, of coursel) And
two of thosedc four are the intcrnal
names of the programs! So
actnally, there arc only two bytes
which are effectively differem for
the two programs and these are the
two bytes which control the
access mask for the BOpen of the
. directory and the ISChgDir to
the ".." directory.

If you can read C, 1 have included
the equivalent code in C for the pwd
command and the pxd comm:and.
While it would be
extremely inefficient for you to
compile and scrually use these
programs they are included for
instructional purposes only. See, the
original pwd and pxd commands are
written in ASM, which makes their
binaries much smaller! If you wish

to incorporate the code from these
two programs in a program you are
writing to avoid forking pwd
and/or pxd commands, you are most
welcome to do so! They were
written in a form as to NOT require
any special library, they will
corpile and work just fine with the
stock clib.] which comes with the
Microware C Compiler for OS-
9/6809. In fact, even though pwd
could have been written slightly
simpler using the Kreider Lib, pxd
would not evenbe possible, since
there is no option with the opeadin()
function to open the directory with
the execqution bit set, which is
required by the pxd function.

1 bope this file and the associated
C program sources has helped
increaseyour knowledge and
understanding of OS-9 and its disk
file structure.

C Tutorial
Chapter 2

Type in the listing uamed ONEINT.C and display it on
the monitor for our first example of how to work with data
in a C program.

oXpNLC

nt inaexy

3ndmx = 137

prsntt("wh. valus of the
index is sa\n".index):s

incex = 27

gr ntti"?h- value of tha indmax
im aN nd-x):

index -

printt(“rh. value of the index
}- SANN?Y? , 1 nAex) ¢

Listing 4

The entry point "main" should be clear to you by now as
well as the beginning brace. The first new thing we
encounter is the line containing "int index;"*, which is used
to define an integer variable named “index". The "int" is
a reserved word in C, and can therefore not be wused
for anything else. It defines a variable that can have a
value from -32768 to 32767 on most MicTocompules

implemcntations of C. Consult your users mamual for the
exact definition for yoar compiler. The variable name,

"index", can be any name that follows the rules for an
identifier and is not one of the reserved words for C.
Counsult your manual for an exact definition of an
identifier for your compiler. The final character on the
line, the semi<colon, is the siatement terminator used
inC.

We will see in a later chapter that additional imtegers
could also be defined on the same line, but we will not
complicate the present situation
Observing the main body of the program, you will notice
that there are three statcments that assign a value to the
variable "“index®, but only one at a time. The first one
assigns the value of 13 to “index”, and its value is printed
out. (We will sce bow shortly.) Later, the value of 27 is
assigned to “index”, aod finally 10 is assigned to it, each
value being printed out. 1t should be intwitively clear
that “index" is indecd a variable and can store many
different values. Please note that many tinies the words
*printed ouwt" are used to mean "displayed on the
monitor”. You will find that in many cases experienced
programmers take this liberty, probably due to the
"printf” fonction being wsed for monitor display.

H

To keep our promise, let's return to the "printf®
statements for a definition of how they work. Notice that
they arc all identical and that they all begin just like the
"printf® statements we have seen before. The first
differeace occurs when we come to the % character, This
is a special character that signals the outpart routine to

stop copying characters to the output and do something
different, namcly output a variable. The % sign is used to
signal the start of many different types of variables, but
we will restrict ourselves to only one for this example.
The character following the % sign is a “d", which
signals the output rostine to get a decimal value and
outpat it. Where the decimal value comes from will be
covered shortly. After the "d", we find the familiar "\n",
which is a signal to retumn the video "carmiage”, and the
closing quomation mark. All of the characters between
the gquotation marks define the pattern of data to be
cutput by this statement, and after the pattern, there isa
comma followed by the variable nam¢ "index". This is
where the "printf” statement gets the decimal value which
it will cutput because of the *%d” we saw earlier. We
could add more "%d" output field descriptors within the
brackets and more variables following the description to
cause more data 1o be printed with one statement. Keep
in mind however, that it is important that the number of
field descriptors and the number of variable definitions
must be the same or the nmtime system will get confused
and probably quit with a runtime error. Much more
will be covered at a later time on all aspects of input
and output formatting A recasonably good grasp of this
topic is necessary in order to underSland the following
lessons. It is not neccssary to understand everything
about output formatting at this time, only a fair
underStanding of the basics.

