PNG K5.95
& NZ $3.95

PR
g

Qf AUSTRALIAN

TANDY ELECTRONICS DEALER. (No 9320)

..
..
W

..

DATALOEG

SOFTWARE SPECIALISTS
Presenting
the DTX 2001 Monitor.
$460.00 + Tax (20%)
* Sharp brilliant colour
* Green and Amber modes
* NSTC input
* Sound
Perfect Brand Disks.
5.26" (Box of 10)

BRI e Call!!
DSDD casisiisis $27.00
B0 - s $63.00

i DSHD (1.2MB) $90.00
3.5" (Box of 5)

2 SSDI) s $28.50

Unit 2, 278 Newmarket Rd.,
Wilston, Qld. 4051.

07—-300—-1978
07—-300—-5463

Bankcard &
Cheque Orders
accepted

Hardware/Software
Specialists

For All Your CoCo Needs

AUTO ANSWER $399.00
INFO CENTRE

THE FIRST BULLETIN BCARD SYSTEM
for Tandy's computers
(02) 344 9511 — 300 BPS (24 Hours)
(02) 344 9600 — 1200/75 BPS
(After Hours Only)

SPECIAL!

Avtek Mini Modem + Cable + CoCo
Tex Program — the total Viatel System —
$279.00
We also have the largest range of Software for
0S-9 and Fex operating systems.

PARIS RADIO ELECTRONICS

161 Bunnerong Rd, Kingsford, NSW 2032

(02) 344 9111

CoCoConf' 86

... P
Lettersccveinniniisesaianaiiosnsesisinsssesessas P
Reviews
CDUBALIEOR i s imahiosd o maateorilisd v sarsssiosreis ey P
Ha Ll OF: The TUBR- o e06005 00 otamntonmiace s soatalizarean et o7 P
Super Duper Utilitiescciviveivnennreinnnns P
Y P DR T COE 5. o7v) 0,940 100 0000180871000 678 w0 B o S e P
ALGEDra .. i iciidiniiiniseverts e siseiasdresiee P
SCRDMELOYS: . o8, 5 le) o b winsmalmibietatane Sniddonaiole miaimsminlohatace iaio o ndase P
OS=0"Qo0B1@B oy e vaiviniien #aea v et G5ie Koas em i s P
ASCREEBE 'o//0:0 00 a0 sniteane so s, onen 415 w0550y o b1 m 820058107808 6100 P
RAMDASE: s iaiaioiiovv i e s aimaas wiomanie s avse stala/orensin o are P
BLEEPS, BLOOPS, BELLS and WHISTLES
............................... by Villiam Mitchell P
CoCo SYNTHESIZER by Martin and Jeremy Spiller P
HUSICH iviveoinnvivadivavaesssnsanssans by Bob Ludlum P
LANGUAGE IDIOES i:ciivsensiosionaiionsissain by Steve Blyn P
ROBOTS ceovvveanscoscnssnnssnssnsnans by Michael Plog P
CASTLE _OF DOOK: :uvionniisiambasywaivie by Scott Halfman P
Correction .. CoCo Zon@ ..¢%ieecerrraronosnsosssnnsns P
COLDURCALE & nniavinsginidsiesisivaiviviesiie nees by C. Bartlett P
GREAT TRANSFORMTIONc000un by Marty Goodman P
CONPARE: i caaimmsi wiioning by E. Pozzi and K Paterson P
BARDEN'S BUFFERvcvivvvavnnnnns by Villiam Barden P
Borth Forum §iscsisaaviossansessvaivaans by John Poxon P
Virtually Doneccovvvevivncneeas by John Redmond P
16 BLCL . oocinsvinncamienesiesenis ey by Jerome Siappy P
Bagio 09 iviviviiniigansiesininei sl by Jack Fricker P
New Text Formatter 089, by Dale Puckett P

Computer Hut Software

Music Box Tape only $34.95
Learn to Read Music Tape or Disk $33.95

CoCoTex Tape or Disk $79.95
Use your CoCo to contact Goldlink on Viatel.

Special!!
64K upgrades for SOME CoCo’s $40.00

Phone or message us on Viatel for details.

T1000 Games:
Sea Search
Shenanigans

See us on Goldlink this month!

We accept 2~

* BANKCARD VIATEL NUMBER Computer Hut Software

21,Willioms Street.

* MASTERCARAD Bowen.Qld.4805.
¥ UISACARD 778622200 Phone (077)86-2220

ALL ORDERS SHIPPED SAME DAY

(6 e

[SECECE -
2(‘)(\)0&'— SoOVwCOPE IO

wWwnn
oo

w
~

P
SO

PRINT #-2

Some people have asked me, "Vho are you and what is
your role in the office?”. I can't blame them for
asking. Everyone has their own story of how they got
into something or another. So I'll do my best to
explain to you how I got into this mess!

First I'll describe myself. Ny name is Alexander (I
prefer "Alex.") Hartmann, born 23/6/1968 in a town
called Mannheim, West Germany. I'm about 179cm, fair
complexion, brown hair and eyes.

Now, how did I get myself involved in all this?

Sometime in September 1984 Nichael and Rainer
(Horn) drove up and asked me, "Did you know that
there's this computer meeting on tonight?". I said I
didn't and decided to come along.

The meeting place then was a Fishing Club hall.
There | met Kevin and Graham. They were nice enough
people alright.

So nice were they that they had sykaF;a asked
Michael to make tapes for the magazine!

For Michael it had paid off well. He would get the
odd free copy of the magazine for making a million
odd tapes of Rainbow and CoCoOz. 1 thought (at the
time) that was pretty neat-o. So I found myself
going to 'the office' to see if 1 could do some odd
Job to get a magazine and maybe a few programs.

The house. They said "you can't miss it! It's an
old house with a death trap as stairs"”.

As 1 fell through the stairs, 1 decided I must be
in the right place.

I was briefly introduced to everyone there; there
was a Sonya, a MNartha, and an Annette. Sonya, I
believe, was the typist. They were running behind in
finishing the magazine (as usual) and she was in the
middle of some typing.

Graham sat me down in front of a CoCo and gave me
some lengthy letters. He said one word: "TYPE!". So
1 did. According to them, I was the fastest two
fingered typist they'd ever seen.

In those days all I did was the typing.

Nowadays I do some or all of the following:

Typing, tape-making, banking, programming, hardware
and software repairs, advisor, editor, coffee
making, magazine-wrapper, 'receptionist’,
mail-opener, tape-checker, hardware upgrades.

Kot bad, huh?

Anyway, I'1l1l tell you about this month's edition.
One of my hobbies is making music. And that's what
this edition is all about

The CoCo has two ways the average user can make

music without setting up lengthy machine language
programs.
The first {s SOUND. This command is alright, but

the biggest grudge I have with SOURD is that you
can't do much with it. Sure, you can play music, but
it has only one voice and anyway, there are better
ways to make music (1f you have Extended Color
Basic). That better way is called PLAY.

PLAY lets you enter notes, octaves, volume, and
pauses all in one statement. Again it only has one
voice, although you could play the music so fast
that you make it sound like it has two volces. But
that won't do {if you're really into making and
playing music.

If you want to delve into machine language, there's
either something like Tandy's Speech Pak or Super
Voice, which can play 3 voices at the same time.

because most people will think, "Hey, four's better
than one!".

There are many of these programs out from both
commercial and magazine sources. Some commercial
ones from the top of my head are Musica and Musica
2;

If you want to go all the way, there's Symphony 12.
Row this is BIG. It plays 12 voices at the same
time! Hardware requirements are a keyboard from the
same firm, or an interface, so that you can play
from your home organ.

Then there's Synther 77. That lets you fool around
with the ADSR <(Attack Delay Sustain Release),
vibrato, volume, and a few other things. Also, don't
forget the stereo pak. One places it in the side of
the CoCo and you connect the other side 'of the cable
to your stereo.

On to CoCoConf'86.

Our very own Annette even at this moment, is
roaming the streets to chase up the best in
accommodation and prices! Her article appears this
month. Use it to help you choose a place to stay.

Above all, remember that the Gold Coast 1s quite
long - if you book into lodgings at Surfers
Paradise, you'll have a three quarter hour trip to
CoCoConf'86 and back each day. Try to get something
in Tweed Heads or Coolangatta.

You've probably heard it all before, but why not
come to CoCoConf'86? 1It'll be fun, interesting,
educational, and different. You'll meet interesting
personalities like Martha, Graham, Annette, Jim
Rogers, me, and a few other people you've never
heard of before.

How do you book? Easy. Fill out the form and send
it with a cheque to Goldsoft as quickly as possible.

Ve'll look forward to seeing you on the 30th!

For those of you who have been reading the past few
editions of "PRINT#-2", you've probably noticed that
we've had this competition going on.

It'sthe GAMES COMPETITION!"!

['ve been sitting at this desk opening the mail and
what do [get? That's right! No games! Lots of
utilities for the Utilities Competition, but no
games! So how about it? Send something in and who
knows - your's might be the winner!!

Alright for the person who's happy with three
voices.
After the three volce generation, enter the four
voice generation. They are somewhat more popular, e
Page 2 Australian RAINBOV July, 1986.

LOUOCON

As most of you are by now no doubt aware,
CoCoConf'86 1is being held at the end of next month
on the Gold Coast in Queensland.

Ve already have a good number of bookings for the
conference - many mare than at this time last year,
so 1t all seems set to be a top weekend. One look at
the list of speakers at the Tutorials confirms this!

CoCoConf ' 86.
Tutorials

Basic BASIC ..vivvvvnnrarannnnans viesssss. Johanna Vagg.
Advanced BASIC ...vvivvvrnnrrtoannnns cessdes . MNike Turk
& Alex Hartmann.

FORIR ccososnnavinee A e e R John Redmond
& John Poxon.

0S=0 ivessivraosaas Vamie e Ceseeensy . Graeme Kichols,
Ron V¥right,

& Jack Fricker.

68000 ..vovvrveocannansessrssrsrasonnns .ve+. Ron Vright,
Jerome Siappy,

& Jackie Cockinos.

MS DOS SRR teessesaas . . Brian Dougan,
Barry Cawley,

Paul Fulloon.

Bducation scesisasessiseees 5 Py aiaaeen ... Roes Eldridge,
Bob Horne,

& Bob Delbourgo.

GARES .. iierss0000000 TR S E T vv+vv+s Nichael Horne,
Andrew Vhite,
Kicholas Merantes,
& Tony Evans,
Viatel T R R T L R R R LR Ron V¥right.
The FObUr® .csciciaveaveonaernane e o Nike Turk
& Ken Allen (Tandy).

NC 10 Computing divisedesirs s e J 1N ROgers
& friends.
Proposed
Veekend TimeTable.

Sat AM Sat PK Sun AM Sun PX

Basic BASIC Advanced BASIC Hardware Ganes
(J Vagg) (A Hartmann) (G Fiala)

Advanced BASIC Viatel FORTH 68000
(X Turk) (R ¥Vright) (Redmond et a}) Computers
0S-9 0s-9 0S-9

(J Fricker) (G Nichols) (R Vright)

MS DOS MS DOS MS DOS The Future

(B Dougan) (B Cawley) (P Fulloon) (N Turk

«&°K Allen)

Education Education Education

(R Eldridge) (B Horne) (B Delbourgo)

NC 10 MC 10
(J Rogers) (J Rogers)

In addition to the items shown in the tables, your
admission to CoCoConf also pays for your meal on the
Saturday night at which the presentations for the
various awards will be made.

(Last year we had so much food even Tino Delbourgo
got stopped - this year the banquet will be bigger!)

During the year we have had an extensive series of
contests running, including our Games Contest and
the Utilities Contest. In addition to these
contests, prizes will be awarded in a number of
other categories including 0S-9, MS DOS, and our
major award, the Greg Vilson Award for Services to
the Computing Community. (Nominations for this award
from the Users' Groups are still open.)

On the Sunday, in addition to the Tutorials, a
number of our advertisers will have goods on sale. 1|
understand there will be some real bargains!

The other reason to be at CoCoConf this year
relates to an event of interest to most of our
readers, about which I can not be specific, but
which | know is close to your hearts!

Should the object 1in question arrive on time (&
currently it is), CoCoConf will be its first public
showing!

[want to also thank Tandy Australia Pty Ltd for
the generous offer of a number of prizes - over
$1300 worth in fact! ¥

The prizes 1include a Disk Drive, Computer, and a
number of periferals.

These prizes are in addition to Bayne and
[rembath's offer of a complete EARS package (Speech
Recognition Unit), Blaxland Computer Centre's

donation of a 68000 Class Computer, Paris Radio’'s
Donation of CoCoTex programs for Viatel, and The
Computer Hut's donation of an extensive selection of
software for both the CoCo and the MS DOS computers.

Like some of the previously mentioned tutorial

leaders, some of the other advertisers don't know
that they are donating prizes either (eg. GT
Computing) ~- but ['ve embarrassed enough people for

one issue, so I'll keep the embarrassing of
advertisers till next month!

Following last year's article on travel to the
Gold Coast, many readers will know that I am blased
towards the train. This year the jourmey is quicker
and the rolling stock is more modern.

Train is the safest, most relaxing mode of travel.
You see a lot of the country, you get to move about,
and you don't get thrown about like you do in a bus,

The train takes you as far as Murwillumbah, where
you have to get the Greyhound bus, which will take
you the 30 Km to Tweed Heads.

Seagulls RLC is on Gollan Drive in Tweed Heads,
and this road has just been made part of the Pacific
Highway. There are a number of motels on this road,
and these, as well as hotels and other accommodation

July, 1986,

Australian RAINBOV

Fage 3

will be the subject of an article
nagazine.

The Gold Coast Airport 1is also quite close to
Tweed Heads, so it is feasible to fly in and get a
Taxi to a nearby motel.

If you decide to come up by road, then you should
consider the joys (there are none - except price) of
bus travel, and then decide to drive.

At night, 1f you are an experienced driver, if you
get a clear road and if you can handle continuous
winding road at speed, you can do Sydney - Tweed in
8 - 9 hours.

Any change to the above circumstances usually
results in the trip being more like 12 hours - day
time travel is especially s-1-o-w!

12 hours on the road at one time |is
limit, so why not stop off on the way up.

Some top places to spend a night or a day include
Port Macquarie, Nambucca Heads, Valla Beach, Hungry
Head, Coffs, and Iluka.

If you have a little more time, also see Timber
Town at Wauchope, the amazing Dorrigo Mountains and
their new - but not yet open - steam railway, a
night sky on the Tyringham to Grafton road (dirt but
go anyway), Red Rock, and Pottsville.

The villages of Pottsville, Red Rock, Hungry Head
and Valla Beach will not appeal if you do not enjoy
miles of deserted uncluttered natural beach.

If you are coming from the north, then Tweed Heads
is about 90 wminutes down the new highway from
Brisbane. There is still no train to the coast - one
{s being put back in (!), but Skennars, Greyhound,
VIP and virtually every other bus company in the
country pass through the place most days!

Travel from the west is accelerated by making the
turn at Aratula on the Cunningham Hwy and following

in next month's

about the

the signs which take you through Beaudesert,
Canungra and Nerang.

Travel time from Toowoomba 1is about the same
whether you come via the Cunningham, or i{f you go
through Brisbane.

Finally, if you travel at least part of the

Jjourney on the New England Hwy,
sorry.

This highway is fast and much easier to drive than
the Pacific. Unfortunately, to the Coast, it is also
a little longer (as opposed to Sydney - Brisbane,
for which it is shorter).

The offset is the beautiful scenery, especially {if
you can afford the time to take some journeys off
the highway.

The waterfalls of the Armidale region are ALL
recommended, especially Dangar, Vollomombi, Gara,
Ebor, and Australia's tallest, Marengo.

If you get the impression that 1 think the New
England region is special - you are dead right. That
area from the New England Highway to the coast is
one of THE spots in Australia to see!

you will not be

Ve're excited so many have indicated they will
come up this year; we're certain we'll all bhave a
very useful and enjoyable time; and we're especially
impressed by the line up of tutorials and tutorial
leaders that will be presented this year.

CoCoConf is a resource for the whole Tandy
community, so whether you are a user, a hobbyist, a

Tandy employee or dealer, a teacher, or you just
have a thirst for knowledge about computers,
CoCoConf 1s a great, different way, to spend a
weekend.

Graham.

WHAT’S HAPPENING:- Tutorials on
Advanced BASIC, Basic BASIC,
Educational use of computers, OS9, MS
DOS/GW BASIC, FORTH, The
CoCoConnection HARDWARE mods
include:- high K upgrades
(128,256,512,1mb) AND THAT'S JUST
SATURDAY!! Saturday night we have
our dinner and prize session. (this is
included in your registration fee)
SUNDAY continues with MORE tutorials
plus the opportunity to browse/buy the
large range of software and hardware
available for the CoCo and T1000. There
will be lots of bargains!

SPEAK UP!:- Now is your chance to
suggest your ideas for any tutorials we
may not have mentioned. (participants
only).

LOCATION:-

SEAGULLS RUGBY LEAGUE CLUB
TWEED HEADS.

DATE:- Sat 30th & Sun 31st August 1986.

COCOCONF 86

REGISTER NOW!!

We can only accept a limited number of
people this year. DON'T MISS OUT! on a
top weekend of FUN, FRIENDSHIP and
LEARNING.

o (=[] R DR PEPE R S P o
Address:
PRODG: wosssoni
No. People attending: '«.. «ei s swssssio

$39.95 per person/1st family member
$20.00 per additional family member
$9.95 dep. balance by 15/8/86

Cost includes:- tutorials, dinner Sat.
night, morning and afternoon tea.

Tutorials likelytoattend:

“ e e ..

Please find enclosed:
chq/money order/bankcard/visa/mastercard

CardNo.....c vivi s RRER A SR B el
Signature:

Page 4

TR

Australian KAINBUW

NN

jaly,

Dear Graham,
I have October Rainbow which

gives upgrade information from 16K to

64K. But does this upgrade also Extend
Color Basic?
G. Harrip

Port Arlington. Vic.

G.
Ro, you need a separate ECB chip which
Tandy or your local software supplier
will be happy to sell to you.

Grahan.

Dear Graham,

I bhope that you can help me
in the program, "Brotan the Blue"
(December 1985 Rainbow). As | am new at
the computer game it took me 2.5 hours
to type the program in for my children.

After finishing and runing the program
the title screen ran alright up to line
8 and then I could get no more to run -
it printed FC ERROR [N 2011

I have tried taking out the POKES from
lines 12 and 2011 but 1t made no
diffrence, and as far as | can see the
POKES should make no difference because
we are using a TRS-80 color computer
64K.

I checked my typing of line 2011 and

found no errors. However the first line
of line 2011 reads in part
"TBV3102BAGAB;" -- which | think should
probably read "T8V3102BAGA;B;" -
however, | also changed this just to
make sure that this was not the fault
and {t made no difference.

I think there may be an error in one

of the numbers printed or programmed or
maybe {t is a simple thing ['m doling
wrong.

I hope someone can help so that [do

not waste the effort | put into the
program.

Awaiting your reply,

S. Stride.

P.S. 1 bought the January '86 issue to

see if there were any corrections, but

nothing was listed.

Dear S.

There are many reasons why you
could have got a FC ERROR IN 2011. The
best answer | can give you is to re-type
the line printed below.

2011

POKE65494, 0: PLAY"T8;V31;02;B;A;G; A; B;P1;
B;P1;B;B;B;B;B;P1;B;A;G; A; B; P1;B; P1;B;B;
B;B;B;P1;A;P1;A;P1;B;P1;A;P1;G;G;G;G;G;G;
G; G": POKE65495,0

The first POKE in the line
(POKES5494,0) slows the computer down to
normal speed, and the second POKE
(POKEAS5495,0) speeds the computer wup
again

Please note that the "0" {n the line
(in the part of "T8;V31;02;B;" is NOT a
zero.).

Anyway, hope that {t works (it VWILL
work) and happy computing!

Alex (for Graham).

Dear Grahan,

Here is a little tip 1 Just
discovered to turn a ML program into an
auto execute program.

Using Edtasmt, insert a line
"ORG $182 XXXX
where XXXX equals tbe start
of your ML program.
Then another ORG
itself, and put 2
beginning:
"LDA #$39 sta $182.
If the stack will interfere with the
program, then just move 1t to a
different location with a
"LDS XXX.
Don't forget the stack will move down
fromXXX, so leave enough room for it!
Gordon Thurston

address

for the
lines

program
at the

Dear Graham,

In the January '86 {ssuve of
Australian Rainbow, you have a bardware
project called CoCo Conversation (by
Larry Landwehr).

Larry sald that he used a terminal
package that he got from The Color
Computer Magazine (terminal by Richard
Campbell). I could not find this
magazine. Can you provide details?

How do | hook up the Tandy Armatrom to
the CoCo?

Jorge Echegaray.
Leichhardt. NSV.

Jorge,

The magazine you require is no
longer available, but any terminal
package will probably work anyway.

The Tandy Armatron is not as easy to
hook up as you would at first think.
The Vagga Vagga group I believe have

done 1t, so perhaps you should contact
then.
Graban.
x
Dear Grahan,

Being interested in education and in programs
that can be used by ogroups of children] was
anxious to try Dean Hodgon’s “*Treasure Island"
page & of July’s issue of Australian Rainbow.
Unfortunately 1 can’t get it to run properly evea
though have carefully examined the listing many
times. Lines 94 and 133 have errors. Line 96 reads
IF, something has obviously been omitted. Line
133 on the other hand is not critical.

When | rua the program 1 begin at the first
location but am unable to move to any other
location. Because | couldn’t move 1 tried using
the TRON command. Following the path of the
progran for all possible comands gives the
expected result except for the directions NORTH,
EAST, and WEST (these are the directions available
to move from the first location), which all give
YOU NEED THE RAFT AND PADOLE TO BET TO THE SOUTH
ISLAND as their result (line 97).

1 waited for the Septenber issue to see if there
were any corrections for this progran. As there
were none | am writing to you in the hope that you
or one of the magazine’s readers has the solution
to this problen.

On an entirely different matter - 1 know that the
CoCo is an excellent machine but it irks me to
read magazines such as "Your Computer®,
‘Australian Personal Computer®, *Classroom
Computing® (the last magazine for primary school

teachers) and see many advertisenents and prograns
for Apple, Comnodore, Microbee, etc. but barely a
nention of anything to do with Colo. What can be
done to redress this situation?

In Victoria the Education Department does not
have CoCo as one of its recomended systems nor
does it mention it in Department publications.

Sonthow we (CoCo owmers) are going to have to do
sonething so that generalist conputer magazines
and goversment depariments give owr computers the
representation they deserve. 1f any readers have
strategies or ideas they feel could be useful they
should put them into effect, It would be nice to
see CoCo mentioned as often as machines like the
Apple and Conmodre 64,

Keep up the great work you have done since the
untinely demise of Greg.

lan Pengelly

KILSYTH, VIC.

lan,

I placed the Treasure Island program in the
magazine believing that it was only me who
couldn’t make it work, Dean is always very careful
with his programs and instructions - and as I hate
adveatures more than any other type of program,
you can possibly see how easy it was for me to
make too many asswptions!

We had word from Dean that his copy works, so we
returned the copy he seat us, and he is currently
working on the problen,

As soon as possible, we’1l get a revised version
in the magazine, and this time 1°1) get one of the
Adventure Desperates around here to try it first!

Many changes are currently taking place to the
thinking of several of the Education departments
in relation to the type of computers they have in
their schools.

In Victoria we did sowe work recently which |
think proved the viability of wsing CoCo in the
classroon, and more will be heard in the new year.

In several other states, there are people
Tooking for the first time in years at CoCo, and
drawing the conclusions we drev some time ago -
that CoCo is an ideal classroo computer because
of

*its price;

the price and availability of software;

¥ the backup;

% its ability to handle more than
traditional classroom programs;

% its durability - both physical and in terms
of its stay in the market place.

Don’{ worry about the other magazines - they’ll
catch vp in a year or so!

Grahan.

just the

G T U fE=]
{ \ L - GRAHAN RO ,4,1.%3’2’!" Y -

i
{
|

PO BOX 17
o suuTuPoRT
QLD 4215

July, 1986.

Australian RAINBOV

eVic W)

Software Review,

CD Editor Provides

Invisible Convenience
— Chuck Wozniak

Using Extended BASIC’s line EBIT function to make
changes in a block of program lines can, at times, be
frustrating. I usually end up listing all the lines in the section
of interest and then noting those needing changes or
corrections. Each line is then edited one by one. Until now,
there has been no easy way of working on programs one
screen at a time. CD Editor from C & D Computer Products
provides some relief from the frustration of program
editing. This utility program provides many of the features
of a full-screen editor without using one extra byte of
memory in a 64K CoCo.

CD Editor requires a 64K CoCo with at least one disk
drive and should work on all versions of JDOS or Disk
BASIC. The program comes on disk in the form of a short
BASIC program that copies the BASIC and Extended BASIC
ROMs into the upper 32K of RAM. It then checks for the
type of Disk BASIC that is being used and loads in new
machine code from disk to the upper RAM locations
containing the original line editor. The editor fits in the same
amount of space that was taken up by the original EDIT
function. If desired, BASIC’s standard OK prompt can be
changed to anything you want, up to five characters, such
as READY. The loader program then clears the screen and
erases itself. The copy that I originally received failed to load
properly with JDOS BASIC 1.21. A phone calltoC& D
Computer Products isolated the problem. A short time later
I got a new disk that loaded and ran properly with JDOS
BASIC 1.21 and Disk BASIC I.1.

The program is transparent to BASIC and permits BASIC
programs to run as if it did not exist. The cursor becomes
a blinking black square that turns into a blinking white
square when the editor is active. Typing in the command
EDIT turns the program on and off.

CD Editor works on any displayed portion of a program
that has just been typed in or listed. A movable cursor
determines where on the screen any changes are being made.
Cursor movement is controlled by the four arrow keys. (The
JDOS version uses the shifted up- and down-arrows for
vertical motion.)

To delete characters, place the cursor on the first
character to be deleted and press the shifted left arrow once
for each character that is to be deleted. To add characters,
place the cursor at the point of insertion, add blank spaces
with the shifted right-arrow key, and then type the new data
over the blank spaces. Typing at the current cursor position
causes the new text to overwrite the existing text.

None of the changes are actually entered until the cursor
is moved to the end of the line being edited and the ENTER
key is pressed. Pressing ENTER in the middle of the line
causes the last portion of the line to be lost. 1 had a tendency
to forget this and often pressed ENTER immediately after
making changes, and not at the end of the line.

The editor also allows two or more program lines to be
combined into one. Program lines may also be duplicated
by changing the line number of the line that is to be
duplicated. I found this last feature quite handy in writing

programs that use many lines of nearly identical code. I just
duplicated the lines as many times as required and then went
back and made the unique changes to each line.

Another program on the disk lets you save the modified
BASIC and Extended BASIC into EPROMs to make the
screen editor and new prompt a permanent part of the
CoCo. I could not try this because I do not own an EPROM
programmer. However, 1 did try the EPROMSs loaned to
me by C & D Computer Products and had no problems.

The disk comes with a three-page instruction sheet which
covers loading and using the program. A copy of the
instruction manual is on the disk in the form of a BASIC
program. The disk also contains a catalog of other programs
from C & D. None of the programs are copy protected so
backups can be made. The programs, however, are
copyrighted.

Software Review

Hall of the King
Challenges Avid Adventurers

1A\

— Barbara Combes

If you like Adventure games, and enjoy programs that
show how far Color Computer programming has advanced
in recent years, you should experience Hall of the King to
see how good it gets.

Available from Prickly-Pear Software, Hall of the King
is one of the best Adventure programs | have experienced
to date. I wish I could report my victory but thus far I have
been unable to solve the game. Hall of the King is a
challenge for even the most avid Adventure player.

The opening credits are impressive and make you feel as
though you're watching a show on television because the
special effects are special. Next, you receive an in-depth
background on the situation you're becoming involved in.
You can review the scenario a page at a time at your own
speed. The authors have taken time to rescarch the topic
while remaining imaginative so you're primed when the
Adventure begins.

Hall of the King consists of two disks, and gives you a
lot more playing time that you might nced when an
Advénture is so complex and challenging. Although there
are two disks, only one disk drive is required, but you need
to have 64K.

The graphi®s are many and well-done. Hall of the King
is 100 percent high resolution graphics in detailed color. 1
enjoyed wandering through the Hall of the King admiring
the programmer who spent so much time polishing all the
fine details.

The response time to commands is almost immediate,
except for a brief wait between commands while new
graphics are drawn, which I didn't mind at all. There are
SAVE and LOAD commands that make it possible for you to
resume where you left off between games with ease. The
packaging of the program is a vinyl container making it
handy to grab and load. The documentation is thorough
and well-done.

Good Adventures like Hall of the King keep the Color
Computer’s future bright. ‘

Page ©

e

Australian RAINBOW

July, 1986.

Software Review ~\

Super Duper Utilities
Packs a Punch

— Jerry Semones

Utilities are some of the most popular pursuits of the
CoCo hobbyist. Human nature drives us to seek new ways
of doing things quicker and easier. Our computers provide
the opportunity. The new offering from Microcom Software
definitely does some new things quicker. Super Duper
Utilities is supplied on an unprotected disk and is written
for a 32K ECB system. The author, Kishore M. Santwani
of 500 Pokes Peeks & Execs fame, has done a good job.
He has used his expertise to make CoCo do some pretty
handy tasks, which I have listed here:

40K Disk Basic — A utility that gives 64K disk users 40K
instead of the usual 32K of memory. Remember, Disk BASIC
needs 2K for its own use, so there is only 38K to work with.
Two versions are available, one for Disk BASIC 1.0 and one
for version 1.1.

Alphadir — This utility reads the disk directory, then
sorts and rewrites it in alphabetical order. This is handy for
locating program names as your disk library grows larger.

Basic Search — Enables you to find all BASIC lines where
aspecified string is located. Very handy to find all those high
speed pokes, as an example.

Banner Creator — Lets you create a large banner with
seven-inch letters. Baud rate is selectable from the menu,
ranging from 600 to 9600.

Disk Encryption — Provides password protection for
BASIC programs on disk and keeps unauthorized people
from accessing them.

EZ Disk Master — Lets you copy, kill and rename disk
files, and to determine the starting, ending and executing
addresses for ML programs. You can also run and execute
programs directly from the menu.

Function Keys — Allows you to program any numeric
keys (0-9) with strings of up to 250 characters each. This
can be a very helpful feature during programming. For
example, you could press a key and automatically insert
“print #-2" in the BASIC line.

Graphics Zoom — This utility is very impressive and easy
to use. A menu aliows you+to look at the picture in memory
and to select the area to be magnified four times. You can
then modify the magnified area using arrow keys to move
the cursor and the space bar for turning the cursor on or
off and for modifying the picture.

Large Screen Dump — This program dumps PMODE 3 or
4 screen images to your DMP printer. The printout runs
sideways and is twice the size of the graphics screen.

List/ Dir Pause — 1 really liked this one! By pressing
SHIFT/CLEAR, you can make the list pause in full screens
instead of flashing by. A second SHIFT/CLEAR returns to
the normal mode.

Mailing List — A handy mailing list right where you need
it. You can delete or modify the records and sort by ZIP
code. It prints to either screen or printer.

Program Packer Removes all spaces and REM
statements from BASIC programs. Reduces the memory
requirements of BASIC programs.

Super Input/Line Input — This is a very useful utility
and one which most programmers will love. It modifies the
keyboard input routine to allow editing without having to

access the EDIT command each time. Load it in and edit
directly with a combination of arrow and CLEAR keys.

Disk Zapper — This utility allows you to change the data
on the disk and recover most of the data in case of a crashed
disk.

A
Super Tutor — A Typing Tutor
for Young Children

Software Review

— Gabriel Weaver

Super Tutor is designed to teach letter and number
recognition to children ages 2 to 6. With the aid of parents,
Super Tutor can be expanded to teach spelling.

The program arrived on disk. Actually there are four
versions of Super Tutor on the disk. Super Tutor is divided
into three learning levels. Each learning level has its own
program. In addition, there is a main program that runs all
three levels. The main program allows you to quickly switch
between learning levels.

Level one teaches letter and number recognition. Each
time a letter or number key is pressed the letter or number
is drawn on the screen in large block form. The letters and
numbers are drawn on a black background and colored
white. Up to five rows of eight characters each can be
displayed at one time. When a key is pressed the parent
should tell the child the name of the letter or number. After
a letter or number is displayed a short melody is played,
which is usually a couple of notes designed to get the child’s
attention.

Level two teaches the child to recognize a letter or number
on the keyboard. A random character is displayed and the
child presses the appropriate key to cause the character to
be displayed again. Nothing happens to the display until the
proper character is pressed. When the child gives the proper
response, the character is echoed to the screen and a short
tune is played. In level two you can select training on letters
or numbers only, or both letters and numbers.

Level three can be used to teach spelling. At the start of
level three, enter the largest word length to be displayed,
which can be from one to eight letters. In level three, words
are displayed on the screen. The child must press each letter
of the word in the proper order. When a correct letter is
pressed the letter is displayed. When a word is entered
properly an ear-catching melody is played. The parent must
work along with the program to teach the child word
pronunciation and spelling.

The Super Tutor package includes two pages of operating
instructions. The instructions are straightforward and easy
to understand. Included with the operating instructions is
information on deifying and adding words to level three.
The Super Tutor programs are written in BASIC. Words used
in level three are located in lines 7000 and above. Up to 250
words can easily be placed in the data dictionary. Super
Tutor comes with 50 words in the dictionary. You must
know how DATA statements are written to modify or add
words to the dictionary.

Super Tutor is easy to operate and performs exactly as
described in the instructions. The author’s telephone
number is included in the instructions. Parents need to
participate in the training in order for Super Tutor to work
effectively. If you are looking for a program to teach young
children the alphabet, numbers and early vocabulary, Super
Tutor may fit the bill.

Ju) ¥, 1986

Ausitraiian

RA T NBOW Page 7

Software Review 1~

Algebra Simplifies and

Solves Equations
— John McCormick

Algebra, to the best of my knowledge, is the only program
that solves equations as equations, rather than numerically,
although it sometimes says zero is one solution to a
particular equation, even while it continues to complete the
solution algebraically.

It is somewhat difficult to describe just what it does but
a few examples may help make it clear.

If you enter (XN2-6X)"N2-2(X"N2-6X)=35, Algebra
displays X4-12X"3+34X/~2+12X-35. Enter 3-X"2
=2XN\2+1, and you get 3X2-2=0.

5x-2%x"2=2 produces -2X2+5X-2; ready to substitute
into the standard binomial solution (very hard to write in
a recegnizable form here, but which goes like this: -B plus
or minus the square root of B squared, minus 4AC, all
divided by 2A; a formula that stirs memories).

Here is an equation generated by the computer (the
previous ones came from a math text): (F+A-(C-E)-
B)*E*A=00; one solution is A=@ and the general solution
is A=B-E-F+C.

Here is one last equation, this one also generated by the
computer, which 1 did not verify: C/(C+F*B/((F+E-C)/
(C+D)))=0@ and the solution is C=@ and C=E+F. I spent about
10 minutes on this one and gave up!

Briefly put, Algebra simplifies or solves certain equations
for any specified variable.

The only changes the user must make to his input
equation is to specify every number as a letter, ¢.g., 23X~
3Y must be written as AX-BY because the program treats
everything, numbers included, as string variables.

If you don't change all numbers to letters, you often get
incorrect-appearing solutions because the answer is written
as “ABX" or something similar and, if ‘A’ and ‘B’ are left
as numbers, you could get something like “12X"™ when the
correct answer is “2X” (1 times 2X).

By specifying the numbers as letters, it is always obvious
that the numbers are to be multiplied in the final answer.

This is noi made clear in the documentation and led to
my initial conclusion that there was something wrong with
the program (there wasn't).

When starting the program you select three different
speeds which turn out to be our old friends, the CoCo speed
pokes. These pokes don't work with all CoCos but will work
with most and really speed up the operation of this program.

On normal speed I could always solve the equation faster
than the computer, and I even kept up with it at high speed,
but [am certain my accuracy would suffer if I solved several
equations in a row, a problem the computer doesn’t have.

The program’s author is currently translating this
program into machine language, which should greatly speed
up execution, although it is now faster than many people
who are inexperienced with this sort of problem.

The new version should be sent to the purchasers of the
BASIC version when completed.

After selecting the speed the computer can handle, you
cither enter an equation to solve and then specify which
variable to solve for, or you have the computer generate
random equations and solve them as a demonstration.

Don't run the auto equation generator on the fastest
speed. If you do, you won't be able to tell what is happening.

If you get “stuck™ in the fastest speed (where the display
is garbage during calculations), press the BREAK key and
rerun the program. Even though the screen is scrambled,
this restarts the program without using the Reset button.
When running your own equation in the fastest speed, the
program stops at the end of a solution.

I found no bugs in this program and am impressed with
the idea behind it.

I have seen better documentation but I can’t remember
ever seeing worse. The bad grammar, poor spelling, lack of
information and generally sloppy appearance of the brief
documentation that comes with this fine program are
discouraging but shouldn't prevent you from purchasing the
product because the program itself is very easy to use.

This is a very interesting program, probably unique in its
function, that deserves attention. With some changes to the
documentation this would be a fine program for anyone
who has the need to solve linear equations or convert higher
order equations to a form that can then be looked up in
various tables.

It is a bargain and so easy to use that most people will
find the instructions more of a minor annoyance than an
obstacle. This program isn't flashy or complicated to use;
it just sits there and lets your CoCo perform a task it has
never been able to do before.

Algebra is the answer to many students’ prayers for a
program that would “really solve™ some of those jumbled
masses of numbers and letters that teachers always assign
as homework.

Software Review 7~\

Modest Packaging Can’t Hide
SCRDMP10’s Usefulness

— John Ogasapian

Let's get the negative thing out at the beginning.
SCRDMPI0 comes modestly packaged on an average
quality commercial cassette. The documentation accom-
panying the cassette is two paragraphs that very briefly
describes what the program does and how to get it up and
running.

But don't be discouraged and don't be fooled. Once it’s
fired up, you discover that behind those humble trappings
is one slick screen dump program that reproduces a PMODE
3 or 4 screen through a DMP printer with a minimum of
fuss and bother.

SCRDM P10 comes on a cassette in the form of a BASIC
driver. When the program is run, you are provided with a
pair of prompts. The first is for your printer’s graphics
control codes (ENTER defaults to those of the DMP-100,
which worked fine with my DMP-110). The second prompt
asks for a loading address, and here you may run into a
snag, since the documentation is neither clear nor helpful
(hint: Begin the routine from a cold start — POKE
113,0:EXEC4@9939, and if you have a DM P-100 or one of
its cousins, try entering 14848). The actual ML program is
poked in and you are given the choice of saving it to tape
or disk.

Now you're home free. After loading or drawing the
graphics screen, simply enter EXEC. You are prompted for
the choice of background color (to reverse the printout) and
the Baud rate for the printer. Position the paper at the top
of the head, push ENTER, and away you go! It's as easy as
that.

Page 8

Australian RAINBOW

July, 1986,

L

As soon as the print is finished, you are offered the choice
of rerunning (again with the option of reversing the colors)
or returning to BASIC to draw or enter another graphics
screen and repeat the cycle.

The finished format is six and a half by seven inches
sideways, and, as might be expected, there is a degree of
distortion in the printout, relative to what is on the screen.
| also discovered that I could not copy the ML program
between drives. So, unless you are luckier than 1, you'll have
to use the Backup routine and then copy whatever else you
might want on the disk with it. I'm not into drawing with
my CoCo, but I did try the program as a tool for printing
out graphs generated by Tom Mix’s Teachers Data Base and
billboards of some other pieces of software in my library.
1 had no problems at all.

The main problem with this software is its poor docu-
mentation. If you can get by that and the modest packaging,
you have a quick and easy, black-and-white screen dump.

Software Review.

Advanced Utilities —
Five 0S-9 Goodies

— Mark Sunderlin

I was once asked, “What do you buy for the computer
when you already have a word processor, a spreadsheet and
a database?” 1 told the questioner to buy utilities. Utilities
are those wonderful little programs that exist only to make
the computer do more for us in an easier way. To this end,
Computerware has released a set of five OS-9 utilities
packaged together as Advanced Utilites.

The five utilities included in the package are Kshell, a
direct, more powerful replacement for Shell; Cpy, a more
powerful version of Copy; Archive, a backup utility to back
up hard disks to floppies; Flink, a program to define what
file to use as the boot file on the next reboot; and Unload,
used to remove a program from memory by recursively
unlinking it. The five utilities come on one disk, which is
unprotected. Also included is a nine-page manual that
explains the utilities and has examples for each. The
explanation for Kshell is wonderful and covers all aspects
of this utility. The other utilities seem to suffer a little,
though.

Kshell is the showpicce of the package. This program
takes the place of the shell to give a more powerful
command interpreter. Its most powerful feature is its
automatic wild card extensions. Any place on an OS-9
command line you would place a filename, you can use a
wild card. Use it to match any file in the directory that
corresponds to a pattern. The *** character matches any set
of zero or more characters. The *?° character. matches any
single character. For example, the command “del *.bas”
deletes all files in the current directory that end with “.bas.™
The command “del file?.txt™ deletes files such as “filel.txt,”
“file2.1xt,” “filez.txt" and any other file that fits the pattern.
This works with all OS-9 commands that let you give a list
of filenames on the command line. It does not work on OS-
9 commands that only use the first filename found on the
command line. For example, the ident command only
reports the first file no matter how many are stated. Thus,
a wild card used with ident still only gives one report.

Another feature of Kshell is its PATH variable. You may

~\

e RS e
assign a value to PATH to tell OS-9 where to look for
commands. The command PATH="/d0; :mds:/ho/cmds”
tells 0S-9 to look for acommand firstin /¢0/cmds and then
in /h0/cmds. You can give it as many paths to search as
wanted. Although not stated in the manual, | am sure there
is some limit on the number of characters the PATH can
have.

In addition to the PATH variable, Kshell gives four user-
defined variables or macros. These are called $1 through
$4. You may give them any value and substitute them
anywhere in an OS-9 command line. If you set $1 equal to
/d1/docs/reviews/advutil.txt, all you have to do to edit that
file is enter edit $1. In addition to saving repetitive typing,
macros can be passed to procedure files. The command
proc $2="program” sets $2 to the string “program” for the
duration of the procedure proc. In the procedure file you
would use $2 in any place you would normally use a
filename.

Kshell has also borrowed some ideas from the UNIX
operating system. One of these is the use of the single
opening quotation mark (‘) character. If a command is
placed within single opening quotes, its first line of output
is substituted at that point. For example the command echo
Current directory is ‘pwd* generates this: Current directory
is /d1/docs/reviews. You can mix this with the macros.
$1="pxd" sets $| equal to the current execution directory.

Also from UNIX, Kshell accepts either the standard CHD
and CHX commands or the aliases of CD and CX.
Comment lines under Kshell may begin with either an **'
as in the normal shell or with an *#"as in UNIX.

The Kshell has a few other features. The command
prompt can be set to whatever is wanted. The command
-“p="Ksh>" would replace the OS9: prompt with Ksh>
Error reporting can be turned on or off. The command
“_e"turns on full error messages like PRINTERR does. The
difference is that a -nec command turns off error reporting.
You can also specify what file to take the error messages
from if you want to use something other than the system
default. Kshell has improved upon the standard shell’s
redirection capability. The output of a command may be
redirected to a file, to append to an existing file, or to
overwrite an existing file.

To get all these extra features, you must give up
something; what you give up is memory. Kshell reduces
available memory by about 3.5K. This may be a problem
if memory is tight. Using Kshell and a Hi-Res screen utility
only left enough room for me to edit an 8K document with
my word processor, as opposed to a 12K dogcument under
the standard shell. Those using the standard 32 by 16 screen
or an 80-column hardware card may not miss that 4K as
much.

If it seems that the other four commands are getting the
short end of the stick here, you're right. They also get short-
changed in the manual. While Kshellis covered in full detail
with several examples for each command, the rest of the
utilities are covered in less detail.

The Cpy utility is an improvement upon the Copy
command. In addition to the standard Copy features, it can
copy multiple files to a directory. Used with Kshell's wild
cards it can be very useful. The command “Cpy /d1/source
* bas" copies all BASIC programs in the current directory
to /d!/soyrce. Cpyis a little confusing though. To copy one
file to another, the syntax is “Cpy source destination,” while
to copy multiple files it is “Cpy Destdir sourcel source2
sourcel" 1 have no idea why the author used two
separate syntaxes on the same program,

The Archive utility is used to back up hard disks or large

july, 1986.

Australian RAINBOV

ﬁage 9

floppies to smaller media. It allows copying these large
media to several smaller ones without splitting files over two
different smaller medias. This command worked exactly as
the documentation said it would and without any problems.

The Unload utility is a recursive version of Unlink.
Unload removes a module from memory by repetitively
unlinking it until it disappears from memory. This also
worked as described.

The final utility, Flink, is an interesting one. It allows you
to state what file the system is to boot from on the next
reboot. Thus, you could have two or more boot configu-
rations on a disk and choose which to use. This also seemed
to work just as it is described.

