Our BUMPER
Business Issue
pLUS

Advice for disc tinkerers

Animation 0S9 Recipe Maker
and GAMES

7,

COMPUTERWA
FOR\MICROS.

welcomahere

Peter Collison [[j

11 Grantley A
Rostrevorys.lxesrbu?%
Phone: (08) 3366588

1 : 6
059/00‘5 : Pages) . Sw R (print dir)

ncluded) . va
A COMPREHENS)vE :) ' UNNEv‘v 11, var2)

LY ANUAL 2
ONLY $44.95 ‘_“;ﬂ:cH MORE

« LOWER CASE KIT*®

"lh? LOWER CASE PLUS

REVERSE vIDEO ‘

Now with dual 57 and 702
characters. youf coL

BURNER 10 put in your own

special

SUPER BACK UP
UTILITY ©

. WITHSB.U. FROM
COMPUTIZE YOU'LL
NEVER NEED ANOTHER
BACK-UP UTILITY FOR
YOUR CO-COIll!

1. Tape to Tape
2. Tape to Disk
3. :)?‘o Relocate
4. Disk to Tape
¢ASY TO USE - .': ghh l(;)[)‘irk ;
NS. enu Driven
\NsmUC‘;O” . L 1C S THE o:\ny‘o\-" ¢ Requires 32K
es ONLY 3% ience ! gxtended Co-Co
* Requires 1012 Drives
* All Machire Language!!!
s e o ONLY S49.95°°°
(SUPI’lIED ON DISK)

music *
n: 000 noted "\.'\' S
1) e;p\anallons, hints,

g 0¥ sely)

' |Nc

L

o
< 0& @x,’—‘
b e 0_ -3
Oo -
évw BY

WHAT’S HAPPENING:- Tutorials on
Advanced BASIC, Basic BASIC,
Educational use of computers, OS9, MS
DOS/GW BASIC, FORTH, The
CoCoConnection HARDWARE mods
include:- high K upgrades
(128,256,512,1mb) AND THAT'S JUST
SATURDAY!! Saturday night we have
our dinner and prize session. (this is
included in your registration fee)
SUNDAY continues with MORE tutorials
plus the opportunity to browse/buy the
large range of software and hardware
available for the CoCo and T1000. There
will be lots of bargains!

SPEAK UP!:- Now is your chance to
suggest your ideas for any tutorials we
may not have mentioned. (participants
only).

LOCATION:-

SEAGULLS RUGBY LEAGUE CLUB
TWEED HEADS.

DATE:- Sat 30th & Sun 31st August 1986.

¢
T6A MURPHY ST.BLAXLAND 2

e i i i
COCOCONF 86

BiLHRDER

BHFIEEFIFID

ekl EONE
TT4

REGISTER NOW!!

We can only accept a limited number of
people this year. DON’T MISS OUT! on a
top weekend of FUN, FRIENDSHIP and
LEARNING.

Name:

Phone:
No. People attending:

$39.95 per person/1st family member
$20.00 per additional family member
$9.95 dep. balance by 15/8/86

Cost includes:- tutorials, dinner Sat.

night, morning and afternoon tea.

Tutorials likelytoattend:

....................................

Please find enclosed:
chq/money order/bankcard/visa/mastercard

GAPI NG, i siviim voh s oimissm S 539 Sk
OIINBMATBE 5 siinss b T s e someian s

|

GOLDSOFT

Hardware & Software for your TANDY computer.

HARDWARE

The CoCoConnection:

Connect your CoCo to the real world and control robots, models, experiments, burglar alarms, water reticulation systems —

most electrical things.

Features two MC 6821 PIAs; provides four programmable ports; each port provides eight lines, which can be programmed as
an input or output; comes complete with tutorial documentation and software; supplied with LED demonstration unit.
Switchable memory addressing allows use with disk controller or other modules via a multipack interface; plugs into
Cartridge Slot or Multipack, uses gold plate connectors; a MUST for the hardware designer and debugger!

$206.00
Video-Amp:
Connects simply to your CoCo to drive a Colour or Mono monitor. With instructions $25.00
With instructions and sound $35.00
The Probe:
A temperature measuring device which attaches to the joystick port of your CoCo $49.95
or T1000, or to the joystick port of your CoCo Max. With amplifer $59.95
Comes with programs to start you thinking, and is supported monthly in Australian CoCo
magazine.
SOFTWARE
Magazines:
Australian Rainbow Magazine — THE magazine for advanced CoCo users!
Australian CoCo Magazine — THE magazine for the new user of a Tandy computer.
Also suits owners of CoCos, MC 10s, Tandy 1000s, 100s, 200s & 2000s.
Back Issues: Feb ‘85 through $4.80
Australian Rainbow Magazine. (Dec '81 to now.) through Jan '85 $2.50
Australian CoCo Magazine. (Aug '84 to now.) each $3.45
CoCoBug Magazine. For CoCo — usually 8 programs in each magazine. (Sep "84 to Oct
'85) each $1.00
Australian MiCo Magazine. For Tandy MC 10 computers. (Dec '83 to Jul '84) each $2.00
Australian GoCo Magazine. For Tandy Model 100 users. (Jul '83 to Jul '84) each $1.50
CoCoOz, on Tape or Disk:
The programs you see listed in Australian CoCo Magazine are available on CoCoOz! g:g’;;?p‘:?on i sig&
—_— | y !
No laborious typing — just (C)LOAD and Go! 12 months $75.00
Each DISK $10.95
Back issues of CoCoOz are always available Subscription on disk, 12 months | $102.50
Rainbow on Tape, or Disk:
Australian. The programs you see listed in Australian Rainbow Magazine are available on gagh T;a;}e i3 & sﬂ‘:’gg
tape. A boon if you don't understand the language! ubscription, 12 months ;
American. We also supply the programs found in American Rainbow on tape. NEW for 1986 ONLY Each DISK $15.00
Please specify either Australian or American. Subscription on disk, 12 months | $172.00
MiCoOz:
The programs in the MiCo section of Australian CoCo Magazine. (For MC 10 computers | Each Tape $9.50
only) Subscription, 12 months $75.00
Back issues of MiCoOz are always available.
GOLDDISK 1000 — programs from ‘softgold’ for your Tandy 1000 on disk $10.95
CoColink:
CoColink is our Bulletin Board which you can access with any computer if you have a 300 | Subscription to CoColink,
baud modem and a suitable terminal program. There is a free visitor's facility, | 12 months $29.00
alternatively membership entitles you to greater access of the many files available.
We can also be contacted through Minerva (OTC) and Viatel (Telecom).
Books:
HELP: A quick reference guide for CoCo users. $9.95.
BYTE: Guide for new CoCo users. $4.00
MiCo HELP: A quick reference for owners of MC 10 computers. $9.95
Othello: by Darryl Berry
The board game for your CoCo. Tape 16K ECB $15.95
Say the Wordz: by Oz Wiz & Pixel Software
Two curriculum based speller programs for your Tandy Speech/Sound Pack. Tape 32K ECB $39.95

Bric a Brac:
Blank tapes . .. 12 for $18.00 or $1.70 each.
Cassette cases . . . 15 for $5.00.
Disks ... (they work!) $3.50 each or $28.95 per box of 10.

HOW TO ORDER

Option 1: Use the subscription form in this magazine.
Option 2: Phone and have ready your Bankcard, Mastercard or Visa number.

Option 3: Leave an order on Viatel, Minerva or CoColink, but be sure to include your Name, Address, Phone Number, Credit
Card Number and a clear indication of what you require, plus the amount of money you are authorising us to bill you.

Info

How To Read Rainbow

Please note that all the BASIC program
listings you find in THE RAINBOW are
formatted for a 32-character screen —
so they show up just as they do on your
CoCo screen. One easy way to check on
the accuracy of your typing is to com-
pare what character “goes under” what.
If the characters match — and your line
endings come out the same — you have
a pretty good way of knowing that your
typing is accurate.

We also have "key boxes" to show you
the minimum system a program needs.
But, do read the text before you start
typing.

Finally, the little cassette symbol on
the table of contents and at the begin-
ning of articles indicates that the pro-
gram is available through our RAINBOW
ON TAPE service. An order form for this
service is on the insert card bound in the
magazine.

What's A CoCo

CoCois an affectionate name that was
first given to the Tandy Color Computer
by its many fans, users and owners.

However, when we use the term
CoCo, we refer to both the Tandy Color
Computer and the TDP System-100
Computer. It is easier than using both of
the “given” names throughout THE RAIN-
BOW.

In most cases, when a specific com-
puter is mentioned, the application is for
that specific computer. However, since
the TDP System-100 and Tandy Color
are, for all purposes, the same computer
in a different case, these terms are
almost always interchangeable.

The Rainbow Check Plus
G

The small box you see accompanying
a program listing in THE RAINBOW is a
“check sum" system, which is designed
to help you type in programs accurately.

Rainbow Check PLUS counts the
number and values of characters you
type in. You can then compare the
number you get to those printed in THE
RAINBOW. On longer programs, some
benchmark lines are given. When you
reach the end of one of those lines with
your typing, simply check to see if the
numbers match.

To use Rainbow Check PLUS, type in
the program and CSAVE it for later use,
then type in the command RUN and press
ENTER. Once the program has run, type
NEWand ENTER to remove it from the area
where the program you're typing in will
go

Now, while keying inalisting trom THe
RAINBOW, whenever you press the down-
arrow key, your CoCo gives the check
sum based on the length and content of
the program in memory. This is to check
against the numbers printed in THE
RAINBOW. If your number is different,
check the listing carefully to be sure you
typed in the correct BASIC program code
For more details on this helpful utility,
refer to H. Allen Curtis’ article on Page
21 of the February 1984 RAINBOW.

Since Rainbow Check PLUS counts
spaces and punctuation, be sure to type
in the listing exactly the way it's given in
the magazine.

10 CLS:X=256*PEEK(35)+178
20 CLERR 25,%-1
3@ X=256*PEEK (35)+178
40 FOR 2=X TO X+2?
SO READ Y:W=W*+Y:PRINT 2,Y:W
6@ POKE 2,Y:NEXT
70 [FW=79BSTHENBRELSEPRINT

“DATA ERROR":STOP
80 EXEC X:END
9@ DRTA 182, 1, 106, 167, 140, 6@, 134
100 DATA 126, 183, 1, 106, 190, 1, 107
110 DATA 175, 140, S0, 48, 140, 4, 191
120 DATA 1, 107, 52, 129, 10, 38, 38
130 DRTA S2, 22, 79, 158, 25, 230, 129
140 DRTR 39, 12, 171, 128, 1721, 128
150 DATA 230, 132, 38, 250, 48, 1, 32
160 DATA 240, 183, 2, 222, 48, 140, 14
170 DATA 159, 166, 166, 132, 26, 254
180 DATA 189, 1273, 198, S3, 22, 126, @
190 DATAR @, 135, 255, 134, 49, 5SS
200 DARTA 51, 52, 41,0

Using Machine Language

Machine language programs are one
of the features of THE RAINBOW. There are
a number of ways to “get” these pro-
grams into memory so you can operate
them.

The easiest way is by using an editor/
assembler, a program you can purchase
from a number of sources.

An editor/assembler allows you to
enter mnemonics into your CoCo and
then have the editor/assembler assem-
ble them into specific instructions that
are understood by the 6809 chip that
controls your computer.

When you use an editor/assembler, all
you have to do, essentially, is copy the
relevantinstructions from THE RAINBOW'S
listing into CoCo.

Another method of getting an assem-
bly language listing into CoCo is called
‘hand assembly.” As the name implies.
you do the assembly by hand This can
somelimes cause problems when you
have to set up an ORIGIN statement or
an EQUATE. In short, you have to know
something about assembly to hand-
assemble some programs.

Use the following program if you wish
to hand-assemble machine language
listings:

10 CLEARZ2QQR,2H3FQQ: 1=2LH3FBO
20 PRINT “ADDRESS: ":HEXS(1):
30 INPUT "BYTE “:8%

49 POKE I ,VAL[“2H"+BS)

S0 1=1+1:G070 20

This program assumes you have a 16K
CoCo. If you have 32K, change the
&H3FOQ in Line 10 to 2H?F @@ and change
the value of 1 to &H?FB0.

Founder Greg Wilson
Publishers Graham & Annette Morphett
Managing Editor Graham Morphett
Accounts Annette Morphett
Assistand Editor Sonya Young
Advertising Tracey Yapp
Art Jim Bentick
Sub Editors
Assembly Language: Kevin Mischewski
MC-10: Jim Rogers
softgold: Barry Cawley
Forth: John Poxon
0S-9: Jack Fricker
Special Thanks to
Brian Dougan, Paul Humphreys,
Alex Hartmann, Michael Horn,
Darcy O'Toole, Martha Gritwhistle,
Geoff Fiala, John Redmond
and Mike Turk.

Phones: (075) 51 0577 Voice
(075) 32 6370 CoColLink
Deadlines:
7th of the procedding month.
Printed by:
Australian Rainbow Magazine
P.O. Box 1742
Southport. Qld. 4215.
Registered Publication QBG 4009:
This material is COPYRIGHT. Magazine
owners may maintain a copy of each
program plus two backups, but may NOT
provide others with copies of this magazine
in ANY form or media.

Before you read
subscriber, please check your mailing label.

Ve've been working on some of the glitches in our
database, and as part of this task, have reallocated
many numbers.

As a reminder, your subscriber's number is the
number in the top left hand area of the mailing
label. Then follows the renewal dates for the
various items to which you subscribe. Ve replace the
'8' 1in '86' with a code letter, except if you only
receive Australian Rainbow Magazine. Some of the
more usual code letters include

B - Both Australian Rainbow & Australian CaCo
1 - Australian CoCo

C - CoCo0z

R - Australian Rainbow on Tape.

0f course we supply many more items than these on
subscription, more details can be found on the
Goldsoft pages towards the end of this magazine.

Ve've been having a bit of a tidy up this month -
not just with the Data Base but alsoc with some of
our equipment.

COMPUTER
STATIONERY
SUPPLIES

Continuous Computer Paper
WE CATER FOR SMALL & LARGE
ORDERS
NONE TO SMALL, PLAIN OR PRINTED

Dust Covers
Continuous Labels
Diskettes - Head Cleaners
Adhesive Tapes
Post-It-Products
Ribbons and Tapes

FREE DELIVERY ANYWHERE IN
SYDNEY

PHONE RICK OR JEAN
R & J DISTRIBUTORS
CNR ELIZABETH DRIVE &
ROSLYN ST LIVERPOOL
(02) 601 1319 A/H 602 2396

[have two grey case CoCo's here, neither works
well. One merges programs automatically, and
probably does other nasty things too; the other is
just weird. Both are fitted with Video Amps.

Ve've decided to make these avallable to
only

HACKERS
at $160 each. If you are not into hardware and

solder and chips and that sort of gear, don't even
ask.
Ve also have a pair of Remex double sided drives

for sale. One works, the other I would only use
spares.

Remex drives are a bit strange, but they are good
gear if you know your hardware. Again, we would only
be interested in selling these to someone who knows
what he/she is doing, for $200 the pair.

Ve have a couple of printers to sell too. However
as these will not be released from their current
duties for another month or so, I will advise you of
these next month.

for

CoCoConf'86 plans are starting to gel.

It appears that Education will be a major tutorial
area on its own this year, as will the XS DOS /
T1000 section.

The whole thing seems to be growing very quickly
around me - and | confess a little surprise at the
keen attitude of many wha have already booked to
come.

Ve did have a great time last year,
last year’'s participants have
strength of that meeting.

I will, in fact, be finalising the 1list of
tutorials and tutorial leaders for publication next
month.

The latest tutorial to be offered is one by Bob
Delbourgo, whose subject will be "The Use of CoCos
in Education”. This is a tutorial anyone with even a
remote interest in Education will not want to miss!

On the commercial side, a number of suppliers have
committed themselves to being at CoCoConf'86,
{ncluding The Computer Hut from Bowen, Paris Radio,
Queensland Colour Software Supplies, and Geoff Fiala
(who makes THE printer interface for CoCo!).

So how about it?

The conference is on,
the year to be somewhere

and many of
booked just on the

it is on at a great time of
else, and 1if you come,
you're going to see some of the most interesting and
inovative gear available. You'll also learn {rom
Australia's foremost CoCo teachers; and you'll get
the chance to meet many of the famous contributors
to the CoCo scene.

Vhat's more, the venue is one which draws visitors
back to the coast year after year.

You can't miss this year - reserve your place - we
need to know now if you are going to be here!

Finally, our zanny mate Andrew Vhite, has come up
with a few suggestions for those- who own a Commodore
64 and don't quite know what to do with it. Andrew
has some ideas for interfacing it to the real world.

Look for Andrew's timely hints in next month's
Australian CoCo!

FAGE 4

Australian

RA]NED&J april 1728,

EDUCATION OVERVIEW

Educating with
Electronic
Communications

and Research

By Michael Plog, Ph.D.

hour on the Delphi teleccommunica-

tions network, I strongly encourage
you to take advantage of this offer from
THE RAINBOW. Like many of you, I have
been playing around with Delphi for a
while now, trying to learn the shortest
way to get from one point to another.

The folks who created the Delphi
system must have been poets, because
the name itself implies majesty, mystery
and a reference to answers. “Delphi”
was a special place to the ancient
Greeks. It was the most important
Greek temple and home of the oracle of
Apolio. Also, the Greeks considered
Delphi to be the center of the world. In
the temple itself, a stone marked the
exact spot of the world’s center, called
the “navel.”

The term “oracle” is actually a Latin
word, not Greek. Traditionally, the
oracle at Delphi belonged first to
Mother Earth. Apollo either stole the
oracle or was given it by Mother Earth.
The medium of the oracle (the person
actually doing the speaking) was always
a woman over 50. The procedures to
obtain an answer from the oracle were
complex and rigid. A “reading” could
only be given at certain times of the
year. A ritual cake was required, along
with a sacrificial animal conforming to
rigorous physical standards.

The oracle and her consultants
bathed in a special spring, drank from
a sacred stream, then entered the tem-
ple. The oracle went to a basement cell
in the temple, sat on a sacred tripod and
chewed leaves of the laurel tree (this was
Apollo’s special tree). While sitting and
chewing on the leaves, the oracle would

In case you have not tried your free

speak. Her words, however, were not
given directly to the person asking the
question. They were interpreted and
written by the priests, often in highly
ambiguous verse.

Delphi has been continuously inha-
bited since the 14th century B.C. The
height of the oracle’s prestige and
popularity was in the 4th century B.C.

When you stop and think about it, the
present electronic Delphi is somewhat
similar to the ancient oracle. People
approach with a question or a need for
information. It is always helpful to have
a ritual cake (maybe a sandwich, but 1
find it casier to use a cookie). The
sacrificial animal has been replaced
with a plastic credit card, but still
requires rigorous standards. (If you
don't pay, you don't stay.) Your compu-
ter does not have to be in a basement,
but you are figuratively apart from the
rest of the world. The messages we
receive from our electronic oracle are
sometimes ambiguous.

[have learned a few things while on
Delphi, other than about the system
itself. It seems that everyone wants a
RAINBOWfest held in a city close to
where they live. Most of the Color
Computer users responding to a poll
have one or more disk drives. Of the 29
respondents to one poll, 75 percent of
them use more than one disk operating
system for their Color Computer. I have
also read some interesting messages
about modems and operating systems,
and have obtained some public domain
software.

I wonder about educational applica-
tions of Delphi for schools and stu-
dents. It seems that two major applica-

April 1986,

tions can be expected. First is the
communication potential of Delphi.
You can send messages to other people
(perhaps those having some special
expertisc) and share ideas with others of
asimilar interest. The second benefit for
education is the research capabilities of
Delphi.

The idea of communicating with
other people with similar interests is
important for the field of education.
Several bulletin board services exist for
special interest groups in education.
These services connect people with
similar interests and can serve many
functions. For example, local school
districts can send applications for spe-
cial funding to state agencies or foun-
dations by electronic means. One spe-
cial interest group, educators for the
handicapped, has an electronic com-
munications service with one of the
features being updates on proposed
legislation. Subscribers know what is
being discussed in Washington and have
an ideal opportunity to contact their
representatives and encourage a vote
onec way or the other.

Electronic research capabilities have
revolutionized decision making in busi-
ness and government, but not yet in
schools. Delphi has a connection with
a system called DIALOG, a collection
of over 200 databases. Some of these are
highly specialized, technical databases,
such as medical experiments or lega!
search organizations. A person might
want to know how many microcompu-
ters were sold to schools last year;
searching the appropriate database
provides the answer.

The problems involved in using elec-

Australian RAINBOW

S —

PAGE S

EDUCATION NOTES

Building Language
Arts Skills

By Steve Blyn

“Back to basics” skills are the
trend in many school sys-
tems throughout the coun-
try. This renewed emphasis on the
traditional language arts and math
skills is probably the most popular way
computers are currently being used in
schools. These types of programs are
commonly referred to as C.Al. —
Computer-Assisted Instruction.

Way before the age of computers
arrived, there existed many wonderful
skill series of language arts workbooks.
One such series is published by Barnell
Loft. Ltd. These workbooks cover a
wide range of skills, including following
directions, using the context, locating
the answer, getting the facts, getting the
main idea and drawing conclusions.
The individual booklets are available
for the first grade up to high school
level.

Almost every school [have visited
uses some of these skill booklets. I have
used them in my classroom for several
b AN R N A S
Steve Blyn teaches both exceptional
and gifted children, holds two master’s
degrees and has won awards for the
design of programs to aid the handi-
capped. He owns Computer Island and
lives in Staten Island, New York.

years. This month’s program is an all-
purpose language arts program. It is
easily adaptable to any of the ideas
presented in such skill books.

By varying the types of questions, this
program can be geared to any of the
mentioned skill areas. Similarly, the
program can be made suitable for
almost any level by changing the story
content as well as the questions.

One might ask, “Why is it necessary
to replicate on the computer what
already exists in booklet form?” Tsk!
Tsk! There are several very good rea-
sons.

Computers may be presenting similar
material, but through a very different
medium. Children are naturally at-
tracted to computers and sometimes
learn better through them than by
traditional means. Computers have the
ability to give immediate feedback to
the student — you know at every step
of the way whether you are succeeding
or not.

Computers are also impersonal. By
that, 1 dont mean they don’t have any
personality. Morris, my original CoCo,
is very dear to me and has practically
become a family member. (We do cele-
brate his birthday) By impersonal, |
mean they are tireless reformers of

mistakes. They do not complain to the
user, nor do they make any judgments
against the user. It is almost impossible
for a person to remain impartial to
successes and failures as computers do.

The program presents part of the
“Jack and the Beanstalk” story. This is
located on lines 90 and 100. Our story
is merely used as an example. The
choice of story and the grade level for
which it is written should be yours. The
story of Jack was taken from a third-
grade reader.

A series of questions about the story
is placed in the DATA lines 260-390. Our
questions use a scattered approach: They
purposely do not cover any oné specific
skill area. They are meant to illustrate
the variety of questions you may use.
They even go beyond the Barnell Loft
areas mentioned earlier. Your questions
can be as diverse as your imagination or
just remain with one skill area.

Fourteen questions were entered as
illustrations. We chose the number 14 to
show you that we are not limited only
to 10 questions. Often, computer new-
comers think there is something magical
about the number 10 or its multiples.
Not so! A short program such as this
one can have literally hundreds of
questions entered. You must, however,

tronic research are generally cost and
training. The price for using some of the
databases can be very high. Some of the
specialized databases can cost thou-
sands of dollars per year, plus online
connection time. Most schools are not
willing to incur such expenses for stu-
dent projects. Also, each database
requires special procedures for search-
ing. Those procedures can become
complex for the untrained person.

1 believe these problems will be elim-
inated in the near future. The proce-
dures for specialized searching are a
matter of software. Computer profes-

sionals are currently working on new
languages to help the human and ma-
chine understand each other better. The
cost factor may be a little more difficult
to solve. It is expensive to maintain even
a simple database — a lot of time is
required (which must be paid for by
someone). A lot of expensive equipment
is also necessary to provide a database.
The more people who use such systems,
however, the less each will have to pay.

Will we ever reach a time when elec-
tronic communications and rescarch
are common practices for elementary
and secondary students? Will we have,

for example, a sixth-grade student in
Florida writing a report about earth-
quakes, and including as part of that
report, an interview with a California
student who recently experienced an
earthquake?

The future is unknown; our current
Delphi oracles only share present infor-
mation, not future happenings. How-
ever, if you or your school is using
electronic communications or research,
I would like to know about it. Please
share your experiences and efforts. My
Delphi username is MPLOG — why
not drop me a line? O

PAGE &

Austral ianW

B

o 1 -7 50

i'\ipr' il 178&.

tell the computer how many questions
to read. Our number of questions is
indicated in the dimension statcment on
Line 30 and aiso on lines 40 and 50. Be
sure to include the number of questions
you use on those lines.

The program is set to ask 10 of the
story questions each round. Common
sense dictates that rounds come in sets
of 10 questions. Other numbers that
divide evenly into 100 are also good
choices. The questions appear one at a
time and do not repeat in a given round.

Correct answers receive a happy tune

and a message that says “correct” on
Line 210. The incorrect answers, how-
ever, are really the important ones.
Each time a question is answered incor-
rectly, its question and correct answer
are stored in lines 400-420. This makes
possible a review of these questions and
answers. This is similar to a study-
review sheet.

The program handles the review on
lines 430-480. If you have a printer, it
is a good idea to print out the review for
the student’s future reference. To get a
printout, change the PRINT statements

on lines 430, 440 and 460 to PRINTH-
2, statements. You may add these to the
existing lines to get the output on both
the screen and the printer.

It is hoped that you use this program
as a model for incorporating your own
versions. You may create fun programs
to reinforce children’s favorite stories or
programs to strictly strengthen specific
language arts skills. A combination of
the two might b2 the best route to go.
Remember to save each of your versions
on tape or disk before proceeding to
your next creation.

OSUB 4¢8

":PRINTBS$(R)" IS THE ANSWER.";:G

23§ EN$=INKEY$
24p IF EN$=CHRS$(13) THEN 11p

25¢0 GOTO 23@
26¢ DATA IS A COMPOUND WORD, BEAN

The listing: F INDWORD STALK

19 REM"FIND THE WORD" 279 DATA IS A COLOR,GOLDEN

29 REM"STEVE BLYN,COMPUTER ISLAN ?gﬂ DATA HAS AN APOSTROPHE, GIANT
D,NY, 1986

39 DIM AS$(14),BS$(14),XS$(12),Y¥YS$(1 29¢ DATA IS THE OPPOSITE OF HUSB
2) AND,WIFE

4¢ FOR T=1 TO 14:READ A$(T),BS$(T 3¢gP DATA IS GOOD TO EAT FOR BREA
) tNEXT T KFAST, EGGS

58 R=RND(14) 319 DATA MEANS MORE THAN TWO ,TIM
68 XY=RND(-TIMER) ES,THIRD

79 CLS 32¢ DATA MEANS THE OPPOSITE OF S
8¢ PRINT@32,STRINGS(32,287); MALL,GIANT

9% PRINT" JACK CLIMBED THE BEA 33p DATA MEANS THE SAME AS FAST,
NSTALK A SECOND TIME. HE WAS AGA QUICKLY

IN HELPEDBY THE GIANT'S WIFE. TH 34¢ DATA MEANS THE SAME AS A VOY
IS TIME HE TOOK THE HEN THAT LA AGE, TRIP

ID THE GOLDEN EGGS. HE ESCAPED 35¢ DATA IS THE NAME OF AN ANIMA
QUICKLY."; L, HEN

1¢¢ PRINT" JACK PICKED UP THE M 36¢ DATA IS A MUSICAL INSTRUMENT
AGIC HARP ON HIS THIRD TRIP. BUT , HARP

THE HARP CALLED OUT AND WOKE TH 379 DATA IS THE OPPOSITE OF IN,O
E GIANT. THE GIANT BEGAN TO CHA UT

SE JACK." 38¢ DATA THAT .APPEARS MOST OFTEN
119 N=N+1 ABOVE, THE

12 PRINT@@,"N=";N;" *% JA 399 DATA THAT IS USED 4 TIMES,JA
CK ** R=":CR; CK

13¢ IF N>1f THEN GOTO 43p@ 4pp X$(J)=A$(R):Y$(J)=B$(R)

148 PRINT@352,STRINGS (32, (RND(12
8)+127));

158 PRINT@416,STRINGS (95," ");
16§ PRINT@384,"TRY TO FIND THE W
ORD THAT..."

179 IF R>13 THEN R=p

18¢ R=R+1

199 PRINTAS (R)

2¢9 INPUT C$

21p IF C$=BS$(R) THEN PLAY"L1@@CE

GCEGCC" : PRINT"CORRECT. PRESS ENT
ER TO GO ON";:CR=CR+1

229 IF C$<>B$(R) THEN PLAY "L4CC

419 J=J+1

42¢ RETURN

439 CLS:PLAY"CDEFG":PRINT"HERE I
S YOUR REVIEW"

449 IF CR=1f THEN PRINT:PRINT"VE

RY GOOD ...

1¢@%" :GOTO 499

459 FOR K=g TO J-1

468 PRINT K+1;".";Y$(K);" IS THE
WORD THAT":PRINTXS (K) : PRINT

479 EN$=INKEY$

48p IF EN$=CHRS$(13) THEN NEXT K

ELSE 478
499 END

April

1786.

)

Australian RAINBOW At

A nonviolent game for children . . .

Set your Sails,
Keep a Weather Eye out for Storms
and Beware of the Jolly Roger!

By David Compton

veral times 1 have seen in excitement - pirates or storms may

by the player, GO, which presents a

the pages of RAINBOV a plea for non strike at any moment, costing you list of 10 countries you may travel
violent games for children. money, or you may arrive in a to; BUY, which displays what the
World Trader is written for the country to sell your goods, only to inhabitants bhave for sale (and
young child, perhaps a second or find that your customers aren't reduces your cash on hand if you
third grader. Even younger children interested! decide to buy); SELL, which
can use it with parental belp. disposes of your cargo and updates

Vorld Trader is a text Adventure,
but the reading 1is kept to a
minimum. [t essentially seeks to
teach children the names of some

your cash; and IRV, which informs
you what's in your cargo hold.

The player must also bear in mind
that each time he uses the commmand

All of the instructions are given
at the beginning of the game, but
here's a summary: The 1dea 1s to

countries and the products for
which they are best known. The
player can't "lose" the game; he is
just sent back to the beginning to
start over. At the same time, there
ifs an element of nonfatal

earn $25,000 or more by buying
merchandise in one country and
selling it at a profit in another.
Fote that you may have only one of
each item in your hold at any one
time. Only four commands are needed

GO, his funds are reduced by $100
to pay the cost of shipping and
salaries for the crew. The first
few trips should be made carefully,
or the captain (you) will quickly
run out of money.

The listing: TRADER

1p 'TRADER
12 ' BY DAVID COMPTON, 252 N. MA
IN ST., SUFFIELD, CT P6@78

'COPYRIGHT 1985

29 CLS

3§ AAS="THE GAME OF":BB$="WORLD
TRADER" : PRINT@2#8~ (LEN (AAS) *.5) ,
AAS:PRINT@272- (LEN(BB$) *.5) , BB$
4% FOR DL=1TO2@pp:NEXT:CLS

13

RT WITH A SHIP AND $1g@@. THE O
BJECT IS TO TRAVEL AROUND THE WO
RLD, BUYING AND SELLING, UNT
IL YOU EITHER RUN OUT OF MONEY
OR EARN ENOUGH TO RETIRE."

6¢ PRINT" EACH VOYAGE WILL COST
you $1g@. IN ADDITION, YOU'
LL HAVE TO BE CAREFUL OF PIRATE
S AND STORMS."

7% PRINT" YOUR CREW UNDERSTANDS
THE COM-MANDS 'GO', 'BUY', 'SEL
L' AND 'INV' (INVENTORY)."

89 PRINT@448,"PRESS ANY KEY TO B
EGIN"

99 IFINKEY$=""THEN9P

1¢9 CLS

119 WE=1ppp:Ws="5$S##, 4"

129 DIMCNS$(12,8)

139 DATA BRAZIL,BRAZILIANS,COFFE
E,S5pp,9,RELICS,2008,8

149 DATA HOLLAND,DUTCH,CHOCOLATE
,199,9,DIAMONDS, 109928, ¢

15¢ DATA FRANCE,FRENCH,WINE,1p@¢
,§,CHEESE, 250, 9

160 DATA GERMANY,GERMANS,BEER, 3§

#,9,CLOTHING, 18p8,

17¢ DATA NORWAY,NORWEGIANS,FISH,

189 DATA CHINA,CHINESE,TEA,198,9
,SPICES, 2999,

199 DATA ARGENTINA,ARGENTINES, BE
EF,1p99,9,HORSES, 3998, 9

2¢9 DATA ITALY,ITALIANS,PASTA,35
p,9,STATUES, 69£9, 9

219 DATA DENMARK,DANES, FURNITURE
,5899,9,CLOTH, 1989, 9

229 DATA INDIA,INDIANS,IVORY,858
#,9,FABRICS,798,9

23p FORX=1TO1@:FORY=1TO8:READCNS
(X,Y) :NEXTY, X

249 PRINT"YOU BEGIN YOUR VOYAGE

IN LONDON.YOU HAVE";:PRINTUSINGW
$IWE

25 PRINTSTRINGS (32,"$");

26§ IFWE>24999THENPRINT"YOU HAVE
;s PRINTUSINGWS ;WE: PRINT"A SUCCE
SSFUL VOYAGE! YOU RETURN TO ENGL
AND IN TRIUMPH!":END

27p PRINT"YOUR ORDERS,SIR?"

28p INPUTOS

29p IFO$="SELL"THENGOTO42p0

3pp 1FO$="BUY"THENGOTOS562

31¢ IFO$="GO"THENFORX=1TO1f:PRIN
TX;CN$ (X,1) :NEXT:GOTO34p8

continued on Page 10

5g PRINT" 1IN THIS GAME, YOU STA 2p@,9,CRYSTAL, 5§28 2
PAGE ¢ Australian Old

IR

Aapri 1l 1986,

_ 16K
GAME ECB

-

Invasion of the

Flying Saucer

People

By Allen B. Carlisle

\y

you like fast action games that
Ifchallenge your reflexes and of-
fer different skill levels, you
will like Saucer. The scenario goes
something like this: You are on a des-
olate planet, and while safe from attack
from the dreaded Saucer people from
within your base camp (lower right-
hand corner of the graphics screen), you
must venture out to get the supply
boxes, which are present at the lower
left-hand corner of the graphics screen.
The moment you venture out, or your
robot ventures out (for those who abhor
violence), a saucer enters the scene and
randomly flies around shooting its laser
beam at you. If you are hit, another
man, or robot, exits the base and heads
for the needed supplies. Each player
gets four men per round.
You are not left without defense,
however, as you can shoot back by
skillful use of the right joystick. Of

course, the firebutton activates your
laser gun, but aiming it takes a few
attempts to master. Each time you
succeed in knocking out a saucer, 100
points are scored. Aiming your gun
involves watching a blinking cursor at
the uppermost horizontal part of the
screen or the far left vertical position of
the graphics screen. Your ray fires at
that cursor position as you press the
button. Movement to the right of the
Joystick causes the cursor to appear at
the top, while movement to the left
moves the cursor to the left vertical part
of the screen. Up on the joystick causes
the cursor to move up the screen if it is
at the left vertical position, and to the
left if it is at the upper horizontal
position. Of course, down performs the
opposite movements.

When | decided to write Saucer, |
knew the main mathematical task
would be to obtain the formula that

calculates the coordinates of the point
on a line (laser ray) that is on the
segment perpendicular to some other
point off the line (center of the saucer).
After having looked in all my analytical
geometry texts, | found nothing that
would give me what I needed, so I took
some time to derive the formulae I
needed. Line 1090 of this program is
what gives the coordinates of this point
(LX,LY), where (A,B) and (C,D) are
two points of the laser beam shot at the
saucer and (X,Y) is the coordinate of the
center of the saucer. The actual distance
is calculated in Line 1100.

Variable QED is the test variable for
this distance, which is larger for the
lower skill level so that at skill level one,
the beam does not necessarily have to
touch the saucer in order to score a hit,
but must be very close.

Good luck knocking those nasty Saucer
people from the sky! a

The listing: SAUCER

17 REM SAUCER #*kakkhhkahhhhsdhhhn
2§ REM (C) ALLEN B. CARLISLE 198
Shkhk

3 REM ALL RIGHTS RESERVED**#*##

TRRRARRARRARRARARRRRRARR AR AR
TRERR KRR RRIARRARRRRR AR AR AR AR
REM INITIALIZE GAME
CLS:PCLEAR4 : POKE65495, ¢

8 DIMAS (4) :DIMA(4) : INPUT"NUMBER
OF PLAYERS";ZZ

98 FOR PL=1 TO 2Z:CLS:INPUT"ENTE
R NAMES";A$ (PL) :NEXT:CLS: PL=1
199 INPUT"SKILL LEVEL(1-5)";L
11y IF L<l OR L>5 THEN 1P§@ ELSE
L=ABS (INT(L))

12p IF L=1 THEN 13§ ELSE 148
13 DIS=@:QED=17:GOTO0258

14 IF L=2 THEN 158 ELSE 168
15¢ DIS=1:QED=15:GOT0258

16¢ IF L=3 THEN 17§ ELSE 188
179 DIS=3:QED=13:GOT0258

18¢ IF L=4 THEN 199 ELSE 289
198 DIS=3:QED=18:GOT0258

2P DIS=3:QED=8:GOT0258

21¢ IF PL>ZZ THEN PL=1

229 A(PL)=A(PL)+SCR

239 IF MEN=g THEN PL=PL+1

249 IF MEN=§ THEN GOTO117¢ ELSE
RETURN

25¢ REM DRAW SAUCER & GET IT
26§ PMODE4,1:U=214:SCREEN1,1:PCL
SP:MEN=8

april 1784,

278 Hl=2P:H2=44:V1=7:V2=7:V3=7:V
4=7:FL=~1:BOX=@:M=92

288 FOR I=1 TO 4: LINE(Hl,V3)=-(H
2,V4) ,PSET:LINE(H1,Vl)~-(H2,V2),P
SET

29¢ Hl=Hl+1l:H2=H2-1:V1=V1-1:V2=V
2-1:V3=V3+1:V4=V4+1:PSET(31,2):P|
SET(32,2) :NEXT

3PP DIMS(12,26):GET(19,1)-(45,13
)S,G:LINE(19,1)~-(45,13) ,PRESET,
BF

319 REM DRAW &GET ROBOT

32¢ DRAW"BM217,18¢R3D1L3R2D6L1U3
L1;B;U1L2U1;B;DSR1ULl;B;R1U2;B;R3
D1;B;R1;B;D1D1L1"

339 DIMR(11,8):GET(214,188)~(222
,191) ,R,G

349 REM DRAW BASE

35¢ LINE(248,164)~(255,191),PSET
,BF:LINE(228,176)~-(244,191) ,PSET
, BF

Australian EAINBﬁw

PAGE ¢

36¢ FOR I=168 TO 184 STEP 8:LINE
(248,1)=(251,1+3),PRESET, BF:NEXT
37§ LINE(232,184)-(235,187),PRES
ET,BF:LINE(248,184)~(243,187) ,PR
ESET, BF

38p REM DRAW SUPPLY BOXES

398 FOR I=p TO 88 STEP 8

4pp LINE(I,188)~-(I+3,191),PSET,B
:NEXT:SCREEN1, 1

41§ REM ENTER SAUCER

42§ FOR I=p TO 128 STEP 8

439 W=2p

44¢ PUT(I,2p)-(I+26,32),S,PSET
45§ LINE(I,2@)-(I+26,32),PRESET,
BF

46§ ABR=RND(9):IF ABR=2 THEN 488
ELSENEXT

479 GOTO 49¢

489 GOTO 518

499 I=128:PUT(I,W)-(I+26,W+12),S
,PSET:GOTO518

589 REM MOVE SAUCER

519 Q1=RND(@):IF Ql<.5 THEN A=-1
ELSE A=l

52 Q2=RND(@):IF Q2<.5 THEN B=-1
ELSE B=1:H=RND(6) :V=RND(6)

538 H=H*A:V=V*B:L=RND(28)

54¢ FOR E=1 TO L

558 IF I>226 THEN 638

56¢ IF W>14@ THEN 638

578 IF I<p THEN 639

588 IF W<@ THEN 638

599 PUT(I,W)-(I+26,W+12),8,PSET:
X=I:Y=W

6% GOSUB 648

619 LINE(I,W)=-(I+26,W+12),PRESET
,BF: I=I+H:W=W+V

629 NEXT:GOTO630

638 PUT(X,Y)=-(X+26,Y+12),S,PSET:
GOSUB788:FOR DLY=1 TO 2:SOUND216
,1:SOUND226,1:GOSUB B82@:NEXT: I=X
:W=Y:GOSUB86@:GOTO51p

648 REM MOVE ROBOT

658 GOSUB86S

66@ IF FL>@ THEN 799

67¢ LINE(U,18¢)~-(U+8,191),PRESET
,BF:U=U-1:PUT (U, 188) - (U+8,191) ,R
, PSET

68¢ IF M=U THEN 699 ELSE RETURN

69¢ FL=FL*-1:BOX=BOX+1:IF BOX=1

THEN 75§ ELSE U=U-8

789 IF U<p THEN U=g

71f LINE(U,188)-(U+13,191),PRESE

T,BF:PUT(U,180)~-(U+13,191),B,PSE
T:U=U+l

729 IF U=215 THEN 73@ ELSE RETUR
N

73§ LINE(U,18p)-(U+13,191),PRESE
T,BF:FL=FL*-1:U=214:PUT(U,188)~-(
U+13,191) ,R,PSET

748 M=M-B:SCR=1@@@:GOSUB21g:IF M
<4 THEN 125§ ELSE RETURN

758 REM GET ROBOT & BOX

769 DIMB(11,13):GET(87,180)-(188
,191) ,B,G:U=87:GOTO 7¢9

778 REM SHOOT LASER BEAM

78@ XX=X+13:L=U+4:R1=RND(5) :R2=R
ND(5) :R3=RND(5) :R=R1+R2+R3

798 IF L-9+R<p THEN R=9

8gp LINE(XX,Y)-(L-8+R,191),PSET:
FOR DLY=1 TO 4@:NEXT

81p LINE(XX,Y)-(L~8+R,191) ,PRESE
T:RETURN

82¢ IF ABS(R-8)<=DIS THEN 83§ EL
SE RETURN

839 LINE(U,18p¢)-(U+8,191),PRESET
, BF:MEN=MEN=-1

84P SCR=g

850 U=214:FL=-1:GOSUB21@:RETURN
869 REM ROBOT SHOOTS

878 K=PEEK(65288):IF K=126 OR K=
254 THEN 1p2p

88g JP=JOYSTK(@) :J1=JOYSTK(1)
89¢8 IF J1>54 THEN UN=UN+8

9g@ IF J1>45 AND J1<=54 THEN UN=
UN+5
919 IF
UN+2
929 IF
UN

938 IF
UN-2
94p
N-5
958
N-8
969
979

J1>36 AND J1l<=45 THEN UN=
J1>27 AND J1<=36 THEN UN=
J1>18 AND J1<=27 THEN UN=

IF J1>9 AND J1<=18 THEN UN=U

IF J1>=@ AND J1<=9 THEN UN=U

IF UN<@ THEN UN=g

IF Jg>32 THEN 1ppp

989 IF UN>16@ THEN UN=16p

998 LINE(@,UN)-(4,UN+4),PSET,BF
{LINE(@,UN)-(4,UN+4) , PRESET, BF:R
ETURN

1¢99 IF UN>254 THEN UN=254

1919 LINE(UN,P)-(UN+4,4),PSET,BF
:LINE (UN, #) - (UN+4, 4) , PRESET, BF:R
ETURN

192¢ IF J@>32 THEN 1p58

1939 A=@:B=UN:C=U:D=188

194 LINE(@,UN)-(U,188),PSET:FOR
DLY=1TO2:SOUND216,1:SOUND226,1:
NEXT:GOSUB1@78: LINE(#,UN) - (U, 188
) , PRESET: RETURN

1¢5¢ LINE(UN,)=-(U,188),PSET:A=U
N:B=g:C=U:D=18p

196§ FORDLY=1TO2:SOUND216,1:SOUN
D226,1:NEXT:GOSUB1@78: LINE (UN, #)
-(U,188) , PRESET: RETURN

1§79 REM CHECK IF SAUCER HIT
1989 X=X+13:Y=Y+6

1999 LX=(X#(C~A)~*2+A*(D-B)~2+(D-
B) * (C-A) *(Y-B))/ ((D-B)~2+(C-A)~2
) : LY=(B#* (C~A) A2+Y* (B-D) A2+ (B-D) *
(C-A) * (A-X))/ ((D=B)~2+(C=A)"2)
1199 IF SQR((LY-Y)*2+(LX-X)~2)<=
QED THEN 1128

