

CaND T ELFCTRONICS DEALER [No 932C)

Bankcard &

BLARLAND (047> 39-3903
CORPUTER COCD & | OO0
PTY.LT0. SPECIRLEIGTS
LARGEST RAANBE _UOF
AHE T AEREscoRTEE" CHEEH
(TANDY DEALER 8254 |
X == PR CES
@ 2 b %—_—.:E\j
malLORDER
=] [0 ShErkRRe
7T6A MURPHY ST.BLAXLAND 2774

Cheque Orders
accepled

Computer Hut Software

Are proud to announce that we ore now the
sole Australion distributers for :-

MARK DATA PRODUCTS ¥ COGNITELE
COMPUTER {S5LAND ¥ DERRINGER SOFTWARE
SPECTARAL ASSOCIATES * TRIAD PICTURE COAP.
T0Mm MY SOFTWARE ¥ UlP TECHNOLDGIES
SUGAR SOFTWARE X COMPUTER STORY BOOKS
PRICKLY PEAR SOFTWARE X PICOSDFT
SPECTAUM PROJECTS * COASTAL COMPUTER SERUVICES
PAL CREATIONSG * NOVASOFT

X

OWLS NEST SOFTUWARE COCO CASSETTE Cwonthly)
We have about 300 programs With more on the way.
SEE YOUR LOCAL TANDY DEALER

or send $1-00 for o full catalogue to:-
Mle accept - Computer Hut Software
¥ BHNKCARD 21,Willioams Street.
¥ MASTERCARD Bowen.Qld.4805.
¥ UISACARD Phone (077)86-2220

CHILD’S PLAY™
EDUCATIONAL LEVEL
WORD PROCESSOR

CHILD’S PLAY™
FAMILY LEVEL
WORD PROCESSOR

ALTYPIST
% 41 ARUS™

WORD PROCESSING WITH
INSTANT SPELL CHECKING

st $155.00
Requires 256K T1000

ENCOM

AVAILABLE FROM — 2nd Floor, 20 McDougall St EDUCATION
OR YOUR TANDY STORE reemms sos sso SOFTWARE

How To Read Rainbow

Please note that all the BASIC program
listings you find in THE RAINBOW are
formatted for a 32-character screen —
so they show'up just as they do on your
CoCo screen. One easy way to check on
the accuracy of your typing is to com-
pare what character “goes under” what.
If the characters match — and your line
endings come out the same — you have
a pretty good way of knowing that your
typing is accurate.

We also have "key boxes" to show you
the minimum system a program needs.
But, do read the text before you start
typing.

Finally, the little cassette symbol on
the table of contents and at the begin-
ning of articles indicates that the pro-
gram is available through our RAINBOW
ON TAPE service. An order form for this
service is on the insert card bound in the
magazine.

What's A CoCo

CoCois an affectionate name that was
first given to the Tandy Color Computer
by its many fans, users and owners.

However, when we use the term
CoCo, we refer to both the Tandy Color
Computer and the TDP System-100
Computer. It is easier than using both of
the “given” names throughout THE RAIN-
BOW.

In most cases, when a specific com-
puter is mentioned, the application is for
that specific computer. However, since
the TDP System-100 and Tandy Color
are, for all purposes, the same computer
in a different case, these terms are
almost always interchangeable.

The Rainbow Check Plus
N e

The small box you see accompanying
a program listing in THE RAINBOW is a
“check sum" system, which is designed
to help you type in programs accurately.

Rainbow Check PLUS counts the
number and values of characters you
type in. You can then compare the
number you get to those printed in THE
RAINBOW. On longer programs, some
benchmark lines are given. When you
reach the end of one of those lines with
your typing, simply check to see if the
numbers match.

To use Rainbow Check PLUS, type in
the program and CSAVE it for later use,
then type in the command RUN and press
eNTER. Once the program has run, type
NEW and ENTER to remove it from the area
where the program you're typing in will
go

Now, while keying in a listing trom THE
RAINBOW, whenever you press the down-
arrow key, your CoCo gives the check
sum based on the length and content of
the program in memory. This is to check
against the numbers printed in THE
RAINBOW. If your number is different,
check the listing carefully to be sure you
typed in the correct BASIC program code
For more details on this helpful utility,
refer to H. Allen Curtis' article on Page
21 of the February 1984 RAINBOW

Since Rainbow Check PLUS counts
spaces and punctuation, be sure to type
in the listing exactly the way it's given in
the magazine.

10 CLS:X=256*PEEK(35)+178
20 CLERAR 25,%-1
30 X=256%*PEEK (35)+178
49 FOR 2=X TO X+77
SO READ Y:W=W+Y:PRINT 2 YU
6@ POKE Z,Y:NEXT
70 IFW=79BSTHENBOELSEPRINT

“DATA ERROR " :STOP
80 EXEC X:END
90 DRTA 182, 1, 106, 167, 1409, 60, 134
100 DATA 126, 1863, 1, 106, 190, 1, 107
110 DATAR 175, 140, 50, 48, 149, 4, 191
120 DATA 1, 107, 57, 129, 10, 38, 38
130 DATR 52, 22, 79, 158, 25, 230, 129
140 DATAR 39, 12,171, 128, 171, 1286
150 DATA 230, 132, 38, 250, 48, 1, 32
160 DATA 240, 183, 2, 222, 48, 140, 14
170 DRTA 159, 166, 166, 132, 268, 254
180 DATA 189, 173, 198, S3, 22, 126, @
199 DATA @, 135, 255, 134, 40, 55
200 DARTA 51, 52, 41, 0

Using Machine Language

Machine language programs are one
of the features of THE RAINBOW. There are
a number of ways to “get” these pro-
grams into memory SO you can operate
them.

The easiest way is by using an editor/
assembler, a program you can purchase
from a number of sources.

An editor/assembler allows you to
enter mnemonics into your CoCo and
then have the editor/assembler assem-
ble them into specific instructions that
are understood by the 6809 chip that
consrols your computer.

When you use an editor/assembler, all
you have to do, essentially, is copy the
relevant instructions from THE RAINBOW'S
listing into CoCo

Another method of getting an assem-
bly language listing into CoCo is called
"hand assembly.” As the name implies,
you do the assembly by hand This can
somelimes cause problems when you
have to set up an ORIGIN statement or
an EQUATE. In short, you have to know
something about assembly to hand-
assemble some programs.

Use the following program if you wish
to hand-assemble machine language
listings:

10 CLEARZ2QQ.,2H3FQ0: I1=4H3FBO
20 PRINT “ADDRESS: ";HEXS(I):
30 INPUT "BYTE~:BS

42 POKE I,.VAL("8H"+BS)

5@ I=1+1:G0TO 2@

This program assumes you have a 16K
CoCo. If you have 32K, change the
&H3FQ in Line 10 to &H?F@ and change
the value of 1 to &H?FB@.

Founder Greg Wilson
Publishers Graham & Annette Morphett
Managing Editor Graham Morphett
Accounts Annette Morphett
Assistand Editor Sonya Young
Advertising Tracey Yapp
Art Jim Bentick
Sub Editors
Assembly Language: Kevin Mischewski
MC-10: Jim Rogers
softgold: Barry Cawley
Forth: John Poxon
0S-9: Jack Fricker
Special Thanks to
Brian Dougan, Paul Humphreys,
Alex Hartmann, Michael Horn,
Darcy O'Toole, Martha Gritwhistle,
Geoff Fiala, John Redmond
and Mike Turk.

Phones: (075) 51 0577 Voice
(075) 32 6370 CoColLink
Deadlines:
7th of the procedding month.
Printed by:
Australian Rainbow Magazine
P.O. Box 1742
Southport. Qld. 4215,
Registered Publication QBG 4009.

This material is COPYRIGHT. Magazine
owners may maintain a copy of each
program plus two backups, but may NOT
provide others with copies of this magazine
in ANY form or media.

.............. by Rod Hoskinson P 4

............... by Geoff Mackie P 6
YOUR CHILD'S SELF IMAGE

................. by Steve Blyn P 8
Hardware Course Part 2

............. by Tony DiStefano P 9
THE COMMANDOS WANT YOU

........... by Anthony Frerking P 12
AN EASY VAY TO RUN PROGRAMS

............... by Andrew Dater P 14
ADVENTURING INTO SOUND EXPERIMENTATION

............... By Bill Bernico P 15
CoBBS Part 4 by Richard Duncan P 17
RENUM WITH A TVIST

............ by Fredric Haberer P 18
ROBOGISE . «ieviceisi weaniis by ¥.J. Moore P 19
GATHERING UP SCATTERED PROGRAMS

............ by Pete Eichstaedt 21
QUICK RESTORE by John Galus P 22
Load Double-Speed Tapes

........... by Craig Carmichael P 23
CROSS-REFERENCE with XREF

.......... by Douglas Van Dusen P 24
AUTO-EXECUTING TAPE PROGRAMS

o

.............. by Harold Nicket P 27
CoCo MERGE by John Nicolettos P 30
CLS COMMAND by Gerry Schechter P 34
PIX RILES' v i by Joseph Kohn P 35
UTILPACK: : csqivnzs by Rod Hoskinson P 37
BUBBLE WARS

............ by Richard Ramella P 39
CRASH PROOF IT by Terry VWilson P 41

Assembly File

........... by Kevin Mischewski P 42
Odds and Evens #1

............. by Andrew Simpson P 43
Hard Facts about Assembly Language

......... by William Barden Jr. P 45
RAM TEST by Craig V. Bobbitt P 51
DEFEAT DE BUGS by Mike Dean P 56
Forth Forum by John Poxon P 58
0s-9

Frickers Follies
............... by Jack Fricker P 60
DIR: SORT . vcovns o ive by Ross McKay P 62

PRINT# -2 :

. CASSEMBLY j

_UTILITIES
| iR
F““"‘-!!H-n-1
:;SSAXNAIEEB::jQQ\\\
4 e

This month's mag is a potporri of utilities from
both the USA and Australia.

Just so the games players will feel at ease, we've
also included a couple of games!

There is a heap of new and very exciting software
available this year, I hope you will take the time
to get down to your local Tandy store and eee some
of it.

The major supplier of third party software in
Australia is the Computer Hut in Bowen, Qld.

Tony from Computer Hut sent us a bundle of
software, and this forms the basis of a fairly large
review section in Australian CoCo this month - so if
you are looking for something different, and there's
plenty of different things there, have a read of
that magazine.

The boys and girls at Liverpool users' group have
been very busy of late, encouraging Leonie Duggan,
their meet co ordinator, 1in her work with local
unemployed kids.

Leonie leads a course in computing for the young
people of the area and so far, after just 2 years (I
think) she reports an 85% employment rate - ie 85%
of the kids attending, get Jobs soon after they
graduate,

Currently Leonie is after computers for use in the
course. As | said, the group there is already
helping, and have supplied a number; but if you have
an old CoCo that perhaps doesn't go, or even an
MC~10 that you don't need, then how about donating
it to a worthy cause?

Anyone who does donate a computer this month will
receive from us, a six month sub to CoCoOz ARD from
The Computer Hut in Bowen, one of the new range of
games / programs Computer Hut has just imported.
(Thanks go to Computer Hut for donating so
generously.)

Finally, CoCoConf '86 is on in August this year.

Ve are presenting some 10 tutorials this year, and
these will be lead by some of the most talented
people in Australia. Plan to come - we'd love to see
you.

K

........ Subscription Page P 63
oo e ———]

BSOS e e Sl B et e

UTILITY

DISSASSEMBLER

by Rod Hoskinson

(Greg Wilson's right hand man, Rod
Hoskinson, has been busy with exams and
courses since Greg passed away and the Mag
moved to the Gold Coast.

Ve've all missed Rod's involvement and
so it is very nice to be able to present
the first of two excellent articles by
Rod. G.)

[wrote the bulk of this program as far
back as 1982, then it was put aside, not
quite finished, and forgotten. The school
holidays over the Christmas break gave me
the spare time to dig it out, chop and
change a little here and there, and send
it up to Graham.

My interest in Machine Language
programming on the CoCo with its great
6809 processor inspired me to begin
writing this dissassembler - what better
way to learn the instruction set and
addressing modes?

The program as presented requires a
minimum system of 16K ECB, however it
could probably be modified to run on a
standard Basic without too much trouble.

You must POKE 25,6:NEV before CLOADing
and RUNning. Disk users will have to make
some changes - DELete 1lines 4-8, and
delete the POKEs in line 9. (And instead
of POKEing 25,6, POKE25,14:NEV G.)

The program is in BASIC and incorporates
a machine code utility by Michael Batley
which appeared in May 1983 Australasian
Rainbow.

This short wutility reverses the screen
colours and I heartily recommend it to
anyone who wishes to keep their sight and
still use CoCo! (Thanks Michael.)

After a short initialisation you will be
presented with a sign on message and the
main menu. To select an option, simply
press the key corresponding to the first
letter of that option (these letters are
inversed on the screen). You can exit most
options by simply holding the <SPACEBAR),

which will return you to the menu.

The choices are explained below:

I. for Input, is used to input the start
and end addresses for your disassembly.
Hexadecimal address should be preceded by
the '$' sign or by &H.

D. for Disassemble
into assembly language.
the end address is reached,
spacebar,

A. for

6809 machine code
To exit before
hold the

ASCI1 dump, is used to
disassemble FCC tables in the machine
code, from your start address to the end
address.

B. for Byte dump, is used to disassemble
FCB tables in the machine code.

V. for Vord dump, disassembles
tables.

FDB

CLOADXM lets you do exactly that. If you
get an 1[0 error, then reRUN or type GOTO
10. You are free to load into memory from
$2700 wup, which is close to decimal 10
000, a nice easy number to remember.

Therefore you should specify an
appropriate offset that will load your
program into this memory area. (For

example if the ORG is 0, then an offset
load by 10 000 will do the trick.)

P, for printer, will redirect all output
to the printer, if it is connected.

S will switch ouput back to the screen.
If you enter O for orange at the COLOUR?
prompt, the screen will be that colour.

Finally E simply ends the program. Your
start and end locations are always given
at the Menu, in hex.

I have found this utility very useful in

my assemly language programming
endeavours. It gives you some of Z-Bug's
major functions at virtually no cost. I

believe the program is bug-free (sarcastic
Ha-Ha) it has dissassembled CoCo's ROMs
with no trouble. I hope this can be of
use to some readers.

PAGE 4

Australian RAINBOW

March 19864.

The Listing:

1 '6809 DISASSEMBLER FOR COCO

BY ROD HOSKINSON

REVISION 1.1:31/1/1986

PUBLIC DONAIN PROGRAN.
2 GOTO4
3 POKE65494, 0: CSAVE"DISASSEN": EN
D
4 CLS0:POKE65495, 0: CLEAR300, 9833
S RESTORE: X=9834: FORI=1TQ3: READS
,D: FORJ=S TOD: POKEX, PEEK (J): K=M+
1: NEXTJ, 1
6 DATA33395,33413,38316,38350,41
738,41825
7 FORI=1TO25: READNS, D$: N=VAL ("&H
26" +N$) : D=VAL ("&H" +D$) : POKEN, D: N
EXT
8 DATAGE, 0,6F,D,9A,F,9F, 16,F4,16
F5,32,F6,62,F7,39, AE,20,BA,20,A
F, 8D, B0, 48,CF, 8,D2,22,D3,2,D4, 88
, D5, 40, D6, 84, D7, DF, EF, 20, F9, A7, F
A,84,FB, A7,FC,82,FD, 39
9 5=0:E=0: POKE&H168, &H26: POKE&H1
69, 8H6A: POKE359, 126: SCREENO: DR=0
: PRINT"NC6809E DISASSEMBLER FOR
COCO BY ROD HOSKINSOR V1.1 198
6" :PRINT
10 PRINT"dISASSEMBLE aSCI1 DUMP
bYTE DUMPwWORD DUNP cLOADM
eND": IFDN=-2THENPRINT" sCREEN
" ELSEPRINT" pRINTER "3
11 1FS<00RS>655350RE<0ORE>65535T
HENS=0: E=0ELSEIFS>E THENS=E
12 PRINT"{RPUT":PRINT"START=";RI
GHT$ (" 0000"+HEX$(S),4);" END=";R
IGHT$ (" 0000" +HEXS$ (E) ,4);" x";
13 AS=INKEYS: [FA$=""THENEXEC4136
9:GOTO13
14 1FA$="D"THEN16ELSEIFA$="A"THE
N160ELSEIFAS="V"THEN167ELSEIFAS=
"C"THER170ELSEIFA$="B"THEN172ELS
EIFAS="P"THER179ELSEIFA$="5" THEN
180ELSEIFAS=" " THENGOSUB17: GOTO1
0

15 1FA$="E"THENCLSO: POKE65494, 0:
END: ELSE13

16 PRINT”DISASSEMBLE"; : GOTO25

17 PRINT:LINEIRPUT"START=";C$

18 LIREIRPUT"ERD=";D$

19 IFLEFTS(CS, 1)="$"THENRS=VAL ("4
H"+NID$ (C$,2)) ELSES=VAL(CS)

20 PO=S

21 1FLEFTS$(D$, 1)="8"THENE=VAL("&
H"+MID$ (D$,2)) ELSEE=VAL (D$)

22 1FE<S THEN17

23 IF S<00RS>655350RECOORE>65535
THEN17

24 RETURN

25 Z=0:P0=8: BG=S: ST=S:G$="": B=PE
EK(S):F=0

26 I1FBC>&H10 AND B<>&H11 THERS=S
+1:GOTO34

27 T=PEEK(S+1):IFT>&H20 ANDT<&H3
0 THENS=S+2:B=T:F=1:G0T034

28 1FB=8H11 THENGOSUB206:C=50 EL
SEGOSUB205: C=155

29 FORI=1TOC STEP7:Y$=XID$(Ss, 1,
7

30 IFVAL("&H"+LEFT$(Y$,2))OT TH
EN32ELSENS=NID$ (Y$,3,1):G$=RIGHT
$(Y$,4): IFRIGHTS (GS$, 1)=" "THENGS
=LEFTS$ (G$,3)

31 S=5+2:G0T043

32 NEXT

33 S=S+2:G8="777":G0T0149

34 Q=INT(B/16)+1:0NQ GOSUB193, 19

4,195, 196,197,198, 199,200,201, 20

2,202,202,204,203,203,203:G$=NID

$(Ss, (B-(Q-1>%16)x5+1,5)

35 IFB<&H90 OR (B>&HBF AND B<&HD
0) THENMS=RIGHTS (G$, 1):GS=LEFTS$(

G$,4): IFM$=" "THENM$=RIGHT$(GS, 1
):G$=LEFT$ (G$,3)

36 I1FB<&HQ0 OR (B>&HBF ANDB<&HDO
> THEN40

37 G$=LEFT$(GS,4): IFRIGHT$(G$, 1)
=" “THENG$=LEFTS$ (GS$,3)

38 M=0:M=-68%(B>&H8F ANDB<&HAO)-
68% (B>&HCF ANDBC(&HE0)-73% (B>&H9F
ANDB<&HB0) -73% (B>&HDF ANDB<&HFO
): IFM=0THENN$="E" ELSEM$=CHRS (X)
39 GOTO41

40 IFF=1THENGS$="L"+GS$

41 IFG$="xxxx"THENG$="7?77":GOTO1
49

42 1FG$="-~~~"THENGS$="ANDCC": ¥$=
" 1"

43 IFM$="H"THEN149

44 IFM$CO"R"THENSS

45 GS=CGs+" 8"

46 IFLEFT$(GS$,1)="L"THENB=16ELSE
B=8

47 [FB=16THENT=PEEK (S) ¥256+PEEK (
S+1):5=5+2: ELSET=PEEK (5) : S=S+1
48 IFB=8THEN52

49 IFT>32767THENT=-(65536-T)

50 GOSUB182: T$=HEX$ (S+T) : GOSUB15
T

51 GOTO54

52 IFT>127THENT=-(256-T)

53 GOSUB182: T$=HEX$ (S+T) : GOSUB15

54 G$=G3$+T$:GOTO149

55 IFN$<{)"D"THEN61

56 G$=Gs$+" (8"

57 T$=HEX$ (PEEK(S)):GOSUB158

58 S=St+1

59 G$=GS$+T$

60 GOTO149

61 IFNS{"E"THER64

62 G$=Gs$+" 8"

63 T$=HEXS$ (PEEK (S)%256+PEEK (S+1)
) : GOSUB157: S=S+2: G$=G$+T$: GOTO14

9

64]1FM$="1"ORM$="2"THEN6SELSE71

65 GS=GS+" #s"

66 1FM$="1"THENT$=HEXS (PEEK(S)):

S=S+1:GOSUB158

67 1FM$="2"THENT$=HEXS (PEEK (S)*2

56+PEEK (S+1)): S=S+2: GOSUB157

68 G$S=G$+T$

69 IFLEFT$(GS$,4)="0RCC” OR LEFTS
(G$,5)="ANDCC” THENGOSUB184: GOTO1

49

70 IFM$="1"ARDVAL ("&H"+T$)<&H7F

ANDVAL ("&H"+T$) >&H1F THENG$=G$+"
'"4+CHRS (VAL ("&H"+T$)) : GOTO149EL

SE149

71 IFM$<O>"M"THEN102

72 Gs:Gs +Il ”

73 IFLEFT$(G$,3)="PSH"ORLEFTS (G$
,3)="PUL" THENSO

74 B=PEEK(S):S=8+1

75 T$=HEXS$ (B):GOSUB158

76 L$=LEFT$(T$,1):R$=RIGHTS (T$,1
)

77 L=VAL("&H"+L$):R=VAL("&H"+RS)

78 N=L:GOSUB79:G$=G$+T$+",": N=R:

GOSUB79:G$=G$+T$:GOTO149

79 IFN=0THENTS$="D":RETURN

80 IFN=1THENT$="X":RETURN

81 IFN=2THENTS$="Y":RETURN

82 IFN=3THENTS$="U":RETURN

March 1984.