What you get with Advanced Utilities is a very good
replacement shell and four good utilties. The Kshell itself
is worth the price. All five utilities were tested under both
0OS-9 Version 1.01 and Version 2.0 without any problems.

()

Software Review.

XSCREEN Gives High
Resolution for OS-9

— Mike Piotrowski

Have you ever wanted something besides the 32 charac-
ters per line on a green screen for your OS-9 system?
Unhappy with inverse video instead of lowercase letters?
Well here it is, and at an affordable price.

XSCREEN is a high resolution screen package for the
0S-9 operating system of the Color Computer. Choose from
51, 64 or 85 characters per line. The display can be white
or green characters on a black background, or black
characters on a white or green background. All of these
combinations have 24 lines per page. XSCREEN also has
real lowercase letters.

The 85 characters per line is nearly impossible to read on
a television. However, it is readable on a monitor. The 64
characters per line is available in two character sizes; wide
and narrow. The wide characters seemed easier for me to
read, but judge this for yourself. At 64 characters per line
with either the wide or narrow characters, my eyes got tired
after 15 minutes of work on the television. The 51 characters
per line was easy to work with for long periods of time on
a television or a monitor.

After XSCREEN is copied to the command directory,
activate it by typing XSCREEN. You are presented with a
menu for selecting the characters per line, and the fore-
ground and background colors. It then returns to OS-9. If
you need to change to a different style screen or want to
quit XSCREEN, return to the menu by pressing the CLEAR
and BREAK keys at the same time. If you quit XSCREEN
and want the high resolution screen back again, reboot the
system before executing XSCREEN again. This is stated in
the manual in large bold letters.

XSCREEN uses about 12K bytes of user memory. This
leaves about 28K bytes of memory for applications. If using
BASIC09, you will have about 7,000 bytes of memory for your
application program. With the OS-9 editor you will have
just over 24K bytes of memory for the text you are editing.

All of the OS-9 display functions are supported by
XSCREEN. 1In fact, XSCREEN has additional display
functions which make it much easier to write screen editing
routines. These codes allow erasing to end of line, turning
the cursor on or off, scrolling down and erasing to end of
screen. There are also several codes to change the fore-

ground and background colors of the display and change
the number of characters per line. To get these additional
display codes, XSCREEN uses some of the OS-9 graphics
display codes. This may sound like a problem if you have
existing programs that make use of these codes. It is not,
and here is why. XSCREEN does not use the standard
output /TERM. Instead it uses a driver called [HIl. To
perform the standard OS-9 graphics display functions,
direct the display command to /TERM. OS-9 will process
the display code the same as if XSCREEN was not present.

I tried XSCREEN with OS-9 version 2.0.0. It did not
operate predictably. I hope the makers of XSCREEN will
make the necessary changes so it will work properly with
version 2.0.0.

XSCREEN is well worth the price. It is nice to be able
to get more than the 32 characters per line. If you cannot
afford 80-column hardware, XSCREEN is the way to go.

(~\

Hardware Review

Super RAMDisk

Provides Mega-memory

— Dan Downard

“More memory!” they cried. “Give us mega-memory like
the competition!” Well, CoCo users, now you have it.
Spectrum Projects is distributing a 256/512K memory
expansion from DISTO.

To use the DISTO Super RAMDisk you need a 64K
CoCo and a Multi-Pak Interface. Why the Multi-Pak? It
enables the DISTO upgrade to be used with the CoCo 2,
something that has been hindering previous upgrade kits.
The unit is housed in an attractive white metal case and
plugs into slot number 2 of the Multi-Pak. Software for both
Disk BASIC and OS-9 is provided on disks to use the memory
upgrade as a RAM disk. With OS-9, up to three RAM disks
can be connected at one time.

What is a RAM disk and do I need one? At present, the
only software that exists for the Super RAMDisk is drivers
that make the memory expansion act as another disk drive.
It’s not a normal disk drive, though. First, it is super fast.
The total time to read or write a sector is less than 5/ 1,000
of a second. One of the uses could be storage of graphics
pages for fast recall during games. Can you write longer
programs? Not with the present software. The problem is
not with the memory expansion, but with the software. As
you are probably aware, Disk BASIC only recognizes 32K
of user memory.

To write longer programs, you could split them into small
ones, but you can do the same thing with a regular disk
drive. You will have to find a way to pass parameters
(variables) between programs if necessary. A suggestion is
to store them in a file and recall them when necessary.
Remember, we are talking about a quiet, fast disk drive that
consists of RAM.

The use of a RAM disk with OS-9 is another story.
Regarding longer programs, as long as modular program-
ming concepts are used, BASIC09 already has the facility to
pass parameters between programs. Considering the disk
intensive nature of OS-9, it’s a welcome relief to transfer
the commands directory to the RAM disk and watch it fly.
Commands execute almost instantaneously. No noise either.

Page 10

L

Auctralian RALNBOV

Juiy, 1986.

UND UTILITY

7))

Bleeps, Bloops, Bells
and Whistles!

By William Mitchell

e

his program, Soundbase, represents an inventory of sounds

loading the program.)

The listing: SOUNDBSE

L0, SOUNDBASE
COPYRIGHT BY WILLIAM L.

MITCHELL
104 CLUBVIEW RD
ENTERPRISE, AL 36330
NOV 1985

20 CLEAR 200
30 POKE359,0
40 GOSUB610
50 GOTO650
60

70 °

BUZZER

80 FORV=30TO2STEP-2:PLAY"V31;L25
5;03:;5": NEXTV: RETURN

90 °

DEPTH SOUND

100 PLAY"T2":FOR V=20TOOSTEP-5:P
LAY"04; V'+STRS (V) +";L4;12"

110 FORDL=1TD20: NEXTDL

120 NEXTV
130 FORDL:=
140 RETURN
150

SIREN WARNING

160 PLAY "V30;L200;04;1;2;
6;7:8;9:10;11:12;05;1;:2;3;
7:L100; 8"

SOURD SUBROUTINES

1TO300: NEXTDL

170 RETURN

180 *

ZAP OF VOLTAGE

190 PLAY"V20;L255;0
$3;4;5;4:5:6;5:6;5;
;3,2;1"

200 RETURN

210 °*

HISS OR F122

220 PLAY"L255;01;V30;1;V5;2;V6;3
i V7:2:V5;3;V4;4;V3;5;V3;4;V4,;3;V

6:4;V4;5;V5;6;V4;5;V3;4;V2;5;V3;

6;V2;7;V3;8"

230 RETURN

240 °

BLIPP

250 PLAY"L255;01;V30;1;V26;2;V22
;3;V18;4;V14;5;V12;6": SOUKND 1,1

260 RETURN

270 *

280 !

SPRING

290 PLAY"02;L255;V15;1;03;V10;1;
VO;2;V8;3;V7;4;V6;3,V5;4;V4;3;V3
i2;V2;1; Vl,‘,(,j 2:1:2:3:2:1:2;3
e 2:1:2:3:251:2:38;2:1:2:3;21 1"

700 RETURN

310

TAUNT

20 PLAY "V3;03;L16;10;10;7;12;L

8;10; 7" : RETURKR

330

CHARGE

340 FORX=1TO2

350 PLAY "L4;V4;04;L16.;1;L32;1;
L16.;1; L32.1;L16.;1;L32.1 L16.;1
ll"f L16.;8;1L32;5;L16.;8;L32;5
L0, 8 L32: 5"

360 NEXTX:FLAY”]":RETURN

Qr '

37

BIG SPRING

“»—-
U’\.—a

used in games and educational programs I have written. They

have been developed over several months and saved so they

can be appended to any program, then called for subroutines as
needed. When the program is complcted the unused subroutines are
deleted, but I usually use all of them in most programs. Soundbase
can be used to form a basis for many programs.
(Editor’s Note: Unplug the disk controller, if you have one, before

<
N

a

380 FORV=31TO1STEP-1:PLAY"O1;V"+

STR$(V)+";L255; 8" : NEXTV: RETURN

390

BOUNCING BALL

400 PLAY"T2;L25%;01;V31;1;V20;1;
V10;1;P2;V0;1;P5;1;V8;P10;1;V6;P
15;1;V4;P20;1;V2;P25;1;V2;P30;1;
P35;1:PA5;1; PhO l P80O; 1"

410 RETURN

420 °

SIREN

430 PLAY"T255;L255;04;V1;1;2;V2;

3;4;:V3;5:6:V4;7;8:V5;90; 10 Vh 11
L4 12 L255;V5;10;9; VA 8,!.V3 6;

‘) V¥2:4:3: V132 E1: 1"

440 FOR DLAY=1T0200:NEX1DLAY:REI

URN

450 '

VOLF WISTLE

460 PLAY"T255; LZWC.CQ Ve; 2 Ve e;

13;V4;4;V5;5;V6;6;V7,7;V8;8;V0

;9;VlO;10;V11;11,V12;12;06;V13;1
s V14;2;V15;3;V16;4;V17;5;V168;6"”

470 FORDLAY=1TO100: NEXTDLAY: GOSU

B430: RETURN

480

MACHINE GUN

490 FORX=1TO6:PLAY"01;L255;4;3;2
1" : NEXTX: RETURN

500

HOORAY FOR THE RED WHITE & BLUE

510 PLAY "04;V5;L8;C;C;03;L16; A#
A L4 A; VS5, 1L8;G#; A; L2; A" : RETURN

520 *

FOR SCREEN DISPLAY

530 KOLOR=RND(7):PATTERN=RND(15)

540 FACTOR=128+(16%xK0O)>+PA

550 FOR T=1TQ20

560 PRINT STRINGS$(32,CHRS$(FA));

continued on Page 26

!u%y, 1986,

Australian RAINBOW

rage 11

e

MUSIC

CoCo Y

ven if you don't know much

about music, banging away on

the keys of a piano can be a
lot of fun. If you have always
wanted to compose music, but
didn't have an instrument or the
time to learn how to play, now you
do. The CoCo Pilano-Synthesizer/
Composer makes composing tunes
easy. It turns the CoCo's keyboard
into a piano keyboard, remembers
the notes played and plays them
back at any tempo you choose. It
provides a powerful editor for
correcting or altering the stored
music data.

The CoCo pianc allows you to save
each composition on tape or disk,
and to load them as stand-alone
machine language program that EXEC

without the help of the BASIC
language driver. Furthermore, it
automatically create PLAY
statements complete with line
numbers and stores them on tape or
disk for merging into BASIC
programs. This function 1is 1in

addition to, and totally seperate

—— e —————————

\S

| LA

N\

from, the ability to store the
music as synthesized ML programs.
You may reload your ML composition
back into the BASIC editor at a

later date and add to or edit the
composition. Please note that the
CoCo piano does not play chords,

only single notes.

The CoCo Plano-Synthesizer/
Compaser can be programmed to
sound like a wide variety of

instruments (as
instruments). It contains two
envelope tables that can be
programmed by the user. VWith a bit
of experimentation, 1t can sound
1ike a jazz plano, an organ, an
echo chamber or like no instrument
ever heard before. You can toggle
from one envelope to the other at
any time while composing. This
change 1s recorded in the musical
data and, on playback, taggles a
change to the other envelope.
Vhen the composition 1is saved,
any changes made in the envelope
tables are automatically saved
along with the music data.

well as non

&

HOV TO USE THE PROGRAM

There are two seperate program
listings. The first one boots the
machine language synthesizer into
memory and saves it on tape or
disk as PIANO/BIR. Line 2 of the
booter contains checksums for each
of the data lines. Provided all of
the entries in Line 2 are correct,
the program tells in which line
you have made a mistake in typing
the rest of the data statements.
DO NOT RENUMBER this program! If
you get an error report and can't
find the error in the line
reported, check to see 1if ‘the
checksum in Line 2 is correct.

The second program listing is the
BASIC language utility that allows
easy management of the ML program.
Vhile keying it in, it is best to
include only those spaces between

commands that you see in the
listing. Ve economized on memory
to allow 16K users to use the
piano, and extra spaces use extra
memory. Save this program on disk
or tape as PIAKO/BAS. PIANO/BAS
loads PIANO/BIN each time 1t is

run, so both programs should be on
the same disk or tape. Run the
BASIC program. A prompt asks if
the ML program 1is to be loaded

from tape or disk. Once the ML
program has been loaded, the main
menu appears.

Now press "1". This puts you in
the play/composite mode. Begin
playing music and the computer
stores the notes and their
lengths. The length of the note
depends mostly on the length of

time your finger remains on the
key. However, the program does
record information on the length
of time between keystrokes up to a
maximum of one second.

In this mnode, a text screen

Page 12

Australian RAINBOW

July, 1986,

32KECB

THESIZER

representation of the keyboard
appears on the TV. The keyboard
looks 1like a two tiered organ
keyboard. All of the keys in the

second row and most of the keys in
the bottom row are mapped to
resemble the white keys on a
plano. They are each marked with
the note that the key plays when
depressed. The keys above them
represent the black keys on the
piano. Notice that some of the
keys 1in the first and third rows
are coleored blue on the map. These
keys produce no sound when
pressed, and are not recorded in
music memory. They represent
sharps and flats that do not exist
on the chromatic scale; their
omission gives the keyboard the
appearance of a piano keyboard.

Three octaves are represented,
starting at middle °'C'. They go
from the wup arrow key to the 'Y’
key, from the 'U’' key to the
right-arrow key, and from the 'Z’
key to the "<(" key.

Some of the keys are colored
red - these are control keys. They
are the CLEAR, ENTER, SHIFT, "?2"
and spacebar. These can be pressed
at any time while in the play /
compose mode. The SHIFT key exits
the synthesizer and returns to the
main menu.

In order to simplify playing the
keyboard, consider using black and
white self adhesive tabs to cover
the appropriate keys. These can be
obtained at any stationery store.
If you can't find these, then try
small pleces of electriclan's
tape.

Playing versus Composing

The machine code program was orig-
inally formulated to allow experimenta-
tion. The object was to allow the user

by Martin

to modify a pure tone by manipulating
its volume over time. This is done by
specifying the volume at discrete inter-
vals in what is known as an envelope
pattern. Some envelope patterns, such
as the piano envelope, sound lovely if
stretched out over a long period (a high
envelope delay) and if played only once
per key press. Others can give interest-
ing effects if the delay is shortened and
if the envelope pattern is repeated for as
long as the key is pressed.

As the program evolved, however,
the keyboard developed into a piano
and we decided to store the notes and
their lengths in memory. We discovered
that when repeating patterns were used,
memory filled up too fast. For this
reason, we decided to allow composing
only in the non-repeating mode. While
you get meaningful note data in the
repeating mode, the length data may
not be correct. However, even when
using a repeating pattern, only one note
byte and two length bytes are stored per
key strike, so memory is conserved.

The program is configured at execu-

tion for.composing. We have chosen an
arbitrary envelope delay (representing
tempo) of 1100, and a non-repeating
piano envelope as default. Whenever a
note key is pressed in the play/compose
mode, note and length data is stored in
memory whether you want to keep the
data or not. You will store meaningful
length data as long as you do not switch
to a repeating envelope pattern by
pressing the space bar. If you mistak-
enly press the space bar, press it again
to return to a non-repeating envelope
pattern.

Now that you are in the play/com-

July, 1986.

and Jeremy Spiller

pose mode, go ahead and try playing
some music. For 16K users, about 1,000
notes can be stored before running out
of room; 32K users should be able to
bang away for most of the day before
hitting the top of RAM. If this happens,
don't worry. The binary program checks
to see if the limit has been reached and
returns to the menu. Nothing has been
lost, and you can still play back, alter
and save the stored data.

Each time a note key is pressed, the
CoCo remembers the note and the
length of time your finger was on the
key. It also keeps track of the time
between keystrokes up to a second. If
you are inexperienced and spend a lot
of time looking for the next key to press,
the program takes no notice beyond one
second. For experienced piano players,
the only problem is getting used to the
keyboard itself. Remember that if you
press a second key while the first is still
pressed, there will be no response until
you take your finger off the first key.

The Control Keys

Correction of mistakes in the play/
compose mode is limited to the CLEAR
key. Whenever this key is pressed, the
last note played is eliminated. Pressing
it twice or three times eliminates the last
two or three notes played. The entire
composition can be eliminated this way.
Any notes eliminated are replaced with
the.next note keys pressed.

When you are finished composing
and want to return to the main menu,
simply press either SHIFT key. If you
mistakenly exit the play mode, return to
the same position in the composition by
pressing ‘2’ at the menu. Beware. If the
‘1" is pressed, the program assumes you

Australian RAIRBOW

Page 13

want to compose a new piece and
dumps any music already in memory.
The computer keeps track of pauses
that last up to one second. This creates
a problem with longer or multiple
pauses that normally occur in musical
notation. The ENTER key makes it
possible to place pauses in the music. It

works the same way the note keys work.
The pause lasts for as long as you press
the ENTER key. During composition,
this creates a high pitched noise that
indicates something is being pressed.
This ncise does not occur on playback.

Of course, if you are only fooling
around with the synthesizer and do not
care about what is stored in memory,
you do not need the pause button at all.
You will, however, want to use the space
bar. This control toggles between re-
peating envelopes and single envelope
strikes. Remember that repeating enve-
lopes do not give meaningful note
length data and should be avoided when
composing.

The final control key is the question
mark-slash key. The synthesizer pro-
gram contains two programmable enve-
lope tables. The question mark key
toggles between the two tables and
allows playing of different parts of a
composition with different sounding
envelopes. Any time this control key is
pressed, a code is stored in the music
memory that triggers a corresponding
shift during playback.

Envelope Delay and Play Delay

How long is a whole note? The long-
est note stored in memory is a whole
note and is proportional to the envelope
delay. Press a note key in the default
mode and listen carefully. The sound
trails off to nothing. The length of time
it takes for the sound to fade away
totally is the longest note length stored
in memory. Keeping your finger on a
key longer does not lengthen the time
between that note and the next during
playback.

If you are playing a very slow tempo
piece and need a longer whole note,
simply increase the envelope delay. If
you are playing a very fast piece and
want to hear more of a fadeoff during
short keystrokes, shorten the envelope
delay. It is best to alter the en2'ope
delay before storing data to keep. A
short keystroke with a long envelope
delay causes the program to store only
a part of the entire envelope. Increasing
the envelope delay after the data has
been stored lengthens the note, but it
does not increase the proportion of the
envelope played. The envelope delay
may be altered from the main menu by
pressing the “change tempo™ option.

Numbers between one and 65,535 will
work. Try the default envelopes using
an envelope delay of 500.

The play delay can also be altered
from the main menu by pressing
“change tempo.” While the envelope
delay has an effect in both the play and
playback modes, the play delay oper-
ates only in the playback mode. It
accounts for a constant pause between
notes when they are played back. It is
included as a fine adjustment for play-
back timing. The default value is 50.

This is the first parameter to alter if
the playback is too fast or too slow.
Values between one and 65,535 are
accepted. Small increases or decreases
don’t make much difference, so don’t be
afraid to change it by factors of 1,000.
You may later the play delay or the
envelope delay at any time, even after
composing a piece. They do not affect
the stored music data once it has been

placed in memory, but they affect the
playback of that data.

Programming the Envelope Tables

Before programming an envelope,
you must know something about syn-
thesizing periodic sounds. The CoCo
has no sound-generating circuitry. In
order to produce sounds, the micropro-
cessor must minutely manipulate the
voltage output to the loudspeaker.
(That it can do this quickly enough to
produce a fantastic array of sounds is
a testament to the extreme versatility of
the 6809 and the Color Computer.)

In order to produce the sound of a
particular instrument, most hardware
synthesizers produce a particular sine
wave electrical output varying between
zero and five volts. This pure tone is
then modified to produce the same
general pattern of electrical output as
the sound output of the instrument it is
trying to mimic. The unmodified sine
wave produces a pure tone of a partic-
ular volume depending upon the max-
imum voltage allowed by the circuitry.
The envelope modifications are mainly
constraints on the volume of the sine
wave over time.

To produce the sound of a piano, it
begins with a maximum volume when
the key is struck, falling off rather
quickly at first and then more slowly
until it fades out entirely. This is exactly
what the CoCo Piano-Synthesizer does:
It produces a square wave instead of a
true sine wave, the maximum voltage of
which is.controlled by the values in the
envelope table.

Go back to the main menu and press
‘6’. When the prompt asks which table
to use, press ‘1’ and ENTER. Now re-
member what we said about the fast

Page 14

R

falloff and a gentle fadeout? The graph
shown is the envelope used to produce
the piano default sound. This envelope
can be altered or a totally new one
created by using the left joystick and
firebutton. For example, position the
cursor at the bottom left side of the
screen and press the firebutton. The
original point disappears and is re-
placed by the new one. Now move the
cursor one position to the right and four
above the one just set and press the
firebutton again. Continue this process,

depositing points three or four higher in
each succeeding position, until it
reaches the top of the screen. Then, for
the next cursor position, move the
cursor to the bottom of the screen and
repeat the same process.

Do this until you reach the last cursor
position on the right. You have created
a series of upward sloping lines. To be
really fancy, make the top of each
succeeding line several positions lower
than the last one to create a trail-off
effect. When you are finished creating
the envelope, press any key to return to
the menu.

Now try playing any selection still in
memory. If there is no stored data, just
play something from the compose
mode. Try changing the tempo. Type in
an envelope delay of 100. Press ‘1’ at the
menu and get into play mode. Play a few
notes and then press the space bar. Now
play the same notes over. Interesting!

A word about coherent values. While
you can type in literally any envelope
pattern wanted, the best ones follow a
pattern. Each succeeding value should
bear a rational relationship to its neigh-
bors rather than being a random scat-
tering of points. Maybe the points
follow some sort of curve, or a pair of
curves. Maybe every third point is offset
from the curve by some fixed amount.
The possibilities are endless, and when
combined with various envelope delays
and repeating patterns, quite a collec-
tion of different sounds can be created.
Both envelope tables are programma-
ble. An organ-like effect can be pro-
duced by using an envelope that is a
straight horizontal line at the top of the
screen.

For those interested in experimenting
with sound, try a rational envelope
using very short delays (say 50) and a
repeating pattern. Note that different
keys vary in tonal quality as well as in
pitch. The reason for this involves the
interference patterns produced as the
envelope delay gets nearer to the fre-
quency delay (the delay used to produce
the desired pitch). You may hear differ-
ent “beat frequencies™ with different
keys.

Austral iamv

July, 1986.

e

Saving and Loading Compositions

Once you have composed and per-
fected the music, PIANO/BAS pro-
vides the means to save it on disk or
tape. This is done from the menu and
is self-prompting. It is saved with any
altered envelope tables, envelope delay
and play delay that are POKEd in while
composing, so each composition has its
own unique sound. You do not have to
run the BASIC driver in order to play the
music. Just LOADM or CLOADM whatever
filename is used to store it. Then type
EXEC and the piece plays.

If it needs further editing, run the
BASIC driver and load the previously
stored piece from the menu. Add to it,
change the envelopes, the delays, or
alter the note data and then resave the
changes.

The Editor

We have done our best to confine the
BASIC program in order to allow 16K
owners to use the piano. The editor is
simple, but adequate for manipulation
of program data. It windows any 15-
note segment of your composition, and
allows replaying any part of that seg-
ment from the beginning to the cursor
position.

Play something from the compose
mode and press ‘9’ at the main menu.
The first column on the left is the note
position, It starts at zero and increments
for each note in the composition. The
other columns represent actual note
data. Each note is represented in mem-
ory as three data bytes. The second
editor column translates the first data
byte into an octave and a note. The third
column contains the note length. These
numbers-go from one to 32; 32 is the
longest note played. (If most of these
numbers are less than 15, you might
consider resetting the envelope delay to
a smaller number and replaying the
piece. That way, more of the envelope
is heard during each keystroke.)

The last column is the pause interval
that keeps track of the time between
keystrokes. It is a number between one
and 255. The higher the number, the
longer the pause. This pause is not to
be confused with the pauses intention-
ally placed in the data by pressing the
ENTER key. Those pauses are stored just
like any other note, with a note length
and an interval pause.

The cursor can be moved up or down
by pressing the appropriate arrow keys.
Notes may be changed, inserted or
deleted by positioning the cursor at the
note position to be changed or deleted.
Insertions occur at the cursor position,
and the remainder of the composition
is moved one position higher in mem-
ory. Inserting and deleting may take

some time in long compositions since
the entire data array above the cursor
position must be relocated, and this
relocation is done from BASIC.

Insert intentional pauses by typing
PAU in place of a note. Pauses are like
any note in that you must specify a note
length and pause length. An envelope
table switch may be inserted by typing
ENV.

For the inexperienced piano players,
we have included an option that allows
the user to change both the note lengths
and interval pauses en masse. Pressing
‘9" while in the editor allows you to
specify numbers that are automatically
inserted into all note positions from the
top of the screen to the cursor position.
Since any note position can be specified
as the first note in each segment (the top
of the screen), you can make large-scale
changes in tempo or timing with rea-
sonable precision.

Assembling PLAY Statements

Pressing ‘8’ at the main menu causes
the computer to build BASIC PLAY
statements. These are assembled di-
rectly to disk or tape as a BASIC program
complete with line numbers. Load them
and type RUN to hear them. Those with
disk drives can merge them into their
own programs after adjusting the line
numbers using Extended BASIC’s RENUM
function.

Line 5 is a tempo line. This line may
be altered to speed up or slow down the
playback. Since these are run from
BASIC without the help of the ML
synthesizer, envelope changes are ig-
nored. (Actually, there is a way to get
a “pseudo envelope” in BASIC. Those
interested should contact Jeremy
Spiller for information on how to
obtain the program for this.) The PLAY
statements offer another method of
editing compositions as they can be
manipulated using Extended BASIC’s
editing functions.

Tuning Your Piano

While we feel reasonably competent
to write computer programs, neither of
us play the piano, nor do we even know
much about music. We tuned the piano
by ear and if you can do better, give it
a shot. The key table is located at
&H3180. The assembly listing shows it
from lines 16100 to 31300.

Look carefully at the assembly list-
ing. Each key is represented by three
bytes. The name of the key is com-
mented to the right of its first byte.
(Don’t confuse these with the three data
bytes stored in memory while compos-
ing. These begin at &H334C.) The first
two bytes are the frequency delays and
these account for the pitch of the key.

The third byte is the note “name” and
is the value stored in the first of the three
data bytes while you are composing.
The higher the frequency delay values,
the lower the sound produced by that
key. Note that in most cases, both delay
values are the same. Keeping them
equal or close to equal keeps the wave
square.

The wave shape could be altered
toward triangular by drastically reduc-
ing one while increasing the other. The
wave doesn’t have to be square. The
delay values can be from one to 255. To
sharpen the sound of a key, locate that
key in the comment column of the key
table and reduce the numbers in the
frequency bytes. (The actual memory
address is the hexadecimal number in
the column farthest to the left in the
assembly source code listing. As an
example, to sharpen the sound pro-
duced by the BREAK key, POKE numbers
lower than 52 into addresses &H3216
and/or &H3217.)

To lower the entire keyboard an
octave, POKE higher numbers into the
frequency bytes of all the keys in the
table. Do this by trial and error, shar-
pening or flattening each position until
it sounds right. Once you get the table
the way you want it, play a tune and
save it as PIANO/ BIN. Then, whenever
you run the BASIC driver, it automati-
cally loads the modified tables and
becomes the new default. Have fun!

Key Memory Addresses

&H3000 Execution address of
play/compose segment.

&H325A Execution address of
playback segment.

&H330D and

&H330E LSB and MSB of address
of last note played. POKE
another address here to
end playback at another
note position.

&H334C Address of first note of
compositions.

&H3262 and

H3263 Holds LSB and MSB of
address of first note
played (usually holds
&H334C). POKE another
address here to begin
playback at another note.

&H3180 First byte of key table.

&H3219 First byte of envelope
Table I.

&H323A First byte of envelope
Table 2.

&H317E and

&H317F Holds top-of-RAM
(&H7F80 in 32K sys-
tems).

July, 1086.

Australian RAIKRBOV

Page 15

—

/ 180 237

280161
410505 247
48033
59091
T80 iavea .23
860M
960163
8014164
END......

Listing 1: PIANOBIN

0 GOTO1000

1 CLEAR200, &H2FFF

2 DATA 1847,2952,2629,2549,2518,
1653, 1806, 1698, 1525, 2938, 1478, 17
37,1948,2446,2333,1796, 1916, 1631
,1711,1186,867,1187, 1180, 1006, 16
98,879, 1382, 1025, 1322, 1544, 1951,
2067,2059, 1813, 1907, 2319, 2268, 16
09,1754,2414,1878,2275,637

4 DIM SUMC43):FOR Z=1 TO 43: READ
SUM(Z) : NEXT 2

10 DATA 8D, 11,7F,31,78,8E, 32,19,
BF,31,76,30,88, 1F,BF,31,7A,20,1B
, B6

20 DATA FF,1,84,F7,B7,FF,1,B6,FF
+,3,84,F7,B7,FF,3,B6,FF,23,8A,8
30 DATA B7,FF,23,1A,50,39,1C,FE,
BE, 31, 76, BF, 31,73, FE, 31,7C, 86, FF
. B7

40 DATA FF,2,C6,FF,5C,79,FF,2,B6
.FF,0,8A,80,81,FF,26,6,C1,7,26
50 DATA EF,20,DB,34,4,B7,31,75,C
6,FF,5C,46,25,FC,86,8,3D,EB,E4,3
S

60 DATA 2,C1,2F,26,23,7C,31,78,B
6,31,78,44,25,E,8E,32,19,BF,31,7
6

70 DATA 30,88,1F,BF,31,7A,20,C,8
E,32,3A,BF,31,76,30,88, 1F, BF, 31,
7A

80 DATA C1,37,10,27,2,1E,10,8E,3
0,A2,E1,A0,27,94,10,8C,30, AA, 27,

A

90 DATA 20,F4,1,6,B,1C,20,23,27,
37.C1,1F,26,31,7C,31,79,B6,FF,0
100 DATA 8A,80,81,FF,26,F7,16,FF
,71,B6,FF,0,8A,80,81,FF,26,F7,BE
.33

110 DATA D,86,20,A7,1,17,2,3F,E?7
,2,30,3,BF,33,D,BC,31,7E, 24,69
120 DATA 16,FF,4F,C1,31,26,F, BE,
33,D0,30,1D, 8C, 33,4C, 25,C4, BF, 33,
D

130 DATA 20, BF, 8E, 31,80,86,3,3D,
3A,A6,2,A7,9F,33,D,EC,84,34,6,A6
140 DATA 9F,31,73,84,FC,E6,E4,8D
,7.4F,E6,61,8D,2,20,EF,5A,26,2F,
8A

150 DATA 2,B7,FF,20,B6,FF,0,8A,8
0,B1,31,75,27,1F,32,64,FC, 31,73,
B3

160 DATA 31,76,BE,33,D,E?7,1,17,1
,D9,E7,2,30,3,BF,33,D,BC,31,7E
170 DATA 24, 3,16, FE, E9,39, 33,5F,
11,83,0,0,26,C6,FE,31,7C,BE,31,7
3

180 DATA 30,1,BC,31,7A,27,5,BF,3
1,73,20,B4,B6,31,79,44,25,5,32,6
4

190 DATA 16, FF,52,BE, 31,76, BF, 31
,73,20,A1,32,19, BF,32,19,0,0,32,
38

200 DATA 4,4C,7F,FF,3F,3F,14,1,1
,80,1F, 1F, 20,25,25,1D,27,28,1C,9
0

210 DATA 90,6,1,1,80,20,21,1F,1D
,1E,21,53,53,F,1A,1B,23,1,1,80

220 DATA 15,16,26,19,19,24,1C,1C
,22,4B,4B,11,47,47,12,AC,AC, 3,80
, 80

230 DATA 8,2D,2D,1A,71,71,A,5E,5
E,D,22,22,1E,98,98,5,2A,2A,1B,65
240 DATA 65,C,30,2F,19,C1,C1,1,1
,1,80,37,39,16,31,31,18,0,0,0
250 DATA 1,1,80,B6,B7,2,A2,A2,4,
1,1,80,88,88,7,78,79,9,6B,6B

260 DATA B,1,1,80,58,59,E,4F, 4F,
10,43,43,13,13,13,28,17,17,25,3B
270 DATA 3B, 15,14,14,27,1,1,64,5
+5,FF,1,1,64,34,34,17,FF,CA,AA
280 DATA 91,7E,6B,5B,50,46,3D,35
,2D,28,22,1D,1A,17,15,12,10,F, D,
Cc

290 DATA A,9,8,7,6,5,4,3,2,1,FF,
89,44,4,E6,95,41,4,D2,91

300 DATA 41,4,C0,79,41,4,AD,70,3
4,4,9A,63,2C,4,86,54,29,4,74,48
310 DATA 22,0,17,FD,B6,7F,31,78,
10, 8E, 33, 4C, 8E, 32,19, BF, 31,76, FE
131

320 DATA 7C, BE,31,76,BF,31,73,10
,BC,383,D,27,37,E6,21,BE,31,76,3A
, BF

330 DATA 32,B1,E6,A4,8E,31,80,C1
,64,26,1D,7C,31,78,B6,31,78,44,2
5,A

340 DATA 8E, 32,19,BF,31,76,31,23
,20,CC,8E,32,3A,BF,31,76,31,23,2
0,C2

350 DATA E},2,27,7,30,3,20,F8,39
,32,33,EC,84,34,6,A6,9F,31,73,E6
360 DATA A4,C1,FF,26,1,4F,E6,E4,
8D,7,4F,E6,61,8D,2,20,EA,5A,26,2
8

370 DATA 8A,2,B7,FF,20,BE, 31,73,
BC,32,B1,10,23,FE,66,8D,55,CE, 0,
32

380 DATA 33,5F,11,83,0,0,26,F8,3
0,1,BF,31,73,32,64,31,23,16,FF,7
2

390 DATA 33,5F,11,83,0,0,26,CD,F
E,31,7C,BE,31,73,30,1,BF,31,73,2
0

400 DATA C0,33,4C,C6,1,7F,FF,2,B
6,FF,0,8A,80,81,FF,10,26,FE, 26,4
F

410 DATA 10,21,FD,A,10,21,FD,6,4
c.,27,2,20,F3,5C,C1,FF,10,27,FE, 1
1

420 DATA 20,DE,S5F,4F,10,21,FC,F2
,10,21,FC,EE,4C,26,F5,5C,E1,22,1
0,27

430 DATA FF,66,20,EB,D

435 Z=0:SUM=0:L=10

440 FOR X=&H3000 TO &H334C:READA
$: AS="&H"+A%S: A=VAL (AS) : POKEX, A: S
UM=SUM+A: 2=2+1: IFZ=20 OR X=&H334
C THEN 450 ELSE NEXT X

450 PRINT"WORKING ON LINE #";L:
IF SUM<>SUM(L/10) THEN CLS3:PRIN
T@257,"ERROR IN LINE #";L;:END
460 SUM=0:L=L+10:2=0:IF X=&H334C
THEN 470ELSE NEXT X

470 CLS:PRINT"ENTER SYSTEM SIZE
(16 OR 32)": INPUT A

480 IF A=16 THEN POKE&H317E, &H3F
: POKE&H317F, &H80: GOTO 510

490 IF A=32 THEN POKE&H317E, &HT7F
: POKE&H317F, &H80: GOTO510

500 GOTO 470

510 CLS: INPUT” (CYASETTE OR (D) IS
K";D$: IF D$="D"THEN SAVEN"PIANO"
, &H3000, &H334C, &H325A: END

520 CSAVEM'PIANQ", &H3000, &H334C,
&H325A

1000 PCLEAR1:GOTO1

Listing 2: PIANOBAS

5 GOT020000

10 CLS:PRINT"PLEASE REMOVE JOYST
ICK FROM RIGHT JOYSTICK PORT
":PRINT

14 CLEAR2S5, &H2FFF

20 INPUT" (C)ASETTE OR (D) ISK";D$
: IF D$="C"THENCLOADNM"PIANO"ELSEL
OADM" P ANO"

40 DIMNSC12)

50 CLS: PRINT@14,'"MENU":PRINT

60 PRINT” 1) COMPOSE MUSIC”
70 PRINT" 2) ADD ON TO MUSIC®
80 PRINT" 3) PLAY MuUsiIcC"

90 PRINT"” 4) SAVE MUSIC"®

100 PRINT" 5) LOAD MUSIC"

110 PRINT" 6) CHANGE ENVELOPE"
120 PRINT" 7) CHANGE TEMPQ"

130 PRINT" 8) ASSEMBLE TO PLAY

COMMANDS"

140 PRINT” 9> EDIT YOUR COMPOSI
TION"

150 PRINT@480," ";:A$=INKEYS: IFA
$=""THEN150

160 B$=INKEY$: FORX=&H152 TO&H152
+7: IFPEEK(X) =255THENNEXT: GOTO170
ELSE160

170 ORVAL<(A$)>GOTO300,310,320,330
,340,360,440,8000,500

180 GOTOS0

190 CLS:A$="c d z f gazcdz
f ga":B$="CDEFGABCDEF
G A B":FORX=1TOLEN(AS$):C$=MID$(
A$,X,1)>: IF C$="2z"THENMIDS (AS,X, 1
)=CHR$ (175)

200 [FCs$='" "THENMIDS (A$,X, 1)=CHR
$(128)

210 NEXT: FORX=1 TOLEN(B%):C$=MID
£(B$, X, 1): IFCs$=" "THENNMIDS (B$, X,
1)=CHR$(138)

220 NEXT:CLSO

230 PRINT®4,AS$;:PRINTQ67,BS; : AS=

CHR$ (175)+CHR$ (170)+CHR$ (175> +CH
R$(170)+As: AS=LEFTS (AS,22): AS=A%
+STRINGS (4, 255)+CHRS (128) +CHR$ (2

55): PRINT@132, AS; : B$=STRING$ (3,2
55) +CHRS$ (133) +B$: B$=LEFT$ (B$, 21>
: B$=B$+CHRS (128) +CHRS (255) +CHRS (
128)+STRINGS (3, 255)

240 FOR X=1TOLEN(BS): IFMID$(Bs, X
, 1)=CHRS$ (138) THENNIDS (B$, X, 1)=CH
R$(133)>: NEXT ELSE NEXT

250 PRINT@196, BS; : PRINT®267, STRI
NG$<11,255);

260 PRINT@384,"ENTER = PAUSE : ?
= NEW ENVELOP"

270 PRINT"SHIFT = MENU
BACKSPACE"
280 PRINT"
OGGLE

290 RETURN
300 GOSUB190: POKE&H330D, &H33: POK
E&H330E, &H4C: EXEC&H3000: GOTOS0
310 GOSUB190: EXEC&H3000: GOTOS0
320 GOSUB190: EXEC&H32SA: GOTO50
330 CLS: S=&H3000: E=PEEK (&H330D) x
256 +PEEK (&H330E) : PRINT"SAVE" : INP
UT"ENTER SONG NAME";F$: INPUT" (C)
ASETTE OR (D)ISK";D$:IF D$="D" T
HEN SAVEM F$, S, E, &H325A: GOTO50
335 CSAVEMF$, S, E, &H325A: GOTOS0
340 CLS:PRINT"LOAD:": INPUT" ENTER
SONG NAME:";F$: INPUT" (C)ASETTE

OR (D) ISK";D$: IFD$="C" THENCLOADM
F$ ELSELOADMFS

345 GOTOS0

CLEAR=

SPACEBAR=REPEAT T

Page 16

————

Australian RAINBOV

July, 1986.

e ——————

350 IFC=0THENRESET (A, B): RETURNEL
SESET (A, B, 3) : RETURN

360 CLS: INPUT"WHICH ENVELQPE DO
YOU WANT TO CHANGE (1 OR 2, ;
E
370
380
3A
390 CLSO

400 FORX=0TO63STEP2: A=PEEK(E):SE
T(X,31~INT(PEEK(E)/8),3):E=E+1: N
EXT: E=E-32

410 Z=JOYSTK(0): AS=INKEYS: IFA$<>
""THENSOELSEA=JOYSTK(2): A=INT(A/
2): A=AX2: B=JOYSTK(3): B=1NT(B/2):
C=POINT (A, B): SET(A, B, 3): FORX=1TO
20: NEXT: GOSUB350: IFPEEK (&HFF00) =
253THEN430

420 GOTO410

430 POKEE+A/2,255- (B%¥8): FORY=0 T
031: RESET(A, Y): NEXT: SET(A, B, 3):G
0T0410

440 PLYDLY=PEEK (&H32E2) ¥256+PEEK
(&H32E3) : ENVDLY=PEEK (&H317C) ¥256
+PEEK (&H317D)

450 CLS:PRINT"CURRENT PLAYDELAY=
";PLYDLY: PRINT"HIGHER OR LOVWER V
ALUES WILL LENGTHEN OR SHORT
EN PAUSES BE- TWEEN NOTES ON PL
AYBACK ONLY. ENTER NEV VALUE,
OR <ENTER> TO LEAVE THE SAME

IFE=0THENE=1
IFE=1THENE=&H3219 ELSEE=&H32

460 INPUTA: IFA<>OTHENB=INT(A/256
):C=A-256%xB: POKE&H32E2, B: POKE&H3

2E3,C

470 CLS:PRINT"CURRENT ENVELOPE D
ELAY="; ENVDLY: PRINT"LOVER VALUES
VILL COMPRESS THE ENVELQPE INT

O A SHORTER TIME AND INCREASE
THE TEMPO OF BOTH COMPOSITION
AND PLAYBACK. ENTER NEV VALUE OR
<ENTER> TO LEAVE THE SAME"

480 INPUTA: IFA<>OTHENB=INT(A/256
):C=A-256%B: POKE&H317C, B: POKE&H3
17D, C

490 GOTOS0

500 CLS:S=&H334C:P=0:FS=0:CP=0: X

=256 %PEEK (&4H330D) +PEEK (&H330E): L

P=(M-S)/3: GOSUB510: GOTOS20

510 NS (1)="C":N$(2)="C#":N$(3)="

D':N&<(4)="D#": NS (5)="E" : N2 (6)="F

":N$(7)="F#":N$(8)="G": N$ (Q)="G#

“INSCLO)="A": NS (11)="A#":N$(12)=

"B": RETURN

520 FORX=0 TO448STEP32

530 1FP=LP THENFORZ=X TO448STEP3

2: PRINTSTRINGS (16, CHR$ (175)) : NEX

TZ2: GOTO620

540 N=PEEK (S+3%P): [FN=255THENNS=

"“"PAU” : PRINT®@X, P: PRINT®X+5, N8: GOT

0570

550 [FN=100THENNS="env":L1=0:L2=

0: G0TO580

555 GOSUBS60: GOTOS70

560 O$=RIGHTS$ (STR$ (INT((N-1)/12)

+2),1):Z2=N-12%INTC(<(N-1)>/12): N$=N

$(Z): N$=0%+N3: RETURN

570 L1=PEEK(S+3%P+1):L2=PEEK(S+3

*P+2)

580 PRINT®X,P:PRINTOX+5,N$: [FN=1

OOTHENG600

590 PRINT@X+10,RIGHT$(STR$(L1),2

;L2

630 PRINT@17,"1.PLAY SEGMENT":PR

INT®51,"TO CURSOR":PRINT@81,"2.P

LAY START":PRINTQ115,"TO CURSOR"

:PRINT®@145,"3. PLAY CURSOR" : PRINT

®179,"TO END":PRINT®209,"4.NEV S

EGMENT" : PRINT®241,"5S. CHANGE NOTE

":PRINT@273,"6. INSERT NOTE":PRIN

TR@305,"7.DELETE NOTE"

640 PRINT@337,"8. MAIN MENU":PRIN

T@369, "9, QUICK CHANGE":PRINT®Q403

" TEMPO BYTES"

650 X=4:P=FS:CP=0

660 PRINT@X,CHR$(128);

670 A$=INKEYS: IFA$=""THEN670

680 IFA$=CHR$ (94>0OR A$=CHR$ (10T

HEN720

690 IFVAL(A$)<10R VAL(A$)>9 THEN
670

700 ONVAL (A$)GOTO790,800,810,820
,845,948,980,710,1000

710 GOTOS0

720 1FA$=CHR$ (10)THEN740

730 IFX=4THENG670ELSEPRINT®@X," ™;
: X=X~-32: CP=CP-1:G0OT0660

740 1FX=4520R FS+CP+1=LP THEN670
ELSEPRINT@QX," "; :X=X+32:CP=CP+1:
GOTO660

750 M1=PEEK(&H330D): M2=PEEK (&H33
OE) : RETURN

760 Al1=INT((S+3%XFS)/256): A2=(S+3
*FS)-A1%256: RETURN

770 AL=INTC((S+3*%FS+3%x(CP+1))/256
): A2=(S+3%FS+3%x(CP+1))-A1%256: RE
TURN

780 EXEC&H325A:FORZ=1 TO300: NEXT
Z: PRINT®@X, CHRS (255) ; : FORZ=1T0255
STEP20: SOUNDZ, 1: NEXT: POKE&H3262,
&H33: POKE&H3263, &H4C: POKE&H330D,
M1: POKE&H330E, M2: GOT0O660