111§ X=X-13:Y=Y-6:FORDLY=1TOX:AB
R=RND (@) :NEXT:RETURN

112§ REM SAUCER HIT

1138 LINE(I,W)-(I+26,W+12),PRESE

T, BF: FORDLY=1TO2@ : SOUND28@ , 1 : RH=

RND(26) :RV=RND(12) : PSET (I+RH, W+R

V) :NEXT:X=X-13:Y=Y~6

1148 LINE(I,W)-(I+26,W+12),PRESE

T,BF

115¢ IF J@>32 THEN LINE(UN,P)-(U
,188) , PRESETELSELINE (8, UN) - (U, 18

#) , PRESET

116§ SCR=1gg:GOSUB21§:GOTO418
1178 CLS:FORK=1 TO 2Z:PRINT (64+

K*64) ,AS$(K):"'S SCORE= ";A(K):NE

XT

118¢ PRINT@384,"TO END GAME PRES
S 'E'":PRINT@352,"NEXT ROUND PRE

SS l".ﬂ

1198 B$=INKEY$:IF B$="E"THEN126g

ELSE IFB$="N"THEN122@ELSEIFFLAG=
1THENRETURNELSE119f

12¢p IF FLAG=1THENRETURN

121¢ CLS

1229 IF PL>ZZ THEN PL=1

1239 PRINT@238,"R E A D Y ";A$(P

L) ; : FORDLY=1TO S@g@:NEXT

1249 LINE(X,Y)-(X+26,Y+12) ,PRESE

T,BF:SCREEN1, 1:MEN=8:GOTO410

1258 CLS:PRINT@1§3,"G AME OV
E R !!!1":NEXT:FOR DLY=1 TO 158

29 :NEXT: FLAG=1:GOSUB1178

1269 POKE113,@:EXEC42999 a

continued from Page 3

32¢ IFO$="INV"THENGOTO720

33p PRINT"I DON'T UNDERSTAND, CA
PTAIN":GOTO258

34¢ INPUTDE:IFDE<1ORDE>1@THEN258

358 GOSUB67@

368 CLS:L$=CN$(DE, 1) : PRINT"YOU A

RE IN ";CN$(DE,1)

378 WE=WE-19p

38 PRINT"YOU HAVE";:PRINTUSINGW

$:WE

39 IFWE<@THENPRINT"WE'RE OUT OF
MONEY, CAPTAIN. WE'LL HAVE T

O RETURN TO ENGLAND TO GET A LOA

N.":FORX=1TO2@p@ : NEXT : END

4P GOTO258

41’ ThkhhhhkSELLkkkhk &

42¢ FORD=1TOl@:IFCN$(D,5)="1"THE

N45PELSENEXTD

43p FORD=1TO1@:IFCN$(D,8)="1"THE

N45PELSENEXTD

44¢ PRINT"YOU HAVE NOTHING TO SE
LL.":GOTO278

45¢ IFRND(1¢)=6THENPRINT"THE "“;C
N$(DE,2) ;" AREN'T":PRINT"INTERES

TED IN BUYING.":0$="GO":GOTO31p
46@ PRINT"THE ";CN$(DE,2):" WILL
BUY ";

479 FORX=1TO1@:IFCN$(X,5)="1"THE

NPRINTCNS (X, 3) : PRINT"SOLD FOR";:

PRINTUSINGWS ; VAL(CNS (X,4))+ (.3*V

AL(CN$(X,4))) :WE=WE+VAL(CN$ (X, 4)
)+ (.3*VAL(CNS(X,4)))

480 CN$(X,5)="g"

498 NEXTX

5@ FORX=1TO1@:IFCN$(X,8)="1"THE

NPRINTCNS (X, 6) : PRINT"SOLD FOR";:
PRINTUSINGWS ; VAL(CN$ (X,7))+(.3*V

AL(CN$(X,7))) :WE=WE+VAL(CN$(X,7)
)+(.3*VAL(CN$(X,7)))

519 CN$(X,8)="g"

529 NEXTX

538 PRINT"YOU HAVE";:PRINTUSINGW
$iWE

540 GOTO258

55p ThARRARRBUY M hd &k

568 PRINT"THE ";CN$(DE,2);" WISH
TO SELL:":PRINTCNS (DE,3), : PRINT
USINGWS ; VAL(CNS (DE, 4)) : PRINTCNS (
DE, 6) , : PRINTUSINGWS ; VAL(CN$ (DE, 7
;%p PRINT"WHICH WILL YOU BUY?"
58¢ INPUTBUS

598 IFBU$<>CN$ (DE,3)ANDBU$<>CNS(
DE, 6) THENPRINT"THEY DON'T HAVE A
NY FOR SALE"

68§ IFBU$=CN$(DE,3) THENIFWE<VAL(
CN$ (DE, 4)) THENPRINT"NOT ENOUGH M
ONEY" :GOTO258

PAGE 18

619 IFBU$=CN$(DE,6) THENIFWE<VAL(

CN$ (DE,7)) THENPRINT"NOT ENOUGH M

ONEY" : GOT0258

62§ IFBU$=CN$ (DE,3) THENCNS (DE,5)

="1":WE=WE-VAL(CN$ (DE,4))

63§ IFBU$=CNS (DE, 6) THENCNS (DE, 8)

="1%";:WE=WE-VAL(CNS$ (DE, 7))

649 PRINT"YOU HAVE";:PRINTUSINGW

$:WE

659 GOTO258

668 END

678 CA=RND(-TIMER) :CA=RND(1%)

68 IFCA=1THENLO=RND(1@)*1@:PRIN

TWYOU'RE ATTACKED BY PIRATES DUR

- ING THE VOYAGE. THEY STEAL SOM

E OF YOUR MONEY.":WE=WE-LO:FORDL

=1TO4PPP : NEXTDL: RETURN

699 IFCA=2THENLO=RND(1@)*1@:PRIN

T"A BAD STORM! SEA WATER DAMAGES
YOUR CARGO. YOU'VE LOST $";L1O;

"IN MERCHANDISE.":WE=WE-LO:FORDL

=1T04 229 : NEXTDL: RETURN

7¢% RETURN

71’ ThkhhhhkhdARTNURkrhdd

729 FORD=1TOl@:IFCN$(D,5)="1"THE

NPRINT CN$(D,3)

738 NEXTD

748 FORD=1TOl@:IFCN$(D,8)="1"THE

N PRINTCNS$ (D, 6)

758 NEXT D

769 GOTO258@

AustraliaﬁgszNFUh*

_‘ 16K

GRAPHICS

the t
RA!NB%W
[o*)

A PEACE TREATY

FOR COMPUTER HACKERS
AND COUCH POTATOES

by Bill Bernico

Vhat's the matter? Is your
family on your case because your
computer's always hooked up to the
television and they can't watch
their favourite shows? Now you can
"solve" that problem with TV Shows
(provided they bhaven't already
disconnected you from the tube.)

Actually "solve” 1is not quite
accurate. Though this program
doesn't truly solve that very real
dilemma, it does offer a
tongue-in-cheek response to it by
using the CoCo's sound and
graphics capabilities.

Upon running the program you'll
see a familiar sight - a
television set. Along the left
side of the screen you are
presented with a 1list of nine

choices. The last seven are things
to watch on the TV and the first
two are options that allow you to
either turn the television on or
off. Your choice 1is selected by
using the up and down arrows. Vhen
you have chosen your option, press
ENTER.

What! You selected a television show
but nothing happened? Did you re-
member to turn the set on? Just as in
real life, you can’t watch anything until
you first turn on the TV. Move the
arrow to the top and press ENTER. Now
the set’s on and you can go ahead and
select a program,

When you're finished watching tele-
vision, don't forget to turn it off again.
You can do this by moving the arrow up
to the second option and pressing
ENTER. Once the set is turned off, trying
to select anything else is useless; the set
has to be on first.

Sample Printouts

JU SHOWS

-
TUKN S F TUL

METUORK NEME

CAR CARE SHOU
MESTERN noure
THE LOUE BOAT
HUSIC TELEUISION
COPS AND ROBPERS
THREE fTOOGES

T HOWS
-3 NETHOKK MEUS

y,/

FULLETIN

CA®R CARE SHOM
HESTERN novie
THE LOUE BOAT

E- R -

iy
% &
g \

/

HUSIC TELEUVISION
COPS AND ROBBERS
THREE STOOGES

ooco 8

The listing: TV SHOWS

'TELEVISION SHOWS
'BY BILL BERNICO

3¢ '798 MICHIGAN AVE.
4¢ 'SHEBOYGAN, WI 53881
59 '(414) 459-7358

68 '

7# CLEAR 589

8¢ SP$="BR6

99 PD$="BR2R

199 WAS="F2R2E2UDF2R2E2UDF2R2E2U
DF2R2E2UDF2R2E2UDF2R2E2UDF2R2E2U
DF2R2E2UDF2R2E2UDF2R2E2UDF2R2E2U
DF

119 N1$="BR3INU4

120 N3$="BR3R3U2NL2U2NL3BD4

13p AS$="BR3U3ERFDNL3D2

148 B$="BRIU4R2FGNL2FGL2BR3

158
168
179
189
192
2

209
21¢
229
239
249
258
269
279
289
299
399
319
328
338
349
350
169

C$="BR4REGLHU2ERFBD3
D$="BR3U4R2FD2GL2BR3
E$="BR3NR3U2NR2UZ2R3BD4
F$="BRIU2NR2U2R3BD4
G$="BR3BU4BR3IL2GD2FREULBR2BED

H$="BR3U4D2R3U2D4
I$="BR3R2LU4NLRBD4
J$="BR3IBUFREU3LR2BD4
K$="BR3U2RNF2NE2LU2BR3BD4
L$="BR3INR3U4BR3BD4
M$="BR3U4FRED4
N$="BR3U4F3DNU4
0$="BR3BUU2ERFD2GLNHBR
P$="BR3U4R2FGL2BR2BD2
Q$="BR3BUU2ERFD2GNUNRLHBR3BD
R$="BR3U4R2FGL2RF2
S$="BR3R2EHLHER2BD4
T$="BR3BU4R4L2D4BR
U$="BR3NU4R3NU4
V$="BR3BU4D3FRENU3BD
W$="BR3NU4ERFNU4
X$="BR3IUE2UDGHUDF2D

378 YS$="BR3BU4DFEUDGD2BR

38¢ PMODE4,1:PCLS1:SCREEN1,1:COL
OR@, 1:DRAW"S4BM130,179CAU9PRIPED
9PL1PPBESU72R7PD72L7P" : PAINT (142
,91),9,P:CIRCLE(228,192) ,7:FOR X
=129 TO 15¢ STEP1g:CIRCLE(220,X)
,4:NEXT:CIRCLE(178,8p9),11,2,1,.5
,1:DRAW"BM178, 7gNH3IPE3pBM227,10P

U7D14":CIRCLE(148,40),2

399 CIRCLE(2pg8,49),2:PAINT(178,7
7),P,P:DRAW"BM1P,9S8"+TS$+VS+SPS+
S$+HS+0$+WS+SS: DRAW"BM1P, 11R50
49¢ DRAW"S4":LINE(17,39)-(98,31)
,PSET,B: PAINT(18,36) ,8, 2 :DRAW"BM
16,37C1"+T$+US+RS+NS+SPS+0S+NS+S
PS+TS$+VS:DRAW"CP":LINE(17,54)=-(9
p,46) ,PSET,B: PAINT(18,51) ,0,8:DR
AW"BM16,52C1"+T$+US+RS+NS+SP$+0$
+F$+FS$+SPS+TS+VS

410 DRAW"S4BM15,6B8Cg"+NS+ES+TS+W
$+0S+RS+KS$+SPS+NS+ES+WS+SS : DRAW"
BM15,83"+CS+AS+R$+SPS+CS+AS+RS+E
$+SPS+SS+HS+0S+WS : DRAW"BM15, 98"+
WS+ES+SS+TS+ES+RS+NS+SPS+MS+0S+V
S+IS+ES: DRAW"BM15, 113"+ TS+HS$+ES+
SPS+LS+0S+VS+ES+SPS+BS$+05+AS+TS
429 DRAW"BM15,128"+M$+US$+S$+I5+C
$+SPS+TS+ES+LS+ESHVSH+IS+SS+I$+0$
+N$:DRAW"BM15,143"+C$+0$+PS$+5%+S
PS+AS+NS+DS+SPS+R$+0S+BS+BS+ES+R
$+SS:DRAW"BM15, 158" +TS+HS+RS+ES+
ES+SPS$+SS+TS+05+0S+GS+ES+5$

43P H=p:V=96:2Z=p

449 BBS$="R1PNH3G3

458 DRAW"C@BM=H;,=V;:"+BBS

469 IIS=INKEYS

47§ IF IX$=CHRS(94)THEN DRAW"C1B
M=H;,=V;"+BB$:SOUND 218, 1:V=Y=-15
48¢ IF II$=CHRS$(19)THEN DRAW"C1B

april 1984.

Au=tralian RAINBOW

PAGE 11

M=H;,=V;"+BB$:SOUND 21@,1:V=V+15
49¢ IF II$=CHR$(13)AND V=36 AND
ZZ=p THEN 829

599 IF I1$=CHR$(13)AND
%ZZ=1 THEN 81p

518 IF II$=CHR$(13)AND
2Z=1 THEN 61§

529 IF II$=CHR$(13)AND
2Z=1 THEN 668

539 IF II$=CHR$(13)AND
ZZ=1 THEN 68§

549 IF II$=CHRS$(13)AND
ZZ=1 THEN 7989

5590 IF II$=CHR$(13)AND
ZZ=1 THEN 718

560 IF II$=CHRS$(13)AND
22=1 THEN 739

579 IF II$=CHR$(13)AND
2Z=1 THEN 758

5809 IF V>156 THEN V=156

599 IF V<36 THEN V=36

699 GOTO 45p¢

612 GOSUB 83@:DRAW"C@":CIRCLE(17
6,120) ,19:CIRCLE(176,124),3

62¢ CIRCLE(169,117),4,8,.9:CIRCL
E(183,117),4,0,.9:DRAW"BM171,126
R1gDL1GDR1PDL1ZBM165, 114R7UL7BR1
SR7DL7BM178,129F3R6E3BM176,192D3
FDFDRDRDR8F2DFD6FRBM176, 1$4DGDGD
LDLDL8G2DGD6GLBM166, 135GDGDGLGLY
GLGLGDGDGDGDGDG3BM187, 135FDFDFRF
ROFRFRFDFDFDFBM165,135

63p DRAW"M176,169M189,135D12L5F4
M176,161LBM164,137D1PR4G4M176,16

P":CIRCLE(177,142) ,4:PAINT(177,1
42),9,9:DRAW"BM177,139DF2DF2DF2B

M177,139DG2DG2DG2BM175,142D14RU1
4RD15RU14":PAINT(177,103) ,8,9:PA
INT(175,183),8,P:PSET(169,117):P

SET(183,117)

649 DRAW"BM149,96"+B$+US+LS+LS+E

$+TS+IS+NS:FOR X=1 TO 2pPP:NEXT:

GOSUB83@:DRAW"BM142,96"+NS+ES+WS

+S$+SPS+FS+LS+AS+S$+HS : DRAW"BM15

£,124"+RS+AS+IS+NS+BS+0S+WS : DRAW

"BM158, 132" +M$+AS+GS+ASH+ZS+IS+NS

+E$:DRAW"BM141, 142" +NS+AS+MS+ES+

D$+SPS+NS+0$+PDS+SPS+N1S

650 DRAW"BM155,148"+AS$+GS+AS+IS+

N$+PD$:FOR X=1 TO 3:Q2%$="1;2:3;4
$5:6;7:8;9;10;11;12;": PLAY"T905L

V=51 AND
V=66 AND
V=81 AND
V=96 AND
V=111 AND
V=126 AND
V=141 AND

V=156 AND

24V15;":PLAY QZ$:NEXT:GOTO 450
66¢ GOSUB 839:DRAW"BM143,1p9p"+C$
+AS+RS+SPS+CS+LS+IS+NS+IS+CS:DRA
W"BM141,14PR68":CIRCLE(157,135),
S:CIRCLE(192,135),5:CIRCLE(157,1
35),1:CIRCLE(192,135),1:DRAW"BM1
62,136R25BM147,136NR3U2GR3IPFTR1B
D12L3BM15%, 118ND6R17D6L17R9U6BR1
IND6RSF6ND12L11D12

67¢ FOR X=1 TO 15@8p:NEXT:EXEC 43
345:DRAW"BM184,123E13":FOR K=2§
TO 45 STEP.2:POKE 148 ,RND(4f)+K:
EXEC 43345:NEXT:GOTO 458

68¢ GOSUB 839:DRAW"BM141,120M158
,11¢ND2M164,184D6M171,116D2M178,
132D2GDGLGLGNHSLGL2HLHUHUHLHLHL2
HL2HUHU2HU2BM141,146E15" : CIRCLE (
167,120) ,2:CIRCLE(175,133) ,2:DRA
W"BM142,12¢ND19BR3BU2ND1@BR3BU2N
D1@¢BR3IBU2ND1@BR3IBU2ND1@BR3IBU2D1 g
BM179,134R3¢BL48LS

69¢ DRAW"BM186,134E12G3H3F12BM19
3,134UERFDBM186,134BE9BU4H2U2E4U
2H4U2E4U2":FOR X=1 TO 2:PLAY"O4T
4L9CP8L12CCP8L12CCP8L12CGP8L12EG
PSL12EGPSL12E" :NEXT: PLAY"L3C":GO
TO 458

799 GOSUB 83¢:DRAW"BM147,188"+L$
+0$+VS+ES+SPS+B$+0$+A$+TS: DRAW"B
M148,128NR48RBEINR26E6R4G2R22G3N
D3E3L4E7L5G7LSE7L5G7R19G3D3R12D7
L44H5BM140,134"+WAS:GOTO 459

719 GOSUB 83@:DRAW"BM145,125C2U3
PR1PF1SE15R1¢D3PL12U18G13H13D18L
12BM187, 116EBG4FRFRFRFRFRFBM198,
1p7FRFRFRFU12BM142,14PR68BD3L68SB
D3R68BD3L68BD3IR68" : CIRCLE (150, 14
2),2:CIRCLE(158,149),2:CIRCLE(16
6,152) ,2:CIRCLE(174,146) ,2:DRAW"
BM151,142U8BM159,149U8

72f DRAW"BM167,152U8BM175,146U8B
M188,148D12":CIRCLE(187,158),2:C
IRCLE(195,155) ,2:CIRCLE(26#3,145)
,2:DRAW"BM188, 159U8BM196, 155U8BM
204,155U8" : PLAY"V15T8L403CEGOACP
403GO4L3C":GOTO 458

739§ GOSUB83@:DRAW"BM158,18pCP"+D
$+RS+AS+GS+NS+ES+TS: DRAW"BM172,1
1#M176,117M185,117M177,122M188,1
29M172,126M165,129M168,122M161,1
17M169,117M172,118BM149,152"+S$+

TS$+AS+RS+RE+IS+NS+GS : DRAW"BM145,
157"+J$+AS+CS+KS+SPS+WS+ES+BS+BS
749 CIRCLE(172,128),13:SOUND 1,1
2:SOUND 34,4:SOUND 44,2:FOR X=1
TO 34@:NEXT:SOUND 1,9:FOR X=1 TO
7P2:NEXT:SOUND 1,12:SOUND 34,4:
SOUND 44,2:FOR X=1 TO 34@:NEXT:S
OUND 1,9:SOUND 79,12:GOTO 450
75¢ GOSUB 83@:DRAW"BM145,189Cg"+
N3$+SP$+5S$+T$+0$+0$+GS+ES+S$: CIR
CLE(153,138),18:CIRCLE(175,138),
19:CIRCLE(197,13p),10: DRAW"BM145
,128R16" : PAINT(146,126) ,8,8:CIRC
LE(167,128) ,2:CIRCLE(168,125),2:
CIRCLE(169,122),2:CIRCLE(183,128
) +2:CIRCLE(182,125),2
768 CIRCLE(181,122),2:PSET(153,1
33):PSET(175,133) : PSET(197,133):
PSET(149,129) : PSET(157,129) : PSET
(171,129) : PSET(179,129) : PSET (193
,129) : PSET(201,129) : DRAW"BM149,1
42E6BR13F3ND21E3BR16F4ND21E4BR15
F3BM147,155"+M$:DRAW"BM172,155"+
L$:DRAW"BM195,155"+C$
778 DRAW"BM15@,136R6BR16R6BR16R6
78% SOUND 125,6:SOUND 133,2:SOUN
D 146,12:SOUND 146,4:SOUND 179,8
:SOUND 159,6:SOUND 146,2:SOUND 1
46,4:SOUND 175,5:FOR X=1 TO 35@:
NEXT X:SOUND 159,6:SOUND 146,2:S
OUND 146,4:SOUND 178,5:FOR X=1 T
O 35@:NEXT X:SOUND 159,6:SOUND 1
46,2:SOUND 146,4
798 SOUND 175,5:FOR X=1 TO 35@:N
EXT X:SOUND 125,6:SOUND 133,2:S0O
UND 146,12:SOUND 146,4:SOUND 178
,8:SOUND 159,6:SOUND 146,2:SOUND
146,4:SOUND 175,5:FOR X=1 TO 52
5:NEXT X:PLAY"O3T2V25L8EFAAAAGFD
":SOUND 89,3:SOUND 1£9,3:SOUND 1
25,3:SOUND 1£9,3
8¢@ FOR X=1 TO 12@:NEXT X:SOUND
125,3:SOUND 89,3:FOR X=1 TO 208:
NEXT X:SOUND 175,2:GOTO 458
81§ GOSUB 83@:PAINT(142,91),9,0:
22=§:GOTO 458
82p GOSUB 839:GOTO 458
839 LINE(14p,90)-(208,168) ,PRESE
T,BF:22=1:RETURN

CoCocad Modification

“CoCocad: The Schematic Scoundrel” (October 1985, Page
130): Peter Kerckhoff writes to tell us that some other
printers besides the Gemini-10X can be used with this
program.

First of all, there is a rather roundabout method that
works with any printer that can be used to make screen
dumps of regular CoCo graphics, if you have a screen dump
program for your printer. Delete Line 1990 from the main
program. When you request a printout, CoCocad will now
save nine screen files on the disk. Each has the name

PRT.PGn; ‘n’' is the page number (so PRT.PG3 would be
the third page).

Now load in your screen print program and type the
command PMODE 4,1:SCREEN1,1 and press ENTER. Then,
for each file type LOARDM“PRT.PGn~, and after the file is
loaded activate the screen print routine. Once you have
printed all nine pictures, cut them out and tape them
together.

Peter also included a new version of the Cadprint printer
driver that is designed for the Tandy/Radio Shack DMP
series printers. Here it is:

The listing: CADPRINT

1§ 'CADPRINT VR1.§ BY P.KERCKHOF

F 4335 HENDRIX WAY SAN JOSE CA -
1985 RAINBOW MAG (OCT)

2§ 'MODIFIED FOR USE WITH RADIO

SHACK DMP=-12¢ PRINTER BY DAVISSO

N ON 1p/15/85

3§ CLEAR1@@,&H379A:CLS:PRINT"cad
print RUNNING":FORX=&H379B TO &H
37FA:READ A:POKEX,A:NEXTX

49 POKE158,41 '12g¢ BAUD

5@ PRINT#-2,CHR$(18)

69 FOR PG=PTOBSTEP3

PAGE

78 LOADM"PRT.PG"+RIGHT$ (STRS (PG)
/1) ,&H2APP

8¢ LOADM"PRT.PG"+RIGHTS (STR$ (PG+
1),1) ,&H42p9

98 LOADM"PRT.PG"+RIGHTS (STR$ (PG+
2),1),&HSAQP

19@ EXEC&H379B

119 KILL"PRT.PG"+RIGHTS (STRS (PG)
,1) :KILL"PRT.PG"+RIGHTS (STRS (PG+
1) ,1) :KILL"PRT.PG"+RIGHTS (STRS (P
G+2),1) :NEXT PG

12¢ PRINT:PRINT"DONE.":PRINT#-2,

12

CHR$ (38) : STOP
139 DATA 134,254,151,111,134,1,1
42,126,224,48,134,52,2,141,38,53
12,142,102,224,48,134,52,2,141,2
7,53,2,142,78,224,48,134,52,2,14
1,16,134,13,173,159,168,2,53,2,7
6,129,31,38,212,15,111,57

14p DATA 198,156,52,29,238,132,1
6,142,9,8,16,191,55,249,88,79,12
2,55,250,16,199,55,249,38,245,67
,138,128,173,159,169,2,53,2p,48,
136,224,99,38,218,57,9,9

Australian EZ!NﬁEu wai!gé&

~

— 64K
BUSINESS Disk

Annual Expense Tracking

and Management

System

By Eddie Hill

ual, or possibly a small business, to maintain and

track expenses for one year. A maximum of 135
transactions per month for up to 100 account codes may
be tracked by month for an entire year (12 month period).
Each expense you wish to track must have a numeric code
in the range of | through 100 with a description not
exceeding 27 characters. The system provides for screen
display and printing of data and reports and is designed for
use on a 64K CoCo with one disk drive and a DMP-100
printer. In addition to maintaining actual transaction data,
the system provides budgetary analysis for accounts over
the year. This feature allows for comparative analysis of
actual versus budget for an account (display and printout).
It should be noted that budget or transaction summary
amounts for an account cannot exceed $99,999.99 and a
detailed transaction entry for an account cannot be greater
than $9,999.99.

This system (set of three programs) allows an individ-

Before proceeding, a discussion of a few basic concepts
employed in the design of the system and programs is
warranted. The programs feature extensive use of arrays
which facilitate fast display of data and fast data entry and
maintenance. The disk file access methods are extremely
simple and straightforward and, for the most part, use array
concepts. This extensive utilization of arrays in the
programs yields a system which is both efficient and

A

inefficient, but overall it provides an effective and simple-
to-use-and-understand method for tracking expenses.

The design of the system requires that an entire diskette
be dedicated for the recording of budgeted and actual
expenditures for a year. If you utilize diskette backup for
your files and system programs, then two diskettes will be
required for one year of data (assuming you have only one
backup diskette). Although the system can be used without
a printer, one is highly recommended to achieve best results.

As mentioned previously, the system consists of three
programs. One program (Crexpfle) creates the basic files
required for system utilization. The system will not run until
this program has been successfully executed. The second
program (Exptrakr) allows the entry and maintenance of
all budget and actual data. It also permits various screen
displays of the data (both budget and actual). The third
program (Reptgenr) prints various listings of budget and
actual data. Execution of this program can be independent
of Exptrakr or may be selected from the main menu of
Exptrakr. After execution of Reptgenr you may return to
Exptrakr by exercising the appropriate selection option
from the main menu of Reptgenr. You may freely transfer
between Exptrakr and Reptgenr or run either as a stand-
alone program. It is important that you name the programs
“Exptrakr” and “ Reptgenr™ because these are the names
used in the call routines for the programs.

Both Exptrakr and Reptgenr are menu driven programs

Dl

April 1S

é. Australian RAINBOW

FAGE 13

Exhibit 1

REC ACT

NUM NUMACCOUNT DESCRIPTION.....
1 1 HOUSE MORTGAGE
2 2 INSURANCE
3 3 BANK CARDS
4 4 ELECTRICITY
5 5 AUTO PAYMENT
6 6 GROCERIES
7 7 CLOTHING
3 8 MISCELLANEOUS
9 6 GROCERIES
19 7 CLOTHING

TOTAL=~==~=~

MONTHLY TRANSACTIONS FOR JANUARY 1986

TRAN
I.D. DA ..AMOUNT.. TRANS. DESCRIPTION
199 31 202.99 PAYMENT
50 31 199.99 PREMIUM
125 31 152.99 PAYMENT
158 31 125.8¢ BILL
119 31 189.99 PAYMENT #19
294 15 175.99 W.D.
95 25 80.99 JIM'S
98 28 75.99 SOFTWARE
99 31 245.p9 J&D GROCERY
134 31 39.99 SHOES
“““““ > 9 1, 369.09

with submenus, instructions and comments as required.
This approach offers easy access to (and exits from) routines
within the programs. As with all BASIC programs, if you
wish to exit a routine before completion, you may hit the
BREAK key. Use extreme caution when exercising this
option. An entire file or files can be easily “garbaged.”
Therefore, itis not recommended. You may want to consider
a BREAK disable routine in the programs.

Crexpfle
Crexpfie creates the basic files for the system. It merely
formats and sizes the following files:

Budget Summary
Transaction Summary

Chart of Accounts

Detail Transaction Filenames

It must be executed before attempting to run Exptrakr or
Repigenr.

Exptrakr

This program is the heart of the system. It allows for entry
and maintenance of all data utilized by the system. This
includes charts of accounts, budget and wransaction data,
Exptrakr opens up with a main menu consisting of 14
options. The main menu appears as shown below.

1) Add/change/input budget

2) Account YTD summary trans.
3) Account actual vs. budget

4) Account budget for year

5) Chart of accounts maint.

6) Display chart of accounts

7) Add/chg/del/input trans.

If you wish to enter or change data for all months, enter
“99.” You return to the main menu by entering ‘0",
2) Account YTD Summary Transaction
A display of a specified account showing summary amounts
by month. Pressing ENTER returns you to the main menu.
3) Account Actual vs. Budget
Permits display of summarized actual versus budget
amounts for a month or year-to-date through a given
month.
4) Account Budget For Year
Displays the yearly budget month by month for an account.
5) Chart of Accounts Maintenance
As stated earlier, each expense you wish to track must have
a numeric code in the range | through 100 and a description
not exceeding 27 characters. The first five positions of the
description cannot be “XXXXX" since this denotes to the
system that the account has not been established for use.
If you inadvertently enter a description with more than 27
characters or “XXXXX" in the first five positions, the
system will prompt you to re-enter the description.
This selection gives you three options as follows:

Option 1 — Allows for the entry of account descriptions
in numeric order. You are first prompted for the
description of Account 1, then Account 2 and so forth
until you have entered descriptions for all 100 accounts.
If you wish to terminate entry of descriptions at any point
before Account 100, merely type THATS ALL and press
ENTER. The system will automatically return to the main
menu just as it does when the description for Account
100 has been entered.

Option 2 — Allows for the addition or changing of
account descriptions. The same procedure is used to add

8) Display monthly budget Exhibit 2
9) Display monthly trans. BUDGET FOR JANUARY 1986
:(I); E;;T?{;?:ﬂt;:' o ACT <--DESCRTIPTTION--> ..AMOUNT.,
12) File deletion 1 HOUSE MORTGAGE 209.99
13) Backup files 2 INSURANCE Sp.p9
14) End session 3 BANK CARDS 19p9.99
4 ELECTRICITY 1508.99
A discussion of each option follows. g ggggsg_?ggxm :ggg:
1) Add| Change| Input Budget 7 CLOTHING 120.99
Allows input and maintenance of budget data for an 8 MISCELLANEOUS 50.99
account. You select the month you wish to enter or change
by entering the appropriate number for the month (1-12). TOTAL 1,23p.09
PAGE 14 Australian RAINBOW April 1784,

e, R R RS-

or change an account description. A prompt appears that
asks for the account number. After entering a valid
account number the account number and description will
be displayed. You will be asked if this is the account you
wish to add or change. If so, type YES and press ENTER.
If not, type NO and ENTER. After entering a changed or
added account description you will be asked if you wish
to add or change any more account descriptions. The
process will repeat as long as you respond “yes.” A “no”
response will return you to the main menu.

Option 3 — Choosing this option will return you to the
main menu.

6) Display Chart of Accounts

you delete the entire month's transaction file (see
Selection 12, File deletion, for instructions). If transac-
tions for the month you wish to enter are not on file, the
program allows you to continue and prompts you
through entry of your expenses. Please notice the
program assigns each entry a record number which will
be used for changing or deleting transactions, if neces-
sary, in the future. Each addition to a month’s transac-
tion must be assigned a record number. This must be an
unused number in the range 1-100. More on changes,
deletions and additions later.

The entry of detail transactions requires a valid
account number for each transaction. Therefore, you
must set your chart of accounts file up prior to using this

Allows for the display of all account numbers with their
descriptions (Option 1) or for a single account number with
its description (Option 2). If an account description is all
X’s, it has not been set up for use by the system. Option
3 returns you to the main menu.
7) Add/ Chg| Del| Input Transaction
Permits the entry and maintenance of detail transactions
(expenses) for a selected month.

option. Other information you must enter is as follows:
Date — This is the day the transaction occurred.
Trans. I.D. — A one- to four-digit identifying tag (e.g.,
check number). May be alphabetic or numeric.
Amount — The amount of the transaction (not to
exceed $9,999.99) may be debit or credit.
Description — This is an optional identification, not
exceeding 14 characters, for the transaction (e.g.,

monthly payment).
Option | — This allows the entry of detail expenses for

a selected month. You are asked for the number of the
month (I-12). The program then checks to see if
transactions have already been entered for the month
selected. If so, you cannot re-enter the transactions unless

When the entry of the detail transaction is complete,
press ENTER. This writes the transaction to the file and
returns to a fresh transaction entry screen for input of
the next transaction. Upon completing the entry of all
detail transactions for the month, enter “ZZZ" in the

SR Y st n o= ne ™ ol s G oo S e At e ooll iigen spt ot o ol Rkl ok
JAN FEB MAR APR
MAY JUN JUL AUG
BUDGET FOR 1986 SEP OCT NOV DEC
;SUSE MORTGAGE 209.99 200.99 200.900 200.99
209.99 2090.99 209.99 209.99
1 TOTAL..S 2,499.99 2pp.99 200.99 209.99 20p.99
INSURANCE 50.99 50.00 50.900 50.99
50.99 59.29 50.29 50.909
2 TOTAL..$ 600 .09 50.09 50.99 50.90 50.99
BANK CARDS 19p.99 199.98 1pp.99 199.p98
109.09 1p9.99 1pp.99 199.99
3 TOTAL..$ 1,229.2¢ 19p.99 19p9.99 1p9.99 100.29
ELECTRICITY 150.99 15p.99 158.909 159.90
15¢.99 159.9¢9 15p.29 159.99
4 TOTAL..S$ 1,8pp9.982 150.998 150.09 150.99 150.99
AUTO PAYMENT 180.99 180.99 180.99 189.99
189.99 18p.99 189.9p 189.99
5 TOTAL..$ 2,168.89 189.99 18p.09 189.99 189.99
GROCERIES App.PP App.0P 4p9.0P App.p@
App.pg 400 .00 App.pp ApP.0P
6 TOTAL..$ 4,89p.90 App.pp App.pp 4pp .90 490.99
CLOTHING 19p.99 199.09 18p.99 199.09
100.99 19p.99 19p.99 199.99
7 TOTAL..$ 1,298.09 199.99 109.99 1pp.99 19p9.09
MISCELLANEOUS 50.99 59.09 50.99 50.99
50.99 5p.98 50.p9 50.99
8 TOTAL..$ 690.99 50.99 50.99 Sg.pP 50.90
TOTAL BUDGET FOR YEAR 1,239.99 1,239.99 1,230.99 1,239.99
1,239.99 1,239.99 1,239.99 1,239.99
999 TOTAL..$ 14,7698.99 1,238.98 1,230.99 1,239.929 1,239.99

spri! 15784,

Australian RAINBOW PAGE 15

Exhibit 4
AR FEB O APR
MAY JUN JUL AUG
ACTUAL FOR 1986 SEP ocT NOV DEC
HOUSE MORTGAGE 208.99 p.99 g.08 ;?;; -----
p.2p p.99 2.9 p.99
1 TOTAL..$ 2p8.99 g.99 p.pp 2.99 P.p9
INSURANCE 199.99 p.99 p.09 2.9p
2.99 p.29 2.9p p.9p
2 TOTAL..$ 1pp.99 p.29 g.99 p.99 p.29
BANK CARDS 150.99 g.09 g.99 9.99
p.99 g.pp p.29 p.9p9
3 TOTAL..$ 159.99 p.2p p.pp p.99 p.p9
ELECTRICITY 125.90 9.99 p.99 g.99
p.99 8.pp p.p9 p.9p
4 TOTAL..$ 125.99 2.99 2.99 2.99 2.99
AUTO PAYMENT 189.90 2.99 9.99 2.09
p.pp p.pp g.99 p.gg
5 TOTAL..S$ 189.99 p.29 p.pg p.29 g.og
GROCERIES 420.99 2.0 2.99 9.99
p.pp p.pg p.pp p.o2
6 TOTAL..$ 429.9P g.pp p.p9 p.pg p.29
CLOTHING 11p9.99 2.00 p.99 g.09
g.p2 g.99 g.99 g.9p
7 TOTAL..S$ 119.99 g.99 p.9p p.29 g.99
MISCELLANEOUS 75.99 B.990 p.99 g.00
g.p9 p.99 p.22 p.pg
8 TOTAL..$ 75.99 9.9 2.99 2.99 9.2
TOTAL ACTUAL FOR YEAR 1,360.99 2.09 p.99 @.99
p.pp g.pp 2.99 2.99
999 TOTAL..$ 1,368.89 9.99 2.99 2.09 ?.99

account number field and press ENTER. This will of the data must be re-entered for the transaction (just

complete the writing of the transaction file and post
transaction summary totals for the month. After this is
complete you are returned to the data entry submenu.

Option 2 — Allows the entering of new information for
a transaction which has already been entered. You must
specify the month and the record number of the transac-
tion (shown on detail printout of month’s transactions)
you wish to change. A check is made to ensure that you
have entered a correct record number. If the record
number is valid, the transaction is displayed. Next, you
are asked if it is the one you wish to change. If so, all

as if it were new). Upon completion of entry of the new
data for the transaction, press ENTER. This records the
transaction on the file and asks if you wish to change
more transactions. If you answer ‘Y’ then the process
repeats, else the transaction summary file is updated and
you are returned to the data entry submenu.

Option 3 -— This option will add new transactions (e.g.,
overlooked, not available at time data for month was
entered) to a month’s file. You must specify the record
number for the record to be added. This may be derived
by looking at a detail printout for the month and adding

Exhibit 5 one to the record number shown for the last transaction.
The program will not permit the addition of a transaction
TRANSACTION SUMMARY FOR 1986A/P p1/31/86 with an existing record number, as it checks this before
ACTACCOUNT DESCRIPTION.... ...AMOUNT... allowing you to proceed. Once it is determined that you
are not trying to add a duplicate record, you are
1 HOUSE MORTGAGE 209.99 presented with the data entry screen. The procedure from
2 INSURANCE 1pp.29 this point is the same as for entering change data in
2 gt:ng‘I\g?iy igg:: Option 2 of this selection. Instead of referring to
5 AUTO PAYMENT 1”: 20 transaction changes, the prompts relate to transaction
6 GROCERIES 429.99 additions.
7 CLOTHING 119.99
8 MISCELLANEOUS 75.p9 Option 4 — Allows you to delete a transaction from a
month’s file (e.g., a transaction was included in the wrong
TOTAL 3 1.369.79 month). Again you must work with a record number,
PAGE 14 Australian RAINBOW Spril 19864,

v

. RN EEEEE—SS

Exhibit 6
ACTUAL VS. BUDGET FOR JANUARY 1986
KCT.' 5sD BiS: 0 RIT:PMT O Niss ..« « ACTUAL.BUDGET.. . . VARIANCE.
1 HOUSE MORTGAGE 200.99 200.99 p.90
2 INSURANCE 199.998 5p.99 5p.98-
3 BANK CARDS 150.99 199.998 502.90-
4 ELECTRICITY 125.99 150.99 25.99
5 AUTO PAYMENT 1890.99 189.00 2.08
6 GROCERIES 420.p9 App.pp 20.0p~
7 CLOTHING 119.99 19p9.89 19.09~
8 MISCELLANEOUS 75.99 50.99 25.99-
TOTAL ====> $ 1,360.90 $ 1,239.99 $ 139.99-
Exhibit 7
YEAR TO DATE A/O JANUARY 1986
ACT . D'E S CRIPDT IO N.s ««.ACTUAL.. .. .BUDGET.. . . VARIANCE.
1 HOUSE MORTGAGE 200.99 200.09 p.99
2 INSURANCE 129.99 50.09 50.90-
3 BANK CARDS 150.998 190.99 50.00~
4 ELECTRICITY 125.99 150.99 25.90
5 AUTO PAYMENT 180.99 18p.99 9.99
6 GROCERIES 420.99 4P0.00 29.89-
7 CLOTHING 110.96 190.09 19.89-
8 MISCELLANEOUS 75.99 50.09 25.90~
TOTAL ====> $ 1,368.89 $ 1,23p.99 $ 139.990-

which may be obtained from the printout of the detail
transactions for the month. You are asked for the deletion
record number, then the program checks to see if it is
valid. If so, it displays the record for a visual verification.
You are asked if this is the record you wish to delete. A
response of ‘N’ prompts you for another record number
while a ‘Y’ response deletes the record and updates the
appropriate files. The steps from this point follow the
same logic as options 2 and 3 in this selection, except
comments that relate to deletions.

Option 5 — Returns to the main menu. It should be noted
that options | through 4 for this selection allow for
submenu return in case you chose an option in error.

8) Display Monthly Budget
Displays budgeted account expenditures for a selected
month.

9) Display Monthly Transaction
Displays the summary amount of each account’s transac-
tions for a selected month.

10) Display Actual vs. Budget
You have the choice of choosing a specific month or year-
to-date through a specific month. The submenu will guide
you.

11) Report Generator
This selection allows you to print out reports from the data
you have entered. This is a separate program (Repigenr,
program Listing 3) and is called from this menu choice. You
are given seven print selections plus a selection to return
to the main program (Exptrakr) or to terminate the session.
Details on this selection are covered in the comments on
program Listing 3.

12) File Deletion
This selection allows you to delete either a budget or
transaction file for a specified month. The appropriate
transactions summaries are adjusted. After completion of

this option, data for a given month (budget or transaction)
may be re-entered.

13) Backup Files
The method used is the single disk copy procedure provided
for but not documented in the Radio Shack manuals. |
recommend at least a two-generation backup system
(backup of current files, plus prior generation).

14) End Session
Choose this option when you are ready to end the program
(Exptrakr). Remember to backup your files.

Reptgenr

This program provides for various listings of your data.
A discussion of the selections follows:

1) List Monthly Transactions
This selection gives you a listing of all the transactions for
a specified month. The listing is the only place where this
detail is given. Record numbers are obtained from this
listing. See Exhibit 1.