Australian RAINBOW

83 IFN=4THENT$="S":RETURN
84 1FN=STHENT$="PC":RETURKN

85 IFN=8THENT$="A":RETURN

86 1FN=OTHENTS$="B":RETURN

87 IFN=10THENT$="CC":RETURK

88 1FN=11THENT$="DP": RETURN

89 Ts="7?7?":RETURN

90 D=PEEK(8):8=S+1:G0T091

91 IF(D AND128)=128THENG$=GS$+"PC

92 IF(D AND64)=64ANDLEFTS(GS,1)=
"U"THENG$=G$+"S, " : GOTO%94
93 IF(D AND64)=64THENGS=G$+"U,"
94 IF(D AND32)=32THERG$=GS$+"Y,"
95 IF(D AND16)=16THERG$=G$+"X,"
96 [F(D ARD8)=8THENGS=G$+"DP,"”
97 IF(D AND4)=4THENGS=G$+"B,"
98 [F(D AND2)=2THENG$=G$+"A,"
99 IF(D AND1)=1THERG$=G$+"CC,”
100 IFRIGHTS(GS$,1)=" " THENGS=LEF
T$(G$, LEN(G$)-1)
101 GOTO149
102 D=PEEK(S):S=S+1
103 PNs=""
104 0$="":E$="":F=0
105 IF(D AND16)=16 AND (D AND128
)=128 THERF=16:D=D-16
106 IFD=159THENGS$=Gs+" "+"([$"+RI
GHT$ (" 0000" +HEXS (PEEK (S) ¥256 +PEE
K(S+1)),4)+"]1": S=8+2: GOTO149
107 Q=D ARD31
108 IF(D AND128)<>0THEN112
109 T=-16X((D AND16)=16)-8%((D A
ND8>=8)-4%((D AND4)=4)-2%((D AND
2)=2)-1%((D ARD1)=1)
110 IFT>1STHERT=~(32-T)
111 O0$=STR$(T):GOTO130
112 IFQ=4THEN130
113 IFQ<>8THEN116
114 T=PEEK(S):S=S+1: IFT>127THENT
==(256~T)
115 0$=STR$(T):GOTO130
116 1FQ<>9THEN119
117 T=PEEK(S)*256+PEEK (S+1):8=8+
2: IFT>32767THERT=~ (65536~T)
118 08$=STR$(T):GOTO130
119 1FQ=6THENO$="A": GOTO130
120 IFQ=STHENO$="B":GOTO130
121 I1FQ=11THENO$="D":GOT0O130
122 1FQ=0THENPMS="+":GOTO130
123 IFQ=1THENPM$="++":GOT0130
124 IFQ=2THENPM$="-":GOT0130
125 1FQ=3THENPA$="--":GOTO130
126 1FQ=12THENT=PEEK(S):E$="PCR"
:§=5+1:GOSUB182: IFT>127THERT=- (2
56-T)
127 1FQ=12THENOS="$"+RIGHT$ (" 000
0" +HEX$ (S+T), 4) : GOT0130
128 1FQ=13THENES="PCR": T=PEEK(S)
¥256+PEEK (S+1) : S=5+2: GOSUB182: IF
T>32767 THERT=- (65536-T)
129 1FQ=13THENQ=12: GOTO127
130 IFLEFT$(0$,1)=" "THERO$=XID$
(08,2)
131 G$=GS$+" "+08
132 IFE$="PCR"THENG$=G$+","+E$:G
0T0143
133 T=D AKND96
134 IFT=0THERES$="X"
135 IFT=32THENES="Y"
136 IFT=64THENES="U"
137 IFT=06THENE$="S"
138 IFPM$="+"THERES=ES$+" 4"
139 IFPN$="++"THENES=ES+" ++"
140 IFPM$="-"THENE$="-"+ES$
141 IFPN$="-~"THENES$="--"+E$
142 GS=GS$+","+E$

continued on Page 59

PAGE B

ol el S T T —————— =1
UTILITY

DIRECTORY PRINT

by Geoff Mackie

RAINBOW FPROGRAMS

ALPHAL BAS
DJACKINS VIP

ALPHA2
JACKET

1

'

)

]

'

!

'

1

]

]

- This is a utility program designed to
' print out jackets for your disks. The idea
1
L}
1
'
'
1
]
1
]
1
1

arose when | was
that 1

The question was which one? I
would be handy to have a record of each
disk's contents right there on the cover.

"Disk Jacket”
directory
"""" a title for
directory on the

sizes.

inside the original
cover to replace the original jacket - the

choice is yours.
The program
printer, but
other printers.
permanent

CN$ = double width on
double width off
FF$ = form feed on in line 2080
and in 2070 PRINT#-2,

COs

looking for a program
knew was on one of 5 full disks.

will
(single sided, double sided or
flippy), alphabetize it if you wish, print
the disk then print the
jacket
You can have an inner sleeve to go

'

'

)

1

!

L)

]

]

2 is set

' routines are
. If you wish to make a
: copy for

1 variables to change are as follows:
1

]

]

)

1

]

'

]

]

!

)

L)

1

BAS DJACKET BAS
BAS

thought it

read your disk's

in one of two

jacket or a larger

up for a Gemini
provided for

your printer, the

'double strike’.

The Listing:

'¥ DIRECTORY PRINT PROGRAX x
'x VRITTEN BY GEOFF MACKIE ¥
‘¥ 6 PIALBA CRT FETH GOSFORDX
‘X §.8.V. 2250 X

i COPYRIGHT JAN'86 ¥
ARS8 20 3232232820002
10 CLEAR2000: FL=1:GOSUB2500: GOSU
B2000

20 CLS:PRINTO128,"DO YOU VANT IN
STRUCTIORS (Y/N) ?";

30 GOSUB3000

40 IF I$="Y"THENGOSUB1500

50 CLS:PRINT@128,"VHAT SORT OF D

QWL -=Oo

ISK JACKET VOULD YOU LIKE
: OF
NER SLEAVE OR <oV

TER COVER ?";

60 GOSUB3000: IF1$="1" THERTA=60:
TC=67: TD=7ELSEIF[$="0" THENTA=63
: TC=70: TD=9ELSESQURD20, 5: GOTO60

90 IFFL=0THEFGOSUB2510

100 CLS:PRINT@128,"PLACE THE DIS
K FOR WHICH YOU VANT TO MAKE

A KREV JACKET FOR 1IN DRIVE 0 AK
D PRESS <ENTER>";

110 GOSUB3000

120 IF IS<OCHR$(13)THEN110

125 CLS: PRINT®@128," 1S THE DISK ¢
d>OUBLE SIDED, <f>LIPPY, OR

<n>ORMAL ?"

126 GOSUB3000

127 IFI1$="D" THENS=2:NS=2ELSEIFI
$="F" THENS=2:NS=0ELSEIFI$="N"TH
ENS=1: NS=0ELSE126

130 CLS:PRINTQO0,"READING DIRECTO

PLEASE VAIT
A MOMENT";

135 FORJ=1TO S: IFJ=2THENSD$=" (B
)" ELSE1FS=1THENSD$=""ELSESD$=" (
A)

136 IFJ=1THENSD=0ELSESD=KRS

140 FORI=3TO11

150 DSKIs$SD,17,1,As,Bs

160 C$=AS+LEFT$(BS,6127)

170 NAMS (A)=LEFT$(CS$,8)

180 EXT$ (A)=NID$(C$,9,3)+SD$

190 IF LEFTS (NANS (A),1)=CHRS$ (255
) THEN 290

200 IF LEFTS(NAMS(A),1)=CHRS (D)
THEN NAMS (A)="":EXTS$(A)="":A=A-1
210 FORN=1T07

220 NAMS (A+N)=MID$ (C$,Kx32+1,8)
230 EXTS (A+N)=NIDS(C$,9+N%x32,3)+

SDs

240 IFLEFTS (NAMS (A+N), 1)=CHR$ (25

5) THEN290

250 IFLEFTS (RAMS (A+N), 1)=CHR$(0)
THENNANS (A+K)="": EXTS (A+N)="":A

=A-1

260 NEXTN

270 A=A+8

280 NEXTI

285 [FS=2 ANDNS=0 THENPRINT@256,

"PLEASE TURN THE DISK 1IN DRIVE 0
OVER AND PRESS <enter>.";

287 GOSUB3000

288 [FI1$<>CHR$(13) THEN287

290 REXTJ:NF=A+N-1

300 [FNF>66THENCLS: PRINT®128,"TO

O MANY FILES TO FIT OF THIS JA

CKET, DO YOU WANT TO : <p

>RINT AS MANY AS POSSIBLE OR<a

>BORT THIS JACKET ?"; ELSE310

303 GOSUB3000

305 IFIs$="P" THERNF=66:GOTO310EL

SEIF1$="A"THENS840ELSE303

310 CLS:PRINT®128," ALPHABETIZE D
IRECTORY FILES

yY/H) 7,

320 GOSUB3000

330 IFIs$="Y" THENPRINT@260," ALPH

ABETIZIKG DIRECTORY”;:GOSUB
1000

340 CLS:PRINT@128,"TITLE OF DISK
(0-26 CHAR'S) ?";

350 LINEIRPUT TL$

360 IFLER(TLS)>26THENPRINT@224,"

TITLE TOO LORG!";:GOTO340

370 IFS=2THENIR=1N-3ELSEIN=5

400 Z=0:FORI=1TO71

410 PRINT#-2,"-";

420 REXTI

430 PRINT#-2," "

440 T=LEN(TLS):TB=(26-T)/2: IFTB(
>INT(TB) THERTB=IRT(TB)+1

450 PRINT#-2,":";STRINGS (TD," ")
;CNS; STRINGS (TB," ");TL$; STRINGS
(TB," ");COS$;STRINGS (TD," ");":"

460 PRINT#-2,":"; TAB(TC);":"

GE 6

Australian RAINBEW

March 1986,

480 FORI=1T022

490 Z=Z+3:PRINT#-2,":";

500 IF Z<=NF THENGOSUB700ELSEIF
NF-Z+3=1 THENGOSUB730ELSEIF NF-Z
+3=2 THERGOSUB750

510 PRINT#-2, TAB(TC);":": NEXTI
520 FORI=1TO2

530 FORJ=1TO8

540 PRINT#-2,"-";

550 NEXTJ:PRINT#-2, TAB(TA): NEXTI
560 PRINT#-2," "

570 FORI=1T028

580 PRINT#-2, TAB(7)":"TAB(TA)":"
590 NEXTI

610 PRINT#-2,TAB(7);

620 FORI=1TO057

630 PRINT#-2,"-";

640 NEXTI

650 PRINT#-2,CHR$ (10)

660 PRINT#-2,FF$

670 GOTO810

700 IFTA=60 THEN770ELSEPRINT#-2,
STRINGS$(7," ");:FORY=1TO3: PRINT#

~2,NANS (Y+2-3);" ";EXT$(Y+2-3);8
TRINGS (IN," "),

710 NEXTY

720 RETURN

730 PRINT#-2,STRINGS(7," "); NAMS
(NF);" ", EXTS (NF);

740 RETURN

750 IFTA=60THEN780ELSEPRINT#-2,S
TRING$(7," '); NAMS (NF-1);" ";EXT
$(NF-1);STRINGS (IN," "); NAXS (NF)

" " EXTS (HPF);

760 RETURN

770 PRINT#-2,STRING$(7," ");NAMS
(Z2-2);" ";EXT$(2-2); STRINGS (IN,”
") ;NAMS$(Z~-1);" ";EXT$(Z-1);STRI
NGS C(IN,"™ ") ;NAMS$(Z);" ";EXT$(2);
: RETURN

780 PRINT#-2,STRINGS(7," "); NAMS
(NF-1);" ", EXT$(NF~1); STRINGS (IN

" ") NANS (NF) ;" ";EXT$ (KF);:RET
URN

810 CLS:PRINT@128,"VOULD YOU LIK
E ANOTHER COPY OF THIS JACKET (
/7).

820 GOSUB3000

830 IFIs="Y"THENGOTO400

840 CLS:PRINT@224,"WOULD YOU LIK
E TO PRIRT AROTHER DISK JACKET (
Y/m ?%;

850 GOSUB3000

860 IF Is$="Y"THENFL=0:GOTO90

900 CLS:PRINT@6,"YOU HAVE BEEN U
SING":PRINT: PRINT: PRINT" 'D
ISK JACKET MAKER'":PRINT:PRINT@1
94,"VRITTER FOR YOUR CONVENIEKNCE
":PRINT@233,"BY GEOFF MACKIE":PR
INT@262,"OF COMPUTER WIZARDRY":P
RINT®@333,"BYE FOR ROW"

910 END

1000 FORI=1TO KF

1010 TEMPS (1)=NAMS (1) +EXTS (D)
1020 NEXTI

1030 FORI=2TO NF

1040 J=1-1:T$=TEMP$(D)

1050 IFJ>OTHENIFTEMP$(J)>T$ THEN
TEXPS (J+1)=TEMPS (J):J=J-1:GOTO10
50

1060 TEMPS$CJ+1)=T$

1070 REXTI

1075 1FS=2 THENG=G+4ELSEG=3

1080 FORI=1TO KF

1090 NAMS (I)=LEFT$ (TEMP$(1),8):E
XT$ (1)=RIGHTS (TEMP$(1),G)

1100 KEXTI

1110 RETURN

1500 CLS:PRINT®32,"THIS IS A PRO
GRAM THAT PRINTS OUT A DIRECTO
RY OF THE DISK IN DRIVE O IN TH
E FORMAT OF A DISK JACKET.
THAT 1S, OKNCE"
1510 PRINT”PRIRTED, IT CAN BE CU
T AND GLUEDTO MAKE EITHER A SLEA
VE (LIKE ARECORD COVER) OR A KE
Vv DISK JACKET.";
1515 PRINT@480,"PRESS <enter> TO
CONTINUE";
1517 GOSUB3000: IF1$<>CHR$ (13) THE
R1517
1520 CLS:PRINT@32,"IF YOU MAKE O
NE OF THESE JACKETSFOR EACH OF Y
OUR DISKS YOU WILL HAVE AR INSTA
NT RECORD OF THEIR CONTENTS."
1530 PRINT@256,"THE PROGRAM VILL
PROMPT YOU AT EACH STEP FOR TH
E IRFORMATION THAT IT REEDS. J
UST ANSVWER THE PRONPTS AS REQUI
RED."
1540 PRINT@480,"PRESS <(enter) TO
CONTINUE";
1550 GOSUB3000: IF18<>CHR$(13)THE
N1550
1560 CLS:PRINT@32,"THE PROGRAM C
AN HANDLE FLIPPIES, DOUBLE-SIDED
AND ORDINARY DISKS.FLIPPIES AND
DOUBLE-SIDED ARE TREATED AS SI
DE 'A' AND SIDE 'B'AND THE FILES
ARE LABELED AS SUCH ON THE D
ISK JACKET."
1570 PRINT@480,"PRESS <enter> TO
CONTINUE";
1580 GOSUB3000
1590 IFI$<>CHR$(13) THEN1580
1600 CLS:PRINT@32,"THE PRINT ROU
TINES USE DOUBLE STRIKE, DOUBL
E VIDTH FOR THE HEADIRG ARD A

UTOMATIC FORNFEED FOR TRACTOR F
EED PAPER."

1610 PRINT:PRINT"IF YOU DOR'T VA
KT TO USE THIS FORMAT JUST ANS
VER THE 'EPSOM PRINTER' PROMPT

VITH 'n' AND DOR'T INPUT ANY
CODES. (ENTER 500 AT EACH PRO
MPT)"

1620 PRINT@480,"PRESS <enter> TO
RETURN"; : GOSUB3000

1630 GOSUB3000

1640 IFISCCHRS (13)THEN1630

1650 RETURN

2000 I1F (PEEK(&HFF22) AND 1)=1 T

HEN 2010 ELSE 2020

2010 CLS:PRINT®@128,"PRINTER IS O

FFLINE!"; :SOUKD20, 3: GOTO2000

2020 CLS:PRINT@128,"ENTER BAUD R

ATE CONSTANT (DEFAULT IS

600 BAUD)";: INPUTBS

2030 IFB$=CHR$ (13)THEN2050

2040 POKE150, VAL (B$)

2050 CLS:PRINT®128,”DO YOU HAVE

AN EPSOM OR GEXKIMI TYPE PRINTER
(Y/K) ?";:GOSUB3000

2060 IF I$="N" THER2100

2070 IF 1$<>"Y" THENGOSUB3000ELS

EPRINT#-2,CHR$ (27) ; CHR$ (71);

2080 CN$=CHR$(14):CO$=CHR$(20):F

F$=CHR$ (12)

2090 RETURN

2100 CLS:PRINT®128,"ENTER YOUR P

RINTERS' CODE FOR DOUBLE STRIK

E (E.G. 27 <ENTER> 71 <EKTER> E

TC. ENTER 500 WH

EN FINISHED.":PRINT

2110 IRPUTA: IFA=S500THEN2140

2120 CO=CO+1:DS$ (CO)=CHRS (A)

March 1984.

Australian RAINBOW

2130 GOTO2110

2140 FORI=1TO CO:PRINT#-2,DS$(I)
; t NEXTI

2150 CLS:PRINT@128,"ENTER YOUR P
RINTERS' CODE FOR DOUBLE VIDTH
PRINT. ENTER 500 VHEN FINISHE
D.":PRINT

2160 INPUTA: [FA=500THEN2180

2170 CU=CU+1:CHN$(CU)>=CHR$(A):GOT

02160

2180 IFCU=O0THENCN$=""ELSEIFCU=1T

HENCN$=CN$ (1)ELSEIFCU=2THENCN$=C

N$ (1)+CK$ (2) ELSEIFCU=3THENCN$=CK

$(1)+CNS$ (2)+CN$(3)

2190 CLS:PRINT@128,"ENTER YOUR P

RINTERS' CODE TO TURK OFF DOU

BLE VIDTH PRIRT. ENTER 500 VH

EN WHEN FINISHED.":PRINT

2200 INPUTA: IFA=S00THEN2220

2210 CF=CF+1:CO$(CF)=CHR$(A):GOT

02200

2220 IFCF=0THERCO$=""ELSEIFCF=1T

HENCO$=CO$ (1) ELSEIFCF=2THENCO$=C

08 (1)+COS$ (2) ELSEI FCF=3THENC0O$=C0

$(1)+C0O$ (2)+C0$ (3)

2230 CLS:PRINT@128,"ENTER YOUR P

RINTERS' CODE FOR A FORMFEED. EN

TER 500 WHEN DORE.":PRINRT

2240 INPUTA: IFA=500THEN2260

2250 F=F+1:FF$(F)=CHRS (A):G0T022

40

2260 IFF=0THENFF$=""ELSEIFF=1THE

NFF$=FF$ (1)ELSEIFF=2THENFF$=FF$ (

1) +FF$ (2)ELSEIFF=3THENFF$=FF$ (1)

+FF$ (2)+FF$(3)

2270 RETURN

2500 DIM NANS (70),EXTS$(70), TEMXPS

(70)

2510 N=0:A=1:G=3:1K=5

2600 RETURN

3000 I$=INKEYS

3010 [FI$="" THEN3000ELSERETURN

M 16K (o
A ECB } lrﬁ"" E

Gaining Insight Into
Your Child’s Self-Image

By Steve Blyn 64 ﬁ E‘ \ % ﬁ

chools are in a unique position
Sduc to their obligation to reach

and teach the entire population.
Consequently, they exert a major force
in the process of transferring fundamen-
tal values from one generation to
another. A self-image, hopefully a
positive one, is a necessary component
of learning these social values.

This article presents a program that
can become part of a guidance system
at home or in your classroom.

This month’s program, Who Am I,
deals with the topic of helping children
develop a good self-image. The pro-
gram is in the form of a questionnaire.
This type of guidance goal deals with
forming attitudes and developing rea-
soning processes rather than imparting
any factual knowledge. There are,
therefore, no right or wrong student
responses to the questions. On the
contrary, we should be prepared for a
wide variety of student thoughts and
feelings in response to the questions.

The giver of the questionnaire, either
parent or teacher, must try to create a
climate where empathy and trust are
established before beginning this or any
similar activity. We do not want children
to give answers they think will make us
happy. We want, instead, the children to
give honest answers that you may ex-
plore with them afterward.

Children’s answers to such question-
naires are often very revealing. It is not
uncommon to find children with ob-
viously very poor self-images. We all go
through periods of life where we may
have a relatively poor self-image. As
adults, we have hopefully learned how
to deal with and modify our feelings.

Your work really begins after the
questions are answered. The answers

may expose problems that are bother-
ing the child about his or her feelings.
This is your chance to apply a little
guidance. We want to help impart
strategies for change or means of coping
with these feelings. If done in a group
setting, it is often helpful for children to
hear their type of negative feelings
expressed by others. There’s a little bit
of the “Charlie Brown” poor self-image
in all of us.

Lines 90-130 set the tone of the
program by drawing a silhouette of a
large letter ‘I". Lines 140-340 print the
13 key questions and the child’s re-
sponses. This comprises the bulk of the
questionnaire. There is little room on
the screen for the answers. It is best to
instruct children to keep their answers
short, although there is really no prob-
lem if any of the answers are longer than
the space allotted since the entire
answer is stored and reappears in the
next section of the program.

There is additionally a final question.
Lines 380-480 contain ample room for
three answers to the statement “What |
like about myself.” This section appears
on a new screen. Pressing the up-arrow
key then the ENTER key allows you to
utilize the questionnaire that was just
completed. Each press of the ENTER key
shows the next response in the series.
The questions and the child’s complete
responses will reappear as a reminder or
helper for him or her to answer the final
question. This can also serve as a review
for both of you. The items are recalled
by lines 580-650.