790 GOSUB750: GOSUB760: POKE&H3262
, Al: POKE&H3263, A2: GOSUB770: POKE&
H330D, Al: POKE&H330E, A2: GOTO780
800 GOSUB750: GOSUB770: POKE&H330D
y+Al: POKE&H330E, A2: GOTQ780

810 GOSUB750:GOSUB770:Z=256%A1+A
2:Z2=2-3:A1=INT(Z/256): A2=2~-A1%25
6: POKE&H3262, Al: POKE&H3263, A2: GO
TO 780

820 CLS:PRINT"PLEASE TYPE POSITI
ON NUMBER FOR NEV SEGMENT": INPUT
Q

840 FS=Q:P=Q:GOT0520

845 GOSUBB50:GOT0520

850 FOR Z=16TO464STEP32: PRINTRZ,
STRINGS (15," ") : NEXTZ: Z=S+3%FS+3
*CP: PRINT@17,"ENTER NEW NOTE":PR
INT@49,"ENTER TO EXIT":PRINT@S81,
"L INPUTNS

860 IFN$=""THENP=FS: RETURN

865 IF N$="ENV"THENPOKEZ, 100: POK
EZ+1,0: POKEZ+2, 0: RETURN

875 IF N$="PAU" THENPOKEZ, 255: GOT
0930

890 PRINT®@113,"OCTAVE?":PRINTQ14
S,""; : INPUTO: IFO<20R0O>4 THEN8S8GQEL
SEFORX=1 TO12: IFN$<>N$ (X) THENNEX
TELSEN=(0-2)%12+X: POKEZ, N: GOT093
0

892 I[F N$="PAU"THENPOKEZ, 255: GOT
0930

894 IF N$="ENV”THENPOKEZ, 100:GOT
0930

900 GOTO845

935 POKEZ+1,R
940 PRINT@241,"PAUSE? (1-255)":P

RINT®273,""; : INPUTN: IFNC10RN>255
THEN940

945 POKEZ+2, N: P=FS

947 RETURN

948 M=M+3:GOSUB950:GOTO960

950 PRINT®@433,"thinking":M1=INT(

M/256) : M2=N-M1%x256: POKE&H330D, M1
: POKEQH330E, M2: RETURN

960 FOR Z=M TOS+3%FS+3xCP+1STEP-
1: A=PEEK(Z-1): POKEZ+2, A: KEXT

970 GOSUB850: LP=(M-8)/3:G0OT0520

980 M=M-3:GOSUB950: FORZ=S+3%FS+3
XCP TOM+2: A=PEEK(Z+3):POKEZ, A: NE
XT: LP=(M-S)/3:GOTOS20

1000 :CLS:PRINT"THIS OPTION CHAN

GES ALL KROTE LENGHTS AND/OR P
AUASE BYTES FROM BEGINING OF
SEGMENT TO THE CURSOR":PRINT: PR
INT"ENTER NOTE LENGTH (1-32)

<ENTER> TO LEAVE UNCHANGED"

: INPUTA: IFA=0THEN1030ELSEIFA<10R
A>32THEN1000

1010 FORZ=S+3*FS TOS+3%FS+3xCP S
TEP3: POKEZ+1, A: NEXT

1030 PRINT: PRINT"ENTER NOTE PAUS
E <ENTER> TO ESCAPE" : INPUTA:
IF A=OTHENS20ELSEIFA<C10R A>255TH
EN1030

1040 FORZ=S+3%FS TOS+3%FS+3xCP S
TEP3: POKEZ+2, A: NEXT: GOTO520

8000 *'PLAY STATEMENTS

8002 L=0:1=0:A=&H334C: E=PEEK (&H3
30D) ¥256 +PEEK (&H330E) : GOSUB510
8010 D=1:CLS:PRINT"PREPARE TAPE
RECORDER OR DISK TO RECEIVE PL
AY STATEMENTS" :PRINT: INPUT"FILEN
AME"” ; F$: INPUT” (C) ASSETTE OR (D) I
SK"; D$: IFD$="C" THENOPEN"O" , #-1,F
$:D=-1:GOTO8012

8011 F$=F$+'"/BAS":0PEN"0O", #1,Fs
8012 B$="S PLAY"+CHR$(34)+"T6"+C
HR$(34): PRINT#D, B$

8014 L=L+10:L$=STR$(L)>:L$=RIGHTS
(L$,LEN(L$)-1): A$=L$+" PLAY"+CHR
$ (34>

8020 FORX=A TOA+27STEP3: IFX=E TH
EN8100

8030 N=PEEK(X): I[FN=255THEN8040EL
SEIFR=100THEN8160ELSEGOSUBS60: N$
="0"+N$: [FRIGHTS (N8, 1)="#"THENNS
=LEFTS (N$, LEN(N$)-1): NS=NS+" +"
8040 L1=PEEK(X+1):L2=PEEK(X+2):1
FL1=0THENL1=1: [FL2=0THENL2=1
8050 IF L1>16ANDL1<20THENL1=16EL
SE IF L1>19ANDL1<28THENL1=3:GOTO
8060

8055 L1=INT(1/<(L1/32))

8060 IF L2>128ANDL2<160 THEN L2=
127 ELSEIFL2>127ANDL2<224 THEN L
2=3:G0TO8070

8065 L2=INT(1/(L2/255))

8070 L1$=5STR$(L1):L2%=STRS(L2):L
1$=RIGHT®$(L1$%, LEN(L18%)-1):L28=RI]
GHT$ (L2$, LEN(L2$>~-1)

8075 IF N=255THEN8180

8080 N$="L"+L1S+Ns$+"P"+L2s

8000 AS=A$+N$: NEXTX

8100 A$=AS+CHRS(34):PRINT#D,AS:P
RINTAS

8114 IFX>=E THENCLOSE#D:GOTOS0
8120 A=A+30:G0T08014

600 P=P+1 930 PRINT@177,"NOTE LEN(1-32)>":P 8160 IFX=E THENSOELSENEXTX
610 NEXT X RINTQ20Q,"";: INPUTN: IF N>320R N< 8180 N$="P"+L1$+"P"+L28:GOTO8090
620 'EDIT MENU 1 THEN 930 20000 PCLEAR1:GOTO10
wis »7 "ol glapp STA $FFL
Listing 3: PIAND WID 86 ¥EPY pL399 LDA $1r93
wirss m» PLepg ANDA #3177
W golgp ORG 13999 a7 ¥y pLsgp STA $FFP3
3gg9 0 11 §9209 START ISR INITLZ 3923 86 FFDY pLégp LDA $FF2)
g2 v nn g1 ClA ENVTOC P26 A g8 gLIgp ORrA 1]
3gps sx b E3%) pospy Lox WENVIAL g »7 ¥F23 plegg STA $FF2)
P8 Br 3176 prspp sTX ERVTAS WA Y pLepg oRCC #8359
Iggs 39 1y #0199 LEAX +31.x g0 ¥ 92999 | 549
g sy NI ppegp STX ENDTAB e 1¢c 111 §21p9 INRKEZY ANDCC L2119 EEYBOARD POLLING
gL 29 1s gosgp BRA INKELY 3939 B2 3176 §2299 ox ENVTAR
913 86 FFoL P1§9§ INITLZ 1LDA JFFAL INITIALIZE PIA'S wyser NN §2399 sTX ENVETR
Wi 0 plipg ANDA L3124 P e e g2459 1oy ENVDLY
July, 1986. Australian RAINBOV Page 17

3939 86 ¥F p2599 LDA oSEP 3D 3¢ N7E 13259 X waw
g3 87 " rep2 p2699 STA yFFg2 3149 26 Py 13269 s azTURN
WIECE ¥ 92799 IN1§ DB »$F7 342 16 rezy 13599 LERA INXEY
g4y sC 92809 INg29 INCB 3148 39 13699 RETURN ATS
P41 79 FEP2 p29g9 20L 9FEg2 3146 33 3¢ 11799 ENVLOP LEAU -1,U ENVELOPE COUNTDOWM
Igis 26 FEQP 3959 LoA SFEgP 3148 1183 o999 :!:” v oy
ror s e Ny $ea 72 c:1 \: A um' THVDLY
949 3L PP pI2gp CHPA #$FF ik X ’": “{” e e
- < 44 oo URIND N 0 1o BAX 41X
e 2140p aas: .. N, sin 14399 QEX ENDTAS
dpr as & 4444 i 1ep2p N 7 93 14499 »2q mrser
L2 8 4414 stA Wy 3N eY NI 14sp9 STT Dwvem
IgsI 38 g4 93799 PRINT PSHS B NIE 29 B4 14699 ™ s0UND
3gss 37 118 pIng STA KEYSTR
3958 6 rr 93899 o8 e 6P 36 14799 RESET LDA T00GLE
3938 46 Bl o N o5 e s comrm
s 99 R0RA
wsc 23 v :J;: 8cs rang2g 366 32 6 15999 LEAS +4,8
IPSE 86 P8 pa2gg LoA ot 3168 16 F¥S2 :nn 3:. VAIT
»ih m oo e i W e
4
963 38 92 :U:: ::ol_: i. NNy a 15499 ma SOUND
pes €1 2r pusap CHES w47 CHECK FOR 1/ KeY :3: :333 KEYSTR ::: : m &mn m.Tr ;#
:::: ;: ;:7. ::::: ::: :;:.,'; N a, 15699 ENVIAS ¥DB 9 POINTS TO CURRENT ENV TABLZ
nn 15799 EXVIOG ¥CB IV TABLZ TOGGLE BYTE
e R . A Iba mavroc nm :: uoz TOGGLE ¥CB : REPEATING TNV TOGGLZ BYTE
e i ed LoRA N7 PRI 13999 DXOTAB WD POINTS TO IND CURRERT ENV TAD
p519p Scs nm ne §A4C L6pPP ENVDLY DB L1g§ ENVELOPE DELAY

W72 w309 p5299 EWvL Lox SENVIAL nn ey 16959 RANEND DB JITTY POINTS TO TOP OF RAM
P8 Ay 136 25399 STX ENVTAR g r 16199 TABLE FCB (3] @ TIRST BYTE KEY TAB
978 39 s iy gsagg LEAX 431.X nn EH 16209 rca 3]
PR BY A 95599 sTX ENDTAB ne2 14 16399 ¥ca 29
w2y pe g3sgg A SHIFT ne o 16499 rcs 1 A
989 SE 323a §5799 ENV2 LD SENVIA2 s 7 16399 s L
gey sr 3176 psagg sTX ENVIAD N8 "W 16699) 128
g8 3g 88 LY psegy LEAX 431, e 17 16799 c n »
P89 BF IL7A peppg s1X ENDTAS ny 1 16899 e n
wec el 37 §E199 SHIFT Cwrs w3s CHECK FOR SHIFT KEY e i 16999 rcs n
Igee 1927 p218 w6299 g svr s s 17999 s » ¢
3992 1982 IgA2 76399 oY SROKEY 31ea 23 17199 rce 3
W6 21 ap féigy NOREYL cCMPB R Pt} 10 17299 ca 29
998 27 94 gespp Q ey Jsc 7 l'l:” rcs 39 L
- arT ewcETes e e 1rps va
N o Je1m = i nsr "9 17699 rcs 144 T
i A seem e S Ny 99 11299 s Les
ga2 7L §6599 NOXEY FCB 1 TABLE OF KZYS NOT PLAYED s M 17899 rce M
Yas pe deid o8 o8 N2 " 17599 2 1 ¥
o " me s 19 n 18999 w1
3543 2e pr1299 e B N 1] 18199 T
ey 4 p1399 L S 393 29 19299 w© 2 ¢
yA1 43 prasp JER.© 3% 86 1 18399)
a0 L p1399 i 397 It} 18499 rcs n
A9 37 1793 e 5 3198 1D 18599 ecs 29 ¥
WAA C1 1 97997 PRNGIP CMPB 1 CHECK FOR SPACEBAR 3199 1E 18693) 39
WAC 26 N 07999 INE aTgL IL9A 2 18799 rcs 33
PAE 7¢Iy pepga INC T0CCLE 3198 53 18893 fCcB 83 I
Bl 36 ¥ERQ P8199 WAIT2 LDA $FEgP sc 53 18597 ¥cs 't
3pss A 8g ps11g ORA »589 3Lsp gr 19993 ¥ce 15
EEL L D £ gezgy (=1 7% "y oe 1A 19199 rce 26 3
w26 n pa399 [JAIT2 ter 18 19299 rcp 27
16 vaigy LERA INRRY A9 23 19399 ¥ce s
g 86 gy 8399 wATT LoA gy 31AL oL 19499 ¥CB 1 X
ey »w 78519 ORA 5 31A2 91 195979 ¥Ccs 1
Wz (107 cHrA es¥¥ A3 a9 19699 ves 128
wes % N 90799 e IATT Iaé 13 19799 rca 2 L
I9CE 3 33D 98899 x ADORY 318 16 19899 rca 22
co o6 29 oA a2 ILA6 26 19599 s 3
e a7 N STA +1.X 31A7 19 9999 rce 25]
::3 g :;" l-::‘ 3148 19 29199 ¥cs 23

s *2.x 1A% 24 29209 FCB s
oz 3 N LZAx *.x AL 1c 29399 res 28 N
3908 37 339D sTX NDMORY 318 1c 29499 rcs 28
P07 8¢ e CMPX RANEND JLAC 22 29599 FcB 34
IPOA 24 & poagp s RETURN I1AD 48 20699 PCB 75]
IPOC 16 YRR P L3RA INKEY IlAE a8 29799 Fcs 75
gorcr N 9699 sT991 Cxrn "y CHECK FOR CLEAR ILAF 1 29889 FcB 17
weL 26 g #9799 we stp1g sg 4 29999 rcs n r
wmy 2 omE B = 5L == B

.2 31e2 12 211
PLE BC Ic 19999 QX sconros nm AC 21299 rcs 172 Q
PER 23 CA 19199) wALT2 ILB4 AC 21399 ¥cs 172
WL 3r 3D 19299 sTX HEMORY LS 93 21699 ¥cB 3
Wrp 2y ar 19599 BRA VAIT2 3ise T} 21599 ¥ca 128 r
Wr2 sz ey 19699 STP1§ LDX oTASLE nm T 21699 2 128
Sr et ipT o W R
o WL

)gl 3 l:':. AMX Jlea bl 21999 rch “s
WY A6 92 11997 ™ .2.x s 1A 22999 ¥cs 28
WIS AT 97 3D 11199 STA [MEnonY) ise n 22199 rcs 113 T
WIT EC 8 11299 o0 X 31 n 22299 FC8 13
gL 36 g 11399 rSHs Al Jlee A 22399 ¥cB 19
3193 A6 97 3173 11499 STPIS LDA [ExveTR) ALEF sz 22499 ¥cs 94 E]
N ETEE 11399 ANDA e$FC cp se 22599 ¥cs 9%
I IRTEE T 11699 T 8 el o 22699 ¥ca 13
ape .l o Nes a2 g -
NP0 4y cLaA
ngr e 6 11999 o8 .8 e 1z 22999 ¥ea » y
Mg g2 12999 T $OUND 31cs 98 23909 ¥C3 152 v
Nz rr 12199 m s 1106 98 23199 Fes 12
314 %A 12299 sousd prcem ey 75 23299 FCB 5
318 26 22 12399 BNE ENVLOP :tg: :: :;::: :g: :; X
N7 A g2 12319 ora o2
N 87 T2y 12499 STA Irr2p 31CA 18 23599 ¥cs 27
NIC 86 rrpy 12599 QKKEY LDA $F799 SEE IF KEY STILL PRESSED 3ics 65 23699 Fes 19 Y
St TOT] 12519 orA PTY 3ce s 23799 ¥Cs 191
N M s 12699 CMPA KEYSTR 30 yc 23899 ¥Cs 12
mre B o o & ¥ B g o
N2 ‘ LEAS 44,8
N e NN 12999 o0 NveTR 0g 19 26199 ¥cs 25
328 33 %6 139979 SUBD ENVTaR 3101 cL 24299 rcs 193 UP ARR
3128 38 339D 1199 X MENORY 3102 cl 24299 FCB 193
mwiL g 13299 578 aLx nos 91 24499 FCs 1
g L F w2 e
N6 L sTR +2.x
ey g 1123 LEAX +3.X 3106 7] 24799 ¥cs 128
31A 37 33D 13249 sTX MENORY 3107 3 24899 Fcs 53 LT ARz
Page 18 Ausitralian RAINBUW luly, 1986,

I IIIREEmAA__———wwwWWwwW—W—

e

3108 39 24999 ¥es 57 324z 9 16799 ¥cs 15
3108 16 25999 ¥ce 22 3247 63 36899 ¥CB 99
3104 i 25199 ¥CB 49 AT ARR 3258 2¢ 36999 rcp '
o8 N 25299 ¥cp 49 3251 94 37999 rcp 4
3inc 18 23399 rcr 24 3282 6 gy rcs 134
3100 99 25499 Fcs Fl sPace 1251 54 37299 e 8
102 99 25599 FC3] 3254 29 37399 ¥c3 a1
3lor 99 25699 ¥cs 9 3288 94 37499 rca 4
ney g1 25799 1233 1 9 3236 7 37599 res 116
nn [\ 25899 ¥ca 1 3287 48 37699 ¥cs 72
ne2 9 25999 ¥cs 128 3238 22 37799 ¥ca 3
nes 86 26999 rcs 182 1 3259 99 37899 ¥c3 g
es » 26199 res 183 325A 17 DB 37999 PLAYSK LBSR INITLZ PLATBACK SEGMENT
3ies 92 26299 ¥cs 2 2250 7P 3178 37913 o ENVTOG
316 a2 26399 e 162 2 3269 198E 334C 38999 Y #CONPOS
ey A2 26499) 162 3264 82 3219 38199 DX WENVIAL
Iies 94 26599 ¥cs ‘ 3267 BF 3176 38299 STX ENVIAB
ey g 26699 res 1) 326a y2 317¢C 38399 PLYPPS LDU ENVDLY
3z n 26799 Fes 1 326D BE 3176 38499 LDX EWVTAB
ies 7] 26899 e 128 3219 3¢ 3173 38599 STX Ewvrm
Jlec o 26999 ¥cs 136 4 3273 193¢ 339D 38697 PLYPIF CNPY MEMORY
3o 8 21999 FCB 136 nr 2y 9 18799 2EQ sv1
nez 97 27199 Fc3 7 21y Es 21 8897 o8 4,7
iy 7 27299 ¥ca 129 s 3278 B2 3176 38999 LDX ENVIAR
ney 79 27399 ¥c2 121 3272 A 39999 ABX
nn 99 27499 FC3 s 3277 BF 3231 19197 sTx IRVPT2
Nz 6 27599 ¥C3 197 6 3282 26 A4 39299 o %
3 6 27409 ¥ca 197 3284 82 3189 39399 DX eTABLE
nrs o 27799 e 11 3287 L 64 39499 arr 199
31rs g1 27899 ¥cs 1 7 3289 26 1D 39519 BNE PLY§29
31P6 [27999 rcs 1 3288 7 78 39529 1NC ENVTOC
3Le7 1] 28999 23] 128 3282 36 3178 39839 oA ENVTOC
31¥Fs b1} 28199 ¥FC3 (1] 8 3291 44 39548 LSRA
JLrs b 28209 ED: 1 RY 3292 25 gA 19539 Bcs w22
INAT AR 28399 o 3294 8E 3215 39369 LOX eENVIAL
Lrs o 8499 JoN. a9 ’ 3297 BF 3176 39999 STX mVIAR
ILFC 4F 28599 CB 79 %a'sl. 23 9999 LT 03,%
LFD 19 28699 ¥CB 16 3ive 2§ cc 9199 ¥a rLYags
un 4 20799 ws 9 i 3298 8E 32]A 4§20 ENVI2 DX #ENVTAZ
ey 43 28899 ¥Cy 67 21 87 3176 49399 sTX NVIAS
3299 13 20999 ¥ 1y A6 1 23 4g4gg LEAY +3Y
3291 13 29999 res 19 . a6 29 2 9598 " rLYPPS
1292 1 29199 rce 19 M8 E1 92 49698 PLYG2) ONFB #2,X
1293 28 29299 FCs e a2 97 9799) 200
1294 17 29399 ¥es 23 < ¢ 39 93 9899 WA 43X
3295 17 29499 ¥Cs 23 VA9 T 49599 A YS9
1296 25 29599 ¥ce 37 3289 39 1999 SvI 218
3297 3 29699 Fca 59 - i 9999 1199 ENVPT2 OB s
298 EL 29799 Fee 59 3283 B¢ 84 41299 YoD 1DD X
3299 13 29899 ¥cy 21 3285 34 96 41399 PSHS A.B
1294 16 29999 = 2 > 3287 A€ SF 3173 41499 PLYPIP LDA (ENVPTR]
1298 14 39999 ¥cn 29 3288 B6 A4 41599 108 :
3290 27 9199 ¥cB 38 3280 CL PP 41699 cHPB w258
3290 91 39299 rce 1 r sy 26 g1 a1799 BNE PLYPAP
29 7 39399 ¥ce 1 3201 47 alagg cLRA
329% 4 39499 ¥cp 199 3202 86 24 41999 PLYPA 1DB s
2 s dgsgi FCB 5 ENTER 3J2¢c4 &0 @7 42999 BSR SKD
211 93 39699 ¥cB 5 3206 4F a2199 cLRA
1212 L 39799 Tcs 255 327 86 6L 42299 108 +.5
3213 #n 39699 FCB 1 CLEAR 3209 80 92 42399 SR SND
3214 n 39999 FCB 1 3263 29 T 42499 BRA PLYPIP
3215 64 31999 FCB 193 3260 SA 42599 sWD DEICH
3216 34 3ligy ¥cs 52 BREAX ace % 28 L2609 BNE ENY
3217 3% g rcs 52 3209 84 92 42619 oA #2
18 17 NP9 rcs 23 202 87 ¥R 42799 STA $¥PF29
3219 Fr 31499 ENVTAL FCB 255 ENVELOPE TABLE ol 3208 2 3173 42899 cxsTOP LOX ENVPTR
321A cA 31599 FCB 292 3208 3¢ 3281 42999 QX ENVET2
3218 A 1699 ¥C3 179 3208 1923 FESE 43999 LSLS RETURN
31c 91 1799 FCs 163 207 8D 33 43992 3SR seTVN
1210 7 sy FC3 126 el CE g2 43919 LU e5§ <-<PLAYDELAY
a1 68 31999 e» 197 32L4 33 ¥ 43929 PLYDLY LEAD -1,0
3219 58 32999 ¥cB 91 3226 1183 999 43g3g cxrD
3229 59 32199 Fcs 89 2L 26 ¥8 43949 Nz PLYDLY
3221 “ 32299 ¥CB 9 32ec 3 g1 4319 LEAX +1.X
3222 30 32399 FCB 61 Jee 37 073 43209 STX ENVPTR
1223 35 32499 ¥ca 3 3Pl 32 64 43399 LEAS 44,
3224 20 32599 ¥cs 45 a2rs 31 23 43499 LEAY +3,¥
3225 28 32689) 4“9 298 16 P2 43599 LERA PLYPPS
3226 22 32799 ¥CB 34 e 33 s 43699 ENV LEAU -1,0
3227 10 12899 ¥Cs 29 327A 1183 gggg 43799 NPy e
3228 1A 32999 ¥C3 26 are 26 ¢ 43899 e s
3229 17 31999 ¥cs 23 3399 FE 3170 43999 o0 ENVDLY
3224 15 9199 FCB 21 3393 32 173 “ggg ox ENVITR
3228 12 33299 FcB :: g6 Y g1 a419g LEAX 41X
322¢ 19 33399 ¥cs
3220 gF 3l4g9 FCB 15 :::: ;: ::7’ ::gz m ::;m
(4] 13
Jazr # 33508 » 3390 334 4443 MEMORY TDB 3334 POINTS TO LAST NOTE STORED
22r gc 33699 rcs :7 Bgrce g1 44459 TVEEN 108 .l
i pA 39790 e e ML P FRP2 44s9 clx srm2
;;:; :: ;::gz ;2: . 3314 36 FFPY 44699 TVEENY LDA sergg
3233 97 34999 P 7 RGN VAN T Ads1p ORA o389
1238 96 34199 ¥cs 6 319 81 ¥R a4799 CHPA #SFF¥
3238 93 14299 ¥cs s 1113 1926 FE26 448gg LENE RETURN
3216 94 14399 FCcp 4 3317 4F 44999 CLRA
3217 2 36499 ¥cn 3 1329 1921 FOPA 44919 TWEENI LBRN INKEY
3238 92 34599 rcs 2 3324 1921 FDP6 44929 LBRN INKEY
3219 9 34699 ¥er 1 1128 4C 45ggg INCA
123A V¥ 34797 ENVTA2 ¥CB 238 ENVELOPE TABLE »2 3329 27 92 45199 BEQ TVEENS
3238 L 1] Juggg Fcp 137 3328 29 | 5] 45299 BRA TVEEND
3¢ a4 34999 ¥CB T 3320 ¢ 45399 TWEENG INCB
3230 g4 15999 FcB A MMECL PR 45499 CHPR aSEF
323e 6 35199 ¥ce 239 3339 1927 FEIL 45599 LBEQ RETURN
3217 95 35299 ¥ce 149 3334 2§ DE 45699 BRA TVEENG
1269 al 13399 ¥CB 6 3336 SF 43799 BETWN CLRE
3241 94 15499 ¥eB . 3337 4F 45809 BETWNL CLRA
3242 D2 35599 ¥cB 219 3338 1921 FCF2 45999 BETWN2 LBRN INKEY
3243 N 35699 rcp 145 333C 1921 FeeE 46999 LBRN INKEY
3244 4l 35799 ¥CB 65 3348 4C 46199 INCA
32458 94 15899 ¥CB . 3341 26 7S 46299 BNE BETVNZ
3246 cp asepy FCB 192 3343 5C A8399 INCE
247 79 16999 ¥or 121 teh B 22 46499 cHPR 42,Y
1248 &1 16198 rce [$3 3345 1927 FFéS “6599 L3EQ sw1
1249 9 36299 FCB 4 334A 29 EB 46699 BRA BTN
324A AD 36399 FCB 173 14 99 46799 COMPOS FCB 9 FIRST BYTE STORED MUSIC DATA
3248 9 16499 FCe 112 325 45899 END PLAYEK
324C 34 ELAT FCB 52
3240 P4 36699 ¥CB “ #9939 TOTAL ERRORS

iy, 1O&¢ Austration HAUNIW Page 19

MUSIC

NEW COMMANDS, NO BUGS

NESIG PLE

by Bob Ludlum

ince MUSIC+ appeared in Rainbow ("Making Four

-Part Harmony Easier") I've recieved a large

response from NUSIC+ users with questions and
requests for additional features. As a result, I've
fixed a minor bug and added two new commands to
the program.

If you're not familiar with MUSIC+, 1it's an
enhanced version of Larry Konecky's CoCo
Composing. It is a BASIC program that loads a
machine language music synthesis program. A screen
editor facilitates the entry, editing and playing
of four-part music. It requires a 32K Color
Computer with Extended Color Basic and runs
without modification on both tape and disk
systems.

1 want to ancwer some questions 1 received
repeatidly. First, is it pessible to add more
voices and octaves? Yes, relatively simple
modifications to the editor and synthesis grograma
are all that 1is required, but a tradeoff exists
between the added complexity and the quality of
the sounds produced.

MUSIC+ synthesizes the music wave form by summing
the contributions from the four veices at equally
spaced time intervals. The result is a sampled
approximation of the desired wave form. The
accuracy of the approximation depends on how often
the samples are calculated (the sampling rate).
The theoretical minimum rate required is two
samples per cycle of the highest frequency
component in the wave form. In practice, much
higher rates are needed.

If the sampling rate 1is too low, unwanted
frequency components appear in the wave form, a
phenomenon known as "aliasing". MUSIC+ calculates
a new wave form sample every 145 microseconds
(6,806 samples per second), which is already
marginal.

The second question frequently asked was, "WVhy do
I get a 'C’ note when [enter a 'B' sharp and why
do the notes jump from 'B' in one octave to 'C' in
the next?"

The note table in MUSIC+ implements the equally
tempered chromatic scale with a standard pitch of
440 Hertz (cycles per second) for 'A' in the

fourth octave. Each octave begins with the note
'C' and is made up of 12 pitch intervals

(half-steps). There is one half-step between 'B'
and 'C', between 'E' and 'F'. There are two
half-steps between the rest of the notes with the
sharps falling on the half-steps between.

For example, beginning with the third octave, the
notes are C3, C3#, D3, D3#, E3, F3, F3#, G3, G3¥%,
A3, A3#, B3, C4, C4¥ etc. To raise a note cne
half-step, its pitch is multiplied by the twelfth
root of two (approximately 1.0595).

The original MUSIC+ program had a bug that showed
up when the music was saved following use of the
(Move comnnd. The (M)ove command changs the point
(actually a branch insruction offset) to the start
of the music data allowing a portion of a song to
be played. Moving and then saving caused the wrong
start location to be saved and the entire song
would not play when executed. Playing before
saving prevents the problem. Adding POKE
AQ,0: POKE A9+1,128: to the original program fixes
the bug.

The first of the new commands is (H)dcopy, which
i{s used to dump the music data between specified
note columns to a printer. The command simply
lists each column number followed by the note
length and the four note names for that column.
The POKE150,18 in Line 9600 sets the baud rate to
2400. Change 1t to match your printer, if
necessary.

Turn the printer off when playing music. The
synthesis program generates a byte (eight bits) to
the output port that drives the CoCo's six-bit
digital to analog converter. One of the lower
order bits appears on the serial port while music
is playing and will cause your printer to do
strange things!

The other new command is (W form. It allows
changing the waveform table to produce sounds with
different timbres. The program prompts for the
percentages of the fundamental and the first four
overtones of the music wave form. The 256 values
for the new wave form table are calculated (in
BASIO) by summing the scaled sinusoldal
fundamental and the second through the fifth

Page 20

D ——TTT

Australian RAINBOY

'July. 1986.

B EEEEERRR—————

harmonics. program very difficult. I'll be happy to make a
The new wave form table {s in effect for played copy of the latest version of the program if you
and saved music until MUSIC+ restores the table send me a tape or (preferably) a disk in a
after RUN. The original MUSIC+ organ wave form has self-addressed, stamped return mailer. My mailing
50 percent fundamental and 25 percent each for.the address is 226 Pine Ridge Ddrive, Panama Ccity, FL
second and thrid barmonics. The sum of the 32405.
percentages should equal 100. I've been very pleased with the positive
The machine language program is located responses to MUSIC+ and hope the new commands will
immediately above the BASIC screen editor in order be useful. I'm especially grateful to all who were
to maximize the amount of memory available for kind enough to send me some outstanding samples of
holding ‘music data. Adding the new commands their music. I encourage you to share your efforts
require either relocating the machine laguage with the readers of RAINBOV.

program (which would have destroyed compatability
with existing MUSIC+ music files) or shrinking the

BASIC program. Editor's Note: Due to the length of the new and

1 decided on the latter and removed the improved XUSIC+ program, we re unable to print the
unnecessary spaces and packed the lines. listing in The RAINBOV. Wwe will, however, include
Unfortunately, doing so makes describing the éheTuodifleg MUSIC+ program on this months Rainbow
necessary steps to update the original MUSIC+ n Tape or Disk.

The following contributors have sent us their 391 16 + 56 +G5 ,35 rG2 ggi 35 'Dg 'A4 oD% ,F3'
compositions using the original Music+ program. We 4p: 16 1 C6 +ES «C5 1 G2 2 D »Bd G4 G3
have dumped the first portion of the music data from 41: 16 ,D6 ,F5 ,c4 ,G3 39: 16 ,D5 ,A4 ,F4# ,D3
;ach sopgl :smg‘ Music+'s (H)dcopyacm:mlnd nq:ﬂl 42: 16 ,E6 ,G5 ,C4 ,G3 49: 16 ,D5 ,A4 ,F4% ,p
be provided inther entircy on (s month natusow | 433 16 ,E6 ,G5 ,ES ,G2 41: 8 ,D5 ,B4 ,G4 P
ON TAPE, immediately following the Music+ program 44: 16 ,B5 ,D5 ,B4 ,G2 42: 16 ,D5 ,A4 ,D4 ,F3#
listing. Simply CLONOM and EXEC to play each song. 45: 8 ,D6 ,F5 ,B3 ,G3 43: 16 ,D5 ,A4 ,D4 ,F34

S o 46: 8 c6 ,E5 ,C5 ,C3 44: 8 ,D5 ,B4 ,G4 ,G3

Scott Joplin’s “The Entertainer 47: 8 :CS :ES :C4 :GJ 45: 16 ,D5 ,A4 ,F4# ,D3

By Bill Kast 48: 8 ,c6 ,E5 ,C4 ,G3 46: 16 ,D5 ,A4 ,F4# ,p
47: 8 D5 ,B4 ,G4 ,D4
T Handel’s “Hallelujah Chorus” 23’ 3 'ggf '2: 'g: ':g"
sting: ENTRTAIN :

s By Dave Greenfield 5¢: 8 .,D5 .F4f A3 'D3

Coi‘ %g“ :gé :gg r;3 134 The listing: HALELUJA g;f g 'gg; 'gz '23 ::;
2t 16 ,B6 ,ES .9 .p COL: LEN ,Vv1 ,Vi ,Vv3 ,V4 531 8 ,D5 ,F4} A3 D3
3s 16 ,C6 ,C8 .9 P 1: 8 D5 ,A4 ,F4% ,D3 54: 8 A5 ,D5 ,A4 ,F3%

4: 8 ,AS ,A4 P P §= g ,gg .g: .z ,E3’ 55: 8 G5 ,C5# ,Ad ,E3
5: 16 ,B5 ,B4 ,@) : ’ ' ’ +F3 56: 8 F54# ,D5 A4 D3
6: 8 ,G5 ,G4 ,p N 4: 8 (A5 ,F5% ,9 ,D3 57: 4. ,E5 ,A4 ,cC4# :A3
7: 16 ,D5 ,D4 ,P P 5: 8 +B5 ,G5 ,D5 ,G3 58: 8 A4 A4 ,E4 744
8: 16 ,E5 ,E4 ,P 2 : 8 ,A5 ,F5¢ ,D5 ,D3 59: 8 F5# ,A4 ,D4 ,D4
9: 16 .Ci ,gg 2P 8 ,p .0 ,p ,F34 6018 ,E5 A4 ,C4f ,A3
1”: 8 A ' P 9 8: 8) P P yA3 61: 8 P P B 1 C4f
sl o e bl Gt i B

: ’ ' ' ’ pg: 8 D6 ,A5 ,F ’ : . ' ’ ' '
13: 16 ,D4 ,D3 ,g P 11: 8 D6 ,A5 ,F54 ,F34 64: 8 ,A4 ,A4 ,E4 ,C4f
14: 16 ,E4 ,E3 ,g ,g 12: 8 ,F54 ,D5 ,A4 ,D3 65: 8 ,F5% ,A4 ,D4 ,D4
15: 16 ,c4 ,C3 , ’ 13: 8 ,G5 ,C5# ,G4 ,E3 66: 8 +E5 ,A4 ,C4% A3
16: 8 .gg ,gg .g ,g 14: 8 ,F54 ,D5 ,A4 ,D3 67: 8 8 ., ,p .,P
17: 16 , ' ' ' 15: 8 ,p 2 g P 68: 16 ,E5 ,Ad ,E4 ,C44
18: 16 ,A3 ,A2 .9 P 16: 8 ,A5 ,D5 ,A4 ,F3§ 69: 16 ,ES .A4 .E4 .C4f
19: 16 ,G3# ,G2%# ,p N 17: 8 ,G5 ,C5% ,A4 ,E3 ;g: g ,Fgl ,:4 ,04' ,D4
2p: 8 ,G3 ,G2 ,p 9 18: 8 ,F5# ,D5 ,A4 ,D3 ¢ 16 LE A4 ,C4% ,A3
21l: 8 9) P P 19: 8 ,E5 ,D5 ,A4 ,A3 72: 16 ,E5 ,A4 ,C4% ,A3
22: 8 G5 ,D5 ,B4 ,G2 2p9: 8 +E5 ,C5% ,G4 ,A2 73: 8 B ,F4% ,D4 A3
23y 16 ,Da B3 .63 ,p 21: 8 ,D5 ,A4 ,F4f ,D3 74: 16 ,E5 ,A4 ,E4 ,C4#
24: 16 ,D4# ,B3 ,G3 ,g 22: 8 , A4 ,g ,F:# ,23 ;2: ;6 ,Eg' .2: ,g: ,g:i
25: 16 ,B4 ,C3 ,p ’ 23: 8 B4 , ,G P : ' ' ' '
26¢ .16 ,¢C5 ,C3 .,P P 24: 8 ,C54 ,2 JE4 ', P 77: 16 ,E5 ,A4 ,C4# ,A3
27: 16 ,c5 ,c4 ,G3 ,LE3 25: 4. ,D5 ,A4 ,F44% ,D3 78: 16 ,E5 ,A4 ,C4a# ,A3
28: 16 ,B4 ;C4 ,G3 ,E3 26: 8 A4 ,A4 ,D4 ,F3% 79: 8) (F4# ,D4 A3
29: 16 ,c5 ,G3 ,G2 ,9 27: 8 ,B4 ,G4 ,D¢ ,G3 8g: 8 ,E5 ,A4 ,E4 ,C4f
3p: 16 ,c5 ,G3 ,G2 ,9 28: 8 ,A4 ,F44 ,D4 ,D3 81l: 8 F54 ,A4 ,D4 ,D4
s 17 Jos ot sk ars 5 b 5 A GE m av .ol
32: 16 ,C5 ,C4 , ,G3 3g: 8 ' ' ’ ' : ' ' ' '
33: 8 .C5 ,F3 ,F2 ,p 31: 4. ,D5 ,A4 ,F4% ,D3 84: 8 ,D5 ,G4# ,D4 ,B3
34: 8 ,¢5 ,C4 ,A3 ,p 32: 8 A4 ,A4 ,D4 ,F3¢ 85: 8 .C5% ,A4 ,E4 ,A3
35: 16 ;65 ,¢ P +E3 33: 8 B4 ,G4 ,D4 ,G3 86: 16 ,p ;A4 ,C4# ,E3
36: 16 ,Cé6 ,E5 ,C5 ,LE3 34: 8 A4 ,F4% ,D4 ,D3 87: 16 ,p (A4 ,C4% ,E3
37: 16 ,D6 ,F5 ,C4 ,G3 35: 8 Y P 2 Py 88: 8 1y ;A4 ,D4 ,F3¢
38: 16 ,Dé4 ,F5# ,C4 ,G3 36: 16 ,D5 ,A4 ,D4 ,F3% 89: 8 1y (A4 ,C4% ,E3

July, 1986,

EDUCATION NOTES ———

| T e
| omme
HAINROW |

Teaching Language 1dioms

By Steve Blyn

his month’s program is a playful
I one designed mainly for those in
the middle grades. It’s good for
all of us to occasionally take a break
from more serious educational pro-
grams. This program points out idioms,
one of the peculiarities of our language.
We are going to have fun with some
idioms that refer to bodily figures of
speech. We have included such expres-
sions as “crossed fingers,” “toe the
mark” and “nose to the grindstone.”

If your students are motivated to
discover the derivation of these idioms,
then we have accomplished even more
than we set out to do. We’ll demonstrate
how to add to the list to make it more
comprehensive. Our main purpose,
though, is enjoyment. We intend to
show students that the computer can
easily produce fun and educational
programs.

While testing the program with mid-
dle school students, we found that a
great source of amusement was the
errors made — some deliberately. Even
after the students learned the idioms,
they had a lot of fun entering answers
other than the correct ones. “With
tongue in cheek” became “with toe in
cheek.” “Feet of clay” became “nose of

The listing: IDI0OMS

clay” and so forth. This experiment
inspired a jovial atmosphere — laugh-
ing girls and boys, chuckling teachers,
animated discussion, thinking out loud
— it was delightful.

Lines 40 and 50 set the dimensions at
15 questions and answers. ‘N' was set at
15 simply because we ran out of body-
part idioms. If you can think of others,
add more DATA lines and adjust the
number on Line 40 accordingly. Lines
60-80 read these questions and answers
from the DATA lines.

Line 100 chooses a random question
and answer (variable ‘R’). The program
gives six answers from which to choose.
The variable ‘J’ in Line 110 subtracts a
number between one and five from the
correct answer. The six answers printed
start at the true number (R) less ‘J" and
include five more choices. The true
answer is ensured a place among the six
listed. Lines 170-190 print out the
choices.

The only problem is the ‘J* variable
may fall below number one, or the ‘J'*-
plus-five amount may excecd the 15
listed answers. If these situations occur,
we encounter several BS errors. This
indicates there is no such string. To
prevent these problems, we set further

restrictions on the ‘J” values in lines 120
and 130.

Line 200 asks the question and Line
210 waits for the answer. Lines 220 and
230 evaluate whether the answer is
correct. Line 240 prints the correct
answer if the student gives an incorrect
response. Lines 250-270 wait for the
user to press the ENTER key to continue.
If ‘E’ is pressed, the program ends.

We assumed that players would soon
master this program completely since
there are only 15 questions. Therefore,
we did not include a scorecard. If it is
needed, you could display the score at
the bottom of the screen at all times. We
included an extra variable (CR) on Line
220 to count the correct answers.

We hope your child or student enjoys
learning these idioms. Perhaps you or
they will be creative and produce a
similar program with other idioms.
Colors would be a good possibility,
using questions such as “-- as a beet” or
“_. with envy” or “feeling sad and --."
We here at Computer [sland always
enjoy hearing from readers about their
experiences with the programs in this
column.

189 PRINTBS(T), OULDER

1§ REM"UNUSUAL USE OF OUR LANGUA 198 NEXT T 32¢ DATA WITH ------ IN CHEEK.,T

GE" 2¢P PRINT@64,A$(R) :PRINT:PRINT"N ONGUE

2§ REM"STEVE BLYN,COMPUTER ISLAN AME THE BODY PART - "; 339 DATA TURN THE OTHER =====-= Vs

D,NY, 1986 21 LINEINPUT GS$ CHEEK

39 2$=STRINGS$(32,255) 22¢ IF G$=B$(R) THEN PLAY"O3L1gg 349 DATA WITH =====-- CROSSED. ,FI

48 N=15 CCDECDEFFGGGG" : CR=CR+1:GOTO 258 NGERS

59 DIM AS$(N),BS(N) 238 IF G$<>B$(R) THEN PLAY"O1L1p 35¢ DATA =-----= THE MARK.,TOE

69 FOR T= 1TO N PFFF" 368 DATA ARMED TO THE -----=~ e+ 1B

78 READ AS$(T),BS$(T) 24 PRINT:PRINT" THE ANSWER I ETH

8¢ NEXT T S "B$(R) 379 DATA ====== GREASE. , ELBOW

99 CLS:PRINT" QUR STRANGE LA 25¢ PRINT:PRINT" PRESS ENTER 380 DATA =--=—==- IN GLOVE.,HAND

NGUAGE" TO GO ON"; 399 DATA STAB IN THE -==--- . ,BAC

1¢# R=RND(N) 26§ EN$=INKEYS K

119 J=R-RND(5) 27¢ IF EN$=CHR$(13) THEN 99 ELSE 4P¢ DATA --=---- TO THE GRINDSTON

12¢ IF J<1 THEN J=1 IF EN$="E" THEN END E.,NOSE

138 IF J>19 THEN J=1¢ 28p GOTO 26§ 41 DATA DON'T STICK YOUR =---==

149 PRINT@32,2% 298 DATA ---=--- OF CONTENTION.,B OUT.,NECK

158 PRINT@288,Z$; ONE 429 DATA IN ONE =----- AND OUT TH

16§ PRINT@328,""; 3pp DATA SPLITTING —---==- . ,HAIRS E OTHER., EAR

179 FOR T=J TO J+5 31p DATA -----= TO THE WHEEL.,SH 43¢ DATA --===< OF CLAY.,FEET
= s == P —

Page 22 Australian RAINBOV July, 1986.

L

EDUCATION OVERVIEW

Robots: Their Place

in Education

By Michael Plog, Ph.D.

young woman was spending a
Arainy summer vacation with a

group of artistic people, includ-
ing some major literary “names.” The
group, restricted to indoor activities,
told eerie stories for amusement. One of
the venerable members of the group
suggested that everyone write a ghost
story. The young woman, named Mary
Godwin, wrote a horror story based on
a dream she had a few nights after the
suggestion. She later married one of the
members of that group, Percy Bysshe
Shelley. Whether or not you have heard
of Percy or Mary, you certainly know
Mary’s horror story, Frankenstein (or,
the Modern Prometheus).

Mary Shelley’s book became a pro-
totype for horror stories, particularly
those concerning robots. Mary had
never heard the term “robot.” Her book
was written in 1818 and the word robot
came into being in a 1920 play by Karel
Capek titled R.U.R. The word robot
comes from the Czech word “robotnik,”
for worker or serf. Capek wrote about
people creating mechanical beings to do
work for humans.