2) List Monthly Budget
This option provides a listing of the budget amounts for
each account with budgeted expenditures in a specified
month. See Exhibit 2.

3) List Budget For Year
Provides a month-by-month listing of each account’s
budgeted amounts for the year. See Exhibit 3.

4) List Actual For Year
Provides a month-by-month listing of each account’s actual
amounts for the year. See Exhibit 4.

5) List Transaction Summary For Year
Provides a summarized listing of all account amourts
entered. See Exhibit 5.

continued on Page 28

1984

April

. Australian RAINBOW

PAGE 17

USINESS

32K
Disk

RECEIPT NARER

by Bill Tottingham

Once you've had the CoCo for a

while, as most of you bhave
probably experienced, you begin to
look for ways to use it for about
anything you can think of, if for
no other reason than to prove your
computer 1is more than "just a
toy", as the guy down the street
the the $5000 [BX says. Any of wus
who have spent any time with the
CoCo know that's a ridiculous
notion. I know several people who
run small volume businesses who
would love to use the CoCo due to
its relatively 1low cost. One
particular person wanted a program
that not only printed out a
receipt (he was writing them out
by hand), but also would save the
{nformation to disk for later tax
purposes. This program 1is the
result - no need for a million
dollar conmputer and another
million in software.

To use Receipt File you must have
at least 32K and a disk, and
should have a printer. The program
{s set to use a DMP-100 at 1200

D HILE

Entering Data
After making any needed changes,
you are ready to run the program.

The first thing you will see is
the main menu. On it will be five
choices (8see Ffigure 1). Since
we're just getting started, press

12' for "Enter new data.” You will
then be asked the date. Enter it
in the same format the example
shows, then press ENTER. You will
then be asked if the information
given was correct. (Vhen entering

new data you will always be asked
if the information provided was
correct.)

Next you will be asked for a “Receipt
number.” You must enter a number.
This is the number the program uses for
filing. It also must be a number different
from one already on file. The best bet
is to give the receipt a number incre-
mented by one over the preceding
receipt. For the first one, enter 001.

You will now be asked to enter “Re-
ceived of.” Here you may enter the
name of your customer.

Now we come to “Amount of Ac-
count.” This is the total purchase price.
You can use the balance due from any
previous payment of the same account.
This will be printed on the receipt with
the amount paid and a balance due. If
the amount of account is the same as the
amount paid, simply enter the amount
paid here again if you wish. If not, press
ENTER.

Finally we come to the comment line.
Enter anything you wish; however, it is
customary to use this for what was
purchased, or the nature of the transac-
tion. If you are the purchaser, you might
want to enter the name of the other
party, so if the hard copy is lost you will
still have the information come tax
time. There is a 30 character space here.

You now find yourself back at the
main menu. If you want to examine the
information to be printed and/ or saved,
press ‘3" If any of the information is
wrong, press ‘M’ to return to the main
menu and press ‘2' to re-enter all the

Baud. If you are going to use a o data. If everything is correct, the receipt
different printer, change the Next comes the Dollar amount a5 be printed or saved to disk. Press
received control codes in the paid.” This is exactly what it says. Enter «\p> {5 get back to the menu.
following lines: this like the example shows.
Saving to Disk
Line DMP-100 Function If you are planning to save this data
830 POKE149,0:POKEL50,41 1200 Baud printer on disk, it can be done now or after
850 CHR$(15) Enable underline printing the receipt.
860 CHR$(14) Disable underline To save on disk, press ‘1’ for the disk
870 CHR$(31) Elongated mode menu (Figure 2). Here again there will
880 CHR$(30) Character mode be five choices. Since we are saving
data, press ‘3. You will then be asked
PAGE 18 Australian RAINBOW April 1986.

to press ENTER for save or ‘M'for menu. line input statements in lines 240 Figure 2
After the save is completed, you will be through 270 and in Line 280 after the
returned to the main menu. BD$=STR$(BD) statement. A line could DISK MENU
i g Iso be added in the printer routine that
Printing the Receipt " : . .
To pritit the receIi)pt press & Youwil would print a line under the receipt for (1] DIRECTORY OF FILES
be asked if you want a copy. Pressing ‘Y’ WriEn comments: (2) LOAD FROM DISK
tells the printer to print two receipts.
Before answering this prompt make (3] SAVE TO DISK
sure your printer is on and ready to go.
After printing, you will be returned to (M) MAIN MENU
the main mcnu..Herc you may save the Figure 1 (Q) QUIT PROGRAM
data (if not previously saved), enter new
data or look at and/or load previous MENU Figure 3
it (1) DISK MENU 1291 6/25/86
Entering Data from Disk (2] ENTER NEW DATA JOHN Q. SMITH
.To load dalafrom.dlsl‘(,‘fxrst get tothe AMT. OF ACCOUNT $392.43
disk menu by pressing ‘1’ on the main (3] EXAMINE
menu. The easiest way to load is to press AMT. PAID $259.99
‘I" from the disk menu. A list of receipt (4] PRINT RECEIPT BALANCE DUE $42.44
numbers will appear on the screen
preceded by a number; for example: 1) Q] QUIT PROGRAM COMMENTS: PART # 35771
001. To load receipt #001, press ‘1" and
ENTER and the file will load. If you PRESS (M] FOR MENU
already know the receipt number, press
‘2’ on the disk menu and enter the Figure 4
number at the prompt.
After loading, you will automatically
be in the examine mode (Figure 3). oL oy Dote 62586
From there you can print out a receipt,
load a different receipt or enter new Receiwved of __J0HLL. SNITH
data. -
As with all programs, this one can be = i e
maodified to your specific needs. Some e T e ons pet sas7)
ideas might be to incorporate a different —FALALE LUE_ So,8d
filing system if you are in a higher x
volume business. To enter data faster,
you could hack off everything after the
O DISK":PRINT@357," (M) MAIN ";TA$:TA=VAL(TAS) : BD=(TA-DO)
MENU" : PRINT@421,"[Q) QUIT PR :BD$=STRS$(BD) :GOSUB34@:PRINTE323
OGRAM" ," =";:PRINTUSING"S$S##44.#4";TA
15¢ I$=INKEY$:IFIS$=""GOTO15p 7 :PRINT"-":GOSUB32@: IFI$="N"THEN
16¢ IF1$="1"GOTO11@p 289
179 IFI$="2"GOTO458 298 CLS:PRINT@1p2,"ENTER COMMENT
189 IFI$="3"GOTO37p LINE":PRINT@134," (EX. PART #357
19¢ IFI$="M"GOTOS5p 71)":PRINT@223,")": PRINT@192," "
2¢2 IFI$="Q"GOTOl3p ; : LINEINPUTCS
21 GOTO158 3pp IFLEN(C$)>39GOTO369
22 'ENTER DATA ROUTINE 31p GOSUBS7@:GOTOS58
232 GOSUBS7p 32p 1$=INKEY$:IFIS$=""THEN32p
The listing: RECEIPT 242 CLS:PRINT@1@3,"ENTER RECEIPT 339 RETURN
DATE":PRINT@136," (EX. 6/25/85)" 3409 PRINT@298,"YOU ENTERED-":PRI
: LINEINPUT" ";D$:GOSUB NT@354,"IS THAT CORRECT? (¥/N)":
1¢ CLEAR 34p: PRINT@329," -"D$"-":GOS RETURN

2§ CLEARS@PZ

39 VERIFY ON

49 DIMPS(35,2)

58 CLS:PRINT@46,"MENU":PRINT@165

(1) DISK MENU":PRINT@229,"
(2) ENTER NEW DATA":PRINT@29
3,"(3] EXAMINE" : PRINT@357,"[

4] PRINT RECEIPT":PRINT@421,

"[Q) QUIT PROGRAM"

69 AN$=INKEY$:IFAN$=""GOTO68

79 IFANS="Q"GOTO13@

8¢ IFANS="1"GOTO14p

99 IFANS="2"GOT0229

128 IFAN$="3"GOTO528¢

112 IFAN$="4"GOTO76g8

129 GOTO6g@

139 GOSUBS7@:CLS:END

149 CLS:PRINT@44,"DISK MENU":PRI

NT@165," (1) DIRECTORY OF FIL
ES":PRINTE€229,"[2) LOAD FROM
DISK":PRINT@293,"([3) SAVE T

UB32@:IFIS="N"GOTO024p¢
258 CLS:PRINTE@1@3,"ENTER RECEIPT
#":PRINT@136," (EX. PP1)":LINEIN
PUT" " ;N$:GOSUB34g: PRIN
T@329," ~"N$"-":GOSUB32@:IFI
$="N"GOTO0258
269 CLS:PRINT@1@3,"ENTER RECEIVE
D OF":PRINT@134,"(EX. JOHN Q. SM
ITH)":LINEINPUT" " ;RO$:GOSUB34
2:PRINT@328," -"RO$"~":GOSUB
32p:IFIS$="N"THEN269
279 CLS:PRINT@1@g,"ENTER DOLLAR
AMOUNT PAID":PRINT@134,"(EX. 259
.99 OR 499)":LINEINPUT"
" ;DO$:DO=VAL(DO$) : GOSUB348: PRINT
€322," ~";:PRINTUSING"SS###.#4"
;DO; : PRINT"~":GOSUB32@: IFI$="N"T
HEN279
28¢ CLS:PRINTE@99,"ENTER TOTAL AM
T. OF ACCOUNT":PRINT@135,"(EX. 3
£2.43 OR 5p@)":LINEINPUT"

358 GOTOS5@

36¢ CLS:PRINT@17@,"LINE TO LONG"
:FOR T=1TO5@@:NEXTT:GOT0298

378 'DISK ROUTINE

388 BD$=STRS (BD)

398 CLS:PRINTR166,"HIT <ENTER> T
0 §AVE":PRINT0232,"OR <M> FOR ME
NU

4Pp IS=INKEYS:IFIS$S=""GOTO4gp

419 IFI$="M"GOTOS5@

42p IFI$=CHRS$ (13)GOT0449

430 GOTO4pP

449 GOSUB57@:CLS:GOSUBS8@:GOSUB?
40 :GOSUB578:GOTO59

459 CLS:PRINT@17@,"ENTER FILE #"
:PRINT@339,"[M] FOR MENU"

468 PRINT@242,")":PRINTE@236,"[";
:LINEINPUTNS

478 2=LEN(N$):IFZ>5GOT0458

489 IFN$="M"GOTOS5@

499 CLS:PRINT@168,"LOADING #";N$

April 1784,

Australian RAINBOW

PAGE 19

: PRINT@182,STRINGS (19,32)

589 GOSUBS57@:GOSUB58@:GOSUB75p:G
0SUB678

51¢ TA=VAL(TA$) :DO=VAL(DOS$) :BD=V
AL(BDS)

52@ BD=(TA-DO)

53p CLS:PRINT@1,"#";N$:PRINTE2P,
D$:PRINT@67 ,ROS$: PRINT@131, "AMT.
OF ACCOUNT -::pRINTUSING"SStlﬂ.
#4";TA: PRINT@201,"AMT. PAID “;:
PRINTUSING"S$S###.##";D0: PRINTE26
3,"BALANCE DUE " ;:PRINTUSING"S$$
§##4.44#";BD: PRINTE323, "COMMENTS:
":CS

549 PRINT@458,"[M] FOR MENU"

558 1$=INKEY$:IFI$="M"GOTO5¢

56¢ GOTO558

578 CLOSE#1:RETURN

589 OPEN"D", #1,N$,11p¢

599 FIELD#1, 1§ AS XTA$,18 AS XD
$,18 AS XDO$,1p AS XBD$,39 AS XR
0$,38 AS XC$,19 AS XDT$S

6pP LSET XTAS$=TA$
61¢ LSET XD$=DY$
629 LSET XDO$=DO$

639 LSET XBD$=BD$
64§ LSET XRO$=RO$

659 LSET XC$=C$
66¢ LSET XDT$=D$

679 TAS=XTAS
689 D$=XDT$

698 DO$=XDO$
7¢8 BD$=XBD$

718 RO$=XROS

72p C$=XC$:RETURN

739 RETURN

749 PUT#1:RETURN

758 GET#1:RETURN

768 'PRINTER ROUTINE

77¢ CLS:PRINT@133,"DO YOU WANT A
COPY FOR": PRINT@IGS,“FOR YOUR R
ECORDS ALSO?":PRINTE@2£5," (Y/N)"
789 PC$=INKEYS:IFPC$=""GOTO78p
799 IF PC$="Y" THEN PC=2

8gp IFPCS="Y"ORPC$="N"GOTOB2P

81§ GOTO788

82p CLS:PRINT@236, "PRINTING"

839 POKE1l49,0:POKE150,41:"'1280BA
UD

849 FORPP=1TOPC

858 U$=CHRS$(15) : "UNDERLINING ON

868 DUS=CHRS$ (14) : 'LINING OFF

879 E$=CHR$(31) : 'DOUBLEWIDTH/ON

88P DE$S=CHR$ (39):'D.W./OFF

899 NOS$="NO.":DT$="Date ":RCS$="R
eceived of":DL$="DOLLARS"

9g@P ACS="AMT. OF ACCOUNT "

919 APS=" AMT. PAID "

928 BD$=" BALANCE DUE "

93§ LF$=STRINGS(2,1P):S$=CHRS (32

)

94¢ PRINT#-2,U$;STRINGS(88,32);:S
TRINGS$ (2,18) ;DUS

95¢ PRINT#-~2,E$;NOS;DES$;US:S$ NS
18$;DUS;;STRINGS (46,32) ;E$;DT$:DE
$;U$:S$;:D$:5$:DUS;LFS

968 LR=LEN (RO$) :LS=(47~LR)

978 PRINT#-2,E$;RCS$;DES;US$;S$:8%
;5$;5$:5$;:R0S$;STRINGS (LS, 32) ;DUS
;LF$

98@ PRINT#-2,U$;STRINGS(38,32) E
$;:PRINT#-2,USING"S$SH##4.#4";DO;:
PRINT§-2,DES;STRING$ (11,42) ;DUS;
E$;DL$;DES

99p PRINT#-2,U$;STRINGS$(25,32):D
U$;STRINGS (28,32) ;"1gp"

1¢#P PRINT#-2,ACS$;:PRINT#-2,USIN
G H##4.#4";TA

1§19 C=LEN(C$):CL=(32-C)

1¢2p PRINT#-2,AP$;U$;:PRINT#-2,U
SING"¥#44. !'"JDO, PRINT#-2,DUS$;S
TRINGS (15,32) ;"CMTS ";U$: CSXSTR
INGS$ (CL,32) ; DUS

1¢3Pp PRINT#-2,US$:BDS$;:PRINT#-2,U
SING"###4.#4";BD; : PRINT§-2, CHR$(
32)

1p4p PRINT#-2,CHRS (18) ;DU$;STRIN
G$(43,32): ES;"S":DES U$; STRINGS (
32,32)

lﬂSﬂ PRINT#-2,U$;STRINGS(88,32);

DU$

1969 PRINT#-2,STRINGS (19,18)
1§62 IFPC=2GOTOlP65

1$63 GOTO1p7@

1965 IFPP=1THENPRINT#-2,STRINGS (
38,1p9)

1979 NEXTPP

1288 GOTOSg@

1§98 CLS:END

11¢@ CLS:'DIRECTORY ROUTINE

111§ CLEAR

1120 GOSUB57p

113§ FORZ=3TOll

114p DSKI$@,17,2,A$,BS

1158 X$=A$:GOSUB119g

1168 X$=B$:GOSUB1199

1178 NEXTZ

1188 GOTOl288

1192 FORJ=1TO128STEP32

12¢9 R=R+1

1212 P$(R,1)=MID$(X$,J,8)

122¢ IFLEFTS$(P$(R,1),1)=CHRS (255
) THENR=R-1:GOT01289

1239 IFLEFTS(P$(R,1),1)=CHR$(8)T
HENR=R~-1:GOTO1268

1249 P$(R,2)=MID$(X$,J+8,3)

1258 IFP$(R,2)<>"DAT"THENR=R-1
1268 NEXTJ

127¢ RETURN

1288 FORK=1TOR

1299 PRINTUSING"##";K;:PRINT") #
";PS(K,1),

13g¢ IFK=R THENPRINT,

131¢ NEXTK

132¢ LCN=48p

133¢ PRINTE@LCN,"LOAD WHICH FILE
(M FOR MENU)";:INPUTP1$

134¢ IFP1$="M"GOTOl4p

135¢ P=VAL(P1$)

1368 IFP<1ORP>R THENLCN=448:GOTO
13389

137¢ FILE$=P$(P,1)

1388 N$=FILES

1398 GOTO49p o

head ware.
Normally $246.41

CoCo Disk Drive -

FIlIIlIlllllIIIlIIlIlIllll!!!Illllllllllllllllllll
STOCKTAKING SPECIALS!

While lhey last - send a copy
of this ad o get this specialll

TEAC FD55F DSDD 80 Track Drives
with head load solonold to reduce

While they last \B\
Printers: \g

CPABO K .o viivnissnsvinnss vaswmes PRS0
CPBBOP ciecrnesnonsssssossssssss 948242
CPBI sivssvapnrnanisnaia cisiess HOTIO
Includes Power Supply,
Case, Cables, 1.4 DOS, 40 Track DSDD.
Drive expandable lo 2drives$399.00

Phone for further delalls
All prices Include Tax
Please allow for P & P. Bankcard Welcome.
Dealer enquires welcome.

eneigy

CONTRO

SA0Y CONTIOL MTTRRATIONAL PTV. LID.
PO Boe §502 M Oa 4300

luonnnn
Prone (O1) 788 un Toten AALYITS [NECON
P20 o 1182 o MW TTAAND

wemngion
Prone 4 126 482 L1 W D018

PAGE 20

Piices subject 1o change withoul nolice.

Australian

AFORTH

cOCO

with 43 pge
32 K

Australian Rainbow Magazine
P.0. Box 1742,
Southport.

RAINBOW

by John Redmond

FORTH

FOR

Manual

required

$ 60.00
FROM

John Rednond
02-85-3751.

or on order from your
local Tandy store.

01d. 4219.

H E%II(IF&QP

Financing:
The Economic Advantage

aving been a car salesman for
Hsix years and a car rental man-

ager for another four years, I've
learned a lot about human nature and
how people spend their money. Folks
purchasing a new car might think that
by taking the money out of their savings
account to pay cash for their purchase
that they are saving all that interest on
the loan. Surprise! They've actually lost
money doing it that way. This program
will show in cold, hard figures which is
the more economical move. It will also
give skeptics a printout to take home
and think about if they are not initially
convinced after running the program.

When using Cash vs. Financing,
input the same dollar amounts and the
same number of months in each case. In
other words, compare “apples with
apples.” (Or should I say “CoCos with
CoCos.”) If you’re considering a
$10,000 car and you have that amount
in the bank, use $10,000 in the financing
section of the program in order to get
an honest comparison.

Naturally, the input for interest will
vary between savings and financing, but
use the same number of months in the
comparison. Let’s go through a sample
session. For savings amount, input
$10000 (no commas). For savings inter-
est, let’s use 8.75 (no percent sign
necessary) and for months, input 48.
Compound periods in this sample will
be 2. The program will show you that
by the end of the 48 month period, your
nest egg will be worth $14085.49 or a
gain of $4085.49 in interest.

This will put you into the finance part
of the program. Your first input will be
the finance amount. Again, use $10000.
For finance interest, use 13.5 (even at
this higher rate, you'll be surprised by
the outcome). For the number of fi-

By Bill Bernico

nance months, again use 48 and it will
show you that your monthly payment
will be $270.76 or a total of $12996.48
over 48 months. The interest you will
have paid in those 48 months is
$2996.48.

Comparing this figure with the
$4085.49 in interest you would have
earned from the savings account, you
can see that you've saved $1089.01 by
financing and leaving your nest egg
alone. If you can find finance rates
lower than 13.5, then the savings will be
that much more.

At this point in the program, if the
customer has still not been convinced to
finance the car, the salesman can select
from three options. Option 1 is a print-
out of the comparison. Option 2 is to
start over with new figures. Option 3 is
to end the program.

Option 1, the printout, will ask for the
customer’s name as well as the sales-
man’s name. After the salesman inputs
his name, the program will send the
information to the printer. (This print-
out was tailored for the TP-10 printer
which we have in our showroom, but
will work with other printers as well.)
The printout will personalize the hard-
copy that the customer gets. It also has
the dealership name and address as well
as the salesman who serviced him. It’s
nice to stay fresh in the customer’s
mind.

Here is a sample printout from the
program we just ran. This program need
not be restricted to autamobile pur-
chases. It can be used on any item you
like for comparison purposes.

One last note: I have fictionalized the
name of the dealership in the printout
as per my employer’s request, and my
apologies if there is really someone out
there by the name of “Joe Average.”

Apri] 1986.

Sample Printout

HOMETOWN DODGE
1234 NORTH 56TH STREET
SHEBOYGAN, WI 53981
(414) 555-4861
ASK FOR BILL BERNICO

SAVINGS AMOUNT.... 1ppggg
SAVINGS INTEREST.. 8.75 %
SAVINGS MONTHS.... 48
COMPOUND PERIODS.. 2
SAVINGS AMOUNT
AFTER 48 MONTHS...
INTEREST GAINED...

14085.49
4985.49

FINANCE AMOUNT.... 1ppgp
13.5 %

FINANCE INT.......

FINANCE MONTHS.... 48
MONTHLY PMT....... 27p.76
TOTAL OF PMTS..... 12996.48
TOTAL INTEREST.... 2996.48

JOE AVERAGE CAN SAVE $ 1p89.91
BY FINANCING THIS VEHICLE

ASK US FOR ASSISTANCE IN
ARRANGING A LOAN FOR YOU.

The listing: CASH

1P 'ean
20 'hax
3P thRk
4 'enn

*hk
h*

CASH
BY BILL BERNICO
798 MICHIGAN AV, **#*

SHEBOYGAN, WI w##*

SP ek 53981 hhk
6f 'ww% (414)YA59-735p Arx “1
TP 'huk AR

8f CLS:BS$S=CHRS$(128)

98 PRINT@43,"advantages";B$;"of
199 PRINTE@1@7,"financing";B$;"vs
11§ PRINTE@171,"paying";B$;"cash
12¢ PRINTE@299,"COURTESY OF"

continued on Page 24

Australian

NBOW

PAGE 2

Ll INANCE "—

16K H1 cmae IF
Disk RA.INB.EW

Forecast your budget, so in the future

youcan. . .

Juggle Bills, Juggle Bills,
Juggle All the Way!

This program, Home Budget
Analysis, is used to assist in
budgeting and forecasting per-
sonal finances in order to plan and
adjust cash flow for three future periods
(paydays). The program allows you to
enter and update income and expense
items for each of the three periods. The
total of income and expenses is calcu-
lated and displayed for instant analysis
of cash flow, as items are added or
updated. The balance is money that has
not been committed, or over-com-
mitted, if a negative balance is calcu-
lated.

As a period passes, you may shift all
amounts so the second period becomes
current and a new third period is
opened. This allows you to continue
budgeting for future periods. Also the
ability is given to save or load a file of
personal finance data.

Create New File/Load Existing File

You are given two options upon
running the program. Press ‘C’ to create
a new file or ‘L’ to load an existing file.
® Create New File: You are prompted

to enter the dates of the three future

periods to be budgeted. Enter each

period date in the format “MM/

DD.”
® | oad Existing File: You are prompt-

ed to ready the cassette. Press any key

when ready to load the file.

Upon completion of entering the
dates for creation of a new file or
loading an existing file, the INCOME
DISPLAY appears. You are now ready
to begin entry or update of your per-
sonal finance file.

Add/Update/Delete Expense
and Income Items

Income items are accessed via the
income display, expense items via the
expense display. Press ‘N’ to add a new
item, or “A-H” to update or delete an

By Glen Dufur

existing item. Be sure to include all

known income and expenses that occur

during each period, for example, gro-

ceries, car expenses, rent, utilities,

installment payments, savings, wages

and other income.

® Add Item: A prompt is given to enter
the DESCRIPTION. A description is
required for each item entered. You
are then prompted to enter an AUTO
AMOUNT. This amount is automat-
ically entered for each period of the
item being added. Press ENTER with-
out an amount if you do not wish an
auto amount. This function is handy
when the amount is the same for each
period. You are now ready to enter
amounts for the added item (see
Update).

® Update Item: When updating an
item, the display prompts for the
period to update, ‘1°, 2’ or ‘3", Enter
the proper period and a prompt
appears to enter the AMOUNT. To
change the description and/or auto
amount, press ‘D’. A prompt appears
to enter the new description. You are
then prompted to enter the auto
amount.

® Delete Item: After selecting the item
to be deleted, press ‘*’. The item is
deleted and you are automatically
returned to the income or expense
display.
Press ‘R’ to return to the income or

expense display.

Expense and Income Displays

The income and expense displays list
the items that represent the total of
expenses and income. Options are
available to move between the expense
and income displays, in addition to
adding or updating items. Press ‘I’ while
in the expense display to call the income
display. The expense display may be
recalled by pressing ‘X',

Scrolling of items is accomplished by

 E————
PAGE 22

the up/down arrows while in either
display. The last entry on the screen
appears at the top when scrolled down
and vice versa when scrolled up.

The calculated total of expenses and
income is shown for each period with
the balance of uncommitted or over-
committed amounts.

Open New Period

As a period has past, you may delete
the current period and move all income
and expenses forward and, therefore,
open a new period.

Press ‘O’ while in the expense or
income display. The function prompts
you to enter the date of the new period
in the form *“MM/DD.” The program
automatically shifts all amounts and
drops the values for the current period.
If you had entered an auto amount for
any income or expense item, this
amount is automatically entered into
the new period for the item.

Technical Information

A maximum of 25 expense items and
five income items have been imposed.
Should your budget require more items,
change the value of EN (expense items)
and IN (income items) in Line 3000.

Logic Flow
Frequent Subroutines
10 INKEY

12 prompt alarm

15 blank two lines

top line

bottom line

screen load expenses
screen load income
calculate and print totals

Other Subroutines
accept desc/default
delete expense
delete income

100
120
130

Australian RAiﬁgw

Apri11 1986,

140 accept amount 1000 initialize and start PDS(3) period dates
150 basic screen 1100 menu TE(3) period total expense
170 item screen 2000 PCLEAR TI(3) period total income
185 item bottom query Variables PB(3) period balance
190 file full EDS(EN) expense description EN maximum expense records
300 expense display EA(EN,3) expense amount (preset to 25)
400 expense item update DE(EN) expense default IN maximum income records
500 income display LE last record expense (preset to 5)
600 income item update IDS(IN) income description 1ES flag E=expense, I=income
700 shift period IA(IN,3) income amount I(8) item addressability
800 LDAD and SAVE DA(IN) income default 1X3$(8) item addressability
900 new file LI last record income 1$(8) item addressability
is;ﬁﬁgs 97 ¢ 19¢ PRINT@449,"";:GOSUB15:PRINT@
[, R eay 33 610....... :; 98 'OTHER SUBROUTINES 449," file full - press enter";:
00 cisiine 09 T " 99 ¢ GOSUBLf : RETURN
130 N 86 S5 1¢p PRINT@448,"";:GOSUB15:PRINT@ 297 '
170 1 997...... et 449,""; :GOSUB12: LINEINPUT"DESC: 298 'EXPENSE ITEM UPDATE
320 - R ";XX$:IFXX$="" THENSOUND1,1:GOTO 299 '
40on- 36 END..... 1PPELSEPRINT@132, "aa# WXXSH waan 399 IES$="E":I(1)=1
T ; 35 PP=32:GOSUB15@:GOSUB6@:GOSUB

The listing: HOMEBDGT

1 GOTO28pp

7 A

8 'FREQUENT SUBROUTINES

9 '

19 K$=INKEYS$:IFK$=""THENGOTO1lgEL
SEK=VAL (K$) : RETURN

12 FORSS=1T02:SOUND22@, 1:NEXTSS:
RETURN

13 FORSS=1T09:SOUND22@, 1:NEXTSS:
RETURN

15 PRINTTAB(1)STRINGS(3g," "):PR
INTTAB(1) STRINGS (38," ") ;:RETURN
2§ PRINTTAB(1)STRINGS (3@, CHRS (14
P)) i :RETURN

25 PRINTTAB(1)STRINGS (308,CHRS (13
1)) 7 :RETURN

39 IFLE=p THENPRINT@1l63,"enter"B
BS;"expense"BB$"items" ; : SOUND2@@
, 1:RETURN

31 PP=64:PX=PP:IX=1:FORX=I(1l) TO
(I(1)+6) : PRINT@PP+g,STRINGS(32,C
HRS (143)) 7

35 IFX<(EN+1l) THENPX=PP:PRINTE@PP
+@,IX$(IX) ;:PX=PX+1:PRINTEPX,6USI
NG"% £";EDS (X) ; : PX=PX+7 : FORY=
1TO3:IFEA(X,Y)<>@§ THENPRINTEPX,U
SING N2$:;EA(X,Y) ;:PX=PX+8:NEXTY:
ELSEPX=PX+8:NEXTY -
49 I(IX)=X:IX=IX+1:PP=PP+32:NEXT
X:SOUND2@@, 1: RETURN

45 IFLI=¢ THENPRINT@163,"enter"B
BS;"income"BBS"items" ; : SOUND22g,
1:RETURN

46 PP=64:PX=PP:IX=1:FORX=I(1l) TO
(I(1)+6) : PRINTE@PP+@,STRINGS(32,C
HR$(143));

59 IFX<(IN+1l) THENPX=PP:PRINTE@PP
+@8,IXS(IX);:PX=PX+1:PRINTEPX,6USI
NG"% $";IDS(X) ; : PX=PX+7: FORY=
1TO3:IFIA(X,Y)<>p THENPRINT@PX,U
SING N2S;IA(X,Y) ;:PX=PX+8:NEXTY:
ELSEPX=PX+8 : NEXTY

55 I(IX)=X:IX=IX+1:PP=PP+32:NEXT
X:SOUND2P@, 1: RETURN

69 FORX=1TO3:TE(X)=g:FORY=1TOLE:

TE(X)=TE(X)+EA(Y,X) :NEXTY, X: FORX
=1TO3:TI(X)=p:FORY=1TOLI:TI(X)=T
I(X)+IA(Y,X) :NEXTY,X:FORX=1TO3:P
B(X)=TI(X)-TE(X) :NEXTX

65 PRINT@288,CHRS (149) ;:GOSUB2g:
PRINTE320,"expense"; :PP=320:FORX
=1TO3:PP=PP+8:PRINT@PP,USINGN2S;
TE (X) ; : NEXTX

79 PRINT@352,"income";BBS$;:PP=35
2:FORX=1TO03 : PP=PP+8: PRINT@PP,USI
NGN2$;TI(X) ; :NEXTX

75 PRINTE384,"balance";:PP=384:F
ORX=1TO3:PP=PP+8: PRINT@PP,USING
N2$:PB(X) ; : NEXTX

89 PRINT@416,CHR$(131) ;:GOSUB25:
RETURN

1p2 PRINT@448,"";:GOSUB15:PRINTE
449,"AUTO AMOUNT";:GOSUB12:INPUT
XX
195 IFIE$="E" THENEDS (I)=XX$:DE(
I)=XX:IFEA(I,1l)=p ANDEA(I,2)=p A
NDEA(I,3)=f THENFORX=1TO3:EA(I, X
)=DE(I) :NEXTX:RETURN: ELSERETURN
119 IDS(I)=XX$:DI(I)=XX:IFIA(I,1
)=p ANDIA(I,2)=@ ANDIA(I,3)=0 TH
ENFORX=1TO3:IA(I,X)=DI(I):NEXTX:
RETURN : ELSERETURN
12p IFI=LE THENEDS$(I)="":DE(I)=p
tFORZ=1TO3:EA(I,Z)=@:NEXTZ:LE=LE
-1: ELSEFORX=I TOLE~-1l:IFED$(X+1)
<>"" THENEDS (X)=EDS$ (X+1) : EDS (X+1
)="":DE(X)=DE(X+1) :DE(X+1)=8:FOR
Z=1TO3:EA(X,2)=EA(X+1,2) :EA(X+1,
Z)=P:NEXTZ:NEXTX:LE=LE-1: ELSENE
XTX
125 RETURN
13p IFI=LI THENIDS$(I)="":DI(I)=p
$FORZ=1 TO3:IA(I,Z)=@g:NEXTZ2:LI=L
I=1l: ELSEFORX=I TOLI-1:IFIDS$(X+1
)<>"" THENIDS (X)=ID$ (X+1) : ID$ (X+
1)="":DI(X)=DI(X+1):DI(X+1)=g:FO
RZ=1TO3:IA(X,2)=IA(X+1,2) :IA(X+1
1 2)=@g:NEXTZ:NEXTX:LI=LI-1: ELSEN
EXTX
135 RETURN
149 PRINT@448,"";:GOSUB15:PRINT@
449, "PERIOD"K"AMOUNT" ; :GOSUB12:I
NPUTXX:IFIES$="E" THENEA(I,bK)=XX
ELSEIA(I,K)=XX
145 RETURN
150 CLS:PRINT"";:IFIES$="E" THENP
RINTSTRINGS (32,CHRS$ (242)); ELSEP
RINTSTRINGS (32,CHR$(162));
155 PRINT@16,"display";BB$;:PRIN
T@32,BBS;"period>"; : PRINT@42,USI
NGN3$;PD$ (1) 7 : PRINT@58,USINGN3S;
PD$(2) ; : PRINT@58 ,USINGN3$;PD$ (3)
; :IFIE$="E" THEN16§¢ ELSE165
169 PRINT@7,BB$;"expense";BBS;:P
RINT@449,"a-h nEW EXPENSE iNCO
ME SAVE";:PRINT@481," <ARROWS>
OPEN NEW PERIOD";:RETURN
165 PRINTE@8,BBS$;"income" ;BB$; :PR
INT@449,"a-h nEW INCOME ExPENS
E SAVE";:PRINTE481," <ARROWS>
oPEN NEW PERIOD";:RETURN
179 CLS:PRINT@193," PERIOD
AMOUNT ";:PRINT@227,STRING
$(19,CHRS$(131)) ; : PRINT@242,STRIN
G$(8,CHRS$(131)) : : PRINT@385, "AUTO
AMOUNT:"; : PRINT@416,""; :GOSUB25
175 PRINT@32,"";:GOSUB2@:PRINT:I
FIES="E" THENPRINTTAB(5)"EXPENSE
ITEM UPDATE":ELSEPRINTTAB(5)"IN
COME ITEM UPDATE"
189 GOSUB25:RETURN
185 PRINT@449,"";:GOSUB15:PRINT@
449," UPDATE PERIOD <1> <2> <3
> dESC *DELETE nEW ITEM <rET
URN" ; : RETURN

April 1984,

3p

31 I=P:GOSUB1P

315 IFK$=CHRS$ (1) THENI(1)=I(1)+
6:IFI(1)>LE THENI(1)=LE:GOSUB3@:
GOTO0310: ELSEGOSUB3@:GOTO31p

32@ IFK$="A" THENI(1)=I(1)-6:IF

I(1)<1THEN I(1)=1:GOSUB3@:GOTO31
p ELSEGOSUB3@:GOTO31p

325 IFK$="N" THENGOSUB4@f:GOTO3p
5:ELSEIFK$="I" THEN5@@ ELSEIFK$=
"S" THENIO=2:GOSUB8gP:GOTO3@P EL
SEIFK$="0" THENGOSUB7g#:GOTO32g

33p FORX=1TO8:IFK$=I$(X) THENI=I
(X) tNEXTX: ELSENEXTX

335 IFI=p THEN34g ELSEIFI>ENTRIE
S THEN34§ ELSEIFEDS(I)="" THEN34
§ ELSEGOSUBA4SS:GOTO3PS

349 SOUND1,1:GOTO318

397 ¢

398 'EXPENSE ITEM UPDATE

399 !

499 SOUND2pP,1

495 IFK$="N" THENLE=LE+1:I=LE:IF
LE>EN THENLE=EN:GOSUB19f:RETURN

419 GOSUB17@:PRINT@132,"#*% "ED$
(I)" ##&%;:PP=259: FORX=1TO3: PRIN
TEPP,X; : PRINT@PP+2,">" ; : PRINT@PP
+4,USINGN3$; PD$ (X) ; : PRINT@PP+15,
USING N2$;EA(I,X)::PP=PP+32:NEXT
X:PRINT@492,USINGN2$;DE(I) ;

415 IFK$="N" THENGOSUB1@@:K$="":
GOTO41@: ELSEGOSUB185

42p GOSUB1@:IFK$="R" THENRETURN

ELSEIFK$="#" THENGOSUB12@:RETURN
:ELSEIFKS$="D" THENGOSUB1@@:GOTO4
PPELSEIFKS$="N" THENGOTO4Sp

425 IF K>p AND K<4 THENGOSUB14g:
GOTO41P

438 SOUND1,1:GOT0429

497 !

498 'INCOME DISPLAY

499 '

Sp@ IES="I":I(1)=1

585 PP=32:GOSUB15@:GOSUB6J:GOSUB
45

51p I=@:GOSUB1J

515 IFKS$S=CHRS (1§) THENI(1)=I(1)+
6:IFI(1)>LI THENI(1)=LI:GOSUB45:
GOTOS10: ELSEGOSUB45 : GOTOS1g

520 IFKS$="A" THENI(1)=I(l)=6:IF

I(1)<1THEN I(1)=1:GOSUB45:GOTOS1
PELSEGOSUB45: GOTOS19

525 IFKS="N" THENGOSUB6@g:GOTOSp
P:ELSEIFKS="X" THEN3@p ELSEIFKS=
wS" THENIO=2:GOSUB8JP:GOTO3gP@ EL
SEIFK$="0" THENGOSUB7£2:GOTOS5¢7

538 FORX=1TO8:IFK$=I$(X) THENI=I
(X) : NEXTX: ELSENEXTX

535 IFI=g THEN54@ ELSEIFI>S THEN
549 ELSEIFID$(I)="" THEN54f ELSE
GOSUB6@P : GOTO585

549 SOUND1,1:GOTOS51p

597 ¢

598 'INCOME ITEM UPDATE

Australian RAINBOW

. PAGE 23

599 !

699 SOUND2£g,1

685 IFK$="N" THENLI=LI+1:I=LI:IF
LI>IN THENLI=IN:GOSUB19¢:RETURN

619 GOSUBL72:PRINT@132,"##% "IDS$
(T)" #***";:PP=259:FORX=1TO3 : PRIN
T@PP,X; : PRINT@PP+2,">" ; : PRINT@PP
+5,USINGN3$; PDS (X) ; : PRINT@PP+15,
USING N2$;IA(I,X);:PP=PP+32:NEXT
X:PRINT@402,USINGN2$:DI(I);

615 IFK$="N" THENGOSUBlgg@:K$="":
GOTO619: ELSEGOSUB185

62p GOSUB1@:IFK$="R" THENRETURN

ELSEIFK$="*" THENGOSUB13g:RETURN
:ELSEIFK$="D" THENGOSUB1@@:GOTO6
PPELSEIFKS="N" THENGOTO6@P

625 IF K>@ AND K<4 THENGOSUB14g:
GOTO61p

639 SOUND1,1:GOT0628

697 !

698 'OPEN NEW PERIOD

699 °

798 CLS:SOUND2gg,1

785 PRINT@129,STRINGS (3¢,CHRS (14
2)) :PRINTTAB(3) "SHIFT AND OPEN N
EW PERIOD":PRINT TAB(1)STRINGS (3
P,CHR$ (131))

71¢ GOSUB12:PRINT@292,"HIT ANY K
EY TO CONTINUE OR r
ETURN" ; :GOSUB1@: IF K$="R" THENRE
TURN

715 PRINT@288,"":GOSUB1S5, : PRINT@
289,"ENTER NEW PERIOD DATE (MM/D
D)";:PRINT@335,""; :GOSUB12: LINEI
NPUT"" ; XX$: PRINT@288, ""; : GOSUB15
: PRINT@294 , "NEW PERIOD FOR ";XX$
:PRINTTAB(6)" NOW BEING OPENED";
729 FORX=1TOLE:EA(X,1)=EA(X,2):E
A(X,2)=EA(X,3) :EA(X,3)=DE(X) :NEX
TX:FORX=1TOLI:IA(X,1)=IA(X,2):IA
(X,2)=IA(X,3) :IA(X,3)=DI(X) :NEXT
X:PD$ (1)=PD$(2) : PD$ (2)=PD$ (3) : PD
$(3)=XX$:RETURN

787 °*

798 'I/0 ROUTINES

799 !

$="SAVE"

819 PRINT@64,"";:GOSUB2@:PRINTE1

#5,10$;" FILE";:PRINT@128,"";:GO

SUB25

815 GOSUB13:PRINT@193,"POSITION

TAPE...":PRINT" READY CASSETTE..

.":PRINT" PRESS ANY KEY TO CONTI

NUE":GOSUBL1g: PRINT@192, "":GOSUB1

5:GOSUB15:IFIO=2 THEN845

82¢ '%---LOAD FILE---#*

825 SOUND22g,1:PRINT@193," LOADI

NG BUDGET FILE";

839 OPEN"I",$-1,"BUDGET":SOUND22

g,1

835 INPUT#-1,LE,LI:FORX=1TOLE:IN

PUT#-1,ED$(X) ,DE(X) : FORY=1TO3:IN

PUT#-1,EA(X,Y) :NEXTY, X: FORX=1TOL

I:INPUT#-1,ID$(X),DI(X):FORY=1TO

3:INPUT#-1,IA(X,Y) :NEXTY, X: FORX=

1TO3: INPUT#~1, PD$ (X) : NEXTX

849 CLOSE#-1:RETURN

845 SOUND22g,1

859 PRINT@193," SAVING BUDGET FI

LE" ; :MOTORON : FORX=1TO6@8 : NEXTX

855 OPEN "O",#-1,"BUDGET": SOUND2

29,1

868 PRINT#-1,LE,LI:FORX=1TOLE:PR

INT#-1,EDS$ (X) ,DE(X) : FORY=1TO3: PR

INT#-1,FA(X,Y) :NEXTY, X: FORX=1TOL

I:PRINT#-1,1ID$(X),DI(X):FORY=1TO

3:PRINT#~-1,IA(X,Y) :NEXTY, X: FORX=
1TO3:PRINT#-1, PD$ (X) : NEXTX

865 CLOSE#-1:RETURN

897 !

898 'CREATE NEW FILE

899 !

9¢# CLS:SOUND2pg,1

995 PRINT@33,"":GOSUB2@:PRINT: PR

INTTAB(6)"ENTER PERIOD DATES":GO

SUB25

91§ PP=360:FORX=1TO3:PRINTE214,"

";:GOSUB15: PRINT@161, "PERIOD #";
; tPRINT@227,""; :GOSUB12: LINEINP

UT"ENTER DATE (MM/DD): ";PD$(X):

PRINT@PP, "PERIOD ";X"--> ";:PRIN

TUSINGN3$; PD$ (X) : PP=PP+32 :NEXTX:

998 'INITIALIZE PROGRAM

999 !

19@P§ CLEAR5@@:SOUND2@@,1:EN=25:1
N=5:DIMEDS (EN) : DIMEA (EN, 3) : DIMPD
$(3) :DIMIA(IN,3):DIMIS$(8):DIMI(8
) :DIMDE (EN) : DIMIDS (IN) : DIMDI (IN)
tDIMIX$(8) :DIMTE(3) : DIMTI(3) :DIM
PB(3)

1995 LE=@:LI=0:FORX=1TO8:READIXS$
(X),I$(X),I(X):NEXTX

1919 DATA a,A,l1,b,B,2,c,C,3,4,D,
AIelzl 51 fIFIGIgIGI-,IhIHla

1915 NAS="##":N2S="#44#.#4-":N1S
="+ 44EF. 44" LDS="% $":N3$="%

%" :BB$=CHRS (128)

1939 !