An option for a permanent hard copy
is provided as the final part of the
program. The printout is useful as we
tend to forget the responses. An alter-

native is for you to write the answers
down on a sheet of paper as the child
enters them into the computer. Line 490
asks you to press the ‘E’ key to end the
program or the up-arrow key to get the
printout. The printout is performed by
lines 520-560.

The questions contained in this pro-
gram were taken from a guidance bul-
letin published by the New York City
Board of Education. Another activity |
like very much from this bulletin pre-
sents a slightly different way of helping
to look at a child’s self-image. It is called
the “Coat of Arms” game. The child or
class is given a blank outline of a shield
divided into four parts. In each of the
parts, they draw response to the follow-
ing four items.

A) Draw two things you do well.

B) Draw your greatest success in life.

C) Draw two things you would do if
you had only one more year to live.

D) Draw two things you would like
said about you.

The resulting picture represents the
child’s individual “coat of arms.” The
adult can glean valuable information
about the child’s values and self-image.
This leads to similar follow-up discus-
sions as with the questionnaire.

The “Coat of Arms” activity is just as
good an activity as the questionnaire.
Consider, however, the challenges of
programming that it presents. Perhaps
one of you readers would like to take
up this challenge. We at Computer
Island would love to see the results of
any of your efforts in this direction. In
any case, we always enjoy hearing from
the readers of our column. O

continued on Page 11

PAGE 8

Australian RAINBOW

March 1986.

TURN OF THE SCREW

A Beginner’s
Hardware Course

Part 2

By Tony DiStefano

ast month we took a look at
I binary bits and different num-
bering systems. So far, there
doesn’t seem to be any relation between
these and computers. All we did is
express numbers in different forms.
But, we are a little closer to computers
than you think. We know the computer
is made up of a lot of chips that use bits
of zeros and ones. In order to under-
stand the ins and outs of these chips, |
will go into detail of how chips use zeros
and ones.

The heart of all digital computers is
the logic circuit elements. They perform
binary arithmetic operations, make
logical decisions and perform opera-
tions such as counting and temporary
storage. The basic type of logic element
is called a “gate.” Gates are circuits that
look at two or more binary signals and
produce a binary output, which de-
pends upon the conditions of the input
signals.

In order to comprehend this better,
let’s look at an equivalent circuit that is
easier to understand, using conven-
tional components you are likely to find
around the house. If you want to build
and test these circuits yourself, Radio
Shack has all the parts. The switches are
single pole, single throw. Any battery
and bulb combination will do, just be
sure the battery and the light bulb are
the samc voltage rating, otherwise you
may end up burning out the bulb or get
no results at all. Such a circuit is shown
in Figure 2.

This circuit contains three compo-
nents: a battery, a switch and a bulb.
Here, the switch is considered the input
and the bulb is considered the output.
When the switch is on (a logical 1) the
bulb is lit (this is also considered a
logical I). When the switch is off (logical
0) the bulb is off, also giving us a logical
0. In a logical element such as this, the

input (the switch) and the output (the
bulb) follow each other, one to one or
zero to zero.

The symbol used to represent this
circuit or logical element in a logic (or
computer) schematic is shown in Figure
la. This gate is called a “buffer.” The
input is exactly the same as the output.
Not very useful in a logical sense, in that
it does nothing, but it is needed under
certain circumstances. For instance,
when the output of a gate (logic ele-
ment) is connected to many other gates,
it may not have enough power to drive
all the gates properly. In this case a
buffer is used. Whenever a gate is used
there is always a small delay between
when the input changes and the output
changes; a buffer is sometimes used just
for that delay.

To continue our understanding of
gates, let’s introduce another factor in
our battery circuit. Now study the
circuit in Figure 3. It has two switches.
The two switches are in a series, that is,
one after the other. Therefore, they
must both be on before the bulb will
turn on. This circuit or logical element
is known as an AND gate. The defini-
tion of an AND gate is: “The AND gate
is a logical element with two or more
inputs and a single output. Both (or all
in the case of more than two) inputs
must be binary ‘1’ to produce an output
of binary ‘1".”

The symbol for an AND gate is
shown in Figure Ib. The main value of
the AND gate is its ability to detect
when all inputs are binary ‘I’. For
example, in a control system when all
the motors are on, turn on the extra
generator. A quick way to remember
this gate is, when ‘A* AND ‘B’ are ‘I,
then *Y'is ‘1". Hence the term AND.

" The next gate we will study is the OR
gate. Again, we have two switches in our
next diagram, Figure 3. The difference

is that now they are wired in parallel,
one on top of the other. If either switch
is on, then the bulb will be on. If both
are on, the light is, of course, still on.
This circuit or gate is known as an OR
gate. The definition of an OR gate is as
follows: *“The OR gate is a logical
element with two or more inputs and a
single output. If any one input is a
binary ‘1’ then the output is binary ‘1"
The symbol for an OR gate is shown
in Figure I1c. The main value of the OR
gate is its ability to detect when any
input is binary ‘1", An example of this
use is when any door or window opens,
an alarm sounds. A quick way to re-
member this gate is when ‘A’ OR ‘B’ is
‘1°, then ‘Y’ is *I". Hence the term OR.
If we look back to our first gate, the
buffer, we notice the input matches the
output. Since the input and the output
are the same, it is called a *“non-
inverting” output. This gate, and most
other gates, can also come in an “invert-
ing” output. In the case of our buffer,
it becomes an inverter, or better known
as a NOT gate. Figure 1d shows the
symbol of an inverter. The definition of
an inverter is: “An inverter is a logic
clement whose output is always the
complement (the opposite) of its input.”
Notice the difference between a
buffer symbol and an inverter symbol.
The inverter symbol has a small circle
on the output side. Any inverting out-
put gate has a small circle on the output.
This is true for the AND and the OR
gate, too. If you take the output of an
AND gate and tie it to the input of a
NOT gate, the result (the output of the
NOT gate) is an inverted AND gate (see
Figure 5). This requires two gates and
some wiring. It is so often used that the
IC designers decided to put it all in one
chip. This is called a NAND gate. The
same thing goes with an OR gate — it
becomes a NOR gate. These two gates

March 1986.

Australian RAINBOW

PAGE ¢

are defined as follows: “NAND and
NOR gates are the complements of
AND and OR gates, respectively.”

The last gate we will look at is the
EXCLUSIVE-OR gate. The symbol for
the EXCLUSIVE-OR gate is shown in
Figure le. For short, this gate is called
XOR. It is a little different than the OR
gate and is used mostly when a signal
needs to be inverted in some cases and
not in others. The definition of an XOR
gate is: “The logical XOR is defined as
a binary ‘I’ output when either of the
two inputs is a binary ‘I’. The other
input being a binary ‘0".”

A quick way to remember the func-
tion of this gate is when the inputs are
different, the outputis‘1’. Like the other
gates, it, too, has the inverted version.
It is called the EXCLUSIVE-NOR or
XNOR for short. The definition of an
XNOR gate is the same as the XOR, but
has its output inverted to a binary ‘0’
when either of the two inputs is a binary
‘.

The gates described so far are quite
simple in structure. They have one or
two inputs and one output. They are the
fundamental elements in creating more
complex chips, and even the basis of
complete computer CPUs. In the case
of the simple two-input AND gate,
there are four discrete combinations of
inputs., The two inputs are represented
by a two-digit binary number. Re-
member last month? They are 00,01, 10
and 11, and the output for each given
condition is 0, 0, 0 and I, respectively.
Not so hard to remember or display.
But, in other chips, where there might
be five or six inputs and eight or 10
outputs, it can be too much to re-
member. Now is when the “truth table
comes in. The definition of a truth table
is: “A truth table is a graphic represen-
tation of all possible combinations of
inputs versus outputs of a particular
logic element.”

The second column of Figure | rep-
resents the truth tables for the given
gates. Notice that all possible combina-
tions of inputs are given. Columns A
and B are the inputs, as you can see from
the gates in Column 1. Column Y is the
output. Read the truth table as you read
text, one line at a time. Each line is one
condition. The condition is given for ‘A’
and ‘B’. The output, ‘Y’, is the result for
a given gate. Every line is different, and
continues until all possible combina-
tions for that gate are shown. This way,
at a glance, you can tell what the output
is for a given input of any gate. In these
cases, it is not too difficult to follow or
remember. Later on, when | show you
the truth tables for some of the chips
that make up our good ol’ CoCo, you

Figure 1
Truth Table
Symbol
A
1
Buffer
Al B Y
" 5 0|0 o
0 1 0
AND 1 0 0
1 1 1
ie. Ny Al By
B Y 0 0 0
L - BN
1 0 1
1 1 1
A—Do— Y A Y
Inverter o
1 0
A B Y
8—oy 0 1 1
XOR 1 0 1
1 1 0
A B Y
A== y lolofn
B8 et 0o 1 1
NAND o e
1 1 0
A B Y
0 0 1
A
’ " 0 1 0
B 1 0 0
NOR 1 1 0
A B Y
D~ B
Y 0 1 0
" 1| 0] o
XNOR ST 313

Boolean
Expression

Y=A

Y=A+B

Y=A(®B

Y=A'B

-
"
>|
+
@

<

"
>
w

PAGE 180

Australian RAINBOW

March 1986.

Figure 2

Figure 3

—/

will be glad I introduced you to these
tables.

Though I will not be getting into great
detail in this series of articles, I feel it
is necessary to talk a little about Boo-
lean algebra. The definition of Boolean
algebra is: “A system of mathematical
logic used to represent digital logic
signals and express the logic operations

Figure 4
:/
=g
Figure §
. +
| —[>o— = —
AND -+ NOT —_ NAND

performed by digital signals.”

To put it into simple terms, Boolean
algebra is an equation that represents
the function of a logical element. Take,
for instance, the buffer in Figure 1. The
output is equal to the input. A Boolean
equation would be:

Y=A
Now an inverter would look like this:

Y=NOT A or Y =*A

The AND symbol in a Boolean ex-
pression is a dot in the middle of the

line, like the multiplication sign in
regular math. Notice its occurrences in
Figure 1. The OR symbol in a Boolean
expression is a plus sign (+). Again, the
Boolean OR symbol can be seen in
Figure 1. The next Boolean symbol is
the EXCLUSIVE-OR. This is no more
than the plus symbol with a circle
around it. Figure 1 also shows the XOR
symbol. Any of the inverting symbols in
Boolean algebra are represented by a
small horizontal bar above the equation
in question. You can see the inverting
gates in Figure 1.

continued from Page 8

The listing: WHO AM I

19 REM"WHO AM 12"

2§ REM"STEVE BLYN,COMPUTER ISLAN
D,NY,1986"

39 CLEAR 20pp

42 DIM A$(13),B$(13),N$(3)
Sg CLSp

69 W$=STRINGS (28,143)

7f 2$=CHR$ (128)+CHRS (128)
82 PRINT@1l," who am i?";
S92 PRINT@32," “:PRINT

129 FOR Y=1 TO 9

112 PRINT@98+Z,W$;

128 2=Z+32:NEXT Y

132 PRINT@384," ":PRINT
149 AS(l)="I AM "

152 PRINT@32,AS(1)::LINEINPUT BS
(1)

169 A$(2)="I FEEL GOOD WHEN "
179 PRINTE64,A$(2)::LINE INPUT B
$(2)

189 A$(3)="I
190 AS$(4)="I
2pp AS(5)="I1
218 AS$(6)="I
22p AS(7)="1

FEEL BAD WHEN *
LIKE PEOPLE WHO "
LIKE TO PLAY "
DON'T LIKE "

GET ANGRY WHEN "
238 A$(8)="I AM BEST AT "

240 A$(9)="I AM PROUD WHEN "

258 AS(1g)="I AM NERVOUS WHEN "
268 A$(11)="I AM AFRAID TO "

27 FOR T=3 TO 11

289 PRINT@98+L,AS$(T) ; : LINEINPUT
B$(T)

298 PRINT@126+L,2$;

3PP L=L+32:PLAY"02L3@GCG":NEXT T
318 A$(12)="I AM BORED WHEN "
32 PRINT@384,A$(12);:LINEINPUT
B$(12)

338 AS(13)="I DO BEST WHEN I'M "
349 PRINT@416,A$(13);:LINEINPUT
B$(13)

358 PRINT@486,"PRESS ENTER TO GO
ON";

36@ EN$=INKEY$

379 IF EN$=CHRS$(13) THEN 388 ELS
E 368

388 CLS:PRINT@3,"WHAT I LIKE ABO
UT MYSELF";

399 PRINT@64,"1.";

4@ PRINT@16f,"2.";

419 PRINT@256,"3.";

March 1984.

Australian RAINBOW

42p PRINT@354,W$;

43¢ PRINT@384,"ENTER ~ TO REVIEW
YOUR ANSWERS.";

449 FOR X=1 TO 3

45 PRINT@66+V,""; : LINEINPUT NS$(
K)

469 IF N$(K)="" OR N$(K)=" " THE
N 458

479 IF N$(K)=CHR$(94) THEN GOSUB
598:GOTO 45p

480 V=V+96:NEXT K

499 PRINT@416," ":PRINT@384,"ENT

ER A~ FOR PRINTOUT OR E TO END";
589 EN$=INKEYS

51¢ IF EN$="~" THEN 52¢ ELSE IF

EN$="E" THEN 66§ ELSE 5¢9

52¢ PRINT#-2,TAB(18)"WHO AM I?"
538 FOR T= 1 TO 13:PRINT#-2," ":

PRINT#-2,A$ (T) B$(T) :NEXT T

549 PRINT#-2,"

558 PRINT#-2,TAB(18)"WHAT I LIKE
ABOUT MYSELF":PRINT#-2," "

560 FOR T=1 TO 3:PRINT§-2," ":PR
INT§-2,N$(T) :NEXT T

578 GOTO 668

589 REM"REVIEW THE ITEMS"

599 FOR T= 1 TO 13

699 PRINT@416," ":PRINT@44B," "

619 PRINTE416,A$(T)+B$(T)

629 PLAY"O3LS@CDEFG"

639 ENS=INKEYS

649 IF EN$=CHRS$(13) THEN NEXT T

ELSE 638

65¢ RETURN

668 END A

PAGE 11

32K
ECB

Hl F
aAweOw,

elcome recruit, you have just
been assigned to Camp Ike,
training camp of the Com-

mandos. The Commandos are an elite
army force of skilled pilots and athletes.
They are able to get in and out of any
situation. You, in your infinite wisdom,
have chosen to join them. There’s only
one problem: You must survive basic
training. You must complete a three-
stage test six times to achieve the be-
loved rank of Commando First Class.
Each test increases in difficulty as one
progresses up in levels.

Stage 1: Hundred-Yard Dash

A Commando must be fit, so to prove
your agility you must run from the
camp to the A F.1 spider jet on the other
side of the compound. Sounds easy, but
look up; as you run bombs will drop.
You are gone if the explosion or ra-
dioactivity reaches you. Upon reaching
the jet it takes you to the next stage of
the test.

Stage 2: Rescue

In this stage you control the jet in an
attempt to rescue a helpless captive
trapped in the valley. You must ma-
neuver the jet down through the open-
ing in the valley and avoid being shot.
Once in the valley, you place the jet over
the victim and press the firebutton to
beam him up. Caution: On higher levels
the tank moves toward the victim. If the
tank runs over the victim, you both die.
Once you have the victim, leave the
valley and fly toward the left side of the
screen to complete the second part of
the test. Note: Hitting the valley walls
will also kill you.

Stage 3: Obstacle Course

The final phase of each test is to
successfully travel through the obstacle
course. This requires starting at the top
of Snake Rock, avoiding cannon fire
and entering the cave at the bottom left
of the screen to complete the test. As

By Anthony Frerking

levels increase, moving walls are added
to impede your progress. Should you
get shot or crash into walls, you will die.

End of Game

The game is over when you have lost
all of your men (there are three of them)
or you finish six complete tests. At the
end of the game you receive your score,
your rank, the level last completed and
number of lives you saved. If you
complete all six levels, you are also
given the total time to complete the tests
and receive the Commando Medal of
Honor. After seeing your statistics, the
screen clears and displays the high
scores (up to 10).

The first two levels are meant to give
you a chance to get familiar with the
game and how to handle the joystick.

You are awarded 100 points multi-
plied by the level you are on for each
stage completed, plus extra points for
finishing each stage under the required
time limit. Good luck, Cadet!

PAGE 12

Australian RAINBOW

March 1956.

2320102

The listing: COMMANDO

199 'BEGIN

119 DIM C(15,15),D(15,15) ,N$(11)
,8C(11) ,LV(11)

15¢ 'INTRO

169 CLS

179 PRINT@68,"ARTIFACTS RARELY F

OUND"; : PRINTE@133, "PROUDLY PRESEN

TS ...";

18¢ PRINT@283 ,"COMMANDO";:PRINT
@27p,"BY"; : PRINT@396,"1985";

199 PRINT@327,"ANTHONY FRERKING™
i :PRINT@455, "<PRESS ANY KEY>";
290 AS=INKEYS:IF A$="" THEN 2gp
219 CLS:INPUT"YOUR NAME";N$

213 GOSUB7gpp
215 IF N$="ARF
229 GOSUB 529
23§ PMODE 3,1:PCLS:SCREEN],1

235 IF N$="ARF “ THEN 265
249 FORI=1TO17@:R=RND(8) :CIRCLE(
127,96) ,I,R:NEXT

259 FORJ=1TO5:FORI=1 TO 8:I$=STR
$(I) :DRAW"C"+IS$+";BM1P,60;NRIPDA

PRIPBRIPNR2PU2PR2ZD2PBRIGU2PFILE
1PD2PBR1PU2GFIPEL1GD2PBRIPUIPELPF
1PNL2PD1PBRIPU2PF2PU2PBRIPNRLIPD2
PRIPELPHIPBR2PD2PR2PU2PL2P" : NEXT
$NEXT

26P GOSUBSpgg

265 R$(1)="GARBAGE SCRUBBER":R$ (
2)="COCK":R$ (3)="FOOT SOLDIER":R
$(4)="MINER":R$(5)="COMMANDO 2ND
CLASS":R$(6)="COMMANDO 1ST CLAS
s'l

279 TT=@:LVml:PH=1:SC=@:LI=3

288 PL$(1)=";L2D2R2D8L2":PL$(2)=
" ;L2D2R2NG4NF4D4NG4F4"

29p C$=";GSND5R5ND5RS5NDSHS5USL5D2

R5":PL$ (3)=";G6ND2BU4NU2F4NE4R4N

H4E4NU2BDAND2H4NL4H2":BS (1) =" R4

GBNRBD2NRBF4NU4E4U2HSL4DE"

3¢ B$(2)=";BR4G2H2G2NH2D6E2F2NU
6R2G2D2NL4AG2H2U2H2R2"

31§ T$=";G2D1F2L3G2NR15D1F2R11E2

UlH2L3NLSE2U1NR3H2LSNU2"

327 BL$=";NU1SND15SNR1PNL1@NESNHS

NGS5F5"

asg 'Lvl

368 PH=l:AR=g:H=230:V=148:V$=STR

$(V) tE=1:H$=STRS (H) :Rm7:QuLV* 10+

2p:R=R-L:TI=pg

379 PCLS(1) :DRAW"C2;BMP,140;R40G

SL15D15R22QUlPHIPR25" ; PAINT (2, 16

2).2,2

389 DRAW"C2;BM1g,13p"+PL$(3)

39% DRAW"CA ;BM24g@,13p"+C$

4gp "MOVE

419 DRAW"C1;BM"+HS$+", "+V$+PLS (E)

429 J(1)=JOYSTK(2)

439 IF J(1)<=15 THEN H=H~-5 ELSE

IF J(1)>=55 THEN H=H+5 ELSE 46p

44p IF H>=23p THEN H=238 ELSE IF
H<=39 THEN 4p1p

459 IF E=1 THEN E=2 ELSE Ewl

469 HS=STRS (H) : DRAW"C3 ; BM"+HS$+",

"+V$+PLS (E)

47§ TI=TI+1

598 'ENEMY

51§ IF AR=1 THEN59p@

529 Y=RND(2):IF Y<>1 THEN 4pp

538 Y=RND(2):ON Y GOTO 54,558

542 F=32:X=(RND(14)*10)+65:Y=11G

OTO 568

558 F=2@:X=(RND(16)+1p)+5p:Y=2

568 HB$=STRS (X) : VBS=STR$ (Q) : DRAW

"C4 ; BM"+HBS+" , "+VBS+BS (Y)

579 Z2=Q:AR=1

589 GET(X-5,2)~-(X+5,Z+15),C,G

" THEN 239

598 PUT(X~5,2Z)=(X+5,2+15),D

689 2=Z+1P:SOUND 16@-2,1:IF 2<15
THEN 667

619 Z=8:PLAY"V3BO3T4L1C":ON Y GO
TO 628,640

62p COLOR Z,8:LINE(X-7,16p)~-(X+7
,135) ,PSET, BF

639 FORI=1TO2@STEP3:CIRCLE(X-I,1
25) ,10,Z:CIRCLE (X+I,125),18,2:NE
XT:2=2-3:IF %<4 THEN 65¢ ELSE 62

'}

64§ FORI=1TO2SSTEP3:FORI=4TO1l ST
EP-1:CIRCLE(X,168),I,J,1,.5,1:NE
XT:NEXT

65¢ IF H>=X-F AND H<=X+F THEN 38
g9 ELSE AR=P:GOTO 489

668 PUT(X-5,Z)=-(X+5,2+15),C,PSET
1GOTO 429

1998 'LV2

191p PH=2:N=1@:H=225:U=183:V=3g:
AR=g:TI=p:AA=115:AB=p

1915 Y=5@:R=158

192¢ PCLS(1)

1¢3¢ DRAW"C2;BM@,80;R1gPF29D1pL1
PH1PG1PDIPLAPGLPDIPR2PPUSPLTIBGLP
L1pU1PE2PRIP": PAINT (2, 109),2,2
1p42 DRAW"C4;BM6Z,158"+T$