Science fiction writer Isaac Asimov
has been called “the father of robotics™
because of the many stories he has
written about the mechanical creatures.
And for another important reason
Asimov’s robots are not creatures who
turn on their creators (like Franken-
stein), but are manufactured by engi-
neers to fit exacting specifications. The
most important of these specifications
is that robots may not harm human
beings. Their circuits simply do not
allow such an action. Thus, modern
robot stories eliminate the fear (the
Frankenstein complex) people have
about mechanical intelligence.

Modern robots are industrial auto-
mations that perform a series of steps
to complete a task. Robots are not yet
made in the gencral shape of humans

and have extremely limited intelligence.
My daily life seldom brings me in touch
with industrial robots, but I have a few
contacts with other types. For example,
| interact with a robot when making
long distance telephone calls. | simply
dial an 800 number, enter my access
number, then dial the number | want to
reach. This all takes place with the aid
of robots.

Besides industrial robots, there are
robot “toys” for the home. Some of
these machines are built in a similar
fashion to the Star Wars robots and can
perform a variety of tasks. The home
robots, as well as industrial robots, need
to be programmed. Indeed, a robot has
a computer “brain” to allow human
programming.

Since robots use computers, and may
be considered as a subcomponent of the
field of computer science, it is only
natural that robots function in schools
as well as factories and homes. Gener-
ally, they are used in computer classes
and electronics courses. Students learn
about robots by building the mechan-
ical workers and programming them to
perform a task.

When computers first appeared in
schools, educational leaders wondered
and debated about their use. In the
beginning, they were used in classrooms
to teach about computers. More re-
cently, myriad uses have been made of
computers in schools. Students use
them for a multitude of purposes other
than learning BASIC programming. In
fact, students can be declared computer
literate without ever knowing about
binary addition and subtraction. Com-
puters are being used more and more as
learning tools in classrooms. Students
use word processing packages to write
reports, database programs are used to
examine information from science
experiments, and the list goes on.

The educational community has

spent over a decade debating the com-
puter’s role in elementary and second-
ary education. The debate continues
even today, although most educational
professionals consider the computer to
be an additional (and very important)
tool for students in the classroom, with
a wide variety of purposes. There is no
reason to expect the debate over the
educational role of robots to be any less
active than the debate over computer
uses. What are appropriate activities for
robots in the school? Should students
simply learn about them, then consider
the utility of robotics finished? Should
robots be used as another tool for
students, in the same way computers are
an educational tool?

Despite similarities, robots and com-
puters are not the same thing. Compu-
ters tend to be more oriented toward
mental activities. Robots, on the other
hand, tend to interact with the physical
environment in a much more direct way
than computers. For example, consider
students working with a word process-
ing package. The actual printing of a
page is a physical activity, but is much
less important than the mental activity
of the student creating the document.

When you sit down in front of the
Color Computer to write a program,
most of the activity is the relationship
between your mind and the screen. Not
so with a robot. The observable activity
of a robot performing a task deals with
physical objects. Screws are tightened,
materials are moved from one place to
another, objects are assembled, and so
on. The programming of a robot may
involve the same mental activity as the
programming of the Color Computer,
but the end result differs.

continued on Page 26

July, 1986.

Australian RAINBOV

Page 23

@astle Of @oom

By Scott Halfinan

ou are traveling in a land far away, seeking forune. You gain loot by passing from castle

to castle, each time picking up all the objects on the different levels (floors) of the

castle. After cleaning out ech castle, you move on to a new one, the difficulty increases
accordingly.

Castle requires 32K Extended Color Basic, however, it will run in 16K ECB with the disk
controller unplugged. Now load in castle and type RUN. The title screen appears. To continue
press the fire button on the right joystick. The castle door opens and you enter the castle. A
skill level propmt appears. Type a number between one and four (l-easy, 4-hard). There is a
short pause, and then the computer reveals what object are to be picked up on that level. Push
the fire button to play.

The game board appears. All the objects are laid on the castle floor, the bonus score and the
number of men you have are displayed at the top of the screen. Your man is then lowered onto
the game board.

To clear the board, you must pick up all the keys (or other objects) before the bonus coutdown
runs out, without falling off the path.

Vhen the board is cleared, move to the (white) elevator platform. You are then lifted off that

castle level to the next,

After clearing level six, your man makes his way to the castle exit,

where you are either

prompted to either quit or go on. The number of castles finished, your score and the high score
are displayed. Press 'Q’ to quit or 'C' to continue.

If you dare to contiue, your man leaves the castle and a new castle approaches.

The Listing: CAST

3

10 CLEAR130: POKE65495, 0: DIKG (3,1
y,A$(21),B$(21):GOSUB8000: GOSUB?
140: PMODE3, 1

15 B0=0:T1=9:T2=9:T3=0:GU=4:A=20
0:RESTORE: PLAY" ABCDEFG” : CLS: PRIN
T@6, ; : INPUT"SKILL LEVEL(1-4)>";SK
: [=8Kx.2: [FSK(10RSK>4THEN1S ELSE
L=17-SK%3.5: GOT045

20 PMODE3, 1: PCLS: DRAV"BM14, 185C3
R205E20L20E20L20E30L10H10E20H10E
10H10E10U10H10L10E10L100G20L10E2
0L40G10L10E10L40G20D10F10G10R30G
10L10G10D20R10G20R30F10R10G10L20
G20F10G10R10BM55, 120R40E10L10E10
L10G10L10E10L10G20"

25 DRAV"BM34,175R100E10L90E30L10
G20L20G10F10BM154, 175E10R30E10R1
0G15R10G5L50BM84, 155R70E20L10G10
LS0E20L10G30BM134, 135R10E10L10G1
OII

30 DRAW"BM34, 115R10E40L30G10L20D
10R10D10G10BM64, 65R40G10R10E20L2
0E10L10G10L20G10BM34, 45E20L5G20R
5BM69,35L10L15E10L5G10D10F10R10E
SLSE15L5"

35 DRAW"EM89,B85G5R10E5L10BM147,2
5R5G20LSE20BN114, 85R40G20R10G10L
15E10L10E10L5H10BM124, 75R20E10L1
0E20R10E10L25G10R5G30BM154, 115E1
SL10E1SR10G5R35ES5R10G20F15G10L10
E10H15L20G10L15"

40 DRAW'BNM180,115R10G5R10G5L20E1

OBM189, 140R10G5R5G10L15E15" : PAIN
1¢(38,22),3,3: DRAV'BM199, 60C4R5U6
0D60GSL5U6SDE5ES" : PAINT(201,61),
4,4:LINE(190,3)-(210,9), PRESET, B
F: RETURN

45 CR$(1)="C2R3D3L4U3ROD2L2U2":C
R$ (2)="C2U4R4D6L4VAR3D4L1U6RZD2C
301" : CR% (3)="C3R3U2C2R2U1D1R1D2R
1L1D1L2D1U1L1U2L1R1U1": CRS (4)="C
3R2U2C2D2F2E2U2L2D6R2L4" : CRE (5)=
"C3R2U2C2R6L2D4R2L6R2U4R2D4" : CRS
(6)="C3R2UAC2F4GAH4E4D2R2L4R2DIL
2R4L2D1R4L8BR4D2L2RAL2"

50 DATA 36,96,162,224,36,104,120
,104,80,28,24,64,176,104, 160,204
,216,184,132,160

55 DATA 24,20,24,40,56,40,48,80,
128,100, 180, 180, 180, 180, 128, 140,
104,110,140,80

60 FORX=1T020: READAS (X) : NEXTX: FO
RX51T020: READBS (X) : NEXTX

70 PR$(1)="PICK UP ALL KEYS":PR$
(2)="LOCK ALL DOORS":PR$ (3)="PIC
K UP ALL RINGS":PR$(4)="PICK UP

ALL CUPS":PR$(5)="PICK UP ALL SC
ROLLS'":PR$ (6)="PICK UP ALL DIAMO
NDS”

80 N$(1)="C1R2C3G2E2D6R2LA4": K$ (2
)="R4D3L4AD3R4" : N$ (3)="R4D3L3R3D3
L4": NS (4)="D3R4U3D6": N8 (5)="R4L4
D3R4D3LA™: N8 (6)="D6RAU3LA" : N$ (7)
="R4D2G4" : N$ (8)="R4D3L4U3DGR4U3"
:N$(9)="D3R4U3LARAD6" : N$ (0)="R4D
6L4U6" : GOSUE5010

100 PLAY";":A=A+(JDYSTK(0)-32)/L
+B=B+(JOYSTK(1)-32)/L: PUT(A-1, B~
3)-(A+1,B43),G, NOT

105 T3=T3-1:0N T342 GOSUB200:LIN
E(130,3)-(134,9), PRESET, BF: DRAV"
BM130, 3" +N$(T3)

110 PUT(A-1,B-3)-(A+1,B+3),G,NOT
:ONFFOINT (A, B+3)>G0T01000,2000, 10
0,3000

200 T3=9:T2=T2-1:0NT2+2GOT0210: L
INE(120,3)-¢124,9), PRESET, BF: DRA
W'BM120,3" +N$(T2): RETURN

210 T2=9:T1=T1-1:LINE(110,3)-(12
4,9),PRESET, BF: ONT142G0OT0220: DRA
V'C3BM110,3"+N$(T1)+"BM120,3"+N$
(T2) : RETURN

220 T1=5:712=9:T3=9: FORX=1T03: PLA
Y"L100;1;2;3;4;5;6;7;8;9;10;11;1
2" : NEXTX: PUT(A-1,B-3)-(A+1,Bt3),
G, NOT: GOTO1000

1000 IN=3:FORX=BR TO191STEP2: X=X+
IN: PUT(A-1, X~3)-(A+1,X43),G, NOT:
IN=IN+.1

1010 PLAY"AV"+STRS (INT(31~(X/8))
): PUT(A-1, X-3)-(A+1,X+3),G, NOT: N
EXT:0ONGU GOTO 6000:GU=GU-1:PUT(G
U%10-1,3)-(GUx10+1,6),G, NOT

1020 B=10:PLAY"V31": IN=0: FORA=2T
01995TEP2: 1FAY 130THERB=B+1

1025 PUT(A-1,B-3)-(A+1,B+3),G,NO
T: PLAYSTRS (INT(B/4)):PUT(A~-1,B-3
)-(A+1, B+3),G, NOT: NEXTA

1030 PUT(A-1,B-3)-(A+1,B+3),G,NO
T: PLAY"03V15L255" : FORX=1TO10: PLA

Page 24

Australian RATNEBOW

————————————_______;::3---IIIIIIIIIIIIIIIIIIIIIIII-I

July. 1986,

YSTR$ (RND(12)): PAINT(A,B),1,3:PA
INT(A,B),4,3:PAINT(A,B),2,3: REXT
X:PAINT(A,B),3,3

1040 DRAV"BM110,3;"+N$(T1)+"BN12
0,3"+N$ (T2)+"BM130,3" +N$ (T3):GOT
0100

2000 CR=CR-1:PAINT(A,B+3),3,3:G0
TO2010

2005 Y=LEN(SC$):FORX=2 TO Y:LIRE
(156410%X,3)~-(166+10%X,9), PRESET
, BF: DRAV" BM" +STR$ (156+10%X) ", 3"
+N$ (VAL (MID$ (SCS$, X, 1))): NEXTX:RE
TURN2010 PLAY"L255ABC":SC$=STR$(
VAL (SC$)+10) : GOSUB2005: ONCR GOTO
2030

2020 GOTO 100

2030 PUT(A-1,B-3)-(A+1,B+3),G, RO
T: FORV=1TO30STEP6: PLAY" V" +STR$ (V
) : FORN=1TO12: PLAYSTRS (N) : NEXTN, V
:PUT(A-1, B-3)-(A+1, B+3),G, NOT: GO
TO100

3000 IFPPOINT(A-1,B+3)=30RPPOINT
(A+1,B+3)=3THENGOTO100ELSEB=63: P
LAY"CDEFGAB" : X=B' ELEVATOR ROUTIN
E

3010 A=200: FORE1=1T0S: PLAY"0"+ST
R$ (E1): FORE2=1T012: X=X-1: PUT (A-1
y X-3)-(A+1,X+3),G, NOT: PLAYSTRS (E
2):PUT(A-1,X-3)~-(A+1, X+3),G, NOT:
NEXTEZ2, E1

3015 IF CR>1THENGOSUB5030

3020 PLAY"03":0N CR GOSUB5000:G0
TO100

5000 IFBO=6THENBO=0:GOSUB7000'dr
aw board routine

5005 SC3=STR$ (VAL(SC$)+T1%100+4T2
¥10+T1):GOSUB2005: T1=1:T2=1: T3=1
: DRAV"C3" : GOSUB200: LINE(110,3)-¢
134,9), PRESET, BF: FORX=1T030: PUT(
172,3)- (166+LEN(SC$)%10,9),G, NOT
:PLAY"O1A” : NEXTX

5010 T1=9:T2=9:T3=0: PCLS: DRAV"'BX
110,3"+N$(9)+"BK120,3"+N$(9) i"BN
130,3"+N$(9): RO=BO+1:GU=GU+1: PCL
S:CLS: PRINT@268, " PHASE" ; BO: PRINT
©288+ (32-LEN(PR$ (BO))) /2, PR$ (RQ)
: GOSUB20: IFGU>STHENGU=5

5013 FORX=110TO130STEP10: DRAV"C3
BM" +STRS (XD +",3"+N$(9): NEXTX
5015 DRAW'C4":LINE(172,2)-(245,2
),PSET: LINE(172,10)~(245,10),PSE
T:GOSUB2005: PLAY"O1ABCDEFG”

5020 PRINT@484,"PRESS FIRE BUTTO
N TO PLAY";: IFPEEK(65280)=126 OR
PEEK (65280)=254 THENSCREEN1, 0: PO
KE65314,248: CR=21 ELSE GQT05020
5025 FORX=1T020:PLAY"O1CDEF”:DRA
V'EM"+A$ QO+, " +B% (YO +CRS$ (BO)Y : NE
XTX: FORX=10TOGUX10-10STEP10: PUT(
GUXx10-1-X,3)-(GUx10-X+1,6),G, NOT
: PLAY"O3CDEFG” : NEXTX: X=3

5030 FORE1=5TO1STEP-1:PLAY"Q"+ST
R$ (E1): FORE2=12TO1STEP-1: X=X+1:P
UTC(A-1,X-3)- (A+1,X+3),G, NOT: FLAY
STRE(E2): PUT(A-1,X-3)-(A+1,X+3),
G, ROT: NEXTE2,El: B=X

5040 PLAY"03L255V15": FORA=199T02
10: PUT (A-1, X~-3)~- (A+1,X+3), G, NOT:
PLAY"12":PUT (A-1,X-3)- (A+1, X+3),
G, NOT: NEXTA: DRAV"C3" : RETURN

5500 '7?score and all that stuff
5510 GOTO 5510

€000 LINE(90,88)-(178,120), PRESE
T,BF

6010 DRAVW"BN100,90C4R4L4AD6RAU3L2
BM109,90; D6U3BR4U3L4R4D6BN116, Q0;
D6U6R3D3U3R3D6BN127, 90R4L4D3R2L2
D3R4BM140,90R4D6L4UGBM149, 90; DAF
2E2U4BM157,90R4L4D3R2L2D3R4BK165
,90; D6BUBR2F2G2L2R2F2"
6020 DRAV"BN97, 100D6U3R4U3DSBM10
4,100R4L2D6L2R4BM113, 100R4L4D6RA
U3L2BM120, 100D6U3R4U3D6BU137, 100
R4L4D3R4D3L4BX144, 100R4L4D6R4BN]
53, 100R4D6LAU6BN160, 100D6UGR2F2G
2L2R2F2BM169, 100R4L4D3R2L2D3R4"
6030 IF VAL(SC$)>VAL (HSS$) THEN HS
$=SC$: PLAY"V31CDEFGABBAGFEDCCCCC
vis”
6040 Y=LEN(HS$)%10:DE=117-Y/2:L1
NE(127-Y/2,108)-(127+Y/2,118), PR
ESET, BF: FORX=2T0OY/10: DRAV'C3BN" +
STRS (DE+Xx10)+",110;"+N$ (VAL(XID
$ (HS$, X, 1))): NEXTX
6050 POKEL178,RND(255): LINE(90, 88
)-(178,120), PSET, B: 1FPEEK (65280)
=1260RPEEK (65280) =254 THEN6060 EL
SE 6050
6060 GOTO 15
7000 CLS'intermission
7010 PCLS:DRAWV'C3BN190,45F10L30G
100FS5R100H10R40F30L40H10L130H15E
15R10E100R20F10": PAINT(185,45),3
,3: DRAN"C4BN1G0, 160R6F6L6H6BH190
, 175D16U16F6D10U10R6D10BM175, 45U
45D45R6F6US1D51L6US1D51H6"
7015 L1=L1+1:L$=STR$(L1):IF L1>9
OTHEN L1=1 ELSE IF L1<10THENLS$="
” +L$
7020 DRAV"C4S40BM10,10"+NS(VAL(N
ID$(L$,2,1)>)+"BM60, 10" +N$ (VAL (M
ID$(L$,3,1)))+"S4": LINE(150,2)-(
245,2) ,PSET: LINE(150,10)-(245,10
), PSET: LINE(150, 3)-(245,9), PRESE
T, BF: GOSUB2005
7025 SCREEN1, 1: POKE65314, 248:0=5
: P=8: FORX=5T043: PUT (180, X-3)-(18
2,X+43),G,NOT: P=P-1: IF P=0 THEN P
=8:0=0-1
7026 PLAY"L2550"+STR$(0)+";"+STR
$(P):PUT(180,X-3)-(182, X+3),G, NO
T: NEXTX
7030 PRINT”YOUR SCORE " ;SC$:PRIN
T: PRINT"HIGH SCORE "; HSS$:PRINT:P
RINT"YOU HAVE COMPLETED LEVEL";L
1: PRINT: PRINT"PRESS <<C>> TO CON
TINUE": PRINT"PRESS <<Q>> TO QUIT

7040 A$=INKEYS$: IFA$="Q"THENSCREE
N1, 0: POKE65314, 248: GOTO6000

7045 PLAY"L2550"+STRS$ (RND(5))+";
"+STR$ (RND(12)) +"03"

7050 IF A$<>"C"THEN7040

7060 SCREENI1, 0: POKE65314,248: Y=4
5: FORX=181 TO S55STEP-1:PUT(X-1,Y
-3)-(X+1,Y+3),G, NOT: PLAY" A" : PUT(
X-1,Y-3)-(X+1,Y+3),G,NOT: IFX<160
THENY=Y+1

7070 NEXTX:FORY=Y TO Y+10:PUT(X-
1,Y-3)-(X+1,Y+3),G, NOT: PLAY"A": P
UT(X-1, Y-3)-(X+1,Y+3),G, NOT: NEXT
Y

7080 FORX=55 TO195:PUT(X-1,Y-3)~
(X+1,Y¥+3),G, NOT: PLAY"AA": PUT (X-1
¥-3)-(X+1,Y43),G, NOT: NEXTX: FOR

Y=Y TO1G1:PUT(X-1, Y-3)-(X+1,Y+3)
G, NOT: PLAY" A" : PUT (X-1, Y-3) - (X+1
, Y43),G, NOT: NEXTY

7090 PMODEO, 2: PCLS: PHODEO, 1: PCLS
: SCREEN1, 1: Y1=40: Y2=151: X1=0: X=1
60:UX=0: SCREEN1, 1: 1§¥=-3: DE=1:GOT
07115

7100 X=X+IN:PLAY"O3V31L255B": PHO
DEQ, 2: PCLS: LINE(97,191)-(97-X/2,
20+X) , PSET: LINE- (157+X/2,20+X¥.8
), PSET, B: LINE-(157,20), PSET: LINE
-(97,20+X*.8), PSET, B: LINE(97,20)
-(97-X/2,20+Xx.8), PSET: LINE(157,
191)-(1574X/2,20+X) , PSET

7110 PCOPY2TO1: PMODEO, 1: SCREEN1,
1: IFX=DE THER 7111 ELSEGOTO7100
7111 FORX=31TO1STEP-1:PLAY"O1AV"
+STR$ (X) : NEXTX: RETURN

7115 GOSUB7100

7120 1G=0:B=0: 1N=0:PCLS: FORX=1TO
94: IG=1G+1: PMODEO, 2: PCLS: B=B+3+1
N: IFB>120THENIN=N-.4ELSEIN=[N+.
2

7125 IF IG>47THENIN=IN+.2

7130 LINE(B-X/3, B-X)-(B+X/3,B+X)
, PSET, B: PCOPY2TO1: PMODEO, 1: SCREE
N1, 1:NEXTX

7140 PNODEO, 2: PCLS: SCREEN1, 1: X=0
: IN=3: DE=192: GOSUB7100

7150 FORX=1TO20STEP2: PMODEO, 2: PC
LS: LINE(97-X,20-X)~ (157+X, 181+X/
5), PSET, B: LINE(0, 181+X/5)~ (255, 1
81+X/5),PSET: LINE(0, 181)-(97-X, 2
0-X), PSET: LINE(157+X, 20-X)- (255,
181), PSET

7160 PCOPY2TO1:PMODEO, 1: SCREEN1,
1: NEXTX

7170 FORX=1TQ76STEP4: PMODEO, 2: PC
LS: : LINE(177+X, 181+X/2)-(76-X, 0)
, PSET, B: LINE- <0, 1814X/2), PSET: L1
NE(177+X, 0)- (255, 181+X/2), PSET: L
INE(0, 181+X/2)- (255, 181+X/2), PSE
T

7180 PCOPY2TO1: PKODEO, 1: SCREEN1,
1: NEXTX

7190 PLAY"O3ACDDDEFAABV15":RETUR
N

8000 PMODE3, 1: POKE179,53: PCLS: SC
REEN1, 1: POKE65314, 248: POKE179, 3:
PAINT(0,191),1,4

8010 DRAV"BM36,70R32L32G30R32E5L
22E15R22E10R1C1R5; C4G30R6E20R10G
20R6E30L20R7G1C1G2C4RSG5L5E6C1E2
C4R15C1RS; C4R32G10L22G6R22G14L32
E6R22E4L22E20R33C1R3; C4R32G10L12
G20L6E20L12E10R32C1R7; CAR6G10L2G
14R24G6L32E30R10C1R28"

8020 DRAV"C4R32G10L22G5R22G5L226G
SR22G5L32E30BM96, 105R6G6LEE6GRTC1
R3C4R6L6G3R3L3G3E6R7C1R12; C4R4D3
G3LOE6RSC1RS; CAR6G6L6E6R7C1R3; C4
RE6G6LO6EGR7C1R4 ; CAG6ESR3G3E3RAGE"
8030 FORX=50TO230STEP32:PAINT(X,
75),3,4: NEXTX: PAINT(70,75),3,4
8035 POKE65494, 0: PLAY”V1501L9CP3
OCF3CP30CP3": PLAY" L2CLODP2L2CLSD
P2L2CL4DL3E-L2CL20" : FORX=15T0O1ST
EP-1: PLAY"GL30G~V"+STR$ (X)+"L20"
: NEXTX: POKE65495, 0

8040 FORX=1T0255: POKE178,X: LINE(
3,65)-(250,120), PSET, B

8050 IFPEEK(65280)=1270RPEEK (652
80)=255THENNEXTX: GOTO8040ELSEL [N
E(5,65)-(250,120), PRESET, B: POKE1
78,53: PAINT¢0,0),,2: POKE178, 3: RE
TURN

July, 1986,

Australian RAINBOV

~ Page 25

Robots:

continued from Page 23

Another feature of modern robots is
their level of intelligence is not (and may
never be) that which exists in fiction. A
robot teacher may exist in science
fiction stories, but will not be a reality
in a classroom during my lifetime. A
robot message carrier, however, is a
tangible reality.

With current technology, we can
reasonably expect robots to perform
any task a well-trained pet can perform.
Before the end of this century, we may
see a robot collecting lunch counts from
teachers and delivering this information
to the school cafeteria. It is not unrea-
sonable to expect a robot to sweep the
gym floor between classes, or to inform
the administration when a child wan-
ders away from the playground. But, I
seriously doubt a robot will decide the
grade a student should receive in math
class, or referee an intramural basket-
ball game

The future of educational robots will
probably be more interesting than the
present fiction. The current reality of
computers in education is much more
than past science fiction writers ever
dreamed. I would enjoy hearing about
the uses of robots in your school. If
there is such a creature (even if it
deserves the nickname “Frankenstein™)
in your school, please let me know of
your experiences. My address is 829
Evergreen, Chatham, IL 62629. A

Bloops, Bells

continued from Page 11

570 NEXTT

580 RETURN

590

600 'TO GET SCREEN LINES

610 DIMS$(17)

620 FORX=1TO17

630 READ S$ (XD

640 NEXT: RETURN

649 '

650 PG=1:SCREENO, 1:GOSUB530: PRIN

Te32, N PAGE

ONE *;:P=08

660 FORX=1TO8:PRINT@P,S$ (X);

670 P=P+33: NEXT

680 PRINT®416,CHRS (255);

720 GOTQ790

740 '

750 PG=2:SCREENQ, 1: GOSUBS30

760 PRINT®@32, »
PAGE VO .

770 P=99

780 FORX=9TO17:PRINTQP,S$(X);:P=
P+33: NEXT

790 PRINT®416, CHRS (255);

800 INPUTN

810 GOSUB1060

811 IFN=8THEN750

812 IFN=17THENG650

830 ON N GOSUB 80,100, 160,190,22
0,250,290,1050,490,320,340,510,3
80,400,430,460,1040

840 I[FPG=2THEN750

850 IFPG=1THEN650

855 PRINTPA:PRINTPA: PRINTPA: STOP
860 GOTO750

870 DATA BUZZER---—--=-=— 1

880 DATA DEPTH SOURD----2

890 DATA SIREN WVARNING--3

900 DATA BLAST OF LASER-4

910 DATA HISS OR Fl2Z---5

920 DATA
930 DATA SMALL SPRING---7

940 DATA * SECOND PAGE--8
950 DATA MACHINE GUN----9
960 DATA TAUNT-=-=—————= 10
970 DATA CHARGE---——---- 11
980 DATA HOORAY SONG---12
990 DATA BIG SPRING----13
1000 DATA BOUNCING BALL-14
1010 DATA SIREN-======—— 15
1020 DATA WOLF WHISTLE--16

1030 DATA * FIRST PAGE--17
1040 PG=2:GOTQ750

1050 PG=1:GOTQO650

1060 SCREENO, O: RETURN

CoCo Cat

’ /F A DISK CRAIMES. .. M "
Q

0

DES /7 MIKE A Soumld 7
oo i’

LW C/ré

HHERE COMES AN ANV SIWVER AOW.

CORRECTION

1980,
are no
with the

program CoCa Zone.
have been, however,
calls from readers
who are having trouble
creating a working copy of
the game. RUNning the CoCo
Draw program draws and saves
the graphics screens,Zone 0
through Zone 9 to the tape
or disk MUST have these
files in the following
order: Boot, Zone 0, Zone
1,..., Zone 9 and CoCo Zone.
Then, CLOAD and RUN Boot,
answer all prompts and
you'll soon be ready to play
the adventure.

"Tha CoCo Zone" (May
Page 11): There
reported problems
actual
There
numerous

e — e R T ——
Australian RAINBOV

NOTICE that CoCo Draw has

nothing to do with the

actual play of the game.
July, 1986.

COLOUR
CALC

by C. Bartlett

This program is a 25 x 31 column spreadsheet. '/8!
Press the '/' key to display the following prompt

at the top of the screen:-

This 1is
load or 'S’ save the program. It will ask for a

the STORAGE command. Reply 'S' to

"COMMAND: C/D/F/G/1/P/R/S/X"
These commands will now be explained in order.

'/C' This erases in-memory information. Loading
another file into memory will have the same effect.

'/D' This will delete a column or row. It will
display "DELETE: (R/C)". Respond with 'R' or 'C’ and
it will ask "COL:" or "ROW:" depending on reply to
the previous question. Type in the row or column to
be deleted and the program will display "DELETIKG
COL: x" (or "ROW: x").

Columns to the right of rows below the deleted one
will be moved up or to the left. The program will
attempt to adjust any moved SUMS though you should
check these to make sure that they are correct as
program logic in this area is fairly simplistic due
to memory restrictions.

'/F' This will fix ROW 1 as a heading so that |t
does not scroll when you move down the page. The
program will ask "FIX (Y/N)" reply 'Y' to FIX or 'N’
to remove a previously fixed heading.

'/G' This will move to screen display directly to
the specified point, it will ask:-

"GOTO: (C:R)"

Respond with the column and row you wish to
to.

'/1' This 1is the reverse to the '/D' command and
the same warning applies in relation to moved SUNS.
It will display "INSERT: (R:C)". Reply with 'R' or
'C' at which point it will display either "COL:"™ or
"ROW:". Reply with the column or row to be inserted.

'/P' This will send the columns and rows to the

move

printer. It will print from 'Al' to the current
cursor position.
'/R' This will replicate any complete column or

row. Vhen selected it will ask:-
"REPLICATE: (C:R)"

Reply 'C’ or 'R' and it will display either
or "ROW:".
will show:-

"COL: A: TO:”
Now respond with the destination column or row and
the column or row will be copied to the destination.

" LUL : "
Reply with a column or row number and it

filename, reply with a legal name. During a save the
screen will revert to green for a monment, this is
normal and can be ignored.

'/X' This exits the program and returns you to
BASIC, deleting Color Calc from memory.

CLEAR KEY: Pressing this key causes a screen
to the printer of the rows
screen.

"QSUM' Pressing the key will put you into the SUN
mode, the display will show SUM at the top of the
screen. Now type in, first the column row taking
part in the sum.

"QSUK Al"

FNow type an operator:

+ Add
- Subtract
X Nultiply
/ Divide
Add from here to destination

dump
and columns on the

Now type the other column/row taking part in the
sum.

"@SUM A1+B1"

Next type an equals sign (=) followed by the

column/row that is to contain the answer.

"@SUM A1+B1=C1"

To force the display of trailing zeros in a
decimal display add the following symbol: #

"@SUM Al1+B1=Cl#"

Use this symbol only when necessary, use of this
symbol will confuse the cursor routine if the cursor
is placed over a sum block. The block may contain
two decimal points. To correct this, force a
recalculation of the sum by retyping the value in
one of the blocks associated with the sum; better
still, don't place the cursor on a sum containing
the '#' sign.

An entry can be made to a block by moving the
cursor to that block. You can indicate that you have
completed an entry in a block either pressing EFTER
or by pressing an arrow key. If you press ENTER,

what you typed will be so obscured until you move
the cursor.
Suns may reference other sums, all sums are

The Listing:
COLORCAL

10 ' COLOR CALC «(C) 11/11/85
C. BARTLETT

20 POKE359,57: SCREENO, 1: CLS

30 POKE248,50: POKE249, 98: POKE250
,28: POKE251, 175: POKE252, 126: POKE
253, 173: POKE254, 165: POKE410, 126:
POKE411, 0: POKE412, 248

40 POKE65495, 0: CLEAR200,32758: FO

RX=32758T032765: READY: POKEX, Y: KE

XT: EXEC32758: CLEAR7000,32765: DIX
A$(27,33),A(27,33):F2%="## "+CH

R$ (239): TL$=STRING$(8,239) : NL$=S

TRINGS (28,128):DV=0: DATA204, 14,1
,31,2,126,150, 165

50 SX=1:SY=1:CP=68:C$=STRINGS (9,
175): K=1:K2=1: BL$=" ":P

X=1:PY=1:CCS=BLS: F&="¥#ERN#. #¥"
N1=0: MV=1

60 CLS:FOR T=0 TO 6:PRINT@T*64+3

5,CHR$(239); ML$; : NEXT T

70 POKE1535,239: PRINTQ483, STRING

recalculated each time as entry is made.

$(28,239);

80 GOTO120

90 IN$=INKEY$:IF IN$=""THER 90 E
LSE SOUND235, 1: RETURN

100 IF N1=0 THEN RETURN

110 Z1=1:PRINT@64,USINGF28;21;:Y
=1:GOSUB940: RETURR

120 GOSUB380

130 PRINT@CP,CS$;

140 GOSUB1940: PRINTRO, "ready"”;
150 PRINT@CP,C$;

160 OK=-1:S0UND200, 1

170 IN$=INKEY$:IF IN$="" THER 17

e A T
July, 1986.

Australian RAINBOV

Page 27

0

180 IF ASC(IN$)=3 THEN PRINT@O,"
break disabled";:GOTO 170

190 SOUND235,1

200 IF ASC(IN$)=12 THEN DV=2:POK
E65494, 0: PRINT#-2, CHRS (15); : GOSU
B2380:DV=0: POKE65495, 0: GOTO 170
210 GOSUB530: [F RT=0 THEN GOSUB1

940

220 PRINTOCP,CS;

230 IN=ASC(IN$):IF IN=10 THEN OK
=0: PRINT@CP, BL$; : CP=CP+64: PY=PY+
1:K2=K2+1: IF K2=8 THEN K2=7:CP=C
P-64:SY=SY+1:GOSUB1730: GOSUB380

240 IF IN=94 THEN OK=0:PRINTQCP,

BLS; : CP=CP-64: PY=PY-1:K2=K2-1: IF
K2=0 THEN K2=1:SY=SY-1:CP=CP+64
:IF SY=0 THEN SY=1:GOSUB380 ELSE
GOSUB380

250 IF IKN=9 THEN OK=0:PRINT@CP,B

L$; : CP=CP+9: K=K+1: PX=PX+1: IF K=4
THER K=3:CP=CP-9:SX=SX+1:GOSUB1

700: GOSUB380: GOSUB100

260 IF 1K=8 THEN PRINTQCP,BLS;:0

K=0: PX=PX-1:CP=CP-9: K=K-1: IF K=0
THEN K=1:CP=CP+9:SX=SX-1: IF SX=

0 THEN SX=1:GOSUB380:GOSUB100 E

LSE GOSUB380:GOSUB100

270 IF PX=0 THEN PX=1 ELSE IF PY

=0 THEN PY=1 ELSE IF PX=26 THEN

PX=25 ELSE IF PY=32 THEN PY=31

280 GOSUB530

290 IF 1F=47 THEN GOSUB1940:0K=0

: PRINTRO, " command: " ; : GOSUB2060

300 IF IN=64 THEN GOSUB 560:0K=0

310 IF OK THEN GOSUB 420

320 PRINT@CP,CS;

330 IF OK THEN OK=0:GOTO210

340 GOTO160

350 IF MID$ (AS(T3,T4),7,1)="." 0

R MID$(A$(T1,T2),7,1)="." OR TX$
="#" THEN DP=-1
360 TTs=" "+STR$(TT): TT$

=RIGHT$ (TT$,9): IF MIDS(TTS,7, 1)<
>"." AND DP=-1 THEN TT$=TT$+".00
":TT$=RIGHT$(TT$,9)
370 TX$="":DP=0:RETURN
380 PRINT®@36,”";:FOR X=SX TO SX+
2:PRINT TL$;CHRS (X+96);: NEXTX: PR
INT CHR$(239);:1F DV=2 THEN PRIN
T#-2," ", CHRS (SX+64);"

"; CHRS (SX+65) ;" "< CH
RS (SX+66) ; CHRS (13)
390 Z=1:FOR Y=SY+N1 TO SY+6:PRIN
T@((Z+N1)%64),""; : PRINT#-DV, USIN
G F2%;Y;:GOSUB940:2=2+1: GOSUR400
:NEXT Y:RETURN
400 IF DV=2 THEN PRIRT#-2,CHRS$ (1
3)
410 RETURN
420 GOSUB1940: ADS=IN$: PRINTQCP, A
D$; :FOR T=1 TO 8:IF AD$=CHR$ (13)
THER AD$="":GOTO 490
430 GOSUB90
440 IN=ASCC(IRS$):IF IN=13 OR IN=9
OR IN=94 OR IN=10 THEN 490
450 IF IN$=CHR$(8) AND T>1 THERN
AD$=LEFT$ (AD$, (LEN(AD$)-1)):T=T-
2: PRINTQCP, AD$; CHR$(175); : GOTO 4
30
460 AD$=AD$+INs$
470 PRINTQCP, ADS;
480 NEXT T

490 AS(PX,PY)=" "+ADS: AS

(PX, PY)=RIGHTS (A$ (PX, PY),9)

500 A(PX,PY)=VAL(ADS$)

510 GOSUB380

520 RETURN

530 TK$=LEFT$(A$(PX,PY), 1):IF AS
(PX,PY)="" THEN BL$=CC$ ELSE BLS$
540 IF TK$="@" THEN QX=PX:Y=PY:G
0OSUB1760: GOSUB2020: BL$=TT#$

550 RETURN

560 GOSUB1940: PRINT®@S, INS$;"sum "

570 GOT0O1290

580 AS(A7,A8)="Q0"+A18+A28+A38+A4

$+A5S+A6S+ATS+ABS+A0S: AOS="":GOS

UB380: GOSUB1940: RETURN

590 GOSUB90

600 IF IN$="R" THEN PRINT"ROV:";
:GOTO630

610 IF IN$="C" THEN PRINT"COL:";
: GOTO630

620 GOT0590

630 I1$=INKEYS: IF I$="" THEN 630
ELSE PRINTIS;

640 11$=INKEYS$:IF [18="" THEN640
ELSE IF I1$=CHR$(13) THEN 660

650 I8=I$+I118:PRINTIIS;

660 RETURN

670 IF IN$="R" THEN PRINT”row:";
1%;

680 IF IN$="C" THEN PRINT"col:";
1%;

690 RETURN

700 IF IN$="C" THEN R=ASC(I$)-64
: GOTO720

710 R=VAL(I$):FOR Y=R TO 31:FOR
X=1 TO 25: A$(X, Y)=A8 (X, Y+1):ACX,
Y)=ACX,Y+1):GOSUB770: NEXT X, Y:FO
R X=1TO 25:A8$(X,31)="":A(X,31)=0
: NEXT X:GOSUB380: RETURN

720 FOR X=R TO 24:FOR Y=1 TO 31:

A (X, Y)=AS(X+1,Y):ACX,Y)=ACX+1,Y
):GOSUB730: NEXT Y, X:FOR Y=1 TO 3
1:AS(25,Y)="":A(25,Y)=0: NEXT Y:G

0SUB380: RETURN

730 IF LEFT$(AS(X,Y),1)<{>"®" THE

N RETURN

740 QX=X:GOSUB1770:GOSUB1020:T1$

=STR$(T1): T38=STR$ (T3): IF LEN(T1

$)=3 THEN T1$-=-RIGHT$(T1$,2)

750 IF LEN(T3%$)=3 THEN T3$=RIGHT

$(T38,2)

760 AS(X,Y)="Q"+T18+T28+T58+T3%+
TA$+TX$: RETURN

770 IF LEFT$ (A$(X,Y), 1)<>"@" THE

N RETURN

780 QX=X:GOSUB1770:GOSUB1050: T28

=8TR$(T2): T4$=STR$(T4): IF LEN(T2

$)=3 THEN T2$=RIGHTS$(T2%,2)

790 IF LEN(T4$)=3 THEN T4$=RIGHT

$(T48,2)

800 AS(X,Y)="Q"+T184T284TS8+T38+

TA$+TX$: RETURN

810 PRINT@O0,"delete: (R/C) ";:G0OS

UB590: GOSUB1940: PRINT®0,"deletin

g "; :GOSUB670: GOTO700

820 PRINT@O,”insert: (R/C) '";:G0S

UB590: GOSUB1940: PRINT@0," inserti

ng “;:GOSUB670: GOTO830

830 IF IN$="C" THEN R=ASC(I$)-64
1 GOTO850

840 R=VAL(I$):FOR Y=31 TO R STEP
~1:FOR X=25 TO 1 STEP-1:A$(X, Y+l
Y=A$ (X, Y): A(X, Y+1)=A(X, Y): GOSUBS

60: NEXT X, Y:FOR X=1 TO 25:A$(X,R
)="": ACX, R)=0: NEXT X:GOSUB380:RE

TURN

850 FOR X=24 TO R STEP-1:FOR Y=3
1 TO 1 STEP-1:A$(X+1,Y)=A$(X,Y):

A(X+1,Y)=A(X, Y):GOSUBO00: NEXT Y,

X:FOR Y=1 TO 31:AS$(R,Y)="":A(R,Y
)=0: NEXT Y:GOSUB380:RETURN

860 IF LEFT$ (A$(X,Y),1)<>"®" THE

N RETURN

870 QX=X+1:GOSUB1770:GOSUB1080: T

2$=STR$ (T2): T4$=STRS (T4): IF LEN(

T2$)=3 THEN T28=RIGHT$(T2%,2)

880 I1F LEN(T4$)=3 THEN T4$=RIGHT

$(T4s,2)

890 AS(X+1,Y)="R"+T18+T28+T58+T3

$+T43+TX$: RETURN

900 IF LEFT$(AS(X,Y),1)<>"@" THE

N RETURN

910 QX=X+1:GOSUB1770:GOSUB1110:T
1$=STR$ (T1): T3$=STR$ (T3): IF LEN(

T1$>=3 THEN T1$=RIGHT$(T1$,2)

920 IF LEN(T3$)=3 THEN T3$=RIGHT

$(T38,2)

030 AS(X+1,Y)="Q@"+T13+T28$+T58+T3

$+T43+4TXS: RETURN

940 V1$=LEFTS$ (A$(SX,Y),1):V2$=LE

FT$ (A$ (SX+1,Y),1): V3$=LEFT$ (A$ (S

X+2,Y),1)

950 IF V1$<>"@" THEN O1=A(SX,Y):

GOSUB1950: GOTO 970

960 QX=SX:GOSUB1760: GUSUB2000

970 IF V2$<>"@" THEN 02=A(SX+1,Y
> : GOSUB1960: GOTO290

980 QX=SX+1:G0SUB1760: GOSUB2000

990 IF V3$>"@" THEN 03=A(SX+2,Y
): GOSUB1970: GOTO1010

1000 QX=SX+2:GOSUB1760: GOSUB2000
1010 RETURN

1020 IF T1>=R THEN T1=T1-1

1030 IF T3>=R THEN T3=T3-1

1040 RETURN

1050 IF T2>=R THEN T2=T2-1

1060 IF T4>=R THEN T4=T4-1

1070 RETURN

1080 IF T2>=R THEN T2=T2+1

1090 IF T4>=R THEN T4=T4+1

1100 RETURN

1110 IF T1>=R THEN T1=T1#1

1120 IF T3>=R THEN T3=T3+1

1130 RETURN

1140 FRINT@O,"goto: (c:r) ";:GOSU

B1150:GOT01220

1150 GOSUB9O

1160 SX=ASC(IN$)-64:[F SX<1 THEN
1150 ELSE IF SX>=24 THEN SX=23

1170 PRINTINS;":";

1180 GOSUB20

1190 PRINTINS;

1200 N$=INKEY$:1F N$="" THEN 120

0 ELSE IF N$=CHR$(13) THEN 1210

ELSE IN$=IN$+N$:PRINTNS;

1210 RETURN

1220 SY=VAL(IN$):IF SY=0 THEN SY

=1 ELSE IF SY>=26 THEN SY=25

1230 SY=SY+N1

1240 PX=SX+(K-1)::PY=SY+(K2-1):6G

OSUB380: PRINTQCP,C$; : BL$=AS (PX, P

Y):GOTO160

1250 PRINT@O,"fix (Y/N) ";

1260 GOSUBSO:PRINTINS; : GOSUB1940

:1F IN$="Y" THEN 1270 ELSE IF IN

$="N" THEN 1280 ELSE 1250

1270 N1=1:RETURN

?’age 28

Australian RAINBOW

July, 1986,

r_______________________________________.--.------.....-lllllIlllll.....l....l.l......I.Illlllllll.ll...llll.llllllll

1280 N1=0:RETURN

1290 AD$="":FOR T=1 TO 13

1300 GOSUBS0: [F IN$=CHR$ (13) THE

N1350

1310 IF IN$=CHRS$ (8) THEN AD$=LEF

T$ (ADS, (LEN(AD$)-1)):T=T-2: PRINT

©8,"@sum "; ADS; : GOTO1300

1320 IF IN$="." OR IN$="+4" OR IN

$="-" QR IN$="Xx" OR IN$="/" THER
PRINTINS;: IR$=":"+IN$: AD$=ADS+I

N$:GOTO1340

1330 PRINTINS; : AD$=AD$+IN$

1340 NEXT T

1350 L=LEN(ADS):A18$=LEFTS$ (ADS, 1)
:AD$=RIGHT$ (ADS$,L-1):L=L-1

1360 KP=INSTR(ADS,"”:"):IF KP=0 T

HEN GOTO1560

1370 A2%=KID$ (ADS,1,KP-1): AD$=RI

GHTS$ (ADS, L-KP)