Compile and ron ONEINT.C and observe the outpt.

0 AD

Load the file COMMENTS.C and observe it on your
monitor for an example of how comments can be added to
a C program.

E
» im a commant ignorad ny
the compiller =/

main() /* This im ‘noth.r comment
ignored by the conpiler w/

printf(*"we are looking at how
CSomments are)7y /v A comment iws
allowed to e
continuesd on
anotheax line »/
printf("used in . \n"):s

*ﬁﬁ One more ocommant: for effeot

programming practice would include 2 comment prior
to the programe with a short introductory description of
the program. The next comment is after the “main()"
program entry point and prior to the opening brace for the
program code itself.

The third comment starts after the first executable
statemenit and continues for four tines. This is perfectly
legal becanse a comment can continue for as many lines
as desired until it is terminated Note carefully that if
anything were included in the blank spacesto the left of
the three contimmuation lines of the ®@mment, it would be
part of the comment and would not be compiled. The
last comrucnt is located following the completion of the
program, illustrating that comments can go ndearly
amywhere in a C program. Experiment with this
program by adding comments in other places to see what
will happen. Comment out one of the printf statements by
putting comment delimjters both before and afier it and
see that it does not get printed out.

Comments are very impurtant in any programming
language because you will soon forget what you did and
why you did it. Jt will be much easier to modify or
fix a well commented program a year from now than
one with few or no commenis You will very quickly
develop your own personal style of commenting.

Some compilers allow you to "nest” comments which
can be very handy if you need to "comment out™ a section
of code during debugging Check your compiler
documentation for the availability of this feature with you
particular compiler. Compile and ran COMMENTS.C
this time.

¥
Load the file GOODFORM.C and observe it on
your monitor. It is an evaraple of a well formatted
program.

Listing 5

Comments arc added to make a program niore readable
to you but the compiler must ignore the comments. The
slash star combination is used in C for cornment
delimiters, They are illustrased in the program at hand,
Please note that the program does not illustrate good
commenting practice, but is intended to illustrate where
comments can go in a program. It is a very sloppy
loaking program.

The first slash star combination introduces the first
comment and the star slash at the end of the first lime
terminates this comment. Note that this comment is prior
to the beginning of the program illustrating that a
comuncnt can precede the program itself. Good

DFORM

meain Main program mstarts
hexyrs W/
<

PrEintf("Good rFform "“)7»
princse (roman sid in
*d
prince
("unaurutundlnq =
Drogrmm. \n't)y
printt ("Ang oad form ")y

Princy ("oan make
a programm) g
prince
("unreadable.\n")y

3

Listing 6

Even though it is very short and thercfore does very
little, it is very easy to sce at a glance what it does. With
the exmperience you have already gained in this tutorial,
you should be able to very quickly grasp the meaning of
the program in it's entirety. Your C compilet ignores all
extra spaces and all camiage returns giving you
considerable freedom concerning how you format your
program. Indenting and adding spaces is entirely up to
you and is a matter of personal taste. Compile and run
the program to see if it does what you expect it to do.

Now load and display the program UGLYFORM.C and
observe it. How long will it take you to figure out what
this program will do?

one, except for the formatting. Don't get too worried about
formatting style yet You will have plenty of time to
develop a style of your own as you leamn the Janguage. Be
observant of styles as you sce C programs in magazines,
boolss, and other publications.