1¢5¢ FORI=1TOLV

196¢ LINE(98, (I*5)+118)-(1p@, (I*
5)+11p¢) ,PSET

1§65 NEXT

197¢ DRAW"C3;BM21@,150"+PLS$ (2)
1988 DRAW"C4;BM9@,7p"+PLS(2)
1¢9¢ IF LV >2 THEN DRAW'"C4;BM18g
,78"+PLS$ (2)

11g¢ IF LV<3 THEN Q=1 ELSE IF LV
<4 THEN Q=2 ELSE Q=3

111¢ GET(Y,R)=-(Y+15,R+18),D,G
1158 'MOVE

116 COLOR1,1:LINE(H,V)=-(H+12,V+
9) , PRESET, BF

1178 J(1)=JOYSTK(P) :J (2)=JOYSTK(
1) : FR=PEEK(65288)

118¢ FORI=1TO2:IF J(I)<=15 THEN
X(I)=-5 ELSE IF J(I)>=55 THEN X(
I)=5 ELSE X(I)=pg

1199 NEXT

12p8 H=H+X (1) :V=V+X(2)

1219 IF H>=24P THEN H=24p ELSE I
F H<=3p AND AB=g THEN H=3p

122¢ IF V<=2@ THEN V=2

123¢ PUT(H,V)=(H+15,V+1g),C, PSET
124¢ IF PPOINT(H-1,V-1)=6 OR PPO
INT(H+14,V)=6 OR PPOINT(H+14,V+1
§)=6 OR PPOINT(H-1,V+1P)=6 THEN
3pep

125¢ IF H<=3§ AND AB=1 THEN 4159
1269 IF FR=254 OR FR=126 THEN GO
SUB13@p

127 TI=TI+1:GOTO 14g¢

13g2 'FIRE

1312 IF H<2@P THEN SOUND1,l:RETU
RN

1322 IF V<11@ THEN SOUND 1,1:RET
URN

1332 AB=1:COLOR4,1:LINE(H+6,V+5)
-(218,135) , PSET:SOUND25@, 1: LINE

H+6,V+5)-(218,135) , PRESET

1349 DRAW"CS5;BM21§,158"+PLS$(2)
1358 RETURN

1499 'ENEMY

141¢ IF AR=1 THEN 146§ ELSE AR=1
1429 IF Q=1 THEN 144p ELSE 2Z=RND
(2)

1439 N=179:IF 2Z=1 THEN X=§ ELSE

X==5

1449 Z=RND(2):IF Z=1 THEN M=p EL

SE M=5

1458 SOUND 1§,1:2=1p@:T=88

1462 IF Q=1 THEN 147§ ELSE PRESE

T(N,T) :N=N+X

1479 PSET(2,T,1):2=2+M:T=T-5:PSE
T(2,T,2):IF Q>1 THEN PSET(N,T,2)
1488 IF T<=25 THEN PSET(Z,T,1):P
SET(N,T,1) :PSET(U,AA, 1) :AR=§:GOT
01519

1499 IF T<=V+8 AND T>=V THEN 15@

ELSE 1519

1588 IF (Z<=H+15 AND Z>=H)OR(Q>1
AND N>=H+15 AND N<=H) THEN 3999
1519 IF Q<3 OR AB=1 THEN 1548
1529 LINE(Y~5,R-5)=(Y+11,R+18),P

RESET, BF: Y=Y+INT (LV/2) : H$=STRS (Y
) 1V$=STRS (R) : DRAW"C4 ; BM"+HS+" , "+

March 1984.

Australian RAIN

V$+TS

153¢ IF Y+15>=218 THEN LINE(Y,R)
-(Y+16,R+1@) , PRESET:GET(Y¥,R) = (Y+
16,R+10) ,D,G:GOTO 322P

1535 PLAY"V3@T801L16;C;D"

154¢ IF AR=1 THEN 1568

1558 AA=RND(LV) :AA=11p+ (AA#5) :Us=
193

1568 PSET(U,AA,1):U=U+5:PSET(U,A
A,4)

157¢ IF AA>=V AND AA<=V+1@ THEN

1589 ELSE 115¢

158 IF U >=H AND U<=H+15 THEN 3
g99 ELSE 1150

299 ‘LV3

2019 R2=20:S2=11§:TI=g:PCLS(1):R
1=130:S1=178: HA=22@:X=19:Y=160:H
=45:V=10:PH=3:AA=135:ZA=180:AR=0
tE=p

2015 R3I=135:53=139

2p¢2¢ GET(29,29)-(35,35),D,G

2939 DRAW"C2;BM@,48;R1PPBGIEG2PR
2PE1PHIPBELEF2PRIPF2PDIPLIAPGLID
1£G12D2@G1PD1@RIPFIPR17PE2PULILH
25"

2p4p PAINT(18,1P8),2,2:PAINT (18,
18p2),2,2

2¢59 COLOR 4,1:FORI=1TOLV:LINE(2
28,15+ (I*5))=(238,15+(I*5)) ,PSET
:LINE(228,85+(1%5))=(230,85+(I*5
)),PSET

2p69 NEXT

278 PUT(H,V)~-(H+16,V+1@),C, PSET
2p8¢ DRAW"C2;BMS5@,11p;D2gR1PPE2p
L12@": PAINT(68,125) ,2,2

218 'MOVE

211@¢ PUT(H,V)-(H+16,V+18),D

2129 J(1)=JOYSTK(f) :J(2)=JOYSTK(
1)

2138 FORI=1TO2

2149 IF J(I)<=15 THEN X(I)=-5 EL
SE IF J(I)>=55 THEN X(I)=5 ELSE

X(I)=g

2145 NEXT

2158 H=H+X (1) :V=V+X(2)

2168 IF V>=14§ AND H+16 <=35 THE
N 4978

2179 IF PPOINT(H-1,V)=6 OR PPOIN
T(H-1,V+1@)=6 OR PPOINT(H+14,V)=
6 OR PPOINT(H+14,V+1p)=6 THEN 3P
-4

2189 IF V<=p THEN V=5

2190 IF H<=1p THEN H=1p

22pp PUT(H,V)-(H+15,V+1g),C,PSET
2219 TI=TI+1

2258 'ENEMY

2268 IF AR=1 THEN 23§¢

227p AR=1:IF V<=3g THEN 228¢ ELS
E 2299

2288 T=218:M=(RND(LV)*5)+15:N=15
#:GOTO 23pp

2290 T=218:M=(RND(LV)%5)+85:N=17

]

23pp PSET(T,M,1) :T=T-3:PSET(T M,
3)

231p IF (H<=T AND H+15>=T) AND (
V<=M AND V+1@>=M) THEN 3pgg

232p IF T<=N THEN AR=g:PSET(T,M,

233 IF LV >=3 THEN 234§ ELSE 21

234p PSET(R1,S1,2):R1=R1+1:IF Rl
>135 THEN Rl=13p:S1=S1~-1
2359 IF LV>=4 THEN 236g ELSE 21p

236@¢ PSET(R2,52,2):52=52+1:IF S2
>115 THEN §2=11@:R2=R2+1
237@ IF LV >=5 THEN 2389 ELSE 21

238@ PSET(R3,S3,2) :R3=R3+1:IF R3
>14p THEN S3=S3+1:R3=135

2399 GOTO 2189

3pgP 'DEATH

3991 II=p

395 IF PH >1 THEN 3p48

3p1g 'LVl

3920 DRAW"CS;BM"+H$+","+V$+PLS (E

)

3839 FORI=159 TO 5¢ STEP-5:CIRCL
E(H,I),5,3:CIRCLE(H,I),S5,5:NEXT:
V=45:H=H-5

3p4p 'LVL,LV2,LV3

395¢ FORJ=1TOlP:FORI=8 TO5 STEP-
1

continued on Page 40

DISK UTILITY - l

16K
Disk

An Easy Way
to Run Your
Programs

ow many times have you typed
Hin DIR and frantically hit the

SHIFT-@ keys trying to find a
program you wanted to run? Well, your
troubles are over. Disk Menu takes all
of your programs on a disk and displays
them in a menu. Move the arrows over
the program you want to run, press
ENTER and away you go!

Combined with Roger Schrag’s “A
Special Use for the DOS Command™
(November 1984, Page 140), Disk Menu
is a very easy way of running your
programs. Simply type in the program
and save it as M ENU, then run Dosstart
and enter RUN“MENU” as the command

By Andrew Dater

to be executed upon typing DOS. It sure
is a keystroke saver! I put it on all of
my disks, especially my RAINBOW ON
TAPE disks. I just type in DOS and get
a menu of the programs from THE
RAINBOW all ready to run. Disk Menu
only takes up one granule on the disk,
so with it and the DOS command, you
can save yourself a lot of typing with the
sacrifice of only two granules.

When you run the program, you are
prompted to enter the drive number.
Just press 0-3 without pressing ENTER
and Disk Menu loads the directory
from the disk to memory. You are then
presented with a menu of the programs

on your disk. Use the arrow keys to
move the “> <" symbols over the pro-
gram you want to run and press ENTER.
The arrow keys repeat, so if you just
want to move the pointers one space, be
sure to release the arrow key quickly. If
there are more than 30 programs on
your disk, they will not fit on one screen,
so press ‘M’ (for “more™) to switch
between screens. To switch disks or
drives, press CLEAR to restart the pro-
gram.

You can also get the free granules on
your disk very easily: press ‘F’ and it
displays how many are free. Press any
key to get back to the menu.

The listing: DISKMENU

'COCO DISK MENU

'(C) 1985 ANDY DATER

PMODEg : PCLEAR] : CLEARSP£ 9

DIMTS$(11,7),N$(68),TP(68)

5@ CLS4:PRINTE@9,"COCO DISK MENU"
; :PRINT@47,"BY"; : PRINT@7S5, "ANDY

DATER" ; : PRINT@123, "COPYRIGHT (C)
1985"; : PRINT@162, "PRESS §-3 FOR
DISK DIRECTORY";

6¢ DN$=INKEYS$:IFDN$<>“P"ANDDNS<"
1"ORDN$>"3"THEN6PELSEDR=VAL(DN$)

7¢ PRINT@226,"READING DIRECTORY

OF DRIVE "DN§$:

8¢ N=1:FORX=3TO11:DSKI$DR,17,X,A

$,B$:CS~AS+LEFTS (BS,127) : FORI=@T

07:T$(X,I)=MID$(CS$,I*32+1,32):C1

=ASC(T$(X,I)):IFCL=255THEN1BPELS

EIFC1=gTHENSPELSENS (N) =LEFTS$ (T$(

X,1),12) :TP(N)=ASC(MID$(T$(X,I),

12,1)) :N=N+1:IFN=69THEN1g@

9@ NEXTI,X

19p N=N-1:FORX=1TON:N$ (X)=LEFT$ (
N$(X),8)+"."+MID$ (N$(X),9,3) :NEX
s

CLS

IFN<=3PTHENPP=1:N1=N
IFN>3@THENPP=2:N1=30
IFN>6PTHENPP=3:N1=30
FORX=1TON1:PRINT" "N$(X),:NE

11p
129
138
148
158
XTX
16§ IFPP=20RPP=3THENPRINT@48p,"P
RESS <M> FOR MORE...";

17§ LS=">":R$="<":P=p:Ym]

189 PRINT@P,LS;:PRINT@P+13,R$;
199 FORX=338TO0345:POKEX,255:NEXT
X
209
219
049
229
239
249
258
268
27¢
289

IFPEEK(338)=191THEN39p
IFPEEK(339)=191THENCLEAR:GOT

IFPEEK(341)=247THEN358
IFPEEK(342) =24 7THEN368
IFPEEK(343)=247THEN378
IFPEEK(344)=247THEN388
IFPEEK(344)=254THEN29§
IFPEEK(343)=253THEN3gg
GOTO288

299 CLS:PRINTFREE (DR)"FREE GRANU
LES ON DRIVE"DR:PRINT:PRINT"PRES
S ANY KEY TO CONTINUE":EXEC44539
:GOTO118

3§ IFPP=2ANDY=1THENCLS:FORX=31T
ON:PRINT" "N$(X),:NEXT:PRINT@480
,"PRESS <M> FOR MORE..."j:Y=2:P=
P:N1=N-30:GOTO180

31 IFPP=2ANDY=2THENY=1:P=g:N1=3

$:GOTO119

32 IFPP=3ANDY=1THENCLS:FORX=31T

061:PRINT" "NS$(X),:NEXT:PRINT@4S

#,"PRESS <M> FOR MORE...";:Y=2:P

=@ :N1=N-59:GOTO180

33 IFPP=3ANDY=2THENCLS:FORX=62T

ON:PRINT" "NS$(X),:NEXT:PRINT@48p
,"PRESS <M> FOR MORE...";:Y=3:P=

P:N1=N-61:GOTO18p

349 IFPP=3ANDY=3THENY=1:P=g:Nl=3

#:GOTO11p

35¢ IFP<17THEN18@ELSEP=P-32:PRIN

T@P+32," ";:PRINT@P+45," ";:GOTO
189

368 IF P/16=>(N1-2) THEN19PELSEP=
P+32:PRINT@P=32," ";:PRINTEP-19,
" W::GOTO18f

37§ P=P-16:IFP<PTHENP=g:GOTO18PE
LSEPRINT@P+16," ";:PRINTEP+29,"
";:GOTO18@

38¢ IF P/16=>(N1-1) THEN19gELSEP=
P+16:PRINT@P-16," ";:PRINT@P-3,"
";:GOTO188

399 F=P/16+(Y~-1)*3g+1:F$=NS (F)+"
: "+DNS : TP=TP (F)

4gp CLS

419 IFTP=gTHENLOADFS,R

429 IFTP=2THENLOADMFS:CLEAR20#:P

OKE&HFF4@, £ : EXEC:END

439 CLS:PRINT"IS FILE: "F$" A BA

SIC":PRINT"PROGRAM? (Y/N)"

449 IS=INKEYS:IFI$="Y"THENLOADFS
,R ELSEIFI$=~"N"THENCLEAR2@g:ENDE

LSE448 =

GE 14

Australian RAINBOW

March 1986.

—SOUND TUTORIAL £CB s

Producing sounds without the PLAY or SOUND commands

Further Adventuring

Into Sound
Experimentation

By Bill Bernico

This article is an

Adventure Into Sound
Experimentation,” which appeared in the
December 1985 edition, Page 35. For more
complete information, please refer to this
previous article.)

(Editor’'s Nate:
addendum to "An

Halt the fun of programming is trying
to discover the unusual, the bizarre

and the humorous. 1 think [’'ve
combined all three elements in Sound Story
2, a continuvation of my original Sound
Story program. The significant difference
with this installment is that it doesn't
use any SOUND or PLAY commands. That's
right, there's another way to generate
sounds - one I stumbled on purely by
accident. Remember, experimentation often
leads to some of the best ideas.

In order to generate the odd sounds
contained in this program I had to POKE
values into memory. By trial and error, I
found the combination of values that were
right for each sound. 1 had some help

finding these values, though, in the form
of the second program listing, Random
Sound Generator. With it, you can hear

randomly created sounds and see the values
that went into making up the sound.

From there you can jot down the values
and insert them into the proper slots in
the main program.

If you'd like to make up your own sounds,
be it for part of a program or a

menu-driven sound selection such as SS2,
first run RANDOM SOUND GENERATOR.
Immediately you'll hear an odd sound,

followed by a listing like this:

Number of times (N)=2
Duration value (D)=88
Start Address (S)=1327
Ending Address (E)=2784

The number of times is fixed at '2', but

the duration, start address and end
address are random. The values for 'N’
and 'D’ can be from 255. The start and
end addresses can be any value up to
65,536. Keep this in mind when you use
values from here for your program. The
difference between the 'S’ and 'E’ values

is restricted to a maximum of 3,000 simply
because it might randomly generate a start
address of, for example, 123, and an end
address of 65,000 with a duration of 255.
You coud wait a long time to hear that
kind of sound played twice (the value of
4 ["

THE MAIN PROGRAX

I purposely stayed away from sounds you
might hear in any run-of-the-mill program
and instead created some unusual sounds
from which to pick. When the menu page
appears, simply press any number key from
1-9 to hear a sound or press 'E' to end
the program. Each sound selection features

a short description of what you're
hearing.
The 1idea behind selection number '9’ is

just what it says. It’s randomly selected
sound that can be named whatever you like.
Unless you select number '9' 3,000 times,

chances are you won't hear the same sound
twice. Sometimes it's short and barely
audible and sometimes it's 10 seconds

long, so listen closely for it.

March 1984.

Australian RAINBOW

PAGE 15

Listing 1: SOUND 2

1¢ 'SOUND STORY 2 (THE SEQUEL)
29 'BY BILL BERNICO

39 '7¢98 MICHIGAN AVE.

49 'SHEBOYGAN, WI 53¢81

58 '(414) 459-7358

60 '

79 DATA 16,198,63,9,198,63,3,166
128,72,73,183,255,32,141,12,3);
16,179,63,5,38,248,49,63,38,233,
57,182,63,2,74,38,253,57

8¢ FOR I=16135 TO 16169

9¢ READ A

1¢¢ POKE I,A

11§ NEXT I

12¢ DEFUSRP=16135

13% POKE 65281, (PEEK(65281) AND
247)

149 POKE 65283, (PEEK(65283) AND
247)

158 POKE 65315, (PEEK(65315) OR 8
)

168 CLS:PRINT@3,"SOUND STORY 2 (
THE SEQUEL)

179 PRINT@75,"selections:

189 N=g:D=@:S=@:E=0

199 PRINT@128,"1. 78 RPM RECORD

SCRATCHING

2¢% PRINT@168,"2. WILD AMINAL MA
TING CALL

219 PRINT@192,"3. SOMEONE DIALIN
G '555!

22@ PRINT@224,"4. FRONT DOOR BUZ
ZER

239 PRINT@256,"5. WILLIE WONKA'S
FACTORY

24¢ PRINT@288,"6. A PEG-LEG CENT
IPEDE

259 PRINT@328,"7. DEATH RAY SPAC
E GUN

269 PRINT@352,"8.
D HUMMINGBIRD
279 PRINT@384,"9.

AME IT

289 PRINT@448,"SELECT (1-9) OR e
ND

29¢ A$=INKEYS$:IF A$=""THEN 290
3¢@ IF A$="E"THEN CLS:END

31§ M=VAL(A$):ON M GOTO 338,348,
359,360,379,380,399,499,419

329 GOTO 298

33§ CLS:PRINT@132,"A 78 RPM PHON
OGRAPH NEEDLE AT THE END OF
THE RECORD.":N=6:D=33:5=56789:E
=60@PP:GOTO42P

349 CLS:PRINT@132,"IT'S THE MATI
NG CALL OF PURPLE-BELLIE
D, FRILLY- CROWNED, 3-TO
OTH SNIPE.":N=6:D=143:S=44:E=999
:GOTO4 20

NUCLEAR POWERE

(RANDOM) YOU N

3580 CLS:PRINT@13g8,"THIS IS WHAT
IT SOUNDS LIKE FROM YOUR END
WHEN YOU DIAL '555 ., % N=3:D
=19p:S=888:E=2222:G0T0429
360 CLS:PRINT@132,"IT COULD ALSO
BE THE BACK DOOR BUZZER."
tN=255:D=2:S=11:E=111:G0T04280
378 CLS:PRINT@132,"YOU'RE INSIDE
THE FACTORY WHERE THEY MA
NUFACTURE THE EVERLASTING G
OB STOPPERS!":N=1g:D=33:5=333:E=
3333:G0T0429

389 CLS:PRINTE@132," READY...MA
RCH. LEFT,RIGHT,RI
GHT,RIGHT, LEFT,RIGHT,RI
GHT,RIGHT, LEFT,RIGHT,RI

GHT,RIGHT...":N=8:D=188:S=8@9:E=
2334:GOT0429

399 CLS:PRINT@132,"YOU JUST GOT
ZAPPED BY COMMANDER COM

MOTION OF THE 33RD STAR
FLEET!":N=35:D=44:5=66:E=444:GO
TO420

499 CLS:PRINT@132,"IF THERE WAS
SUCH A THING, THIS IS WHAT
IT WOULD SOUND LIKE...OR WOU
LD IT?":N=77:D=7:S=77:E=777:GOTO
429

41p CLS:PRINT@132,"WHAT THE HECK
WAS THAT?":N=2:D=RND(255) : S=RND
(3999) :E=RND(3088)+S

42¢ POKE 16128,INT(N/256) : POKE 1
6129,N=INT (N/256) *256

439 POKE 1613g¢,D

44¢ POKE 16131,INT(S/256) :POKE 1
6132,S-INT(S/256) %256

45¢ POKE 16133,INT(E/256) :POKE 1
6134 ,E-INT(E/256) *256

469 A=USRP(9)

479 GOTO 168

Listing 2: SOUNDGEN

1§ 'RANDOM SOUND GENERATOR

2¢ 'USED TO PRODUCE SOUNDS IN
SOUND STORY 2 (THE SEQUEL)

3g

4¢ DATA 16,198,63,8,190,63,3,166

;128,72,72,183,2585,32,141,12,31,

16,179,63,5,38,249,49,63,38,233,

57.182,63,2,74,38,253,57

5§ FOR I=16135 TO 16169

68 READ A

78 POKE I,A

89 NEXT I

9@ DEFUSRP=16135

1¢¢ POKE 65281, (PEEK(65281)

247) "

11¢ POKE 65283, (PEEK(65283)

247)

12¢ POKE 65315, (PEEK(65315) OR 8

)

AND

AND

continued on Page 18

PAGE 16

Australian RA INBOW

March 1556. }

COMMUNICATIONS

The last of a four-part series on operating

with this BBS software

CoBBS:

How to Modity the Program

to Use the CoCo ‘Serial Port’

ritten for use with the RS-232
Pak, CoBBS takes advantage
of it being a true serial port.