1380 L=LEN(ADS)

1390 A3$=LEFTS$(ADS, 1): AD$=RIGHTS
(ADS$,L-1):L=L-1

1400 [F A3%="." OR A3%="+" (R A3

$="-" OR A3%$="x" OR A3%="/" THEN
1410 ELSE GOTO 1560

1410 A4$=LEFT$(ADS, 1): ADS=RIGHTS
(AD$,L-1):L=L-1

1420 KP=INSTR(ADS,"="):1F KP=0 T
HEN GOTO 1560

1430 AS5$=MID$ (ADS, 1,KP-1):AD$=RI
GHTS (ADS, L- (KP-1))

1440 L=LEN(ADS)

1450 AGS$=LEFT$ (ADS$, 1): AD$=RIGHTS
(AD$,L-1):L=L-1:[F A63%<{>"=" THEN
GOTO 1560

1460 A7$=LEFTS$ (ADS,1): AD$=RIGHTS
(ADS$,L-1):L=L-1

1470 A88=ADS$: A8=VAL(A8S)

1480 A1=ASC(A1%)-64:A18=STR$ (A1)
: IF LEN(A18)=3 THEN A1$=RIGHT$(A
18,2)

1490 IF LEN(A28)=1 THEN A28%=" "+
A2S

1500 A4=ASC(A4%)-64: A4$=STR3 (A4)
:[F LEN(A4%)=3 THEN A4$=RIGHTS(A
4%,2)

1510 IF LEN(A5$)=1 THEN AS5$=" "+
ASS

1520 A7=ASC(A7$)-64:A7$=STR$ (A7)
:IF LEN(A7$)=3 THEN A7$=RIGHTS(A
7%,2)

1530 IF LEN(A8%)=1 THEN A8%=" "4
A8S

1540 IF INSTR(ADS,”#")<>0 THER A
9$=""l

1950 GOTO580

1560 GOSUB1940:PRINT®O,” format e
rror”; : SOUNDS, 5: RETURN

1570 PRINTQ0,"replicate: (c:r) "

1580 GOSUBQO:PRINTINS;:IF INs$="C

" THEN 1590 ELSE [F IN$="R" THEN
1650 ELSE 1570

1590 GOSUB1940:PRINT®0,"col:";
1600 GOSUBG0:SX=ASC(IN$)-64:IF S
X<1 THEN SX=1 ELSE IF SX>25 THEN
SX=25

1610 PRINTINS;":TO:";

1620 GOSUB90:S2=ASC(IN$)-64:1F S
2<1 THEN S2=1 ELSE IF 82>25 THEN
52=25

1630 PRINTINS;

1640 FOR Y=1TO 31:A%(S2,Y)=A%(SX
y Y1 A(S2, Y)=ACSX, Y): NEXT Y:GOSUB

380: RETURN
1650 GOSUB1940: PRINT®0,"row:";
1660 GOSUBOQO: PRINTINS; :S38=IN$:G
0OSUB90: GOSUB2140: PRINTINS; : S38=8
3$+IN$:S3=VAL(S3%): [F S3<1 THER
S3=1 ELSE 1F S3>31 THEN S3=31
1670 PRINT”:TO:";
1680 GOSUB90:S48=INS$:PRINTINS;:G
OSUBS0: GOSUB2140: S4$=548+1N$: PRI
NTINS; : S4=VAL(S4%): 1F S4<1 THEN
S4=1 ELSE IF S4>31 THEN S4=31
1690 FOR X=1 TO 25:A$(X,S4)=A$ (X
,S3): A(X,S8)=A(X,83): NEXT X:GOSU
B380: RETURN
1700 IF SX=24 THEN SX=23
1710 IF PX=26 THEN PX=25
1720 RETURN
1730 IF SY>=26 THEN SY=25
1740 IF PY=32 THEN PY=31
1750 RETURN
1760 TT=0:GOSUB1770:G0OTO1850
1770 T1$=MID$ (A$(QX,Y),2,2)
1780 T28=MID$ (A$(QX,Y),4,2)
1790 T3$=NID$(AS$QX,Y),7,2)
1800 T4s=MID$ (A%$(QX,Y),9,2)
1810 TS$=NID$ (A$(QX,Y),6,1)
1820 TX=INSTR(AS(QX,Y),"#"):IF T
X<>0 THEN TXs$="#"
1830 T1=VAL(T1$):T2=VAL(T2$%):13=
VAL(T3%):T4=VAL(T4$%)
1840 RETURN
1850 IF TS5$="+" THEN TT=A(T1,T2)
+A(T3,T4)
1860 IF TS5¢="-" THEN TT=A(T1,T2)
-A(T3,T4)
1870 IF TS5$="%" THEN TT=A(T1,T2)
*XA(T3,T4)
1880 IF T5%="/" THEN TT=A(T1,T2)
/A(T3, T4)
1890 IF TS5$="." THEN 1910
1900 GOTO1930
1910 IF T1=T3 THEN 1920 ELSE IF
T1<T3 THEN FOR ¥=T1 TO T3:TT=TT+
A(V,T2): NEXT W ELSE IF T1>T3 THE
N FOR W= T1 TO T3 STEP-1:TT=TT+A
(W, T2): NEXT V
1920 1IF T2<T4 THEN FOR ¥=T2 TO T
4: TT=TT+A(T1,¥): NEXT V ELSE IF T
2>T4 THEN FOR V= T2 TO T4 STEP-1
:TT=TT+A(T1,V): NEXT ¥
1930 DP=0:GOSUB350: TT$=RIGHTS (TT
$,9):AQX, Y)=TT: RETURN
1940 PRINTeO,"
"; :RETURKN
1950 U1=8X:U2=01:U3%=V18:G0OTD198
0
1960 U1=8X+1:U2=02:U3%=V2s:GOTO1
980
1970 U1=SX+2:U2=03:U3%=V3$%: GOTO1
980
1980 IF MID$ (A$(U1,Y),7,1)="." T
HEN PRINT#-DV, USING F$;U2; ELSE
IF U3$<>"@" THEN IF A$(U1,Y)O"
" THEN PRINT#-DV, A$(U1,Y); ELSE
PRINT#-Dv, » e
1990 RETURN
2000 IF MID$(ITS,7,1)="." THEN P
RINT#-DV,USING F$;TT; ELSE PRINT
#-DV, TTS;
2010 RETURN
2020 T1%$=" "+CHR$(T1464)
2030 T3%=" "+CHR$(T3+64)
2040 PRINT@8,"@sum ";T18;T2$%; T5%
i T38; T4S;

2050 RETURN
2060 PRINT"C/D/F/G/1/P/R/S/X ";
2070 GOSUB90
2080 GOSUB1940
2090 IF IN$="D" THEN 810 ELSE I[F
IN$="1" THEN 820 ELSE IF IN$="G
" THEN 1140 ELSE IF IN$="F" THEN
1250 ELSE IF IN$="X" THEN 2100
ELSE IF IN$="C" THEN 2110 ELSE !
F IN$="R" THEN 1570 ELSE IF IN$=
"S" THEN 2150 ELSE IF IN$="P" TH
EN 2120 ELSE 2130
2100 POKE 65494, 0:CLS: PRINT" term
inated"”: NEV: END
2110 FOR X=1TO 25:FOR Y=1TO 31:A
$OLY)="":AX,Y)=0: NEXT Y, X: PRIN
T@0,"cleared
" : GOSUB380:GOTO160
2120 PRINTCO,"printing
", :GOTO2300
2130 GOSUB1940:PRINT@0,"invalid"
; : SOUNDS, 5: GOTO160
2140 IF IN$=CHR$(13) THEN INs$=""
: RETURN ELSE RETURN
2150 POKE65494,0:PRINTQO, "comman
d: STORAGE (L/S) ";
2160 GOSUB90: 1F IN$="L" THEN 217
0 ELSE IF IN$="S" THEN 2180 ELSE
2160
2170 GOSUB1940: PRINTR0,"load :FI
LENANE "; :GOSUB2190: GOT02280
2180 GOSUB1940:PRINT®Q0,"save:FIL
ENAME "; : GOSUB2190: GOT02260
2190 AD$="":FOR I=1 TO 8
2200 GOSUB90
2210 IF IN$=CHR$(13) THEN 2250
2220 IF IN$=CHR$(8) THEN AD$=LEF
T$ (ADS, (LEN(AD$)-1)):1=1-2:PRINT
@15, ADS;" ";:GOTO 2200
2230 AD$=AD$+INS$:PRINTQ15, ADS;
2240 NEXT 1
2250 AD$=ADS+"/DAT":RETURN
2260 POKE359,126: SCREENO, 0: OPER"
0", #1,ADS
2270 FOR X=1 TO 25:FOR Y=1 TO 31
:VRITE #1,A8(X,Y),A(X, Y): NEXT Y,
X:CLOSE1: POKE359,57: SCREENO, 1: PR
INTQO, "saved
"; : POKE65495, 0: GOT0160
2280 OPEN"I",#1,ADS
2290 FOR X=1 TO 25:FOR Y=1 TO 31
: INPUT#1,A8CX,Y),ACX,Y): REXT Y, X
:CLOSE1: PRINT®O, " 10aded
" : POKE65495, 0: GO
SUB380:GOTO160
2300 POKE65494,0:PRINT#-2,CHRS (1
5);:FOR Y=1 TO PY:FOR X=1 TO PX
2310 1F MIDS(AS(X,Y),7,1)="." TH
EN PRINT#-2,USING F$;A(X,Y);:GOT
02360
2320 IF LEFT$(A$(X,Y),1)="Q@" THE
N K$=STR$(A(X,Y)): [F INSTR(KS,".
")<>0 THEN PRINT#-2, USING F$;A(
X,Y); :60T02360
2330 IF LEFTS (ASCX,Y),1)="@" THE
N PRINT#-2,USIRG" ####sas44", ACX,
Y); :GOT0O2360
2340 IF AS$(X,Y)="" THEN PRINT#-2

B ";:GOTO2360
2350 PRINT#-2,A8(X,Y); :GOT02360
2360 NEXTX:PRINT#-2," ":NEXT Y:P

OKE65495, 0: GOSUB1940: RETURN
2370 INS=INKEYS$:IF [N$="" THEN 2
370 ELSE PRIRTASC(IR$):GOT02370

July, 1986,

Australian RAliEﬁV

Page 29

DOS UTILITY |

64K
Disk

Converting ASCII text from MS-DOS

disks to CoCo disks

The Great Transformation

uch as we love the CoCo, the
fact 1s the IBM PC (and its
clones) running Microsoft

Disk Operating System (MS-DOS) is
by far the most commonly used per-
sonal microcomputer for business.
Many of you may use one at work, or
have friends who use them.

This article is intended to provide you
with a means of converting ASCII text
files on a disk created using an MS-
DOS computer into ASCII text files on
a Color Computer-type disk. Next
month, acompanion article will provide
you with the means of creating an MS-
DOS-type disk on your Color Compu-
ter and the means to write CoCo text
files to such a disk.

System Requirements

A 64K Color Computer with Disk
Extended BASIC (versions 1.0 or 1.1)
and two disk drives are required for
these programs. Two drives are needed
to allow the file conversions to occur at
a reasonable rate of speed. That is why
no attempt was made to write this utility
for single-drive systems.

The disk drives must be capable of
fully accessing 40 tracks. There is no
way around this; MS-DOS uses all 40
tracks. Most disk drives sold by third-
party suppliers will access 40 tracks, as
do most Tandy disk drives manufac-
tured over the last couple of years. Most
of the full-height drives Tandy sold in
white cabinets will access 40 tracks. All
of the half-height drives Tandy has been
selling are capable of 40-track opera-
tion.

The Problem of File Conversion

The Color Computer differs widely
from the IBM PC. The CoCo uses disks
formatted with 35 tracks and 18 256-
byte sectors per track; the PC uses 40
tracks with nine 512-byte sectors per
track. The CoCo uses single-sided disk
drives; the PC uses double-sided disk
drives. The CoCo uses a Western Digital

By Marty Goodman

or Fujitsu brand disk controller chip;
the IBM PC uses a NEC disk controller
chip. The CoCo uses the Radio Shack
Disk BASIC operating system; the PC
uses MS-DOS. All of these differences
cause problems.

The fact that many IBM PC word
processors store files in a form that is
not exactly ASCII text causes further
complications. You simply have to
make sure the files you wish to read on
the IBM PC-type disk are pure ASCII
text. Most programs that do not nor-
mally use pure ASCII for text storage
provide, as an option or separate con-
version program, the means of turning
their file format into pure ASCII.

Working in our favor is the fact that
both computers use the same size disk,
that Microsoft wrote the code for both
MS-DOS and Disk BASIC, and that the
Western Digital (or Fujitsu) disk con-
troller chip can read or write anything
written by the NEC controller chip.
(Oddly, the NEC chip cannot read
everything written by the Western Dig-
ital chip. In converting CoCo material
to an MS-DOS disk, one has to take the
special limitations of the NEC chip into
account when formatting a disk for it
using the Western Digital chip.)

I have added one feature to my MS-
DOS-to-CoCo conversion program. It
pokes a little routine into memory that
scts the high order bit of all characters
in the MS-DOS file to zero before
converting them to CoCo disk format.
It also strips out line feeds from the MS-
DOS file.

Most MS-DOS ASCII and other text
files end lines with a carrige return
character (Hex $0D), followed by a line
feed character (Hex $0A). But CoCo
word processors are accustomed to
seeing lines ended only by the carriage
return. Some CoCo word processors
automatically remove any line feeds
they may find in a file. Telewriter-64 is
one example. However, some CoCo
editors (i.e. the editor for Macro 80C)

choke on a file if it contains line feeds.
In general, when converting text from
an MS-DOS system to a CoCo Disk
BASIC system, it is useful, sometimes
mandatory, to strip off line feeds. The
resetting of the high-order bit to zero
should help convert WordStar and
some other type files into ASCII for
compatibility with CoCo word proces-
sors and editors.

The “filter” routine that does the line
feed and high-order bit stripping is
executed in Line 5050. If you want to
have the file converted without this
filter, just delete Line 5050: load the
converter program, then before running
the program, type 5050 and press
ENTER. This deletes Line 5050 and
disables the filter. You may want to save
the program with that line deleted.

Program Limitations
and Idiosyncrasies

There are several limitations with this
file conversion program. First, it can
only read single-sided disks (because so
few CoCo owners use double-sided disk
drives). Virtually all MS-DOS users use
double-sided disks. However, originally
MS-DOS used single-sided disks, and
to maintain backwards compatibility,
the current versions of MS-DOS have
the ability to read and write single-sided
versions of MS-DOS disks. In order to
create an MS-DOS disk that can be
read by a CoCo with single-sided drives,
the user must first format a single-sided
disk on the MS-DOS machine. Under
MS-DOS, do this with Drive B and give
the command FORMAT B: /1.

After prompting you to put a blank
disk in Drive B, the computer formats
a single-sided MS-DOS disk. You must
transfer any files you want converted to
that disk. Only MS-DOS disks pre-
pared in this manner can be read by this
MS-DOS-to-CoCo conversion pro-
gram. (It is possible to write a conver-
sion utility to read double-sided [nor-
mal] MS-DOS disks on the CoCo, but

Fage 30

AR

Australian RAINBOVY

july. 1986.

double-sided drives are required.)

MS-DOS supports volume labels and
subdirectories. To keep the conversion
program simple, I elected not to write
code that took either into account.
Therefore, the files you wish to transfer
must be put in the Root directory of the
single-sided MS-DOS disk. This pro-
gram ignores volume labels, subdirecto-
ries and killed files, but I do suggest not
having any of these things on the disk
you are preparing for file conversion.

Files can be of any length, but the
computer reads and writes data a sector
at a time. To keep the code simple, |
made it convert files a sector at a time
and let the last sector in each file be fully
converted, even if the file is supposed to
include only part of that last sector. The
result is that it adds some trash at the
end of files it converts, although all of
the file does get converted. This extra
trash often shows up as part of the
original file itself. Indeed, that trash will
very often be material from just before
the end of the file. But if you look a little
farther back, you'll see the true end of
the file, followed by up to 255 characters
of text, which is a repeat of stuff near
the end of the file. The extra trash can
be edited out with a word processor.

One note for Telewriter users: Tele-
writer does weird things when it en-
counters a caret sign in incoming text.
The caret itself is not displayed, and the
character following it is lost or altered.
I suggest you make sure there are no
caret signs in the text you convert. If
need be, first edit the text using an MS-
DOS-based word processor on your
MS-DOS machine.

Users of VIP Writer will need to do
a little extra work to prepare their files
for loading into the word processor.
Unfortunately, V/Pis set up to interpret
a null as an end-of-file marker. This
MS-DOS-to-CoCo conversion routine
doesn’t actually remove the line feeds;
it converts them into nulls. Because of
this, ¥/ P loads only the first line of the
converted text. The rest is ignored as the
null at the end of the line tells V/Pit has
reached the end-of-the-file.

To correct this, VIP users need to
delete Line 5050 in the main program.
This tells the converter not to strip the
line feeds. Then, after the conversion is
complete, you can do one of two things:
1) Leave the file as is and edit out the
line feeds (the hard way), or 2) Run the
file through the program in Listing 2
and answer the prompts. This listing
strips the line feeds right out of the file.

Using the Program
First, make up your MS-DOS single-
sided disk with MS-DOS ASCII text

files you want to convert. Be sure to put
all files in the Root directory. Be sure
the disk does not have a volume label,
subdirectories or a killed file. Put that
disk in your CoCo’s Drive 1. Put a disk
with this conversion program
(MS2COCO.BAS) in Drive 0. Type
LOAD “MS2COCD~ and RUN. Upon seeing
the title page, make sure your specially
prepared MS-DOS disk is in Drive I,
then press ENTER. Follow the prompts
to view all entries on the root directory
of the MS-DOS disk. Select the entry
you want to convert by typing its
number, then pressing ENTER when
asked to confirm that selection.

Be sure you have adequate blank
space on the Disk BASIC disk in Drive
0. That disk must be formatted in
ordinary format — just follow the
prompts. After selecting the file on the
MS-DOS disk you wish to convert, you
are asked to choose a filename for it as
it will appear on the CoCo disk. Note
that you are only to enter an eight-letter
filename; the program automatically
assigns the extension “/TXT.”

The speed of file conversion is
roughly 2400 Baud. This is accom-
plished by a sneaky programming trick,
the “VARPTR trick.” You might wish te
examine the code between 5000 and
5200 to see how the VARPTR statement
is used to help create a 256-character
long string in one fell swoop.

During file conversion some curious
numbers appear on the bottom of the
screen. These numbers were put there
mostly to help debug the program.
Going from left to right, they represent
the cluster number, track and sector
number on the MS-DOS disk that is
currently being acted on.

On the right bottom part of the screen
you will see a display of the number of
bytes that remain to be converted. As
the file is converted, that number de-
creases to zero. The number gives an
idea how far along the program is in the
process of file conversion. When the
program is done converting a file, it
prompts with a beep and asks if you are
done or if you want to convert another
file.

Special thanks go to Don Hutchison
(user name DONHUTCHISON on
Delphi) for his beta testing of this utility
and his help in dealing with line feeds,
including the program in Listing 2. Also
to Art Flexser (ARTFLEXSER on
Delphi), author of ADOS, for his help
in suggesting the VARPTR trick and for
providing a routine from which Don

derived the line feed-stripper program.
Thanks to Cray Augsburg (RAIN-

BOWMAG on Delphi) for his beta
testing that revealed the problems to be

encountered by users of VIP Writer.
Extra special thanks go to Fred Cisin,
author of Xenocopy, who spent hours
patiently teaching me about MS-DOS
disk file structure.

Next month we'll present the other
half of this package: a group of pro-
grams that allow you to format an MS-
DOS-type disk on the CoCo and to
write Disk BASIC text files onto that
MS-DOS disk using the CoCo. A short
simple BASIC program will be included
that inserts line feeds into CoCo ASCII
files after the carriage return, making
such files more palatable to MS-DOS-
type text handling programs.

For those with other file conversion
needs, please take note of the following:

Mark Data Products makes a pro-
gram called CoCo Util that converts to
and from Disk BASIC on an MS-DOS-
type machine. (Note that this is an MS-
DOS program and runs only on MS-
DOS machines.) It does, of course,
support “ouble-sided MS-DOS disks.
Mark Data Products, 24001 Alicia
Parkway, No. 207, Mission Viejo, CA
92691, (714) 768-1551.

D.P. Johnson makes conversion
utilities to handle file conversions
between OS-9 and MS-DOS disks.
These utilities run on the Color Com-
puter under OS-9 and support double-
sided disk drives. D.P. Johnson, 7655
S.W. Cedarcrest Street, Portland, OR
97223, (503) 244-8152.

For those with an IBM PC or other
MS-DOS machine who wish the ulti-
mate in file conversion utilities, let me
recommend XENOCOPY 1. It runs on
nearly all MS-DOS machines, and
reads from, writes to and formats over
250 different disk formats. This includes
0S-9, Color Computer and hundreds of
CP/M variant formats. If ycu obtain
special hardware, this conversion pro-
gram also supports a number of eight-
inch and 3%-inch disk formats. Xeno-
copy Ilis available from Xenosoft, 1454
6th Street, Berkeley, CA 94710, (415)

525-3113. 0O

-~

V/,n 227 3043 21
- Y- 9 9030110
445 21 1009051
610 104 13003178
750 190 END.....144
2110161

Listing 1: MS2C0CO

1 CLEAR 512, &HS5DFF
2 PCLEAR 4

3 DIM LKS(8)

5 DIM NTRYLC(8)

2p IS=&H6P:ID=&H6PPP 'MS DOS DAT
A SECTOR BUFFER
25 FS=&H62:FD=&H62@@ 'FAT BUFFER

July, 1086.

Australian RA iiH(N

e ——m
Page 31

Color LOGO

savesss Reg 89.95 3495

Program Pak for the Color Computer. Helps children
understand graphic relationships and develop pro-
blem solving skills. Manipulate a “turtle” around the
screen to create simple or advanced graphics. With
easy-to-understand instruction manual. 2222

Disk Version of Color LOGO

Save 370 reososs 9995

Same as above but in diskette form. Ideal for chil-
dren under reading age. Pre-defined single key
commands moves “turtle/” on the screen. 252721

Expand Your Child’s Vocabulary
Save $7 reotass 795

Vocabulary Tutor 1. An exciting word and descrip-

tion matching game that your children will love to

play and learn with. zs2ses

Vocabulary Tutor 2 features matching words and

definitions, placing words in the right sentences.
26-2569

Language, Arts and Readi

Save
60

Reg 99.95

3995

Limited stock only of these aexclusive speciars
Ask your Store Manager to help locate these for you

Educational
Software for
Your Tandy Computer

Educational Sourcebook

Ssage eg 1096 495

A complete reference source to all
educational software programs and
where to find them. Includes all aspects
of management and tutoring. With full
index to make finding that selection so
much easier. At this price, no computer
user can afford not to have a copy. 2s.27s6

Australian Educational Sourcebook

Save $7 reomss %

The ideal supplement to the above. Don't limit your
software packa?e to just your local distributor. See
the full range of what'’s available in the educational
area. With all the Australian software as well as
what'’s produced overseas. 267901

Learn All About Number Magic

save 5196 Reg 2.95 99¢

The best and easiest way to come to terms with
numbers. Create and detect number patterns from
the book and use them in your computer. 22752

How To Make Your Computer Like You

Save $1% ez 99¢

Yes, they’ve got feelings too! And with “My TRS-80
Likes Me”, you can get on your computer’s best
side. Makes general programming simple to under-
stand. Learn how to write that program in as few
steps as necessary. For all computer users. 2s.27s1

ng Programs

That's right! $60 off a great range of software for the
TRS-80 Model Ill. HMRS (High Motivation Reading
Series) has 4 copies of the student reader and a read-
along tape with each program. Computer measures
general comprehension in areas such as sequence of
events, details and separating fact from opinion.
Spelling and vocabulary drills also involved.

Charles Lindbergh/Amelia Earhart. 262513

Hounds of the Baskervilles. Suspense. 22514

Dracula. Separate the facts from fiction. 22515

Moby Dick. A whale of a story! 22516

The Beatles. The lives of the famous four. 22517
20,000 Leagues Under the Sea. Adventure. 22518
Student Record System. Monitor performance. 22521

What great value! Ten single-sided, double density
13.3cm diskettes for under thirty dollars! All are un-
formatted and soft sectored. And unlike most, our
disks are double coated with an advanced ferric-
oxide blend to provide maximum lubrication and
resistance to diffusion. With forty tracks on each
disk forall your programs. 264s ... Reg 39.9529.95

Double-sided diskettes double your memory
facilities without halving your wallet! These double-
sided, unformatted diskettes are less than four
dollars per disk. Manufactured to the highest stan-
dards of excellence, you can be confident that your
programs and data are safe. 13.3cm diskettes with
40tracksavailable. 2«12 ... Reg 49.95

95
*15

Protect your personal disks and keep them in an
easy-to-find system. This locking diskette box will
store up to 100 13.3cm disks for your quick refer-
ence. Strong, durable construction means that
when locked, the only way in is with a key. Folding
“see-through” top locks shut. An essential for any
computer user in the home, office or school. 29406

Expansions and Upgrades for the Tandy 1000

256K Memory Expansion Board. User-installable and
with full instructions. Get the most out of your machine.
Add additional memory if desired for 384K. Was 499.95
200U o' slsvs smmvass vama sk e nsiss s T s NOW 200.08

Tandy 1000 Disk Drive Kit. Provides an additional 360K of

disk stora?e for your computer. Mounts internally and in-

stallation is ded) Was 399.95
Now 349.95

RS-232C Option Board. Expand your computer's uses.
Add software and external modem to talk with other com-
puters by phone. Also great with serial plotters, printers
and more. Reg 219.9525-1006 Now 179.95

Hard Disk Controller Board. Allows you to add hard
disks drives for up to 35 million characters of stor-
age. Includes driver software and cable for our 15,
35 megabyte systems. Was 549.95 2s.1007 .. Now 399.95

512K Memory Expansion Board. Lets you upgrade your
machine from 384K up to 512K. So easy to install with and
a full instruction manual. Add additional memory for
640K.Reg399.95251009 Now 199.95

DigiMouse Controller/Calendar Board. Dual purpose con-
troller for DigiMouse and perpetual time-date clock. In-
cludes demonstration and documentation. Was
199.9525-1010 : Now 149.95

SALE ENDS: 30/7/86

WE SERVICE WHAT WE SELL!

Available from 350 Stores

Australia-wide including

Tandy Computer Centres

Independent Tandy Dealers may not be participating
in this ad or have every item advertised.
Prices may also vary at individual Dealer Stores

350 Stores
Australia-
Wide

3P DS=&H66:DD=&H668P 'MS DOS DIR 465 POKE &HEE,DS+(2#N)-12 OTO 2268

ECTORY BUFFER 47@ EXEC DKON 212p X=CURCLU+QQ:T=INT(X/TS) :S=X
35 DEND=&H71FF 'END OF DIRECTORY 475 IF PEEK(&HFP)<>P THEN GOTO 9 -TS#*T+1l

4¢ POKE &H7E@P,&HBE:POKE &H7Egl, pgp 213p PRINT@48@+2,CURCLU; : PRINT@4
4H6P:POKE &H7EP2,P 'LDX #$6999 489 NEXT N 8P+2P,FZ-(512*%(M~-1)) ;

41 POKE &H7E@3,&HA6:POKE &HTEP4, 499 GOTO 5pp 214p GN=CURCLU:GOSUB 15@@¢@:CURCL
&H84 'LDA P,X 5¢¢ REM PUT DIR ON SCREEN U=Ccv

42 POKE &H7EPS5,&HB1:POKE &H7EP6, 519 K=g:LKS(P)=p:2=0 2209 GOSUB 599

&HPA 'CMPA #$pA 515 REM LOOP 2219 IF CURCLU=g THEN GOTO 198
43 POKE &H7EP7,&H26:POKE &H7EQS, 52¢ CLS:PRINT@8,"DIRECTORY LISTI 2228 IF CURCLU>HCLU THEN GOTO 22
&HP@3:POKE &H7EP9,&H4F 'BNE $7EPC NG" sp

CLRA 53§ PRINT@64," FILENAME.EXT 2239 NEXT M

44 POKE &HT7EPA,&H20:POKE &H7EPB, SIZE" 2248 GOTO 3g9pP

&HP2:POKE &H7EQC,&HB84:POKE &H7Ef 5408 GOSUB 13ppg 225@ IF CURCLU=&HFFF THEN M=M+1
D,&H7F 'BRA $7EPE ANDA #$7F 559 IF FE=g THEN GOTO 7g¢ 2268 NEXT

45 POKE &H7EPE, &HA7:POKE &H7ESF 555 IF 2= THEN GOTO 758 2278 GOTO 3gpP

,&HB@ 'STA X+ 56¢ F$="M" 'MIDDLE OF DIR 3PP PRINT #1,CHR$(&HPD) ;

46 POKE &H7E1g@,&HBC:POKE &H7E1l, 57§ PRINT@512-96," ENTER CHOIC 3gp5 PRINT#1,CHR$(&H1A);
&H62:POKE &H7E12,&HPP 'CMPX #$6 E NUMBER OR" 319 CLOSE

209 58¢ PRINT" UP OR DOWN ARROW TO 3§15 PRINT@48g+28," " ; :PRINT
47 POKE &H7E13,&H25:POKE &H7E1l4, SEE" e48g+20,LB;

&HEE:POKE &H7E15,&H39 'BCS $7E@3 599 PRINT" PREVIOUS OR NEXT CH 3§28 SOUND 192,18

RTS OICES"; 3p3¢ PRINT@256-32," TRAN

49 REM DELETE STEP 5958 TO KILL 595 F$="M" SFER DONE "

THE FILTER. 609 2=2+1:LKS(2)=K 3p4§ PRINT" TAP ENTER TO TRANSFE
6f H=PEEK(&HCP@4) : L=PEEK(&HCPP5) 619 AS$=INKEYS R MORE "

:DKON=256*H+L 615 IF A$="" THEN GOTO 61¢ 3g43 PRINT" TAP ANY OTHER KEY TO
198 CLS:PRINT@32," MS DOS TO COC g2¢9 IF A$=CHRS$(12) THEN GOTO 688 EXIT"

C TEXT FILE XFER" 625 IF A$=CHR$(94) THEN GOTO 668 13845 AS=INKEYS

195 PRINT" FOR SINGLE SIDED MS D 27 IF VAL(A$)=¢ THEN GOTO 618 3g5¢ IF AS$="" THEN GOTO 3845

OS DISKS" 63¢ IF VAL(AS$)>Q THEN GOTO 618 3g6g IF A$=CHRS$ (13) THEN GOTO 1g@
11¢ PRINT:PRINT" (C) MARTY GOODM 635 CLS:VV=VAL(A$)-1:GOSUB 16858 [’}

AN JAN 1, 1986":PRINT :GOSUB 17928 3978 CLS:END

115 PRINT"FOR EITHER 8 OR 9 SEC 648 PRINT@32,"YOU HAVE CHOSEN:" 59p2 REM INPUT SECTOR TO BUFFER
/ TRK." 645 PRINT:PRINT NAMS$,FZ 5819 PRINT@489+9,T;:PRINT@48P+15
12 PRINT"ONLY ROOT DIRECTORY FI 65¢ PRINT:PRINT"HIT ENTER TO PRC ,S;

LES CAN" CEED, OR" 5@29 POKE &HEA,2:POKE &HEB, 1:POK
125 PRINT"BE CONVERTED. FORMAT 652 PRINT"ANY OTHER KEY TO RETUR E §HEC,T:POKE &HED,S:POKE &HEE,1
THE DISK" N TO MENU." S:POKE &HEF,@

13¢ PRINT"YOU WILL PUT THE MS DO 656 AS$=INKEY$:IF A$="" GOTO 656 5939 EXEC DKON

S FIES" 657 IF A$=CHR$(13) THEN GOTO 29f 5p4p IF PEEK(&HFP)<>@ THEN GOTO
135 PRINT"ON USING THE COMMMAND: 2 opgp

":PRINT 659 Z=2-1:K=LKS(Z) :GOTO 515 505¢ EXEC &H7E@g@

14§ PRINT" FORMAT B: /1" 66¢ IF FE=g THEN GOTO 61g¢ 5068 AS=""

145 PRINT:PRINT" PLACE SINGLE SI 662 K=LKS(Z):GOTO 515 5865 P=VARPTR(AS)

DEC MS DOS DISK" 68¢ IF Z=1 THEN GOTO 619 5978 POKE P,128

15¢ PRINT" IN DRIVE 1 AND TAP 682 Z=Z-2:K=LKS(Z): GOTO 515 5875 FOR Y=g TO 3

ENTER"; 7¢¢ PRINT@512-96," END OF DIRE s5ggg Z=ID+Y*128

198 IF INKEY$ <> CHR$(13) THEN G CTORY" 5085 GOSUB 5208
OTC 198 71¢ PRINT" ENTER SELECTION OR 5098 POKE P+2,MSB:POKE P+3,LSE
2p@ REM READ IN FIRST SECTOR OF DOWN ARROW" 5198 PRINT#1,A$:

FAT 72¢ PRINT" TO SEE PREVIOUS PAG 511¢ NEXT Y
219 POKE &HEA,2:POKE &HEB, 1:POKE E"} 51308 RETURN

&HEC, §:POKE &HED,2:POKE &HEE,FS 738 GOTO 6@ 529§ MSB=INT(2/256)

:POKE &HEF, 2 75 PRINT@512-96," TOP OF DIRE 5218 LSB=2-MSB*256
220 EXEC DKON CTORY" 5229 RETURN
23g IF PEEK(&HFP)<>g THEN GOTO 9 768 PRINT" ENTER SELECTION OR 9¢@g# REM PRINT DISK I/O ERROR
228 UP ARROW"; 9¢2@# CLS:PRINT@256-32," DIS
3¢P REM CHECK FOR 8 VS 9 SECTOR 788 PRINT" TO SEE MORE ENTRIES K ERROR ... SORRY!"
PER TRACK "; 9g39 PRINT" TAP ENTER TO RESTART
31p GN=g:GOSUB 15g@@:T=CV AND 15 792 GOTO 6g¢ PROGRAM"

320 TS=p 2pp@ REM FILE TRANSFER SECTION 9g4@ IF INKEY$<>CHR$(13) GOTO 98¢
339 IF T=&HE THEN TS=8 2@2¢ HCLU=4@*TS 49

34p IF T=&HC THEN TS=9 2939 CLS:PRINTE32,"PUT COCO DISK 9858 GOTO 188

35 IF TS=8 THEN GOTC 420 IN DRIVE g" 12298 REM GET INFO FROM DIR

362 IF TS=9 THEN GOTO 458 2@4¢ PRINT"AND INPUT A FILE NAME 12991 REM NT IS ENTRY NUMBER

37¢ CLS:PRINT@256-29,"WRONG KIND " 12p92 REM NAM$=FILENAME ON EXIT
OF MS DOS DISK" 2p45 PRINT"USE UP TO 8 LETTERS A)ggg3 REM F1=7 IF INVALID ENTRY
38¢ PRINT" TAP ENTER TO RESTART ND" 1¢9#4 REM Fl=g IF VALID ENTRY
PROGRAM" 2p5¢ PRINT"DO NOT USE AN EXTENTI 12995 REM Fl=1 IF SUBDIR

399 1F INKEY$<>CHR$ (13)GOTO 398 ON!™ 1P6 REM Fl=2 IF KILLED FILE
395 GOTO 198 2p6¢ PRINT:INPUT CFN$ 1£pP7 REM Fl=3 IF FREE (END OF
49p REM INPUT 8 SEC /TRK DIRECTO 2872 IF CFN$="" THEN GOTO 2039 DIR)

RY 2p75 IF LEN(CFN$)>8 THEN GOTO 2@ 1ppgge REM Fl=4 IF ENTRY POINTS
412 FOR N=4 TO 7 3p BEYOND THE BUFFER SPACE.

42¢ POKE &HED,N 2p8¢ OPEN "O",1,CFN$+"/TXT:p" 19899 REM BUFFER SPACE IS FROM
439 POKE &HEE, DS+ (2*%N)-8 2p9¢ CURCLU=BC $660p THRU $71FF (6 SECTORS)

435 EXEC DKON 2092 IF TS=8 THEN QQ=5 19919 REM OR 96 TOTAL ENTRIES.
44p IF PEEK(&HFP)<>@ THEN GOTO 9 2093 IF TS=9 THEN QQ=7 19911 RE A=ATTRIBUTE BYTE

209 2095 ZCLU=INT (FZ/512)+1 19915 222$=CHR$ (&HE5)+STRINGS (7,
445 NEXT N 2§97 CLS:PRINT@256=32," NOW TR CHRS (&HF6))

447 GOTO 5p2 ANSFERRING THE FILE" 18@2@ DLOC=DD+32*NT

45¢ REM INPUT SECOND FAT SECTOR 2p98 PRINT@512-96,"CLUSTER TRACK 1pg3p IF DLOC>&H71FF THEN F1=4:R
AND ALL OF DIRECTORY SECTOR #BYTES" ETURN

455 FOR N= 5 TO 9 21g@ FOR M=1 TO 2CLU) B
469 POKE &HED,N 211p IF CURCLU>HCLU THEN M=M+1:G centinued aon Paze 56
Page 34 Australian RAINBOW July, 1986,

1

UTILITY

16KECB+ASSEMBLER

COMPARE

by E. Pozzi and K. Paterson

The aim is to compare two programs to check

correctness of bytes.

for COMPARE/BAS

is the driver

program, COMPARE/BIN

will be executed by the selection of the FAST mode.

use it mainly in conjunction with my EPROM Input the source code and assemble it to Disk as
burner. One can double check the original program Compare/Bin.
with the burnt one on the chip. To sum up you will have COMPARE/BAS plus
The program is self prompting. Two compare modes COMPARE/BIF on your disk, the ML program being
are available FAST and SLOV. In the slow mode the loaded in automatically when you run the Basic
spacebar will stop and start the display. program.

The Listing: COMPARE

0 GOTO40

10
20
25
30
31
40
50
60
70

OGRAMS NOW TO BE
E HEX$ 2000 THEN

' ¥%xx COMPARE ¥xx
'%x BY E.POZZI @ K.PATERSONk¥x

*FOR QUERIES TEL 07 2774414
PRXXXXKKX 1-8-85 KKXXKXKX
SAVE"COMPARE: 3" : ERD

GOTO760

CLEAR200, &H1FFF

LOADM" COMPARE

CLS: PRINT: PRINT" loadm YOUR PR
COMPARED ABOV
CRUN> THIS PR

OGRAM AGAIN

80
90

DEL-80
CLS7: POKE360, 1: POKE361, 121:
SCREENO, 1

100 PRINT®@3S,"xx E.POZZI & K.PAT
ERSON *x";

110 PRINT®108,"
120 PRINT@169,"

130 PRINT@229,"

PROGRANMS ";
TO BE COMPARED "

MUST HAVE BEEN L

OADED ";

140 PRINT@290,"
000
150 PRINT®485,"

ABOVE HEX 2

SPACEBAR TO CORT

INUE ";
160 S$=1NKEYS$: [F S$=CHRS (32) THEN

170 GOTO

180
160

180 CLS7:PRINT@40," RAM COMPARAT

OR

190 PRINT®@237," ENTER ";

200 PRINTe@322,"

0o

PUT

DEFAULT=&H20
"; :PRINT@290," ";:LINE IN
"FIRST START ADDRESS &H?

";A$: PRINT@317,CHR$ (239): PRINT®@3

18,

CHR$ (239): PRINT®319, CHRS (239)

210 IF As="" THEN A$="2000"
220 AS(1)=LEFT$(AS%,2)
230 A$(2)=RIGHTS$ (A$,2)

240 A=VAL("&H"+A%$(1))

250 B=VAL("&H"+A8$(2))

260 POKE&HE19, A: POKE&HE1A, B

270 PRINT@290, STRINGS (28,32);
280 PRINT@322," DEFAULT=&H40
00 "; :PRINT@290," ";:LIRE I
NPUT "FIRST END ADDRESS &H?
";B$: PRINT@317,CHRS (239): PRINT@3
18,CHR$(239): PRINTQ@319, CHR$ (239)

290 IF Bs$="" THEN B$="4000"

300 B$ (1)=LEFT$(BS$,2)

310 B$(2)=RIGHTS (BS$, 2)

320 C=VAL("&H"+B$(1))

330 D=VAL("&H"+B$(2))

340 POKE&HES6, C: POKE&HES7,D

350 PRINT@290,STRINGS(28,32);

360 PRINT@322," DEFAULT=&HCO

00 ";:PRINT@290,"";:LINE INP

uT "SECOND START ADDRESS &H

?";C$: PRINT@318, CHRS (239): PRINT@

319,CHR$ (239);

370 IFCs="" THEN C$="C000"

380 C$(1)=LEFT$(Cs,2)

390 C$(2)=RIGHT$(CS$,2)

400 E=VAL("&H"+C8$(1))

410 F=VAL("&H"+C$(2))

420 POKE&HE16, E: POKE&HE17,F

430 PRINT@290,STRINGS(28,32);

440 G=VAL("&H"+A$): H=VAL ("&H" +BS$

): 1=VAL (" &H" +C$)

450 PRINT@321,STRING$(30,42);:PR

INT@289," (F) FOR FAST OR (S) FO

R SLOW ";:PRINT@319, CHR$ (239);

460 X$=INKEY$: IF X$=CHR$(70)
THEN 490

470 [F X$=CHR$(83) THEN 510

480 GOTO 460

490 EXEC&HEO00

500 END

510 POKE65495,0:CLS7: PRINTR40,"

RAM COMPARATOR ";

520 P=100:Q=106:R=115:5=121

530 L=100:Z=115:FOR K=1TO10:PRIN

TeL,STRING$(9,32); : PRINT@Z, STRIN

G$(9,32);: L=L+32:2=2+32: NEXT K

540 FOR Z2=1 TO 10

550 PRINT@P,” "HEX$(G)"=";

560 PRINT@Q, HEXS$ (PEEK(G))" ";

570 PRINT@R," "HEX$(I)”"=";

580 PRINT@S, HEX$ (PEEK(I))" *;

590 IFHEXS (PEEK(G))=HEXS$ (PEEK(I)

) THEN650

600 SOUND 100,3

610 PRINT@485," SPACEBAR TO CONT

INUE *;

620 X$=INKEY$: [F X$=CHR$ (32) THE

N 640

630 GOTO 620

640 PRINT@485,STRINGS (22,32);

650 J8$=INKEYS$: IF J$=CHRS (32)
THER 600

660 P=P+32:Q=Q+32: R=R432:85=5+32

670 G=G+1:I=[+1:NEXT 2

680 [F G>H THEN 750

690 FOR E=1 TO 10

700 PRINTQP,STRINGS(9,32);

710 PRINT@R, STRING$(9,32);

720 Q=Q-32:5=5-32

730 P=P-32:R=R-32:REXT E

740 GOTO 540

750 GOTO 750

760 PCLEAR1:GOTO50

The Listing: COMPARE2

00010 ¥¥COMPARE FPROGRAM PART2
00020 *xBY E.POZZ1

00030 *x 1/08/1985
00040 BREAK EQU $03
00050 SPCBAR EQU $20
00060 ORG $E00
00070 BEGIN LDD #SFFFF
00080 LDY #$0400
00090 MORE STD ,Y++
00100 CMPY #$0600
00110 BLO MORE
00120 LDX #MESS1
00130 LBSR SHOW

July,

1686.

e TT—
Australian RAINBOV

I ——
Page 35

00150 LDU #$C000
00160 LDX #8$4000
00170 AGAIN LDY #$04C5
00180 TFR X,D
00190 JSR BYTBIT
00200 TFR B, A
20210 JSR BYTBIT
00220 LDB #8$60
00230 STB , Y+
00240 LDA ,X+
00250 STA <0000
00260 JSR BYTBIT
00270 LDY #$04D1
00280 TFR U,D
00290 JSR BYTBIT
00300 TFR B, A
00310 JSR BYTBIT
00320 LDB #$60
00330 STB , Y+
00340 LDA ,U+
00350 STA <0001
00360 JSR BYTBIT
00370 LDA $0000
00380 SUBA $0001
00390 STA $0002
00400 BNE VAIT
00410 CONT CMPX #$6000
00420 BNE AGAIN
00430 RTS

00440 BYTBIT PSHS A
00450 LSRA

00460 LSRA

00470 LSRA

00480 LSRA

00490 JSR CONVRT
00500 JSR DISPLY
00510 PULSA
00520 ANDA #$0F

00530
00540

JSR CONVRT
JSR DISPLY

00550 RTS
00560 CONVRT CMPA #s0A

00570
00580

BCC LETTER
ADDA #870

00590 RTS

00600 LETTER ADDA #$37
00610 RTS

00620 DISPLY STA ,Y+
00630 RTS

00640 SHOV LDY #$0444A

00650

LDB #$0A

00660 LOOP1 LDA , X+

00670
00680
00690

STA, Y+
DECB
BRE LOOP1

00700 RTS

00710 MESS1 FCC /COMPARATOR/
00720 MESS2 FCC /PRESS/
00730 FCB $60

00740 FCC /SPACEBAR/
00750 FCB $60

00760 FCC /TO/

00770 FCB $60

00780 FCC /CONTINUE/
00790 VAIT PSHS X,DP,B, A
00800 BSR MUSIC

00810 LDX #MESS2

00820 LDY #8522

00830 LDB #$1A

00840 ROUND LDA , X+

00856
00860
00870

STA , Y+
DECB
BNE ROUND

00880 VAIT1 JSR [$A4000]

00890
00900

CMPA #BREAK
BNE CONT1

00910 JMP $A027
00920 CONT1 CNPA #SPCBAR
00930 BNE WAIT1
00940 LDY #8522
00950 LDB #$1A
00960 LDA #$60
00970 DO STA , Y+
00980 DECB

00990 BNE DO

01000 PULS A,B,DP,X
01010 LBRA CORT
01020 x*

01030 MUSIC ORCC #$50
01040 x

01050 LDA #$32
01060 STA $FF23
01070 LDA #SFA
01080 STA $FF22
01090 LDA #$36
01100 STA $FF23
01110 BEEP LDB #100
01120 OUTLP LDA #40
01130 INLP1 DECA
01140 BNE IRLP1
01150 LDA #$02
01160 ORA $FF22
01170 STA $FF22
01180 LDA #40
01190 INLP2 DECA
01200 BNE INLP2
01210 LDA #3$FD
01220 ANDA $FF22
01230 STA $FF22
01240 DECB

01250 BNE QUTLP
01260 ANDCC #$AF
01270 RTS

01280 END BEGIN

The Great Transformation

continuved from Page 34

1¢p4p FB=PEEK(DLOC)

1¢26@ IF FB=@ THEN F1l=3:RETURN
12279 NAMS="n

19988 FOR N=g TO 7

1gp9p NAM$=NAM$+CHRS (PEEK (DLOC+N
))

19198 NEXT N

10194 IF NAM$=222Z$ THEN F1=3:RET
URN

19195 IF FB=&HES5 THEN Fl=2 :RETU
RN

19112 NAMS=NAMS+". "

19129 FOR N=8 TO 1p

1p13p NAM$=NAMS$ +CHRS$ (PEEK (DLOC+
N))

19149 NEXT N

19145 Fl=p

19158 A=PEEK(DLOC+11)

12155 T=A AND &H1@:IF T<>@ THEN
Fl=1

1816f T=A AND &HPB:IF T<>@ THEN
Fl=7

192p8 RETURN

119p9 REM FOR GIVEN ENTRY NUMBER
11¢p1 REM GET FILE SIZE (FZ)
11292 REM AND BEGIN CLSTR (BC)
11010 DLOC=DD+NT#*32

11£2¢ FZ=PEEK(DLOC+28)+PEEK (DLOC
+29) *256+PEEK (DLOC+30) *65536+PEE
K(DLOC+31) *65536*256

1193p BC =PEEK(DLOC+26)+PEEK (DLO
C+27) %256

11948 RETURN

139pP REM GET 8 DIR ENTRIES
13pP2 REM Q=VALID ENTRY COUNT
13pp3 REM K=KOUNT OF ALL ENTRIES

13804
13919
13913
13915
13939
13p4g
13958
13199
13197
13119
13115
13129
13229
13219
13228

REM FE=255 IF MORE NTRIES
Q=p:FE=255

SCST=128

REM LOOP

NT=K

GOSUB 1pppp:GOSUB 1198
IF F1<>§ GOTO 13299
NTRYLC (Q) =DLOC
PRINT@SCST+32%Q,Q+1
PRINT@SCST+3+Q*32, NAMS
PRINT@SCST+19+Q#*32, FZ
Q=Q+1

K=K+1

IF F1=3 THEN FE=§:RETURN
IF DB+32*K>DEND THEN FE=g:

RETURN

1323p
1324p
15p¢2p
150901
15992
15993

IF Q>7 THEN RETURN

GOTO 13915

REM READ FAT

REM GN =CLUSTER ENTRY#
REM GN=g TO 44g

REM CV = CONTENTS OF THE

CLUSTER NUMBER REQUESTED

15819
15929
15039
15049
15859
15855
15069
15979
15089
15p099
151¢p
15119
15128

GIN=INT(GN/2)
GCN=3*GIN
GF=GN-2*GIN
B1=PEEK(FS*256+GCN)
B2-PEEK(FS*256+GCN+1)
B3=PEEK(FS*256+GCN+2)
N1=(Bl AND &HFg@)/16
N3=(B2 AND &HFP)/16
N5=(B3 AND &HFg)/16
N2=Bl AND &HF

N4=B2 AND &HF

N6=B3 AND &HF

IF GF=g GOTO 152pp

15158 CV=N3+N6*16+N5%256:RETURN
15289 CV=N2+N1*16+N4*256:RETURN
169pp DLOC=NTRYLC(VV) :GOTO 1pp3g
17ppp DLOC=NTRYLC(VV) :GOTO 11p28

Listing 2: STRIPLF

19 'LINEFEED STRIPPER
2@ 'BY DON HUTCHISON [7£425,1225

]

3¢ 'ADAPTED FROM A PROGRAM BY AR
T FLEXSER, MARCH 1986

4p !