1199 SOUND2pg,1

1195 CLS:PRINT@99,"home";BBS$;:"bu
dget";BB$;"analysis": PRINT: PRINT
bt BY: GLEN DUFUR"™:PRINT" C
OPYRIGHT (C) 1985"

1119 PRINT:PRINTTAB(4)"10OAD EXIS
TING BUDGET FILE":PRINT:PRINTTAB
(4) "cREATE NEW BUDGET FILE":PRIN
T€424,"SELECT OPTION";

1115 IFXX$=CHRS$(161) THENXX$=CHR
$(162) : XY$=CHRS (164) : XZ$=CHRS$ (16
6): ELSEXX$=CHR$(161) :XY$=CHRS$ (1
68) : XZ2$=CHRS (169)

112¢ PRINT@65,CHR$(138) ;: PRINTST
RINGS (22,XX$) ;CHRS$(133) ; : PRINTEL
29,CHRS$(138) ;STRINGS$(22,XY$) ;CHR
$(133) ; : K$S=INKEY$:PRINTE97,CHRS (
138) ;X2$;:PRINT@119,X2$;CHRS (133

)

1125 PRINT@438," ";:IFK$="" THEN
1115 ELSEIFK$="L" THENIO=1:GOSUB
8PP:GOTOS5PP: ELSEIFK$="C" THENSP

')

1132 PRINT@438,K$;:SOUND1,5:GOTO
1115

1209 'CSAVE "BUDGET" ROUTINE
1295 FORX=1TO2:MOTORON:FORY=1TO6
PP :NEXTY : MOTOROFF: CSAVE"BUDGET" :
NEXTX: FORX=1TOS5:SOUND2g@, 1 :NEXT:
END

82p CLS:SOUND2pg,1 GOTOSgP 1999 'PCLEAR ROUTINE
8¢5 IFIO=1 THENIO$="LOAD" ELSEIO gg7 ! 2P PCLEAR1:GOTO1P@p A
e ——— e
He 62p PRINT#-2,"SAVINGS AMOUNT"

continued from Page 21

139 PRINT@363,"HOMETOWN DODGE
149 PRINT@484," (HIT ANY KEY TO C
ONTINUE)";

15¢ EXEC 44539

160 A=g:1=p:T=@:Y=P:V=0:L=0:P=9:
X=@:N=@:K=0:0=0:U=p:E=p

179 CLS

18¢ INPUT"SAVINGS AMOUNT......";
A

19¢ INPUT"SAVINGS INTEREST..«.":?
I:I=1I/199

2¢9 INPUT"SAVINGS MONTHS......";
T:T=T/12

21p INPUT"COMPOUND PERIODS....";

Y

229 V=A*(1+I/Y)"(Y*T):V=INT(V*1p
£+.5)/129

239 PRINT"AFTER";T#12;"MONTHS...
«e "3V

249 L=V-A

258 PRINT"INTEREST GAINED.....$

II:L

26§ PRINTSTRINGS(32,"-"):

27§ INPUT"FINANCE AMOUNT......";
P

28 INPUT"FINANCE INTEREST....";
X:X=X/190

298 INPUT"FINANCE MONTHS......";
N

3p9 K=P*(X/12)/(1=(1+(X/12))"-N)
319 K=INT(K*1p@+.5)/1pp

328 PRINT"MONTHLY PAYMENT.....$

II:K

339 O=K*N

349 O=INT(O*1@g+.5)/19p9

358 PRINT"TOTAL OF PAYMENTS...$"

36p U=INT((O-P)*1pp+.5)/199

37p PRINT"TOTAL INTEREST......$
N;u

389 E=INT((L-U)*19p+.5)/19p

399 PRINT"AMOUNT SAVED

4@ PRINT"BY FINANCING........$
IO;E

41§ PRINT@482,"pRINTOUT
VER eND";

429 AS=INKEY$:IF A$=""THEN 420
43§ IF AS$="S"THEN 16p

449 IF AS="P"THEN 47p

459 IF AS$="E"THEN 1g

46§ GOTO 429

47¢ CLS:INPUT"CUSTOMER'S NAME";C
N$

489 INPUT"SALESMAN'S NAME";SN$
499 CLS:PRINT@232,"....PRINTING.

sTART O

5¢p PRINT#-2,"
ODGE
519 PRINT#-2,"

HOMETOWN D
1234 NORTH 56T

H STREET

528 PRINTH-2," SHEBOYGAN, WI
53981

53¢ PRINT#-2," (414) 555

-4861

549 PRINT#-2,"ASK FOR ";SN$

55¢ PRINT#-2

569 PRINT#-2,"SAVINGS AMOUNT....
",'A

572 1I=I*19p¢

58¢ PRINT#-2,"SAVINGS INTEREST..
":I:%%

599 T=T*12

629 PRINT#-2,"SAVINGS MONTHS....
II;T

619 PRINT#-2,"COMPOUND PERIODS..
93y

AGE 24

639 PRINT#-2,"AFTER";T:"MONTHS..
-";V

649 PRINT#-2,"INTEREST GAINED...
l"-L

658 PRINT#-2

669 PRINT#-2,"==—e—cenc=- -
679 PRINT#-2

689 PRINT#-2,"FINANCE AMOUNT....
l|;p

698 X=X*109

788 PRINT#-2,"FINANCE INT...
":xX:"s

71p PRINT#-2,"FINANCE MONTHS....
L

728 PRINT#-2,"MONTHLY PMT...
IQ;K

732 PRINT#-2,"TOTAL OF PMTS.....
";0

749 PRINT#§-2,"TOTAL INTEREST....
II:U

75p PRINT#-2

768 PRINT#-2,CN$;" CAN SAVE $YE
778 PRINT#-2,"BY FINANCING THIS

VEHICLE

789 PRINT#-2

799 PRINT#-2,"ASK US FOR ASSISTA
NCE IN

8@p PRINT#-2,"ARRANGING A LOAN F
OR YOU.

81p PRINT#-2:PRINT#-2:PRINT#-2:P
RINT#-2:PRINT#-2: PRINT#-2

829 CLS:PRINT@481,"aNOTHER PRINT
OUT rESTART eND";

839 AS$=INKEY$:IFAS=""THENB3g

84p IF AS="A"THEN 5@9

858 IF AS$="R"THEN 168

86@ IF AS="E"THEN 19

879 GOTO 839 I

DR

Australiangﬁzﬂﬁgﬁa

April 1%

A
o

The Joy$

of Early Amortization

aying off a mortgage early to get
Pa quicker equity buildup is the

best idea | (a homeowner) have
heard of in a long time. It used to cost
a little extra each month to reach this
goal, but a new kind of mortgage is just
now taking hold in the United States
that can make the process almost pain-
less. Quicker mortgage payoff will save
you a fortune in interest rates and can
take years off the repayment schedule.
It also has two strategic uses.

A young couple who pays off their
mortgage early will then have a huge
amount of equity on tap. This is also a
method of forced savings; all of these
gains are tax deferred. A quick payment
mortgage is also suitable for middle-
aged home buyers who want to own
their home free and clear by the time
they retire. The new way to faster home
ownership is through a bi-weekly mort-
gage payment plan. The loan is amor-
tized as if it were going to last for 30
years, but instead of paying once a
month, one half the payment is made
every two weeks. This method of repay-
ment leads to the equivalent of 13
monthly payments rather than the usual
12. This may not sound like it would
make a lot of difference, but the amount
of money and time saved is astounding,
as you will see when comparing Option
1 with Option 2. Since this method of
repayment is not available with all
lenders, two other options are included
that can have the same effect and are
accepted by most lenders.

Edward R. Carson is a head operator
at the Timken Company in Columbus,
Ohio. His interests encompass compu-
ters and baseball. He is married and has
three sons.

There are two parts to the Morigage
Planner. The first part is a loan calcu-
lator. If you are planning a home pur-
chase, the calculator figures your prin-
cipal and interest payments. It returns
the amount financed, amount of pay-
ment, interest rate and number of
months required to retire the loan (see
Figure 1). If you know the amount you
want to pay per month but don’t know
the amount you can finance to arrive at

By Edward R. Carson

calculations as you wish. The last
amount calculated is automatically
forwarded to the Mortgage Planner. It
is not necessary to go to the calculator.
If you have an existing mortgage, go
directly to the Planner.

The Mortgage Planner has four op-
tions to choose from. Each is a different
method of repayment. Three of these
options can save thousands of dollars
and many years off the mortgage. The

April 1986.

your target payment, the calculator can

help. When asked the amount to fi- Figure 1

nance, just press ENTER; you are then

asked the amount per month (enter AMOUNT OF THE IOAN $ 363pp.3p

what you want to pay per month) and NO. OF MONTHS 369

the calculator‘glves the amount to R — 198

finance and arrives at your target pay-

ment. You can go through as many MONTHRLY PAYMENTS $.15.93

Option 1
YEAR INT.PAID PRINCIPAL PAID
i $ 3I59p.17 $ 0P.9%4 /
2 $ 7159.39 $ 422.92 /
3 $ 1p7p5.29 $ 668.1)
4 $ 14225.42 S 929.p2 o
S $ 17717.28 $ 1238.26
6 $ 21177.82 $ 1568.84
7 S 246p3.75 $ 1934.82 /
8 $ 27991.44 $ 2337.43 /
9 $ 31236.91 S 2783.97
19 $ 34635.72 $ 3275.37 /
il $ 37882.99 $ 381%.21 /
12 $ 41073.33 $ 4419.38 /
13 S 4a42pp.78 $ 5p8l.64 /
14 $ 47258.75 $ 5816.78 /
15 $ 5p239.96 $ 6626.68
16 $ 53136.39 $ 7821.16 /
17 $ 55939.15 S 8599.7p /
18 S 58638.45 $ 96p1.51
19 $ 61223.45 $ 1p8p7.62 /
2p $ 63682.17 $ 12140.921
21 $ 66PPL.42 $ 136l1..88
22 $ 68166.57 $ 15237.83 /
23 $ 72161.51 S 17934.29 /
24 $ 71968.40 S 19p18.22 /
25 $ 73567.57 § 21210.16
26 $ 74937.27 § 23631.57
27 S 76p53.47 $ 263p6.48 /
28 $ 76889.64 $ 29261.42 /
29 $ 77416.46 $ 32525.71 /
YEARS TOTAL INTEREST TOTAL PRINCIPAL
p.p $ 77733.28 $ d6ppp.pp
. S —— — T ———

Australian RAINBOW PAGE 25

Option 2
YEAR INT.PAID PRINCIPAL PAID
1 $ 3%564.58 $ 542.46 /
2 $ 7972.38 $ 1141.69 /
3 $ 1p517.47 $ 18p3.63 /
4 $ 13893.28 $ 2534.85
s $ 17192.57 $ 3342.69 7/
6 $ 2p4p97.22 § 4234.89
7 $ 23528.68 $ 522p.56 /
] $ 26546.89 $ 6329.39 /
9 $ 29451.14 $ 7512.17
by J $ 32229.51 § 884p.84 /
11 $ J4868.8) $ 193p8.55
12 $ 37354.54 § 11929.88 /
13 $ 3967p.57 § 1372p.89
14 $ 41799.18 $ 15699.34 /
15 § 43720.67 $ 17884.85 /
16 § 45413.47 $ 2p299.99 /
17 § 468%531.69 $ 22966.99 /
18 $ 48p14.61 $ 25912.p2 /
19 § 48867.29 $ 29166.36 /
2 $ 49379.4p $ 32761.3p /
YEARS TOTAL INTEREST TOTAL PRINCIPAL
22.6 $ 49615.88 $ J6ppp.pp

choice of on-screen or printer displays
is given. The printer routine gives a
year-by-year printout of interest paid,
principal, paid outstanding balance,
total payments, and years and months
required to retire the loan. There is an
on-screen bar graph of interest paid at
all options. Any calculated screen can
also be dumped to the printer by press-
ing the ‘P’ key. I found this easier than
writing down all the information on a
scratch pad. The amount of money that
can be saved with just a little extra each
month literally amazes me, as [am sure
it will you.

(Any questions you have about Mort-
gage Planner may be directed to Mr.
Carson at 7600 Condit Road, Center-
burg, OH 43011, phone 614-625-6936.
Please include an SASE when writ-
ing.) 0

The listing: MORTGAGE

1 Y=1

6 CLS

11 X=32

16 CLS

21 Z$="SAVE"

26 PRINTEX,Z2$

31 X=X+19

36 IFX=382 THEN 41 ELSE 26

41 FORT=1TO8P:NEXTT

46 Y=Y+1:IFY=5THENS1ELSE6

51 FORT=1TOS@@:NEXTT

56 CLS:PRINT@164,"the mortgage p
lanner"

61 PRINT@236,"by"

66 PRINT@294,"edward r carson"
71 GOSUB1181

76 GOTOlp21

8l CLS

86 PRINT:PRINT:PRINT "YOU HAVE F
OUR OPTIONS WITH THIS PORTION OF
THE PROGRAM..."

91 PRINT:PRINTTAB(7)"THEY ARE AS
FOLLOWS. ."

96 PRINT:PRINT:PRINT"HIT ANY KEY
TO CONTINUE"

171 K$=INKEY$:IFK$=""THEN 1@1ELS

E1p6

16 CLS:PRINT"1) CONTINUE TO MAK

E NORMAL MONTHLY PAYMENTS

111 PRINT:PRINT"2) MAKE 1/2 OF N

ORMAL PAYMENT EVERY 14 DAYS.

116 PRINT:PRINT"3) LUMP SUM (IN
EXCESS OF NORMAL PAYMENT) ONCE
EACH YEAR..."

121 PRINT:PRINT"4) INCREASE MONT
HLY PAYMENT BY (X) AMOUNT... (X
) AMOUNT USED TO REDUCE BALANCE
ON A MONTHLY BASIS"

126 PRINT"HIT ANY KEY TO CONTINU
E.

131 K$=INKEYS$:IFK$=""THEN 131ELS
E 136

136 CLS:PRINT@75,"options"

141 PRINT:PRINTTAB(1P)"1 2 3
‘"
146
.N
151 PRINTSTRINGS (32,"*")

156 PRINT"1= NORMAL PAYMENT"

161 PRINT:PRINT"2= 1/2 NORMAL PA
YMENT"

166 PRINT:PRINT"3= LUMP SUM"

171 PRINT:PRINT"4= EXCESS MONTHL
Y'I

176 INPUT S

181 ON S GOTO 231,546,821,841
186 CLS:PRINT@195, "what is your
normal...."

191 PRINTE263,"monthly payment..

196 INPUT NP

2p1 CLS:PRINT@193,"what is your

interest rate...."

2p6 PRINT@258,"input as per exam
ple <.p95g >"

211 INPUT AI

216 CLS:PRINTE192,"what is your

current balance.."

221 INPUT CB

226 GOTO 81

231 CLS:PRINTE26@,"DO YOU WANT A
PRINTOUT OF..."

236 PRINT@324,"YEARLY ANALYSIS..
"

PRINT:PRINTTAB(10)"select on

241 PRINT:PRINTTAB(11)" (Y/N)"
246 K$=INKEY$:IFK$=""THEN246
251 IFK$="Y"THEN 421ELSEIFK$="N"
THEN256
256 CLS:PRINT@196,"calculating t
otals..."
261 PRINT@26p,"please stand by..
"
266
271
276
281
286
291
296
3p1
3p6
311
316
321
81
326

POKE 65495,8
DP=3p.41:2=1

DI=AI/365

IN=DI*CB#*DP

P=NP-IN

PB=PB+P+EP

CB=CB~P

TP=TP+NP+EP
TI(S)=TI(S)+IN
CB=CB-EP

IF CB<=gTHEN326ELSE321
1FZ=M THEN831ELSEZ=2+1:GOTO2

TI(S)=TI(S)-CB:PB=PB+CB

331 CLS:PRINTTAB(12)"OPTION ";S

336 PRINT:PRINT"INTEREST PAID";:
PRINTTAB(21) ; : PRINTUSING"S####44

A" TI(S)

341 PRINT"PRINCIPAL PAID";:PRINT

TAB(21) ; : PRINTUSING"S####44.44";
PB

346 PRINTTAB(21)STRINGS(1g,"-")
351 PRINT"TOTAL PAID";:PRINTTAB(

21) ; :PRINTUSING"S####44. 44" ;TP

356 2=2/12

361 PRINT:PRINT"YEARS TO RETIRE

LOAN.. ";:PRINTUSING"##.4";2

366 PRINT"NORMAL PAYMENT........
"; :PRINTUSING"S##44. 44" ;NP

371 PRINT"INTEREST RATE.........
" 7AI;""

376 IFS=3GOSUBl426ELSEIFS=4GOSUB

1431

381 POKE 65494,9

386 C$=INKEY$:IFC$=""THEN386

391 IFCS$="P"THENGOSUB 1381ELSE 3

96

396 IF S=4 THEN GOSUB 1246:GOTO
491

491 CB=PB:PB=f:Z=@:TB=p:TP=g:LS=

§:EP=p

496 PRINT:PRINT"DO YOU WANT THIS
OPTION AGAIN"

411 PRINTTAB(12)"(¥Y/N)"“:INPUT

C$:IFC$="N"THEN 136 ELSE 416

416 TI(S)=p:GOTO 136

421 CLS:PRINTE@264,"now printing"
426 PRINT#-2,TAB(3g)"OPTION ";S
431 IFS=3GOSUBB51

436 IFS=4GOSUB856

441 PRINT#-2,"YEAR";TAB(6)"INT.P

AID";TAB(18)"PRINCIPAL PAID";TAB
(35) "TOTAL PAYMENT";TAB(51)"OUTS

TANDING BALANCE"

446 DP=30.41:2=1:H=12:Y=1

451 DI=AI/365

456 IN=DI*CB*DP

461 P=NP-IN

466 PB=PB+P+EP

471 CB=CB-P

476 TP=TP+NP+EP

481 TI(S)=TI(S)+IN

486 CB=CB-EP

491 IFCB<=PTHEN511ELSE496

496 IFZ=H THEN836ELSEZ=Z+1:GOTO4
56

581 IFCB<PTHENCB=p

586 PRINT#-2,Y;:PRINT#-2,TAB(6);
:PRINT#-2 ,USING"SHE#444. 44" ;TI(S
; :PRINT#-2,TAB(18) ; : PRINT#-2,US
ING"SHN¥##4#.44";PB; : PRINT#-2,TAB
(35) 1 :PRINT#-2 ,USING"S### 444 . ¥2"
;TP; :PRINT#~2,TAB(51) ; : PRINT#-2,

USING"S##4##4.#4";CB: Y=Y+1:H=H+1
2:GOT0456

511 TI(S)=TI(S)~CB:PB=PB+CB

PAGE 24

Australian RAIMNBOW

April 1Y3&.

516 PRINT§#-2,""

521 PRINT#-2,TAB(5)"YEARS";TAB(1

2)"TOTAL INTEREST";TAB(28)"TOTAL
PRINCIPAL" ; TAB(45)"TOTAL PAYMEN

Tsll

526 PRINT#-2,""

$31 2=2/12

536 PRINT#-2,TAB(S):PRINT#-2,USI

NG"#4.#";2; : PRINT#-2,TAB(12) ; : PR
INT#-2 ,USING"SE#44#4. 48" ;TI(S)
PRINT#-2,TAB(28) ; : PRINT#~-2,USING
“S§¥¥444. 448" ;PB; : PRINT#-2, TAB(45
; tPRINT#-2,USING"S#4#44#4.44"; TP
541 CB=PB:TP=g:TI=g:PB=@:EP=g:LS

=2:GOTO 136

546 CLS:PRINTE@26f8,"DO YOU WANT A
PRINTOUT OF..."

551 PRINT@324,"YEARLY ANALYSIS..
"

556 PRINT:PRINTTAB(11l)" (Y/N)"
561 K$=INKEY$:IF K$="WTHENS61
566 IFK$="Y"THEN716ELSEIFK$="N"T
HENS581

S7X.:%Y

576 !

581 CLS:NP=NP/2:DP=14:2=1:H=26:Y
=1

586 POKE65495,9

591 PRINT@196,"calculating total
S..."

596 PRINT@26f¢,"please stand by..
"

6¢1 DI=AI/365

686 IN=DI*CB*DP

611 P=NP~IN

616 PB=PB+P

621 CB=CB-P

626 TP=TP+NP

631 TI(S)=TI(S)+IN

636 IFCB<=pTHEN646ELSE641

641 2=2+1:GOTO6P6

646 TI(S)=TI(S)~-CB:PB=PB+CB

651 CLS:PRINTTAB(11)"OPTION ";S
656 PRINT:PRINT"INTEREST PAID";:
PRINTTAB(21) ; : PRINTUSING"S#####4#
-##";TI(S)

661 PRINT"PRINCIPAL PAID";:PRINT
TAB(21) ; :PRINTUSING"S####44. 74"
PB

666 PRINTTAB(21)STRINGS(19,"=")
671 PRINT"TOTAL PAID";:PRINTTAB(
21) ; :PRINTUSING"S#4###4.#4";TP
676 2=2/24

681 PRINT:PRINT"YEARS TO RETIRE
LOAN.. ";:PRINTUSING"#4.#";2

686 PRINT"1/2 NORMAL PAYMENT....
«";:PRINTUSING"S##4.44" ;NP

691 PRINT"INTEREST RATE....e0s04
"’-AI'-'O"I

696 POKE65494,8

781 C$S=INKEY$:IFC$=""THEN 781
7p6 IFC$="P"THEN GOSUB 1381 ELSE
711

711 NP=NP*2:TP=g:TI=p:CB=PB:PB=g
:GOTO 136

716 CLS:PRINT@264,"NOW PRINTING"
721 PRINT#-2,TAB(3¢)"OPTION";S
726 PRINT#-2,"YEAR";TAB(6)"INT.P
AID";TAB(18)"PRINCIPAL PAID";TAB
(35) "TOTAL PAYMENTS";TAB(51)"OUT
STANDING BALANCE"

731 NP=NP/2:DP=14:2=1:H=26:Y=1
736 DI=AI/365

741 IN=DI*CB#DP

746 P=NP-IN

751 PB=PB+P

756 CB=CB-P

761 TP=TP+NP

766 TI(S)=TI(S)+IN

771 IF CB<=@THEN 786ELSE776

776 IFZ-H=PTHEN781ELSEZ=2+1:GOTO
741

781 PRINT#-2,Y;:PRINT#-2,TAB(6);
tPRINT#-2,USING"S##4##4. 82" TI(S
) : tPRINT#-2,TAB(18) ; : PRINT#-2,US
ING"SH#444#. 44" ;PB; : PRINT#~2, TAB
(35) ; :PRINT#-2 , USING"S##4##4. 84"
;TP;:PRINT#-2,TAB(51) ; : PRINT#~-2,
USING"SH#¥#444.#4";CB:1Y=Y+1:2=2+1
:H=H+26:GOTO 741

786 TI(S)=TI(S)-CB:PB=PB+CB

791 PRINT#-2,"":PRINT#-2,"YEARS"
iTAB(7) "TOTAL INTEREST";TAB(23)"
TOTAL PRINCIPAL";TAB(4¢)"TOTAL P
AYMENTS"

796 Z=Z/24

8@¢1 PRINT#-2,"":PRINT#-2,USING"#
$.4";2;:PRINT#-2,TAB(7) ; : PRINT#~-
2, USING"SH##4###.#4";TI(S) 1 : PRINT
#-2,TAB(23) ; : PRINT#~2,USING"$#44
##2.44";PB; : PRINT#-2,TAB(42) ; : PR
INT#=2 ,USING"S####44. 44 ;TP

8p6 NP=NP#2:CB=PB:TP=0:TI=0:PB=g
811 PRINT"HIT ANY KEY TO CONTINU
Eﬂ

816 K$=INKEYS$:IFKS$=""THENSB1l6ELSE
136

821 CLS:PRINT@195,"amount of lum
P sum payment":M=12

826 INPUT LS:GOT0231

831 TP=TP+LS:CB=CB-LS:PB=PB+LS:2Z
=7Z+1:M=M+12:G0T0281

836 CB=CB-LS:PB=PB+LS:TP=TP+LS:2
=Z+1:M=M+12:GOTO 5p1

841 CLS: PRINTE@192,"amount of ex
cess payment":INPUT EP

846 GOTO 231

851 PRINT#-2,TAB(25)"LUMP SUM AM
OUNT ";:PRINT#-2,USING"SH##4.44"
i LS:RETURN

856 PRINT#-2,TAB(22)"AMOUNT OF E
XCESS PAYMENT ";:PRINT#-2,USING"
$#444. 44" ;EP: RETURN

861 CLS:PRINT@164,"how much will
you finance":INPUTPV

866 CLS:PRINT@164,"how many mont
hs": INPUTM

871 CLS:PRINT@163,"what is the i
nterest rate":INPUTK

876 IFK<1THEN GOTO 951

881 K=K/12:K=K/1¢9

886 C=(1+K)~M:C=C-1

891 D=(K+1)~M:D=D*K

896 C=C/D

981 IFPV=PTHENGOTO0956

926 A=PV/C

911 K=K#*12:K=K#*1g@

916 CLS:PRINT@96, "AMOUNT OF THE

LOAN" : PRINT@118 ,USING"S##4¢844.44

U'Pv

921 PRINT@162,"NO. OF MONTHS":PR

INTEl83,M

926 PRINT@226,"INTEREST RATE":PR

INT@246 ,K;"%"

931 PRINT@298,"MONTHLY PAYMENTS"
:PRINT@309 ,USING"S###4. 48" ;A

936 S$=INKEYS$:IFS$=""THEN936

941 IF S$="P"THENGOSUB 1381 ELSE
996

946 GOTO 996

951 CLS:PRINT@228,"PLEASE STATE
INTEREST RATE AS A VALUE GR

EATER THAN 1":INPUTK:GOTO881

956 CLS:PRINT@162,"what are the

monthly payments":INPUTA

961 PV=A*C:GOTO 911

966 GOSUB 1381

971 PRINT#-2,""

976 PRINT#-2,"AMOUNT OF LOAN";:P

RINT#-2 ,USING"S##44%4. 48" ;PV

981 PRINT#-2,"MONTHS REQUIRED TO
RETIRE LOAN";:PRINT#-2,M

986 PRINT#-~2,"INTEREST RATE";K;:

PRINT#=-2,"g"

991 PRINT#-2,"MONTHLY PAYMENTS";
tPRINTH-2 ,USING"S###4. 24" ;A

996 CLS:PRINT@224,"DO YOU WANT A

NOTHER CALCULATION"

181 PRINTTAB(11l)"(Y/N)"

1pp6 S$=INKEYS:IFSS=""THEN1g@6
1911 IFS$="Y" THEN 861 ELSE 1816
1916 CB=PV:K=K/1P@:AI=K:NP=A:GOT

0 81

1921 CLS:PRINT@164,"DO YOU WANT
INSTRUCTIONS':PRINT@ZﬂS,"(Y/N)
"

1026 K$=INKEYS$:IFK$=""THEN 1p26
1931 IF K$="Y"THEN 1441 ELSE 115
6

April 17264,

1936 CLS:PRINT"IF YOU ARE PLANNI

NG A HOME PURCHASE. .THE LOA
N CALCULATOR CAN DETERMINE YOU
R MONTHLY PAYMENTS...IF YOU

KNOW WHAT YOU CAN AFFORD PER MO
NTH, BUT DONT KNOW THE AMOUNT Y
OU CAN FINANCE TO ARRIVE AT THIS

PAYMENT.... "

1941 PRINT"THEN loan calculator
CAN HELP.."

1946 PRINT:PRINT"HIT ANY KEY TO
CONTINUE"

1p51 K$=INKEYS:IFKS$=""THEN1@51EL
SE 1p56

1956 CLS:PRINT"WHEN YOU ARE ASKE

D HOW MUCH YOU WILL FINANCE...JU
ST HIT <ENTER> YOU WILL THEN BE
ASKED THE AMOUNT OF MONTHLY

PAYMENT.ENTER WHAT YOU WANT TO
PAY PER MONTH. THE PROGRAM WILL
THEN RETURN THEAMOUNT YOU CAN FI
NANCE TO GIVE
1961 PRINT"YOU THE PAYMENTS YOU
WANT"

1§66 PRINT:PRINT:PRINT"HIT ANY K
EY TO CONTINUE"

1971 K$=INKEYS:IFK$=""THEN1g71EL
SE 1p76
1976 CLS:PRINT"AFTER FINDING OUT

THE AMOUNT YOUCAN FINANCE. RUN
THE"

1981 PRINTTAB(7)"mortgage saving
s"

1286 PRINT"PORTION OF THIS PROGR
AM. "

1991 PRINT"IT WILL SHOW THREE WA
YS YOU CAN SAVE THOUSANDS OF DOL
LARS AND MANY YEARS OFF YOUR M
ORTGAGE."

1996 PRINT"YOU CAN HAVE A YEARLY

PRINTOUT OF ANY OR ALL OPTIONS
.IT WILL SHOW, BY YEAR, INTEREST

PAID, TOTAL PAYMENT,CURRENT BALA
NCE AND YEARS PAID. IT WILL T
HEN GIVE TOTALS OF ALL ITEMS.
1191 PRINT:PRINT"HIT ANY KEY TO
CONTINUE"

1196 K$=INKEYS$:IFKS$=""THEN 11P6E
LSE 1111
1111 CLS:PRINT"IN ORDER TO SEE A
N ON SCREEN COMPARISON OF INT
EREST PAID ON ALL OPTIONS, Y
OU MUST RUN OPTION 4 LAST."
1116 PRINT:PRINT"WHEN THERE IS N
O CURSOR ON A CALCULATED SCRE
EN YOU CAN GET A PRINTOUT BY PRE
SSING THE LETTER p ANY OTHER KEY

WILL CONTINUE THE PROGRAM"
1121 PRINT:PRINT"HIT ANY KEY TO
CONTINUE"

1126 K$=INKEY$:IFK$=""THEN1126EL
SE1131
1131 CLS:PRINT"THE AMOUNTS GIVEN

IN THIS PROGRAM SHOULD NO
T BE CONSTRUED TO BE EXACT AMOUN
TS YOU WILL PAYOR SAVE..... BUT
SHOULD BE USED ONLY AS A GUIDE T
O REPRESENT YOUR PAYMENTS AND

SAVINGS"

1136 PRINT"OPTION 2 OF THIS PROG
RAM MAY NOTBE ACCEPTABLE TO YOUR

LENDER PLEASE CHECK WITH THE
M BEFORE ATTEMPTING THIS METHO
D.

1141 PRINT"IF YOU ARE CONSIDERIN
G A HOME PURCHASE THIS IS AN A
TTRACTIVE WAY TO SET UP YOUR 1O
AN PAYOFF...... AS YOU WILL SEE.
1146 PRINT"HIT ANY KEY TO CONTIN

UE"

1151 K$=INKEY$:IFKS$=""THEN1151EL
SE1156

1156 CLS:PRINT"DO YOU WANT TO GO
TO THE LOAN CALCULATOR OR TO

MORTGAGE PLANNER"

1161 PRINT:PRINT"IF YOU CHOOSE T
HE CALCULATOR PORTION OF THE

PROGRAM THE LAST AMOUNTS US
ED WILL BE AUTO- MATICALLY BE EN

Australian RAINBOW

FAGE 27

TERED INTO THE
R”

1166 PRINT:PRINT"PRESS <C> FOR C
ALCULATOR AND <M> FOR MORTGAGE P
LANNER"

1171 S$=INKEY$:IFS$=""THEN 1171
1176 IF S$="C"THEN 861 ELSE 186
1181 FORL=1§24TO1@55

1186 POKEL,191:NEXTL

1191 L=1@56

1196 POKEL,191

1201 L=L+32

1296 IFL=15@4+32THEN1211ELSE1196
1211 FORL=15@4TO1535

1216 POKEL,191:NEXTL

1221 L=1535

1226 POKEL,191

1231 L=L-32

1236 IFL=1§55 THEN1241ELSE 1226
1241 FORT=1TO7@@*2:NEXTT: RETURN
1246 CLS:PRINT"DO YOU WANT TO CO

MPARE INTEREST ON ALL FOUR OPTIO

NS*

1251 PRINT:PRINTTAB(11)"(Y/N)"
1256 K$=INKEY$:IFK$=""THEN1256
1261 IF K$="Y" THEN GOTO15@1ELSE
RETURN

1266 CLS:S=1

1271 TI(S)=TI(S)*19p@p
1276 PRINT:PRINT"OPTION";
TUSING"S###444. 84" ;TI(S)
1281 S=S+1 :IF S=5 THEN 1286 ELS
E 1271

1286 IFTI(2)<=TI(3)THEN1291ELSEl
296

1291 IFTI(2)=PTHEN1296 ELSE IFTI
(2)<=TI(4)THEN13@1ELSE1296

1296 IFTI(3)=pTHEN 1311 ELSEIFTI
(3)<=TI(4) THEN 1396 ELSE1311
1391 TI(6)=TI(1)-TI(2):GOTO1316
1396 TI(6)=TI(1)-TI(3):GOTO1316
1311 TI(6)=TI(1)-TI(4):GOTOl316
1316 PRINT:PRINT"YOU CAN SAVE ";
:PRINTUSING"S##4#%#. 248" :TI(6)
1321 K$=INKEYS:IFK$=""THEN1321
1326 IFK$="P"THEN GOSUB 1381 ELS
E-1331

1331 PRINT:PRINT"PRESS <R> TO RE
VIEW OPTIONS AND RUN PROGRAM AGA
INII

1336 PRINT:PRINT"PRESS ANY OTHER
KEY TO END"

1341 K$=INKEYS:IFK$=""THEN1341
1346 IFK$="R"THEN 1366 ELSE 1351

MORTGAGE PLANNE

; ¢t PRIN

1351 CLS:PRINT@2¢@,"happy saving
"

1356 END

1361 GOSUB 1181

1366 S=1

1371 TI(S)=P:PB=g:2=p:TB=p:TP=0:

LS=@:EP=p:Y=0:5=5S+1:C2=0

1376 IF S=4+1 THEN 1156 ELSE 137

1

1381 2Z=p

1386 FORXX=1@24T01535

1391 YY=PEEK(XX):22=ZZ+1

1396 PP=YY AND 127

1491 IF PP>95 THENPP=PP-64

1496 PRINT#-2,CHRS(PP);

1411 IF 2Z=32 THEN PRINT#-2:2Z=p

1416 NEXT XX

1421 RETURN

1426 PRINT"LUMP SUM AMOUNT......
"; :PRINTTAB(21) ; : PRINTUSING"S#

#44.24" ;LS:RETURN

1431 PRINT"EXCESS PAYMENT.......

";PRINTTAB(21) ; : PRINTUSING"S#4##

.##" ;EP:RETURN

1436 CLS

1441 CLS:PRINT"HERE'S THE BEST I

DEA TO COME ALONG IN QUITE A

WHILE: PAY OFF YOUR MORTGAGE FAS

TER,IN ORDER TO GET A QUICKER

EQUTIY BUILDUP IN YOUR HOUSE.

1446 PRINT"IT USED TO COST A LIT

TLE MORE EACH MONTH TO REACH

THIS GOAL. BUT A NEW KIND OF MOR

TGAGE THAT IS JUST TAKING HOLD I

N THE U.S. CAN MAKE THE PROCESS

ALMOST PAINLESS.

1451 PRINT"FASTER MORTGAGE PAYME

NTS WILL SAVE YOU A FORTUNE IN
INTEREST RATES.

1456 PRINTTAB(1@)"HIT ANY KEY"

1461 K$=INKEY$:IFK$=""THEN1461 E

LSE 1466

1466 CLS:PRINT"THE NEW WAY TO FA

STER HOME OWNERSHIP IS THROUGH A

BI-WEEKLY PAYMENT PLAN. YOU
R LOAN IS AMORTIZED AS IF I
T WERE GOING TO LAST FOR 3¢ YE
ARS. BUT... INSTEAD OF PAYING

ONCE A MONTH, YOU MAKE 1/2 OF
THE MONTHLY"
1471 PRINT"PAYMENT EVERY TWO WEE
KS. THIS SCHEDULE LEADS TO THE
EQUIVALENTOF 13 MONTHLY PAYMENT
S EVERY YEAR RATHER THAN THE

USUAL 12."

1476 PRINT"THIS MAY NOT SOUND LI

KE MUCH OF A CHANGE. BUT I1ITS EFF
ECT IN CUTTING THE TIME AND

COST OF ANYMORTGAGE IS ASTOUNDIN

G."

1481 KS$S=INKEYS$:IFKS$=""THEN1481 E
LSE 1486

1486 CLS:PRINT"THIS METHOD OF RE
PAYMENT IS option 2.YOU WILL
SEE HOW MUCH CAN BE SAVED WITH
THIS OPTION WHEN YOU COMPARE
INTEREST PAID ON ALL OPTIONS."
1491 PRINT:PRINTTAB(1@)"HIT ANY
KEY"

1496 K$S=INKEYS$:IF K$=""THEN 1496
ELSE 1@36

1591 CLS

1596 FOR L=1P24 TO 1855

1511 POKE L,175:NEXT L

1516 L=1956

1521 S=1:X=0

1526 X=49

1531 POKE L,X

1536 L=L+64

1541 X=X+1

1546 1IF X=53 THEN 1551 ELSE 1531
1551 FOR L=128p TO 1311

1556 POKE L,175

1561 NEXT L

1566 FOR L=1@25 TO 1289 STEP 32
1571 X=175

1576 POKE L,X:NEXT L

1581 PRINTE@291,"X 1 5 1§ 15
20 25 3p"

1586 PRINT@32p,"INTEREST = X TIM
ES $1p,209"

1591 S=1:X=p

1596 L=1¢58+X

16p1 TI(S)=TI(S)/19ppp

16p6 F=FIX(TI(S))

1611 FORL=L TO L+F

1616 POKEL, 191

1621 NEXTL

1626 X=X+64

1631 S=S+1:IF S=4+1 THEN 1641 EL
SE 1596

1636 POKEL,191

1641 PRINT@384,"HIT <C> TO CONTI
NUE PROGRAM "

1646 PRINT@416,"ANY OTHER KEY WI
LL END PROGRAM"

1651 KS$S=INKEYS$:IF K$=""THEN1651
1656 IFKS$S="C"THEN 1266ELSE 1351

continued from Page 17

6) List Month Actual vs. Budget

reflects data through a specified month. See Exhibit 7.
8) List Chart of Accounts

Provides a summarized listing of account versus budget
amounts for a chosen month. A difference (variance)
between actual and budget is shown. Credit (-) amounts in
the variance column are unfavorable (over budget) while

Allows for alisting of your chart of accounts. This is a handy
reference listing. See Exhibit 8.

9) Return to Main Program
This option returns you to the main program, Exptrakr, to
continue other activities.

10) End Session

|

Exhibit 8
ACT <-=-DESCRIPTTION-->
1 HOUSE MORTGAGE
2 INSURANCE
3 BANK CARDS
4 ELECTRICITY
5 AUTO PAYMENT
6 GROCERIES
7 CLOTHING
8 MISCELLANEOUS

Select this option if you wish to terminate the program.

Although this set of programs offers various options for
use in budgeting and tracking expenses, enhancements such
as displaying all account detail expenditures for a year or
allowing for more transactions in a month can be made. It
is hoped that the programs are helpful and create an interest
in expanding their usefulness. May all of your expenditures
be small.

(Editor's Note: This program runs to six pages of
code. In the interest of providing you with as much

6.
7) List YTD Actual vs. Budger

debit variances are favorable (under budget). See Exhibit

information as possible, we have decided to exclude
the listing from the magazine.

The progran of course is available on Australian
Rainbow on Tape for this month. G.)

Provides the same information as Selection 5, except it

PAGE 28

Auctralian RAINBOW 2prl 1786,

T TRAINING l

m(ﬁH[,__*.?]
ECB RA.lNB'?.w

A Simple Technique
for Creating Animation

By Joseph Kolar

nimation gives any CoCo
Agraphics program a lot of pizazz

with the illusion of movement.
The technique of creating animation
seems beyond the capability of the
newcomer to CoColand. It is not the
formidable project that it appears to be.

The good news is that the beginner
need not be overwhelmed by animation
creation. He can do it with a minimum
of artistic talent. Today, we are going to
make like we are Rembrandts, and do
some simple but satisfying animation.
Using artistic license, we will create a
“stick bird.” We will take this bird, set
it in flight and give it a chance to soar
on our screen. We will create various
stick shapes to add variety and give the
appearance of graceful flight.

Look at Listing | and key in lines 10
and 1000. PCLS3 gives us the back-
ground blue sky upon which the bird is
highlighted. Key in lines 20 to 27, the
eight forms of the bird we will use in our
effort to animate. They are called by the
variables assigned them. The reason we
use various forms of the bird is to create
the illusion of a change in the bird as
it wheels, soars or just flaps its wings.
If we use just one shape throughout (one
variable), the bird looks stiff and its
flight stilted.

Key in Line 30. All the birds are
displayed using the DRAW statement.
The color, horizontal and vertical loca-
tions are included within quote marks.
The desired bird shape is selected by
picking the desired variable and added
with the good old concatenation
marker, ‘+”. Now RUN and you should be
suitably unimpressed to see what is
supposed to be a bird. Press BREAK and,
one at a time, substitute the other
variables in Line 30 to sce the so-called
birds in our repertoire. After you have
seen them all, replace the original
variable, BS.

Keep in mind that there are many
ways to develop animation. The follow-
ing system is somewhat unwieldy, but

lends itself admirably for the purpose of
this tutorial.

Run the program and note that we
place a bird, in color C2, at both a
horizontal and vertical location of 10.
The bird (BS in this case), has the left
wing “up™ and the right wing in a
horizontal plane. At this time, also note
that in lines 40 through 350, the color
(C2) is redundantly included in every
DRAW statement. In Listing 1 only the
first C2 in Line 30 is required to main-

tain the same color of the bird. CoCo
knows that C2 is desired in all the

subsequent DRAW lines. At a later stage
in our artistic endeavors, it will be
necessary to insert C2 in all of the DRAW
lines in this listing. To save a lot of time
and monotonous editing later on, we
will put them in as we proceed.

At this stage, we will place the
various-shaped birds at locations we
deem either logical or interesting, one at
a time, ever increasing the number of
birds in the flight plan. Press BREAK,
key in Line 40 and RUN. You will see a
second bird form on the screen (AS$),
with both wings in the “up” position. We
moved it over to the right five units, to
15 on the horizontal, and 10 units down
on the vertical. We now have two birds
on the screen.

For the purpose of this tutorial, we
will move either zero, five or 10 units
from a previous location. This creates
a smooth transition from one location
to the next.

Press BREAK, key in Line 50 and run.
The same *V’ bird is flying to the right.
Comparing lines 40 and 50 in the listing,
you can verify that we moved the bird
10 units to the right, Press BREAK, key
in Line 60 and ryn. You can see the same
bird heading to the right.

Don't get excited if the birds overlap
on the screen. It will all be sorted out
later. At this stage, we are plotting the
flight path and want to see every shape
and its location as we create it. This way
you can locate a desired shape at the

location you feel is right. If you don't
like the shape or location, it can be
altered now without disturbing future
additions to the flight plan. You won't
have to dissect your program and wear-
ily rearrange it later.

We are so creative that we plot our
animation program directly on the
screen. However, you may use graph
paper if you wish to determine the
shapes and locations of the birds.

Press BREAK, key in Line 70 and run.
Here | promptly violated my own rule
and dropped the bird, BS, 15 units. [had
a down draft in mind, which I imagined
might cause the bird to drop more than
usual and change directions by going
five units to the right.