The “serial port” on the back of the
CoCo was designed as a printer port,
but through the miracle of software can
be used as a communications port (but
still not a true RS-232 port, just voltage
compatible). Co BBS can be modified to
use the serial port, but it loses a lot of
its features, including advanced key
input, no pausing or stopping while a
message or file is being displayed, no
uploads, no 1200 Baud, slower opera-
tion and awkward termination of a call.

If I sound pessimistic about serial
operation using the serial printer port,
I am! We will discuss briefly some of the
modifications required to convert
CoBBS and its operation. You will have
to do the installation depending on your
needs. | strongly suggest obtaining an
RS-232 Pak if you are serious about
running this BBS software, but for
those who want to experiment . . . here
we go.

Changing CoBBS over to the serial
port requires modification of the serial
driver and all the BASIC routines. The
main difference is that the serial version
pauses anytime it is polled and waits for
a character, where the Pak returns a

CHR$ (@) and returns to BASIC. Through-
out the programs, the system jumps to
the single key input routine of the driver
to strip any extra character waiting to
be received, making sure no extraneous
character is in the buffer.

The following lines of USER/SYS
have the statement EXEC4314, or EX
EC&H100A, in them and should be
removed: 40, 68, 70, 150, 180, D266,
345, DI1205, 1225 and D7035. If there
is a ‘D’ preceding the number, delete the
whole line and replace it with a REM
statement. The following lines in
COBBS/SYS to change are: 410, 440,
960, D975, 1005, 1270, 1345, 1420, 1465,
2085, 2410, D7050 and 7057.

The carrier detect routine must also
be changed. The way to do this is to
check the CD flag set via the serial port.
The port should first be reset by the
command K=PEEK(&HFF20@). Then, by
monitoring the location of $FF21 for a
change in state, you will know when a
carrier is coming in. The command
CO=PEEK(&HFF21) checks the flag. If
the value of ‘K" is greater than 100, the
system has detected a carrier. After
detecting a carrier, again issue the
command K=PEEK(&HFF20). From this
point on the value of ‘K’ should be less
than 100. If not, it means the last user

By Richard Duncan

has dropped his carrier, this is a new
caller and the system needs to be re-
booted. The carrier detect subroutine
for USER/SYS should read: 9700 ‘-
CD CHECK-9705 IFPEEK(&HFF21)=
180 THEN CLOSE :RUN 9710 RETURN. In
COBBS/SYS replace the RUN with
LOAD“USER/SYS”,R.

Next, you must devise a way to hang
up your modem when you want to
terminate a call. This might be done
with the “+++” and “"ATH" with the
Hayes modem, or through use of the
cassette relay and the MOTOR ON/OFF
command. This is done in the 9800’
subroutine.

The listing provided is used to load
in COTERM | BIN for the RS-232 Pak,
convert it for the serial port and save it
back out under the same name. You
cannot use the C/R modification with
the serial port version. It is hard to
modify a big program to be used a
different way from the way it was
originally written.

With some effort and patience you
will be able to get a basic version of
CoBBS running with the printer port.
If you want the Pak version along with
a documentation disk, send $25 to me
at 2504 N. Gathings Drive, West Mem-
phis, AR 72301. a

The listing: LOADER

12 'THIS ROUTINE WILL LOAD IN

29 'COTERM/BIN, MODIFY IT FOR

3§ 'THE SERIAL PORT AND SAVE

49 'THE MODIFIED VERSION OUT TO

S@ 'DISK. this routine will

62 'overwrite the original versi
onl!

79 LOADM"COTERM"

Bf A=4249

92 READ D$:IF D$="END"™ THEN 119

189 POKE A,VAL(D$) :A=A+1:GOTO9p

119 SAVEM"COTERM/BIN",&HPE@®, &H1
2BF, 4H1p99

129 CLS:PRINT@26@,"COTERM/BIN MO
DIFIED":END

139 DATA 67,48,141,9,81,188,1,19
4,39,5p

14¢ DATA 182,1,1$3,167,141,8,218
,198,1,194

15¢ DATA 175,141,9,212,182,1,186
,167,141,9

1690 DATA 2@7,199,1,187,175,141,9
,201,134,126

17¢ DATA 183,1,1p6,183,1,193,48,
141,9,36

18¢ DATA 191,1,1P4,48,141,0,4,19
1,1,197

19¢ DATA 57,15,112,13,111,16,38,

$,169,127

2P DATA 255,64,58,98,141,44,129
/3,38;3

21§ DATA 134,42,183,17,129,57,52
,2,18,18

22¢ DATA 18,18,18,18,18,18,18,18
,150,111

239 DATA 53,2,16,38,9,129,141,62
,129,13

249 DATA 38,6,134,18,141,54,134,
13,32,115

259 DATA 52,21,26,88,173,159,16p
18,39,2

269 DATA 32,36,182,255,34,71,37,

March 1984.

Australian RAINBOW

242,141,84

27¢ DATA 182,255,34,71,37,242,79
,52,2,198

289 DATA 7,141,69,182,255,34,18,
71,192,96

299 DATA 98,38,244,141,55,53,2,6
8,53,149

3¢ DATA 52,23,26,88,246,255,33,
193,189,38

31p DATA 2,32,31,127,255,32,141,
34,52,2

32 DATA 198,8,1¢p,96,73,73,183,
255,32,18

339 DATA 141,2p,98,38,243,134,2,
183,255,132

349 DATA 141,8,58,97,53,151,141,
p,141,p

358 DATA 141,0,141,8,174,141,9,5
,48,31

369 DATA 38,252,57,0,182,126,203
,74,126,197

379 DATA 143,13
389 DATA END ~

PAGE 17

YN
4

OMMAND TUTORIAL

ih aTw

’s.“l"}é,:t -

rdinarily, using RENUM is simple
Oand straightforward: You have

been working on a BASIC pro-
gram for some time, and additions and
revisions have filled all the gaps between
line numbers, yet another line needs to
be inserted. A little work space at the
beginning of the program would be
nice, so your new start line becomes 100.
You want to renumber from the start,
and the present first line is ‘7°. Line
increments of 10 keep things simple and
leave room for new lines. So, you type
RENUM 100,7,10, and ENTER.

If the program is just a few lines long,
OK appears on the screen. If the pro-
gram contains 300 lines, the processing
takes a few seconds. In either case, the
lines are renumbered. And, signifi-
cantly, every GOSUB and GOTO is renum-
bered to its new target line number.

There’s nothing so unusual about
that, but the CoCo’s method of renum-
bering GOSUBs and GOTOs makes possi-
ble quite a different use for the RENUM
function. Suppose you have been devel-
oping a program for some time. It has
numerous branches; even the branches
have branches. As you revise, reorgan-
ize and consolidate program lines, you
lose track of the GOSUBSs, the GOTOs and
their target lines. As you run the pro-

(Fred Haberer teaches junior and senior
high school English at WACO High
School in Olds, Iowa.)

gram, UL (Undefined Line) Errors
come up in frustrating profusion.
RENUM is the answer to your problem —
if you employ a special twist.

When you enter RENUM 100,7,10, as
in the example, the CoCo attempts to
reconcile all GOSUBs and GOTOs with
their target lines. If, in editing, you have
deleted target lines (REM statements, for
example, which never should have been
GOSUB targets in the first place), a
statement such as the following appears
on the screen: UL 3766 in 550. Roughly
translated, this means: “In Line 550,
there is an instruction to go to Line
3766, but no such line is in your pro-
gram.”

Now you know that newly designated
Line 550 contains a GOSUB or GOTO
targeted to Line 3766. Unfortunately,
Line 3766 did not exist in the first place,
and you haven't the slightest idea where
it would be in the newly numbered
sequence. If the program is a long one,
you're better off reloading the original
program and starting over. If only the
CoCo could have identified those ULs
before renumbering, you would have
been saved hours of tracing and decod-
ing.

As it turns out, the CoCo can do just
that, but you will have to do some minor
subterfuge. Just ask the CoCo to do the
impossible: tell it to renumber using a
starting line number that doesn't exist
— a line beyond the range of your
program. For example, your program

By Fredric M. Haberer

starts on Line 10 and ends on Line
15277. You tell CoCo to renumber
starting at Line 16000; enter RENUM
16000,16000,1. (It’s important that
both the start line and the new first line
be numbered higher than the highest
line in the program. Otherwise, you'll
get an FC Error.)

The CoCo first searches for line
numbers that can't be reconciled, then
attempts to renumber. There is no Line
16000 from which to start renumbering.
Therefore, it gives up, dutifully lists the
unreconciled lines and says, “OK."
There’s no error message, no cough and
no sputter. CoCo has done its best to
renumber as asked, and has instantly
done a heap of work for you. On your
screen appears the number of each line
containing an unreconciled GOSUB or
GOTO and the number of its target line.

Your original line numbering remains
intact. The tedious job of finding the
errors is done. You now know which
lines to list and edit. After you've made
your corrections, if you still want to
renumber, you may go ahead and do it.

You might not have wanted to re-
number in the first place. In this case,
renumbering is a debugging tool that
locates your UL problems, and keeps its
“fingers” off of your numbering system.

Of course, this procedure cannot
identify incorrect target lines if the lines
actually exist. However, it is a real
headache-reliever in the case of a long
program with holes in it. A

continued from Page 16

13¢ CLS
=RND(3208)+S

6129 ,N=INT(N/256) *256
16¢ POKE 16138,D

6132,5-INT(S/256) %256

6134 ,E-INT(E/256) *256
198 A=USR@ (9)

149 N=2:D=RND(255) :S=RND(3808) :E

159 POKE 16128,INT(N/256) :POKE 1

2¢¢ PRINT@6,"random sound genera

17¢ POKE 16131,INT(S/256):POKE 1 S

toxr"

219 PRINT:PRINT

22¢ PRINT"NUMBER OF TIMES (N)=";
N

239 PRINT"DURATION VALUE (D)=";
D

249 PRINT"START ADDRESS (S)=";
25p PRINT"ENDING ADDRESS (E)=";

18¢ POKE 16133,INT(E/256):POKE 1 =

269

PAGE 18

PRINT@484,"HIT ANY KEY TO DO
ANOTHER" ; : EXEC44539
279 GOTO 13p

Australian RAINBOW

March IQB@J |

HOME HELP

32K
ECB

ByW.J. M
g

‘e, 'QA

he next time you exercise and would like
to bhave a companion, try "Robert the
Robot.” He can exercise at any speed and
never gets tired. You can adjust Robert's
speed by pressing the 'F' key to go faster
or by pressing the 'S' key to go slower.
Holding the key down does not work; press
the key repeatedly.

After typing 1in this program, use the
RAINBOV Check Plus program (see "Rainbow
Info” for an explantionon how to use the
Check Plus). You may also type in the
following in the direct command mode to

check if all DATA statements are entered
correctly.

CLEAR (ENTER)

FOR I=1 TO 610:READ A: T=T+A: NEXT (ENTER)

PRINT T (ENTER)

The value of 'T' should equal 15177. 1if
it does not, then something is wrong in
the DATA statements. It is important to
have the correct data since the program
would be wiped out. It is always wise to
save what you have while debugging a
program or else you may have to retype the
entire program.

It is recommended that all users enter
PCLEAR 8 before running the program. This
should resolve any differences between
systems and/or RON sets. Also, if you have
a 32K 'D' board CoCo, the program may not
run the first time. If this occurs, simply
try it a second time and it should run.

The listing: ROBOCISE

19 REM ROBOCISE BY W.J. MOORE -

PITTSBURG CALF

2¢ ' DISPLAY PICTURE

39 PCLEARS

49 L=PEEK(186)*256+PEEK(187)

58 PMODE4:POKE179,32:PCLS

68 CLS:PRINT@264,"BUILDING A ROB
OT n

7% PRINT@327,"ROBERT IS HIS NAME
n

8¢ N=L+19%32:GOSUB63g
99 N=L+21%*32:GOSUB638

189 N=L+24*32:GOSUB63P 319 NEXT

119 N=L+28%32:GOSUB630 320 L=PEEK(186)/2:A=65478

128 N=L+33%*32:GOSUB63g 338 FORP=@TO6:N=INT (2~P)

139 N=L+39%*32:GOSUB63 g 349 IF L AND N THEN POKE A+P*2+1

149 N=L+46*32:GOSUB63g

15¢ C=@:X=L+11:N=X:GOSUB49g

16g PCOPY1TO3

178 C=@:X=L+7:N=X:GOSUB49g

189 PCOPY1TO4

199 PCOPY3TOl

208 C=p@:X=L+16:N=X:GOSUB49g

219 PCOPY1TOS5

220 C=@:X=1+1924:N=X:GOSUB49g
239 AS=" PRESS: F=FASTER S=SLOWE
Rll

24P FORI=1TO LEN(AS) :T$=MIDS (AS,
I,1):T=ASC(TS)

259 IF T<64 THEN T=T+64:MIDS (AS,
I,1)=CHRS$(T)

260 NEXT

279 C=@g:N=L+2884

288 FORI=1TO LEN(A$) :T=ASC(MIDS (
A$,I,1))

299 FOR C=@TO5:POKEN+C*32,T:NEXT
398 N=N+1

March 1984.

Australian

RAINBOW PAGE 19

,@ ELSE POKE A+P*2,0

35¢ NEXT

360 N=PEEK(65314):POKE65314, (N A
ND 7)

379 POKE65472,0:POKE65474,0: POKE
65477, 9

38¢ X=5@:PLAY"O1T28"

398 PCOPY4TOl:PLAY"C+":GOSUB44g
4P PCOPY3TOL:PLAY"C":GOSUB44g
419 PCOPYS5TOl:PLAY"C+":GOSUB44yg
429 PCOPY3TOl:PLAY"C":GOSUB44g9
43P GOTO39P

449 FORI=1TOX

458 SP$=INKEY$

46g IF SP$="F" THEN X=X-5

479 IF SP$="S" THEN X=X+5

489 NEXT:RETURN

499 READ A,B

59 IF A=-1 THEN F=1 ELSE F=p§
519 IF A=-9 THEN 6@

529 IF A=-99 THEN 629

539 A=A+127

549 FOR I=1 TO B

558 IF F=1 THEN 578

568 POKE N,A

578 N=N+32

589 NEXT

598 GOTO499

69@ C=C+1l:N=X+C

619 GOTO499

629 RETURN

6378 FORI=@TO31:POKE N+I,223:NEXT
:RETURN

649 ' DATA FOR PICTURE

659 DATA-1,12,80,14,128,2,123,2,
-9,

669 DATA-1,12,80,4,75,19,123,4,~-
112, 118,7,=9,

67¢ DATA89,9,-1,3,8¢,12,128,1,89
,11,128,1,89,6,128,6,-9,

68¢ DATA89,1,48,2,80,3,64,2,89,1
,78,3,88,12,128,1,89,11,128,1,89
:6,128,6,-9,

699 DATA8S,4,-1,,88,2,64,1,80,16
,128,1,809,3,-9,

709 DATA8$,1,48,2,8¢,3,64,2,89,1
,75,3,80,12,128,1,80¢,11,128,1, 88
:6,128,6,=9,

719 DATAS8%,9,-1,3,89,12,128,1,89
,11,128,1,80,6,128,6,-9,

729 DATA-1,12,80,4,78,18,118,4,-
1,12,123,7,=9,

739 DATA-1,12,80,14,128,2,118,2,
-9,

749 FORI=@TO31:POKEN+I,223:NEXT:
RETURN

759 DATA-99,

769 DATA-1,12,118,1,-1,2,118,1,~-
9,

77¢ DATA-1,12,128,4,-9,

789 DATA-1,12,88,4,-9,

799 DATA-1,12,89,4,-9,

8¢y DATA-1,16,1,3,96,1,1,1,96,1,
1,2,96,1,1,3,96,1,1,3,<9.

81g¢ DATA-1,16,1,3,96,1,1,1,96,1,
1,2,96,1,1,3,96,1,1,4,96,1

82p DATAl,1,118,6,1,5,96,1,1,2,~-
9,

839 DATA-1,31,128,1,8¢,4,128,5,1
,5,96,1,1,2,-9,

849 DATA-1,31,128,1,80,4,128,5,1
,5,96,1,1,2,-9,

859 DATA-99,

86p DATA-1,31,128,1,8¢,4,128,5,1
l5196r111121'91

87¢ DATA-1,31,128,1,88,4,128,5,1
,5,96,1,1,2,-9,

88p DATA-1,16,1,3,96,1,1,1,96,1,
1,2,96,1,1,3,96,1,1,4,96,1

894 DATAl,l1l,123,6,1,5,96,1,1,2,~-
9,

9¢@ DATA-1,16,1,3,96,1,1,1,96,1,
1,2,96,1,1,3,96,1,1,4,96,1,-9,
919 DATA-1,12,89,4,-9,

929 DATA-1,12,128,4,-9,

93¢ DATA-1,12,123,1,1,2,123,1,-9

’

94 DATA-99,

958 DATA32,1,27,2,32,1,27,3,-9,
960 DATA32,1,-1,2,32,1,27,1,22,1
=%

979 DATA27,4,-1,2,27,1,-9,

98¢ DATA79,1,890,1,75,3,898,1,79,1
1-91

999 DATA8¢,2,-1,3,88,2,-9,

19¢9 DATA-1,1,75,5,-9,

1619 DATA64,1,59,2,64,1,59,2,64,
l1,-9,

1929 DATA64,1,54,2,64,1,54,2,64,
,-9,

193¢ DATA-1,1,59,2,-1,1,59,2,-9,
1949 DATAS,1,16,1,11,3,16,1,6,1,
-9,

1¢5¢ DATAl6,2,-1,3,16,2,-9,

1¢6¢ DATA-1,1,11,5,-9,

1¢7¢ DATA38,1,48,5,38,1,-9,

1¢8¢ DATA48,1,-1,5,48,1,-9,

1¢9¢ DATA43,1,-1,5,43,1,-9,

1199 DATAlg2,1,-1,5,192,1,-9,
1119 DATAll2,1,1987,5,112,1,-9,
1128 DATA-9,

1139 DATA7¢,1,89¢,2,78,1,-1,1,8%,
1l,-9,

114¢ DATAS88,l1,-1,2,88,1,78,2,8%,
115¢ DATA7S5,1,-1,3,75,2,-9,

1169 DATAl28,1,123,2,128,1,123,2
7112851 ,=9;

117¢ DATAl128,1,~-1,2,128,1,-1,2,1
28,1,-9,

1189 DATAl23,1,-1,5,123,1,-9,

1198 DATA-99, a

PAGE 20

Australian RAINBOW

March 1986.

- |
L RAINBOW |

DISK UTILITY

Gathering Up
Scattered Programs

hen | found I had several
disks with only a few pro-
grams on each, I wrote File

Search, a disk file “search and copy™
utility. It seemed that every time | had
a new idea for a program, | used a new
disk. Although 1 still use the programs
on the varied disks, most of them don't
require their own disk, especially the
machine language programs. File
Search allowed me to put them on disks
sorted by program type (BASIC, ma-
chine language and data). Those with
16K and only one drive will be happy
to know that the program works fine on
your machine. If you have two drives,
the program will work faster because
you don't have to keep swapping disks.

Here's how the program works: On
startup, the program asks which is the
source drive and which is the destina-
tion. If you only have one drive, answer
‘0’ to both prompts. If you have more
than one drive, you can use any single
valid drive in your system, or any two
drives from ‘0’ to ‘3". Next, CoCo asks
which type of file you want to copy or
if you want to copy all files from the
source disk. If you want to copy all your
BASIC files, but have some of them saved
as ASClI files, don’t worry. They’re still

By Pete Eichstaedt

identified as BASIC programs. Once the
questions have been answered, CoCo
takes off and does the rest. The only
interaction required is if only one drive
is being used and a disk swap is re-
quired.

As the program runs, it reads the
source disk directory, then checks the
target disk directory to see if the pro-
gram is there already. This saves the
dreaded AE Errors common in copying.
A message is displayed to show which
file is being checked. You might see a
comparison check being made on a file
that doesn’t look right. This is probably
from a killed file, but don't worry — if
the file isn’t there, it can’t be copied. If
a file of the same name and format
exists on both disks, it won’t be copied,
either. A message is displayed when a
file is transferred.

When the copy is complete, CoCo
asks if you want to transfer files from
yet another disk. This keeps up as long
as you answer “yes” and as long as the
disk has room. If you run out of room
while a copy is in progress, the program
crashes with a DF Error — Disk Full,
This is an acceptable concession when
compared to having to type each COPY
command manually.

When all the files are copied, answer
*“no™ to the *“‘search another disk”
prompt. When you key in *N’, CoCo
performs a cold start, just like on power
up. If you just want to stop, change Line
1800 to CLOSE :END.

Of special note to single drive users:
The program changes your selected
single drive to the default drive for the
system. As well, when disk changing
prompts are displayed, a tone is gener-
ated to get your attention. Two tones
are used: A low tone is emitted for
required disk changes in the program
proper; a higher tone is emitted when
the BASIC system’s COPY command is
executed. If you don't change disks in
the order requested, you get either an
NE Error from the target disk not
having the source program, or an AE
Error from the source disk in the drive
when CoCo is looking for the target
disk.

If you don’t get RAINBOW ON TAPE
and have to type the program in man-
ually, you can leave out all REMark (*)
lines and lines 10 through 80. Sugges-
tions and questions can be sent to me
at the address at the start of the program
listing.

The listing: F ILESRCH

'* LINES § THROUGH 98 AND ALL
REMARKS LINES CAN BE DELETED WIT
HOUT

1 '* AFFECTING PROGRAM OPERATION
2 '* SINCE I'M PROUD OF THE PROG

RAM, I'D RATHER YOU LEFT LINES
3 '+ 19 THROUGH B8P ALONE.
5 CLs
19 PRINT "

ARAR AR R AR hhhh

Ahhhhan

2@ PRINT " * PILESRCH - DISK
FILE "

38 PRINT " * COPY ROUTINE FOR
THE #"

4¢ PRINT " * COLOR COMPUTER W
/16K *M

59 PRINT " * BY PETE EICHSTAE
DT #"
69 PRINT " * APT D-398
*h

65 PRINT " * 2p45 PRENTISS DR
IVE 4"

78 PRINT " * DOWNERS GROVE, I
L *h

75 PRINT " » 695
16 an

ap PRINT ® AhhhhhhhAhArrhhhkh
Ak hkal
9@ ' CLEAR AND ALLOCATE STRING

SPACE

95 GOTO 3689

189 CLEAR 1@@@:DIM PGS (72):DIM P
P$(72)

March 1984.