5§ 'MODIFIES ASCII FILES BY DELE
TING THE LINEFEEDS

69

72 CLEAR 2g@,&H7DFF

84 FOR I=&H7E@P TO &H7E29: READ
P$:POKE I,VAL("&H"+P$): NEXT

9¢ DATA 8D,A,8D,1D,81,A,27,F8,8D
+9,2¢,F4,C6,1,D7,6F,7E,C5,97

1¢p DATA C6,2,D7,6F,AD,9F,A8,2,F
6F,6E,9F,Ap,2,D,70,27,4,F,6F
119 DATA 32,62,39

12p IF PEEK(&HCPP4)<>&HD6 THEN P
OKE &H7E12,&HC4 'For 1.1 ROM

139 CLS: PRINT: PRINT: PRINTTAB(
8) "LINEFEED STRIPPER": PRINT

149 LINEINPUT "NAME OF INPUT FIL
E: “:I$

158 LINEINPUT "NAME OF OUTPUT FI
LE: ";0$

168 OPEN "I", #1,I$

17¢ OPEN "oO",#2,0$

189 EXEC &H7Egp

199 CLOSE #2: CLOSE #1

2p9 END

)

Page 36

Australian

RAIRBEOV

July, 1986.

L B T T

—

RANBSOWTECH

16K | [(okim |
ECB_| [72%%

BARDEN’S BUFFER

The Meaning of Life

By William Barden, Jr.

The game I’'m about to describe is
more than a frivolous pastime.
For some, it’s a challenge in
assembly language. For others, the key
to unlocking the secrets of evolution.
And for yet others, it’s'a way of gener-
ating interesting patterns. It’s called
“Life,”and is an ancient computer game
dating back at least 15 years.

Actually, it's not a game in the sense
of a person versus computer confronta-
tion. It’s more a challenge of finding out
how the game works and what the limits
are, if any.

The Rules of Life

The rules were laid out by the game’s
inventor, mathematician John Horton
Conway. Martin Gardner, of Scientific
American’s *Mathematical Games”
fame, introduced it in his October 1970
column and provided periodic updates
for several years thereafter. For the most
part, the descriptions I'm providing
come from the Scientific American
columns. There’s a recently published
book on “Life™ and other topics, called
The Recursive Universe (William
Poundstone, William Morrow and
Company, 1985) that makes interesting
reading.

The rules are deceptively simple.
Start with a square matrix like a check-
erboard. Each square of the checker-
board is called a cell. The checkerboard
can be any width and any height, al-
though something on the order of a
CoCo screen (128 by 96) is a good size
to start with. Put a pattern on the
checkerboard by generating random
points or entering points via a BASIC
PSET command. The pattern defined is
the starting generation.

Now consider each cell in the 128 by
96 matrix defined by the CoCo's screen.
Ifacellis on, it’s considered to be living.
Whether or not a cell survives until the
next generation is dependent on its

immediate neighbors, the eight cells
adjacent to the living cell, as shown in
Figure [. We'll call the neighbors A, B,
C,D,F,G,Hand I

If the living cell has no neighbors or
one neighbor, it dies from loneliness
and disappears in the next generation.
If the cell has two or three neighbors,
it survives until the next generation. If
the cell has more than three neighbors,
it dies from overcrowding.

AlB|C
D F
GIH|I

E-Cell in question

i NEIGHBORS
|
|

7
| t
i 7 4 !
This cell has This cell has
two neighbors— four neighbors-~
it lives on next it dies on next
generation generation

Figure 1: Neighboring Cells

Not only can cells die, but new cells
can be born. If an empty cell has three
neighbors, the neighbors produce a new
cell in the next generation. This only
happens if an empty cell exists and there
are three of the possible neighbors A, B,
C,D.F, G, Hand L

Each generation is produced using
these simple rules and there are an
unlimited number of generations.

Here’s an example. Start with a
simple pattern such as the three cells in
astraight line, as shown in Figure 2. The

result in generation one is a straight line
of three cells at right angles to the first
line. This pattern flips back and forth,
oscillating in a style reminiscent of a
blinker. To “Life™ devotees, the pattern
is called a blinker.

The Appeal of Life

The interesting thing about “Life” is
the unpredictability of the patterns
produced. Start with a completely
random pattern generated by:

199 PMODE 4,1

119 SCREEN 1,9

129 FOR I=1 TO 1499

139 PSET(RND(256) ,RND(192))
149 NEXTI

and apply the rules of “Life.” You'll
wind up with a situation analogous to
life oozing up out of the primordial
slime — a random pattern that pro-
duces some organisms that stay around
forever and others that produce beau-
tiful designs but die off after a dozen
generations or so. Figure 3 shows the
tenth generation of a “Life” game
generated from 1,400 initial random
points, grouped towards the screen
center.

The rules of “Life” pose some inter-
esting questions and they had pro-
grammers, computer scientists and
mathematicians spending millions of
dollars of computer time investigating
“Life’s” patterns. Are there patterns
that move? Are there patterns that
reproduce without limit? The answer to
both of these questions is yes, but it’s
not immediately obvious to those
watching the game for the first time.

A High-Speed Life Generator

To study “Life,” programmers and
computer scientists use large mainframe
computers and displays. One display
allows 4,096 by 4,096 cells to be dis-
played at one time. As a matter of fact,

1486,

July,

Avsstration NATRUOW

Page 37

a dedicated system has been built to run
“Life” at high-speed so the patterns can
be observed and cataloged. Bear in
mind this is not a project that is a
prcfound breakthrough in artificial
intelligence — it is primarily a fun thing
that has some interesting implications.
Still, “Life” has a large following.

A BASIC Life

Listing 1 shows “Life” implemented
in BASIC. This BASIC program uses only
a 14 by 20 element portion of the screen
since BASIC is decidedly slow in produc-
ing the next generation. To use this
program, enter a number for ‘X' from
zero to 19 and a number for ‘Y’ from
zero to 13 to define the pattern, and
watch the computation. It takes about
52 seconds to produce the next gener-
ation. The blinker pattern is defined by
entering:

10,6

10,7

10,8

-1,-1

The two “-1” values terminate the
entry and start “Life” processing.

An Assembly Language Life

A 14 by 20 matrix is really not big
enough to see the interaction of the
different patterns. The point of this
column is a full-blown CoCo assembly
language program to generate a 128 by
96 single-color version of “Life” on the
CoCo (see Listing 2). Using the assem-
bly language program, each generation
of “Life” takes about 6.7 seconds. Still
slow, but fast enough so you can easily
watch the progress from generation to
generation. I decided to use the lower
resolution PMODE @, instead of the
Ynaximum resolution PMODE 4, which
requires four times the computation
because there are four times the number
of pixels.

GENERATION G

~

—

olojo|lo|o
alnm]winm |-
N
“almlwin |~
olojlolo|®

-

Number of neighbors
in celi

This cell
was born

Figure 2: Computing the Next Generation

GENERATION 1

This cell died

i 41— Thiscell

/// was born

\

This cell
remalned

This cell died

Figure 3: Sample of Life Generation

The Program Algorithm

Having been through several versions
of “Life” on different systems, I knew
the program could never be fast enough.
For that reason, I gave a lot of thought
as to how the program should be imple-
mented.

The first design consideration was the
graphics screen. The graphics screen in
Disk BASIC starts at location $E00, as
shown in Figure 4. If PMODE @ is used,
the resolution of the screen is 128 pixels
wide by 96 pixels high. In PMODE @ and
in every single-color graphics mode, one
bit is used to store the color for each
pixcl. A ‘1" in the bit means the fore-
ground color is used; a ‘0’ bit means the
background color is used. Therefore, in
PMODE @ there’s a total of 128 pixels/
row X 96 rows = 12,288 pixels = 12,288
bits.

Of course, there are eight bits in a
byte, so 12,288 bits/ (8 bits/ byte) = 1,536
bytes used to store each graphics screen.

I'he plan I use is to keep the PMODE
@.1 screen as the current screen and
update a second screen, the PMODE @,2
screen. (In the PMODE command, the
second parameter specifies the page
number, in this case ‘1" or ‘2".)

To do this, | have it scan the current
screen one cell (pixel) at a time. For each
cell, a count of the neighbors is made,
with the corresponding cell in the new
screen set or reset according to the rules
of “Life.” The scan proceeds from right
to left across each row, starting at the
last row and ending on the first row, as
shown in Figure 5.

One other screen design considera-
tion was what is to be done on the screen
boundaries. There are two approaches
to handling boundary conditions. One
approach lets the living cells disappear
beyond the screen edges. A second
approach treats the whole screen as a
“toroid” — a closed universe as
shown in Figure 6. The second ap-
proach is followed here. Patterns going
off the right reappear on the left, pat-
terns going off the top reappear on the
bottom, and so forth.

After each screen scan of 12,288 cells.
the second screen is written to the first
screen by a quick assembly language
subroutine. This makes the update
appear almost immediately, avoiding a
slow, partial screen update.

The program is divided into three
parts: a main loop, a Count Neighbors
subroutine and a Get Address subrou-
tine.

Main Loop
The main loop scans through the first
screen as shown in Figure 5, starting

“Australian RAINBOW

Tuly, 1086.

with the last cell in Row 95 of Column
127. Rows are called ‘Y' and are num-
bered from zero through 95. Columns
are called ‘X" and are numbered from
zero through 127.

The current location is held in vari-
able XY. Note that this is a two-byte
variable. The first byte holds ‘X" and the
second byte holds 'Y". This variable is
initialized with X=127 and Y=95. The
loop from MANOOS through the fifth
instruction after MANOSO is the main
loop of the program, done 128*96 times
to process each of the 12,288 zells. Each
time through the loop, subroutine
GETADD is called 1o calculate the
addresses for the current XY. This is
followed by a call to subroutine
COUNTN to count the neighbors of the
current cell.

After the call to COUNTN, a check
is made of the current cell’s on/off
status. The byte location of the current

cellis held in ELOC, a 16-bit pointer set
by GETADD. The bit position of the
cell within the byte is held by EBIT, an
eight-bit variable set by GETADD. A
branch is made to MANO40 if the cell
is empty.

If the cell is empty, a check of variable
COUNT (set by COUNTN) is made. If
COUNT=three, the code at MANOI0 is
called for the “birth.” If COUNT<>
three, nothing is done.

If the current cell is not empty, a
check is made of the number of neigh-
bors. If COUNT=two or three, the
corresponding cell in the second screen
is set, otherwise the cell is reset. Again,
pointer ELOC holds the address of the
current cell, while EBIT holds the bit
position of the cell within the byte
retrieved. Variable EBITI is the inverted
bit of the cell, set by GETADD. For
example, if the current bit is represented
by 0010000, EBITI holds 1101111. This

X-0 X=2 X-=4 G
YA N el
WEIEEmN NN
i BYTE O
/
oo [T THT [|
$E10 7
$E20
| GRAPHICS SCREEN 1
(1,536 BYTES)
L) A _— X=242 Y=190
soro| | T [A—LIT T T
$1400 / 3 X-240 X-254
Y-190 Y-190
T T | GRAPHICS SCREEN 2
(1,536 BYTES)
$1A00 *Disk BASIC assumed

Figure 4: Memory Layout for PMODE 0

makes it easy to reset the bit.

At the end of the birth/death checks,
the code at MANO8O0 decrements ‘X’ by
one. If ‘X" does not equal 11111111 (off
the left edge of the screen), the next cell
is considered. If *X’is 11111111, 127 is
stored in the first byte of XY for the ‘X’
value, and 'Y" is decremented by one. If
‘Y’ is not equal to 11111111, the next
row above is considered.

When the ‘Y’ value is decremented
downto 11111111, the last row has been
processed and the new cells are in the
second screen. The data in screen two
is moved to screen one by the short
move code starting near MANO8S. This
code is so fast the entire screen appears
to change, even though the movement
is done from top to bottom, a row at a
time.

Count Neighbors Subroutine

This subroutine counts the eight
neighbors of the current cell. The result
is COUNT, which holds a value of zero
through eight and is used in the main
loop to determine whether the cell lives
or dies. The subroutine uses two tables.
One of the tables starts at ALOC and
is the byte location table. This table is
established by the GETADD subrou-
tine and holds the byte address of each
of the neighbors of the current cell, the
neighbors being the cell up and to the
ieft, directly above, up and to the right,
the cell directly left, and so forth.

The second table starts at ABIT and
holds the bit configuration that defines
the neighbor bit within the byte pointed
to by the ALOC table. For example, if
the current cell is defined by 00010000,
the neighbor to the left is defined by
0010000 and the neighbor to the right
by 00001000.

The Count Neighbors subroutine
goes down through both tables, using
the ALOC table entry to point to the
byte containing the cell and the ABIT
table entry to strip off the proper bit,
which is counted if it is a one. The
current cell is defined by ELOC and
EBIT, and is beyond the end of both
tables so that the subroutine only

END AT X-0. Y0

/ (SCREEN 0,0)

7

START AT

X

Y%

(SCREEN COORDINATES

254/190)

— 5

Figure 5: Scanning the Current Page

Figure 6: The Closed Universe
of the Screen

counts neighbors.

Get Address Subroutine
Most of the work in the program is
done by the Get Address subroutine. It
establishes the addresses in the ALOC
table and the bit positions in the ABIT
table. The graphics data for all 128 by
96 bits, remember, is represented by one
bit somewhere within the 1,536 bytes of
screen one. The first byte represents
Y=0and X'sof 0,1,2,3,4,5, 6 and 7;
f the next byte represents Y=0 and X'’s of
8,9, 10, 11, 12, 13, 14 and 15, and so

July, 1986.

Australian RAINBOV

Page 30

on.

The subroutine locates the byte con-
taining the current X,Y by multiplying
the *Y’ value by 16, as there are 16 bytes
per row. The ‘X’ value is then 'divided
by eight and added to the Y*16 value.

Eight is used as a divisor because there
are eight cells per byte. The division is
done by three consecutive shifts — it’s
equivalent to a BASIC INT function. The
actual address in screen one is then
computed by adding SE00 to
Y*16+INT(X/8). This byte address is
stored in DLOC, ELOC and FLOC the
table locations for the current XY and
its two neighbors on the same row.

The ALOC, BLOC, and CLOC loca-
tions in the preceding row can be found
by subtracting 16 from the locations for
the current row. The result is put into
the three table entries. Similarly, the
GLOC, HLOC and ILOC locations are
found by adding 16 to the current row
locations.

These table entries are valid provid-
ing one of the three rows isn’t off the top
or bottom (or another condition, which
we’ll discuss shortly). Checks are made
for this, and 1,536 is cither added or
subtracted from the row to point to the
wrap-around row from the other side of
the screen, which gives the toroidal
effect.

The code from location GET022 is
used to compute and store the bit
position within the byte to be accessed
by the ALOC entry. This location is
determined by the three least significant
bytes of ‘X" If X=XXXXX000, for
example, the bit position is 10000000; if
X=XXXXX001I, the bit position is
01000000, and so forth, up to
X=XXXXXI11I, where the bit position
is 00000001.

The cell mask values are contained
within a cell mask table at location
MASK. The entries in ABIT are initial-
ized such that the current ‘Y’ values (B,
E and H) get the mask table value, the
‘Y' locations to the left get the bit
position values with the bit shifted left
one bit, and the Y locations to the right

get the bit position values with the bit |

shifted right one bit. If the bit position
for the current cell is 00010000, for
example, ABIT, DBIT and GBIT get
00100000, and CBIT, FBIT and IBIT
get 00001000.

The last part of the GETADD sub-
routine adjusts the ALOC table for the
boundary conditions in cases where
either the current 'Y’ involves two bytes
or the edge of the screen (left or right)
has been encountered. If the current 'Y’
is at the left bit of a byte, for example,
the bit mask is 10000000. The left
neighbor’s bit mask is 00000001 in this

case (the right neighbor’s bit mask is
01000000).

This means the left neighbor’s byte
location should be one less than the
location stored. This check is made and
the byte location adjusted in the two
cases where the current ‘Y’ is at either
end of the byte. A check is also made
for the left and right edges, and 15 is
added or subtracted to get the proper
wrap-around byte in this case.

To avoid computing addresses for
every X,Y, the byte address calculation
is done only for X’s that represent a bit
at either the left or right end of the byte.
These are the only cases where two bytes
are involved. If the bit is in bit position
one (01000000) through five (00000
101), the prior ALOC addresses apply,
and the address portion of GETADD is
skipped at the beginning of the subrou-
tine. The effect is to speed up the

SINGLE CELL
V/I => vies

TWO CELLS

. Dk

dﬂ = 0w

TRIPLETS

7 77 5
svés V) 7 = Conm:ouo

i/
/A1

: Block remains

7
rd
o B =~
B

Figure 7: One-, Two- and
! Three-Cell Patterns

V/

== Dies

. =™

subroutine for two-thirds of the cells,
knocking about 14 percent off the
screen update rate.

A BASIC Driver

Listing 3 shows the BASIC driver
program that implements the assembly
language “Life™ program. It has the
assembly language machine language
code embedded in it as a series of DATA
values. The DATA values are relocated to

the &H3EO00 area by a POKE loop before
the program is executed.

/)
W

-~

(BLOCK)

WY

i

/N
/

4

A M

Figure 8: The Five Tetrominoes

The BASIC driver has provision for
either entering a set of points for the
initial “Life™ pattern, or for generating
anumber of random points at the screen
center. To enter a set of points, enter ‘S’
after the USER PNTS (S) OR RAN-
DOM (R)? prompt message.

The program then asks for the XY
position of the point: X,Y? Enter as
many X,Y values as you want, and enter
-1,-1 to terminate the entry. The X|Y
points must be even numbers due to the
half resolution of PMODE @. For exam-
ple, adjacent points are 100/100, 100/
102 and 100/ 104.

To use a set of random points, enter
R after the Set/Random message. The
program asks for the number of points

T
%;//

Figure 9: The R Pentomino

Page 40

AusLralian KFAINRIIW

Juiy, 19806.

A

to use: NUMBER OF POINTS?

Too few points here, and the second
generation virtually disappears, leaving
only a few points that disappear on the
next generation. If the entire screen is
filled with points, the next generation
disappears entirely.

Sample Patterns

You could systematically investigate
all patterns and their succeeding gener-
ations in “Life,” — much work has
already been done in this area. The
simplest pattern is a single cell (Figure
7), which dies in the next generation
from loneliness. The next simplest
patterns are two adjacent cells, either
horizontally, vertically or diagonally.
These also die in the next generation.

The next set of patterns are triplets.
There are five ways in which three cells
can be combined, as shown in Figure 7.
Since the L-shape cells have two neigh-
bors, they endure until the next gener-
ation. In addition, the cell in the nook
of the ‘L’ is born. The resulting block
is a stable life form — what Conway
calls astill life — it never changes. We've
seen the three cells in a straight line
before; they change to a line at right
angles on the next generation, a so-
called blinker. The blinker flips back
and forth from generation to genera-
tion. The other configurations die after
one generation.

GENO

\.\ GEN 1

GEN 2

GENJ GEN 4

7
Y

Wi
/

77

il

NN

V

~ -

one unit

Figure 11: Glider Action

e * (Same
.| ‘.' mndl)
iwo units

The next set of cells are made of four
cells connected together. The game’s
jargon for these patterns is “tetromino,”
tetra meaning four. There are five ways
that four cells can be connected, as
shown in Figure 8. The block configu-
ration is stable, as we've seen. The ‘T’
tetromino looks as if it will grow larger
and larger, but stabilizes after nine
generations into a “traffic light,” a series
of four blinkers.

The straight line tetromino turns into
a block of six cells on the next gener-
ation, which in turn creates a “bechive,”
another unchanging pattern. The two
remaining tetrominoes also produce
beehives.

So far, “Life” isn’t too exciting, but
we've only considered four sets of

s

b

‘I

1

Figure 10: R Pentomino Patterns

patterns. There is an infinite number to
go!

The next set of patterns is formed by
connecting five cells, “pentomino™
shapes. One of the most interesting of
these is the ‘R’ pentomino, shown in
Figure 9. The ‘R’ pentomino seems to
grow without bound, scattering debris
all over the screen. However, after
dozens of generations in our toroidal
universe, the life forms settle down to
simple patterns that are either still life
or blinkers. An intermediate screen is
shown in Figure 10.

Ah, Sweet Mystery of Life

Is there any configuration of cells that
grows without bound, forever? Exper-
imentation in this area produces a shape
known as a glider. It glides across the
screen (Figure 11). The glider can be
generated by a glider gun, a complex
arrangement of patterns that goes on
producing gliders forever. (It’s also seen
in the ‘R’ pentomino patterns.) There
are other patterns that replicate them-
selves as well.

It’s a lot of fun to start with a pattern
of your own design (you can do this by
slightly altering the BASIC program) and
watch what happens. At the very least,
you'll see generations of interesting
“Life” forms.

For more reading on this, get Pound-
stone's book or try to get the original
Scientific American articles. For help,
contact me at P.O. Box 3568, Mission
Viejo, CA 92692.

Next month I'll be back with more
assembly language topics. In the mean-
time, keep assembling! a

AINBOW ON

DISK $15

fuly, 1046

Ausstratian RATNBOW

Page 41

23p '"MAIN LOOP THEN NO=NO+1

Listing 1: SLOWLIFE 248 FOR Y=g TO 13: FOR X=g TO 19 3608 IF PEEK(&H4PP+YP#*32+XL)<>96
258 XL=X-1: IF XL=~1 THEN XL=19 THEN NO=NO+1

1¢¢# 'RUDIMENTARY LIFE 2§ X 14 26¢ XP=X+1l: IF XP=2¢ THEN XP=g 379 IF PEEK(&H4PP+YP*32+4X)<>96

11 DIM A(13,19) 27§ YL=Y-1: IF YL=-1 THEN YL=13 THEN NO=NO+1 =

12¢ 'CLEAR ARRAY 289 vp-v+1; IF YP=14 THEN YP=g 38p ;sszlggigg:gﬁ+¥P 32+XP) <>96

- i 298 'FIND § OF NEIGHBORS

ii: :?§,§)£3§° HIER-E 10 1 3p; NO=g 398 IF PEEK(&HAPP+Y#32+X)<>96

158 NEXT X: NEXT Y 319 IF PEEK(&H4P@+YL*32+4XL)<>96 THEN IF NO=2 OR NO=3

169 CLS THEN NO=NO+1 §¥§N6345.¥1;79 ELSE A(Y,X)=

17¢ 329 IF PEEK(&HAPP+YL*32+X)<>96 :

109 PRINTEAQS ou; ¥ VALUES THEN NO=NO+1 499 IF NO=3 THEN A(Y,X)=79

198 INPUT "X,Y:";X,Y 33¢ IF PEEK(&H4@@+YL*32+4XP)<>96 :g’ vg:iﬂg.ﬂgigTG:NEnATION

29 IF X=-1 THEN 24¢ ELSE PRINT THEN NO=NO+1 S e e vor
BY*32+X,"0";: A(Y,X)=79 34¢ IF PEEK(&HAPP+Y*32+XL)<>96 “’ vnxnwe:-32+x Lo Yﬁx :

219 PRINT@452," ", THEN NO=NO+1 ‘5’ i L L (A(Y,X)):

228 GOTO 188 350 IF PEEK(&HAPP+Y*32+XP)<>96 # x

468 GOTO 24g

L‘S“n‘ 2: FASTLIFE PFTEF Addtedror etttk AR At s Ak A AR ek AAe

PP779 * GET ADDRESS SUBROUTINE. GETS NINE ADDRESSES*

yp7ag AR AR AN SA KA AAIAAAAAR S AAAIA S Idededede

L D R L e §9799 GETADD PSHS A SAVE X

§911g * HIGH-SPEED LIFE IN 128 BY 96 PIXELS * poegp ANDA w7 TEST BITS

FI12§ dnioiricioiricinininioiiokriinioirioiiioininkoinioioleekotokonidiinikokokokeor pas1pg BEQ GET@1l5 GO IF ggg

go13g « pps2g ANDA #6 IGNORE LSB

PgLl4g * MAIN LOOP ggelg EORA w6 TEST FOR 11§ OR 111
gaLsg » ggsLg BNE GET@22 BYPASS LOC COMP IF @g1-181
go169 ORG $3IEgg g985§ GETJALS LDA wl6 16 BYTES PER ROW
goL7g 1LDD #127%256495 g9869 MUL 16%Y

golag STD XY INITIALIZE X,Y gos7g TFR D,X FOR NEXT ADD

g919¢ MANGGS LDD XY GET X,Y ggesg LDB »$ GET X

99299 LBSR CETADD FIND ALL ADDRESSES goesg LSRB X/2

gga1g BSR COUNTN COUNT NEIGHBORS 99999 LSRB X/4

ggazg LDA (ELOC] GET BYTE ggoig LSRB X/8

99239 ANDA EBIT GET CELL gp9zg ABX L6*Y+INT(X/8)=DISP
pg24g BEQ MANg4G GO IF EMPTY 99939 LEAX SE@Z.X SE@P+16*Y+INT(X/8)
gP25¢ % LIVING CELL HERE go94g STX DLOC CURRENT ROW

99268 LDA COUNT GET COUNT 98959 STX ELOC

99278 ANDA #3gE THIS TRICK #9969 STX FLOC

99289 EORA »2 TESTS FOR 2 OR 3 §a979 TFR X,D FOR COMPUTATIONS
g9299 BEQ HANg1g GO IF 2 OR 2 gp%8g SUBD ®lé FOR PREV ROW - MAY BE MODS
99399 * ON AND NOT 2 OR 3 98999 CMPD »SEJG ABOVE TOP?

§9319 MANGE7 LDX ELOC POINT TO BYTE JL39g BHS GET#11 GO IF NO

gg32g LDA 1536,X GET BYTE FROM NEXT Jialg ADDD #1536 WRAP AROUND FROM BOTTOM
§9339 ANDA EBITI RESET BIT - DEATH! 3129 GETP1l STD ALOC PREVIOUS ROW

gp34g STA 1536,X STORE BYTE 31639 STD BLOC

#9359 BRA MANGBJ GO FOR NEXT CELL 21049 STD cLoc

PP36@ * ON AND 2 OR 3 31859 ADDD #32 FOR NEXT ROW

§9373 MANGlp LDX ELOC POINT TO BYTE 21569 CMED #SEFP+1535

g938g LDA 1536,X GET BYTE gryrg BLS GET§2§ GO IF NOT OFF BOTTOM
p9398 ORA EBIT BIRTH OR STAY ALIVE gipeg SUBD #1536 WRAP AROUND FROM TOP
99499 STA 1536,X STORE BYTE 1999 GET@28 STD GLOC NEXT ROW

#9413 BRA MANGES GO TO NEXT GEN gl1gg STD HLOC

§942g§ * EMPTY HERE gl11g STD 1LOC

§9438 MANG4S LDA COUNT GET COUNT §112¢ GET@22 PULS B GET X

gguag CMPA #3 TAKES 3 TO TANGO gL13p ANDB w7 g-7

pRasg BEQ MANQ1Q GO IF BIRTHI gLisp LDX #MASK MASK TABLE ADDR
§P46g % PREPARE FOR NEXT CELL pl15¢ ABX POINT TO MASK

§P47¢ MANgBJ DEC XY DECREMENT X g1169 LDA 5 « GET MASK

ppaLsg BPL MANP@S GO IF $@g - §7F g117p STA BBIT CURRENT COLUMN

gaasg LDA #127 RESET X g118g STA EBIT

gos8g STA XY STORE IN X g1198 STA HBIT

paslg DEC XY+l DECREMENT Y g12gg COMA GET INVERTED BITS
99529 BPL MANZES GO IF $gg - Ség g121g STA EBITI SAVE FOR RESET BIT
99539 LDX #SE@@ POINT TO PAGE 1 91226 LDA -1,X GET LEFT MASK

gasag LDY #SE@@+1536 POINT TO PAGE 2 91239 STA ABIT PREVIOUS COLUMN
g9558 MANGSS LDD JYee GET WORD glra4g STA DBIT

g9568 STD X4+ STORE IN PAGE 1 g125¢ STA GBIT

§9578 CMPX #SEJP+1536 AT END? 91260 LDA +1,X GET RIGHT MASK

gpseg BNE HANGSS GO OF NO g127¢ STA CBIT NEXT COLUMN

9@59¢ RTS RETURN TO BASIC gr28¢ STA FBIT

GP6§9 IririrkirinioiririoininiokrinioiokoinioioiickriokookoiaioRoiriokolioiniokirkekiokok 9129¢ STA IBIT

gP61@ * COUNT NEIGHBORS SUBROUTINE * #13¢9@ * POSSIBLE ADJUST OF LOC'NS ON BOUNDARIES
A R e g1319 LDA ABIT GET LEFT MASK

P§P639 COUNTN CLRB SET COUNT TO @ g132g CHMPA #l IS IT LSB?

ggeug LDX #ALOC POINT TO TABLE START #1339 BNE GET@3p GO IF NO

Pg6sg LDY #ABIT POINT TO TABLE START-1 #1340 * TWO-BYTE CASE HERE

gP668 CNTPP@S LDA [, X++) GET BYTE WITH CELL g1359 LDX “g FINAGLE FACTOR

#9698 ANDA LY+ TEST BIT g1369 LDB ALOC+l GET BYTE LOC'N LSB
99705 BEQ CNT@1g G0 IF NO CELL g1379 ANDB #SF 16-BYTE BOUND

g9719 INCE BUMP COUNT 91389 BNE GET@25 GO IF NOT OFF LEFT
$9720 CNTPLE CMPX #ILOC+2 AT END OF TABLES? 71399 LEAX +16,X OFF EDGE

#9739 BNE CNT@@S G0 IF NO §1409 GETP25 LEAX -1,x ADJUST IN EITHER CASE
98749 STE COUNT STORE COUNT gralg PSHS X STORE FOR COMPUTATION
eS8 RTS RETURN gra2g LDD ALOC ADJUST LEFT LOC'NS
Page 42 Australian RAINBOW July, 1986.

L

gl43g ADDD .
glosg STD ALOC
gr45g LDD DLOC
91469 ADDD .S
g1479 STD DLOC
g148¢ LDD GLOC
91499 ADDD ,S++
91599 STD GLOC
g151g GETg3g LDA CBIT
91529 BPL GET@4g
g1539 * TWQ-BYTE CASE HERE
g154g LDX “g
g1559 LDB CLOC+1
91569 ANDB #SF
g1s7g CMPB #S$F
91589 BNE GETP35
91599 LEAX -16,X
g16¢9 GETP3S LEAX +1.X
91619 PSHS X
g1629 10D cLoc
g163g ADDD .S
91649 STD cLoc
91659 LDD FLOC
g1669 ADDD .S
91679 STD FLOC
g168g LDD 1L0C
91699 ADDD ,S++
91789 STD 1LOC
91719 GETg4g RTS

g172§ * CELL MASK TABLE

GET RIGHT MASK
GO IF NOT $8§ CASE

FINAGLE FACTOR

GET BYTE LOC'N 1SB
16-BYTE BOUNDARY

TEST FOR OFF RIGHT

GO IF NOT OFF

OFF EDGE

ADJUST IN EITHER CASE
STORE FOR CALCULATIONS
ADJUST RIGHT EDGE LOC'NS

RETURN

91779 FCB 16
91789 FCB 8
91799 FCB 4
91899 FCB 2
g1slg FCB 1
91829 FCB 128
91839 * BYTE LOCATION TABLE
g184g * AXB*C
JgLesg » DXEXF
91868 * GHH*T
9187¢ ALOC FDB g
g188g BLOC FDB g
91899 CLOC FDB 9
g199g DLOC FDB 9
g1919 FLOC FDB g
91929 GLOC FDB 9
§193g HLOC FDB g
§194g9 ILOC FDB [
g195g ELOC F¥DB [
91960 * MASK TABLE FOR NEIGHBORS
g1979 ABIT FCB 9
§198g BBIT FCB]
g1999 CBIT FCB [
92999 DBIT FCB [
g2g19 FBIT FCB]
§2928 GBIT FCB]
92939 HBIT FCB 9
§2g4g IBIT FCB 9
92959 EBIT FCB]
9296g EBITI FCB g

INVERTED BITS

g173g FCB 1 92§79 * WORKING VARIABLES
JL74F MASK FCB 128 g2g8g COUNT FCB) COUNT OF NEIGHBORS
#1759 FCB 64 92999 XY FDB g CURRENT X,Y
gL769 FCB 32 g2199 END
42f FOR J=1 TO I 91@ DATA &HPP,&H1P, &H1P,&HS3
~ 439 PSET(INT(PT(J)/256),PT(J)~ 92¢ DATA SHPE, &HPP, &H24,&HPI
,/"3 INT(PT(J)/256) *256) 939 DATA SHC3,&HP6, SHPP, SHFD
44p NEXT J 949 DATA SH3F, SH66,&HFD, &HIF
458 GN=1 958 DATA %H68,&HFD, SH3F, &H6A
469 A=USRZ(P) 96§ DATA %HC3, &HPP,&H2p,&H1P
478 GN=GN+1 979 DATA %HB3,&H13,&HFF,SH23
48¢ GOTO 468 389 DATA SHP3,&H83,&HP6, &HPP
499 DATA &HCC,&H75,&HSF, &HFD 99p DATA &HFD,&H3F,&H7@, &HFD
5¢g DATA &H3F,&HS83,&HFC,&H3F 1p@# DATA &H3F,&H72,S&HFD,&H3F
519 DATA &H83,&H17,SHPP,&H73 1910 DATA &H74,&H35,&HP4,&HC4
52 DATA &H8D, &H59,&HA6, &HIF 1§28 DATA &HP7,&HBE,&H3F, &H5D
53¢ DATA %H3F,&H76 1939 DATA &H3A,&HA6, &H84, &HB7
Listing 3: DRIVER 549 DATA SHB4, &H3F,&H8P, &H27 1949 DATA &H3F,&H79,&HB7,&HIF
558 DATA &H29,&HB6,&H3F,SH82 1$58 DATA &H8P,&HB7,&H3F,&H7E
56p DATA &HB84,&HPE,&H88,&HP2 1969 DATA %H43,&HB7,&HIF,&HS1
1¢9 ' HIGH-SPEED LIFE BASIC DVR 57¢ DATA &H27,&H1@,&HBE, &H3F 1978 DATA &HAG6,&HLF,&HB7,&HIF
11¢ CLEAR 2§, &H3DFF 589 DATA &H76,&HA6,&HB9,&HPE6 1¢8¢ DATA &H78,&HB7,&H3F,&H7B
12¢ FOR I=&H3EPP TO &HIF65 599 DATA &HP@,&HB4,&H3F,&HS1 1£99 DATA &HB7,&H3F,&H7D,&HA6
13§ READ A: POKE I,A 6p@ DATA &HA7,&HB9,&HP6,&HPP 1199 DATA &HPL,&HB7,&H3F,&H7A
149 NEXT I 619 DATA &H2P,&H17,&HBE,&H3F 1119 DATA &HB7,&H3F, &H7C,&HB7
15¢ DEFUSR = &H3E@P 62¢ DATA &H76,&HA6,&HB89,&HP6 1120 DATA &H3F,&H7F,&HB6,&HIF
16¢ DIM PT(4£9) 63¢ DATA &HPP,&HBA,&H3F,&H8P 1139 DATA &H78,&H81,&HPL,&H26
17§ CLS 649 DATA &HA7,&H89,&HP6, &HPP 1148 DATA &H29,&HBE,&HPP, &HPP
18§ PRINT @15,"LIFE" 658 DATA &H2@,&HP7,&HB6,&H3F 1158 DATA &HF6,&H3F, &H67,&HC4
198 INPUT "USER PNTS (S) OR 66% DATA &H82,&H81,&HP3, &H27 1169 DATA &HPF,&H26,&HP3, &H3P
RANDOM (R)";AS$ 678 DATA &HE9,&H7A,&H3F,&H83 1172 DATA &H88,&H1@,&H3P, &HLF
2¢¢ IF AS$="S" THEN 279 687 DATA &H2A, &HBA,&H86,&H7F 1189 DATA &H34,&H1P,&HFC, &H3F
21 INPUT "NUMBER OF POINTS";NP 69¢ DATA &HB7,&H3F,&H83,&H7A 1198 DATA &H66,&HE3,&HE4, &HFD
22¢ FOR I=1 TO NP 79 DATA &H3F,&HB4,&H2A, &HBP 1299 DATA &H3F,&H66,&HFC, &H3F
23p PT(I)=(1p@+RND(56))*256+85+ 719 DATA &HSE,&HPE,&H@P,&H1P 121¢ DATA &H6C,&HE3,&HE4, &HFD
RND(36) 72¢ DATA &HBE,&H14,&HPP, KHEC 1220 DATA &H3F, &H6C, &HFC, &H3F
249 NEXT I 738 DATA &HAl,&HED, &H81,&H8C 1239 DATA &H7§,&HE3, &HEL, &HFD
259 I=I-1 749 DATA &H14,&HP@,&H26,&HF7 124¢ DATA &H3F,&H7¢,&HB6, &H3F
268 GOTO 368 758 DATA &H39,&HS5F,&HBE,&H3F 125¢ DATA &H7A,&H2A, &H2A,&HSE
278 I=9 760 DATA &H66,&H1P,&HBE,&HIF 1269 DATA &HPP,&HPP, &HF6, &H3F
289 PRINT"ENTER X,Y(-1=END)" 779 DATA &H78,&HA6,&H91, &HA4 127@¢ DATA &H6B, &HC4,&HPF, &HC1
299 PRINT@448,"X,Y"; 788 DATA &HAP,&H27,&HP1,&HSC 1289 DATA &HPF,&H26,&HP2, &H3P
3gp INPUT X,Y 798 DATA &HBC,&H3F,&H76,&H26 1298 DATA &H1p,&H3P,&HP1,&H34
31% IF X=-1 THEN 369 8PP DATA &HF4,&HF7,&H3F,&H82 13p9 DATA &H1@,&HFC,&H3F,&H6A
32f PT(I+1)=X*256+Y 81§ DATA &HI9,&H34,&HP2, &HB4 1319 DATA &HE3,&HE4, &HFD, &H3F
339 I=I+1 82¢ DATA &HP7,&H27,&HP6, &HB4 1320 DATA &H6A, &HFC,&H3F, &H6E
349 PRINT@448," "3 839 DATA &Hp6,&H88,&HP6,&H26 1339 DATA &HE3,&HE4,&HFD, &H3F
359 GOTO 299 84p DATA &H44,&H86,&H1@,&H3D 1349 DATA &H6E,&HFC, &H3F, &174
36¢ FOR J=1 TO 2 850 DATA &H1F,&HP1,&HE6, &HE4 135¢ DATA &HE3,&HEL,&HFD,&H3F
379 PMODE 8,J 868 DATA &H54,&HS54,&HS4,&H3A 1360 DATA &H74,&H39,&HP1, &HBP
38g PCLS 87¢ DATA &H3p,&H89,&HPE, &HPP 137¢ DATA &H4P,&H2@,&H1P,&HPS
398 NEXT J 88¢ DATA &HBF,&H3F,&H6C, &HBF 1389 DATA &HP4,&HP2,&HEL,&HBP
49p PMODE 2,1 899 DATA &H3F,&H76,&HBF, &H3F
a1y SCREEN 1,8 og# DATA &H6E,&H1F,&H1p@, &HB3 a
July, 1986. Australian RAINBOV

Page 43

FORTH

by John Poxon

This month I'1) talk about LOOPs.

In basic it is possible to have FOR TO NEXT
loops. Doubtless you've heard of them, I won't waste
your time repeating BASIC theory, but will proceed to
show you a FORTH equivalent, the D0 LOOP. Actually
the equivalent is better than the original, as you'!l)
see. There are several types of loop. We'll have a go
at the others later.

For a start, create a do loop wusing a colon
definition. I'11 call mine COUNTDOWN. You call yours
what you will, I suggest a meaningful name is better
than one that merely gives vent to your frustrations!
Thus:

: COUNTDOWN 10 10 0 DO DUP

1- LOOP

Try it., You will find ¢the integers from 10 to O
inclusive printed at lightning speed on the screen.