Press BREAK, key in Line 80 and run.
Here the bird, ES$, is wheeling to the
right and down; press BREAK again.

If you have difficulty viewing a shape
that is superimposed over a previous
shape, temporarily mask the previous
line with a REM marker. RUN to see if it
is what you intended, then remove the
REM marker from the previous line. At
this point, key in each program line one
at a time, and check to sec what shape
you added where.

We have completed our first phase:
creating, locating and displaying each
bird. Now that we have created cach
bird in our tableau, we have to make
them vanish. Beginning with the bird at
Line 30 through the last one at Line 350,
we will erase them. LIST 3@ and add +5
to Line 30 to create the “erase” line.
Thus, all program lines used to erase the
birds will end in ‘5". Key in 35, the line
number, and copy the data appearing in
Line 30 that you have on the screen
changing only the digit (2) in C2 to ‘3".
Now run. C3 is the same color as PSCL 3.
The bird is still, invisible and effectively
erased.

If you care to check this out, tempor-
arily change PCLS3 to PCLS2 in Line 10
and RUN. See? Restore Line 10 to its

April 1986,

Australian RAINBOW mEE 29

original state.

Press BREAK and LIST40. Create
Line 45 and copy the scoop in Line 40,
making the desired color change. Pro-
ceed line by line, every once in a while
pausing to RUN and make sure you have
erased all the birds. If some residue
remains on the screen, you made a boo-
boo in copying! When you check, you
will be excited to see the vestiges of a
bird in flight, if ever so fleetingly.

When you have finished the second
phase and check out your work, you
should get a fleeting glimpse of the bird
in motion and end up with a blank, blue
display.

Obviously, we must create pauses
between the creation and disappearance
of each bird so ordinary mortals can
observe the flight. The third phase
determines the length of time each bird
is visible. We will use a pause routine to
accomplish this feat: FOR 2= 1 TO X:
NEXT, where ‘X’ is some value between
75 and 200. We will use increments of
25, so for *X* we will use the following
values: 75, 100, 125, 150, 175 and 200
to keep it simple and under control.

After you get the idea, you can sub-
stitute your values for the chosen ones
in the listing to make it fly the way you
want it to fly. First, let me give you the
system we will use in this tutorial.

Type in LIST 30-40. We list two lines
to see how far the bird moved. We note
that the bird moved 10 units down and
five units to the right. We compare
either Line 30 or 35 to Line 40. We will
place the pause line immediately follow-
ing the creation line (Line 30). Each
pause line will be numbered by incre-
menting the creation line by +1 and the
erase line by +5. We will try 100 as the
length of the pause. Key in 31 FOR
Z=1T0100@:NEXT and run. You can't see

much! Press BREAK, LIST40-5@ and
let's make this pause line shorter in
duration by using 75. Key in 41 FOR
Z=1T0O?7S5:NEXT and run, then press
BREAK and LISTS@-60. We'll use 100.
Key in 51 FOR 2=1T0100:NEXT,

Follow the same procedure using 150
in Line 61, 100 in Line 71 and 75 at both
lines 81 and 91. RUN and observe the
movement. Press BREAK and adjust it to
suit yourself. It is your bird! Make it fly
as you would imagine it should fly. Vary
the time lapse, preferably a higher figure
for a large location displacement and a
shorter lapse for a small movement, but
do it from one line to the next in a
methodical manner, ensuring that all
previously determined time pause lines
are satisfactory. You may compare the
pauses you chose with the ones in
Listing 2.

You may want the movement to be
quicker so it looks even more natural.
If so, lower the value of each pause line
by 25 or 50 units. For that matter, you
may prefer to substitute other shapes
(bird variables). Be my guest! When this
phase of the program is completed and
all the pauses are set, you may want to
change Line 1000 (1000 GOT010).

Since many of your pause lines are
repetitious, this is an ideal occasion to
use GOSUB. For instance, add 490 FOR
Z=1TD?S5:NEXT:RETURN and change
lines 41, 81, 91, 141, 221, 231, 241, 251,
261, 281, 291, 301, 311, 321 and 341 to
G0SUB400. You will have to putin a line,
360 GOTO1@ or 360 GOTD1000, to walk
around the GOSUB routine. Ideally, the
GOSUB should be at the end of the
program, for example, Line 2000. How-
ever, using 400 instead of 2000 saves
typing one extra zero and whatever
error that third zero might generate due

to typing mistakes. Naturally, you can
make other GOSUB lines to accommo-
date frequently-used pause lines.

OK, what have we wrought? Nothing
much! Just a bunch of lines flapping
across the screen. But, you learned a lot
quite painlessly. Let us recap:

1) A picture, design or shape must be
created. It can be elaborate or as mind-
lessly simple as our bird. After it 1s
created and put into a variable form, it
can be called using DRAW. Alternate
shapes should be created in anticipation
of need, but they can be created as
required and added to the list of shapes.

2) It must be located at the desired site
on the screen in a color other than the
background.

3) It must remain on the screen for a
certain length of time.

4) It must be erased by creating the
same design and in the exact location
but using the background color so it
appears to vanish.

5) The same picture or a variant,
again created and called as a variable in
a DRAW statement, can be placed in a
newly selected location. Repeat steps
two through four. Suppose you made a
pastoral scene in the blank space re-
served under the bird? Or the outline of
a few buildings?

Now that you know how to make a
bird fly around, you can use the same
technique to produce your own crea-
tion.

As an added attraction, Listing 3 uses
SOUND as a timer and has a skyline
thrown in to show how to eénhance the
animation. You can modify your tuto-
rial program by inserting lines 11-13,
modify Line 1000 and change all pause
lines to SOUND lines. If you don't care
for my sounds, make up your own.

Listing 1: BIRDS 1

§ 'LISTING1

1§ PMODE3,1:PCLS3:SCREEN1, 9
28 AS="F6E6"
B$="F6R6"
C$="R6E6"
D$="E6F6"

E$="F12"

F$="E12"

Gs-"Rlzu

H$="R6F6"
DRAW"C2BM1@,18"+BS

DRAW"C2BM15, 28"+A$
DRAW"C2BM25, 2" +A$
DRAW"C2BM35, 28" +A$
DRAW"C2BM4g, 35"+B$
DRAW"C2BMS5@, 4@"+ES
DRAW"C2BM6g, 45"+B$
DRAW"C2BM7@,45"+A$
DRAW"C2BM75, 55"+AS
DRAW"C2BM85, 60"+AS
DRAW"C2BMOg, 79" +AS
DRAW"C2BM95, 75"+C$
DRAW"C2BM110, 99"+D$
DRAW"C2BM12@,98"+D$
DRAW"C2BM13@, 95"+D$
DRAW"C2BM148,95"+C$
DRAW"C2BM158,95"+F$
DRAW"C2BM148, 88" +AS
DRAW"C2BM139,75"+A$
DRAW"C2BM12g, 79" +A$
DRAW"C2BM12@, 68" +AS
DRAW"C2BM12@, 58" +AS

259 DRAW"C2BM125,45"+B$

269
279
289
299
3pgp
319
32p
339

DRAW"C2BM12p,4p"+ES
DRAW"C2BM125,35"+ES$
DRAW"C2BM13@,25"+A$
DRAW"C2BM135,28"+AS$
DRAW"C2BM140,15"+AS
DRAW"C2BM145, 15"+C$
DRAW"C2BM145,18"+G$
DRAW"C2BM150, 19"+HS$
349 DRAW"C2BM16g,1p"+DS
359 DRAW"C2BM16g,5"+D$
1999 GOTO1ppP

Listing 2: FLIGHT 1

'<LISTING2>
1 'CREATED BY J. KOLAR, 1985
1¢ PMODE3,1:PCLS3:SCREEN1, g
2@ A$="F6E6"
21 B$="F6R6"

PAGE 30

Australian RAINBOW

April 1726,

199
191
195
2pp
201
205
219
211
215
228
221
225
239
231
235
249
241
245
259
251

C$="R6E6"
D$="E6F6"

E$="F12"

F$="E12"

G$="R12"

H$="R6F6"
DRAW"C2BM10, 19" +B$
FOR Z=1TO1g@:NEXT
DRAW"C3BM1@, 19"+B$
DRAW"C2BM15, 28" +A$
FOR Z=1TO75:NEXT
DRAW"C3BM15, 29" +A$
DRAW"C2BM25, 2@"+A$
FOR Z=1 TO 1P@:NEXT
DRAW"C3BM25,28"+A$
DRAW"C2BM35, 28" +A$
FOR Z=1 TO 15@:NEXT
DRAW"C3BM35,20"+A$
DRAW"C2BM4g, 35"+B$
FOR Z=1TO1@@:NEXT
DRAW"C3BM4g, 35"+B$
DRAW"C2BM5@, 48"+ES
FORZ=1TO75 : NEXT
DRAW"C3BM5@, 49" +E$
DRAW"C2BMé6g, 45"+B$

FOR 2=1TO 75:NEXT
DRAW"C3BM6@,45"+B$
DRAW"C2BM78,45"+AS$
FOR 2=1TO15@:NEXT
DRAW"C3BM78,45"+AS$
DRAW"C2BM75,55"+A%
FOR 2=1T0125:NEXT
DRAW"C3BM75,55"+AS$
DRAW"C2BM85,62"+AS
FOR 2=1 TO 125:NEXT
DRAW"C3IBM85,68"+AS
DRAW"C2BM9g, 78" +AS$
FOR Z=1TO75:NEXT
DRAW"C3BMO@, 78"+AS
DRAW"C2BM95,75"+C$
FOR 2=1T0175:NEXT
DRAW"C3BM95,75"+C$
DRAW"C2BM11@,98"+D$
FOR Z=1TO1@@:NEXT
DRAW"C3BM11g,90"+D$
DRAW"C2BM12@,98"+D$
FOR Z=1TO1@@:NEXT
DRAW"C3BM12@,98"+D$
DRAW"C2BM138,95"+D$
FOR 2=1 TO 125:NEXT
DRAW"C3BM13@,95"+D$
DRAW"C2BM14g,95"+C$
FORZ=1TO125:NEXT
DRAW"C3BM14g,95"+C$
DRAW"C2BM15@,95"+F$
FOR Z=1TO 175:NEXT
DRAW"C3BM158,95"+F$
DRAW"C2BM14g,808"+AS
FOR Z=1TO125:NEXT
DRAW"C3BM140,88"+AS
DRAW"C2BM13@, 75"+AS
FOR 2=1TO1@@:NEXT
DRAW"C3BM139,75"+A$
DRAW"C2BM12@, 79" +A$
FORZ=1TO75:NEXT
DRAW"C3BM12g,78"+AS
DRAW"C2BM12@,68"+A$
FOR Z=1T075:NEXT
DRAW"C3BM12g8, 68"+AS
DRAW"C2BM12g8, 58" +A$
FOR Z=1TO075:NEXT
DRAW"C3BM12@,58"+AS
DRAW"C2BM125,45"+BS
FOR Z=1TO75:NEXT

255
269
261
265
279
271
275
289
281
285
299
291
295
399
31
3p5
319
311
315
329
321
325
339
331
335
349
341
345
358
351
355

DRAW"C3BM125,45"+BS$
DRAW"C2BM120,48"+ES
FOR Z=1TO75:NEXT
DRAW"C3BM12@,48"+ES
DRAW"C2BM125,35"+E$
FOR Z=1 TO 190:NEXT
DRAW"C3BM125,35"+ES$
DRAW"C2BM13g, 25"+AS
FOR Z=1TO075:NEXT
DRAW"C3IBM13g,25"+A$
DRAW"C2BM135,28"+AS$
FORZ=1TO75:NEXT
DRAW"C3IBM135,28"+AS$
DRAW"C2BM14g, 15"+A$
FOR 2=1TO 75:NEXT
DRAW"C3BM148,15"+AS
DRAW"C2BM145,15"+C$
FOR Z=1TO75:NEXT
DRAW"C3BM145,15"+C$
DRAW"C2BM145,19"+G$
FOR Z=1TO 75:NEXT
DRAWMC3BM145,18"+G$
DRAW"C2BM15@, 18"+HS
FOR Z=1T0125:NEXT
DRAWM"C3BM158, 18"+HS
DRAW"C2BM16g,18"+D$
FOR Z=1TO 75:NEXT
DRAW"C3BM16g, 19"+D$
DRAW'"C2BM16g,5"+D$
FOR Z=1TO02@@ : NEXT
DRAW"C3BM16g,5"+D$

199¢ GOTO1p

Listing 3: FLIGHT 2

P '<LISTING3>

1 ' CREATED BY J. KOLAR,

1§ PMODE3,1:PCLS3:SCREEN1,p

11 DRAWM"C1BMP,14PR4PD1IGRIPUIPRIP
D3ZRSPDSPR4PUAPRIPDAPRIPUIPRAGD]L
PPR1PUIPRIPDIPRIPU4 PR2PBD5PL255"

12 PAINT(5,145),2,1
13 PAINT(5,198),1,1
29 AS$="F6E6"

21 B$="F6R6"

22 C$="R6E6"

23 D$="E6F6"

24 E$="F12"

25 F$="E12"

26 G$="R12"

27 H$="R6F6"

3§ DRAW"C2BM1g,1¢"+B$
31 SOUND125,3

35 DRAW"C3BM1g, 1¢"+B$
49 DRAW"C2BM15,28"+A$
41 SOUND 89,2

45 DRAW"C3BM15,2@"+A$
5¢ DRAW"C2BM25,28"+A$
51 SOUND125,3

55 DRAW"C3BM25,20"+A$
6 DRAW"C2BM35,2@"+AS
61 SOUND159,2

65 DRAW"C3BM35,28"+AS$
7% DRAW'"C2BM4g,35"+B$
71 SOUND125,3

75 DRAW"C3BM4g,35"+B$
88 DRAW"C2BMS@,48"+ES$
81 SOUND89,2

1985

85 DRAW"C3BM5,48"+E$
99 DRAW"C2BM6@,45"+B$
91 SOUNDS89, 3

95 DRAW"C3IBM6P,45"+B$

199
191
125
119
111
115
129
121
125
139
131
135
149
141
145
159
151
155
169
161
165
179
171
175
188
181
185
198
191
195
209
291
295
219
211
215
228
231
225
239
231

235.

249
241
245
250
251
255
269
261
265
279
271
275
28p
281
285
298
291
295
399
3g1
395
31
311
315
328
321

DRAW"C2BM72,45"+AS$
SOUND159, 2
DRAW"C3BM70,45"+A$
DRAW"C2BM75,55"+A$%
SOUND133,2
DRAW"C3BM75,55"+A$
DRAW"C2BM85, 60" +A$
SOUND133,2
DRAW"C3BM85,68"+AS
DRAW"C2BM9g, 78" +A$
SOUND89, 2
DRAW"C3BM9@, 78" +A$S
DRAW"C2BM95,75"+C$
SOUNDS89, 2
DRAW"C3BM95,75"+C$
DRAW"C2BM11g,98"+D$
SOUND125,2
DRAW"C3BM118,908"+D$
DRAW"C2BM12@,98"+D$
SOUND125, 2
DRAW"C3BM12g8,98"+D$
DRAW"C2BM138,95"+D$
SOUND125,2
DRAW"C3BM138,95"+D$
DRAW"C2BM14g,95"+C$
SOUND133,2
DRAW"C3BM148,95"+C$
DRAW"C2BM158, 95"+F$
SOUND178, 2
DRAW"C3BM1508,95"+F$
DRAW"C2BM14g, 88"+A$
SOUND133,2
DRAW"C3BM14g,88"+A$
DRAW"C2BM138,75"+A$
SOUND 125,2
DRAW"C3BM1398,75"+A$
DRAW"C2BM12@,78"+A$
SOUNDS89, 2
DRAW"C3BM12g,78"+A%
DRAW"C2BM12@, 68"+AS
SOUND89, 2
DRAW"C3BM12g,68"+AS
DRAW"C2BM12g@,508"+AS
SOUNDS89, 2
DRAW"C3BM12g, 58" +AS
DRAW"C2BM125,45"+B$
SOUNDS89, 2
DRAW"C3BM125,45"+B$
DRAW"C2BM12@,48"+E$
SOUNDS89, 2
DRAW"C3BM128,48"+E$
DRAW"C2BM125,35"+E$
SOUND125,2
DRAW"C3BM125,35"+E$
DRAW"C2BM13g,25"+A$
SOUNDS89, 2
DRAW"C3BM138,25"+A$
DRAW"C2BM135,2@8"+AS$
SOUNDB89, 2
DRAW"C3BM135, 28"+AS$
DRAW"C2BM14g, 15"+AS
SOUNDS89, 2
DRAW"C3BM14g, 15"+AS
DRAW"C2BM145, 15"+C$
SOUND 89,2
DRAW"C3BM145, 15"+C$
DRAW"C2BM145,18"+G$
SOUND89, 2

continued on Page 41

ABT

1 1984

Auctralian RAINBOW

PAGE 3

Color Computer Educational
and-e!l Software for Children

ave *15 o

ELECTRON

Save *10 .M

Drive Your Own Taxi

Reg 34.95 2 495

Taxi 7 years and older. Choose city
to drive in (London, New York etc.),
pick up passengers, stop at traffic
lights etc. Joysticks required. 262509

Makes Adding Up Fun

Reg 39.95 2995

Grover’s Number Rover 3-6 years 6
games-in-one! Help Grover pick up
Twiddlebugs. Add, subtract, etc. A
great learning aid. 262522

 Teaches Children Shapes

Reg 39.95 2995

Ernie’s Ma%ic Shapes Designed for
ages 3-6. Choose difficulty level.
Match color and shapes and then
zap shapes away. 252524

Learn Letters Easily

wnss DGIS

~ Cookie Monster's Letter Crunch
~ Ages 3-6. Bake cookies with the right
letters on and he’ll eat it. Turn letters
into words. Requires joystick. zs2s2

Recognise Amimals,
Plants

Reg39.95 2995

Big Bird’s Special Delivery Ages 3-6.
Match packages to shapes, take
them to the right store. Animals,
plants, food, instruments. zs2525

_

Ask about Our Special Order Educational Software
for Color Computer and TANDY 1000 saLe enos: 3014186

Let the Kids Use Keys

Re59.95 4495

£ Kids on Keys Ideal introduction to

{ the keyboard. Three games for

| location of letters and numbers.
Four levels of difficulty. 263167

' A Fun Way to Computers

Reg59.95 4495

Face Maker Educational program for
younger users. Three games in one.
® Control the adding of eyes, nose,
§ ears, hair, etc. on blank face. 2631

Playing with Sights &
Noises

Reg 59.95 Mgs

Kinder Comp Ages 3-8. Create col-
. orful pictures, scribble on screen,
make sounds, animation, find let-
ters. A perfect way to learn. 23168

. Learning Fractions Easily

Reg59.95 Mg 5

Fraction Fever Ages 7-adult. Hop
" along on a pogo stick, checking for
matching fractions, zap incorrect
L ones. Just like an arcade game! 263163

& How to Spell & Have Fun

Reg69.95 5495

N Alphabet Zoo Ages 3-8. Teaches rela-
tionship between letters and sounds.
Race through maze, altering letters
that form a picture. 263170

| Color Computer
& External Expansion

VALUE

Save
50

Reg 149.95

995

Multi-Pak Interface allows you to connect up to four another, just move the selector switch on the front, or
Program Pak cartridges to your Color Computer at change between slots under program control. Upgrade
once. It also makes it possible to connectdevicessuch your computer with a disk drive now, or just make it
as a Color Computer disk drive and graphics tablet. easier to change software programs. Attractive,
When you're ready to change from one Program Pak to durable and easy to use. AC operation. zsaozs

Save *500
$1499 -~

A true price breakthrough!
The Tandy Model 4 is the
perfect computer for busy
managers, educators and
home computer users.
Boasts 64K memory, expan-
dable to 128K, numeric
keypad, RAM based Disk
Drives, CP/M compatible,
Parallel Printer interface.
Huge ready-to-run software
library. Comes with owner’s
manual and introductory
booklet to get you started.
261069

No rainchecks on this item

WE SERVICE WHAT WE SELL!

Available from
350 Stores Australiawide
including Tandy Computer Centres

ELECTRONIC

*Independent Tandy Dealers may not be participating
Nearly in this ad or have every ltem advertised.

A DIVISION OF TANDY
rE Sr 350 Stores Prices may aiso vary at Individual Dealer Stores
B LI Australia-
NC INNSW :
¥ Wide

DISK UTILITY \

16K .a’ .
Disk »,nr.‘.: Nﬂ.'/:'_ ;

A Disk Tinkerer’s

By Martin H. Goodman

fil.ﬂherc was an excellent article in
the December 1985 RAINBOW,
“Zapping with Confidence,”
Page 118 by Jeffry Dwight, that pro-
vided a well-designed “disk zap™” utility.
Now you can have an easy means to
examine and modify disks. In this
article I will try to aid such hardy
tinkerers by discussing some aspects of
Jjust what you will see when you look at
your disks. Some of this material is
explained in the Radio Shack Disk
Extended BASIC manual in Chapter 11.
Some of the material, however, is not
given there, especially the information
on specific file structure.

As a bonus, I'll provide you with a
utility. Called Analyzer, it automati-
cally gathers up the widely separated
information on just where given direc-
tory files are on your disk and prints it
out in a neat fashion. Analyzer can be
used in conjunction with any disk
editor, such as the one mentioned
above.

Note 1: There may be some confusion
about what number (zero or one) is the
first number in a given sequence. The
first sector on a track is numbered one,
yet the first track on the disk is num-
bered zero. The first byte in the direc-
tory entry is called “byte zero.” The first
granule is called granule number zero.
These are arbitrary conventions. They
are not all consistent with each other,
and are a pain to remember . .. but
remember them a hacker must!

Note 2: When referring to the data on
the disk, I'll denote it in two different
forms. When 1 say the first 11 bytes
contain the filename and extension, |
mean that the data is there in ASCII
code. However, when I say the File Type
flag byte will be 0, 1, 2 or 3, I am
indicating the Hex value of that byte.
When I later refer to the value of a byte
in the Granule Allocation Table, I'll also
be referring to its Hex value.

The letter ‘A’ in ASCII is represented
as Hex 41. Most disk zappers offer the
option of displaying a sector in either

Hex or ASCII. The one published in the
December RAINBOW had even more
options (decimal and binary) for how to
display the data from the disk. The best
disk zappers use a technique to display
at the same time both the ASCII value
and the Hex value of at least a selected
byte in the sector, if not some or all of
the sector. Some disk zappers (V/Ps, for
example) display “screen code” values
of the sector. This is vaguely like an
ASCII display, but the data is repre-
sented somewhat differently. With such
zappers, the ASCII/Hex options need
to be used. In this article, when I make
reference to text I'm talking ASCII, but
when 1 specify to numeric information
I am talking Hex.

Note 3: I will assume we are consid-
ering only normal Radio Shack/ Micro-
soft Disk Extended BASIC files here.
What follows is not relevant directly to
0S-9, copy-protected material or to
noncopy-protected, but also non stand-
ard format disks, such as some new
Radio Shack games, the new Infocom
games and Graphicom or WEFAX
picture disks,

Note 4: I will assume you are familiar
with the fundamental divisions of data
on a disk: the 35 tracks and the 18 256-
byte sectors that are standard for Radio
Shack’s Disk Operating System. The
Radio Shack Disk Extended BASIC
manual is quite clear on this matter. |
will also assume you understand that a
“granule” consists of nine sectors on the
disk, thus is 2%4K in size and can occupy
either the first or the last nine sectors
(numbered 1 through 9 or 10 through
18) on a given track. Every track except
Track 17 (the directory track) consists
of two granules. The directory track is
excluded from granule notation. There-
fore, Track 0, Sector 1 is the first sector
in granule number 0, Track 16, Sector
18 is the last sector in Granule 33 and
Track 18, Sector | is in Granule 34,

Note 5: Most of the time I will use
Hex notation, but sometimes I will use
decimal. Thus, when I refer to Track 17,

Device

I am talking decimal. Whenever I use
Hex, I'll specify it by writing the word
“Hex” or by preceding the number with
a dollar sign ($).

These notes may seem tedious, but
hopefully they will help the novice get
past some of the conventions that
longtime hackers often accept and
understand without thinking about
them, yet are sometimes confusing to
the newcomer.

Directory Structure

When you type DIR, you see a listing
of filenames, extensions and then a
number, a letter and another number.
The first number displayed is the File
Type, the letter is the ASCII flag and the
last number is the number of granules
in that file. Everything except for the
information on how many granules
there are in the file is directly recorded
in the directory entry.

The directory starts on Track 17 (Hex
S11), Sector 3. Each entry is 32 (Hex
$20) bytes long, of which only the first
16 (Hex $10) bytes are used. The re-
maining 16 bytes are “reserved for
future use” by Microsoft. Therefore,
one sector can hold up to eight directory
entries. If the directory has more than
eight files on it, then more sectors
(Track 17, sectors 4, 5, 6, etc.) are used.
Let’s look at Track 17, Sector 3.

Bytes $00 through $0A: Filename
and Extension

As can be lecarned from reading
Chapter 11 of the Radio Shack manual,
filenames in the directory are placed on
Track 17, Sector 3 and up. The first
eight bytes of the entry are the filename,
the next three are its extension. These
I I bytes normally contain ASCII char-
acters. Files that were killed will have
the first byte in their name changed to
Hex 0.

Byte SOB: File Type Flag
The next one is the File Type flag.
This byte equals 00 for tokenized BASIC

FAGE 24

Austiralian RAITNBOW

— o
Apri1l 1Ygs.

programs. It equals Hex 01 for what the
Radio Shack manual calls “BASIC data
files,” or what you will encounter as
“ASCII BASIC” files, or as with many
word processors and editor/ assemblers,
ASCII text files. It equals Hex 02 for
machine language programs. The man-
ual says this byte equals Hex 03 for “text
editor source files.” This File Type is
rarely encountered, except by users of
Color Scripsit. To those, I suggest
buying Telewriter and Telepatch or VIP
Writer or Elite Word. You'll have a
much better word processor and won't
have to worry about text editor source
files.

Byte S0C: ASCII Flag

The ASCII flag follows the File Type
flag. This single byte is set to zero if the
file is in binary format, and set to Hex
FF if the file is in ASCII format. To-
kenized BASIC is a kind of binary File
Type: so is a machine language pro-
gram. Thus, both of those tend to have
the ASCII flag set to zero. ASCII text
files (File Type flag = 1) have their
ASCII flag set to Hex FF.

Byte $0D: First Granule
This is the number of the first granule
used for the file.

Bytes SOE and $0F: Number of Bytes
in Last Sector

Byte SOE is the high order byte, and
is either zero or one — most of the time

it is zero. If one, the next byte is zero,
and 256 bytes in use (a full sector) are
specified. Byte 15 varies from one
through FF to signify from one through
255 bytes used in the last sector of the
file. Bytes $10 through SIF are “re-
served” from back in 1981 for “future
use.” They have never been used.

Note here that while bytes Hex 0D,0E
and OF provide some information about
where the file resides on the disk and
how far it extends, they leave out a lot!
They give no clue, in and of themselves,
as to how many granules there are in the
file or of how many sectors are used in
the last granule of the file. To find that
out, you have to move over to Track 17,
Sector 2, called the Granule Allocation
Table, or GAT.

The GAT

The GAT occupies Track 17, Sector
2. Actually, only the first 68 bytes of
Track 17, Sector 2 constitute the GAT.
The disk manual incorrectly states that
the remaining bytes in that sector will
be zero. Anyone who’s ever looked at
a disk with a zapper knows this is not
true. Indeed, due to some sloppy code
in Disk BASIC, copies of pieces of the
directory itself wind up in the spacc
beyond the 68th byte of Track 17,
Sector 2. This little idiosyncrasy had to
be corrected by authors of Disk BASIC
modifications who were implementing
support for 40- and 80-track drives, but
that’s another story. Suffice it to say

DIRECT1 /BAK BASIC data file
pe,p1,082,£3,04,05,06
2 = ¢ OF SECTORS
2 = $# OF BYTES IN LAST SECTOR
DIRECT2 /BAK BASIC data file

£7,08,09,8A
6 = $# OF SECTORS
3B = $ OF BYTES IN

IN LAST
LAST SECTOR

DISKANAL/BAK BASIC
pB

9 = § OF SECTORS
FF = § OF BYTES IN

program

LAST SECTOR

DIRECT1 /TXT BASIC data file
gc,pD,gE,QF,12,11,12
2 = ¢ OF SECTORS
2 = § OF BYTES IN LAST SECTOR

DIRECT2 /TXT BASIC data file
13,14,15,16

6 = ¢ OF SECTORS
3B = ¢ OF BYTES IN LAST SECTOR

DISKANAL/BAS BASIC program
1?7

9 = § OF SECTORS
FF = § OF BYTES IN LAST SECTOR

IN LAST GRAN

GRAN

Sample Run

+ TNDICATES A KILLED FILE WHER IN FRONT OF FILE NAME

+ INDICATES INVALID GAT ENTRY IN GAT LISTING

KTLLED FILES THAT ARE NOT LISTED AS 'SCRUNCHED GAT' HAVE MOST LIKELY
BEEK WRITTEN OVER BY A NEW FILE AND ARE REALLY LOST!

ASCII

ASCII

BINARY

IN LAST GRAN

ASCII

IN LAST GRAN

ASCII

IN LAST GRAN

BINARY

IN LAST GRAN

here that in a normal Disk BASIC disk,
the first 68 bytes of Track 17, Sector 2
are the GAT and the remaining bytes
are “garbage.”

The first byte in the GAT is “byte
number zero.” Each byte in the GAT
corresponds to the status of a given
granule on the disk. That status is
encoded as follows: If the GAT byte is
equal to SFF, then the corresponding
granule is avilable for new files. On a
blank disk this is a blank (all $FF)
granule; on an often-used disk, which
has had files killed and other files
written to it, that granule might contain
some data from a previously killed file.

In either case, the granule is flagged as
available for new files.

If a byte in the GAT is equal to a
number from zero through 67 ($0
through $43), it means that the granule
is occupied by a given directory file, that
this granule is not the last granule in the
file, and the next granule in the file is
the granule number corresponding to
the number in that byte. As a result, if
the directory entry says the first granule
in a file is Granule S1E and Byte SIE
in the GAT reads Hex IF, that means
granule $1F is the next granule in the
file, and Byte $1F of the GAT must now
be looked at to learn more about where
the file resides.

If the byte in the GAT reads $ClI
through $C9, it means the correspond-
ing granule is the last granule in the file,
and the number of sectors in the granule
that actually belong to the file is the low
order Hex digit of the number in the
GAT byte. That is, if we look at Byte
$1F from the example of the last para-
graph and find it contains $C4, it means
the file in question occupies a total of
two granules, granules 1E and 1F, and
Granule IF actually has only the first
four of its sectors used for the file (the
remaining five would be wasted).

Note that the smallest file in Disk
BASIC must occupy a whole granule,
even if it is only one byte long. The rest
of the granule in question is wasted.
Note that if a GAT byte is equal to any
number besides $FF, 00 through $43, or
$C1 through $C9, it means the GAT
itself has an error in it! The Disk BASIC
manual alleges that $CO is a valid code
for a GAT byte, but I can see no use for
that value. (If a reader can explain to
me the significance of a $SCO GAT byte
value, I'd appreciate it.) For now, I can
only assume the Disk BASIC manual is
in error on this matter.

To fully know exactly where the file
ends, we now need to hop back to look
at the directory entry for the number of
bytes in the last sector of the file that

April 1786,

Australian RAINBOW

— T SCe T TRVETL
PAGE 25

O —

—

are actually used. You now can see that
the specification of what bytes on the
disk corrrespond to a given file is
smeared out between the directory entry
for that file and the GAT. In the GAT,
the file size has to be determined by
tracking down the file from GAT byte
to GAT byte, until the end of what
programmers call the “linked list” of
bytes is reached. And finally, after
finding the last granule and last sector
in that granule, one has to go back to
the directory entry to find where the last
used byte is in the last sector.

What a mess! Why did they do it that
way? Despite the mess, there is some
method to this madness. Grouping all
the information concerning which gran-
ules are used and which are not into one
single block, they facilitate keeping
track of available space on the disk and
make killing of old files easier to do.
Though there are some ways in which
the scheme is needlessly complex, it
actually makes more sense than it seems
to upon first glance after you start
considering how disk operating systems
and file managers have to be written.

Killed Files

When you kill a file using Disk BASIC,
the actual file data is not immediately
destroyed. What happens is the first
byte in the name of the file in the
directory is set to zero, and all bytes in
the Granule Allocation Table, which
correspond to bytes in that file, are set
to SFF (= available). Thus, if you kill
a file, all data in the file remains on the
disk. Only the information in the GAT
needed to find such data is destroyed by
the KILL command itself.

Of course, if you try to SRVE any new
data to a disk after killing a file, you
may end up writing over granules that
were previously a part of the killed file,
or even writing over the old killed
directory entry as well. At that point,
the file data in the killed file is com-
pletely destroyed. But, if you have
merely killed a file and then want to
restore it, such restoration is possible,
though often tedious.

As you add files to a fresh, formatted
disk, Disk BASIC is inclined to assign
granules to each new file in a fashion
that starts on one side of the dirctory
and tends to alternate on either side of
the directory track. Therefore, files
under Disk BASIC tend to get assigned
near the middle of the disk and grow
towards both the center and the outer
edge.

However, some disk utilities (such as
Spectrum Projects’ Directory Utiltity)
assign granules sequentially from Gran-
ule 0 to Granule 68; disks that have had

many files written to them, then erased,
then others written to them, tend to
have the granules that compose a given
file scattered all over the disk. This can
make reconstruction of a big killed file
on such a disk very difficult.

File Structure

Now that you know how to find a
given file, from its first to last byte on
the disk, I'll explain what you can
expect to sce in the three most com-
monly encountered Disk BASIC files.

ASCII

ASCII text files (“BASIC text files”)
are the ecasiest of all to understand.
These files have the File Type flag set
to one and the ASCII flag set to SFF.
They are almost totally “raw” data —
just byte after byte of information,
usually (though not necessarily) ASCII
text. The only thing special about them
is the last byte in the file is Hex 1A
(control Z). This is the flag that marks
the end of an ASCI1 text file. Within the
file the bytes are typically less than a
Hex value of $80, but are not required
to be so. Thus, the only special “struc-
ture” such a file has is that it will not
have any $S1A’s in it until the last byte
of the file.

Tokenized BASIC

Tokenized BASIC files are a kind of
binary file. They have a File Type flag
of zero and an ASCII flag of zero as
well. Looking at them in ASCII, you
will be able to recognize all the text that
is in the BASIC program, but all BASIC
key words are encoded (“tokenized™)
into one or two bytes. Line numbers do
not appear as ASCII, but as two Hex
bytes.

For example, the line 257 PRINT
“ABC~ appears in the file as the follow-
ing sequence of bytes: 00 (a line delime-
ter), 01 01 (the two-byte Hex value for
257 decimal) followed by Hex 80 (the
BASIC token code for PRINT), then Hex
22 41 42 43 22, the ASCII codes for
~ABC“. Because no BASIC token is set to
00, and 00 is a nul (not used to encode
ASCII letters and symbols), you will
never find inside the tokenized BASIC
file more than two 00 bytes in a row.

However, at the end of the file, you will
find three 00 bytes. This is BASIC’s “end
of file flag.” If you are in the process of
reconstructing a disk after losing the
GAT on it (an utterly thankless task . . .
let me tell you!), your reconstruction of
a given BASIC file is aided by your search
for the sector with BASIC code and three
00 bytes.

Occasionally, you might encounter

what appears to be a normal BASIC file
that has two sets of three 00 bytes in it.
This most likely is an especially pre-
pared “end packed” BASIC file, made up
by programmers to stuff machine lan-
guage code invisibly at the end of a
BASIC file. Such files are not normal
BASIC files and have been “foxed with"”
by the programmer.

Machine Language Files

These are by far the the most compli-
cated files of all. This is due to the
provision Microsoft made for “seg-
mented” binary files. That is, an ML file
on a disk (unlike its counterpart on a
tape) can consist of several segments
that load in different areas of memory.
Let’s start with the description of a non-
segmented ML file, then go on from
there.

Non-segmented ML Files

The SAVEM command generates non-
segmented ML files. Note that the
SAVEM command cannot generate a
segmented ML file; those are created
using various editor/assemblers or by
foxing with the file as it resides on the
disk using a disk zapper. Such non-
segmented ML files (actually they are
segmented files that have only one
segment) begin with a 00 byte. This is
followed by two bytes that specify
number of ML data bytes, then by two
more bytes that specify where the ML
data is to start loading into memory.
This five-byte “header” is followed by
the ML data itself. At the end of the file
is a five-byte ending sequence, consist-
ing of an SFF byte, two bytes of 00 each,
then two bytes that specify the execute
address of the file.

For example, if you made a file using
SAVEM “TEST~” &H4321, &H4324,
&H4322, and if $4321 through $4324
contain the Hex values Al, B2, C3 and
D4 at the time you save the file, it
appears on the disk (in Hex) as follows:
00 00 04 43 21 (the five-byte header with
the 00 flag byte, the length of the file as
$0004 and the start address of $4321),
followed by Al, B2, C3, D4 (the actual
data in the file itself), followed by the
end five bytes of FF, 00, 00, 43 and 22.

Note carefully that the end address is
not specifically stored as such on the
disk in the file header. It must be
calculated from the start of load address
and the file length. Also note that you
must track the file down to its end
before you can tell what its execute
address is.

Segmented ML Files
Segmented ML files are very similar,
but after the first segment, instead of

PAGE 36

Austral lanm

Rpri1 1786,

having an FF 00 00 (execute address)
five-byte end flag, they have another
header, specifying more data to be
loaded elsewhere in memory. There is
no limit (other than the memory of the
CoCo and the size of the disk) on how
many segments such a file can have, so
it is possible to create an ML file that
loads single bytes all over the memory
of the CoCo. In these segmented files
the end is recognized by the presence of
the FF end flag followed by the 00 00
(execute address) five-byte final block.
Thus, a segmented ML file can have lots
of start and end addresses, though it can
only have one execute address.

This segmented structure can be a bit
confusing, but it is very convenient for
assemblers! And, it is helpful when you
need to make a program that loads stuff
in differing and widely separated areas
of memory. Such segmented files are
easily created with EDTASM and with
Macro 80C (and probably most other
editor/assembler packages) using more
than one ORG statement in the source
code. Indeed, some assemblers that
assemble directly to disk, like Macro
80C, create segmented files even when
assembling source code that is not
multiple ORGed. In such cases, the end
address of one segment will be seen to
be one less than the start address of the
next.

References

Disk Basic Unravelled, published by
Spectral Associates, is the bible for ML
disk hackers. Indeed, 1'd go so far as to
say that if you do any assembly lan-
guage hacking using Disk BASIC, you
need to buy the three-volume BAS/C
Unravelled (cost is about $50). This set
has fully commented disassemblies of
all versions of the CoCo ROMs, gobs
of information about the RAM-base
page and such, stuff on file formats,
BASIC routine entry points, and the like.
It is what Microsoft and Tandy should
have published the day they released the
CoCo on the market. Spectral Asso-
ciates and the unnamed ML hacker(s)
who compiled this set deserve the
thanks of all CoCo users.

The Disk Extended BASIC Manual
comes with your Radio Shack disk
Drive 0. This manual can be ordered
separately, although only the few pages
in Chapter 11 are of relevance to what
is written here.

The Disk Analyzer Program

The following simple BASIC program
automatically searches out all the infor-
mation needed to find every byte in a
given valid file on a Disk BASIC disk. It
dumps that information to a printer;
you can also have it go to the screen by
changing Line 50 from D=-2 to D=0. If

you do this, you'll want to add some
kind of pause feature as the data oth-
erwise scrolls by too quickly to read.
Just load the program, type RUN, put the
disk you want to analyze in Drive 0,
make your printer ready and press any
key. All text is printed in ASCII char-
acters and all numeric values are printed
in Hex.

Analyzer prints four lines of informa-
tion about each file on your disk.

First line: Filename, extension, File
Type flag byte status, ASCII flag status
(an asterisk [*] precedes any killed files
on your disk that this Analyzer will see
and list).

Second line: The numbers of all the
granules that compose the file, from the
first to the last. If invalid granule
numbers are detected, the program
indicates this by a ‘*’and/or by printing
in the next line “scrunched GAT!™.

Third line: The number of sectors in
the last granule.

Fourth line: The number of bytes in
the last sector.

This program gathers together all the
widely separated data into one table for
you to refer to when you are wandering
around your disk using a disk zapper.
Note that Analyzer does some testing
for messed up entries, but on a disk with
blown directory entries it won't be of
much use. a

The listing: ANALYZER

1§ CLEAR 2099

29 DIM G(69)

25 CLS:PRINT"(C) MARTY GOODMAN 1
985" : PRINT

3§ PRINT"DIRECTORY ANALYZER":PRI

NT:PRINT"PREPARE PRINTER":PRINT:

PRINT"HIT ANY KEY TO CONTINUE"
4 IF INKEY$="" THEN GOTO 4p

58 D=-2

7 PRINT#D,"* INDICATES A KILLED
FILE WHEN IN FRONT OF FILE NAME
"

8¢ PRINT#D,"* INDICATES INVALID

GAT ENTRY IN GAT LISTING"

9f PRINT#D,"KILLED FILES THAT AR

E NOT LISTED AS 'SCRUNCHED GAT'

HAVE MOST LIKELY"

92 PRINT#D,"BEEN WRITTEN OVER BY
A NEW FILE AND ARE REALLY LOST!
"

95 PRINTHD,"":PRINT#D,""
129 REM READ IN GAT

11¢ DSKI$ 2,17,2,A$,B$

12p FOR N=1 TO 68

139 G(N)=ASC(MIDS (AS,N,1))
148 NEXT N

29 REM ANALYZE DIRECTORY

21p S=3

258 DSKI$ ﬂ,l?,S,As,BS

3p9 REM MAIN LOOP

395 IF LEN(A$)=¢ THEN :GOTO SPpPP
397 K=9

31§ T=1:GOSUB 2@@@:IF E$=CHRS (&H
FF) THEN GOTO 9299

329 IF ASC(ES)<>p THEN GOTO 359
325 K=1

335 PRINT#D,"* ";

358 T=8:GOSUB 1P@g@:PRINT#D,ES;:P

RINT#D,"/";

369 T=3:GOSUB 1@@g:PRINT#D,ES;
379 T=1:GOSUB 1pgp

375 E=ASC(ES)

38¢ IF E=p THEN GOTO 41p

385 IF E=1 THEN GOTO 429

399 IF E=2 THEN GOTO 439

395 IF E=3 THEN GOTO 449

4pp PRINTHD," BAD FLAG BYTE Wss
GOTO 459

419 PRINT4D," BASIC program ";:
GOTO 45p9

42p PRINTHD,"
GOTO 458

438 PRINT#D,"
GOTO 459

449 PRINT#D,"
459 PRINT#D,"
P:E=ASC(ES)
46§ IF E=p THEN GOTO 48p

465 IF E=255 THEN GOTO 49p

479 PRINT#D," *BAD* ":GOTO 5@p
488 PRINT4D," BINARY":GOTO Sgp
49¢ PRINTH4D," ASCII "

509 REM ANALYZE GAT ENTRIES
519 T=1:GOSUB 19¢@:E=ASC(ES)
515 COMMA=p

522 REM GAT LOOP

525 GOSUB 3999

BASIC data file";:
Mach Lang progm";:

Txt Ed src file";
";:T=1:GOSUB 199

539 IF V=g THEN PRINT#D," #*":GOT
0 89p

548 IF V=2 THEN GOTO 8p@

545 IF COMMA=g THEN GOTO 55¢

547 PRINT4D,",";

550 GS="pPPa":GS=GS+HEXS (E) :G$=R
IGHTS (G$, 2) : PRINT#D,GS$;

568 COMMA =1

579 E=G(E+1) :GOTO 529

8¢p REM CHECK SECTORS USED IN
LAST GRAN

81¢ PRINT#D,"":PRINT#D,E AND &HP
F;" = § OF SECTORS 1IN LAST GRAN
"

829 GOTO 9pp

899 PRINT#D,"SCRUNCHED GAT!"

9¢p REM CHECK BYTE COUNT IN LAST
SECTOR AND LOOP

91¢ GOSUB 1989

915 B=ASC(E$):IF B>1 THEN GOTO 9
8g
929
925
HEN
93p
TES
94p
945

T=1:GOSUB 1£99
BC=256*B+ASC (E$) : IF BC>256 T
GOTO 988

PRINT#D,HEXS$ (BC) ;" = # OF BY
IN LAST SECTOR"

T=16:GOSUB 1929

PRINT#D,""

958 GOTO 389

98@ PRINT#D,"BAD BYTE COUNT ENTR
Y!":GOTO 948

199¢ REM TRIM OFF LEFT AND GET
SUBSTRING

1995 E$=LEFTS (A$,T)

ég;p AS$=RIGHTS (A$, LEN(A$) =T) :RET

continued on Page 41

April 1984.