Australian RAINBOW

2p9 INPUT "WHICH IS INPUT DRIVE"
;ID$:ID = VAL(ID$):IF ID <@g OR I
D > 3 GOTO 25p8
3p@ INPUT "WHICH IS OUTPUT DRIVE
";0D$:0D = VAL(OD$):IF OD <@ OR
OD > 3 GOTO 25gp
548 PRINT “WHICH FILE TYPE SOULD
BE SOUGHT":PRINT " g = BASIC P
ROGRAM":PRINT " 1 = BASIC DATA
FILE":PRINT " 2 = MACHINE LANGU
AGE PROGRAM":PRINT " 3 = TEXT E
DITOR SOURCE FILE"
519 LINE INPUT "™ 4 = ALL ";FT$:
:IF FT$ <"@" OR FT$ >"4" GOTO 5@

?
52 FT = VAL(FTS)

55¢ IF ID <> OD THEN SOUND 5@,3:
PRINT "PUT SOURCE DISK IN DRIVE"
;ID:INPUT "AND PRESS <ENTER>";Z$
59¢ '* EACH DISK HAS 9 SECTORS F
OR RECORD ENTRIES

629 FOR 8 = 3 TO 11

69¢ '# CLEAR THE PROGRAM RECORD
COUNTER

continued on Page 22

PAGE 21

PROGRAMMI UTILITY

ECB A.INB(.)W

By John Galus

f you write BASIC programs that use

a lot of data or long tables, such as

in an Adventure game, you know
how long it takes a program to search
for a particular data item. Here is a
short machine language routine called
Quick Restore that allows you to res-
tore to a specified line number.

As you may know, the RESTORE
command permits repetitive use of the
same data. It does this by resetting the
data item pointer in $33 to the begin-
ning of your BASIC program. Whenever
a RERD command is performed, the
interpreter looks through the entire
BASIC program until it finds a DRTA

Quick
Restore

statement, a somewhat siow process.
This machine language program gets
the line number (in the variable LN)
passed by the USR function and stores
it in $2B. Then the line search routine
is called at §ADOL. If this line is found,
the address pointed to by Register X is
bumped back by one and stored in $33.
If the line number is not found, a
RESTORE is performed to the next
higher numbered line in your program.
I have included a short program to
illustrate the usefulness of this routine.
It is written for a 32K Extended BASIC
computer, but it is relocatable and will
work on any size machine you have.

The listing: RESTORE

1 'QUICK RESTORE

2 'JOHN GALUS

3 '55 WILKESBARRE AVENUE

4 'LACKAWANNA, NEW YORK 14218
1§ CLEAR1@,&H7FEF

2 CLS:X=&H7FF@:DEFUSR@=X

39 READ A:IF A=-99 THEN 58

48 POKE X,A:X=X+1:GOTO3p

58 INPUT"ENTER ROOM NUMBER 1-4";

6f LN=98+NU*1g

7p 2=USR@ (LN)

8 READ A$:PRINTA$:GOTOSP

98 DATA 189,179,237,221,43,189,1
73,1,158,71,48,31,159,51,57,=99
19 DATA ROOM ONE

11 DATA ROOM TWO

12¢ DATA ROOM THREE

13 DATA ROOM FOUR a

continued from Page 21

728 PG = @:IF ID = OD THEN CLS:S
OUND 5@,3:PRINT "PUT SOURCE DISK
IN DRIVE";ID:LINE INPUT "AND PR
ESS 'ENTER'";:Z$

799 '* READ THE DIRECTORY SECTOR

s

8#p DSKI$ ID, 17, S, DR$(1),DR$(
2)

89¢ '# IDENTIFY THE STRING TO MA
NIPULATE

9¢2 FOR H = 1 TO 2

999 '# EACH RECORD HAS 32 BYTES
1£2p FOR EN = 1 TO 128 STEP 32
1£9¢ '* INCREMENT THE COUNTER
1128 PG = PG+1

119 '* WE ONLY NEED THE FIRST 1
2 BYTES OF EACH RECORD

1195 '* BYTES 1-8 HAVE THE NAME,
9-11 THE EXTENSION, AND 12 HAS
THE FILE TYPE

1299 PG$(PG) = MIDS(DRS(H) ,EN,12

)

121¢ '+ IF THE FIRST BYTE IS $p

THE RECORD WAS KILLED, GET THE N
EXT RECORD

125¢ '+ IF THE FIRST BYTE IS $FF
THERE ARE NO MORE ENTRIES (UNLE
SS YOU HAVE SOME WEIRD PROGRAM N
AMES)

126¢ IF LEFTS(PG$(PG),1) = CHRS$(
255) GOTO 1509

1298 '#* CHECK THE FILE TYPE. IF
IT MATCHES, PROCEED, ELSE GET N
EXT RECORD

1399 IF RIGHTS (PG$(PG),1) = CHR$
(FT) THEN GOSUB 19g@ ELSE IF FT=

4 GOSUB 198§

1399 '* GET NEXT ENTRY, CURRENT

STRING, SECTOR

14p9 NEXT EN, H, S

1498 '* TRY AGAIN?

15098 CLS

16¢¢ INPUT “SEARCH ANOTHER DISK"
;YNS

1799 IF LEFT$(¥YN$,1) = "¥" OR LE
FTS(¥YN$,1) = "y" THEN CLS:GOTO 2
2g

1798 '* CLOSE OPENED FILES AND P
ERFORM A COLD START. REPLACE WI
TH "CLOSE:END" TO STOP COLD STAR
T

1899 CLOSE:POKE 113,0:EXEC &HAp2
7

1898 '# PUT A "." BETWEEN THE NA

ME AND EXTENSION (SAME AS A "/")

1989 OP$ = LEFTS (PGS (PG),8)+"."+

MIDS (PGS (PG),9,3)

1918 IF G<=1 THEN GOTO 26@§ ELSE
GOTO 2639

1998 '# IF YOU'RE ONLY USEING ON

E DRIVE, MAKE SURE IT'S THE DEFA

ULT DRIVE

28 IF ID = OD THEN DRIVE ID
2¢3@ PRINT:PRINT "COPYING ";OP$;
" TO DRIVE";OD

2p5¢ IF LEFTS(PG$(PG),1) = CHR$(

£) GOTO 23pp

2§98 '+ IF YOU'RE USING TWO DRIV

ES, COPY FROM THE INPUT DRIVE AN
D TO THE OUTPUT DRIVE

21¢¢ IF ID <> OD THEN COPY OP$+"
:"+RIGHTS (ID$,1) TO OPS$+":"+RIGH

T$(OD$,1) ELSE COPY OP$

2199 '* IF YOU'RE USING ONLY ONE
DRIVE, PROMPT DISK SWITCH

22099 IF ID = OD AND PG <= 1 THEN
CLS:PRINT "INSERT SOURCE DISKET
TE AND PRESS 'ENTER'";:SOUN
D5@,3:LINE INPUT NX$

2298 '+ GET THE NEXT RECORD

23¢9 RETURN

24p9 END

2499 '* IF YOU MESS UP, COCO TEL
LS YOU AND RESTARTS

2589 CLS 4:SOUND 19@,1:SOUND 158
,1:SOUND 1£@,1:PRINT € 232, "INV
ALID DRIVE!";:FOR X = 1 TO 19gg:
NEXT:CLS:GOTO 229

PAGE 22

255@ ' SHORTSTOP OVERFLOW INTO

THE NEXT ROUTINE

256p '* IF IT GETS HERE IT DOESN
'T BELONG ... END!

2598 END

2595 ' CHECK FOR SINGLE DRIVE O
PERATION

269 IF ID = OD THEN CLS:SOUND 5

#,1:PRINT "INSERT DESTINATION DI

SKETTE IN DRIVE";OD;:LINE INPUT
"AND PRESS 'ENTER'";Z$

262 '%* SEE IF FILE ALREADY EXIS

TS

2638 PRINT:PRINT "CHECKING DESTI

NATION DISKETTE":PRINT "FOR ";OP

$:PRINT "TO PREVENT <AE ERROR>"

2658 PP=@i: FOR SS = 3 TO 11

ivpp DSKI$ OD,17,SS,CK$(1),CKS$ (2

28p% FOR HH = 1 TO 2

29¢p FOR EE = 1 TO 128 STEP 32

3pPP PP = PP +1

S}ﬂﬁ PP$ (PP) = MIDS$(CK$ (HH),EE,1

2

329 IF PP$(PP) = PG$(PG) THEN R

ETURN

3225 IF LEFT$ (PP$(PP),1) = CHR$(

255) GOTO 3358

3253 PP$(PP) = "n

33p8 NEXT EE,HH,SS

333 '* IF YOU GET THIS FAR, THE
FILE MUST BE COPIED

334p '* CHECK FOR SINGLE DISK OP

ERATION, THEN CALL THE COPY ROUT

335¢ IF ID = OD THEN CLS:SOUND 5

$,1:PRINT "INSERT SOURCE DISK IN
DRIVE";ID:LINE INPUT “AND PRESS
'ENTER'":2$

3499 GOTO 2999

3459 '* SHORTSTOP RUNAWAY OPERAT
ION

3598 END

3558 '* CLEAR AS MUCH MEMORY AS

YOU CAN THROUGH BASIC

369 PCLEAR 1:GOTO 188 A

Australian RAINBOW

March 1988,

TAPING TUTORIAL

The Secret to Loading Those
Double-Speed Tapes

By Craig Carmichael

ave you got lots of long files to
HCLDRD and CSAVE? Or, have
you accidentally taped your
favorite game at double speed? Anyone
who is familiar with the Color Compu-
ter, and whose POKE 65495, @ works, is
probably also familiar with the double-
speed CSAVE. These individuals also
know that a simple POKE 65495,0,
unfortunately, does not enable them to
load the tapes back into the computer.
The problem is this: POKE 65495,90
takes the Color Computer from “slow”
(normal) clock mode to *“‘address-
dependent” mode. In address-de
pendent mode, the computer runs at
normal speed when the memory being
accessed is RAM, from zero to 32767,
and at double speed when accessing
ROM, 32768 and up (BASIC, Extended
BASIC). During a CSAVE, there aren't
many calls to RAM, so the operation is
nearly double speed. However, CLOARD
makes considerable use of RAM, and
thus does not operate at the same speed
as the CSAVE. The exasperating thing is
that double-speed tapes are perfectly
good! All we need i1s a way to load them.
The first method I tried involved
connecting my tape recorder’s drive belt
to a variable speed electric drill and
running the tape recorder at my guess
of half speed! As an emergency meas-
ure, it had its merits, working about one
time in four with a steady hand, but this
is not the method I shall detail here.

My next idea was to rewrite the
cassette routines as machine language
utility programs, which could be run as
much as three times as fast as the regular
ones, but luckily, other commitments
and procrastination eliminated this
idea.

Then I got a copy of The Facts for
the TRS-80 Color Computer (a techni-
cal book by Spectral Associates, $15.95)

and browsing through it, 1 noticed an
overlooked detail. Memory Locations
8F, 90 and 91 Hex in RAM determine
the width of pulses the computer ac-
cepts as a ‘0’ or a ‘1" from the tape. So,
here is the priceless secret: After you
POKE 65495,0, POKE 143,15:POKE
144 ,20:POKE 145,27 and all those
double-speed tapes will load perfectly!

Too many people buy disk drives
because cassettes are slow to use, with-
out realizing that the full speed of the
cassette is not exploited. The cassette
interface on my homemade computer
runs at 4.5K Baud, three times the
regular speed of the Color Computer’s.

I usually program in machine lan-
guage, and I have now incorporated the
double-speed cassette functions as an
automatic feature of my assembly edi-
tor and as an optional feature of my test
editor for saving lengthy files. I have
had no 1/O Errors using double speed,
except with a bad tape. There is, of
course, less possibility of running over
a bad section of tape since the programs
save in a shorter time!

Comments

1) To recap: When recording, simply
use POKE 65495,@ “DOUBLE SPEED
POKE”, and when loading, use POKE
55495,0 with POKE 143,15:POKE
144,20:POKE145, 7.

2) If your computer doesn’t work in
address-dependent mode, see Page 78 in
the January 1983 RAINBOW for ideas on
how to get it running.

3) To get back to regular speed load-
ing without turning off the computer,
POKE 65494,0:POKE 143,18:POKE
144 ,24:P0OKE 145,10.

4) If your tapes don't load flawlessly,
you could try POKE 146,1 (or more)
before you record to increase the length
of leader tape sent at the start of each

block, since this is the most common
trouble spot with any tape. Next, tape
recorders that have a manual record
level adjustment make better quality
recordings than those with ALC record
levels.

5) You could also try changing the
POKE values at 143, 144 and 145. The
values given are simply the first ones
that gave me good results.

6) If all else fails, get a couple of
adapters and hook up your stereo
cassette deck. 1 confess to using an
AKAI CS-34D at all times, which
means | am only guessing about
whether many people will have trouble
with portable tape recorders at the
higher speed.

Rules

1) Use double speed only for your
personal tapes. Even if others know
how to load a tape at double speed, they
won'’t be expecting to receive a tape in
this format. The regular speed is stand-
ard.

2) Clearly indicate on the cassette
label “FAST” when you have recorded
a tape at double speed.

Due to speed differences between
cassette recorders, the POKE values may
have to be adjusted a bit if a program
is CSAVEd on one unit and CLOADed with
another model of cassette recorder.

There you have it! So simple, yet such
a timesaver if you do a lot of C5AVEing
and CLOADing, and a lifesaver if you've
accidentally saved a tape at double
speed.

(You may write to the author with any
questions at 820 Dunsmur Road, Vic-
toria, British Columbia, Canada, V9A
5B7. Please include an SASE.) Q)

March 1984.

Australian RAINBOW

PAGE 23

PROGRAMMING UTILITY l

T e
{ a1
AAINBOW

Now you can use CoCo'’s assistance for
compiling program documentation

Cross-Reference Your

Programs with XREF

By Douglas Van Dusen

ave you ever had to go back to

a program you wrote several

months ago and couldn’t find
your way around the program? Well,
you have fallen to the bane of all pro-
grammers: documentation! The worst
part of writing a program is document-
ing it. XREF helps make it easier to do
that documentation by making the
CoCo do most of the work for you.

XREF will list your program and
cross-reference it. It is easy to modify
XREF since the line length and number
of references per line have been placed
in variables. This program also works
for tape users as the device number has
been placed in a variable, also.

Some of the rules for using this
program are: 1) The program must be
saved in ASCII; 2) In present form a
PCLEAR @ must be done for disk oper-
ation (see “Program Modifications” for
more on this); 3) You must have a
printer (any width will do); 4) Don’t use
the high speed POKEs in the program
with a software spooler program. It will
mess up the printout; and 5) Be sure you
have no machine language programs in
memory — you need all the memory
you can get.

Let’s have a look at the program
section by section:

Line Description
1 Sets the printer Baud rate
(9600 in my case).

2-3 Displays the status and statis-
tics while the program oper-
ates (so you can tell it’s doing
something).

4-8 Sets up the parameters, finds
out what options you have
selected and enters the pro-
gram line.

9-40 Breaks (parse) the input lines

..

XREF Sample Run
"XREF" - February 26, 1986
SYMBOL REFERENCE LINE

2 19

4 99

7 8 12

12 15 16

42

22 14

23 24

g 12 16

33 33

35 33

37 34

38 k) § 34

39 18 19

41 14

42 23

43 7

46 57

5g 55

58 46

62 46 47

63 47 48

64 8

66 13

67 67

68 6 62

69 68

72 1

76 78

79 76

82 86

85 84

87 83

88 4 88
BC 2 5
BN 9 22
BR 15
c 22 23

PAGE 24

Australian RAINBOW

March 1986,

and finds the reserved words
using the data in the RWS$
array. These come from the
DATA statements.

41 - 58 Prints the cross-reference por-
tion of the listing.

59 - 71 This is the page break portion
of the program. It works no
matter how wide the listing is
10 be created.

72-73 Clears the string space and
dimensions the arrays that are
necessary for program opera-
tion. This is where you can
customize the program to suit
your system (see “Program
Maodifications”).

program may or may not
have the extension, however,
if the extension is not BAS
you must enter the extension
(disk users don't use the drive
number).

87 Used to input the date (it may
also be used to put some com-
ment of no more than 50 char-
acters).

88 Enters the selection of what
you want the program to do.

89 - 93 The loop that runs all of your
programs you want to cross-
reference.

94 -96 The DATA statements that
have the reserved words.

BASIC program use). These arrays must
be the same size. The HI and LO var-
iables are used for the high speed POKE;
these may be deleted if your machine
won't handle it. Be sure to remove all
POKE HI and POKE LO references in the
rest of the program.

Line 73: The DN variable is set to ‘1°.
If it is set to -1 you will enter from tape.
LW is the line width. Set it as you wish
for your printer, ZR is the number of
references per line. Use 6 for 80 cpl, 7
for 96 cpl and 11 for 132 cpl.

You can use the PCLERR @ POKE (POKE
25,6 for tape and POKE 25,14:POKE
3584,0:NEW for disk) to clear more
memory for the program’s use. The

74 - 75 Displays the credits for the
program (I request that these
lines remain unchanged).

76 - 80 Reads the DATA statements
and places the reserved words
in the RWS$ array.

81 - 86 Takes the programs to be
“XREFed” (10 MAX). The

Program Modifications
Line 1: This may be changed to reflect
the Baud rate used for your printer.
Line 72: The arrays RF and NX may
be enlarged (for tape system or 40K

program needs a minimum of 500 bytes
to operate.

(Any questions you have about
XREF may be directed to the author at
2541-A Valencia Drive, Holloman
AFB, NM 88330, phone 505-479-4035.
Please enclose an SASE for a reply
when writing.)

The listing: XREF

1 POKE15@,1:GOT072

2 PRINT@@,STRINGS (46,128) ;"xref"
;STRINGS$ (46,128) ; : PRINT@129, "PRO
GRAM-ID: ";F$(F):PRINT@196,"LINE
NO: ";:PRINTUSING"#####4#";LN:PR
INT@257,"LINE COUNT: ";:PRINTUSI
NG"#####4#";LC-1:PRINT@321, "BYTE
COUNT: ";:PRINTUSING"#####4";BC
3 PRINT@386,"REF COUNT: ";:PRINT
USING"######" ;RC+1: PRINT@453,"ME
MORY: ";:PRINTUSING"######" ;MEM:
RETURN

4 M=VAL(M$) : IFM<@ORM>3THENSS

5 LC=@g:BC=@:PZ=g:VS="":CS$="":VC=
91:RC=~1:SZ=0

6 CLS:FORI=@TO091:VN(I)=-1:NEXT:G
OSUB68

7 POKELO,@:IFEOF (DN) THEN43

8 LINEINPUT#DN,LS:POKEHI,@:IFM>1

GOSUB64 : IFM=2THEN7

9 LG=LEN(LS$) : BN=g:ERS$="":LC=LC+1
: BC=BC+LG

1§ LP=INSTR(L$," "):LN=VAL(LEFT$
(L$,LP)) : GOSUB2

11 IFLN>32767THENLN=LN-65536

12 LP=LP+1:IFLP>LG GOSUB3@:GOTO7

13 C$=MID$(L$,LP,1)

14 IFCS$>="A"ANDCS<="Z"THEN22ELSE

IFC$>="@"ANDCS$<="9"THEN41

15 1FC3=" "THEN12ELSEIFC3<>", "TH
ENBR=0

16 IFC$=CHRS$ (34)GOSUB38:LP=INSTR
(LP+1,L$,C$) : IFLP>@THEN12ELSE7
17 IFC$="'"GOSUB3@:GOTO7

18 IFC$="$"GOSUB39:GOTO12

19 IFCS$="("GOSUB39

29 GOSUB3@:IFC$<>", "THENERS=""
21 GOTOl2

22 C=ASC(C$) :P=PT(C=-65) : BN=0

23 IFC<ASC(RWS (P))THEN42

24 IFINSTR(LP,L$,RWS (P))<>LP THE
NP=P+1:GOTO023

25 GOSUB3@:RW$=RWS (P)

26 IFRW$="DATA"THENLP=INSTR(LP,L
$,":") : IFLP>@THEN12ELSE?

27 IFRW$="REM"THEN7

28 IFRW$="GOTO"ORRWS$="THEN"ORRWS
="ELSE"ORRW$="GOSUB"THENBN=1

29 LP=LP+LEN (RW$)=1:GOTO12

3¢ IFV$=""THENRETURN

31 IFV$>="A"THENV$=V$+ER$:C=ASC(
V$)+1ELSEIFV$>="g"THENVS=RIGHTS (
" "4+V$,5) : C=VAL(LEFT$ (V$,2))E
LSE38

32 IL=-1:I=C

33 IFV$>VS$(I)THENIL=I:I=VN(I):IF
I>@THEN33ELSE35

34 IFV$=V$(I)THENI=LS(I-91):IFRF
(J)=LN THEN38ELSERC=RC+1:NX(J)=R
C:GOTO37

35 VC=VC+1:IFIL>=@THENVN (IL)=VC
36 V$(VC)=VS$:VN(VC)=I:RC=RC+1:FR
(VC-91)=RC:I=VC

37 RF(RC)=LN:NX(RC)=-1:LS(I-91)=
RC

38 V$="":RETURN

39 IFV$<>""THENVS$=V$+C$

March 1986.