This should pretty well cover the basic concepss of
programruing in C, but as there are many other things to
fearn, we will forge ahead to additional program structure.

main * Maln program startms
Faamzram e/ {?rihtf (M Qood Porm
)y rprine

("oan aid in
“)tprint:(:?ndcrutanding -

<>
rPrinttf{"Aand baad tor&
"Ny rprintl ("can make
printf{"unreadable. \n"

Listing 7 4 IN

1. Write a program to display your name on the monitor.
It docsn't master to the compiler which forraat style you 2.Modify the program to display your address and
usc,btnitwinn:'mcr}oyouwbcnywuy‘wdebugyw phone number on separste lines by adding two
program. Compile this program and run it You may be additional "printf” statements.
surprised to find that it is the same program as the last
——

— —
- -

?roqrnm bl ¥ 4

mm——— — —
N —— — e

NW CoCo Fest UPDATE

The Best Western Bayvicw Inp. in Brementon is offering us a special group rate. They have set aside 20 rooms for CoCo nuts

and their companions until the end of May. A singie room is only $55. A double is $58. To get these special rates, ocontact:
"Betty”, Groups Coordinator Besides the nicely appointed rooms there is an indoor pool and hot

Best Western Bayview Inn tub. Several couples recationed how relaxing that was last year. Thereis a
CoCo Fest II Convention park for walking (a morning run) just iwo blocks away. There are also
3640 Kitsap Way discount tickets for the gym that is right pext door to the Bayview. Of

Bremerton, WA 98312
1-800422-5017 or (206) 373-7349
Fax: (206) 377-8529

course, there is a Jounge and fine restsnrant right in the Inn for those who
want to stock up on calories instead of deplete them.

Bremerton is the home of the Puget Sound Naval Ship Yard and again
the hoine of the battleship USS Missouri. It is only about 10-15 minutes
from the CoCo Fest I Conference site. Let Betty know that you are inkerested in the tourist attractions when you call or write.
Bob van der Poel is the first rajor speaker to confirm, He will attend the entire event. He will be available for
personal chats, be our keynote speaker, and will give a special presentation about the language C. Bob is the author of the

highty respected and used Ved Text Edisor, Vprint Text Formatier for OS9, and the every popular Telewniter word processor
for the CoCo.

Finally, the plamning people want 1o let you know that there is a second in the series of CoCo Fest mugs coming. A new
design, a new collectable. With your registration they are only $5 apicce, $25 for a set of six. The mugs will be $6 at the Fest.

There will also be a fabulous T-shirt and even more! Wedon‘twamngvegaﬂthcmxpdswl
A - =
— - S—

—

Club Activity Report

Bellingham OS9 Users Group - Longview CoCo Club
Mt. Rainier CoCo Club - Port O'CaCo Club - Seattle 68xx Mug

e

Sallinghan 089 Users Group

The First Official Meeting of 1992
was held at the Bellingham Public

Library on Wednesday, April 22.
The room was perfect for our needs

with a black boasd, video tapes,
overhead projectars, Jarge table, etc
Unfortunately we were very few in
pumbers. Only 5 were in
attendance. But this was only the
first mecting and it takes time to get
the word out. Right?!

9

First order of business was to have
each attendee introduce themasclves
and tell the others about their
Computer systems and what they
wanted to gain from the club. It was
interesting that everyope had several
CoCo systems and and YBM Clone.

REGISTRATION FORM

NAME:
MAILING ADDRESS:
CITY: ST/PROV: AP/POSTAL CODE:
EVENT INCLUDED ~ SEPARATELY
FRIDAY EVENING
7:30p.m. Notable Video Tape Presentations YES $3.00
9:00p.m. Public Domain/Shareware Swap YES $3.00
SATURDAY:
7:30a.m. Sawurday Swap Mect setup time n/a nfa
8:15a.m. No Host Breakfust about $5.00 $6.00
9:00a.m. Computer Swap Meet YES $3.00
10:30a.m. Preliminary speakers YES $3.00
(Speakers to be announced)
12noon Lancheun & Keynote Speaker YES $12.00
— feanuring Bob van der Poed -
1:30p.m. Worksbops YES $3.00
Session 1: to b¢ amnounced Session 2: to be announced
3:00p.m. Workshops YES $3.00
Session 3: 10 be announced Session 4: to be anncunced
REGISTRATION FEE: $20.00 $30.00
(Remember, Saturday No Host Breakfast $3/86 extra)
jthwes Festival Items Available Onder Now AtFestll
CoCo Fest [1 Mugs $ 500 $ 6.00
N Set of Six $25.00 $30.00
T-Shirt Mea'sM L EXL) $ 8.00 $10.00
Exira Extra Large add $2.00 Your Name as part of design add $2.00
Desired Name(s): (size)
Second n e: (size)
Third name: (size)

(All amounts are U.S. Currency only)

NM CoCo Festival 3046 Banner Rd. SE., Port Orchard, WA 98366 (206) 871-6535

Advertisement went out
announcing that this was a Color
Computer Club, yet everyone was
‘nierested in their CoCo because
chey wanted to learn more about
089.