It would have been easy to put a PAUSE inside
the DO LOOP so that the counts occurred at rate
discernible to to human eye, instead of as a blur;
but more of that later. Take a moment to let your
mind run riot on the possibilities that the DO LOOP
could bring,

Lets identify each term in COUNTDOWN and then
discuss its purpose in the FORTH scheme' of things.
THe <colon definition has been discussed previously
and accounts for the colon and semi-colon. The first
10 is merely starting data placed on the stack as
fodder for the contents of the DO LOOP . The second
10 and the zero are the limit and index respectively.
Everything between DO and LOOP 1is the set of
operations done each time that the LOOP er . loops.

When COUNTDOWN is called, 10 1is put on the
stack] then DO puts the limit and the index on the

return stack, (The return stack is a different place
from the stack where ordinary number operations
occur. It has certain special uses, as you'll see).

Each word inside the loop is progressively evecuted
until LOOP is reached. LOOP compares the 1limit and
the 1index. If the index is less than the limit Do is
re-executed and the index is incremented by one. When
LOOP finds that the index and the limit have the same
value execution moves to the next word in the colon
definition, 1 mentioned PAUSE before; we could define
PAUSE as:

: PAUSE 1000 0 DO LOOP ;
i.e. just like a simple delay routine in BASIC.

The return stack contains the present value of
the index. No doubt you'll agree that such a number

could be wuseful., Here's a routine from Starting
FORTH, p 130, that uses the present value of the

index obtained by using the FORTH word I. (1 copies
the top value on the return stack and puts the value
on the calculation stack).

¢ MULTIPLICATIONS CR 11 1 DO

DUP 1 # . LOOP DROP
Typing (say) S MULTIPLICATIONS results in the

following:

FORUM

5 MULTIPLICATION
S 10 1S 20 25 30 35 40 45 S0

The CR is merely a carriage return.
It is possible to create a loop which increments
by a value other than one, that is, just like step in

BASIC. The format is like this:

¢ NAME
value) +LOOP ;

(1imit) (index) DO (operation(s)) (step

i.e. ¢ INTENS 100 0 DO I . 10
+LO0P

will count up in tens to 90.

Doubtless you feel like racing off and creating DO
LOOPs willy-nilly. Before you do there are a few
things you need to know.
1) A DO LOOP executes at least once.
2) DO LOOPs must be executed inside a colon
definition.
3) Execution ceases when the limit is equalled
or passed.
4) If you have a loop which leaves a
“remainder” on the stack then ultimately the
stack will crash if it happens too often.

There are two ways of
garbage:!: you <can keep on typing . which will
progressively (and very tediously) print and remove
the garbage; or you can type 1in and attempt to
execute a nonsense word, e.9. QQQ, which will
promptly empty the stack, 1 suggest the latter course
of action!

There is more: you'll find it in Starting FORTH.

Lets look briefly at two other types of
(indefinite) loop.

ridding the stack of

In order to understand the following types of
loop we must understand flags. A flag in this case is
a number placed on the stack and used as the criteria
for continued looping (or not) by UNTIL or WHILE. The
flag is often created by a conditional test which
leaves a one or a zero on the stack. A zero value
means false and a one means true. Some conditional
tests are = s ¢ > 0= 0< 0> ., They can be
associated with the logical operators AND OR and NOT,.

Lets see what a couple of the conditional tests
do. 0C tests to see if the top value on the stack is
negative. If so then a one (true) is written onto the
stack else a zero (false) is placed there. A - wused
as a conditional test would return a true if one
number of a pair of non equal numbers was subtracted
from the other. The following example will
demonstrate the use of a test,.

The BEGIN UNTIL 1loop.

This loop continues to loop while a3 false (zero)
appears on the stack for UNTIL to "see". Thus, in the
following line:

¢ ENDAT30 30 100 BEGIN
" GREATER THAN " 1- =
" EQUAL TO " 3§

UNTIL

the loop will locop unti1l the 100 is decremented to

Page 44

TR

Australian

Sl St
RAINBOW July, 1486,

FORTH

VIRTUALLY DONE

by John Redmond

With some misgivings, I interrupt our discussion of
the graphics language, XGAL, to meet a need that
appears to be even greater - that of a disk operating
system for A*FORTH. 1 apologize to those who have
been waiting for the Turtle Graphics routines but I
think that, 'n the long run, you will be happier.

One of the criticisms sometimes expressed about Forth
is that it is incompatible with other operating
systems, This is true - but it is also true for just
about every operating system. So why bother about
yet another system? A few reasons spring to mind:

1. It costs nothing (in the sense that it is an
integral part of the Forth interpreter/compiler),

2. It is very fast,
3. It can be altered to meet the needs of the user.

4, It divides the disk intoc multiples of 1 kbytes
(screens) and 1s Jless wasteful than the granule
system.

S. It wastes nothing of the disk space (a 40-track
disk has a full 180 kbytes per side).

6. Because the 1 kbyte screens are standard in
Forth, provided that the disk format is compatible,
you can talke your disk to any other computer (e.g.,
an IBM PC) and compile your files,

7. Finally, the Forth approach using virtual memory
was established well before the current fashion in
virtual wmemory and virtual disks. It isy quite
simply, much more powerful and flexible than anything
else.

So now the time has come for A*FORTH to go wvirtual
and this month we discuss its operating system. It's
written, of course, in standard Forth and, as usual,
it requires a 32k system but not Extended Color
Basic. The only ROM vroutines it wuses are the
official Tandy ones, s0 that it is
revision-independent. I use i1t on BDOS.

To make the best wuse of space, the memory map has
been altered from that used in the tape version (this
is easily done as described 1n the A¥FORTH manual),.
The top 6k is reserved for the high-res screen and
directly below that come the four disk buffers (we
could have decided on more or less than four, but
this 1s a good compromise), The stacks come directly
below the buffers and leave about 10-11k of space for
programs. (This 1is an enormous amount of room for a
Forth program).

The idea of the virtua) memory handling is to specify
one of the 1k screens on disk (typically numbered 0
to 180 for a SSOD system), e.g.,

9 BLOCK

This command will return the address of the first
location where the contents of screen 9 (on disk) now
resides in memory. The address is that of the start
of one of the disk buffers. A good trick, but how is
it done? Look at the definition of BLOCK. It is a
high~-level word, 1.2.y, 1t invokes lower-level words
to do wmuch of the hard work. BLOCK expects the
screen number on the stack and the first thing that
it does is check whether it is the same screen as
last asked for by the interpreter/compiler. (The
number of the last screen is held in the variable
PREY and the address last returned is held in the
variable NOW.) If it is the same, the address in NOW
is simply vreturned. Otherwise PRESENT is asked to
determine whether is in fact present in any of the
buffers. If so, the corresponding address is fetched
and returned.

If the screen is not in memory, it has to be loaded
from disk but, before this can be done, a buffer must
be allocated. This is done, appropriately, by
BUFFER. Look at its definition. It 1looks for a
vacant buffer and, if it finds one, reserves it for
the screen, If all butfers are in use, BUFFER finds
the oldest (i.,e., the one used least recently). If
the contents of this buffer have been UPDATEd (e.g.,
altered by editing), 7PUT writes the buffer back to
the correct place on the disk. Only then can the
desired screen be read in from the disk and the final
address be returned by BLOCK.

Exhausting. idisn't it? The marvellous thing 1is,
though, that it a1l happens so fast and that the
gentle programmer doesn't need to know or care about
all the housekeeping that is involved.

I'm reasonably pleased with the code this month - and
I'm fairly difficult to please. For those who want
to come to grips with Forth, it's not a bad 1idea to
worl through the code ~ but remember that you should
work backwards, starting with the high-level words.
Furthermore, this 1s a fairly standard implementation
in terms of variable names and memory wusage, so 1t
will give you some insight into the workings of a
typical Forth operating system.

For the uninitiated, some comments on the
user-available words: MTB (= EMPTY-BUFFERS) kills
the contents of all buffers and should always be used
on startup to kill garbage. FLUSH does just the
opposite. It writes the contents of all updated

30. While doing so the message "GREATER THAN" wil)l be
printed wunt1! the loop 1s exited, when the message
"EQUAL TO" will be printed.

In this case the conditional =
until the two wuppermost
equal.

returns false
values on the stacl: are

The BEGIN WHILE REPEAT loop.

This loop 1s slightly more complex than the last
one 1n that any words between the FORTH words BEGIN
and WHILE are always executed, while any FORTH words
between WHILE and REPEAT are only executed while a
conditional (at WHILE) is true. As soon as the
conditional returns a false the execution terminates
at WHILE, For exawple:

¢! TRU-FALSE 30 100 BEGIN ." IS"
1- = WHILE ." TRUE " REPEAT
™ iEACRE - '2°3%

will continue to print IS5 TRUE (executing both
parts of the loop) unti) the conditional - shows
false, when TRUE is not printed and the loop is
exited, resulting in the printing of the words IS
FALSE.

Thats all for now. I hope as usual that you've
enjoyed the article, If you would like to talk about
FORTH please feel free to ring me on 07 208 7820.

—
July, 1986.

Australian RAINBOV

S —
Page 45

buffers and should always be used immediately at the SCREEN: 43

end of an editing session. LOAD interprets/compiles 00: \ \ EDITOR 4. . JWR 14APRBE
instructions or a source program from a source text : ':"’;:f:g '2:;‘;‘:2'; @ BUFFLENGTH + |

in virtual memory, START (#) /LINE » BUFFSTART 0 + $

LSTART ACTIVE 0 START ;

LEND LUSTART /LINE ¢ 'BUFFEND MIN

LOAD has the remarkable property of Being recursive.
It will allow one screen to load another screen,

. [T
which can then Toad ‘another screen or range of Opi | ACWATE (9) our AcTIE. sTARTceTM i
screens, and so on. This means that you can use a 09:
'load screen' to load different groups of screens 10:
that make wup the final applications program. 1It's "n:
Tike a considerable enhancement of the #include :?
option in C but, again, much more flexible. The 14
extraordinary thing about such a series of nested 15:

loads 1s that the interpreter/compiler always returns

to where it started. It manages thic by keeping a

record of the current position each time it enters SCREEN: 44
LOAD (look at the definition of LOAD). \ EDITOR 5. JVR 19APRBE
FORWARD FBUFF CO +CURSOR |
BACK FBUFF CO NEGATE +CURSOR |
+SLIDE /LINE OVER + ‘'BUFFEND OVER - 70UP

1F (CMOVE ELSE 2DROP TMEN ;

-SLIDE DUP /LINE + DUP ROT 'BUFFEND ROT - 7DUP

1F CMOVE ELSE 20ROP THEN ‘BUFFEND /LINE - /LINE CLEAR ;°
4SHUFFLE (‘curs,len) DUP +CURSOR

OVER ¢ LEND OVER - (CMOVE }
*SHUFFLE (-‘curs,len) OVER LEND ¢ NOT IF 20ROP EX!T THEN
R DUF | - OVER LEND SWAP - CMOVE LEND I - R) CLEAR ;-
! KILL CPTR @ DUP LSTART - -SHUFFLE LSTART CPTR ! ;

-

To continue, THRU 1loads a range of screens from
virtual memory, e.9., 43 46 THRU loads screens 43 to
46y inclusive. COPY copies screans from one area of
the disk to another, e.g9., 43 71 6 COPY copies 6
screens, starting at 43, to the areas starting at 71.
Watch out for overlapping ranges! Last of all, TAPE
and DISK toggle the vector location, as described in
the A*FORTH manual.

To finish up: next month we will describe an editor
for creation and alteration of screens in virtual

memory. Again, it is pretty standard - it's an
enhancement of the editor described in Brodies
y h', Regi » ™ SCREEN: 43
S;n:ting Fort‘ ; n91ste;;d A'FOR _::er: f.“ 00T\ A ROTTOR E. IR 14APRES
update Dby sending 1o wd PAUS . STLAYE b 01: : 7. 20UP ¢ IF OVER - TYPE ELSE 20ROP THEN ;
single-sided or one double-sided disk., (Male sure 02: : .LEFY LSTART CPTR 0 ?, }
that they are new and formatted, please! The quality 03: : .RIGHT CPTR @ LEND 2- 7., } 3
of the disks is your concern.). In return, you will g;: H (C%:'EEI'.LEF;U'EU%&:;EI::‘: EM!T SRIGHT 3
. I n

get a fully-configured disk version of AFORTH Plus 06: IF DROP (.LINE) ELSE START /LINE 2- TYPE THEN CR ;
an extensive library of Forth programs and utilities 07: : .HEADER HOME ." line * THISLIME ., ." screen " SCR @ , CR ;
(including the editor and graphics packages). I 08:
consider this a very good deal, but it is the sort of 09: : RANGE (=--hi,10) THISLINE 2 -CHECK L/PAGE OVER +CHECK SWAP
support that legitimate software users are entitled :?f 00P LINITS 21
to expect. Thieves need not bother contacting me. 12

13:

14:

15¢
ISCREEN: 40
00: \ \ EDITOR 1. JWR 14APRO6
01: : SSEOIT ; SCREEN® 46
02: HEX 00: \ EPIT1OR 7 JVR 19APRE6

03: 10 CONSTANT L/SCREEN
04: 200 /LINE / 2 - CONSTANT L/PAGE
05: /LIME L/SCREEN » CONSTANT BUFFLENGTH

(P) DUP /LINE CLEAR TOADD IBUFF SWAP SHIFT ;
(F) 0 SWAP CPIR @ 1+ DO I MATCH
IF 1 CPTR ' CMANGELINE 1+ LEAVE THEN LOOP ;

06: B3 CONSTANT CURSOR (A) 1BUFF C@ LEND 2- CPTR @ -) NOT
07: 20 CONSTANT BL IF CPTR @ DUP IBUFF (O 4SHUFFLE [BUFF SWAP SHIFT THEN ;
08: OED7 CONSTANT CURCHAR 06: : (E) CFYR O LSTART - FBUFF CO ¢ NOT
09: OBF CURCHAR C! 07: IF CPTR 0 FBUFF CO -SHUFFLE BACK THEN |}
10 VARIABLE BUFFSTART 0B: : (B) THISLINE V' -CHECK ACTIVATE ; .
111 VARIABLE CPTR 09: : (N) THISLINE | +CHECK ACTIVATE ;
121 VARIABLE ACTIVE 102
13: VARIABLE LIMITS 2 ALLOT ;;=
14 !
18: DECIMAL 13:
14:
182
SCREEN: 41 SCREEN: 47
00: \ \ EDITOR 2 JWR 1 9APREE \ \ EDITOR 8. JVR 14APRSE
01! MEX

t (L) (HEADER DO I .LINE LOOP SCREENBASE ;

: LST THISLINE SHOWN IF LIMITS 20 ELSE RANGE THEN (L)
t L LIMITS 2+ 0 ACTIVATE LST |

¢ ULIST UPDATE DOSTAMP LST 3

Tt #) 0 MAX L/SCREEN 1- MIN ACTIVATE LST §

02: ! IBUFF FAD /LINE + ;

FBUFF 1BUFF /LINE + 1+ ;

CLEAR BL FILL §

+CURSOR CPTR +1

*CHECK + L/SCREEN MIN

~CHECK - D MAX ;

SHOWN (U--F) LIMITS 20 >R OVER > SWAP R) 1-) AND
HOME 400 CURSOR '

SCREENBASE CURSOR @ 600 OVER - 60 FILL
11t : TOBASE SE0 CURSOR | SCREENBASE |

12: ! NOTFOUND TOBASE ." not found” i

13:

14:

15: DECIMAL

A L/PAGE 0 LIMITS 2! O ACTIVATE LST ;
: C LSTART CPTR ' LST ;
N THISLINE 14 L/SCREEN MIN ACTIVATE LST |

: B THISLINE |- 0 MAX ACTIVATE LST ;
t E (E) ULIST ;
: P THMISLINE L/SCREEN ¢ IF

LSTART (P) ULIST ELSE ABORT" off screen” THEN ;
: U (N) THISLINE L/SCREEN ¢ IF

CPTR @ DUP +SLIDE (P) ULIST ELSE ABORT" no room™ THEN ;

SCREEN: 42 SCREEN: 48
00: \ \ EDITOR 3. JVR 15APREE 00: v\ EDITOR 8. JVR 19APRBE
01: : SHIFT SWAP COUNT ROT SWAP CMOVE ; 01: : X LSTART OUP 1BUFF 1+ /LINE CMOVE
02: : MATCH FBUFF COUNT ROT -TEXT 0= 02: JLINE IBUFF C! -SULIDE (B) ULIST
03: : INSTRING 0 WORD C8& IF DUP /LINE 1+ CLEAR 03: : F TOFIND 'BUFFEND (F) IF FORWARD LST ELSE NOTFOUND THEN }
04: HERE SWAP OVER C@ /LINE MIN 1+ CMOVE ELSE DROP THEN | 04: : D TOFIND 'BUFFEND (F) IF FORWARD E ELSE NOTFOUND THEN ;
0S: : TOFIND FBUFF INSTRING 0s: A TOADD (A) ULIST ;
06: : TOADD 1BUFF INSTRING : 06: : R TOFIND 'BUFFEND (F) [IF FORVARD (E) (A) ULIST
07: ELSE NOTFOUND THEN ;
08: CREATE (STAMP) 13 ALLOY ¥ TOFIND LEMND (F)
09: : WCHARS (ADD-U) 0 BEGIN OVER CO IF KILL ULIST ELSE NOTFOUND THEN H
10: WHILE 1+ SVAP 14 SVAP REPEAT SWAP DROP | I CPTR 0 LEND OVER - CLEAR ULIST ;
11: : GETSTAMP PAGE ." DATE STAMP (12 CHARS MAX): * VIPE SCR @ BLOCY B/BUFF CLEAR ~ ;
12: CR (STAMP) 12 EXPECT ; 12: @ LIST DUP SCR ' BLOCK DUP CPTR | BUFFSTART t A ;
13: : DOSTAMP (STAMP)! BUFFSTART @ SO + DUP 12 CLEAR 13:
14: (STAMP) WCHARS CMOVE :;: GETSTAMP \ do it now!
15: H
- - S —— - .
Page 46 Auvstralian RATNBOW July, 1986,

e IITESS———————wwwwWwwW——w—w—w——

WHAT'S NEW

2N

Life In The Fast Lane!

Class 68008 CoCo Add-On Update......

The 512K memory update for the Class Computer is
complete and working great, and provides 2016
Sectors of FAST RAN disk. This is a secondary use of
the Class 68008 Computer. Even using this expansion
board in this fashion makes using CoCo 0S-9 a dream.
Multi-tasking is truly transparent.

Also available is an updated version of TRansL, a
6809 to 68000 code tramslator with full error
checking. If you are thinking of transfering 6809
prograns to the Class 68008, Atari or Amiga, this
will accelerate the process.

Final software and design implementation is being
done to support Hard Disk for the Class 68008. Plans
are under way to support 5, 10, and 20 megabyte hard
drives and also the hard drive system will be
evaluated to support other computers.

The good news is that 0S9 68K is being ported to
the Class 68008 as | write these notes. This version
will support hard and floppy disks, Vordpak and
normal CoCo's or the 256 and 512K CoCo's.

I haven't any design details of the 'new CoCo' but
{f 1it's software and hardware compatible with the
‘old CoCo', them it's highly conceivable that the
Class Computer will work with the new CoCo; great

16 BIT!

Jerome
Siappy

isn't it!

Price configuration has not been finalized but be
assured you will be capable of having a fully
fledged add-on 0S9 68K system at a competitive price
and still maintain total CoCo compatibility.

Speaking of compatible, I'm investigating
adaptables with the new CoCo, to run 6809 0S-9 and
68000 0S-9 simultaneously. Will keep you posted.

In the future months I will still keep you updated
on the Class 68008, as [still have to review
'Kamelion’, the interface operating system and next
month I'11 try to show you a sample translation of a
6809 0S9 to 68000 translator program.

It ies my intent over the coming months to show the
true advantage of multi processor concepts.

Vell I must get back to programming O0S-9 68K.
Until next month.

Happy Computing,
Jerome.

P.S. If any of you users out there would like to
form a 68K Users’ Group please let me know through
Blaxland Computer Services (ph.047-39-3903). The 68K
computers will set the standard for years to come in
personal computers. Let's share and accelerate .

continued from Page 10

There are still memory constraints inherent to OS-9 Level
I, but a RAM disk seems to speed up things quite a bit.

Brian Lantz has licensed both the Disk BASIC and OS-
9 RAM disk drivers to DISTO. The Disk BASIC version is
on a separate disk.

After entering LOADM “RAMPAK “ : EXEC, you are prompted
for the default RAM disk drive number and Multi-Pak slot
number. Then, you are asked whether to clear the RAM
disk.

After these prompts, the RAM disk is formatted and
available for use as another disk drive. You are in the 64K
RAM mode and the driver is located at SFD00. This is why
you are asked whether to clear the RAM disk. If you have
1o use the Reset button, the data on the RAM disk is not
lost, but you have to re-initialize the driver before it can
be recovered.

The DISTO Super RAMDisk OS-9 Driver by Brian
Lantz is virtually the same driver software used for other
memory expansions. The module is named RAMDisk and,
after loading this module, you must link the driver “R0"
to the system. You must then format the RAM disk. The
default format is 40 tracks, single-sided, but the device

descriptor can be changed to take full advantage of the spare
memory.

The only drawback to doing this is backing up the RAM
disk. The use of a utility by Computerware named Dircopy
makes it easier.

The DISTO unit is compatible with all CoCos. Previous
units reviewed would not work with the CoCo 2. The cost
of using it is the price of a Multi-Pak. The unit is well-
constructed and functions as advertised.

I do see some shortcomings with the Disk BASIC software
and documentation. I sometimes wonder how to take
advantage of all of this extra memory. The only documen-
tation for Disk BASIC is a typewritten page explaining how
to boot the driver. No information is given about the
hardware aspects of the unit. The user should have the page
addresses and a description of the hardware for experimen-
tation purposes.

The OS-9 software documentation is just adequate. It
explains all of the initialization steps and procedure files,
but again it lacks any information about the hardware. This
is not so bad for OS-9, due to the nature of the system, but
I'd like to see it.

In comparison to other units I've seen, this unit is
adequate from a hardware standpoint, and doesn't require
soldering, wiring or opening the computer. We will have to
wait and see if any software other than the RAM disk
applications develops.

July, 1986

Australian RAINBOV

f’;ge 47

OS 9

BASIC 09

by Jack Fricker

his time we are going to look at errors. Ko,

not the occasional one that I manage to put in

this column (nobody's perfect). But the annoy-
-ing ones generated by O0S9 when something goes
wrong. This is one of the things that critics of
0S9 say is wrong with the operating system.

There are a couple of solutions to this problem,
one of these is the PRINTERR command that comes with
CoCo 0S9. The problem with this is that once enabled
it cannot be disabled without rebooting the system
and it also uses up precious memory.

One other method {is the one that I am presenting
here (Listing 1). The advantages of this is that it
returns the memory after it is finished. The reason
that I originally wrote this program is that on my
68000 0S9 system (yes, 68000) there is no similar
command, nor is there any similar command on 0S9
Level 2 (not version 2).

Level 2 is the version of 0S9 that will run on the
mythical new CoCo if and when it i{s ever released.

Anyway enough of the soap box stuff. This program

all directories in upper case.

Then there 1is the dreaded error #207 (out of
memory). Unfortunately there is very little that can
be done about it.

One of the things you can do is to build a boot
disk with only the files that you need. Ve have
covered this in earlier articles which brings me to
another kind of error - the ones that | make!

In an earlier article about building boot disks I
stated you should have 0S9, 0S9P2, "boot" and "init"
in the temp file and then use them with "os9gen" to
generate new boot disks. "os9gen" will put these
files on the disk itself. Although it will work it
wastes memory terribly!

PROCEDURE basic09 errnum

will work on any version or level of 0S9. Because it 0000 ON ERROR GOTO 50
is written in BASIC09 it works on either system with 000A 10 DINM filename:STRIRGI32)
the changing of one line. 0024 REN make filename no longer than 32 chars
Now about the causes of some of them. The first one long
to look at is error # 216 (path name not ‘found). 0056 DIM inpath:BYTE
This occurs because the name of the file or program 0062 REX make inpath a 1 byte integer
is not found in the current "execution" or "data" 0084 DIX char$:STRING[1000]
directory; it doesn't mean that the file doesn't 009A REM make char long enough to handle 1000
exist. It just means that you didn’t tell it to look bytes
in the right place. The way to find out where you 00CA PRINT CHR$(12)
are in your disk is to use the "PVD" and "PXD" 00D6 REN clear screen
commands. 00E8 filename:="/d0/sys/errmsg"
"PVD" will tell you your working or data directory 0102 INPUT "npumber of error that occured
and "PXD" will tell you your execution directory and *,number
DIR and DIR X will tell you what your files in those 012E 30 OPEFR #inpath, filename:READ
directories are. 0146 40 WHILE NOT (EOF(#inpath)) DO
The next common error tu .ook at 1is 214 (no 015C INPUT #inpath,char$
permision). VWhat this means is that the attributes 016C num=val (left$ (chars$, 3))
of the file have been set so that only the creator 1082 IF num=number THEN
has access to that file. To change the attributes of 1096 PRIKRT char$
that file use the "ATTR" command. Another cause of 10GE GOTO 60
this error is if you try to list a directory or if 0174 ENDIF
you treat a file as a directory. This problem occurs 01A8 50 ENDWHILE
mostly commonly {f you don't follow the 089 01B2 60 CLOSE #inpath
convention of keeping all files in lower case and 01C0 70 END
Page 48 Australian RAINBOV July, 1986.

e

0Ss-9

Featuring a New
Text Formatter

By Dale L. Puckett

$-9 Users Group member Frank
O Malaney of Pataskala, Ohio, takes

the spotlight this month. Malaney
contributed the source code for Print Form,
a public domain program he has been
distributing as “shareware” for several
months. He also passed along some useful
¢ programming tips. Rounding out our May
offering is an alternative, SysGo, from
Robert A. Larson at USC; another tip from
Steve Goldberg in Bethpage, New York;
some short ¢ programs for beginners from
Dennis J. Duke in Bessemer, Alabama, and
Eric Richards in Auburn, Alabama, plus a

BLAXLAND
OHPUTER
ERUICES
TY.LTD
r

[June

July, 1986.

L
=

look at a few new OS-9 products. Re-
member, if you have a question, a short to
medium-sized program or an operating tip,
we would love to share it with our readers.
Send your thoughts to us at THE RAINBOW
or EMAIL them to DALEP on RAINBOW’S
Delphi CoCo SIG or to my PPN, 70010,542
on CompuServe.

PrintForm is Modular

Print Form, our feature offering from
Frank Malaney, performs most of the
functions of DynaForm and corrects many

(0472 39-3903

O &
FECIRALISTS

RE COCOCONF SPECIALS
ON ALL COCO HARDWARE AND SOFTWARE
Ring for YOUR price.
Class Computer (68000) literature available.

Don’t forget to get your entries in for
the OS—9/68000 programming contest.

See us on Goldlink this month!
“6A MURPHY ST.BLAXLAND 2774

Australian RAINBOV

of the printer problems that were present in
early versions of this word processing
software. The problems revolved around the
printer setup standard used by Tandy. Most
manufacturers set up their printers to only
return the printhead to the left-hand margin
after they receive a carriage return character,
0D Hex. Radio Shack printers, however,
automatically add a line feed following every
carriage return. This drives some software
and most programmers crazy.

Ever since the first column, we have been
preaching the virtues of OS-9's modularity,
and Frank Malaney is a believer who broke

| OO

Page 49

the program into |8 different modules, small
pieces “. .. to protect the sanity of the
programmer,” Malaney said. Breaking long
programs into short segments also helps the
computer, particularly a Color Computer
with only 64K of memory. As you know, if
you have ever tried to compile a long C or
PASCAL program, most compilers generate a
large number of error statements for each

actual error in the source code.

“The best way to handle this situation is
to correct the first error, recompile the
program and then fix the next error that
shows up, etc.,” Malaney said. He also noted
that small modules that perform a single
function are much easier to debug after you
get the program compiled but it still does not
work properly. “It is much easier to deter-

Listing A:

#include <stdio.h>

#include <os9.h>

#define void int

#define clear 12 /* clear screen character */
#define home 1 /% home cursor character */

main()
(

/* Routine checks both joysticks. Press fire button to end each test

*/
/* Test uses 0S-9 ISGETSTT system call %/

int x,y,fire,choice;
putchar(clear);

for (choice = 0; choice< 2; choice++)
do
(
putchar (home);
Joystck(choice, &x, &Y, &fire);
printf("%2d : x=313d y=3d/n", choice, x, y);

while (fire==0);
)
void joystck(num,xval,yval, button)
int num,*xval,*yval, *button;
(

struct registers reg;

reg.rg_x=-num; /* x= joystick # (0 or 1) */
reg.rg a=l; /* a = path #1 or standard output ¥/
reg.rg_b=SS_JOY; /* b= function code §13 %/

if (_os9(I_GETSTT, ®)) /* system call */

(
printf(" ** ERROR in joystick read/n");
exit(l);

)

xval=reg.rg x; / x= horizontal value */
yval=reg.rg y; / vertical value %/

bucton-reg.rgun; / a = fire button (§FF= on)($00= off) */

)
Listing B:
% PBUF -- copyright (c) S. B. GOLDBERG

Initializes printer buffer to prevent memory
fragmentation.

* % ¥ *

ifpl

use /d0/defs/os9defs

endc

mod len,name,prgrm+objct,reent+l,entry,dsiz

rmb 200 for stack

mine which code is not working correctly
and to rethink the logic when that module
only performs a single task,” he said.

The two-line C program, fest.c, can also
make your initial compiles go faster.

#include "header.c"
#include "useage.c"

Use this OS-9 command line:
0S9: ccl test.c -oa >>/p

Header.c is the name of a file that defines
all of the global variables in Print Form.
Useage.c is the name of the file Malaney is
checking for syntax errors. When you
compile test.c with the previous command
line, you are greeted with a very fast pass
through the compiler and a list 'of all the
€rrors on your printer.

When compiling PrintForm use the fol-
lowing OS-9 command line:

0S9: ccl pf.c -m=ék

This line increases the data space allotted
to the program by 4K during the compile.
This prevents running out of memory while
printing nested files.

If you do not want to type in the Print-
Form source code listed here, Malaney will
send it on a disk for $15. He includes a copy
of the manual on the disk, which can be
printed out. Send check or money order to
Frank Malaney, 8708 Mink Street SW,
Pataskala, OH 43062, Enjoy!

Vi

This utility removes the O.Pak Hi-Res
screen utility, returns to the standard 0S-9
screen and executes TSEDIT withits file [D.
After you are finished editing, it returns to
O.Pak’s Hi-Res screen. It uses the C “sys-
tem()" function todo this. O. Pak, Nores and
TSEDIT must be stored in your current
execution directory before you run Vi.

#include <stdio.h>
#define CMD1l "NoRes"
#define CMD2 "TSEDIT"
#define CMD3 "o.pak"

main(argc,argv)

int argc;
char ¥*argv(];
(

char *Cmd line,CMD1l);
system(Cmd line);
strcpy(emd _line) ,CMD2);
strcat(Cmd_line,argv[l];
System(Cmd line);
strcpy(Cmd _line,CMD3);

System(Cmd line);

.
Page 50

Australian RAIRBOV

July, 1986.

IR SNSsSsSSS————————————""""/"////

L

dsiz equ
e
name fcs /pbuf/
fce /(c) 1985 S. B. Goldberg/
¥*

entry leax pntr,pcr name of printer

lda #write. write mode
"0s9 ISopen open path
bcs out exit with error
0s9 ISClose close printer path
bcs out exit with error
clrb clear error flag
out os9 ffexit quit
pntr fcc "/p" name
emod
len equ *
end

Listing 1: pf.c

#include
#include
tinclude
finclude
#include
#include
tinclude
finclude
finclude
finclude
#include
#include
#include
#include
#include
#include

"header.c"
"main. fast.c"
"}inefeed.c"
"c_return.c"
"print.c"
"space.c"
"putcont.c"
"left m.c"
"contr.c"
"pr.header.c"
"end page.c"
"sing line.c"
"dot.c"
"cont_ proc.c"
"useage.c"
"cput.c*

Listing 2: header.c

/* This is the header file file which contains all of the */
/* define's and global variables for a new text processing */
/% and formatting program that will do the most common */
/* functions of “"dynaform". */

finclude <stdio.h>
finclude <ctype.h>
fdefine FALSE 0
fdefine TRUE 1

int spacing = 1; /* set by,.SS or MS %/
int offset = 8; /* set by .PO */
int pg_no = 1; /* set by .BP or .PN */
int pg_len = 66; /* set by .PL */

int bot_mar = 8; /*
int foot_mar = 2; /* set by .FM */

int top_mar = 3; /* set by MT */

int header_mar = 2: /* set by .HM */

int linefeed = FALSE?}

int code(27](8]);

int line no = 1;

int first_char = TRUE; /* denotes first charactor on a line */
int underline = FALSE; /* controls “controlled underlining #*/
int q_flag = FALSE; /* true after control Q */

int s_flag = FALSE: /* true after control § */

int w_flag = FALSE: /* true after control W */

int y_flag = FALSE; /* true after control Y */

int sheet_flag = FALSE; /% it false tractor paper,
sheet */

int pr_flag = TRUE;

set by .MB */

if true
/* tlag for printing characters */

int spage =0: /* number of page to start printing */
int epage = 30000; /* page number to stop printing */

Joysticks in C

Another person experimenting with new
frontiers is Eric Richards of Auburn, Ala-
bama. He was so impressed with the new
mouse-driven packages at Radio Shack
stores nationwide that he wanted to try his
hand at programming the joystick ports
(Listing A). The value of the 'Y’ coordinate
returned by Eric’s program is the opposite
of that returned by the corresponding
routine in Radio Shack Color BASIC. The &
value returns the same value as the equival-
ent BASIC routine

Fixes for Kansas City BASIC

Steve Odneal, OS-9 Users Group treas-
urer and author of Kansas City BASIC, has
submitted two fixes to that program. You
can use EDIT to change the source code file
supplied with the program and reassemble
it. Or, you can send your original Kansas
City BASIC disk with $5 for postage and
handling to Steve at 8609 East 73 Terrace,
Kansas City, MO 64133 and he willdo it for
you.

Before you change the actual code, edit
the line at the label REVS. This sets the
revision level of the program module. At the
label X P290, delete the following three lines:

XP290 CMPA #'-
BNE XP291
LEAY 1,Y

Replace them with:

XP290 CMPA #$FF Sub_function 7
BNE XP291 ..No
LDA 1,Y Get Sub-Function Code
CMPA #$92 Minus Function?
BNE XP291 ..No
LEAY 2,Y Skip Codes
This change fixes a subtraction problem.
Now, following the label TSTVE04, find this
line:

CMPA #'@ Range Check
Replace it with:
CMPA #$2F Range Check

Two instructions later, just before the
statement:

TST HCLDA+1,U
Insert:

TFR A,B
SUBB #'0 Subtract a zero
CMPB #9 1Is is a number?
BLS TSTVEO6 .. Yes
CMPB #16 1Is is Alpha?
BLS TSTV15 ..No

TSTVEO6 EQU *

The last set of changes allows variable
names with numerics to be used following
the initial required alphabetic character.

Odneal reports that he is getting excellent
response to Kansas City BASIC and noted
that several users have asked for string and

single

July,

1986.

Australian RAINBOV

Page 51

char head(133]);
char foot(133):
char temp(133):

int contrl;

FILE #*path, *fopen():

/*

&/

Listing 3: main.fast.c

pain(arge, argv)
int argc;
char *argv(])’

{
FILE #*input_file:

int 1, 3§, cnt, temp,count =1,out_flag = FALSE;

char options

static char hd()=

static char ft()=
if((input_tile
{

printe("1
exit(l)s
)

L ll’
» "
= fopen("prtr.contrl®,”"rx"))w== NULL)

couldn't open printer configuation file");

fread(kcode(0](0]),sizeot (int), 216, input_file);

fclose(input_file);

if(code(0)[0) == 1)

/* check if linefeed needed */

linefeed = TRUE;

contrl = code(0)[1):

/* load charactor used as control flag #/

/* Open a path for ocutput and get number of copies 174

if(argec > 2)

for(i=2; i < arge; ++1)
!(.t((lrwlil)(Ol = lat)

zero\n");

)

else

As\n",argv(i))s

)
)

j=1y

while((option =argv(i)(j)) != NULL)
if(isalpha(option) == FALSE)
(

printf("Error in options\n");
useage()
exit(6);
)
ent = 03
++3;
vhile(isdigit(argv{i)[j])) != FALSE)
(

cnt = cnt * 10 + (argv(i)(j) - 48)»
++4

)
option = toupper(option):
swvitch (option)
{
case 'C':
count wcnt;

if(count < 1)
printf ("Number of copies set to
exit(l):

break;
case 'S':
spage = cnt;
if(spage > 1)
pr_flag = FALSE;
break;
case 'E':
epage = cnt + 1;
break;
default :
printf(“Unknown option\n"):;
useage();
exit(7)s
break;

if((path = fopen(argv(i),"w")) == NULL)

printf ("1 can't open a path for
useage())

exit(2)s
)
out_flag = TRUE;

)
if(out_flag == FALSE)
{

T ——
Page 52

e

numeric arrays and graphics ability. He
notes that graphics would be the easiest and
asks that you let him know if you have
strong interest in having graphics support in
Kansas City BASIC.

A lot of people stop after one major
project like Kansas City BASIC. Not Steve!
He is working on a Kansas City COBOL
compiler for OS-9 and researching a FORTH
and C. All will be packaged with the source
code provided.

“So much software today is overpriced,
unchangeable and poorly documented,”
Odneal said. “I feel that if users have good
BASIC software with proper documentation,
most of them can modify it to meet their own
needs. The entire 0S-9 community will
benefit. If you would like to join this effort,
let me know.”

Microware Shipping 0S-9 FORTRAN

Phyllis Casel, the communications coor-
dinator at Microware, reports shipping the
6809 FORTRAN Compiler in February. The
new compiler is a subset of the FORTRAN 77
ANSI standard with a number of powerful
extensions. Highlights include the ability to
generate code for two- or four-byte integers,
single and double precision floating point
support, a full math library and an updated
C compatible linker and assembler.

If you are looking forward to moving up
to an OS-9 68K system, take note. The OS-
9 Network file system, which features a user
interface similar to the normal OS-9 file
system, is also shipping as is a brand new
version, 2.00, of the 68K C compiler.

The popularity of OS-9 is growing so fast
that Microware is expanding to meet de-
mands.

More Tricks

The new Iniz command in the 2.00.00
version of OS-9 is excellent. It lets you
eliminate the memory fragmentation caused
by opening a path to a printer or other device
during operation. You simply put the com-
mand “Iniz P in your startup file and go.

When I first tried to run Iniz, without
reading the directions of course, I typed
“Iniz /p” on the command line and wound
up with a nasty error message on my Color
Computer screen. | scratched my head and
looked at the book only to learn that the
programmer who wrote Iniz had dropped
the slash, */* — the same slash that always
tells OS-9 to look for a device rather than
a file — from the command line syntax. |
wonder why? I thought the idea behind OS-
9’s unified 1/O was to make everything
consistent.

Now, the good news. If you don’t have
Version 2.00 and don’t plan on getting it for
a while, you can emulate the Iniz feature
with a short program (Listing B) from Steve
Goldberg in Bethpage, New York. When you
run the program — usually from your
startup file — it merely opens up a path to
your printer and then closes it before you
have had an opportunity to load any other
programs in memory. This means the printer
buffer is set up at the very top of RAM,
leaving you with a continuous block of free
memory.

zustra i ian ﬁ: l lmv

July, 1086, '

e R
if((path = fopen("/p","w")) == NULL)
(

printf("I can't open a path to the printer\n"); Eliminating Hard Coding

exit(3)s It bugs me to see a programmer ruin an
) ! otherwise excellent piece of software by hard
/% Open the path for the input file */ coding system device information into the

f““’o' ¥ % pounb) program itself. Let’s study an example.
The new 256K RamDisks available now
strcpy (head,hd) ; for the Color Computer make OS-9 opera-
strcpy(foot, L) a s &
tion a dream — if the programmer hasn't
if(argc >= 2) /* check for path name */ hard-coded his program. When | first boot

0S8-9, 1 format the RamDisk and hackup the

it((input_file = fopen(argv(l],"r")) == NULL) 2 ;
disk that contains my current execution

printf("I can't open ¥s for reading\n",srgv(1]); directory. Then, | change both the execution

useage(); and data directories to the RamDisk.
exit(4) s But, what do you think happens when you
) hit the wrong key while typing a command
slse line? You guessed it, OS-9 reports an error
printf("You must put a filename in the command and if you have installed PrintErr, you hear
1ine\n"); drive /d0 start up while OS-9 looks for the
‘.‘;;:‘i;)“,' proper message to print. | saw this happen

) a couple of times with dismay.

Here's the fix. At an offset of 0016 n

the actual inti of the document * . Sebin ? 5
e R e B e i the 2.00 version of PrintErr — you will find

print(input_file); the string / DO/SYS/ERRMSG. Use Debug
fclose(input_tile); to change the /DO to “...". This tells OS-9
/% When we return to this point we must now finish the last page */ to look in the SYS directory on the parent
of the parent of the current data directory.
end_page() s < . g <
/* Reset all variables for next pass if required */ If your current data directory is /RO, the
st tasnes 5 1) *.." will cause PrintErr to look on /RO. 1f
e flag = PALSE] itis /HO, it will cause it to look on ; HO. After
else you have made the change and exited
-pacirp::'il;j el Debug, save the module to a disk file,
offset = 8; new Print Err perhaps. Rename the original

pg_no = 1;

po-len = 66 to PrintErr.Original and then type:

bot_mar = 8)
foor_mar = 2;
top_mar = 3}

header_mar = 2; 0S9: verify </d0/cmds/newPrintE
;clou(path); /% close our output path (to printer ?) #*/ rxr >/d0/cmde/PrintErr U
) /e
./
Listing 4: linefeed.c

Desk Mate, the mouse-driven masterpiece
/* this function puts out either a cr-1f or a blank-cr pair depending| fromTandy, has the same problem — it hard

of the %/ codes four separate device names. Fortu-
/* state of the linefeed flag. Tha blank is required by some printers| paely the four pathlists are coded in only

;: th‘Y'{dn _ sesponad to only = cr. | one file, desk. Here is a table with the old
A values and the new values.
int Linefeed()
(g :
char 1f ='\012'; /% linefeed coda */ Table 1: Offset Values
char cr ='\015'; /* carridge return code */
i{f(linefeed == TRUE) 00E72F 44 30 (/D0) (old)

2F 52 30 (/RO) (new)

9% 28 28 ¢
cput(cr,path); or 2E 2E 2E (...)

cput(lf,path); 01102F 44 31 (/Dl) (old) |

2F 52 30 (/RQ) (new) |

elsa or 2E 28 2E (...) |
space(): g::z;r)yzsoagr‘a)‘:n 46 53 (/DE/CHDS) (o1d)

cput (cr,path) F D 53 (/RO/CMDS) (new) |

or 2F 2E 2E 2F 43 4D 44 53 (.../CMDS) (new)

) ++line_no; 01622F 44 31 2F 43 4D 44 53 (/D1/CMDS) (old)
|
/#| [2F 52 30 2F 43 4D 44 53 (/RO/CHDS) (new)
./ ‘orZE 2E 2B 2F 43 4D 44 53 (.../CMDS) (new)

Listing S: c—return.c

/* this functicn processes each linefeed fould {n the text and
determines */

/* how many line spaces between lines are required After you make the changes above, up-
*/ date the desk module’s CRC using verify's
u parameter. Then, run Desk Mate from

t“‘ c_return() your RamDisk and stare back in amaze-
int i: ment. Click the button on the mouse a
for(i=1; i<= spacing: ++1i) couple of times and Desk Mate will snap to

Linefeed():

July, 1986. Australian RAINBOV Page 53

first_char = TRUE;

/
Listing 6: print.c

int print(f£i)
FILE *fi; /* we passed a file pointer #/

(
int c,test;
while((c=getc(fi)) l= EOF)

test= TRUE:

if(c=='."' && first_char == TRUE)
dot(fi); /* process dot commands #*/
test = FALSE;

)
else if(c == contrl)

contr(fi); /* process control charactors #/
test = FALSE;

)

if(test == TRUE)

{
if(line_no ==1 && first_char == TRUE)
{

header(fi); /* printer header */

j).f(nzst_char == TRUE)
! left m(); /* print left margin #*/
first _char = FALSE;
It(c l= ' ' g4 c = '\015') /% test for blank and cr */
: cput(c,path);

else
if(c == ' 1)
space();
if(c == '\015!')
(
c_return():
if((line_no +spacing)>(pg_len-bot_mar))
end_page():;
)
)

)
} /* closes while #/
}) /* close print() =/
/.

et e o L P T

z:
Listing 7: space.c

/* space() will toggle underline off if it is cn and print %/
/* a space and then toggle the underline back on if the */
/* underline flag is TRUE ~/

int space()
{

int off=22; /* code to turn underline off »/
int on = 21; /* ccde to turn underline on #/
char ¢ = ' ';

if(underline == TRUE)
{

putcont(off);
cput{c,path);
putcent(on);

)
else

cput(c,path);
Ve s -
*/
Listing 8: putcont.c

/* putcont() is passed as int and will use that int to point to a */
/* Tow in code[row](col] matrix. It will put the int's in the row */
/* to the output until the element is >127. */
int putcont(row)
int row;
{
int col, pcode;

for(col=0 ; code(row][col] <= 127; ++col)

putc(code[row] [col],path);

your next application almost instantanc-
ously. It’s a lot like running similar software
on a Macintosh with a hard disk but a whole
lot cheaper. Despite the fact that applica-
tions are all relatively simple, Desk Mate has
to be the best thing to hit the Color Com-
puter, since OS-9. In fact. | have a [riend
here in Washington who uses Desk Mate's
text editor to enter almost everything he
writes because of the large. casv-to-read
characters it displays. If he has a compli-
cated formatting job and needs a more
powerful text processor, he simply runs the
output file generated by Desk Mate's text
editor through a more comprchensive text
processor such as DynaStar.