Australian RAINBOW

PAGE 2/

PROGRAMMING UTILITY |

16K H e F
ECB Q.A:‘\ef.:“’h

VARLIST:

A Quick and Easy Way
to List Program Variables

I Y arlist, a utility program that

lists all variables, will lend some
_ help with those pesky problem
programs that you just can’t get to work
properly.

Let’s look at an example. | once had
a program with a variable called LNC
(for “Line Count™); it also had another
variable named LND (for “Line De-
scription”). The program just didn't
work as anticipated. Of course, in
hindsight 1 realized the error of my
ways: Only the first two characters are
significant in a variable name. The
program treated LNC and LND as the
same variable!

Now, if I only had a utility tool that
could tell me all the lines containing
LNC and LND. I didnt have such a
tool, and it took me an agonizingly long
time to go through every line of the
program to change one of the variable
names so it was different from the other.

I decided then that someday I would
write such a utility program. Varlist is
the result, and I would like to share it
with other CoCo friends. It lists all the
numbers of the lines in which variables
appear; in fact, if a variable appears
twice, it is listed twice. In addition, it
also highlights all the jump statements,
i.e., GOTO, GOSUB, THEN and ELSE.

Do You Like BASIC's Beauty?

This program is written entirely in
BASIC. As you can imagine, it does not
exactly race through the target pro-
gram, but it lets you know where it is
at all times. In the interest of preserving
some processing speed, I have kept the
REMarks to a bare minimum and have
eliminated unnecessary spaces wherever
possible. A program line without spaces
between BASIC statements and variable
names may look strange at first sight,

By Hans Schulz

but you will get the drift of it.

Are You in a Hurry?

POKE 65495,0 will increase your
processing speed, but if you are really
impatient, insert lines 50001 and 50601
into Varlist for additional speed (see
Listing 2). However, you lose the screen
display during this speed up.

Do You have Enough Memory?

Varlist uses approximately 9,000
bytes (9K) of RAM. The program
changes the standard PCLERR4 when
you first turn on the CoCo to PCLEARI,
which only reserves one page of graph-
ics memory (1,536 bytes). If you have a
lengthy target program you may have to
free up some additional memory to fit
both Varlist and your program into the
available RAM space. To get at the
extra 1,536 bytes, you have to perform
the equivalent of a PCLEAR®, which, as
you may know, is not a valid BASIC
command. It can be summarized as
follows: When you first power up your
CoCo, type POKE &H19,6:NEW and
press ENTER. In this case, you should
also remove the PCLEARL statement
from Line 50010.

How do You get the Program to Work?

First key in Varlist and CSAVE a copy
of it, then make sure there are no typing
errors by testing it with RUN 50000. It
will list the variables in the test program
(lines 10 through 90). Correct typing
errors, if any, and CSAVE a corrected
copy of Varlisi. Now delete lines 10
through 90.

Make sure the program for which you
want to produce the list of variables
does not have any line numbers greater
than 49999 and, if necessary, renumber
it. Merge your program with Varlist.

Now type RUN 50000 and press ENTER.
The screen will display the line numbers
of your program, which Varlist is scru-
tinizing as it steps through the program
line by line.

How does Varlist Work?

Line 50010 reserves 1,500 bytes of
memory for string variables and re-
serves space for 500 variable names and
500 line numbers; it also releases three
pages of graphics memory. (When you
turn on your CoCo it automatically
PCLEARs four graphics pages.) Then the
screen is cleared.

Line 50030 finds the starting address
of your BASIC program in memory,
regardless of whether you have a 16K
or 32K CoCo. (This may be useful for
future reference.)

Line 50040 initializes the variable PO
(the pointer address of the beginning of
the next line) and variable LI (the
current line number being worked on).
Line 50570, processed in the GOSUB
statement, displays the line number
being examined on the screen. If the line
number is greater than 49999 then the
program has reached Varlist and the
end of your target program, in which
case all variables have been found and
the list will be displayed on the screen
starting at Line 50600.

As an aid to the general understand-
ing of Varlist, 1 let it generate a list of
the variables used in the Varlist pro-
gram (see Sample Output, Table 1). |
have also prepared a shortened list of
the variables, where each variable ap-
pears only once, and have sorted the
variables in alphabetical order (see
Table 2).

The GOSUB 50520 in Line 50060 reads
the next character (in ASCII format)
from the memory location where your

PAGE 28

RA TNE O

Australiran

[T
y

g ,
apri1t 15g6.

59919
5pp1p9
5pp3p
5ppag
S5ppag
5ppep
50979
50979
S5pp79
50979
s5gpeg
59989
5pg8gp
S5ppogp
59g9p
50999
5pp99
50999
50999
59999
59199
50199
59199
59110
59119
59110
59120
59120
59120
58130
50130
50139
59149
59140
59140
59150
58150
58150
59159
50159
59150
59158
50160
50160
50160
58160
58160
50160
50178
50178
59170
50179
50179
59170
59180
59180
59180
55189
59199
50198

Table 1

Sample Output:
Variables and Jumps in Varlist

LAS (SUB)
LR (SUB)
N

gosub 58558
goto 59899
gosub 58528
c

N
N
gosub 50558

gosub 5@528
C

then 59989
N
PO

PO

goto 59979
then 5pp8g
then 5pg89
then 5g@89
then 5pp8p

then 5gg8p

eNoEo NP NP

thengosub 59548

goto 50989
C

N
D$
D$
gosub 50419
goto 590999
o

N
D$
D$
gosub 5419

goto 59999
C

D$
gosub 58419
goto 59999
C

N

program is stored.

Line 50070 is reused again later, and
if ‘C’ (the character being examined) is
a zero, it indicates that the last byte of
the program line has been reached. In
that case, ‘N*(the number of the storage
location being read) must be decre-
mented by one to update the address
pointer (PO) of the next line in the
GOSUB 50550.

In Line 50080 the next character is
read (GOSUB 50520). If the character
(‘C’) is a space, then the process is
repeated until a non-blank character is
found.

If in Line 50090 the address pointer
of the next line is identified, then PO is
updated again.

Lines 50100 through 50140 identify
some BASIC statements with two-byte
tokens and processing continues with
reading the next character in Line
50080. Line 50100 identifies a PEEK;
Line 50110, a USR statement; Line
50120, an ABS function; Line 50130, an
ATN function; and Line 50140, an SQR
function.

Line 50150 determines when process-
ing can skip to the next line without
reading to the end of the current line.
That can be done when a DATA state-
ment is encountered (token 134) or a
REM (token 130), or its equivalent, the
apostrophe ('), which is tokenized as
131, and also the LLIST statement
(token 155) and LIST (token 148).

Table 2
Short List of Variables
in Alphabetical Order

AA$

c

D$

T

I$

M

IX

LA

LAS (SUB)
LI

LL

LR (SUB)
MN$
MX$

N

PL

PO

[SEEROR R @)

April 1

786.

GOSUB 50540 accomplishes the skip to
the next line, after which processing
continues at 50080 by reading the next
character.

Lines 50160 through 50200 are some-
what self-explanatory: They deal with
the jump statements (GOTO, GOSUB,
THEN and ELSE). Only Line 50190 seems
a little out of place — it identifies the
two-byte token for RND (255 132). The
RND token is not of significance to the
Varlist logic and the program reads the
next character by branching back to
50080. Having disposed of the RND (255
132) token, it can now be deduced in
Line 50200 that if the current character
is a token 132, it is part of the two-byte
token (58 132) representing the state-
ment ELSE. (Does 58 seem familiar? It
is the ASCII code for the colon [:],
which is used by BASIC to separate
statements on the same line. Quite
clever, those Microsoft people, using
the colon as part of the ELSE logic!)

Now, back to the jump statements. In
each case a descriptor (D$) is being
built. This string may contain, for
example, the word “then” or “else™ and
may conceivably have the word “goto”
or “gosub” added to it. At this point, a
subroutine is performed (GOSUB 50410)
that obtains the line reference number,
i.e., the line number to which the jump
statement has been programmed to
jump. Upon return from the subroutine,
with the next byte already read, process-
ing branches back to 50090 to determine
what to do with this character.

Line 50210 looks at the letter ‘M’
(ASCII code = 77). This is not an
ordinary ‘M’ though, such as an ‘M’ that
may be part of a variable name. It is the
‘M’ in CLOADM. The token for CLOAD is
151, and if the byte following it is the
letter *M”, then GOSUB 50520 reads it
and, immediately afterwards, branches
back to 50080 to read the next charac-
ter. At this point Line 50220 discards
any further tokenized BASIC statements,
i.e., ASCII codes greater than 127, and
branches back to 50080.

Line 50230 finds out if the character
read is alphabetic, i.e., if the ASCII
code is in the range from 65 to 90,
representing the capital letters A to Z.
Finally, the program does some real
work after all the sifting and discarding
up to this point: The subroutine at
50300 assembles the variable name,
starting with the character (‘C’) just
read, then adds to it, one byte at a time,
until the variable name is completely
assembled. After return from the sub-
routine, Varlist branches back again to
50080 to read the next character.

Line 50240 tests to see whether the
character read is a quote (*), which is

Austral |amuf

TAGE 37

represented by ASCII code 34. Any-
thing enclosed in quotes is of no interest
in this program. Therefore, the subrou-
tine at Line 50270 keeps on reading and
discarding characters until it finds the
second of a pair of quotes. The main
body of this program ends at Line
50250, where processing loops back to
read the next character at 50080.

What do the Subroutines do?

Varlist contains the following sub-
routines, which are each described here.
1) Skip between Quotes — Line 50260
2) Build the Variable Name — Line

50300
3) Build the Line Number Reference —

Line 50400
4) Peek at the next ASCII Character —

Line 50510
5) Skip to the next Line — Line 50530
6) Print the List of Variables — Line

50590

Skip between Quotes — Line 50260

As described earlier, this subroutine
keeps reading and discarding characters
until it finds the second of a pair of
quotes (ASClI code 34). The subroutine
also checks for reasonable length of the
string between the pair of quotes. I felt
anything in excess of five lines of 32

characters (a total of 160 characters) is
probably in error and designed the
program to stop in such a case. If this
does not apply in your program, simply
change Line 50280 accordingly.

Build the Variable Name — Line 50300

When powering up CoCo the sub-
script (LA) used to identify the labeled
variable (LAS) has a value of zero. On
each trip through the subroutine, that
is, every time a new variable name is
stored, the subscript is incremented by
one in Line 50310. In Line 50320 the
first character of the variable is stored;
in 50330 the next character is read.

In Line 50340 the character value of
zero indicates the end of the current line
has been reached and it is now time to
store the current line number (LI) in the
array LR(LA) This array is used for
later printing to indicate where each
variable appears in the target program.
The program then branches back to the
beginning of the main routine of the
program.

Line 50350 tests to see if the byte
currently under scrutiny is numeric
(ASCII codes 48 to 57) or if it is alpha-
betic (ASCII codes 65 to 90). If it is
alphanumeric, the byte is appended to

the array LAS(LA) and processing
loops back within the subroutine to
50330 to read the next byte. If the
character being examined in Line 50360
isa‘$'sign (ASClII code = 36), it is added
to the variable name and processing
resumes at 50330, getting the next byte.

In Line 50370, if the character is an
ASCllIcode 40, i.e., the opening bracket
‘(’, then the literal “(SUB)" is appended
to the variable name to show that the
variable is subscripted. In other words,
the variable is an array.

Line 50380 stores the current line
number being worked on (and presently
being held in“LI1") in the Line Reference
array, “LR(LA).”

Build the Line Number Reference —
Line 50400

In Line 50410, which is similar to
Line 50310, the subscript LA is incre-
mented by one to store the Line Refer-
ence on each pass through the subrou-
tine,

In Line 50420 the line number LI
presently being processed is stored in
the Line Reference array, “LR(LA).”

Line 50430 obtains the next charac-
ter, and if it happens to be a blank
(ASCII = 32), the program immediately
gets the next byte.

Listing 1: VARLIST

12 REM**LINES 1p-98 REPRESENT A

EST PROGRAM FOR DEMONSTRATION.

15 FORO=1TOP:IFQ=RT THENGOSUB123

456789ELSEL1pQ

2P S3=T3+U:V(W)=X3

25 NEXT ¥Y: REM Q$

32 IFZ=5 THEN1GELSEGOTO13498

35 A3(56)=1:B345=2:C4444=3

4@ IF PEEK(DT)=4 THEN POKE ER,1

45 111

52 IFF=3THENG=9ELSEGOTOlg@

55 IF H=I THENGOSUBl1g:GOTO 19

[EAD & END

6@ PRINT "A=";J;" A3=";K3;"

";L(M) ; "=ARRAY R":RETURN

65 READ NS$:END

79 DATA A,A3,B

98 LIST

SPPPP 'RERRRINRARRAK KRR AR R RAR K
* VARLIST *
(LIST OF ALL VARIABLES)
*FOR THE COLOR COMPUTER *
* BY HANS SCHULZ (1984) *
ot e e e e e ke e e o ok e e o e ok o o e ok

5pp1P CLEARLS@@:PCLEAR1:DIM LAS(

5p9) ,LR(5p9) :CLS

SPP2P '***INITIALIZE***

5p@P39 N=PEEK(25)*256+PEEK(26) -1

59P49 GOSUBSP55@:GOTO52P9p

5pPSP '***READ THE FILE##*#*

'R

59869 GOSUB58528
5257 IFC=pTHENN=N~-1:GOSUB5@8558 59339 GOSUB5252
A é 35 ZUSTr‘aJ tan RAINBOW

5pP8P GOSUB5@52@:IFC=32THEN5Q@80
58998 IFN=PO ANDC=gTHENPO=PEEK (N
+1)+PEEK(N) *256 : GOTOS287

5p1pp IF(C=134ANDPEEK(N-2)=255)T
HEN5p@8g

59119 IF(C=131ANDPEEK(N-2)=255)T
HENS@p8g

58128 IF(C=13PANDPEEK(N-2)=255)T
HEN52282

5§139 IF(C=148ANDPEEK(N-2)=255)T
HENS@p82

58149 IF(C=155ANDPEEK(N-2)=255)T
HEN5g@8g

5815 IFC=1340RC=13gORC=1310RC=1
550RC=14 8BTHENGOSUBS@54 8 : GOTOS52@8

2

58169 IF(C=165ANDPEEK(N-2)=129)T
HEND$=D$+"goto" : GOSUB5418: GOTO5
pp9g

5§17@ IF(C=166ANDPEEK(N-2)=129)T
HEND$=D$+"gosub" : GOSUB584 19 : GOTO
S5ppop

5¢18¢ IFC=167THEND$="then":GOSUB
58410 :GOTO52@9P

5§19 IF(C=132ANDPEEK (N-2)=255)T
HEN5@g8g

58289 IFC=132THEND$="else":GOSUB
58410:GOTO52290

58219 IF(C=151ANDPEEK(N)=77)THEN

GOSUBS5@528:GOTO52288

59228 IFC>127THENS@8g

58238 IF(C>64ANDC<91)THENGOSUBSP
310:GOTO58288

58249 IFC=34THENGOSUBS5@278:Q=8:G

0TO52g8p

58258 GOTOS5@g8p

5§26@ '***SKIP BETWEEN QUOTES#**
50279 GOSUB5@520:Q=Q+1:IFC<>34TH
EN50§279

5928¢ IFQ>16@THENPRINT"CKECK FOR
PAIRED QUOTES":STOP

5§299 RETURN

5@39@ '*** GET VARIABLE NAME ###
5$319 LA=LA+1

58329 LA$(LA)=CHR$(C)

5§349 IFC=PTHENLR(LA)=LI:GOTO58@
7

[’

59358 IF(C>47ANDC<58)OR(C>64ANDC
<91) THENLAS (LA) =LA$ (LA) +CHRS (C) :
GOTO52338

59368 IFC=36THENLAS (LA)=LAS (LA)+
CHRS (C) :GOTO58338

5937p IFC=4PTHENLAS (LA)=LAS (LA)+
" (SUB)"

5¢38¢ LR(LA)=LI

5$398 RETURN

5@4p@ '***GET LINE # REFERENCE#*
5P41f LA=LA+1

58429 LR(LA)=LI

5§439 GOSUBS@52@:IFC=32THEN5043p
5449 IFD$="then"ANDPEEK(N-1)>12
9THENDS$=""

59459 IFC>127THENLR(LA)=p:GOTOS@
pep

58469 IF(C<4B8ORC>57)THENLR(LA)=p
:D$="":GOSUB58320:GOTO52P99
58479 LL=VAL(CHR$(C))

59489 GOSUB5@520:IF (C>47ANDC<58)
THENLL=LL*1@+VAL (CHRS (C)) : GOTOSg
489
59499
59589
5p51p
*

58520
58538
58540
58558
59568
59579
+5:PRINT". ..
58588 RETURN

LAS (LA) =D$+STRS (LL)
D$="": RETURN
'***GET ASCII FOR NEXT Cx#

C=PEEK(N) :N=N+1:RETURN
"***SKIP TO NEXT LINE *#**
N=PO~-1
PO=PEEK(N+2)+PEEK(N+1) #256
LI=PEEK(N+4)+PEEK(N+3) *256
IFLI>49999THENSP6@PELSEN=N
LINE #";LI

59599 '#**PRINT THE LIST***
5969 PRINT:PRINT" PROCESSING
COMPLETE ...":PRINT

59619 PL=1

5962¢ IFLR(PL)>PTHENPRINTUSING" #
#4#4";LR(PL) ; : PRINT" ";
5963@ IFLAS(PL)<>""THENPRINTLAS (

59649 PL=PL+1

PL)
%prli 1556.

e

l5ﬂ65ﬁ TFPL=F Ix! 5!:7 12 s *12ANDPL<=L
A THENPRINT@471,"MORE ...":PRINT
:GOTO5P679

59669 IFPL<=LA THENS@620ELSES@68

2

59679 IFINKEY$<>""THENS@62PELSES
2679

50689 PRINT"###END OF LIST*#*#":P
RINT@481, "WHAT WOULD YOU LIKE NO
W2 ..."

50699 IFINKEY$<>""THEN5@7gPELSES
pe9p

5799 CLS:PRINTTAB(25)"ENTER"
571¢ PRINTTAB(3)"PRINT ON YOUR
PRINTER. . P"

59729 PRINTTAB(3)"DISPLAY THE LI

59819 IFI$="S"THENS@88P

59828 GOTO58798

59839 PL=1

5¢84¢ IFLR(PL)>@STHENPRINT#-2,USI
NG"##4##4" ;LR(PL) ; : PRINT#-2," ";
5§85¢ IFLAS(PL)<>""THENPRINT#-2,
LAS (PL)

5¢868 PL=PL+1

5¢879 IFPL<=LA THENSPS84PELSES5p68
2

5088p 'A*% SHORT LIST #*#

5¢899 PRINT"ONE MOMENT PLEASE ..
.":PRINT" short list":FORS=1TO
LA: FORT=1TOLA

59989 IFLAS(S)=""THENLAS(S)=" ":
GOTOS5£939

51919 PRINT:PRINT:PRINT" NO
W SORTING ..."

51@82¢ MNS$=LAS (S) : IM=S:MX$=MN$:IX
=5

51938 FORI=S TO N

51949 IFLAS(I)>MX$ THENMXS$=LAS(I
) :IX=I

51959 IFLAS(I)<MNS THENMN$=LA$ (I
) s IM=I

51968 NEXT

51978 IFIM=N THENIM=IX

51989 AAS=LAS(N):LAS$ (N)=LAS(IX):
LAS (IX)=AAS$:N=N-1

51298 AAS=LAS(S):LAS(S)=LAS(IM):
LAS (IM) =AAS:S=S+1

51198 IFN>S THEN51928

335 DRAW"C3BM158,18"+HS$

ST +vo...D" 58919 IFASC(LA$(S))>96THENLAS (S - : pHan;
59739 PRINTTAB(3)"SHORT LIST ... _ﬂ "?Gorosp;3¢5() 3(8) ?;éig FORT-=VIOES FRINILATAE) #2054
Sll
ceaeenens 50929 IF LAS(S)=LAS$(T)ANDS<>T TH 5
58749 PRINTTAB(3)"END THE PROGRA EQLA§(5)=" 2(J=TAS(T) L L
M ocooeo. E" 58939 NEXTT:NEXTS ing 2:
5g759 PRINTTAB(22) "==> ", 5;94: FORR=1TOLA Listing 2: SPEEOUP
59769 I$=INKEY$:IFI$=""THENSP76p 5P958 IFLAS(R)<>" "THENPRINTLAS(50901 POKE65497, 2 'HIGH SPEED
5977¢ PRINTIS;" <==" R);":";:2=2+1:LA$ (2)=LAS (R) 58601 POKE65496,0:POKE65494,0:S0
59789 IFI$="P"THENS@83p 58969 NEXTR UND128,2@:SOUND128,208 'RESETTING
59799 IFI$="D"THENS5p61p 58999 '***ALPHASORT THE LIST#**%* TO NORMAL SPEED
5¢8@@ IFIS$="E"THENEND 51989 N=2:S=1 e
continved from Page 37
3p3p V=p:RETURN 99p¢9 REM ALL DONE
2¢¢p REM GET LEFT STRING 3p4p IF E>&HC9 THEN GOTO 3$38 9f19 SOUND 1pg,20:CLS:PRINT@278,
2919 E$=LEFTS$ (A$,1) :RETURN 3859 V=2:RETURN "DONE"
3gg# REM CHECK FOR VALID GAT ENT 5@¢¢ REM CHECK FOR MORE DATA IN 9920 END
RY B$ OR IN NEXT SECTOR 1p9PP REM GAT DISPLAY
3gPs V=1 5919 IF B$<>"" THEN A$=B$:B$="": 1pPlg PRINTH#D, : PRINT#D, : PRINT#D,
391p IF E<68 THEN RETURN GOTO 329 " GRANULE ALLOCATION TABLE LIS
3g2p¢ IF E>&HBF GOTO 3949 5p28 S=S+1:GOTO 258 TING" &
oo \ o s 1¢p¢ FOR Z=1 TO 1@@P:NEXT:GOTOlf 32 GOSUB1pg g
continued from Fage 31 35 DRAW"C3IBM=X;,=Y;"+A$
Listing 4: BATS 49 DRAW"C2BM=X ;,=Y ;"+D$
325 DRAW"C3BM145,18"+G$S § '<BATS> 42 GOSUBlgg
339 DRAW"C2BM158,1@8"+HS 1 ' (C) 1985, J. KOLAR 45 DRAW"C3IBM=X;,=Y;"+D$
331 SOUND133,2 19 PMODE3,1:PCLS3:SCREEN1,p 50 DRAW'C2BM=X;,=Y;"+A$

11 DRAW"C1BM@, 135R44D1PREUIPRIED

34¢ DRAW"C2BM16@,18"+D IPRSPDSPRAPUAFRIPDAPRIPUIPRAPDLY 55 DRAWNCIBM=X;, =¥;"+AS
341 SOUND89, 2 e PR1PUIPRIPDIPRIPUAPR2PBDS4L255" 6f DRAW!C2BM=Xj,=Y;"+D$
345 DRAW"C3BM16§,19"+D$ 12 PAINT(S,145),2,1 Se BecAE "
" o 13 PAINT(5,19¢),1,1 65 DRAW"C3BM=X;,=Y;"+D$
358 DRAW"C2BM16g,5"+D$ 25 AS="F6EG" 7¢ X=RND(25)*1@-10:Y=RND(15)*1p
351 SOUND 176,2 23 DS="E6F6" 71 GOTO3g
355 DRAW"C3BM16g,5"+D$ 3p DRAW"C2BM=X;:,=Y;"+A$ 1¢¢ FOR Z=1TOl@:NEXT:RETURN =~

GOSUB1gg

e e e L e S

Hint . . .

Get the Sound Out

You can send sound from your 80C

simply by soldering a couple of connections from the

RF modulator.
Pin 3 from the RF modulator and

ground will give you audio output that you can send

to any outside amplifier.
Incidentally, Pin 3 is the third pin

rear of the 80C on the RF modulator.

You should remember that openin
case will void your warranty.

Hint . . .

to any amplifier

any PC Board

ENTER.
back from the

g the computer

dorii 1784, zus!r‘al ian RAINBOLW

.

What’s Your ROM Version?

With all the talk about new ROMs, you may be
wondering exactly which ROM you have. If you have
an older CoCo with Extended BASIC, just read the
version number of your Extended BASIC at the top of
the screen on power up. Then, to see which Color
BASIC ROM you have, type EXEC 41175 and press

If you have the new ROMs, Extended BASIC will
be Version 1.1 and Color BASIC will be Version 1.2.

On the CoCo 2, Color BASIC will always be Version
1.2 or 1.3 (which are functionally identical).

R el A e e S N

PAGE 41

TERN Ol!' THE SCREW

The third installment of the “beginner’s hardware course”

An Introduction
to Timing

By Tony DiStefano
ontinuing our journey into the
CoCo, this month I will look

Cinto the heart of this and any

computer — timing. All the hardware
of the computer is controlled by timing.
The most important part of the timing
is to keep the CPU in step. What is a
CPU, anyway? Well, the letters CPU
stand for Central Processing Unit. The
CPU inside the CoCo is the MC6809.
The CPU, in a way, does all the work.
It can move data from one part of
memory to another, compare two
values and act according to the result,
add and subtract values and so forth. In
fact, without the CPU, the rest of the
hardware that makes up a computer
would be worthless. The CPU is a very
complex chip. It has data lines, address
lines, interrupt lines, status lines and
more. The timing that goes with the
CPU is also important. OK, let’s get
intoit. It is a prerequisite to understand-
ing how a CPU works.

Up till now, when I talked about
zeros and ohes and the change from one
to the other, it was considered to be
instantaneous. There was no mention of
how long it took to change from one

state to another. In fact, we are dealing
with real life, not just theory. Situations
in theory rarely work in real life the way
you want or expect them to. Welcome
to the real world of delays. Ever caught
an on-time airline flight? Ha!

The first fact of the real world is
propagational delay. Take, for instance,
a simple inverter. Figure la shows an
inverter. When there is a ‘1’ at the input
there is a ‘0’ at the output. A ‘0’ input
will give a‘1’ output. But when the input
changes from one state to another, there
is a short delay before the output
changes. This delay is called the prop-
agational delay, which means the
amount of time it takes an electrical
signal to go through a logic element or
wire.

Figure 1b shows a graph of the input
and the output of an inverter. The X-
axis (from left to right) shows the
passing of time. This can be in seconds,
hundredths of seconds, thousandths of
seconds and even millionths of seconds.
When no time base is given, then time
factor is not relevant. Typical delay
times for the TTL family (more on chip

families in later articles) is from five to
30 ns (ns = nanoseconds). The Y-axis
usually shows the binary level of ‘0’ and
‘I’. When two or more signals are shown
that are related to each other, they are
shown on top of each other with the left-
to-right passing of time common to
each. ¢

Getting back to Figure 1b, we see the
passing of time and the relation of the
input to the output. There is no delay
shown in this diagram. To show the
delays of each signal for a given com-
plex gate would confuse the diagram.
Instead, an overall delay is given for the
gate. But, in order to get used to the idea
of delays, Figure Ic shows the time
delays of a typical inverter. Along with
the delay of the signal there is also the
rise and fall time. The rise time of a
signal is described as the time it takes
for a given signal to reach 90 percent of
maximum voltage from the 10 percent
voltage level. The fall time of a signal
is described as the time it takes for a
given signal to drop to 10 percent
voltage from the 90 percent voltage
level. In the case of the CoCo, the
voltage considered a logical level of ‘1"

Figure 1a Figure 1b Figure 1c
I 1
'
IN | :
o '
N out | :
I
| |
ouT | |
(o] | '
: |
|
TIME sl : [
1) '
DELAY DELAY
PAGE 42 Australian RAINBOW April 1786.

Figure 2a Figure 2b
READ CYCLE WRITE CYCLE
b ArC P Py twe >
r.————la —————
ADDRESS ﬁ(
ADDRESS N/<)(
heg— Lwr
= & o) K \)
G i .}::.‘4! / : .
tco et toha —
L—ICI—OV \ \ /
\ Flolw-—i
e told DOUT: . P R R

(or H1) is five volts. The logical level *0’
(or LO) is, of course, zero volts. The
actual working voltages may be slightly
different.

Delay, rise and fall times are impor-
tant mainly to the designer of the
system. When an engincer designs a
computer he must know these timings
and make sure that all operations are
within the given limits. For example,
two signals go to one gate, but one goes
through several gates first. Each time
the signal travels from one gate to
another there is more delay. If the signal
is delayed enough, an improper signal
output results.

It sounds like I'm making a big deal
of delays. While it is important, it is not
a major concern to computer hackers
(or should I use the term hobbyist?) and
even less to end users. More important
lo us is another kind of delay. It is
known as “access time,” which means
the mean time between the request for
memory and the actual valid data.

Let us look at a typical memory chip.
There are thousands of gates and tran-
sistors inside this chip. All of these gates

inside the chip cause a significant delay
between the time when the address to
the chip is valid and the time when the
data output appears on the data bus.
This is known as access time. When
talking about memory, an important
parameter is access time. These access
times can range from super-fast static
memory at about 10 ns to very slow
dynamic memory at 450 ns and slower.
It is this limitation that controls and
limits the speed of CPUs. Figure 2a
shows the read cycle timing diagram of
a memory chip. Figure 2b shows the

write cycle for the same chip. What
follows is a description of what each line
on the diagram means.

Address — These are the address lines
that sclect what byte is to be accessed.
It is shown with two lines, one high and
one low. It is shown this way because
there are usually several lines and since
the timing is the same no matter what
byte you access, it is not relevant which
address line is high or which line is low.
The two lines (one on top and one on
the bottom) represent any given address
within the chip. Where the lines criss-
cross means a change of address. That
is when the CPU is finished with that
byte and requests another by putting
another address on the bus. Access
times are always measured with respect
to the address change from the CPU.
Actually, it starts when the address is
stable, better known as a “valid ad-
dress.”

Chip Select (CS) — Remember the *CS
line on memory chips in past articles?
It is used to select or activate the chip.
From the diagram of the read cycle, we
can now see the relation between when
the address is valid, the *CS line and
when the data is valid.

Data out — This, of course, is the data
that the CPU requested. Notice the data
valid area, That is the time when the
data that appears on the bus is the data
that is held in that memory location.
Notice the top and bottom dual line
display. It has the same description as
address lines, some are ones and some
are zeros. The line in front of the data
valid section is halfway between zero
and one. That means the data lines are

tri-state and no valid data is input or
output. The shaded area on both sides
of the data valid window is the transi-
tion time between tri-state and data
valid. In this area, data lines are chang-
ing to their proper values. A read in this
area will not yield valid data.

Read/Write — The *R/W line is used
to select a read cycle or a write cycle.
Straightforward, no problems there. In
the CoCo this line is logical ‘1" to read
and ‘0’ to write.

The following is a description of all
the relevant parameters used in Figures
2a and 2b.

t(rc) — Read Cycle Time: the time it
takes for a complete read cycle given in
ns.

t(a) — Access Time: the delay between
a valid address and data valid.

t(co) — Chip Select to Output Valid: the
delay between when the *CS is active
and the data is valid. This is only true
with a valid and stable address.

t(cx) — Chip Select to Output Active:
same as t(co) but not to data valid; to
when the data lines start changing from
tri-state to output. Usually of minor
importance.

t(otd) — Output Tri-state from Deselec-
tion: the time that the data stays valid
after the *CE goes inactive or deselects.

t(oha) — Output Hold from Address
Change: the time that the data stays
valid after an address change is de-
tected.

zprll 1088,

Australian RAINBOW ME! 25

t(wc) — Write Cycle Time: same as the
t(rc) except for a write cycle.

t(w) — Write Time: the minimum time
the write line has to remain low.

t(wr) — Write Release Time: time
between the *WE line deselects and a
change of address.

t(otw) — Output Tri-state from Write:
the time it takes the data lines to go to
tri-state from a write request.

t(dw) — Data to Write Time Overlap:
the time data must be stable before the
*WE line deselescts.

t(dh) — Data Hold from Write Time:
the time data must be stable after the
*WE line deselects.

Figures 2a and 2b show the read and
write cycle paramaters for a typical
memory chip. Though these are not the
memory chips inside the CoCo, the
timing and paramaters are quite similar.

Now with no further delays, it is time
to look into the CPU . . . well, sort of!
There is one more thing we must look
into; it is CPU related, though. We are
getting closer. It is the master clock,
which is a master reference wave form
used to synchronize all of the logic in
a system.

The master clock is usually the high-
est frequency in the computer. All other
timings are derived (divided) from this
clock. The CPU clock is the speed or
frequency at which all instructions and
data are retrieved and stored to mem-
ory. Depending on the system design,
the CPU clock can be equal to the
master clock, or any division thereof. In
the case of the CoCo, the master clock
frequency is 14.31818 MHz (mega-hertz
or million hertz) and the CPU clock
frequency is 1/16 that of the master
clock at 0.8948 MHz. Well, there are
two clock speeds in the CoCo. Under
special conditions, the CPU can work
at 1.8 MHz

Now you might say, “Wow, my CoCo
has a clock rate of only .894 MHz!"
Compared to that of the 4 MHz of other
computers, that may or may not be
slower. You see, it gets more compli-
cated. The CPU clock does not always
mean the net speed of the computer.
There are some other factors involved,
such as synchronous 1/O, as opposed to
asynchronous I/O.

Let’s look at synchronous 1/O first.
As the word implies, synchronous 1/O
means that any memory, read or write,
is synchronized. Synchronized to what?
The CPU clock, of course. On any given
clock cycle, the CPU can do one 1/0.
You know exactly when the CPU will
need the bus. It corresponds to the clock
cycle. In an asynchronous situation, the
CPU requires more than one clock cycle
to do a read or write. Asynchronous I/
O requires either three or four cycles
depending on what kind of I/O it is
doing. On this type of CPU, signals are
required to tell memory or other devices
that an [/ O has started.

Just about now, a little bit of math
is required. Given that the clock fre-
quency of the CoCo is 894886 hertz or

Figure 3 0.894 MHz, one clock cycle is 1117
nanoseconds. The way I did this is to
READ CYCLE transfer from frequency to time period.
The equation used is:
SYMBOL | PARAMETER MIN | MAX | UNIT
tpe READ CYCLE TIME 250 NS T=HE
" ACCESS TIME 250 NS where ‘T’ is in seconds and ‘F’ (fre-
tco CHIP SELECT TO OUTPUT 85 NS quency) is in hertz. So the frequency of
0.894 MHz is a time period of
b CHIP SELECT TO OUTPUT 19 e .000001117 seconds, or 1117 nanosec-
totd. OUTPUT TRI-STATE FROM 15 NS | onds, or 1.117 microseconds. Now,
DESELECTION when we talk about speed, we can say
toha OUTPUT HOLD FROM ADDRESS 20 | Ns | thatthe CoCocandoaboutonel/O per
CHANGE microsecond — a much more accurate
way to measure the effective speed of a
CPU.
WRITE CYCLE I hope these articles about the hard-
ware of the CoCo are informative to
SYMBOL | PARAMETER MIN | MAX | UNIT | you. Also, I hope I am not going too
twe WRITE CYCLE TIME 250 NS fast; it is hard for me to judge what
audience 1 am writing for. If you have
tw WRITE TIME 135 NS some comments to make, a direction to
twr WRITE RELEASE TIME 0 NS take or something you don’t under-
stand, write to me through RAINBOW
totw OUTPUT 3-STATE FROM WRITE 60 NS and I'll try to answer the interesting and
tdw DATA TO WRITE TIME OVERLAP 135 NS common ones here in this column. Next
time, we'll look deeper into the heart of
tdh DATA HOLD FROM WRITE TIME 0 NS the CoCo. A
o e e e
g
DATE:- Sat 30th & Sun 31st August 1986.
FAGE 24 Australian RAINBOW Apri1 1786,

CoCoConnection

To utilise
CoCoConnection -
Blaxland Computer Services.

This unit allows you to connect your CoCo

outside world - 1e,

this program, you
available from ourselves,

will require a

or from

to the

to models, Burgular Alarms,
Printers, Synthesisers - and so on.

BI'TMAN

by Peter Feldtmann

(Sorry 'bout the trains project

- tinme CoCo.

flies when you've got a magazine to run!
I hope to be able to give you further
details on that project NEXT month! G.)

This month Peter Feldtmann has
this

given us
routine which enables a multitude of

All the programs occuring in this section
of the magazine are supplied with the
CoCoConnection when you purchase it.

Our thanks to Blaxland Computer Services
for passing on Peter's work. You can see
the CoCoConnection operating at Blaxland.

operations from simple keyboard inputs to

The Listing:

1 '"BITMAN for the CoCoConnection
This program enables sequence
s of bit combinations to be set
up including delays, by simple k
eyboard input.
Prog by Feter Feldtmann

C/0 Blaxland Computer Services.
2 GOTO10

3 SAVE"BITMAN:2":STOP

10 REM INITIALIZATION ROUTINE

20 REM INITIALIZE PORT 2B AS OUT
PUTS

30 POKE 65415,4:POKE 65414,255: P
OKE 65415, 0: POKE 65414,255: POKE
65415,4

40 REX INITIALIZE PORT 2A AS IKRP
UTS
50 POKE 65413, 0: POKE 65412, 0: POK
E 65413,4

60 CLS:PRINT "PORT 2A INITIALIZE
D AS INPUTS"

70 PRINT

80 PRINT "PORT 2B INITIALIZED AS
OuUTPUTS"

90 GOTQ 5000

100 CLS:Q = 65414

110 INPUT"PLEASE ENTER NUMBER OF
SETTINGS" ; COURT

120 DIM NPT(COUNT), NUM$ (COUNT),D
(COUNT)

130 FORJ=1 TO COUNT

135 PRINT " »

136 PRINT " *

140 GOSUB 1000

150 GOSUB 2000

160 NEXT J

170 FOR J = 1 TO COUNT

180 PRINT USING"####"; NTP(J)

100 NEXT J

200 PRINT :PRINT"PRESS ARY KEY T
O CONTINUE"

205 A$=INKEY$:1F A$="" THEN 205
210 FOR 1 = 1 TO COUNT

220 POKE Q,NTP(D)

230 FOR J = 1 TO DCI):KEXT J

240 NEXT 1

250 PRINT :PRINT"PRESS ANY KEY T
O CONTINUE"

255 A$=INKEYS:IF A$="" THEN 255
260 GOTO 3000

1000 PRINT: INPUT"ENTER OUTPUT KU
MBERS TO SET”;NUMS$ (J)

1010 FOR I =1 TO LEN(NUN$(J))
1020 N$=MIDS (NUNS$(J),I,1)

1030 A=INSTR("87654321",K$)-1
1040 TMP =2°A:NTP(J) = NTPU) +
TNP

1050 NEXT I

1060 RETURN

2000 INPUT"PLEASE ENTER DELAY";D
)

2010 RETURN

3000 PRINT "VANT 10 SAVE THIS SE

0

3020 IF As="Y" THEN 4000

3030 IF A$<>"N" THEN PLAY "GFEDC
":GOTO 3010

3040 RUN

4000 IRPUT "ENTER FILENAME " ; NAX
$

4010 OPEN "0Q",-1, NANS

4015 PRINT #-1,COUNT

4020 FOR 1=1 TO COURT

4030 PRINT #-1,NTP(D),D(D)

4040 NEXT I

4050 CLOSE

4060 RUN

5000 PRINT "LOAD SEQUERCE FRON T
APE (Y/N) ",

5010 A$=INKEYS$:IF As$="" THEN 501
0

5020 IF As$="Y" THER 6000

5030 IF A$O"R" THEN PLAY"GFEDC”
:GOTO 5000

5040 GOTO 100

6000 INPUT "ENTER FILENAME TO LO
AD " ; NANS

6010 OPEN "I",-1,NANS

6020 INPUT #-1,COUNT

6025 DIM NTP(COURT),D(COUNT)
6030 FOR I=1 TO COUNT

6040 INPUT #-1,KTP(1),D(D)

6050 NEXT

6060 CLOSE

6070 GOTO 170

10000 POKE150,41: PRIRT#-2,CHRS (2

125 PRIKT " " QUENCE «Y/N) "; 7); CHR® (29); CHR$ (27) ; CHR$ (82) ; CH
126 PRINT " 3010 A$=INKEYS$:1F A$="" THEN 301 R$(32)
april 1986, Australian A INBOW PAGE 45

RAINBOWTECH

16K
ECB

BARDEN’S BUFFER

Listening to
Your CoCo with
Assembly Language

By William Barden, Jr.

ne of the nice things about as-

sembly language is that it gives

you access to parts of the com-
puter that just can’t be handled through
BAsIC. Take sound effects and music,
for example. Sure, you can use SOUND
in Extended BASIC to sound a tone for
a certain length of time. You can also
use the PLAY command in Extended
BASIC to play musical notes. However,
with BASIC you are limited to these
short, simple tones. Assembly language,
on the other hand, allows you to create
a variety of complex sounds. Want a car
crash, a phaser blast, or the sound of an
Apple lle being dropped from the top
floor of One Tandy Center? Assembly
language is the only way to go. Would
you believe that these sounds are al-
ready programmed into your CoCo? I'll
show you how to unleash the CoCo’s
sounds in this column. Actually, there’ll
be two major themes this month. First,
we discuss assembly language sounds.
Secondly, I'll show you how to plan and
use a Sound program, for those of you
who are still a little shaky about using
EDTASM+ or Disk EDTASM. As 1
mentioned last month, you OS-9 users
can still benefit from the column, but
the examples will be in EDTASM
format.

Color Computer Sounds

Sounds on the Color Computer are
generated quite differently from sounds
on the Tandy 1000 or other systems.
Many other systems contain a sound
synthesizer chip. This is an integrated
circuit similar in appearance to many of
the chips you'll see inside the CoCo.
Internally, though, a sound synthesizer
chip contains logic to generate square
waves or sine waves and to create

different envelopes that determine the
wave shape.

The Color Computer does not use a
sound synthesizer chip. Instead, it
creates sounds by electronic logic that
makes up a digital-to-analog converter.
I'll call this logic a DAC for short. The
CoCo DAC is a “six-bit” DAC, meaning
that it will convert a digital value of zero
through 63 into 64 different voltage
levels. The CoCo DAC uses the upper
six bits of a byte in the conversion. Here
are the results we'll get with a range of
values:

Digital Value

Voltage Output

00000000 .23 volts
00000100 .30
00001000 .37
00001100 44
00010000 .52
00010100 .59
00011000 .66
11111000 4.69
11111100 4.76

As Produced by
Electronic Devices

PAGE 44

As Produced by 16
Color Computer
8
Figure 1: Sine Waves
Australian RAINBOW April 1986,

Note that the the lower two bits of the
digital value are always zero — only the
upper six bits change. You can also see
that the step size of the voltage output
is constant. There is always about 0.07
volts between one digital value and the
next.