Second order of business was to
display the club offerings and
benefits, from the Newsletter to the
Public Domain Library, to technical
assistance,

Third order of business was all
the recent gossip the MW CoCo
Fest. We are all very excited about
Bob van der Poel, and at least four
of are planning on going.

Last order of business was a
review of Multivue and the currently
available upgrade files and patches.
Shell+ was reintroduced and a hard
drive boot disk with the Multivue
Term and windows was created
using Burke & Burke's EZGEN.

Next month a demonstration will
be provided by Rodger Alexander on
the ways to use AIF files to improve
the performance of Multivue.

- Rodger Alexander —

Mt. Bainier CoCo Club

Owr April meeting started off with a
demonstration by Randy
Kirschenmann of his "C" program
that will display a text file
backwards on the screen. The
members stated scveral uscs for this
program which included a good
exercise in using "C". Randy then
showed the source code and
explained how each line worked.
Chris Johnson then brought the club
up to date on the upcoming N.W.
CoCo Fest II. It will be even bigger
and more interesting than last years
Fest. So clear you calendars for
June 26th and 27th and plan tw
attend.
The rest of the meeting was devoted
to open discussions of several
subjects. Michael Stokes' series on
"C" had to be delayed by a month so
he will begin it at the next meeting,
It should be great for both the
Aginner and experienced "C"
Programuners.

-~ Alan Johnson -

Seattle 86xxx Mug

The April meeting was very
informative. First on the agenda
was 8 hardwarc presentation
showing how to add a second drive

to a Color Computer System.
Normally this is no big deal and
very easy to do. However, in this
case the two drives used were the
two worst possible cases. The first
drive was a new FD-502. The drive
configuration jumpers are located
under the circuit board and without
any labels. Also the jumper pins are
arranged in a 90 degree angle and
not in the usual configuration The
jumper positions are parallel to the
back edge of the drive rather accross
the jumper pins as with most drives.
It actually boils down to #rial and
efror. Note the defaukt position of
the jumper and them move the
Jjumper down two pins.

The second drive was an original
35 track, single sided drive that had
no drive select jumper setting on the
circuit board at all. However, three
solutions are possible. The first one
is the Radio Shack method: Get an
old Radio Shack drive cable with
the card edge connectors that have
the missing contacts. The end
connector has it's contacts pulled to
configure the drive for Drivel,
while the second connector has it's
contacts pulled for Drive 0.

The second method is to cut the
wires on the cable to the drive
disabling the Drive0 and Drive3
circuits.

The third method is to cut the
trace lines on the circuit board that
connect to the card edge connector,
again disabling the Drive0 and
Drive3 circuits. We wied this
method and it worked

Next on the agenda was the PDS
Database. A sample SEARCH
Procedure was displayed on an
overhead projector. Everyone
panticipated in debugging the
sample code until it was detesmined
to be perfect. This is the SEARCH
procedure featured in this
Newsletier. However, it took

several more modifications to get it
to actaully work properly!!!!!

Donald Zimmerman from the Port
0'CoCo Club was present at the
meeting and updated us regarding
the NW CoCe FEST in Port
Orchard on June 26th and 27th.
Donald also was secking
suggestions for improving the
format and/or subject matter. Most
of those in attendance indicated
their intentions to attend.

Finally, Rodger Alexander took
orders for a special purchase of
720K floppies and 20Meg Hard
Drives. The final tally was 7
floppies @ $20 each, 1 Hard Drive
for $85 and 2 Hard Drive controller
cards for $12 each.