Yet Another Tip

How do vou prompt vourself to change
disks from a procedure file while doing a
single disk copy? One quick way suggested
by Brian Lantz, president of the OS-9 Users
Group, is to use the OS-9 SLEEP utility
command. You always knew there was a use
for that command, didn’t you? Try this in
your procedure file:
-X
Echo
T
* Change Disk then
* Type 'Break' key to continue
-T
Sleep 0
X

(* Rest of procedure file follo
ws the "x" *)

Notice how we used the four built-in Shell
commands X, -x. t and -t. The -x command
in the first line of the procedure above tells
0S-9 10 ignore any errors on the command
line and go ahead with the rest of the
procedure file. Without that command, OS-
9 would abort the procedure file if it hit an
error.

The 1t command tells the Shell to pass
anything on the standard input path through
to the standard output path. The -t tells it
not to pass this information. Notice how we
used the t command in conjunction with the
echo command to send more than one hne
of text in our prompt. Do not forget the
asterisk, "**. It tells the OS-9 Shell that
everything else on the line that follows is a
comment and should be ignored.

Auto RamDisk

We recently experimented lor a long time
trying to come up with a way to switch our
current execution directory to RO/ CMDS
and our current data directory to RO
automatically from the srarrup file. Our first
attempt looked something like this:

PRINTERR

XMODE /Pl LF

TMODE .1 -UPC -PAUSE
SETIME </TERM

INIZ Pl T2

FORMAT /RO

YDALE'S RAMDISK
BACKUP #100 /DO /RO
YY

TMODE .1 PAUSE

CHX /RO/CMDS

CHD /RO

Page 5H4

Australisn RATRBOW

July, 198o.

e

)a */

Listing 9: left_m.c

/* left m() will provide for indentation from the left side of the
page */

/* before any line is printed. It will also toggle the underline off
and */

/* on if the underline flag is TRUE. The column that the text is to be

/* printed in is changed with the .PO command.

int left_m()
(

int off=22; /* code to turn underline off */
int on = 21; /* code to turn underline on */
int col;

char c = ! 3

if (underline == TRUE) .
putcont (0f€); /* turn off underline if flag is TRUE */

for(col = 1; col < offset; ++col)
cput(c,path);

if(underline == TRUE)
putcent(on); /* turn underline if flag is TRUE */

/

Listing 10: contr.c

/* contr(fi) has the file pointer passed to it. it will get the next
/* charactor, and pass it to cont_proc() for the actual processing.

/* it checks to see if the next charactor is also a control char. If

/* it is, it will call itself. if not, it will return the charactor
*/

/* to the file.
*/

contr(£i)

FILE *f£i;

{
int col,c,i:;
c = getc(fi)s

it(c == 'p'
{

[} em=tpt)

i=0;
while((c=getc(fi)) != contrl)
tepp[i)-c:

}

temp(i) = NULL;

printf("¥s\n", temp);

¢ = readln(0,temp,132);

temp{c-1] = NULL;:

for(i=0; temp(i) != NULL:
cput (temp({i],path);

printf("\n");

c = getc(fi):

++1)

/* throw away letter following control char

%/

else
cont_proc(c):

if((c = getc(fi)) == contrl)

contr(fi); /* call again w/
else

ungetc(c,fi)s /* return charactor to file #*/

/i

Listing 11: pr.header.c

/* This function controls the spacing at the top of the
&/

document and

Unfortunately, it didn't work. As soon as
this startup procedure file was executed, it
sent an End of File signal to OS-9. This
killed the Shell running it, and all the
changes we made died with the Shell.

Next. we replaced the CHX and CHD
command lines with:

EX LOGIN </TERM

We also edited the first line of the file,
SYS, PASSWORD. When we were finished
1t read:

,,0,128,/r0/cmds, /x0,shell

T'his worked and we wound up in the
proper exccution and data directories. But
when we did a procs command, we found
that we had an extra Shell alive. It was the
Shell that executed the startup procedure
file and it was wasting 6K of memory. As an
experiment, | tried to kill the extra Shell by
typing:

0S9: kill 4

That didn't work because OS-9 will not let
you kill the parent of a child process that is
running. Finally, [left the login command
line out of the startup file and typed it myself

interactively after the startup command
was finished and OS-9 prompted me. This
worked and I was left with only one Shell!
Unfortunately the switch was still only semi-
automatic.

Incidentally, we used the tmode -pause
command in our procedure file so the
backup command wouldn't stop and wait
for us to press a key after it filled the screen
with reports. Another alternative, if you
have installed the new nil device that comes
with Version 2.00, is to redirect the output
of the backup command to that device. The
following command line will do the job for
you.

BACKUP #100 /DO /RO >/NIL.

SysGo: The Real Answer

Robert Larson at the University of South-
ern California at Los Angeles dropped us a
note several months ago to promote the
virtues of Kermit over Xmodem. We quote:

“Kermit has several advantages over
Xmodem. It makes fewer assumptions
about the system it is running on and the
communications path it can use, so it will
work on a wider variety of systems,” Larson
said. “Xmodem is probably still better for
what it was designed for - CP/M to CP/
M file transfer over eight-bit data links that
can handle bursts of 132 characters. There
are hundreds of Kermitr implementations
and dozens of Xmodem implementations.
The central Kermit authority of Columbia
University also helps make sure that all
versions of Kerniit work with each other and
that improvements in the protocol are made
in a compatible way."”

Larson reported that there are at least
three separate conversions of the “old™
UNIX Kermit 10 OS-9. He said the latest

{; o printing o e headexr. | \orsion he has worked on is based on the

Glen Seaton version with connect code from

int header() Bradley Bosch and some fixes by James

(Jones. It is available via the normal Kermir
July, 1986. Australian RAINBOV 3 Page 55

int hd_line:
hd_line = top_mar - header_mar;
while(line_no < top_mar)
if(line_no == hd 1ling)
sing_line(head);
Linefeed();

}
/*

*/
Listing 12: end_page.c

/I This function will print blank lines at the bottom to the footer
line 1/

/* It will call for the footer line to be printed and print enough
L

/

/* additional blank lines to get to the top of the next page.
-

int end_page()

{

int foot_line;

char temp;

foot_line = pg len - bot _mar + foot_mar;
while(line_no <= pg_len)

if(line_no == foot_line)
(
sing_line(foot);
)
Linefeed()
)
++pg_no;
line_no =1;
if(spage == pg_no)
pr_flag = TRUE;
if(epage == pg_no)
pr_flag = FALSE;
if(sheet_flag == TRUE && pPr_flag == TRUE) /* single sheet flag */
(
printf("Put in next sheet of paper.\nHit a key\n\n")
temp = getchar();

)
VA

*/

Listing 13: sing_line.c

/* sing_line() prints oout both the header and the footer lines. It is
~

/* passed a pointer to the proper line. It also contains procedures to
-

/* print the page number and handle control charactors in these lines.
L4

int sing_line(buffer)
char buffer():
{

int 4,

int temp_flag = FALSE;

char spc = '\007';
left n():

if(underline == TRUE)

{
temp_flag=TRUE;
underline = FALSE; /# turn underline flag off #/
putcont(22); /* turn underlining off w/

}

for(i = 0; buffer([i] != NULL; ++i)
{
if(buffer(i] == '4' && pr_flag == TRUE)
fprintf(path,"%d",pg_no);
else if(buffer(i] == spc)
(

++i;
cont_proc(buffer(i)):

)
else if(buffer(i] == ' ')

distribution channels at Columbia Univer-
sity. He reported that he has also posted 35
copies, including four to Europe and one to
Australia, via UUCP USENET mail. The
Glen Seaton version is available in the OS-
9 Users Group Library and on CompuServe.

We feature here a replacement SysGo
module Larson contributed. It is smaller and
faster than the original, but more impor-
tantly, it holds the clues to making the
automatic change to alternate execution and
data directories.

Alternate SysGo Listing

ifpl
use /d0/defs/o0n%dels
endc

c.cr aqu $d

nod eom,name,$CL,$81, stare,$00C8
nanefcs /SysGo/

fch 6

Cuds Fcec /Cads/

Fcb c.cr

Shell Fcc /Shell/
Fecb c.er

Startup Fce /Startup -p/
fcb c.er

Initdat Fcb $55,300,874,812, 977, 8FF, 303,887
Fcb $FF,$DF,$7E,$F0,$0C
idatlen equ *-in{tdat

startleax <rti, PCR
0S9 f$dicpt

leax <initdat, PCR
1du #$0071

1db e{datlen
movidat lda, Xe
sta , Us

dechb

bne movidat

leax <Cnds, PCR

1da #4 execution directory
039 {$chgdir

leax <Shell, PCR
leau <starcup,PCR
144 #30100

1dy #21

os9 f$fork

bes infloop

o019 fSwait

restart leax <Shell, PCR
1dd #$0100

1éy 30000

os9 f3fork

bes infloop

o019 fSwvait

bce restart

infloop bra infloop

reired

emod
acy equ w

SysGo is an OS-9 program that just
happens to be the first process to run when
booting the system. Essentially, it does three
things: executes the procedure file, startup;
starts your first process — read program and
usually a Shell; then, it simply waits for all
other processes to die.

If you look at the previous code, you will
notice that Larson’s version of SysGo goes
into a wait state just before the label,
“restart.” If for some reason the original
Shell that it has just started were to die,
SysGo will automatically restart another
Shell. This keeps you from crashing the

space(); system if you accidentally kill all the pro-
sise s cesses running.
cput (buffer(i),path); When OS-9 runs the SysGo program it
) automatically sets the execution directory to
Page 56 Australian RAINBOW July, 1986.

|—_

if (temp_flag == TRUE)
(

underline = TRUE; /* turn underline flag back on */

putcont(21); /* turn underlining on */

}

)

/ *

-t/

Listing 14: dot.c

/* dot() processes the dot commands

*

int dot(f4)

FILE *£i;

(

int i, temp_len, num, flag = TRUE, dot _c, c;

char pause;

char spc = '\007';

FILE *new_file;

/* form a code nuxber from a two character string */
c= getc(fi); /* get first character #/

dot_c = (toupper(c) = 64) * 30;
c = gatc(fi); /* get second character */
dot_c = dot_c +(toupper(c) = 64);

if((c = getc(fl)) == '\015')

(

temp(0] = NULL;
num = 0;
temp_len = 0;
flag = FALSE;

else

i=0;
while((c = getc(fi)) != '\015')
if(c == contrl)
temp(i) = spc:
else
texp(i) = c:
++1;

}
temp(i] = NULL;
flag = TRUE;

)
if((num = strlen(temp)) > 0)

num = atoi(temp):

/* The switch cases now begin

switch(dot_c)

{

case 76: /* .BP page break */
end_page();
if(num > 0)
(

Pg_no = num;

7

if(spage > pg_no || pg_no >= epage)

pr_flag = FALSE;
else
pr_flag = TRUE;

*/

{DO/CMDS. It knows that /D0 is the
startup device because it looked in the Init
module, which is simply a look-up table that
holds the initial information needed to start
the system. Information stored in Init
includes the upper limit of RAM memory,
the number of entries in the IRQ polling
table, the number of entries allowed in the
system device table, the name of the first
program to run (most often SysGo, the
name of the device that holds the default
directory — usually, /DO, the device that
becomes the standard input and output
paths) and, finally, the name of the boot-
strap file, os9boot, in the case of Color
Computer OS-9.

The secret to changing data and execution
directories to /RO, or even /HO, is to add
some code to change those directories.
However, since a RamDisk doesn't exist
until the start-up procedure file runs format
and backup to create it, you cannot add this
code until after SysGo runs the start-up
procedure. You will need to add two new
labels just in front of the CMDS label in the
SysGo listing. Something like this:

newdir fce "/RO"
fcb c.cr
nevexe fcc "/RO"
Cmds fcc /Cmds/ resume old code here

Then, after the OS-9 f$wait call, just in
front of the existing “restart” label, add the
following code:

leax <newdir PCR point to nev data directory

1da #3 files may be updaced

os9 ISchgdir

leax <navexe, PCR point to nev sxecution directory
lda »4 f1les may be executed

o089 1Schgdir do {t

Restart leax <Shell, PCR and resume old code

The code creates a Shell and runs the
programs that have been placed in the start-
up procedure file. When the startup file
ends, OS-9 receives an EOF signal and the
Shell that ran the procedures dies. When this
happens, execution continues with the new
code that changes the current data directory
to /RO instead of /D0 and the current
execution directory to /R0/CMDS instead
of /DO/CMDS. After SysGo runs your
code, it falls into the code at the label restart
where it starts another Shell.

This SysGo module was written for Ver-
sion 1.00 and 1.01. It should also work with
Version 2.00. However, it does not start the
clock module like the SysGo that comes with
Version 2.00. If you use this version, you
need to start the clock with the setime
command in the starrup file.

To install this SysGo module you go
through several steps. First, assemble the
code using the asm command that comes
with OS-9. Then, replace the original SysGo
with your version in a new OS9Boot file
using OS9Gen. Hopefully,. Larson’s code
and our short notes have removed some of
the mystery surrounding SysGo and you feel
free to experiment and customize your
system to your heart’s content. Let me know
how it works out and if you really come up
with a unique version be sure to share it with
us.

Users Group Sports First Online Recruit
Congratulations to John M. Graf of

Australian RAINBOW

}
break;
case 106: /* .CP conditional page break
if((line_no + spacing * num) > (pg_len =-bot_mar))
end_page() ;
break;
case 409: /* .MS multiple line spacing */
if(num == 0)
spacing = 2;
else
spacing = num;
break:
case 589: /* .SS single line spacing */
spacing = 1;
break;
case 193: /* .FM set footer margin */
foot_mar = num;
break:
case 253: /* ,HM set header margin */
header_mar = num;
break:
case 392: /* MB set bottom margin */
bot mar = num;
break:;
case 410: /* MT set top margin */
July, 1986.

Fage b7

case

case

case

case

top_mar = num;

break;

492: /* .PL set page length */
pg_len = nunm;

break;

494: /* .PN set page number */

pPg_no = num;
if(spage > pg_no || pg_no >= epage)
pr_flag = FALSE;
else
pr_flag = TRUE;
break:;
495: /* PO set page offset */
if(num == 0)
offset =1;
else
offset = num;
break:

586: /* .SP space lines on page */
if(line_no == 1)
header(fi); /* print header before spacing #*/
if(num == 0)
Linefeed() ;
else

for(i = 1; i <= num; ++i)
Linefeed():

break;

case 593: /* single sheet flag set */
sheet_flag = TRUE;
break;

Riverside, California. John was the first
person to join the group online using the new
services available on THE RAINBOW's Delphi
Color Computer SIG. His Username is
JMFG if you want to say hello.

RAINBOWfest-Palo Alto was a big one
for the OS-9 community. Paul Searby gave
an inspiring keynote speech at the first OS-
9 buffet breakfast attended by more than 60
people. Brian Lantz presented an excellent
seminar for OS-9 users and was kind enough
to fill in during the first half of my seminar
when snow in Washington and rain in
California delayed my arrival Saturday.

We saw an interesting approach to 0S-9
in a new Winchester BASIC product from
Owl Ware in Palo Alto. Interesting idea and
we'll be telling you a lot about it with
information direct from its author; Alan
Reinhart, next month.,

The OS-9 community certainly has its
heroes and they strive to make your entry
into the world of OS-9 Version 2.00 easier.
Included in our list of good guys are Ed
Bender at PBJ, Dan Johnson at D.P. John-
son and Paul Searby at Computerware. All
had to dive for the disassemblers as they
hustled to rewrite new drivers that would

case 496: /* print text and wait for character */ run on Version 2.00 of OS-9. Next month,
printf("%s\n",temp) ; we I_l take an in-depth look at this new
printf ("Push any key to continue\n\n"); version of 0S-9 and try to let you know what
getchar (pause) ; you can do with it.
break; During the evolution, our aforemention-
case 195: /* ,FO text for footer line buffer */ ed heroes entered several new packages into
strcpy (foot, temp) ; the utility arena. We'll feature some of the
break: more advanced products, especially Brian
case 245: /* _HE text for header line buffer */ lﬂnukksﬁdth°¢'“¥‘m°mh~Omxyﬂu
strcpy (head, temp) ; use th; kShell, which is modeled after the
break; Shc!l in OS-9 68K, you'll never go back.
case 189: /* open and use text from a new file */ Until then, keep on hacking. =
if’(new file = fopen(temp,"r")) == NULL)
printf("I can't open %s for reading\n\n",temp):
else
print(new_file);
fclose(new_file);
}
break;
case 500: /* .PT print text and wait for line from stdin
and print that line
if(temp[0] == NULL)
printf("Enter line of TEXT\n"):
else
printf("%s\n".temp):
¢ = readln(0,temp,132);
temp[(c~1] = NULL;
sing_line(temp) ;
Linefeed();
printf (*\n");
break;
case 93: /* ,CC change control character
contrl = num;
break;
case 102: /* ,CL cemment line
break;
defaulu:
printf("Unknown operator- code of %d\n\n",dot_c);
break;
)
)
/*
e N R R R e e e e s e s e RN T RS S s s */
Page 58 Austraiian RAINBOV Juiy, 19860,

Listing 15: cont_proc.c

/* cont_proc(c) is passed a character which is to processed as a
control*/

/* charactor, check to see that it is an alpha, convert it to upper
4
/* case and subtract 64 form it converting it to a control code. This
74
/* number is the row in the code{row][col] matrix. It is passed to
*/ La
/* putcont() which will send the code to the output. after returning,
*/
/* it checks to see if the next charactor is also a control char. If
)
/* it is, it will call itself. if not, it will return the charactor
*
/* to the file.
4
int cont_proc(c)
int ¢
{
int col;
if(isalpha(c))
{
col= toupper(c) = 64;
switch(col)
(
case 17: /* toggle for control Q */
if(q_flag == FALSE)
(
putcent(17) ;
q_flag=TRUE;
}
else
{
putcont(18);
q_flag = FALSE;
)
break:;
case 19: /* toggle for control § */
if(s_flag == FALGE)
{
putcont(19);
s_flag = TRUE;
)
else
(
putcont (20) ;
s_flag = FALSE;
)
break;
case 21: /* toggle for controlled underlining */
if(underline == FALSE)
(
putcont(21);
underline = TRUE;
}
else
(
putcont (22);
underline = FALSE;
)
break;
case 23: /* toggle for control W */
if(w_flag == FALSE)
{
putcont(23);
w_flag = TRUE;
}
else
{
putcont (24);
w_flag = FALSE;
)
break;
July, 1986. Australian RAINBOV

Page 59

case 25: /* toggle for control Y */
if(y_flag == FALSE)
{

putcent(25) ;
) y_flag = TRUE;
else
{
putcont(26);
Yy _flag = FALSE;
}
break;
default:
putcont(col) ;
break;
) /* close out switch #/

else
return;

/*
SIo=SSESmen SEooszoommmmomm S i Tt =n!/
Listing 16: useage.c
/* useage.c prints out the proper syntax and #/
/* available options for printform */
int useage()
{
printf("\npf filename [-options] (output path]\n");
printf(" filename is file to be printed and is required\n");
printf (" options must be preceeded by '-'\n");
printge(" ¢ = number of copies\n"):;
printf(" s = page to start printing\n"):
printf (" e = page to stop printing\n"):
printf(” follow option letter with desired number (no
spaces)\n") ;
printf("Default output path is to the printer\n\n");
)
Listing 17: cput.c
/* cput.c prints the character to the output path only if */
/* the printing flag is true. This provides for partial =*/
/* printing of documents */
int cput(c)
int ¢;
{
if(pr_flag == TRUE)
putc(c,path);
)
Listing 18: print.mod.c
/* This program accepts a file from standard input */
/* and outputs a file called "prtr.contrl" for */
/* use by a printer formatting program */
¢include <ctype.h>;
finclude <stdio.h>;
main()
(
int matrix (27](8]:
int i, j, test, flag;
char input;
FILE *input_file, *fopen():
/* initialize all elements in matrix to 128 */
for (i=0; i <= 26; ++1i)
for (3J=0; J <= 7; ++j)
matrix[i](j)] = 128;
}
— . -
Page 60 Australian RAINBUW July, 1986.

)
flag=0; /* flag =0 until a wan jg found */

while((input = getchar()) = EOF)
(
if(input == '*')

flag=1l; /*allows comment line
if(input == '+' && flag == 0) /*check for "+" sign

flag =1; /* an exception- stop search on this

matrix(0][0] = O;

)
if(input == '=' && flag == 0) /*check for "=" sign

flag = 1;
input = getchar(); /*move by fisrt blank */
matrix(0][1] = return_int();

oo
w4

line */

X/

}
if(isalpha(input) && flag ==0) /* start processing of */
/* of control letters */

{
flag = 1;

i = toupper(input) - 64; /* convert letter to ascii */

/* control code
i=0:
input = getchar(); /* skip first blank */

while((input =getchar()) != L AD]
{

X/

ungetc(input,stdin); /* if not "*", put char back

v/
/* on file
N
matrix(i](j) = return_int():
++3 7

}
ungetc(input,stdin); /* put "#" back on file*/

)
if(input == '\015') /* test for cr */

flag = 0; /* flag is reset to process next line */

)
printf("\nThe printer module file has been read \n"):

/* open and write the contents of matrix to the file */

/* note-- "wx" will write the file in execution dir */
if((input_file = fopen("prtr.contrl","wx")) == NULL)
{

printf£("I can't open prtr.contrl\n");
exit(l):
}

fwrite(&matrix[O][O],sizeof(int),216,input_file);

fclose(input_file);

)

/* function to get a string and convert it to an integer */
int return_int()

{

char num_str(5],in;
int num, i;

i=0;

while(isdigit(in = getchar()))
{

num_str(i]=in;

++1i;

)

num_str(i] = NULL;
num = atoil(num_str);
return(num) ;

)

iy, 1086, Au=traliaop NAINDEW

Page 01

ORDER FORM

AUSTRALIAN RAINBOV 12 mnths & 39.95
& mnths $ 24.75
1 mmth & 4.50
AUSTRALIAN CoCo 12 mnths $ 35.00
6 mnths $ 21.35
1 mmth & 3.75
CoCo0Z on tape 12 mnths $ 75.00
6 mnths & 42,00
1 #ith $ ‘9,850 cuias
CoCo0Z on Disk 12 mnths $102.50

6 mnths $ 58.00
1 nnth $ 10.95 .
¥iCoOZ on Tape 12 mnths 8¢ 75.00
6 mnths $ 42,00
1 mth $ 9.50
RAINBOW ON TAPE (AUST/US) 12 mnths $144.00
6 mnths $ 81.00,.
1 mnth $ 15.00
RAINBOV ON DISK (AUST/US) 12 mnthe $172.00
6 mnths & 06.75
1 mnth $ 15:.00 ..o

Cr charge my credit card monthly TAPE/DISK ONLY

QOCOOZ On TAPRE. ¢4 vievrwa s sanes o $: 9:80 siaen
COCO0Z an DEBK . wvouivvw vnvovonin s $ 10.95
BACHOZ BN TAPE iv vvionni s e s £ 9580 ik
Rainbow on Tape (AUST/U.S) $ 15500 0w s
Rainbow on Disk (AUST/U.S) $ 19,00 vnine

Additiona!l Requirements:

Sub No l I I or O New Subscription
Name l [

Address: I

B P.C.

Phone No.: [

Please find enclosed CHQ / MONEY ORDER / NO CASH
Flease charge my MASTERCARD / BANKCARD / VISA

CredIlCaldNo.:LI] I l l l l I [l I l l—]

P.O. BOX 1742, SOUTHPORT. QLD. 4215

Australian KAIKNKBOW July, 1986,

GOLDSOFT

Hardware & Software for your TANDY computer.

HARDWARE

The CoCoConnection:

most electrical things.

Connect your CoCo to the real world and control robots, models, experiments, burglar alarms, water reticulation systems —

Features two MC 6821 PIAs; provides four programmable ports; each port provides elght lines, which can be programmed as
an Input or output; comes complete with tutorial documentation and software; supplied with LED demonstration unit.
Swilchable memory addressing allows use with disk controller or other modules via a multipack interface; plugs into
Cartridge Slot or Multipack, uses gold piate connectors; a MUST for the hardware designer and debugger!

CoCoBug Magazine. For CoCo — usually 8 programs In each magazine. (Sep '84 to Oct

$206.
Video-Amp:
Connects simply to your CoCo to drive a Colour or Mono monitor. With Instructions $25.00
With Instructions and sound £35.00}
The Probe:
A temperature measuring device which attaches to the Joystick port of your CoCo $39.95
or T1000, or to the joystick port of your CoCo Max.
Comes with programs 1o start you thinking, and is supported monthly in Australlan CoCo
magazine.
SOFTWARE
Magazines:
Australlan Ralibow Magazine — THE magazine for advanced CoCo users!
Australlan CoCo Magazine — THE magazine for the new user of a Tandy computer.
Also suits owners of CoCos, MC 10s, Tandy 1000s, 100s, 200s & 2000s.
Back Issues: Australian Rainbow 1986 | $4.50
Australlan Rainbow Magazine. (Dec '81 to now.) Please Note: Some months out of stock. 19821985 $2.50
Australlan CoCo Magazine. (Aug '84 to now.) lease Note: Some months out of stock. Australian CoCo 1986 | 33.7

Sept 1984—1985| $3.00
'85) each| $1.
Australian MiCo Magazine. For Tandy MC 10 computers. (Dec '83 to Jul '84) each| $2.00
Australlan GoCo Magazine. For Tandy Mode! 100 users. (Jul ‘83 to Jul '84) each| $1.50
CoCoOz, on Tape or Disk:
The programs you see listed In Australian CoCo Magazine are avallable on CoCoOz! gzg’;;f;’"’on & moiittis Sigﬁ
No laborlous typing — just (C)LOAD and Gol 12 months $75.00
Each DISK $10.95
Back Issues of CoCoOz are always available Subscription on disk, 12 months | $102.50
Rainbow on Tape, or Disk:
A 4 Each Tape $15.00
Australian. The programs you see listed In Australlan Rainbow Magazine are avallable on
tape. A boon If you don't understand the language! Subscription, 12 months $144.00
American. We also supply the programs found In American Rainbow on tape. NEW for 1986 ONLY Each DISK | $15.00
Please specify either Australian or American. Subscription on disk, 12 months | $172.00
MiCaOz:
The programs in the MiCo section of Australlan CoCo Magazine. (For MC 10 computers | Each Tape $9.50
only) Subscription, 12 months $75.00
Back Issues of MICoOz are always avallable,
GOLDDISK 1000 — programs from ‘soltgold’ for your Tandy 1000 on disk $10.95
CoColink:
CoColink Is our Bulletin Board which you can access with any computer If you have a 300 | Subscription to CoCollnk,
baud modem and a sultable terminal program. There Is a free visitor's facility, | 12 months $29.00
alternatively membership entitles you to greater access of the many liles avallable.
We can also be contacted through Viatel (Telecom).
Books:
HELP: A quick reference guide for CoCo users. $9.05
BYTE: Guide for new CoCo users. $4.00
MiCo HELP: A quick reference for owners of MC 10 compulters. $9.95
Othello: by Darryl Berry
The board game for your CoCo. Tape 16K ECB $15.95
Say the Wordz: by Oz Wiz & Pixel Software
Two curriculum based speller programs for your Tandy Speech/Sound Pack. Tape 32K ECB $29.95

Bric a Brac:

Blank tapes 12 for $18.00 or $1.70 each
Cansette Oases L. iiissoisisssserssiissssroons 12 for $3:50

Disks .. (They workl) $3.50 each or $29.50 per box of 10.

HOW TO ORDER

Option 1: Use the subscription form in this magazine.
Option 2: Phone and have ready your Bankcard, Mastercard or Visa number.

Option 3: Leave an order on Viatel or CoColink, but be sure to Include your Name, Address, Phone Number, Credit
Card Number and a clear Indication of what you require, plus the amount of money you are authorising us to bill you.

July, 1986, Ausstraiian RAINBOW

Page 63

The Beslt ol CoCoOz:
Best of Co EDUCATION
Best of CoCoOz #1. Ta 10.00
ROADOQRNZ i o oo ROB WEBB MARKET ouinavisesiszsys ALEPH DELTA pe $10
HANGMAN ALEPH DELTA TOWNQUIZ RoBwess | Disk $21.95
AUSTGEOG P. THOMAS ALPABETAccvueicanssas RON WEBB
SPELL :..oiivvaniassnsvrass IAN LOBLEY TANK ADDITION DEAN HODGSON
FRACTUT ROBBIE DALZELL TABLES ..:oosnsinac BARRIE GERRAND
1501 T S S BOB WALTERS KIDSTUFE; JOHANNA VAGG
TAXMAN: . o d it s s TONY PARFITT FLAGQUIZ ROBWEBB
Best of CoCoOz #2 part 2. 32K GAMES. Tape $10.00
TREASURE DAVISON & GANS SHOOTING GALLERY TOM DYKEMA Disk 5
MASTERMIND" GRAHAMJORDAN ~ GARDEN DAVE BLUHDORN | DIs $21.9
ANESTHESIA MIKE MARTYN YAHTZEE . .« cvorreconsoos KEVIN GOWAN
OREGON TRAIL DEAN HODGSON BATTLESHIP CHRIS SIMPSON
ADVENTURE STUART RAYNER ANDROMIDA MAX BETTRIDGE
Best of CoCoOz #2 part 1. 16K GAMES. Tape $10.00
REPAS S ottt v as Sisa Wrongsoft ~ PYTHON0ooirinininnnins ?
COCOMIND STEVE COLEMAN GRAHAM & MATTHEWS | Disk $21.95
OISLICK cisivasainiina JEREMY GANS SPEEDMATH DEAN HODGSON
CCMETEOR BOB THOMSON LNDATTCK ALDO DEBERNARDIS
BATTACK . ..cvo000mveesse JEREMY GANS INVADERS DEAN HODGSON
PROBDICE . . .ic oo 808 DELBOURGO L E B o S SRS TONY PARFITT
CHECKERS: oucivssaninais J & JGANS FOURDRAW JOHANNA VAGG
Bes! of CoCoOz #3. UTILITIES. Tape $10.00
PAGER . o558 s st et e gaess aiaths COPYDR THOMAS SZULCHA Disk $16.00
L PR e e ALEX. HARTMANN ABEVERN e i J.D.RAY | LIS y
SPOOLBAK ...ouuvavinn WARREN WARNE o | S TOM DYKEMA
CREATITL BRIAN FERGUSON MONITOR + BRIAN FERGUSON
EASTEXY: ; oosi00 01000 ne o e aTduSicsoe b 0Z-Wiz BEAUTY incaninsssnmin st ot BOBT
DATAGEN ...ovcosvosoase ROBIN BROWN | 258 R S e B. DOUGAN
SPEEDCIRc000 PAUL HUMPHREYS RAMYEST .. s sama e TOM DYKLEMA
PRNTSORT PAUL HUMPHREYS DISKFILE . oo ocvosininsosve B. DOUGAN
a1t a0 Y | R SRS e N BOBT LABEL uuvsasussmvasiss F. BISSELING
IR s crenmarins s PAUL HUMPHREYS
Besl of CoCoOz #4. BUSINESS Tape $10.00
.................. ALEX. HARTMANN PERSMAN PAULHUMPHREYS
(Dlsk Directory manager) (Personal finance management) Disk $21.95
BANKSTAT BARRY HATTAM OO s sivicnazonive GRAHAM MORPHETT
(Statement annal & store) (Sales Invcicing-tape sys)
IMSURE: ;... v ROY VANDERSTEEN COCOFILE BRIAN DOUGAN
(Analyse home contents) (Tape dala base)
SPOOL64K WARREN WARNE BEMS: coanevisuisss PAUL HUMPHREYS
(Pnnler spooler req 64K) (Disk Program Management Sys)
o T WARREN WARNE QOKGRBRY: ... oooonivese RAY GAUVREAU
(Hold 2 sep progs In mem) (40K Basic for grey 64K CoCo)
DATABASE PAUL HUMPHREYS TAXATION . oo st s R e i Ee ?
(THE 1ape database) (Caic tax payable)
RESTACCxn v asivmennvasin DUNG LY SPDSHEET GRAHAM MORPHETT >
(Tape restruant accounts) {Disk 22 coloum spreadsheel) Spec]als
PRSPDSHT GRAHAM MORPHETT ACS usanisasindaiasasta GREG WILSON
(Disk print out SPDSHEET) (Multi disk data base) Any two tapes $17.00
- Any 3 tapes $20.00
Best of CoCoOz #5. Adventure Games
Best of CoCoOz #6. Preschool Education .
Coming in July — Best of CoCoOz #7, Grafix! Two Disks or more each $16.00

"Best of"
ALL disks $16.00ea
or 2 @ $14.00ea

Best of Education (#1)
now

Series;

O30 Cassettes .20c¢ ea!! $6.50 tape only.

Best of Games Pt 1, 16K Cames
now

(Minimum order $6.00)

$6.50 tape only.
1981 & 1982 For Sale!!

Dec 81, Mar 82, Sep 82, July Only:

Oct 82, Dec 82. The CoCoConnection $185.00
Just a few issues left!
Quick!! Once they’re gone,

Avatlable only from Goldsoff
they’re gone! $1.00ea

PO BOX 1742
Southport. QL. 4215,

Avctralian RAINMHIW

S

roup Lontact

(Stop between numbers = b.h. else
a.bh.; but, hyphen between = both.)
ACT:
CANBERRA KTH JOHN BURGER 062 58 3924
CAKNBERRA STH LES THURBOR 062 88 9226
NEV:
SYDFEY:
BAFRKSTOVN CARL STERN 02 646 3619
BEKSTWN VEST ARTH PITTARD 02 72 2881
BLACKTOVN KEITH GALLAGHER 02-627-4627
CARLINGFORD ROSKO MCKAY 02 624 3353
CHATSWOOD BILL O’ DONKELL 02 419 6081
CLOYTON HERMAF FREDRICKSON 02 6236379
GLADESVILLE MARK ROTHVELL 02 817 4627
HILLS DIST ARTHUR SLADE 02 622 8940
HORNSBY ATHALIE SNART 02 848 8830
KENTHURST TOX STUART 02 654 1610
LEICHHARDT STEVEN CHICOS 02 560 6207
or GORGE ECHEGARAY 02 560 9664
LIVERPOOL LEONIE DUGGAR 02-607-3791
NACQUARIE FIELDS
BARRY DARNTOR 02 618 1909
ROSEVILLE KEN UZZELL 02 467 1619
SUTHERLARD IAN ANNABEL 02 528 3391
SYDNEY EAST JACKY COCKINOS 02 344 9111
ALBURY RON DURCAE 060 43 1031
ARKIDALE DOUG BARBER 067 72 7647
BLAXLAND BRUCE SULLIVAR 047 39 3903
BROKEN HILL TERRY FOONAN 080 88 2382
CAMDER KEVIN VINTERS 046.66.8068
COFFS HARBOUR BOB KENKY 066 51 2205
COOMA ROSS PRATT 0648 23 065
COORANBONG GEORGE SAVAGE 049 77 1054
COOTAMURDRA CHERYL WILLIS 069 42 2264
DESILIQUIN VAYRE PATTERSON 058 81 3014
DUBBO GRAEME CLARKE 068 89 2095
or XIKE NUNRO 068-82-5011
FORBES JOHANNA VAGG 068 52 2943
FORSTER GARY BAILEY 065 54 5029
GOSFORD PETER SEIFERT 043 32 7874
GRAFTON PETER LIFDSAY 066 42 2503
GUYRA KICHAEL J. HARTMANN 067 79 7547
JUREE PAUL MALOKEY 069 24 1860
KENPSEY RICK FULLER 065-62-7222
LEETON BRETT WALLACE 069-53-2081
LISMORE ROB HILLARD 066 24 3089
LITHGOV DAVID BERGER 063 52 2282
KAITLARD BILL SROV 049 66 2557
NOREE ALF BATE 067 52 2465
MUDGEE BRIAN STONE 063-72-1958
NAXBUCCA HDS VEKDY PETERSON 065 68 6723
NARROXINE GRAEME CLARKE 068 89 2095
BEVCASTLE LYN DAVSON 049 49 8144
FOVRA ROY LOPEZ 044 48 7031
ORAKGE JIN JAKES 063 62 8625
PARKES DAVID SNALL 068 62 2682
PORT NACQUARIE ROF LALOR 065 83 8223
SPRINGVOOD DAVID SEAMONS 047 51 2107
TAMVORTH ROBERT VEBB 067 65 7256
TAHMOOR GARY SYLVESTER 046 81 9318
UPPER HUNTER TERRY GRAVOLIN 065 45 1698
URALLA FRANK MUDFORD 067 78 4391
VAGGA VAGGA CES JENKINSOF 069 25 2263
VYONG JOHN VALLACE 043 90 0312
NT:
DARVIN BRENTON PRIOR 089.81.7766
QLD:
BRISBANE:
BIRKDALE COLIN NORTH 07 824 2128
BRASSALL BOB UNSVORTH 07 201 8659
EAST ROB THOMPSOR 07 848 5512
IPSVICH XILTOR ROVE 07 281 4059
NORTH JACK FRICKER 07 262 8869

SPECIAL INTEREST GROUPS

07 269 5000 | E——

079.82.6931 BUSINESS:
BRIZBIZ BRIAN BERE-STREETER 07 349 4696

PINE RIVERS BARRY CLARKE 07 204 2806
SOUTH VEST BOB DEVRIES 07 375 3161
SANDGATE MARK MIGHELL

SCARBOROUGH PETER MAY 07 203 6723

BIGGENRDEN ALAN MENHAM 071 27 1272

BLACKVATER ARNIE MEIJER

BOVEN TERRY COTTON C/0 077 86 2220

BURDABERG RON SINPKIN C/0 TANDY

CAIRNS GLEN HODGES 070 S4 6583

DALBY ANDREV B. SIMPSON 074.62.3228

GLADSTONE CAROL CATHCART 079 78 3594

GOLD COAST GRAHAM XORPHETT 075 51 0015

HERVEY BAY LESLEY HORVOOD 071 22 4989

EACKAY LEN MALONEY 079511333x782

MARYBOROUGH FNORM VWINN 071 21 6638

NT ISA PAUL BOUCKLEY-SIMONS 077 43 6280

MURGON PETER ANGEL 071 68 1628

ROCKHAMPTON KEIRAN SIMPSOF 079 28 6162

TARA STEVEN YOUNGBERRY

TOOVOOMBA GRAHAM BURGESS 076 30 4254

TOVESVILLE JOHN O'CALLAGHAN 077 73 2064

VHITEROCK GLEN HODGES 070 54 6583

SA:

ADELAIDE JOHN HAIRES 08 278 3560
NORTH STEVEN EISENBERG 08 250 6214
GREERACRES BETTY LITTLE 08 261 4083
MORPHETTVALE KEN RICHARDS 08 384 4503
PORT NOARLUNGA ROB DALZELL 08 386 1647
SEACOMBE HTS GLENN DAVIS 08 206 7477

PORT LINCOLF BILL BOARDMAN 086 82 2385

PORT PIRIE KEVIN GOVAN 086 32 1368

VHYALLA MALCOLN PATRICK 086 45 7637

TAS:

HOBART BOB DELBOURGO 002 25 3896

K 1KGSTON- VIN DE PUIT 002 29 4950

VYNYARD ANDREV VYLLIE 004 35 1839

vVIC:

NELBOURNE:

MELBOURNE CCC JOY VALLACE 03 277 5182
DANDEFONG DAVID HORROCKS 03 793 5157
DONCASTER JUSTIN LIPTOR 03 857 5149
FRANKSTON BOB HAYTER 03.783.9748
NARRE VARREF LEIGH EANES 03 704 6680
NTH EASTERN KEVIN KAZAZES 03 437 1472
NELTON MARIO GERADA O3 743 1323
RINGVOOD IVOR DAVIES 03 758 4496
SUNBURY JACK SNIT 03.744.1355

BAIRNSDALE COLIN LEHMANN 051 S7 1545

BALLARAT ¥ARK BEVELANDER 053 32 6733

CHURCHILL GEOFF SPOVART 051 22 1389

EMERALD LEIGH EAMES 059 68 3392

GEELOKG DAVID COLLEN 052 43 2128

HASTINGS MICHEAL MONCK 059 79 2879

MAFFRA NAX HUCKERBY 051 45 4315

MOE JIMNY VELSH 051 27 6984

MORVELL GEORGE FRANCIS 051 34 5175

SALE BRYAN McHUGH 051 44 4792

SHEPPARTON ROSS FARRAR 058 25 1007

SHYTHESDALE TONY PATTERSON 053 42 8815

SVAR HILL BARRIE GERRAND 050.32.2838

TORGALA TONY HILLIS 058 59 2251

TRARALGON NORRIS GRADY 051 66 1331

WONTHAGGI LOIS O'MEARA 056 72 1593

YARRAVORGA KEN SPONG 057 44 1488

WA:
PERTH TAN MACLEOD 09 448 2136
KALGOORLIE TERRY BURKETT 090.21.5212
CAKADA - CoCo:
Ontario Richard Hobson 416 293 2346

059 GROUPS:
FATIONAL 0S9 USERS' GROUP

GRAEME NICHOLS 02 451 2954

NSV

SYDNEY
BANKSTOVR CARL STERN 02 646 3619
CARL [NGFORD ROSKO NCKAY 02 624 3353
GLADESVILLE MARK ROTHWELL 02 817 4627
SYDREY BAST JACKY COCKINOS 02.344.9111
COOMA FRED BISSELING 0648 23263
QLD
BRISBAKE JACK FRICKER 07 262 8869
vIC
LATROBE VLY GEORGE FRANCIS 051 34 5175
VA
KALGOORLIE TERRY BURNETT 090.21.5212
MC-10 GROUPS:
LITHGOV DAVID BERGER 063 52 2282
ORANGE DAVID KEXP 063 62 2270
PORT LINCOLE BILL BOARDMAK 086 82 2385
ROCKHAMPTON TIN SHANK 079 28 1846
SYDNEY RAJA VIJAY 02 519 4106
VARRNAMBOOL GARY FURR 055 62 7440
TANDY 1000 / MS DOS:
QLD:
BRISBANE
NORTH BRIAN DOUGAR 07 30 2072
SOUTH BARRY CAWLEY 07 390 75946
GOLD COAST GRAHAX MORPHETT 075 51 0015
vViC:
KELBOURNE TONY LLOYD 03 500 0878
HSV:
GLADESVILLE MARK ROTHVELL 02 817 4627
SYDNEY WEST ROGER RUTHER 047.39.3903
VYONG JOHN WALLACE 043 90 0312
FORTH:
BRISBANE JOHN POXON 07 208 7820
PORT LINCOLNR JOHN BOARDNAK 086 82 2385
SYDNEY JOHN REDMOND 02 85 3751
ROBOT ICS:
BOVEN TOKY EVANS 077 86 2220
GOLD COAST GRAKAM MORPHETT 075 51 0015
TANVORTH ROBERT VEBB 067 65 7256
WAGGA WAGGA CES JENKINSON 069 25 2263
CHRISTIAN USERS' GROUP:
COLLIE RAYMOND L. ISAAC 097 34 1578
300 BAUD BULLETIN BOARDS
SYDNEY:
INFOCENTRE 02 344 9511
TANDY ACCESS 02 625 8071
THE COCO - CONNECTION 02 618 3591
DAIL DUBBO (6pm - Bam) 068 82 5011
QLD:
CoCoLink 075 32 6370
VA:
coco UG 09 307 1397
1200/75 BAUD TANDY INFORMATION
VIATEL:
GOLDLINK 6428

e

GOLDLINK

a Goldsoft Service
on

IATEL

AUSTRALIAN RAINBOW MAGAZINE
Registered by Australia Post —
Publication No. QBG 4009
AUSTRALIAN CoCo / softgold
Publication No. QBG 4007

P.O. BOX 1742

SOUTHPORT. QLD. Australia. 4215.

*0642 #

POSTAGE
PAID
AUSTRALIA