All well and good, but how does the
DAC create sounds? Let’s take an
example. The purest sound is a sine
wave, shown in Figure 1. The second
part of the figure shows a comparable
sine wave generated by the DAC. When
fed into an audio amplifier, the result
will be a relatively pure musical tone,
similar to that produced by an elec-
tronic doorbell, or a Dolby test tone.

If you look closely at the DAC sine
wave, you can see that it's made up of
a series of discrete voltage levels, giving
it a “staircase step” appearance. The
closer the interval is between steps, the
smoother the sine wave becomes, as
shown in Figure 2.

This sine wave was generated by the
CoCo DAC from a table in ROM.
Believe it or not, this is the way the
CoCo generates the 1200 and 2400 hertz
(cycles per second) tones used for
cassette tape output! (I'll tell you where
to find the table later.)

The distance from crest to crest, or
from trough to trough of the sine wave
is called the period of the sound. The
reciprocal of the period is the frequency
of the sound. A 600 hertz tone, then, has
a period of 1/600 seconds or about 1.66
milliseconds (1.66 thousandths of a
second).

More Complex Sounds

Imagine tuning in MTV and listening
to a new heavy metal band playing sine
wave synthesizers. It would drive the
viewers to Mozart! Most natural and
instrumentation sounds are made up of
a combination of frequencies, as shown
in Figure 3. Random sounds, such as
surf or crowd noise, are made up of an
even combination of all frequencies,
giving a hissing effect. These are the
sounds that BASIC cannot create on the
CoCo with simply the SOUND and PLAY
commands.

A music synthesizer not only pro-
vides the capability to generate the
complex sound of strings or a flute, but
it also allows the user to define an
envelope for the sound. The envelope
describes how the sound varies in loud-
ness and is sometimes called an ADSR,
for attack, decay, sustain, release, as
shown in Figure 4. A musical instru-
ment such as a piano has a sustained
sound, while an instrument such as a
snare drum has a much shorter duration

sound. Both envelopes are different, as
shown in the figure. Synthesizers also
provide the capability to create enve-
lopes not produced by musical instru-
ments, such as a sound that starts off at
the minumum loudness and builds to a
maximum, producing a sound like a
musical tone played backwards on a
tape recorder.

Many complex sounds can be gener-
ated by the CoCo, at the expense of
building a table of values that define the
wave shape of the sound. Another

alternative is to use the patterns found
in the CoCo’s ROM, selecting those
that produce the sounds you're looking
for. A short section of BASIC ROM code
from SA9EB through SA9FF on my
systems, for example, produces the
wave shape shown in Figure 5 when the
upper six bits are considered.

Any small section of code can be
repeated over and over, and the interval
between outputs to the DAC can be
varied by timing loops within the assem-
bly language program to produce differ-

e

64
56
48

(9 Intervals)

(18 Intervals)

Figure 2: Staircase Steps in Wave Forms

40
32
24
16

56
48
40
32
24
16

Figure 3: Typical Wave Form of Complex Sound

April 1284,

T P T A
Australian RAINBOW

AGE 4

ent frequencies. As the shortest timing
loop can produce periods that are about
10 microseconds wide, the highest
frequencies that can be produced in
assembly language are 100,000 hertz
radio waves (!), far above the 6,000
hertz sound waves that can be passed
through the CoCo electronics. That’s
the beauty of assembly language here —
there’s plenty of time left over.

Talking to the PIA of the CoCo

The output of the DAC goes both to
the cassette output and to a device that
routes the DAC output to the television
sound channel, as shown in Figure 6.
The MC14529 routes the DAC output
to the TV sound channel by two “select™
bits set by the following BASIC com-
mands:

180 POKE &HFFQ@1,PEEK(&HFFQ1)
AND &HF? “select bit @

190 POKE &HFFO3,PEEK(&HFFO3)
AND &HF? ’‘select bit 1

200 POKE &HFF23,PEEK(&HFF23)
OR B ‘set 6-bit sound

The third POKE here sets six-bit sound
as opposed to a single-bit “on/off"
sound that can also be used.

Once these commands are given, they
need not be output again — the DAC
is routed to the TV sound channel for
the duration of the program.

The six inputs to the DAC are con-
trolled by six signals from another
source, as shown in the figure. The
source here, as in the case of the two
select signals, is a PIA, or peripheral
interface adapter. The CoCo uses a
number of PIAs to provide program-
mable signals to control color graphics,
sound, cassette operations, and RS-
232-C operations, to name a few. In this
case, the PIA acts as a simple memory
device, holding whatever six bits have
been sent to it until another six bits are
sent. In BASIC the six PIA to DAC
outputs are set by

1000 POKE &HFF20, VALUEX*4
‘VALUE is @ - 63

In assembly language, the instruc-
tions are very similar:

LDA #VALUE
STA $FF20

value is VVVVVV(00
outputs value to DAC

And that’s about all there is to pro-
ducing sounds on the Color Computer
— route the DAC output to the televi-
sion channel and then send out the
proper patterns to the PIA/DAC,

spaced at even intervals, repeating the
patterns if necessary.

Putting Together a Sound
Assembly Language Program

Now that we know enough about the
sound capabilities of the Color Compu-
ter, we can put together a short program

to play a variety of sounds, natural and
unnatural. What we’re looking for is a
program that will route the DAC output
to the television sound channel and then
output a series of digital values to the
DAC, spaced at regular intervals. We
also need the capability of repeating a
series of values for a certain number of

Decay

Attack

ADSR for
piano

Sustain

ADSR for
snare drum

Figure 4: Sound Envelopes

Release

64 _—Y'T

56

40
32
24
16

Figure 5: Table Driven Sounds

PAGE 45

Austral canm

1786,

apri !

times.

The data that creates the sounds will
be held in a table in memory, either a
table of values that already exist, such
as ROM values, or a table that we will
create. Since we want to make the
program handle a table of varying
length, we’ll need to specify a table
length. An alternative to this is to use
a “terminating value” at the end of the
table to mark the end. However, we'd
like to use ROM data for some of the
sounds, and it’s awfully difficult to write
data to ROM (although one of my
CoCos tries this on occasion).

To make the table values easier to
generate, we'll also let the program shift
the data so that it’s aligned in the upper
six bits. That way we can put values of
zero through 63 in memory bytes with-
out having to worry about what the
values would be in their shifted form. Of
course another approach is to “pack”
the data into consecutive six bits, but
this would present a real chore in
creating and maintaining the table of
data values.

What we have so far, then, is a pro-
gram that will read a table of values
starting from some given memory loca-
tion and ending at another memory
location, with each byte in the table
representing an output value of zero
through 63. Such a table is shown in
Figure 7 — it’s the encoded form of a
simple bell sound using a square wave
frequency.

Another thing that we need to specify
to the program is the interval between
DAC outputs. Remember, the smaller
the increment, the less rough the final
wave shape will be. What is a reasonable
increment to implement? We know that
we'll have to have a timing loop in the
program to count off the time between
DAC outputs. (Another alternative,
however, would be reading in a PIA bit
that shows the sync clock for video,
appearing every 63.5 microseconds.)
Even with assembly language, instruc-
tions take a finite time and we can’t
define a small enough interval by the
time the program is coded. We'll let the
interval be specified by a count parame-
ter to the assembly language program
and sec what the minimum interval
turns out to be in the final result.

A final parameter that must be spec-
ified to the program is the number of
times the table must be repeated. A
repeat capability is handy to have to
generate wave forms that are periodic,
such as the sine waves and square waves
mentioned above. We may want to
repeat thousands of times with short
tables of values to get a sound that is
seconds long.

PIA
Address
$FF20 DAC
(o] t Tv
Lo 7 . .
3 _;4_44 MC14529 Modulator
at—+—| DAC I
§ [—+—» r
6 L4 » Other
c % Inputs
U
6 Select
Input inputs
————1 Lines (From $FFO1,
$FF03)
Figure 6: DAC Routing
oo 2388 SRSI
Start Table —> O
63 &
)
56 |
0
50 3
0
a6 |
0 IR EEEEEE R
R Sl
7
° ="
36 l
0
32 |
0
27 |
0
24
. =
20 |
0
16
0
14 [
0
)
g i
¢ [
0
Endof Table —» 6 [:]

Figure 7: Table for Bell Sound

April1 19848,

Austral

e T TP
Tan RAINBOW PAGE 45

At this point we have these parame-
ters that must be passed to the assembly
language program:

® A 16-bit address that specifies the
start of the table.

® A 16-bit address that specifies the
end of the table.

® A 16-bit delay count that deter-
mines the time delay between out-
puts to the DAC.

® A 16-bit repeat count that deter-
mines the number of times that the
table data is to be repeated.

Program Design Considerations

Before we start coding the program
we need to make several more decisions
about the basic design:

@ [s this to be a program or a subrou-
tine?

® Where in memory will the program
be?

® Where in memory will the table be?

Programs Versus Subroutines

We could make the Sound program
a full fledged program that could be
loaded by LOADM and executed by EXEC
(or from cassette by CLOADM and EXEC).
However, this doesn't make too much
sense, as the program isn't really a full-
blown program, but simply a short
piece of code that can be used to (pre-
sumably) generate short snatches of
sounds. For that reason, it makes better
sense to design it as an assembly lan-
guage subroutine that can be called by
BASIC (or other languages). That way
we can use the convenience of BASIC to
do all of the housekeeping and just call
the assembly language subroutine when
a sound is required.

The commands that Extended BASIC
uses to interface to assembly language
are DEFUSR and USR. DEFUSR tells BASIC
where the assembly language code is
located, while USR actually transfers
control to the assembly language sub-
routine. The assembly language subrou-
tine must always end with an RTS
instruction, a ReTurn from Subroutine.
The RTS acts just as a BASIC statement
does, returning control back to the
BASIC statement after the USR. The
typical call to our yet-uncoded sound
subroutine would look like this:

110 DEFUSR® = &H3E@B done only
once in BASIC

330 A = USR@(@) ‘call assembly
language sub

340 . . . ‘return here
The dots between statements 110 and
2100 represent other BASIC statements

that are executed. One thing that must
be done before the subroutine is exe-
cuted, of course, is to set up a table of
data in memory that the subroutine will
use to generate sounds, or to point to
the table if it already exists (such as the
ROM sine wave table).

Where in Memory Will the
Subroutine Be?

The DEFUSR statement defines where
the assembly language subroutine is in
memory. But just where should it be?
There are many places it could be, but
the overriding rule is to put it out of the
way of BASIC. BASIC is constantly
changing memory by adding variables,
manipulating strings, and using a stack
area, and any assembly language code
must be put into an area that BASIC
cannot touch.

One of the best ways to do this is to
use a protected area of high memory.
The CLEAR statement in BASIC is specif-
ically designed to protect memory so
that assembly language subroutines can
be put there. Doing a 100 CLEAR
400 ,&H3DFF for example, protects all
memory from locations & H3E00 on up
to the top of your RAM memory (512
bytes less than 16K to the top of mem-
ory). We'll use this area for the Sound
program, and you might keep it in mind
for your own programs. Of course, if
you have a 64K system, you could use
100 CLEAR 400 ,8H7DFF,

The 400 value, by the way, establishes
the size of the BASIC string storage area.
Use a larger value if you have many
string manipulations in your program
or if you have more than 64K.

How does the assembly language

209

339 A = USRG(Q)

Figure 8:

100 CLEAR 40Q,&H3DFF ‘done at beginning of BASIC

119 DEFUSR@ = &H3EQS8 'done only once in BASIC

120 DATA &HXX, &HXX, &HXX 'machine language form

121 DATA &HXX, &HXX, ... &HXX ‘'of assembly language

140 FOR I = &H3EQ@Q@ TO &H3E2A 'subroutine

150 READ ML 'move the machine language to

160 POKE I,ML 'the &H3E@P area - done once

17¢ NEXT I

180 POKE &HFF@1,PEEK(SHFFJl) AND &HF7 ‘'select bit @

190 POKE &HFF@3, PEEK(&HFF@3) AND &HF7 'select bit 1
POKE &HFF23,PEEK(&HFF23) OR 8 'set 6-bit sound

'call assembly language sub

34 s 'return here
|
|
Unprotected
Area
[sae00 e s Table Stert
1 N
2
3 e | — e Table End
e, e r 4 Parameters,
e b, i } Repeat Count Shyee
Protected J . s s i —
Area ¢ Delay Count
7
8
ACTUAL e
ot PROGRAM e
AREA
L * 5 S TR

Esure 9: AL Program Area

ﬁAG! 5 a

Australian RAINEOW

April 1784,

code actually get into the & H3E0Q area?
We could load it in by a LOADM (or
CLOADM), but it’s a real convenience for
a short subroutine like this to encode it
into BASIC DATA statements and include
it in the BASIC program. That way we
have everything in one neat little pack-
age. The DATA statements use values
taken directly from the assembly lan-
guage listing and look like this:

120 DATA &HXX, &HXX, .
121 DATA &HXX, &HXX, .

. - &HXX
. « &HXX

where the XXs stand for machine lan-
guage values.

To move the machine language values
in the DATA statements, a simple FOR”
NEXT loop in BASIC is used:

140 FOR I = &H3EQ@® TO &H3E2A
150 READ ML

160 POKE I,ML

170 NEXT I

The skeleton form of our BASIC call
now looks like this (including signal
routine to the TV channel): See Figure
8.

Where’s the Table?

The next question to resolve before
actually coding the program is to deter-
mine where the table of data is to be and
how to tell the assembly language
program where it is. We mentioned
before that we'd like to explore some of
the areas of ROM to see what kinds of
sounds could be generated from the
relatively random data found there. For

that reason, we can't just use a preas-
signed area of memory as a table. The
table address, therefore, will not be
fixed.

In addition to the table address, we
have to consider how the other parame-
ters will be passed to the assembly
language program. The USR statement
allows for passing one 16-bit parameter
to the assembly language program. This
would only take care of one parameter,
though, and we have four — table start,
table end, delay count, and repeat
count.

There are a number of methods that
can be used to pass more than one
parameter, but we’ll.choose a simple
one for this program — we’ll put the
parameters in memory right before the
program at &H3E00. The assembly
language program area will now look
like Figure 9. 2 block of four parameters
in eight bytes, followed by the (still)
undefined assembly language code. The
parameters can easily be poked into the
&H3E00 area from BASIC, and we can
change all of them at any time by doing
a series of POKEs.

Coding the Program

Whew! We're finally at the point at
which we can start coding the Sound
program. Everything we've done up to
this point has been program design.
Generally, the more time spent in de-
sign, the fewer changes we’ll have in
coding and debugging the program.

Before coding this program. I gave
some thought about what registers
could be used to hold the parameters.
In such a short program, it is possible
to dedicate registers for specific func-
tions. In longer programs, of course, the

registers can't be dedicated to any
specific thing, but handle all kinds of
tasks.

In Sound, the registers are set up this
way:

® Register A is used as the main “work-
ing” register, holding the values to be
sent to the DAC and other results.

® Register X holds the 16-bit delay
count.

® Register U holds the table start in-
itially, but is incremented by one to
point to successively higher values in
the table.

® Register Y holds the 16-bit repeat
count.

Having as many things as possible in
registers speeds up Sound considerably.

The complete listing of Sound is
shown in Listing |. Here's a short
discussion of how it works. First, the
repeat count is loaded into ‘Y’ from the
parameter block (it’s four bytes from
the address in ‘U"). This repeat count
will be decremented down to zero
through the program. When it reaches
zero, the program has repeated the table
values the number of times specified in
the repeat count. Notice that this is a
“Program Counter Relative™ instruc-
tion that does not specify an absoluie
address. This and other instructions in
Sound are relocatable, meaning that the
machine language code can be moved
anywhere in memory without having to
reassemble the program.

Next, Register X is loaded with the
delay count and Register U is loaded
with the table address count from the
parameter block.

ORG $3EgQ
BLK RMB 8
START LDY
LDX
DAC@@5 LDU BLK, PCR
DACG1lg LDA ,U+
LSLA
LSLA
STA SFF20
TFR X,D
DACP2§ SUBD #1
BNE DAC@2§
CMPU BLK+2,PCR
BLS DAC@1g
LEAY -1,Y
BNE DAC@P5
RTS
END

PARAMETER BLOCK
BLK+4,PCR GET REPEAT COUNT
BLK+6,PCR GET DELAY COUNT
GET TABLE POINTER

GET VALUE
ALIGN TO 6 BITS LEFT
BY TWO SHIFTS
SEND TO DAC
GET DELAY COUNT
DECREMENT BY ONE
GO IF NOT DOWN TO @
TEST FOR END
GO IF NOT END OF TABLE

DECR REPEAT COUNT BY ONE
GO IF NOT DOWN TO @
RETURN TO BASIC

Listing 1: Sound Program in Assembly Language
3EPP ggLep
3EQP gp11g
3E@8 1QAE 8C F8 gg129
3E§C AE 8C F7 @gg13g
3EGF EE 8C EE 90149
3E12 A6 C@ ga15@
3E14 48 gglreg
3E15 48 gg179
3E16 B7 FF2@ 99189
3E19 1F 19 909199
3E1B 83 gggl g92090
3E1E 26 FB 99219
3E2¢ 11A3 8C DE gp220
3E24 23 EC pe239
3E26 31 3F pa24p
3E28 26 E5 g@259
3E2A 39 gp26g

9999 g9279
g9@Pg@ TOTAL ERRORS
April 1986.

Australian RAINBOW

PAGE 5

The code in DAC020 and the next

nstruction is the innermost loop in the

How to Use Sound
You can assemble Sowund yourself, or

Listing 2: SOUND rogram. Before this loop, a DAC value simply use the BASIC version shown in
as been output by the STA SFF20 and Listing 2. The BASIC version will ask
OGP IARRRARRRARRAKRNARRNRRRRRAR he delay count has been loaded into you for the Table Start value, Table End
$1. *4BOUND PROOERN: EA LSS * [Register D from Register X by the TFR value, Repeat Count, and Delay. From
gg .:gﬁg‘gggc’g&am AL : X.D instruction. The SUBD decre- hereonin you’re on your own as to what
Q4 TRRRRRRANRRRAKANRARKARKNN AN ments this count and the BNE instruc- you specify for these parameters, but
199 CLEAR 499, &HIDFF ion causes a lo.op‘ b?gk to DAC020 here are some suggestions:
8 BRI Ly oy [T i Sounds, apciy s ot of et
' ' , ; ory data sounds, specify a start of zero
151 DATA g9 gD, K88, 6888 | The code from DACOI0 through ive ~ and an end of EHFFEF with a repeat
123 DA:A &guiwacimnimxn instructions from the end (BNE count of 1. You should vary the delay
24 DATA &HSC, &HEE, &HA6 i i - 2
I Bias L ihee s 7::2‘;; Er)\l:kceoslg) ::Sol:l; lf:;:l ‘l::;:f':;:zul::l’t-hl: t‘:)el%el higher or lower frequencies as
126 DATA &H2p@,&H1F,&H1@, &H83) . i
127 DATA &H@P,&HPL,&H26, GHFB table of values, sending each value out Try the sine wave table at &HA85C
128 DATA &H11l,&HA3, &H8C, &HDE to the DAC and delaying with the inner through &HABT7F to hear the sine wave
{‘;; gﬁ: ::32'2222'::3"‘“” loop just discussed. The two LSLA used in the cassette output. (However,
148 FOR I=GH3IE@S TO &HIE2A instructions shift the data from the table before you do, change Line 125 to read
15 READ ML to align it in the six high bits of ‘A’. The 125 DATA &H12,&H12,8HB7,&HFF to
igg :gfr §r"L table data is pointed to by ‘U, which is change the LSLA instructions to “no
189 POKE &HFF@1,PEEK(&HFF@1) AND used to load the datainto ‘A”. The LDA operations.” The sine wave table data is
&HF7 .U+ also increments the pointer valuein already aligned to the left, ready to be
a2 S&HFFP3, PEEK(&HFFP3) AND |'J* by one after the load is done. The sent out to the DAC.) Specifying differ-
299 POKE &HFF23,PEEK(&HFF23) ORS CMPU BLK+2,PCR at the end of the ent delay counts will create higher and
21¢ INPUT "TABLE START";TS loop continually compares the pointer lower frequencies and specifying repeat
22p INPUT "TABLE END";TE value in ‘U’ to the end of the table value counts of other than ‘I’ will sound the
23 R R e 1o ‘ bytes from the parameter block sine wave for lon iods of ti
§§§ ::,g?xg'r‘;gié;.;\lxm;;/ngss) :ttalr‘:m d d i Tryashor(:rse(::tigoer:sp:?'é)ocs‘leo rcg::.led
% :
268 12’216(3 &H3EQ1,TS-INT(TS/256)* The outermost loop is from DAC005 many times to create “real-world™
278 POKE &H3EP2,INT(TE/256) through the BNE DACO05. It repeats a noises like car crashes, phaser blasts,
289 POKE &H3E@3,TE-INT(TE/256)* |pass through the table values for the and the like. il
256 number of times equal to the repeat Constructing Your Own Sound Tables
§;; l;gg 223?2;;;’5‘.@2{;2’256, « |count. The repeat count in “Y" is decre- Just as the sine wave table provides
256 mented by the LEAY -1,Y each time a @ sin¢ wave sound output, you can
31p POKE &H3E@6,INT(DC/256) complete set of table values has been construct your own tables of sounds.
329 gg’sm &H3EPT,DC-INT(DC/256)* | " * " “When this value has been There's plenty of room to do this in the
339 A=USRP(P) decremented down to zero, the BNE area beyond the end of the program at
349 GOTO 21p DACO00S is not done, and the program &H3E2B through &H3FFF. POKE the
returns to BASIC by the RTS. values by DATA statements and RERD
loops just as in moving the machine
language code. Some suggestions with
Figure 10: 64 parameters are shown in Figure 10.
By using many tables of sounds, you
Sound Table Shapes can create an entire set of sounds to use
for synthesized music, games and other
“Backwards g o’g{;‘;&%‘;‘:" functions. Remember that the Sound
S 122,0,23,0,26. . . : :
/ table location can be changed at will by
POKEing the proper addresses into the
$3E00 parameter block. The BASIC
b = program shown above is really only a
v guide to how to interface to Sound —
"\’,':‘,"":‘“ it should be easy for you to incorporate
Sound into your own BASIC code.
Values Here Are
4 4 e - Values Here Are 60,60,60
T
s FYPIN Nuhne Typlcal Values
Triplet r// W P 0,63,0,63,0,63. . . e / 0.280.37,0.6. .
0 0
Y = \ %
About 100 About 100 o~
Values Values
PRGE o2 Austral Tan RAINBOW April 1286.

FORTH

CLEARLY

Most of the Color Computers around seem to have
Extended Color Basic and most of the progranms that
appear seem to assume this. But why? It's pretty
much because of the graphics capabilities - the
PNODEs, LINE, CIRCLE, etc. This month, we start an
orderly implementation of no 1less than eleven
display modes (ECB allows only five), together with
Cartesian capabilities (like LINE, CIRCLE and simple
user extensions to SQUARE, TRIAKNGLE). Then we'll
extend things to Turtle Graphics and String
Graphics. ARD we will do this using absolutely
standard Forth and NO extended Basic.

Because the Forth 1s squeaky-clean standard, it
is, with a few patchings at the lowest level,
portable to other computers. Furthermore, a
from-the-ground-up graphics implementation gives us
a chance to design an applications language, which
we will call XGAL <(eXtended Graphics Applications
Language), with a sensible, rememberable, syntax.
Look at the parameters for ECB's CIRCLE statement.
They are a good example of what to avoid. MNicrosoft
have simply tried to do too much with a single

statement. In the language we are about to design,
we want to say things 1In a straight-forward way,
like:

FINE COLOUR GRAPHICS
MEDIUM SENI GRAPHICS
RED [NK

GREEN PAPER

NEV DISPLAY, etc.

The mechanics of {implementation of the graphics

modes are dealt with in Section IV of the Color
Basic manual. All the essential information is
there, but 1t 1is easy to be put off. by the

complexity of all the pokes to the VDG, control
register and SAM. To make things worse, the mapping
of Cartesian coordinates onto the graphics screen is
messy for displays other than those in the
highest-resolution two-colour mode. [t is tempting
to be satisfied with an imcomplete graphics package,
but let's stick to our guns and make sure that we
include all the best modes, including three best
semi-graphics modes. Two rather dubious modes have
been left cut, but I don't think that we'll miss
'em.

There are no less than ten important parameters
for each of the eleven modes that we will consider.
These are tabulated in GRAPHICSARRAY (see Listing).
So far so good, but we have to find some way of
allocating the correct set for the mode that we want
to use and some way of relating this set to the
appropriate set of colour bytes and mask bytes in
the COLOURSETS and MASKSETS arrays. How?

The clue is in the syntax. The adjectives COARSE

FINEST are simply numbers which are placed on
the stack for wuse as an index into GRAPHICSARRAY
(look at their definitions). RESOLUTION, COLOUR and
SEMI check and modify this number ready for
GRAPHICS. GRAPHICS is a really smart word (one that
looks 1ike a noun and acts like a verb!). It makes
sure that the number on the stack is not too large

SAID, CLEANLY DONE

by John Redmond

(why?), then multiplies it by the array width (to
get an offset) and adds this result to the array
base address. On the top of the stack we now have
the address of the start of the correct set of
graphics parameters.

The first byte of the set 1is an offset that
COLOURSETS and MASKSETS need to know about. OFFSET
therefore pokes this byte into the reserved bytes
(initialized as 0 during compilation) at the start
of each of these arrays. The rest of the set is
then copled into the current attributes array,
DESCRIPTION, where 1t can be accessed by the named
pointer words. Finally, a named variable, P/BYTE,
is initialized.

Everything 1is now ready for the two words that
glve visible results - DISPLAY and PLOT. PLOT will
have to wait until next month, but let’s look at
DISPLAY. A display can be NEVW or OLD and/or NORMAL
or ALTERNATE. Look at the functions of these
adjectives (verbs?) and note how we have permitted
an ALTERNATE display OFLY f{for the true graphics
modes and not for the SEMI graphics.

DISPLAY uses values in DESCRIPTION to determine
the high-memory pokes carried out by the word
REGISTERS (not a noun, but a verb!). This word, in
turn, 1s wused by !VDG and VIDEOSTART. [recommend
that you set yourself the task of working out how
REGISTERS works. It 1is a good example of Forth's
low-level power, but you will need a hint or two:

0<¢ returns a true flag (i.e., 1) i{f a number is
negative. But when is it negative? VWhen the
highest bit is 1, of course. Now, {f the highest
bit IS 1, we have to add 1 to an even address to
determine the correct poke location. KOV <(wait for
it!) the one we add is, in fact, the very logical
flag that 0C produced. If the flag had been false,
the flag value would have been 0 which, when added
to an even address, gives the same even address.
This sort of logic arithmetic is discussed in
Brodie's 'Thinking Forth'. Finally, 2% {s a very
efficient way of doing a left shift to get the next
binary bit into the top position for checking, 1if
necessary, with 0<. End of lesson.

The background colour for a normal screen clear is
held in DESCRIPTION, 1in a named location called
(PAPER) . The foreground colour is held in (INK).
Either of these can be altered at any time by PAPER
or INK, respectively, prefixed by a colour word.
The colours are defined using a special defining
word, HUE, which uses COLOURED to access the correct
element of COLOURSETS using both the ofset passed by
HUE and the byte value poked in by GRAPHICS (see
above). (Defining words are one of the advanced
topics dealt with in Brodie's 'Starting Forth'.
They are dazzlingly elegant and powerful and will be
discussed in detail in a later article.)

It is unlikely that all this will be grasped at
the first reading. Look through the listing
methodically, looking at the highest-level (i.e.,
last) words first. You may, of course, not be even

—
April 1284,

Australian RAINBOW

. PAGE D3

slightly interested in how it all

use them.
program, MEDIUM COLOUR GRAPHICS

happens.
OK. All the work has been done and all you need to
do is load these definitions from tape or disk and
If you say, from the keyboard or within a
NEV DISPLAY, you

That's

will get just that.
Do you still

think that postfix notation locks
funny? Next month, drawing lines and circles in all
graphics modes, using sensible commands like:

¢ \ 13 VORD DROP ;

XGAL - EXTENDED GRAPHICS
APPLICATIORS LANGUAGE,
VERSION 1.05,

<C> JOHN REDMORD, 1986.
PART 1.

¥ LW L LB S

CODE VRITTEN SPECIFICALLY
FOR TANDY COLOR COMPUTER
(ALL REVISIONS).

EXTENDED BASIC NOT REQUIRED.

P P L5

HEX

ATTRIBUTE ARRAYS, CORTAIRING:
OFFSET INTO COL/NASK ARRAYS
TRUE GRAPHICS FLAG

VDGBYTE, CONTROLBYTE

PIXEL VIDTH & HEIGHT MARKERS
SCREEN SIZE IN BYTES

NO OF BYTES PER ROV

IKITIAL B/GROUND COLOUR

B AT A X A A

CREATE GRAPHICSARRAY

\ 2-COLOUR MODES

001 , 2090 , 403 , 400 , 1000 ,

001 , 60BO , 402 , 600 , 1000 ,

001 , AODO , 400 , CO0O , 1000 ,

001 , COFO , 300 , 1800 , 2000 ,
\ 4-COLOUR MODES

801 , 2080 , 403 , 400 , 1000 ,

801 , 40A0 , 303 , 800 , 2000 ,

801 , 80C0 , 302 , COO , 2000 ,

801 , COEO , 300 , 1800 , 2000 ,
\ 8-COLOUR SG MODE

1000 , 4000 , 303 , 800 , 2080 ,
1000 , 8000 , 302 , C00 , 2080 ,

HERE GRAPHICSARRAY - 0B /
CONSTANT ARRAYWIDTH

CREATE COLOURSETS 0 C,

FFFF , FFFF , FFFF , FFFF ,
0055 , AAFF , 0055 , AAFF ,
8F9F , AFBF , CFDF , EFFF ,

CREATE NASKSETS 0 C,

8040 , 2010 , 804 , 201 ,
coco , 3030 , CoC , 303 ,
FAFA , FAFA , FS5F5 , F5F5 ,

VARIABLE P/BYTE
VARIABLE (INK)
VARIABLE (ALTERNATE)
6800 CONSTANT VBASE

\ CURRENT GRAPHICS ATTRIBUTES.

1000 , C000 , 300 , 1800 , 2080 ,

\ THE ARRAY IS ACCESSED BY
\ SPECIAL (NAMED) POINTERS.

CREATE DESCRIPTION

ARRAYVIDTH 1- ALLOT

DESCRIPTIOR 3 + CONSTART VIDTH
DESCRIPTION 4 + CONSTANT HEIGHT
DESCRIPTION 5 + CONSTART /SCREEN
DESCRIPTION 7 + CONSTART B/LINE
DESCRIPTION 8 + CONSTAKT (PAPER)

\ COLOUR DEFINITIONS

: COLOURED ¢ #)

0 MAX 7 NIR

COLOURSETS COUKRT + + C@ ;
: HUE CREATE C, DOES>

C@ COLOURED ;

0 HUE GREERN

1 HUE YELLOW
2 HUE BLUE

3 HUE RED

4 HUE BUFF

5 HUE CYAN

6 HUE MAGENTA
7 RUE ORAKNGE
0 HUE PLAIN
80 HUE BLACK

¢ INK (INK) ! ;
: PAPER (PAPER) C! ;

\ RESOLUTION TYPES
\ AND ASSOCIATED VORDS

CONSTANT COARSE
CONSTANT MEDIUM
CONSTANT FINE

CONSTANT FINEST

W= o

: RESOLUTION 0 MAX 3 KIN
0 (ALTERNATE) !

RED INK ;

: COLOUR RESOLUTION 4 + ;
: SEMI 0 (ALTERNATE) !

0 MAX 2 MIK 8 +

YELLOV INK ;

: OFFSETS Ce DUP
COLOURSETS C!
MASKSETS C! ;

: GRAPHICS (#)

OA MIN

ARRAYVIDTH * GRAPHICSARRAY +
DUP OFFSETS

1+ DESCRIPTION

ARRAYWIDTH 1- CMOVE

WIDTH C@ 3 >
IF OF ELSE 7 THEN P/BYTE ! ;

\ SPECIAL WORDS TO POKE THE
\ ODD OR EVEN ADDRESSES.

: REGISTERS (BYTE, ADDR, #REGS)
2% NEGATE OVER + SWAP

DO I OVER 0< +

0 SVAP C! 2x

-2 +LOOP DROP ;

!CONTROL (NASK)
FF22 Ct ;

: VDG ¢ BYTE)
8 << FFC4 3 REGISTERS ;

: CLEARSCREEN VBASE /SCREEN @
(PAPER) Ce@ FILL ;

: VIDEOSTART (VBASE)
FFD2 7 REGISTERS ;

\ COLOUR SET WORDS.

: NORMAL ;

¢ ALTERNATE
DESCRIPTION Ce@
(ALTEKRNATE) ! ;

0 CORSTANT OLD

1 CONSTANT NEVW

: DISPLAY ¢ T/F)

¢ CONTROLBYTE, VDGBYTE)
IF CLEARSCREEN THEN
VBASE VIDEOSTART
DESCRIPTION 1+ DUP
ce !'VDG

1+ C@ (ALTERNATE) @
IF 8 OR THEN

! CONTROL ;

\ EXAMPLES OF USE:
\ GREEN INK RED PAPER

\ MEDIUM SEMI GRAPHICS
\ NEV DISPLAY

\ FINEST COLOUR GRAPHICS
\ ALTERNATE REV DISPLAY

\ COARSE RESOLUTICN GRAPHICS
\ NORMAL OLD DISPLAY

\ 6800 VIDEOSTART

LETS SEE Mow... How
BouT SomE ComPUTER STocK
D o> o My RoerFaso?

20 .‘,;

PAGE 54

T (0

Australian RAINBOW

FORTH

FORTH FORUM
by John Poxon

Before we begin this month's Forth
Forum, 1 have about 60 c30 audio mastering

tapes for sale, at $1.20 each, plus
postage. All are relatively new, fault
free and bulk erased. Most bave been
recorded on once only.

Last month's article introduced
Reverse Polish Rotation as the modus

operandi of FORTH arithmetical operations.
The concept of placing the operator (+,-,%
and /) after the numbers to be operated on
is fundamental to FORTH and Reverse Polish
Notation (R.P.NK.).

R.P.N. 1is not a creation of or for
FORTH, but originated in considerations of
how arithmetical operations could be more
logically and efficiently performed.

Fundamental to our considerations of
FORTH arithmetical operations 1is the
storage of numbers during these processes.
To wunderstand R.P.N. better we need to

understand the stack, which may be
regarded as the most 1important number
reservoir.

To begin our analysis of the stack,

imagine that you
following line.

have typed 1in the

1 2 3 4 <ENTER>

The numbers have been entered 1into
memory in a last in first out form, which
may be regarded as a column of numbers (or
a stack), thus:

Top

NWwe

Bottom

You can prove the stack contents at
anytime by inserting the command .S 1in
your calculations at any appropriate
point. I give you the definition of .S
without comment, since we haven't yet
covered the concepts supporting it. Just
type 1in the following line correctly and
press enter. You can then use .S.

.SCR'SS0@@2-D0O1 @ . -2 +LO0P ;

The 1line

Starting FORTH.

came from page 50 of

Numbers at the top of the stack are
most accessible for arithmetic operations
and those at the bottom least accessible.

The stack can have, in principle, any
depth, but in practice depth 1is limited.
The stack can contain sufficient numbers

for almost any legitimate purpose, so
don’t worry about overfilling it! This is
not true of course, if you generate excess
numbers which pile up on the bottom of the
stack until a

"stack overflow” error
occurs. FORTH demands that you provide any
necessary protection against stack
overflow. Incidentally, to empty a stack
full of unwanted data, type some

meaningless word, e.g.
stack will be cleared.

If you were next to enter an
operator, it would operate on the top two
numbers and place the result on the top of
the stack. For example, typing ¥ <ENTER)
would result in the product of 4 and 3
being placed on the top of the stack. The
stack would then "look"” like this:

sss <ENTER> and the

12
2
1

You may of course have a need to
operate on numbers lower down in the stack
while leaving the wupper numbers intact.
There are a certain special FORTH words
which permit manipulation of the stack,
that is, number positions in the stack may
be altered to facilitate calculations.
This means, of course, that the required
numbers are brought to the top of the
stack.

Some useful words are DUP, ROT, SVAP,
OVER and DROP. These are not all of the
stack manipulation words, but are most of
the single length stack operators. WVe'll

worry about double length operators later
in this series. The words are easily
understood. Let me 1list their functiomns
below:

DUP DUPlicates the top number on
the stack so that two copiles
exist at the top of the
stack. For example, if we
commenced with a blank stack
and typed 2 DUP <ENTER)> the
stack would contain two 2s.

ROT ROTates the third number
down in the stack to the
top, e.g.
3 1
2 becomes 3
1 2
SVAP SWAPs the top two numbers.
e.g.
3 2
2 becomes 3
1 1

April 198&.

Australian RATNE&U

OVER Copies the second stack
number and pute the copy on
top of the stack e.g.

3 2
2 becomes 3
1 2
1
DROP DROPs the top number on the
stack, e.g.
2 3
3 becomes 2
2 1
1

Vith these thoughts in mind we can
try one or two simple calculations.
Remember throughout that this 1s integer
arithmetic (no decimal parts to numbers).

2

Let's try 3x(10)°. The line
2 10 DUP X X
will do the job nicely. Stack contents

1ook like this as the calculation
progresses. [have written the operation
preceding the stack condition above the
gap between the stack listings

210 DUP ¥ ¥
10 10 100 200 200
3 10 3 on
2 screen

We would do well to remember that as
simple single length numbers (16 bit) the
stack values or intermediate results of
calculations canmot exceed the range
+32767 to —-227€8. 1 sense you recoiling in
harror at such a profound limitation. Calm
down, it’'s not as bad as it first appears.

FORTH provides ways of getting around
these difficulties. Let’s begin to talk
about them by discussing the word %/
(pronounced star-slash). This very useful
word permits a single length calculation
to have a double length (322 bit)
intermediary value. It first nmultiplies
and then divides Like certain other
division operators in FORTH the / part of
%/ leaves only the quotient. Care should
therefore be taken when deciding the
process of a calculation to avoid large
errors due to dropped remainders.

Let’'s try an example to illustrate
what we'’ve learned so far. Calculate

14! w1296
The value of (142 +122)2 is more
than 16 bits can handle, so the ¥/ will

come in useful. Entering the numbers 1in
reverse order, the stack looks like this:

14
12
36

To make the calculation, do DUP ¥ SWAP DUP

¥ + DUFP %/ The stack contents will
progressively look as follows.

DUP k3 SWAP DuUP * +
14 14 196 12 12 144
12 14 12 196 12 196
36 12 36 36 196 26
26 36
DuprP ROT ¥/
340 340 26 3211 3211
36 340 240 on screen

36 340

Another exawmple. Find the effective
resistance of three resistors (10, 20 and
30 ohms) in parallel. The formula for this
is

RT=(R1-1%R2—1+R3—1)—1

We might expect the wvalue of this

expression, using these numbers to be a
about half the lowest value of resistor
(10 ohms). In fact the correct answer is

5.45 ohms. lets see how FORTH does using
integer arithmetic.

Since 1t doesn’t matter which order
we process the resistance values we can
enter them 1in any order, thus: 10 20 30
<ENTER>. But how to process them? If we
simply divide each value into 1 to achieve
a reciprocal we will be confounded by the
loss of the quotient refered to earller.

A solution is to scale each value and
ultimately descale the answer. One has to
be very careful doing this in problems

involving multiplication or
exponentiation.
If 1 divide a resistance value into

1000, the result will be 1000 times
greater than otherwise. I'm not trying to
insult your intelligence here; Graham
would, I know, prefer these tutes written
on the K.I.S.S. principle.

From here on there are a couple of
ways to tackle the problem. One involves
entering the scaling factor of 1000 as
required: the other 1involves setting a
constant equal to 1000 and calling up the
constant when needed. Since we will tackle

constants later in this serles, 1 will
restrict myself to the first option.
Ve have already entered the

resistance values. The operations on the
stack proceed as follows: 1000 SWAP / 1000
ROT / ROT 1000 SWAP / + + 1000 SVAP / . .
The last period is of course the sentence
ending. The stacks go as follows.

/ ROT 1000 SVAP 7/ + +

20 50 30 1000 30 33
1000 100 50 30 1000 50

100 30 100 50 50 100

30 100 100

1000 SVAP 7
183 1000 183 S Prints on
183 1000 screen
)

continued on Page 57

AGE 56

Australian RAINBOW

april 1752,

WHAT'S NEW

The Probe is our latest plece of the CoCo joystick port with an screen changes.
equipment for use with either the optional amplifier (price to be "LOGGER" ¥ sanples temperature
Colour Computer or the T1000. announced). over a specified period and

Attached to a CoCo, The Probe uses The maximum specified thermal provides a print out of the result.
either the right hand joystick port response time of The Probe in still The information below shows the
or CoCoMax to provide temperature air is 3 minutes (time taken to result of a test we made, when

we
monitoring. reach final temp value). However immersed The Probe in a glass of
On a T1000, The Probe connects to preliminary testing shows that this ice water, and after 220 seconds,

the right hand joystick port. varies from 50 to 180 seconds. took it out again.
The Probe consists of a cable and The Probe is supplied with three
a protected transducer, which is programs on tape or disk (please
inserted into the substance being specify) for CoCo or with a disk

The third of these progranms,
“GRAPH", # samples temperature over
a set number of periods, for

monitored. containing three programs for the whatever length of time you
The Probe is not able to cope with T1000. require, and draws a graph of the
highly acidic solutions or These programs are meant as p.oy)ts,

temperatures in excess of 100 thought starters for your own

degrees C. projects, but never the less 4 16K CoCo's and T1000 128K+
Temperature readings however, can provide some interesting 4 16K ECR CoCo's and T1000
be taken between -40 and 100 information. 128K+

degrees Celcius, with an accuracy "BARTEMP" X 1is a program which

of +/- 2 degrees using the T1000 or provides you with a simple There are a number of uses for
CoCoMax, +/- 8 degrees read thermometer on screen. As the this interesting piece of

directly through the CoCo joystick temperature of the substance being equipment.

port, or +/- 2 degrees C through checked changes, so the reading on It can be used to demonstrate
heating and cooling rates to
students; it can be used to monitor
temperatures in controlled

e 5 e g IME= 170 SE TEMP= 6

1::;; ?osgzzs Tigi;:dé4 il:gz iag Sggg TEXP= 6 T1ME= 340 SECS TEMP= 30 environments, eg hot houses,
TIME= 20 SECS TENP= 36 TIME= 190 SECS TENP= 6 T["Ef 350 S??% TE'Pf 30 chicken sheds, fire alarms; and it
TIME= 30 SECS TENP= 34 TIME= 200 SECS TEMP= 6 ;i:gi 523 g:zz :E:Z: gg can be used by experimenters.

TIME= 40 SECS TENP= 18 TINE= 210 SECS TEMP= 6 _ o 280 SECS TENP= 30 Dwners of The CoCoConnection will
ii:fz Zg i::‘g -{;::: :g ::::; ‘238 gggz ;g:;; g TIME= 390 SECS TEMP= 32 find The Probe of special interest,
s iiRe 76 it TENP- 10 TIME= 240 SECS TEMP= 10 TIME= 400 SECS TEMP= 32 for it adds to your arsenal of
TINE= 80 SECS TENP= 8 TIME= 250 SECS TENP= 16 TIME= 410 SECS TENP= 32 control equipment.