- Rodger Alexander -~

Fort 8-Coo

Itwaslikcafailytalegoncaww.
Of course, it had a happy
ending. That's a given. It had a cast
of notable people. Those stories
always do. There was drama, action,
disappointment, and goodness
overcoming all at theend. Well,

that was April's meeting.
There was a plan, a storyline.
Guests speakers had been

invited, repeatedly. Publicity had
been created and delivered to the
harolders of the day, the

everyone had been called about tlns
great event.

Now for the drama. The guest
speaker was contacted 20 minulcs
before the mecting to make sure all
was well mthekmgdom It waso't.
His new chariot had blown a
transmission. Goodness would have
it that he had an extended warranty
on it (we won't give names herc).
So the focal point of our meeting
had just gone dead in the water.
Well, life will continue.

A few people had said that they
had equipmen! they were thinking
of liquidating, . . . for a price. You
never know if they are going
to materialize or not. Two of them

never did. There were three boxes
of CoCo "stuff" at the home of one
member. The night before the
meeting it was discovered that he
was out of state because of a family
death. Attempss were made (o get
the stuff to the meeting anyway,
maybe.

Seven pm rolled around and it
looked like a national meeting
of veterans of the Civil War. If we'd
been holding hands with each other
I would have been hugging myself,

But then then the light began to -
show on this dismal story.
People started wandering in between
7 pm and about 8:15. And the
group grew to arespectable 16
people. The CoCo "stuff” arrived.
Tom Brooks, in his time of sorrow, "

had seen that the CoCo stuff © |

collected by the Compater Bank.
Charitywas on its way to the
meeting. A young man who had
had an extensive system came
looking for a way to clean out some
of his space by getting fid .of
his CoCo stuff, mralbomofn
Wemdqarmngememsfmhxmm
donate everything to the Coraputer
Bank Charity who in tarn would

atlow the Port O’ CoCo group to sell
it for supporting funds for the
charity. The bidding started slowly,

. very slowly. But a spark occurred
" and things started picking up. And

before it was all said and done $160
was raised for th¢ CBC. And alot
of people held in their clutches
hardware, software, and other stuff
they REALLY wanted.

A major part of the meeting was
devoted to talking about the
upcoming CoCo Fest II. The date
has been set for the 26-27th of June,
The facility has been committed and
the dinning arrangements have been
selected. The event will be in Port
Orchard at the HiJoy Bowl. Things
will begin Friday evening with
prsentaons unail they throw us
ot. There is a NOQ_HOST

';bmalcfaﬂSam:dsyatabtham

and then a luacheon at noon with a
keynote speaker. We discussed the
desirability of various novelty items
for the FEST. Even though we had
a mmig last year, just about everyone
wanted another mug. So we will
have the second edition of the CoCo
Fest mug. Also we will have a T-
shirt. A Teghirt, if I may

- advance.

s0. Discounts will be available
for everything when ordered in

(See registration form
elsewhere.)

Although the meeling was
nothing like it was planned,
goodness or success triumphed over
chaos. We had a very worthwhile
mecling.

But that's not the topper! When I
got home I found out that Bob
van der Poel, called me to accept the
invilation to be the CoCo FEST
keynote speaker. He will also attend
the whole event so0 everyone will
have a chance to talk with him on a
1:1 basis. Bob is the author of the
famous VED Text Editor & Vprint
Text Formatter. He offered also to
talk at one of the workshops on the
language C.

So this story has a mwore than
happy ending. It has the potential
ofa fantastic convention for the
CoCo community and a significant
contribution ($160) to the Computer
Bank Charity. What more could we
want? "And so they lived happily
ever after.”

-« Donald Zimmerman -

NW CoCo Festival 11

June 26th - 27th

Port Orchard, Washinston

0S-9 Newsletter
Bellinghuwsi Wik 98926 | |

ot

	OS-9 Newsletter
	Basic09 Tutorial (Part 7)
	1.2/1.4 Meg Floppies
	pwd and pxd mysteries revealed
	C-Language Tutorial
	NW CoCo fest Updates
	Club Activities Report