Australian RAINBOW

PAGE 25

PAGE 26

49 RETURN

41 IFV$=""ANDBN=gTHEN12

42 V$=V$+C$:GOTO12

43 IFM=2THENRETURN

44 PZ=p:GOSUB62

45 FORJ=gTO091:V=J

46 V=VN(V) :IFV<@THEN58

47 IFLZ>54GOSUB62ELSESZ=SZ+1:IFS
Z=3GOSUB63

48 IFLEFTS (V$(V),1)<>" "ANDQQ=gA
NDRZ<>3THENQQ=1:GOSUB63

49 RZ=@:I=FR(V-91) : POKELO, §: PRIN
T#=-2,V$ (V) ; : POKEHI, g

5¢ IFRZ=¢PTHENPOKELO,@:PRINT#-2,T
AB(16) ; : POKEHI, @

51 LN=RF(I):IFLN<@THENLN=LN+6553
6

52 POKELO,@:PRINT#-2,USING" #
##44";LN, : POKEHI, g

53 RZ=R2+1

54 IFRZ>ZR THENRZ=@:POKELO,@:PRI
NT#~2:POKEHI, §:L2=LZ+1:IFLZ>74GO
SUB62

55 I=NX(I):IFI>@THENSP

56 IFRZ>PTHENPOKELO,@:PRINT#-2:P
OKEHI, @:L2Z=L2Z+1

57 GOTO46

58 NEXTJ

59 POKELO,@:PRINT#-2,STRINGS (LW,
n_n)

64 PRINT#-2,"LINE: ";LC-1;"
BYTE:";BC;" SYMBOLS:";VC-91;
" REFERENCES: " ;RC+1

61 LZ=LZ+3:POKEHI,Q:RETURN

62 GOSUB68:POKELO, f:PRINT#-2,"SY
MBOL" ; TAB(2¢) "REFERENCE LINE":LZ
=LZ+1

63 POKELO,@:PRINT#-2,STRINGS (LW,
"-%):LZ=LZ+1:SZ=p:POKEHI, #:RETUR
N

64 X=1

65 IFLZ>560RRIGHTS (L$,3)=",PG"GO
SUB68

66 Y=INSTR(X,L$,CHRS(18)) :IFY>@T
HENPOKELO, @ : PRINT#-2,MID$ (L$,X,Y
-X) :LZ=LZ+1:POKEHI, @:X=Y+1:GOTO6
6

67 POKELO,@:PRINT#-2,MID$(L$,X,L
W) : LZ=L2+1:POKEHI, §: X=X+LW: IFX<L
EN(L$) THEN6 7ELSERETURN

68 POKELO,#:IFZ2Z=pTHENZZ=1:GOTO6
9ELSEPRINT#-2,CHRS (12)

69 PZ=PZ+1:PRINT#-2:PRINT#-2,TAB
(LW-8) "PAGE ";:PRINT#-2,USING"##
#":PZ

78 PRINT#-2,PR$:PRINT#-2

71 LZ=4:POKEHI, §:RETURN

72 CLEAR15@@:I=400:DIMVN(492),V$
(499) ,FR(499) ,LS (490) ,RF(1308) ,N
X(13¢9) ,RWS$ (128) ,PT(25) :HI=65495

:LO=65494
73 DN=1:LW=8@:ZR=6:CLS: PRINTSTRT
NG$ (32,166) ;

74 PRINT" XREF COLOR BASIC VERS
ION 1.p":PRINTSTRINGS (32,166);:P
RINT" (C)1984 WESTERN HORIZON"
:PRINTTAB(11) "SOFTWARE LTD.":PRI
NTSTRINGS (32,166) ;

75 PRINT"LISTS ALL VARIBLES & RE
F LINE #":PRINTSTRINGS(32,166);:
POKEHI, # : RW=0

76 READRWS:RW=RW+1:RWS$ (RW)=RW$:I
FRW$="\"THEN79

77 I=ASC(RW$)=-ASC("A") :IFPT(I)=p
THENPT (I)=RW

78 GOTO76

79 FORI=PTO25:IFPT (I)=gTHENPT (I)
=RW

88 NEXT:POKELO, ¢

81 FX=g

82 PRINT"PROGRAM-ID"FX+1":";:LIN
EINPUTLS

83 IFL$=""THENIFFX<1THENENDELSES
=

84 IF(DN=-1)THENS85ELSEIFINSTR(L$
,"/")=pTHENL$=LS$+" /BAS"

85 FX=FX+1:F$ (FX)=L$

86 GOTO82

87 PRINT:POKE282,%:LINEINPUT"DAT
E = ";D$:POKE282,255: PRINT: PRINT
"1) XREF 2) LIST 3)BOTH "

88 M$=INKEYS$:IFM$=""THENSS

89 FORF=1TOFX

9% POKELO,@:CLOSE:OPEN"I", #DN, F$
(F) : PR$=CHRS (34) +""+F$ (F) +CHRS (3
4)+" = "4D$:POKEHI,d:GOSUB4

91 NEXTF

92 POKELO, §:PRINT#-2,CHRS (12)

93 END

94 DATAABS,AND,ASC,AS,ATN,AUDIO,
CIRCLE,CLS, CHR$, CLEAR, CLOSE, COLO
R, COS, CSAVE, CSAVEM, CLOAD, CLOADM,
CVN,DATA, DEF, FN, DLOAD, USR, DEL, DI
M,DSKI$,DSKOS, DRAW, ELSE, END, EOF,
EXP,EXEC, FREE, FIELD, FILES, FIX, FO
R,GET, GOSUB

95 DATAGOTO,HEX$,IF,INKEYS$, INPUT
, INSTR, INT, JOYSTK, KILL, LEFTS$, LEN
, LINE, LOAD, LOADM, LOC, LOF, LOG, LSE
T,MIDS,MKNS$, MEM, RENAME, NEW, NEXT,
NOT,ON, OPEN, OR, MOTOR, OFF , PEEK, PO
INT, PPOINT, POKE, POS , PUT, PRESET, P
SET, PAINT, PCLS , PCLEAR, PCOPY, PLAY
, PMODE , PRINT

96 DATAREAD,REM,RESET, RESTORE, RE
TURN, RIGHT$, RND, RSET, RUN, SAVE, SA
VEM, SGN, SIN, SQR,STEP, STOP, STRS, S
TRINGS$, SCREEN, SKIPF, SOUND, STOP, T
AB, TAN, THEN, TIMER, TO, UNLOAD, USIN
G,VAL, VARPTR, WRITE, VERIFY, "\"

~

Australian RAINBOW

March 1986.

LOADING UTILITY

32K
ECB

CLOAD and RUN all in one fell swoop!

AUTO

YOUR

-EXECUTIN

TAPE PROGRAMS

By Harold Nickel

hile I have had my CoCo, 1
have come to appreciate its
abilities. One I missed having,

though, is the ability to load a program
from tape and execute it all with one
command. Without this, you can’t
“chain” programs (have one program
execute another). Techniques have been
written giving assembler programs the
ability to auto-execute, but you are still
stuck typing in CLOAD and RUN for your
BASIC stock.

The following machine code provides
this ability; it differs from the assembler
techniques. With assembler auto-
executes, the program loaded stores
values into memory locations that cause
it to begin executing. The machine
language program runs itself. With
Crun, the logic is external to the pro-
gram. Like a BASIC command, e¢xecut-
ing the Crun code is done either man-
ually or from a currently running
program.

Modifying CLOAD

Since much of the logic 1 wanted to
use was already a part of the CLOAD
command, I decided to use a variation
of that logic for Crun. The first step was
to determine how CLOAD worked.

I used the program Memdump (List-
ing 1) to print the machine code for
CLOAD. Memdump prints selected areas
of memory to either the screen or a
printer. (I use a Microline 82A printer.)
It prints memory in hexadecimal with
8 bytes per line for the screen display
and 16 bytes per line for the printed
output. Each line is preceded with the
first byte’s address. Printed output is
double-spaced to allow room for nota-

tions. It also allows each dump to be
titled for future reference.

After printing the CLOAD code, I
interpreted it into assembler instruc-
tions using a 6809 assembly language
book. I selected the portion of CLOAD
that loads BASIC files and wrote it as a
separate machine language routine.

To transform this routine into Crun,
it had to run the newly loaded file. It
does this by storing the values ‘R’, ‘U’
and ‘N’ in the keyboad buffer, then
jumping to the command execution
logic. This simulates the entry of the
RUN command from the keyboard and
causes the program to be executed.

The final version of Crun is presented
in Listing 2. Not having an assembler,
the code is shown in a three-column
table rather than as an assembler pro-
gram. The first column contains the
actual machine code. The second col-
umn contains the assembler instruction
associated with each line’s function. The
third column contains comments to
help interpret the function being per-

formed.
Using Crun

I used the program in Listing 3 to
install the Crun code. Crun takes 102
bytes of memory. The Variable A con-
tains the address of the start of Crun.
This value, therefore, must be less than
or equal to the highest address in RAM
minus [0]. The CLEAR statement keeps
the routine from being written over. Its
address value should be less than or
equal to the value used in Variable A.

Once installed, Crun can be called by
using the EXEC command with the start
address. Since the logic used is similar
to that of CLOAD, it can also be used with
a filename. Simply follow the EXEC

March 19864.

Australian RAINBOW

command and address with either the
filename in quotes when entering it
through the keyboard, or as a variable
value if executed from a program.

One use 1 have found for Crun is to
equip each of my program tapes with a
directory program (Listing 4). I gener-
ally keep a few tapes as a program
library containing a number of BASIC
programs. The TapeDir program pro-
vides a list of all programs on a tape,
and the ability to load and run them
from a menu.

Tape Dir first protects the highest 102
bytes of RAM (my CoCo has 32K) and
pokes in Crun. It then displays the
program names on the tape. You can
select one from the menu by pressing its
letter (or exit TapeDir with the SHIFT-
CLEAR keys). The selected program will
be loaded and run. I use TapeDir itself

as one of the selections. Then, if the
program [want is not on the first tape,
I can insert a new tape and select
Tape Dir to display its menu.

Since I add programs to my tapes
periodically, I wrote TapeDir so that
adding new program names would not
increase its length. The new name is
added as one of the T$ values. Names
with less than eight characters are
padded with blanks. The new directory
can then be saved over the old one
without writing into the next file on
tape.

An additional technique I use is to
place a tape header file on each tape. It
consists of one comment line and is
always the first file on a tape (before
Tape Dir). This lets me position the tape
exactly at the beginning of TapeDir,
using SKIPF, when I want to save a new
menu. O

PAGE 27

Listing 1: MEMDUMP

'"FORMATTED HEX MEMORY DUMP
1 CLS
2 Msgu"

1¢ INPUT"ENTER TITLE: ";T$

11 IF T$="Q" THEN END

12 INPUT"ENTER START (HEX): ";S$
13 INPUT"ENTER END ADDRESS: ";E$
14 PRINT

2@ INPUT"(S)CREEN OR (P)RINT): "
;0%

21 IF O$="S" THEN O=g@:PRINT:GOTO
25

22 IF O$="P" THEN O=-2:PRINT:GOT
0 26

23 PRINT:PRINT"ENTER S OR P":GOT
0 29

25 CLS:S=8:GOTO 30

26 PRINT:PRINT"READY PRINTER.":
RINT"PUSH ENTER WHEN READY."

27 S=16:M$="

28 INPUT 0%

29 IF 0$="Q" THEN GOTO 78

3¢ PRINT#O,M$;T$:PRINTH#O," ":L=2

31 FOR A=VAL("&H"+S$) TO VAL("&H
"+ES$) STEP S

32 PRINT#O,M$;

33 IF LEN(HEXS$(A))<4 THEN FOR P=

LEN (HEX$ (A))+1 TO 4:PRINT#O,"g";
:NEXT P

35 PRINT#O,HEXS$(A):" :

49 FOR SA=g TO S-1

41 PRINT#0," ";

42 IF LEN(HEX$(PEEK(A+SA)))<2 TH

EN PRINT#O,"g";

45 PRINT#O, HEX$(PEEK(A+SA)),

5¢ NEXT SA

55 PRINT#0,""

56 IF O=-2 THEN PRINT#O,"
65

69
61
62
62
63
65

79

73

72

73
8p

81

"ne.
’

":GOTO

L=L+1
IF L<15 THEN GOTO 65
T$=INKEYS$:IF TS$="" THEN GOTO

L=p

NEXT A

PRINT

INPUT"MORE ?";0$

IF O0$="YES" THEN GOTO 1
IF 0$="Y" THEN GOTO 1
CLS

END

Communications
Specialists

AUTO ANSWER $399.00

INFO CENTRE

THE FIRST BULLETIN BOARD SYSTEM

for Tandy's computers

(02) 344 9511

SPECIAL!

Avtek Mini Modem + Cable + CoCo
Tex Program — the total Viatel System —
$279.00

We also have the largest range of Software for
0S-9 and Flex operating systems.

PARIS RADIO ELECTRONICS

161 Bunnerong Rd., Kingsford, N.S.W. 2032.
(02) 344 9111

phone: (02)-84-3172
!zE! !g zus!r‘al ian R!!HBM Harcg ”gg

MK1 SERIAL/PARALLEL

PRINTER INTERFACE

COFNNECT CO-CO I or II to a PARALLEL PRINTER

Revised MK! PRINTER INTERFPACE

Peatures: o

* EXTRA SERIAL PORT for MODEN,no more pluggin
/unplugging cables.

®* Compatidle with Standard Centronics Parallel
Printers eg:BPSON,GEMINI BMC,CPBO,TANDY ETC.

* Plugs into CO-CO or CO-CO II Serial Port and
includes all cables and connectors.

® SIX Switch selectable Baud rates

300, 600,1200,2400,4800,9600

Power Pack is required for Printers not

supplying pover at pin 18 on the Parallel

Connector eg:EPSON,BMC,CP8O.

* Increases Printing Speed by up
to 30% on TANDY DMP100/200 Printers

NOW ONLY — $89.95 (including postage)
Add $9 for Pover Pack if required

AVAILABLE PROM: G.& G. FIALA
P.0. BOX 46
THORNLBIGH. NSW.2120

Listing 2: CRUN

Machine
Code

gr 78

32 62

BD AS C5
BD A6 48
7D g1 E4
26 @5

B6 g1 E2
27 93

7E A6 16
BD AD 19
BD A7 7C
9E 19

9F 7E

DC 7E

4c

BD AC 37
BD A7 @B
26 34

96 7€

27 39

2A ED

9F 1B

BD A7 E9
8E AB EC
BD B9 9C
BD AD 21
BD AC EF
8D g1 82
8E ¢2 DD
86 52

A7 89

86 55

A7 8¢

86 4E

A7 8¢

6F 84

c6 P4

8E g2 DC
4F

7E AC TF
BD AD 19
7E A6 19

Assmbler
Instr.

CLR
LEAS
JSR
JSR
TST
BNE
LDA
BEQ
JMP
JSR
JSR
LDX
STX
LDD
INCA
JSR
JSR
BNE
LDA
BEQ
BPL
STX
JSR
LDX
JSR
JSR
JSR
JSR
LDX
LDA
STA
LDA
STA
LDA
STA
CLR
LDB
LDX
CLRA
JMP
JSR
JMP

Description

Flag CLOSE

Clear Stack

Evaluate Filename

Locate the File

Check If Binary

Jump If Not Binary

Check If Basic

Jump If Basic

Jump to FM Error

Do NEW

Read File Leader
X=Program-Area Ptr
Cassette-Buffer Ptr=X
D=Cassette-Buffer Ptr
Bump Cassette-Buffer Ptr MSB
Do Memory Check

Read a Block

Jump If I/O Error
A=Block Type

Jump If Header Block
Loop If Data Block

Save Buffer Ptr as End of Prog.
Turn Off Cassette

X=0.K. Message

Display 0.K. Message
Reset Basic Memory Ptrs
Reset Basic Line Ptrs
Call Extended Basic Link
X=Start of Input Buffer
A='R'

Save 'R' in Buffer

A='U"

Save 'U' in Buffer

A='N"

Save 'N' in Buffer

Flag End of Input
B=Length of Input
X=Start of Input minus 1
Signal No Break Key
Jump to Command Mode

Do NEW

Jump to Display I/O0 Error

Listing 3: INSTALL

P 'INSTALL MACHINE LANGUAGE CODE

1p CLS

2p CLEAR 2pp,30ppp

39 A=3pppp:'START ADDRESS
43 L=1p2:'NUMBER OF DATA VALUES

5¢ FOR X=A TO (A+L)-1

6@ READ HS$

78 POKE X,VAL("&H"+H$)

89 NEXT X

98 PRINT"™CODE INSERTED AT";A

129 END

119 DATA gF,78,32,62,BD,AS,C5,BD
,A6,48,7D,#1,E4,26,05,B6,p1,E2,2
7.83,7E,A6,16

129 DATA BD,AD,19,BD,A7,7C,9E,19
,9F,7E,DC,7E,4C,BD,AC,37,BD,A7, 0
B,26,34,96,7C,27,38,2A,ED

139 DATA 9F,1B,BD,A7,E9,8E,AB,EC
,BD,B9,9C,BD,AD, 21,BD,AC,EF

14 DATA BD,g@1,82,8E,02,DD, 86,52
,A7,89,86,55,A7,80,86,4E,A7,80,6
F,84,C6,04,8E,02,DC,4F,7E,AC, 7F
159 DATA BD,AD,19,7E,A6,19

March 1552.

Australian RAIN

Listing 4: TAPEDIR

§ 'TAPE DIRECTORY WITH CRUN

1 CLS

2 CLEAR 20p,32666:A=32666

3 DIM T$(24)

1¢ 'INSTALL CRUN

11 DATA @F,78,32,62,BD,A5,C5,BD,
A6,48,7D,01,E4,26,05,B6,01,E2,27
,$3,7E,A6,16,BD,AD,19,BD,A7,7C,9
E,19,9F,7E,DC,7E,4C,BD,AC,37,BD,
A7,PB,26,34,96,7C,27,30,2A,ED

12 DATA 9F,1B,BD,A7,E9,8E,AB,EC,
BD,B9,9C,BD,AD, 21,BD,AC,EF,BD, 01
,82,8E,92,DD,86,52,A7,88,86,55,A
7,80,86,4E,A7,88,6F,84,C6,04,8E,
£2,DC,4F,7E,AC,7F

13 DATA BD,AD,19,7E,A6,19

14 FOR P=A TO A+101

15 READ D$:POKE P,VAL(“&H"+D$)
16 NEXT P

2@ '"INITIALIZE DIRECTORY TABLE
21 T$(1)="DIR b

22 T$(2)="MEMDUMP "

23 T$(3)="INSTALL “

24 T$(4)="CRUN "

25 T$(5)=" "

26 T$(6)=" "

27 TS(7)=" »

28 TS(8)=" "

29 Ts(g)-“ "

3g TS(1p)=" o

31 T§$(11)=" "

32 T$(12)=" "

33 T$(13)=" "

34 T$(14)=" s

35 T$(15)=" "

36 T$(16)=" "

37 T$(17)=" "

38 T$(18)=" "

39 T$(19)=" »

49 TS(2p)=" e

41 TS$(21)=" "

42 T§(22)=" "

43 TS§(23)=" "

44 T$(24)=" i

S¢ 'DISPLAY TAPE DIRECTORY

51 PRINT" TAPE DIRECTORY

":PRINT
52 PRINT" "iTS(1) " M-
- ":TS(Z)}"

":T$(13)
53 PRINT"
":TS(14)
54 PRINT"
";T$(15)
55 PRINT"
":T$(16)
56 PRINT"
":T$(17)
57 PRINT"
";T$(18)
58 PRINT"
":7T$(19)
59 PRINT"
":TS(20)
68 PRINT"
":TS$(21)
61 PRINT™
":T$(22)
62 PRINT*
":T7$(23)
63 PRINT" L
";TS$(24)
64 PRINT:PRINT"
ear) TO EXIT";
65 SCREEN g,1
72 'PROGRAM SELECTION
71 D$=INKEY$:IF D$="" THEN GOTO
71
72 IF ASC(D$)=92 THEN END
73 IF ASC(D$)<65 OR ASC(D$)>88 T
HEN GOTO 71
74 IF T$(ASC(DS)~-64)=" »
THEN SOUND 1,3:G0TO 71
75 SCREEN @,P@:EXEC 32664 T$(ASC(
DS)-64)

- ";T$(3) ;"

- "iTS(4);"

"iT$(5):"

":TS(G) '-li

= "T$(7) "

T e m m o 0O w o »

- ":TS(B):"

e 83 0O ¥ O w O =
1

1)

- ":T$(9) 3"

<

= "iTS(19):" V-
K= ";T$(11);" W -

"iT$(12) ;" X -

USE (shift) (cl

)

PAGE 29

CoCo MERGE

by John Nicolettos

One of the most significant deficiencies of the
Color Computer is the lack of a cassette MERGE command.
I {ind this particulariy frustrating because I prefer to
design programs in a modular fashion. By this I mean
that 1 divide the application program into sub-tasks.
Each sub-task is performed by a program module. Each
module is written, debugged, and tested ceperately. The
modules are then assembied into the final application
program. This approach leads to the deveiopment of a
library of standard modules since modules tend to be
useful in different places and in other programs. Much
of the usefulness is lost, however, if modules must be
typed each time they are to be used.

Thus, COCO MERGE was written to preserve my
progranming style and to overcome what I believe to be a
major deficiency of the Color Computer. It wiil append
one BASIC program to the end of another at the touch of
the command Keys. COCO MERGE even has its own prompts.
However, a word of caution is needed. COCO MERGE is
habit forming. Once you have used COCO MERGE you'll
wonder how you ever did without it.

THEORY OF OPERATION.