TIME= 90 SECS TENP= 8 TIME= 260 SECS TEMP= 18 TIME= 420 SECS TENP= 32

TIME= 100 SECS TENP= 6 TIME= 270 SECS TENP= 24 TIME= 430 SH‘(“‘: 1Fjlp= '3‘ The prlce is $49.95 for the

TIME= 110 SECS TEMP= 6 TIME= 280 SECS TERP= 28 Tll?f t;g ikbb T?"Pi 36 versions without an amplifier. The

TIME= 120 SECS TENP= 6 TIME= 290 SECS TEMP= 28 1::2: 160 ;EZ? };:;; zg version with amp 1s likely to be

TINE= 130 SECS TEMP= 6 TIME= 300 SECS TENP= 28) bl = va $59.95.

TINE= 140 SECS TEMP= 6 TIME= 310 SECS TEMP= 30 TINE= 470 ﬁELS TE"Pj 38

TINE- 150 SECS TENP= 6 TINE= 320 SECS TENP= 30 11X 480 S5C3 TOM- 3

TiNme 180 SBCS THNPs € TIND= 830 §HCS TENP= S0, TINE= 480 SECH THEEE 39 Criskin
methods; in the meantime you would be best

continued trom Fage 59 served by reading Starting FORTH. There
you will see a wide variety of commands

The answer, 5 ohms, 1s about 92 % of which 1 cannot, for sake of space and

the correct answer. This 1is within the time, discuss here.
normal production tolerance of commercial

resistors. If one required a more accurate One point of re-assurance that I find
answer, using a scale factor of 10 000 comforting is that its O.K. to experiment
would be O.K.. on the computer. A learning experience,

Did you see where 1 did the successful or not costs no more than a
descaling? It was of course in the final little time and a few cents of power. Your
factor of 1000. investigations of FORTH are therefore

There are many ways of doing this nothing more than a low-cost investment in
calculation better than this; I hope the your understanding of another aspect of
FORTH experts out there will not shudder programming.
too much. My intention was merely to
provide a sample of some stack Finally, remember — if you would like
manipulation. Later in the series I will to talk about FORTH, feel free to call me
investigate some of those more efficlent OR (07> 208 7820.

April 1984. Australian RAI1NBOW PAGE 57

—

=

SOWTECE

ACCESSIBLE APPLICATIONS

Getting Started
with BASICO09

By Richard A. White

column for over six months. I know from letters that

many of you have been following the articles and are
using spreadsheets now. However, broad as the topic may
be, there are other interests to be served.

Over the past few months, I have been learning and
programming in BASIC09. Dale Puckett is right on target in
praising BASIC09. I hope the tutorials I provide in the coming
months will bring you to a similar conclusion.

Under OS-9, there is a wealth of programming languages.
assembly ianguage is the same as under Disk BASIC, except
for the program/machine interface. Brian Lantz has
recently covered Assembly language under OS-9 in THE
RAINBOW. A series on PASCAL by Dan Eastham graced the
pages of “RainbowTech™ some time ago. While the very
good DEFT Compiler was highlighted, Radio Shack’s
Microware PASCAL Compiler is likewise a powerful
compiler under OS-9. Another programming language
available under OS-9 from Radio Shack is Microware’s C
Compiler, possibly one of the very best C compilers for a
microcomputer.

With these options, why program in BASIC09? BASICO9 is
designed for structured programming, but so are PASCAL
and C. C is very powerful and terse, although it is not
particularly easy to learn. If you have done some assembly
language programming and want higher programming
productivity while staying close to the machine, C is
probably for you. I know one programmer who held out
for years before trying C and then wondered why he had
been so bull-headed for so long.

Then there are the rest of us, many who have been
programming under BASIC and want to do more under OS-
9. BASIC09 provides a nice transition language since the key
words you have learned under BASIC have the same
meanings under BASIC09. Some of the pains in BASIC, like
line numbers, are gone (you can still use them, but it’s like
shooting oneself in the foot). The automatic handling of
variables you are used to is gone, but it is replaced by
powerful structuring options that provide economy, clarity
and speed.

BASIC09 provides a rich selection of control structures,
including LOOP . .. ENDLOOP, REPEAT . .. UNTIL,
WHILE...DO. ..ENDWHILE and EXITIF. . . THEN
... ENDEXIT, in additionto FOR . . . TO. . .NEXT and
IF ... THEN ... ENDIF. Both the IF and ENDIF
constructions permit the use of ELSE. For those who have
no previous experience with some of these structures, take
my word that they are indeed nice to have.

If you are a fan of disk files, you will find BAS1C09 different

You have been reading about spreadsheets in this

from the Microsoft BASIC in the CoCo, perhaps a tad more
complex, but also more powerful. With one statement such
as PUT #PATH, myfile, you can save a whole 10,000-byte
data structure to disk as a machine code dump, which is
fast and easy. Load it back with GET #PATH, myfile, which
is as equally easy and fast.

BASIC09 is designed to encourage writing program
modules. Subroutines are named (no more wondering what
GOSUB 33 means), stored separately from other modules and
run by name. This can save memory since only those
procedures being used need be in memory. Such is not the
case with PASCAL, where procedures must be defined and
be in memory before they can be used. Variable names are
local to modules, that is, you can use the same variable name
in a number of modules to mean similar things. For
example, “count” in the main program does not change
when “count” in a subroutine is incremented, unless you
specifically write the program so that happens. Long
variable names are significant so that “countl™ is different
from “count2.”

Perhaps I have left the status of PASCAL as a fuzzy choice.
In fact, the choice between PASCAL and BASIC09 under OS-
9 is not casy. One reason to choose PASCAL is that its
programs can be compiled to machine language. Those who
intend to take high school or college programming courses
should opt for PASCAL simply because most institutions
encourage beginning students to take PASCAL. Further
advanced placement tests arc standardized on PASCAL.

For the rest of us, the transition from BASIC to BASIC09
is easier than the transition to PASCAL. And, “byteheads”
will probably take the next step to PASCAL as well.

To get started, buy the BASIC09 Compiler ($99.95) from
your Radio Shack store. Also, buy The Official BASIC09
Tour Guide by Dale Puckett, which is now available from
Radio Shack. Then, follow the rest of this article step by
step.

When BASIC09 first appeared, the cry went up, “It won't
load!" It was a directory problem. Under OS-9, if you just
type the procedure name, that procedure must be in memory
or in your CMDS directory to load and execute. The
BASIC09 disk comes without a CMDS directory. Therefore,
the very first order of business is to copy BASIC09 from the
distribution disk to the CMDS directory on a system disk
or to the CMDS directory on another disk if you are
running two or more drives. Unlike C, BASIC09 does not
require more than one disk drive.

There are two filenames on the distribution disk,
BASIC09 and RUNB. BASIC09 includes the interpreter,
an editor that is nice for a line editor, which as a class, ranges

PRGE o8

australian

RAITNBOW April 1986,

y —

from poor to horrible, and a debugger. RUNB is a special
interpreter that runs packed BASIC09 modules. RUNBis half
the size of BASIC09, and packed BASIC09 modules are a
quarter to a third smaller than their source code. Packed
modules run faster, though unpacked ones are fast
compared to Color BASIC. Downstream, you will need to
have RUNB in the CMDS directory along with packed
BASIC09 modules.

| am back to a practice | follow under Disk BASIC. | make
up asingle disk for an application that includes the program
modules and my working files. This way, I stick the disk
in, boot the application, load any work files and go. This
works even better under OS-9 where I have a special start-
up file that automatically boots the application, setting a
large memory buffer automatically.

| make an OS-9 system disk that includes OS9boot and
its various utility procedures in the CMDS directory. Some
of the procedures that come with OS-9 are never used with
BASIC09 and should be discarded while making your BASIC09
system disk. There are a number of ways to approach this
project, depending on how fancy you want to get. We will
show an easy way, then refer to some more complex
approaches that utilize more of OS-9’s power.

Making a Single Drive BASICo9 Disk

First, format a disk. Type FORMAT /D@ at the OS-9
prompt. OS-9 loads the FORMAT modules and asks if you
are ready. Now remove your system disk from Drive 0 and
insert a fresh disk. Press ‘Y' and that disk will be formatted.

The second step is to back up a system disk onto the newly
formatted one. Exact examples of how to do this are shown
on pages 63 and 64 of your red 0S-9 Commands Manual
for either two-drive or single-drive systems, so 1 won't
duplicate them here. At this point, put your original system
disk safely away and work with the backup. Type FREE and
you will see that of 630 sectors: 84 are free and the largest
block is 81 sectors (when using Version 01.01 of OS-9). This
is on a 35-track disk.

Though 84 sectors is not much to work with (particularly
when we have yet to copy BASIC09 and RUNB onto the
disk), there is quite a bit on the disk you will never need
with BASIC09, so housecleaning is in order. We can start with
the CMDS directory, which starts out like this.

Directory of /D@g/CMDS 11:36:40

asm attr backup
binex build cmp
cobbler copy date
dcheck debug del
deldir dir display
dsave dunp echo
edit exbin format
free ident link
list load login
makdir mdir merge
mfree os9gen printerr
procs pwd pxd
rename save setime
shell sleep tee
tmode tsmon unlink
verify xmode

ASM is the assembler, which you won't need, so take it

out. BINEX and EXBIN are worthless here, too, so pitch
them. CMP is useful to see if files are identical, but also
not worth keeping here, DCHECK and DEBUG can both
go, and you can dump DUMP. LOGIN and TSMON are
for use with an attached terminal intended for the multi-
user mode, so take them both out; TEE can go, too.

Here is the easy way to clean house. Know that when
deleting files from your data directory, you only need to
specify the filename and not the whole pathlist. All the files
listed here are in the CM DS directory. Therefore, make the
CMDS directory the data directory by typing CHD /D@~
CMDS. Now just a few typed lines will clean things up.

0S9>DEL ASM BINEX CMP DCHECK DEBUG DUMP
0S9>DEL LOGIN TEE TSMON
0S9>CHD ~De

After some OS-9 commands, a number of filenames may
be entered up to the input buffer limit. The advantage of
this is both reduced typing and speed since DEL is loaded
only once to work on a number of entries.

Next we turn our attention to the DEFS files. These are
only used with the assembler we just deleted, so we do the
same with the DEFS files and their directory.

0S9>CHD #D@-DEFS
0S9>DEL 0S9Defs RBFDefs SCFDefs SysType defsflle
0S9>DELDIR DEFS

At this point, OS-9 asks a cogent question to which I
answer 'Y’ and the directory goes away as well. Don't forget
to do a CHD /DO to return your data directory to DO.

Now we can copy BASIC09 and RUNBto our commands
directory. | suggest you type LOAD COPY to save a bit of time.
Single drive copy works like single drive backup in terms
of disk swapping and ready messages. The command lines
should look like this:

0S9>COPY #D@/basic@9 /D@/CMDS/basic9 -s H#30K
0S9>COPY D@/ runb #D@/CMDS/runb —-s H30K

The “~s” tells 0S-9 you want a single drive copy and “#30K”

allocates 30K bytes of memory buffer for the job. The larger

the memory buffer, the fewer times you need to swap disks.
Now our CMDS directory looks like this:

Directory of /dl/cmds 21:39:33
BASICP9 attr backup
runb build cobbler
copy date del
deldir dir display
dsave echo edit
format free ident
link list load
makdir mdir merge
mfree os9gen printerr
procs pwd pxd
rename save setime
shell sleep tee
tmode unlink verify
xmode

And we still have some room on the disk, as FREE will
show.

continued on F 61

April 1986.

Austral ianm

~ PAGE 50

I ———

‘E;!IEgIII

VERY BASICALLY OS9

OK. This month we are going to get
back to the basics of 0S-9 for
those who are new to 0S-9 and try
to answer the questions most
commonly asked.

In this article 1 am going to
assume that you have just been to
TANDY and bought a copy of 0S-9 and
BASIC0O9 and have just arrived home
with them. You open the boxes 1look
at the 3 disks and 4 manuals and
say to yourself where do we start.
You may even think that this is
going to be TOO HARD to learn so
why bother. You probably thought
much the same when you first bought
your computer home but you managed
to learn how to use it didn't you?
If you answered no you should go
back and learn the basics of how to
use it before you start on 0S-9.

Vell if you haven't been
discouraged and have read this far
that was the end of the hard sell.
Ve are now going to get back to the
point when you have opened the box

The first thing to do is back up
the master disk. First place a
write protect tab over the write
protect notch. The write protect
notch is the small square missing
from the side of the diskette. If
you cover this with a piece of tape
or a sticker then nothing can be
written onto the disk.

Before you can backup the disk you
must first get 0S-9 up and running.
If your Disk Basic has the DOS
command (0S9 on some) all that you
need to do is type DOS or CS9 when
you have inserted the System Master
Diskette into drive 0.

If your Disk Basic doesn’'t have
either of these fear not, you have
also been catered for. There should
be a diskette marked Boot Disk in
the package with the System Disk.
If you do a DIR of this disk there
should be two files on there, the
one called "X is the one that we
want. Insert this in drive 0 .and
type RUN"X" and press the enter
key. The screen will clear and ask
you 1if you wish to check the speed
of the drives or if you wish to
boot 08-9. Answer 05-9 and you are
on your way.

The loading and executing of 0S-9
takes a 1ittle time. The screen
should clear and the words 0S9 boot

should appear in the centre of the
screen.
The next message that should

appear will 1look something like
this. It will be different for each
version of 0S-9.

0S-9 Level One
RS VERSION 01.01.00
COPYRIGHT 1980 BY MOTOROLLA
AND MICROVARE SYSTENS CORP.
REPRODUCED UNDER LICENSE
TO TANDY CORP.
ALL RIGHTS RESERVED

yy/mn/dd hh: mm: ss
TIME ?

The prompt is asking you to enter
the date and time. Vhen you enter
this it will start the SYSTEM CLOCK
and print the date and time at
various times. It will also set the
date on any files so that you know
for instance the last time a file
was edited or when it was created.
The CLOCK is more {mportant than
you might think because what we are
about to do .will use the date of
the system clock.

The next thing to do is to make 2
backup coples of the master system
disk. Why 2 you may ask? Its
because you are going to modify one
of them and if you make a mistake
you will need the other disk to
boot 0S-9 again.

The first step in making a
system disk is to format a blank
disk (that makes sense doesn't
it?). 1 am going to take you step
by step through the procedure to
format and backup using single or
twin disk drives,

backup

Although 05-9 will work quite well

on a single drive two drives are
better and will make these
procedures easier and faster.
Anyway, the first step in

formatting a blank disk in drive 0
is to type "format /d0". Leave the
distribution master disk in drive 0
while you are typing this. This |1is

the reason that | said to place a
write protect tab on the disk.
After pressing enter the following

by Jack Fricker

will appear.

Format /d0 y/mn

At this point you remove the
distribution disk and insert the
blank unformatted disk into drive 0
and press Y for yes. Just to make
sure you really wish to do this it
will ask you if you are ready. If
you again type Y then it is too
late to back out, that disk is
about to be erased and formatted.
The reason that you are asked twice
is because formatting will erase
any data on the disk that you may
not wish erased.

After a short time you will be
asked for a volume name. This name
can be up to 32 characters long.
This name will be written to the
disk, but since we will be backing
up onto this disk you can type
anything you like in answer to this
question. Backup will write the
name of the disk that is being
copied over the name you type in.

After you type your response &
press enter you will see a number
of HEXADECIMAL numbers on the
screen. These numbers are the
sectors being put on the disk. At
the end of these numbers you will
see the total number of sectors is
$276. Repeat this procedure for the
other disk.

Now that we have a couple of blank
formatted dieks maybe we should put
something on them.

If you only have one disk drive
you must re-insert your master
system disk into drive 0 & type
BACKUP /d0. The Computer will
respond with Ready to backup /d0.
[f you type 'y' you will be asked
to 1insert the destination disk in
drive 0. Then you will be asked if
disk so & so is the one you want.

If you bhave 2 disk drives insert
the distribution system disk in
drive0 and the new disk in drive 1,
Type BACKUP & the prompt will read
"Ready to backup from /d0 to /dl
y/n". When you type 'y' you will be
asked if disk name(the name you
entered before) 1is the one you
want.

PAGE 0

Australian RAINBOW

Apri1 1588,

The reason that you are asked if
you really wish to backup onto the
disk is simple. When a backup of
one disk onto another is done any
and all information on the disk
being copled to is writtem over
including the name and date of
creation. This is the reason that I
said earlier when we created the
disk not to worry about giving the
disk a proper name. The creation
date is the only thing that is not
copied over from the original disk,
it is given the current date
instead.

OK. Now that you have 2 backups of

need to use it again.

Instead you will wuse your newly
created system disk. Put the system
disk 1in drive 0 and type CHD /DO.
Chd means CHange Data directory and
/d0 means drive 0 (of course). Next
type CHX /D0/CHDS. Chx means CHange
eXecution directory. /cmds is the
commands directory which is where a
list of all the commands and where
on the disk they are stored.

The chd and chx are commands but
you will not find them in the
commands directory because they are
part of 0S-9 and are in memory.

it.

Parameter is another word that has
to be learned. Vhat it means is
something that has to be passed
from one thing to another. In this
case pathlist is a parameter that
is passed to the calling program
chx or chd.

All these are mentioned in the
manuals so [have mentioned them to
help you when you read them. They
contain all the things that you
need to know so read them very
carefully and fully.

your Master Distribution disk. From The /d0
now on we'll call them your System
disk and Backup System disk. Put
your distributicn disk away in a

safe place because we should never the

Manuals

and /d0/cmds are called If
pathlists. Pathlist is a word you
will have to get used to when using
0S-9 because I will be using it and
make

you have any questions about
the user groups or the public
domain software you may contact me
c/- the Australian Rainbow or

constant use of P.0.Box 306 Clayfield 4011.

“COLOR COMPUTER DISK" created on: 85/11/17
Capacity: 630 sectors (1-sector clusters)
193 Free sectors, largest block 129 sectors

One last item to attend to is the start-up file.

TMODE .1 -UPC

XMODE ~P BAUD=4 -UPC
PRINTERR

SETIME </TERM

LOAD BRSICOS

EX BASICOY H12K </TERM

TMODE .1 -UPC sets the terminal for upper- and
lowercase. My experiments indicate this must be in all start-
up files when lowercase is desired. It can be issued from the
keyboard as well. Lowercase is used in BASIC09.

XMODE /P BAUD=4 -UPC sets the printer output to
2400 Baud. Use ‘2’ for 600 Baud and ‘3’ for 1200 Baud.
PRINTERR enables OS-9 to get error messages from the
disk replacing numbers; it’s nice to have. SETIME </
TERM gets the date and time entries from the keyboard.
Without </ TERM, SETIME looks for input from the disk
and the system locks up. This is an important point that
some of us have learned through much suffering. A start-
up file is set up to interact with the disk drive unless

instructed otherwise.

We load BASIC09 (the program) so we can go back and
forth between OS-9 and BASIC09 (the language) without
having to load BASIC09 each time. Finally, BASIC09 is
executed using EX, which saves forming another shell. >/
TERM must be included or BASIC09 looks for its input from
disk.

At this point you have one disk that automatically boots
into BASIC09 and has space for some program files.
However, we have not optimized memory. On booting, OS-
9 loads a standard set of modules. A few of these won't be
used and can be tossed, making room for either larger
program files in memory or providing space for other
modules such as DIR, which you might want in memory.
Elsewhere in this issue, Donald Dollberg discusses opti-
mizing your OS-9 boot to tailor in-memory modules to just
those you want. His article, “Creating OS-9 System Disks,”
starts on Page 224,

When you have finished customizing your BASIC09
working disk, keep it as a master disk and make backups
for working disks. When you start a new programming
project, it's a good idea to start with a new working disk,
as well.

Next month, we will pop our completely customized
BASIC09 disk in the drive and start programming. ~\

FASTER FRINTING

SERIAL '‘TO FARALLEL INTERFACE
600

BAUD FOWER FROM FRINTER
£ &H2 FOST FALD

RICHARD ROGERS

48 KNOCKLOFTY TERRACE
WEST HOBART 7000
PHONE (002) 3411055

BUILD YOUR OWN™ Uses KESSS, 741502, 741593
T4LS132, 7ALS164 PCE AND INFO %10

ian RAINBOW

$39-95

PAIR

NEW!!

Score higher in all your games with —
DRAGON JOYSTICKS

Have many features of expensive joysticks —
* Sturdy construction

Potentiometers for maximum precision

NOT the imprecise leal switches used in chesper models

High quality anti-RF| cable

* Positive Fire Button control

NOTE; these joysticks do NOT have sell centreing or fine tuning conirols

ORDERS with CHEQUE
or MONEY ORDER TO:

EASE.

EASE Services,
19 Acacia Avenue,
Blackburn, 3130

MONEY BACK IF NOT SATISFIED

PAGE &1

0S-9

JUNK FILTER

by Ross McKay

(Many people appreciated seeing Rosko's program in
the magazine last month. These simple, easy to
follow programs are a great starting point for new

0S-9'ers, and we'd encourage anyone who is not an
expert to forward for publication their 'little’
0S-9 progs.

0S-9 is proving to be a very enjoyable environment
to work in. Many of you are a bit daunted at the
prospect of starting something new - especially when
it looks a bit complex.

But if you give it a go, you'll like it - so get

PROCEDURE filt
t¥ FILT 1.0
(¥ by Rosko

(%
(*
(%
(%

usage: <{run> filt("filename")
will remove non-cr’s outside
range chr$(32)-chr$(127)
requires 0S-% Rename

PARAM filel:STRING

DIM infile,outfilel INTEGER
DIM char, 1$:STRING(1]
14:=CHR%(10)

JPEN #infile,filel:READ
CREATE #outfile,"temp":WRITE
WHILE NOT(EOF(#infile)) DO
GET #infile,char
IF char >CHR%(31)
PUT #outfile,char
PUT #1,char

ENDIF

IF char=CHR$(13)
PUT #1,1¢

ENDIF

ENDWHILE

CLOSE #infile
CLOSE #outfile
DELETE filel
SHELL "rename temp

AND char<(CHR%(128)

THEN

"+filel

into it! GO

I've already had some calls
following the program last month -
nice to hear from you!

Here is a little 1tility written in Basic 09 which
will filter out 'junk' characters from text files.

These include line feeds and any graphics and
control characters.

I wrote this to filter my BBS dumps, which ram to
many pages with the extra line feeds.

from some people
thanks, it was

OR char=CHR%(13) THEN

Hint . ..

Formatting Diskettes

Some CoCo users have reported problems with
formatting more than one disk in succession. The
CoCo uses a technique called “write precompensa-
tion™ on the more critical inner tracks of a disk; for
some reason, Disk BASIC doesn't turn off the feature
after a DSKINI is completed. If you need to format
more than one disk at a time, enter POKE 113,0 and
press the Reset button after each disk.

Hint . . .

Slow Scrolling
through Orange

Here’s a powerful little POKE that slows your
scrolling by creating a horizontal LIST. Type POKE
359,60 and you'll see what we mean. Add a colon (:)
and SCREEN®, 1 and you'll be slow-scrolling across an
orange screen. To return to the green screen at full tilt,
just type POKE 359,126,

PAGE &2 Australia

1786.

n RAINBOW

Apra

AUSTRALIAN

Educating with Electronic

Communications and Research

by Michael Plog P 5
LANGUAGE SKILLS

by Steve Blyn P 6

by David Compton P 8

by Allen Carlisle P 9

................ by Bill Bernico P 11

CoCoCAD MODIFICATION

EXPENSE TRACKING
.................. by Eddie Hill P 13

RECEIPT MAKER and FILE

by Bill Tottingham P 18

THE ECONOMIC ADVANTAGE

by Bill Bernico P 21

P

by Glen Dufur

FINANCING:
JUGGLE BILLS
EARLY AMORTIZATION

CREATING ANIMATION

by Edward Carson P 25

by Joseph Kolar P 29
DISK TINKERER'S DEVICE
.............. by Martin Goodman P 34
VARLIST by Hans Schulz P 38
Introduction to Timing
by Tony DiStefano P 42
BITMAN
by Peter Feldtmann P 45
Listening To Your CaoCo
by William Barden P 46

CoCoConnection:

Forth

CLEARLY SAID, CLEANLY DONE

by John Redmond P 53
by John Poxon P 55

................

Vhat's New!
THE Probe

059
Getting Started With BASICO09
............... by Richard White P 58.

Very Basically 089

by Jack Fricker P 60

.................

by Ross MacKay P 62
Subscription Page P 64

Hardware/Software

Specialists

For All Your CoCo Needs

AUTO ANSWER $399.00
INFO CENTRE

THE FIRST BULLETIN BOARD SYSTEM
for Tandy's computers

(02) 344 9511 — 300 BPS (24 Hours)
(02) 344 9600 — 1200/75 BPS
(After Hours Only)

SPECIAL!

Avtek Mini Modem + Cable + CoCo
Tex Program — the fotal Viatel System —

$279.00
We also have the largest range of Software for
0S-9 and Flex operating systems.

PARIS RADIO ELECTRONICS

161 Bunnerong Rd., Kingsford, NSW. 2032
(02) 344 92111

" HOME COMPUTER
TABLE

l It
Ji { OUTSTANDING
,_;;J Y FEATURES

ANGLED FRAME PROVIDES RIGIDITY AND
STABILITY

KNOCKDOWN CONSTRUCTION FOR EASE OF
TRANSPORT

SPLIT.LEVEL TOPS EACH 900mmx380mm
BOTH AT ERGONOMIC HEIGHT

DURABLE EPOXY COATED FRAME

ONLY $125.00

DELIVERY WITHIN BRISBANE METROPOLITAN
AREA PLUS $700

DELIVERY ELSEWHERE IN QUEENSLAND

® S0 0 o o o

s&m contract furniture pty Itd

e MONEY BACK 893 snm.gv ST,CNR
HAMPTON ST, LLOONGABBA

IF NOT SATISFIED

PLUS $14, IN AUST. PLUS $20

QUEENSLAND 4102. PH: 3918188

=

® TRADE ENQUIRIES WELCOMED

The Best of CoCoOz:

#1 ... EDUCATION programs. Fourteen programs for the teacher or parent.
#2...Part1...16K GAMES. (Mainly ECB). Sixteen programs to keep you on your toes!
Part 2. .. 32K GAMES. Adventures, simulations and arcade games for everyone!
#3... UTILITIES Programs to make your use of the computer easier.
Spoolers, Reverse Video, Disk utilities and more.
#4 ... BUSINESS programs. Invocing, Accounts, Creditors and more.

Per Tape $10.00
Per Disk 2195
Two Disks or more each $16.00
#3 on Disk $16.00
Any two tapes $17.00

What's on:

Best of CoCoOz #1. Education.

BOADQUIZ v vsv 0 viisone v osias ROB WEBB MARKET .:ivisssnsvsssisis ALEPH DELTA
HANGMAN ALEPH DELTA TOWNQUIZ: vvenoons ROB WEBB
AUSTGEOG . 55 i avaiivas P. THOMAS ALEABETA ;.. o invssn vimasias RON WEBB
BRELL s baeveistdos s IAN LOBLEY TANKADDITION DEAN HODGSON
FBACTIUY v ROBBIE DALZELL TABLES s sciainovives BARRIE GERRAND
IGOSA oivanmuminssmsses BOB WALTERS KIDSTUFE oo saiivines JOHANNA VAGG
TAXMAN - soniias TONY PARFITT BLAGQUIZ . ..o roivorens araisce oo ROB WEBB
Best of CoCoOz #2 part 1. 16K Games.

TREASURE < ¢ 1vihvsieeas DAVISON & GANS SHOOTING GALLERY TOM DYKEMA
MASTERMIND GRAHAM JORDAN QARDENovunses DAVE BLUHDORN
ANESTHESIA MIKE MARTYN YAHIZEE i ana KEVIN GOWAN
OREGONTRAIL DEAN HODGSON BATTLESHIP CHRIS SIMPSON
ADVENTURE STUART RAYNER ANDROMIDA MAX BETTRIDGE
Best of CoCoOz #2 part 2. 32K Games.

LEPAR . ..oumaesibnevsrass Wrongsoft PYTHON oasnich ssam e snn sasibsss ?
COCOMIND STEVE COLEMAN POKERMCH GRAHAM & MATTHEWS
OILSLICK . i visiscresis JEREMY GANS SPEEDMATH DEAN HODGSON
COMETEOR ...:..cvcevcomnn BOB THOMSON LNDATTCK ALDO DEBERNARDIS
BATTACK -osvvieoon e JEREMY GANS INVADERS DEAN HODGSON
PROBDICE < :civuiiivain BOB DELBOURGO RALLY vl sissnsraasdvaids TONY PARFITT
CHECKERS ..isvundisimeaae J & J GANS FOURDRAW JOHANNA VAGG
Best of CoCoOz #3. Utilities.

RAGER: L tnt s e ket s endls ? COPYDIR oz ¢ cv94wes THOMAS SZULCHA
B o s ALEX. HARTMANN EABELLER iiis sissiwismive sagsaie J.D. RAY
SPOOLG4K WARREN WARNE SCRPRT - avauamsiaes TOM DYKEMA
CREATITL o< vovivanss BRIAN FERGUSON MONITOR+ BRIAN FERGUSON
BASTEXT: L ¢ b ivhii ot sy o saisingis 0Z-WIZ BEAUTY S ot et fdieats UL Lk BOBT
DATAGEN ...ovevoovcons ROBIN BROWN PCOPY ciciiae vomrs b siidns B. DOUGAN
SPEEDCTR: ..y PAUL HUMPHREYS RAMTESY co.cvnisianis TOM DYKLEMA
PRNTSORT PAUL HUMPHREYS DISKFILE :sisvscws s B. DOUGAN
BIGREMS .:uiissmsisaninissved BOBT LABEL s the s, sasai F. BISSELING
DIR o coiivitfnsestire PAUL HUMPHREYS

Best of CoCoOz #4. Business.

.................. ALEX. HARTMANN PERSMAN PAULHUMPHREYS
(Dusk Directory manager) (Personal finance management)
BANKSTAT BARRY HATTAM 0N ot GRAHAM MORPHETT
(Statement annal & store) (Sales Invoicing-tape sys)

INSURE: ... ocoieines ROY VANDERSTEEN COCOFILE ..wvasmaisis BRIAN DOUGAN
(Analyse home contents) (Tape data base)

SPOOLGAK ;. iveevine WARREN WARNE DPMS iosasasinsngs PAUL HUMPHREYS
(Printer spooler req 64K) (Disk Program Management Sys)

2BG G AN A ot WARREN WARNE AOKGREY, oot s voans RAY GAUVREAU
(Hold 2 sep progs in mem) (40K Basic for grey 64K CoCo)

DATABASE PAUL HUMPHREYS TAXATION: & 5eiGasasins wvsesaen ?
(THE tape database) (Calc tax payable)

RESTACC:. i m s st S DUNG LY SPOSHEET GRAHAM MORPHETT
(Tape restruant accounts) (Disk 22 coloum spreadsheet)

PRSPDSHT .. .ieine GRAHAM MORPHETT AGCSS [oicsenoiiss wmasis GREG WILSON
(Disk print out SPDSHEET) (Multi disk data base)

Next:

Best of CoCoOz #5. Adventure Games Due:

April '86

Best of CoCoOz #6. Preschool Education Due: June '86

AUSTRALIAN RAINBOW
[7 6 months
12 months

AUSTRALIAN CoCol/Softgold
1 6 months
1 12 months

RAINBOW ON
[6 months
1 12 months
| deb monthly

CoCoOz ON

[6 months
C] 12 months
[] deb monthly

MicoOz
1 6 months
(3 12 months

7 TAPE
$ 81.00
$144.00
$ 15.00

[l TAPE
$ 42.00
$ 75.00
$ 950

L} TAPE
$ 42.00
$ 75.00

SUBSCRIPTION FORM

GOLDSOFT. P.O. BOX 1742, SOUTHPORT, 4215.

$24.75
$39.95
$39.95

$19.00
$31.00

'] DISK
$ 81.00
$172.00
$ 15.00

[} DISK
$ 58.00
$102.50
$ 10.95

Additional Requirements:

Name: [

Address:

L]

P.C.

Phone No.:

[

Credit Card No.: I—I]

[]

98 I Y

1 Bankcard

AULhOTISBTAMT S v n vwaniaimvionst Gvel, sisivr o sa/s e wra/aiaite ¥iai i acs s

] Visa

] Mastercard

OFFICE USE ONLY:
Received:-

TANDY ELECTRONICS DEALER. (No 9320)

Bankcard &
Cheque Orders
accepted

Computer Hut Software F
Are proud to announce that we are now the
sole Austrolian distributers for

¥ MARK DATA PRODUCTS ¥ COGNITEE

* COMPUTER 1SLAND x DEARRINGER SOFTWARE

¥ GPECTAAL ASSOCIATES * TRAIAD PICTURE COARP.

 TOM MiX SOFTWARE * UIP TECKRNOLODGIES

* SUBAR SOFTUWARE x COMPUTER STOAY BOOKS

¥ PRICKLY PERAR SOFTWARE * PICOGOFT

* SPECTALM PADJECTS ¥ COASTAL COMPUTER SERVICES
 PAL CRAEATIONSG ¥ NOVAGOFT

* X

QLS NEST SOFTWARE COCOD CASSETTE Cwmonthiy)

We have about 300 programs With more on the wayg.

SEE YOUR LOCAL TANDY DEALER
or send $1-00 for o full ecatalogue to:li-
tle accept 2- Computer Hut Software
¥ BHNKLCARD 21,Willioms Street.
¥ MASTERCARD Bowen.Qld.4805.

or VIATEL No 778622200.

See our price 1i9% In AUSTRAALIAN RAINBOH

L ¥ U)SACARD Phone (077)86-2220

T —

RORTH STEVEN EISENBERG
BRIGHTON GLENN DAVIES
GREENACRES BETTY LITTLE

MORPHETTVALE KEN RICHARDS

PORT NOARLUNGA ROB DALZELL
SEACOMBE HTS GLENN DAVIS
STURT MARY DAVIS
ALBURY RON DUNCAN
ARMIDALE DANIEL CLARKSON
BAIRNSDALE COLIN LEHMANK
BALLARAT NARK BEVELAKNDER
BIGGERDEN ALAN MENHAN
BLACKVATER ANNIE MEIJER
BLAXLARD BRUCE SULLIVAN
BOVEN TERRY COTTON C/0
BRISBANE:
BIRKDALE COLIN NORTH
BRASSALL BOB UNSVORTH
EAST ROB THONPSON
IPSVICH NILTON ROVE
PIRE RIVERS BARRY CLARKE

SOUTH VEST GRAHAN BUTCHER

SANDGATE MARK NIGHELL

SCARBOROUGH PETER NAY
BROKEN HILL TERRY FOONAN
BUNDABERG RON SINPKIN
CAIRNS GLEN HODGES
CAMDEN KEVIN VINTERS
CARBERRA NTH JOHN BURGER
CANBERRA STH LES THURBON
CHURCHILL GEOFF SPOVART
COFFS HARBOUR BOB KEFNY
COOMA ROSS PRATT
COORANBONG GEORGE SAVAGE
COOTAXUNDRA CHERYL VILLIS
DALBY ANDREV B. SINPSON
DARVIN BRENFTON PRIOR
DENILIQUIN VAYNE PATTERSON
DUBBO GRAENME CLARKE
EMERALD LEIGH EANES
FORBES JOHANNA VAGG

08

060
067
051
053
071
079
047
077

080

C
070
046
062
062
051
066
064
049
069

074.
089.

058
068
059
068

296 7477
261 4083
384 4503
386 1647
296 7477
296 7477
43 1031
72 8031
57 1545
32 6733
27 1271
.82.6931
39 3903
86 2220

824 2128
201 8659
848 5512
281 4059
204 2806
376 3400
269 5090
203 6723
88 2382
/0 TARDY
54 6583
.66.8068
58 3924
88 9226
22 1389
51 2205
8 23 065
77 1054
42 2264
62.3228
81.7766
81 3014
89 2095
68 3392
52 2943

AUSTRALIAN RAINBOW MAGAZINE
REGISTEREDBY AUSTRALIANPOST —

PUBLICATIONNO.QBG 4009
AUSTRALIAN COCO/softgold

REGISTERED BY AUSTRALIANPOST —

PUBLICATIONNO. QBG 4007.

POBOX 1742,

SOUTHPORT. QLD.

4215.

GLADSTOKE
GOLD COAST
GOSFORD

CAROL CATHCART
GRAHAM MORPHETT
PETER SEIFERT

079 78 3594
075 51 0015
043 32 7874

GOULBURN VALLEY TONY HILLIS 058 59 2251

GRAFTON
GUYRA
HASTINGS
HERVEY BAY
HOBART
JUREE
KALGOORLIE
KINGSTON
KENPSEY
LISNORE
LITHGOV
MACKAY
NAFFRA
MAITLARD
NARYBORQUGH
MELBOURNE:
DANDENONG
DONCASTER
FRANKSTOR

NARRE VARREN

MICHAEL J.

PETER LINDSAY
HARTMARN
NICHEAL NONCK

066 42 2503
067 79 7547
059 79 2879

LESLEY HORVOOD 071 22 4989

BOB DELBOURGO
PAUL MALONEY
TERRY BURNETT
VIX DE PUIT
RICK FULLER
ROB HILLARD
DAVID BERGER

002 25 3896
069 24 1860
090.21.5212
002 29 4950
065 62 7222
066 24 3089
063 52 2282

LEN MALONEY 079511333x782

MAX HUCKERBY
LYN DAVSON
NORM VINN

DAVID HORROCKS 03

051 45 4315
049 49 8144
071 21 6638

793 5157

JUSTIN LIPTON 03 857 5149

BOB HAYTER 03.

783.9748

LEIGH EAMES 03 704 6680

NTH EASTERR KEVIN KAZAZES 03 437 1472
MELTON NARIO GERADA 03 743 1323
RINGWOOD IVOR DAVIES 03 758 4496
SUNBURY JACK SNIT 03.744.1355
MOREE ALF BATE 067 52 2465
MORVELL GEORGE FRANCIS 051 34 5175
MT ISA PAUL BOUCKLEY-SIMONS 077 43 6280
NUDGEE BRIAN STONE 063-72-1958
MURGON PETER ANGEL 071 68 1628
NAMBUCCA HDS VENDY PETERSON 065 68 6723
NARROMIRE GRAEME CLARKE 068 89 2095
NEVCASTLE LYF DAVSOR 049 49 8144
NOVRA ROY LOPEZ 044 48 7031
ORANGE STEVE LOVETT 063.62.4025
or JIM JAMES 063 62 8625

PARKES DAVID SMALL 068 62 2682
PERRITH ALEX SCHOFIELD 047 31 5303

x* XX¥

Music!

A Driving Test!
Expert Systems.

Plus all your favourite regular columns!

PEKLH f. . 0
PORT LINCOLF BILL BOARDMAN 086 82 2385
PORT NacQUARIE RON LALOR 065 83 8223
PORT PIRIE KEVIN GOVAN 086 32 1368
ROCKHANPTOF KEIRAN SIMPSON 079 28 6162
SALE BRYAF McHUGH 051 44 4792
SHEPPARTON ROSS FARRAR 058 25 1007
SNYTHESDALE TONY PATTERSON 053 42 8815
SPRINGVOOD DAVID SEAMOES 047 51 2107
SVAN HILL BARRIE GERRAFD 050.32.2838
SYDNEY:
BANKSTOVE CARL STERN 02 646 3619
BNKSTVN VEST ARTH PITTARD 02 72 2881
BLACKTOVN KEITH GALLAGHER 02-627-4627
CANPBELLTOVN LEO GINLEY 02 605 4572
CARLINGFORD ROSKO NCKAY 02 624 3353
CHATSVOOD BILL O'DONNELL 02 419 6081
or MARK ROTHVELL 02 817 4627
CLOYTON HERMAN FREDRICKSON 02 6236379
HILLS DIST DERIS CORROY 02 671 4065
HORNSBY ATHALIE SMART 02 848 8830
KENTHURST TOM STUART 02 654 1610
LEICHHARDT STEVEN CHICOS 02 560 6207
or GORGE ECHEGARAY 02 560 9664
LIVERPOOL LEONIE DUGGAN 02-607-3791
MacQUARIEFLDS KEITH ROACH 02 618 2858
ROSEVILLE KEN UZZELL 02 467 1619
SUTHERLAND IAN ARNABEL 02 528 3391
SYDNEY EAST JACKY COCKINOS 02 344 9111
TAMVORTH ROBERT VEBB 067 65 7256
TAHNOOR GARY SYLVESTER 046 81 9318
TARA STEVEN YOUNGBERRY
TONGALLA TORY HILLIS 058 59 2251
TOOVOOMBA GRAHAN BURGESS 076 30 4254
TOVNSVILLE JOHN O'CALLAGHAN 077 73 2064
TRARALGON MORRIS GRADY 051 66 1331
UPPER HUNTER TERRY GRAVOLIN 065 45 1698
URALLA FRARK MUDFORD 067 78 4391
VAGGA VAGGA CES JENKINSON 069 25 2263
VHITEROCK GLEN HODGES 070 54 6583
VHYALLA NALCOLM PATRICK 086 45 7637
VONTHAGGI LOIS O'MEARA 056 72 1593

In

Australian CoCo

This Month:

* Four Education Progs!
* Sale of the Century!
X M-Masters

(a game)d .

(Stop between numbers = b
a.h.; but, hyphen between

VYNYARD ANDREV VYLLIE
VYONG JOHN VALLACE
YARRAVONGA KEN SPONG

h. else
= both.)

004 35 1839
043 90 0312
057 44 1488

SPECIAL INTEREST GROUPS

BUSINESS
BRIZBIZ BRIAN BERE-STREETER 07 349 4696
0S9 GROUPS
BANKSTOVE CARL STERN 02 646 3619
BRISBANE JACK FRICKER 07 262 8869
CARLINGFORD ROSKO NCKAY 02 624 3353
COOMA FRED BISSELING 0648 23263
KALGOORLIE TERRY BURNETT 090.21.5212
SYDREY EAST JACKY COCKINOS 02.344.9111
SYDNEY NTH MARK ROTHVELL 02 817 4627
NC-10 GROUPS
LITHGOV DAVID BERGER 063 52 2282
ORANGE DAVID KENP 063 62 2270
PORT LINCOLN BILL BOARDNAN 086 82 2385
ROCKHAMPTON TIN SHARK 079 28 1846
SYDKEY RAJA VIJAY 02 519 4106
WARRNAMBOOL GARY FURR 055 62 7440
TANDY 1000 / NS DOS

BRISBANE

RORTH BRIAN DOUGAN 07 30 2072

SOUTH BARRY CAVLEY 07 390 7946
GOLD COAST GRAHAM MORPHETT 075 51 0015
NELBOURNE TONY LLOYD 03 500 0878
SYDNEY ROGER RUTHEN 047.39.3903
VYONG JOHN WALLACE 043 90 0312

FORTH
BRISBANE JOHN POXOR 07 208 7820
PORT LINCOLF JOHN BOARDMAN 086 82 2385
SYDNEY JOHN REDMOND 02 85 3751
ROBOTICS

BOVEN TONY EVANS 077 86 2220
GOLD COAST GRAHAX MORPHETT 075 51 0015
TAMVORTH ROBERT VEBB 067 65 7256
VAGGA VAGGA CES JENKINSON 069 25 2263

POSTAGE

PAID

AUSTRALIA