BASIC programs can reside almost anywhere in the
Color Computer’s memory. The PCLEAR command (available
with Extended BASIC) provides the nechanism for
relocating BASIC programs. It is used primarily to
reserve memory for graphics. The Color Computer does a
PCLEAR 4 when first turned on. This reserves 4 graphics
pages (1536 Bytes per page) in lower RAM memcry. BASIC
programs will start Toading at memory location Dec. 7681.
A PCLEAR 1 will start loading BASIC at location Dec. 3073
whiie a PCLEAR 8 will start BASIC at Dec. 13825. With
all this moving around the Color Computer must have some
way to Keep track of the BASIC program. Memory locations
Dec. 25 - 28 provide this service., Locations 25 and 26
are the start of BASIC pointer while 27 and 28 are the
enc of BASIC pointer. As their names imply, these memory
locations point to the begining and end addresses ot the
BASIC program.

Each line of the BASIC program, when translated tc
machine language by the Color Computer, contains the
address of the next line. The Color Computer will append
a two Byte flag at the end of the BASIC program. Thus,
the 1ines of the BASIC program are linked together from

start to finish. Ali the Color Computer needs is the
location of the first line., From that point on it daisy
chains its way through the program executing each line

along the way. Uhen it gets to the end of BASIC flag the
Color Computer will stop executing and return to the
command input mode.

COCO MERGE maxes use of this linking of BASIC

program lines to merge programs. Once the first program
has been completed and entered into memory; the SHIFT and
CLEAR Keys are pressed, The first time this is done the
start of BASIC pointer (Dec. 25 & 26) is stored in
focation STR. The end of BASIC address ic then
decrimented by two and stored in locations 25 and 26.
This will cause the second program to overwrite the end
of BASIC flag and will link the first Tine of the second
programn to the last line of the first program. Now the
second progran may be entered. This program may be
manipulated freely, without fear of affecting the first,
since the Color Computer is no longer aware of the first
progran,

When the second program has been completed the
command Keys are once again pressed. This time COCO
MERGE places the original start of BASIC address, which
was stored in STR, back into Tocations 25 and 26, The
Coior Computer wili now run both programs as though they
were one,

PROGRAM DESCRIPTION

Program listing 1. contains the machine language
source code for COCO MERGE. Lines 1§0-140 will place the
address of COCO MERGE into the Color Lomputer’s Jump
Table and initialize the mode switch. This alters the
subroutine which outputs a character to the screen,
Thus, COCO MERGE will be executed just before the
computer PRINTs a character on the screen,

Lines 150-160 reserve memory to store the start of
BASIC pointer and the state of the mode switch, Lines
170-200 store the two prompts.

COCO MERGE starts with line 210. Lines 210-220
check each character Tooking for the command key., 14 the
commang key was not pressed then the program returns to
the Color Computer’s character output routine. When the
command key is recognized then lines 230-240 are
executed. These 1lines check the setting of the mode
swi tch, If the switch is set to merge (zero) then
Tines 230-340 are executed. If the switch is set to
restore { 256) then Tines 350-410 are executed.

The merge sequence consists of getting the initial
start of BASIC address and storing it in STR. Then,
decrimenting the enc of BASIC address by two anc storing
it ir the start of BASIC pointer locations. Line 300
sejects the appropriate prompt ¢MERGE INITIATED) address
for the screen print subroutine. Line 310 toggies the
switch and line 320 calls the COCO MERGE screen print
subroutine ¢lines 430-480), Lines 330 and 340 return to
BASIC through the Color Computer’s normal prompt
subroutine,

The rectore cequence retrieves the initial address,
from STR, and returns it to the start of BASIC pointer
locations. Line 370 szelect the MERGE COMPLETEL promopt
address and !ine 380 toggies the switch., Line 390 cails
the screen print subroutine. Lines 400 and 410 return
control to BASIC through the promot subroutine.

The screen print subroutine (lines 430-480) wiil
display the aporopriate prompt. Line 430 establishes 2
counter for the two 18 character prompts (including the

st ET—
PAGE 38

Australian RAINBOW

March 1986.

carriage return), Line 450 is the Color Computer’s
normal screen print subroutine jump address.

OPERATING INSTRUCTIONS

Program listing 2. contains the BASIC language
driver +{or COCO MERGE. The program is very friendly and
wiil instruct vou on its wuse. In addition, it wili
automaticaily load the machine language orogram in the
highest iocation of available RAM. This is true
independent of the size of memory,

The program contains a simpie arithmetic check
(iines 200 and 220) on the DATA statements. This check
will assure that the program is typed and entered
correctly. I there are no errors then the program will
EXEC COCO MERGE and protect it from BASIC.

To use COCO MERGE simoly type or CLOAD the first
BASIC program. When you have finished note the last line
number of this program. The SHIFT and CLEAR keys are the
command Keys. To execute COCO MERGE simply press the
SHIFT and then the CLEAR Key {simultanecusly)., Your
Color Computer wil!! respond with the prompt MERGE
INITIATED. You will no longer be abie to RUN or LIST the
program, The Color Computer has essentially forgotten
this program. But do not fear, COCO MERGE is in controi.

You may now enter the next program. You may type or

CLOAD the program into memory. This program should start
with 2 program line which is greater than the last line
of the first program. You may RUN, EDIT, RENWM, or do
Just about anything else to this second program without
atfecting the +irst, The only exception is the PCLEAR
command. If you are working with graphics programs then
one additional word of caution is in order. Since the
first program is in Tower memory it could be overwritten
by RUNing a graphics program.

Once vou have completed the second program; press
the SHIFT and CLEAR keys once again. This time your
Color Computer will respond with the prompt MERGE
COMPLETED, Now if you execute a RUN or LIST command the
Color Computer will execute or display the merged
programs.

While merging cassette programs is very easy with
COCC MERGE the following precautions should be observed:

Make sure that your merged program does not contain
duplicate 1ine numbers, A program which contains tuwo
lines with the same number will not execute properly.

The second program should start with a Tine number
greater than the last line number of the first progran.
1¥ you didn’t observe this precaution, and you have
Enhanced BASIC, al) is not lost. You may be able to save
your merged program by executing the RENIM command. The
Color Computer will automatically renumber the progran
lines, However, transfer statements such as IF THEN, GO
T0, GO SUB, ON...GOTQ, or ON...GOSUB must be checked.

Doubie check the application of variables common tc
both programs, One program may accidently alter
variables used by the other progran.

Check the merged program’s logic flow. Make sure
that the new (merged) program performs the functions
which you intended and in the order that you intended.

Check the order of DATA statements to assure that
the data is being READ in the proper sequence. Remember
that DATA statements are arranged in order of use., The
RESTORE command can alse cause problems in a merged
program.

Finally, check all transfers between the two
original programs, Make sure that you Know where each
transfer is and under what conditions it will be
executed,

1) 7 AR EERRRARRRRRAALRERRR
o U C0 CO MERGE *
3 ¥ BY -
40 © % JOMN L, NICOLETTOS +
304 8 APRIL 1, 1983 #
60 * % ALL RIGHTS RESERVED =

70 7 EXREFIRAFFERIFRFIRNAAIRRES

86 CLS

90 PRINT® CO CO MERGE":PRIN
T432,STRINGS$(32,131};

100 PRINT® THIS PROGRAM WILL LOAD,

“1PRINT*EXECUTE, AND PROTECT A MACHI
NE®

110 PRINT®LANGUAGE UTILITY WHICH WIL
L":PRINT"ALLOW YOU TO MERGE TWO OR M
ORE*

120 PRINT®CASSETTE PROGRAMS. TO USE
*:PRINT"SIMPLY TYPE OR CLDAD YOUR FI
RST*

130 PRINT"PROGRAM, BEFORE ENTERING

THE" :PRINT*NEXT PROGRAH PRESS THE (S
HIFT]®

140 PRINT*AND CLEAR KEYS. TYPE OR C
LOAD" :PRINT*THE NEXT PROGRAM. WHEN

March 1984. Austra'ian RAINBOW

DONE®

150 PRINT*PRESS THE [SHIFT] AND CLEA

R KEYS®; :PRINT*ONCE ABAIN TO COMPLET

E MERGE."

160 PRINT3484,*PRESS ENTER TO CONTIN
UE*; sLINEINPUT 228

170 ED=PEEK{39)%254+PEEK(40)

180 ST=ED- 118

196 FOR ¥%=5T 70 ED

200 READ D:POKE X ,D:SUM=SUM4D

210 NEXT X

220 1F SUM {) 12939THEN CLS:PRINT32¢
3,”!11DATA ERROR! '!*:END

230 EXEC ST

240 CLEAR 200,57

250 DATA 48, 141, 0, 43, 194, 1, 104
; 11

260 DATA 141, 0, 3, 57, 0., 255, 16,
7

270 DATA 49, 82, 71, 69, 32, 73, 78,
73

280 DATA B4, 73, 65, B4, 69, 68, 13,
77

290 DATA 49, 82, 71, 69, 32, 67, 79,
77

300 DATA BO, 74, 49, B4, 49, 48, 13,

129
310 DATA ¥2, 38, 54, 109, 141, 255,
215, 38
320 DATA 27, 198, 25, 17§, 141, 255,
205, 158
330 DATA 27, 48, 30, i59, 25, 49, 14
0, 195
340 DATA 99, 141, 255, 194, 141, 30,
142, 17:
350 DATA 239, 126, 172, 121, 174, 14
1, 235, 180
360 DATA 159, 25, 49, 140, 1%4, 111,
141, 255
3720 DATA 173, 141, 9, 142, 171, 239,
124, 172
380 DATA 121, 126, 130, 115, 198, 16
y 166, 140
390 DATA 189, 162, 130, 90, 38, 248,
57
400 CLS
410 PRINTG1ZB," cer
420 PRINT:PRINT" co*
430 PRINT:PRINT* MERGE*
440 PRINT:PRINT® L0ADE
DI
450 END
continued on Page 55

PAGE 31

Color Print

Save
7 1@

Color Screen Print Utility. Provides multi-color
printouts of color graphics screens produced by
your graphics program. For use with color ink-jet
printer or any dot matrix printer with bit-image
capabilities for black and white printouts. 283121

Reactoids

*15 Off!

Reg 39.95

24°

The code is red! There is meltdown at the fusion
reactor! Test fyour speed and co-ordination as you
take control of the reactoid and race against time to
contain the atoms. Can you keep it up long enough
to stabilise the atoms. Requires joystick. 253002

Color LOGO

Save *20

Reg 69.95

49°°

: £33 AR 3 S

Color LOGO Programming Language. Students
grasp graphic relationships and develop problem
solving skills through programming and controll-
ing turtles on the screen. As a pattern isdrawn, itis
stored for future reference. 16K program pack. zs2722

Reg 14.95

TRSB0 Color LU

Computer
Cassette —

20% Off 32>,

® Certified high quality ensures there is no

, data loss.

® Leaderless for instant recording without
loss of initial data.
® Comes with protective case. 26-301

Bedlam

Save *10

Reg 24.95

14°

You're a patient in an insane asylum! The maze
unfolds as you try to find an escape route. Can you
trust Napoleon? Or the guy who calls himself
X-Ray? The way out of the asylum changes every
time. It will drive you mad! 263312

Shamus

Save *20

Reg 49.95

2995

Take advantage of great value and help Shamus
conquer the evil Shadow in his maze of danger!
Retrieve coloured keys from the chambers of
Shadows Lair, but beware of his terrifying guar-
dians. Has three levels of difficulty. 26.32se

Programming

20 Off!

Reg 79.95

5995

Color Editor/Assembler. Develop 6809 software pro-
grams or subroutines. Comes with trial assembly in
memory so that you can run your program before final
assembly to tape. Features an editor to change your
program and Z-Bug for testing. 2sa2s0

Sale Ends: March 31st, 1986

A TRUE FAMILY
COMPUTER

== 16K Extended
Basic Color

3% OFF!

L save *70

Reg 299.95

o 99995

Tandy offers you an easily affordable introduction tothe children can use it to improve their maths, spelling,
exciting world of computers with this very versatile reading and writing skills. Students can store homework
home system! Plug it into your TV and begin by creatin datain it with an optional cassette recorder, and tap into
eight colorgraphics with sound using the built-in BASI information databases using an optional modem.
language. Simple one-line commands make it easy. Parents can work out finances, plan budgets and type
Next write your own programs, or snap in an instant- correspondence with an optional printer. The Color
loading Program Pak™ cartridge and enjoy hours of Computer 2 has 16K of memory, which is plenty for all
family fun playing games from Tandy’s huge range of these purposes, but it easily expands if you require
entertainment and educational software. The Color more. Add an optional disk drive and you've got a com-
Computer 2 is ideal for people of all ages — young plete personal computer system. 2313

Computer Cassette Recorder

6995

® For Use With
Tandy
Computers

® Switchable
Pause

Color Computer Joysticks

Specially designed features for loading, saving
and reviewing! Has on/off sound monitor, re-
mote off, tape counter, LEDs for load/review/
cue and battery, plus auto-level record. Jacks:
earphone, remote, mike, aux. With case and
connecting cable. 26.1209 satteries not included.

Joystick. Precise control makes games and graphics
come alive! 360° movement. 263008.................... 29.95
Deluxe Joystick. Feel the difference! Patented for in-
stant response! Dual axis trim controls for fine-
tuning joystick to software. 263012 39.95

WE SERVICE WHAT WE SELL!

Available from
350 Stores Australiawide

ELECTRONIC including Tandy Computer Centres

“Independent Tandy Dealers may not be participating
Nearly in this ad or have every item sdvertised

350 Stores
Ausltralia-
Wide

Prices may also vary at individual Desler Stores

EXTENDING BASIC l

16K
ECB

|'A % Wi\
| RAINBOW |

Enhancing the
CLS Command

ith the possible exception of

PRINT, the CLS command is

probably the most often-used
command when it comes to writing text-
based BASIC programs. The CLS com-
mand has nine variations that corre-
spond to the available colors in the text
mode. I concluded these nine variations
were not enough and decided to do
something about it.

SuperCLS is a machine language
subroutine that enhances the CLS com-
mand. Aside from the standard options
accessible with the normal CLS com-
mand, several other options are also
available. These include clearing the
screen to any character that can be
displayed, clearing only a portion of the
screen and inversing the video of the
characters on the screen.

By Gerry Schechter

The short demonstration program
accompanying this article should serve
to illustrate most of these features
However, some additional explanation
is in order. The machine language
subroutine is completely relocatable, so
it can be placed anywhere in memory
that won’t be clobbered by BASIC. The
subroutine uses BASIC’s current cursor
position in order to determine the
starting point for the SuperCLS oper-
ation. This is controlled from your
BASIC program by using the PRINT and
PRINTR statements. Therefore, the
subroutine starts its operation from
wherever BASIC normally prints its next
character.

Control is passed to the subroutine
via a USR call. The value in the paren-
theses is the value that is used for the

SuperCLS operation. This can be any
value ranging from zero to 255. These
are the same values you normally use in
a PRINT CHR$ statement. The only
exception to this is the value of 32,
which inverses the video on the screen
instead of clearing it.

If it is still unciear as to how the
subroutine works, take a few minutes to
type in and run the demonstration
program. As someone once said, “A
picture is worth a thousand words.”
Have fun, and feel free to use this
subroutine in your next program.

(Any questions you have regarding
SuperCLS may be directed to the au-
thor at 75 Midland Terrace, Yonkers,
NY 10704, phone 914-965-8102. Please
include an SASE when writing.))

The listing: SUPERCLS

1 '=>SUPERCLS V1.p<=
2 ' GERRY SCHECHTER

3 '75 MIDLAND TERRACE
4 'YONKERS, NY 19794
5 ' FEBRUARY 1984

6 fMiInInInInInInInen

199 CLS

11 PRINT" % SUPER CL
S kam

129 GOTO 42p

13p X = USR@(169):GOSUB 519

149
158
168
179
189
198
2pp

X = USR@(32):GOSUB 518

PRINT@64,"SUPER CLS"

X = USRP(179) :GOSUB 519
X = USR@(32) :GOSUB 518

PRINT@128," SUPER CLS"
X = USRP(154) :GOSUB 518
X = USR@(32) :GOSUB 518

219 PRINT@192," SUPER CLsS"
22p X = USRP2(236):GOSUB 518

239 X = USRZ(32):GOSUB 519

24p PRINT@256," SUPER CLS"

258 X = USRP(42):GOSUB 519
269 X = USR@(32):GOSUB 519
27 PRINT@328,"";

28 FOR Z = 1 TO 255

298 X = USRP(2)

39 SOUND 2,1

319 NEXT 2

32¢ PRINTEE,"";

339 X = USRP(32)

348 FOR Z = 32 TO 489 STEP 32
352 PRINT@Z,"";

36@ X = USRP(32)

379 PLAY"T255L25501V31;1V<1V<1"
388 GOSUB 528

398 NEXT 2

4P PRINT@448,"";:END

41 'PROTECT MEMORY AND
DEFINE USER CALL

IF PEEK(116) = 127

THEN CLEAR 2£8,32735

ELSE CLEAR 2£$,16351
IF PEEK(116) = 127

THEN ML = 32736

ELSE ML = 16352

DEF USR@ = ML

'POKE ML PROGRAM INTO MEMORY
FOR X = ML TO ML+29
READ X$

POKE X,VAL("&H"+X$)
NEXT X

GOTO 138

SOUND 255,2

FOR X = 1 TO 5g9

NEXT X

42p

439

449
459
469
479
489
499
509
510
529
539

PAGE 34

548 RETURN

558 'DATA FOR ML SUBROUTINE
568 DATA BD,B3,ED

578 DATA 9E,88

589 DATA C1,20

598 DATA 26,8D

679 DATA A6,84

619 DATA 88,48

629 DATA A7,88

639 DATA 8C,P5,FF

649 DATA 23,F5

658 DATA 28,87

669 DATA E7,88

679 DATA 8C,P5,FF

689 DATA 23,F9

699 DATA 39

798 'SOURCE FOR ML SUBROUTINE
719 ! ORG $7FEP
729 'CURSOR EQU $88
739 'START JSR $B3ED
748 ° LDX CURSOR
758 ' CMPB 32
76p BNE LOOP2
77¢ 'LOOP1 LDA ,X

788 EORA #5490
798 * STA ,X+
8pgpg ! CMPX #$5FF
g1p ! BLS LOOP1
82p ! BRA RETURN
83¢ 'LOOP2 STB X+
g4p ! CMPX #$5FF
8598 ' BLS LOOP2
869 'RETURN RTS

879 ' END START ~

Australian RAINBOW

March 1988,

GRAPHICS UTILITY

Getting picture formats together

By Joseph Kohn

upposing we consider the stand-
Sard format PMODE4 picture to be

the infant of high resolution
CoCo graphics, then Graphicom (by
Cheshire Cat) is probably the teenager,
and surely CoCo Max (by Colorware)
is the young adult. As is typical of these
“generation gaps,” they have difficulty
communicating with one another. Al-
though all three use PMODE4, their
picture file formats are sufficiently
different, so moving pictures between
them requires some thought or even
special transfer routines.

The program listed here, PixFiles,
provides a convenient means for inter-
format picture file transfer. The picture
formats include:

1) Standard PMODE4 Picture — This
is the normal Extended BASIC format
with the picture LOADMed and SAVEMed
between RAM locations $SE00 and
$25FF.

2) CoCo Max Picture — This format
is similar to Standard, except two
screens, all eight graphics pages, are
LOADMed and SAVEMed between RAM
locations $E00 and $3DFF. CoCo Max
files always have the extension MAX.
It should be noted that the single
screen file produced by CoCo Max,
SCREEN/BIN, is a Standard format
picture.

3) Graphicom Picture — The Graph-
icom file format is completely unique.
It stores 24 pictures plus the Graphicom
directory and working font on sequen-
tial sectors and tracks, skipping over the
standard disk directory, Track 17.

Pictures are loaded and saved from
specific areas of the disk by selection

Pix Files | &

from the Graphicom illustrated direc-
tory.

PixFiles is completely self-prompting
and menu driven. Most operations .are
performed using the right joystick.
Pictures can be loaded and saved to any
disk drive. If you have more than two,
change DX in Line 740 to the number
of drives you intend to use.

Several error traps are built-in:

® Graphicom disks are checked for

proper format.

® Before SAVEM for Standard and

CoCo Max pictures, the disk is
checked for sufficient storage
space. This also prevents a SAVEM
to a Graphicom disk.

® A check is made for Standard files

to ensure that they are 6,144 bytes
long.

® Filenames cannot exceed the max-

imum number of characters.

® A Graphicom LORD/SAVE can be

aborted by selecting a blank screen
at the top of the illustrated direc-
tory.

® CoCo Max files must have the

extension MAX,

The principle behind PixFiles is to
first retrieve the picture you want to
transfer from its source disk and place
it in the Standard picture area of RAM.
You can then examine it using “see
working pix” on the main menu. This
working screen picture is then saved to
the destination disk in the selected
format.

The only tricky part to keep track of
is that CoCo Max pictures use two
screens. After loading, if you intend to
transfer the first (upper) screen, then

March 1984.

Australian RAINBOW

answer “no” to the “copy screen 2 to
working pix?” prompt. To transfer the
second (lower) screen, answer “yes.”

To transfer pictures to CoCo Max,
they are first saved in temporary files.
Pictures can be temporarily saved as
Screen 1 or Screen 2. You must have
pictures temporarily saved to both
screens before the final “save screens 1/
2.” The temporary files and the final
save must be on the same drive and disk.

If you are typing in the listing, the
comments may be deleted. After enter-
ing and saving the program, start de-
bugging, but be sure to use backups of
all the picture files you are working
with!

A blank space has been left on the
main menu. This is for you to add your
own routine or call another program.
This is a handy place for a screen print
routine, for example.

(You may contact the author of this
program with any questions at 4333
Larchwood Circle, NW, Canton, OH
44718, phone 216-492-7819. Please
include an SASE when writing.) 0

" PAGE 35

The listing: PIXFILES

1 'PIX FILES

2@ '"JOSEPH KOHN

32 '4333 LARCHWOOD CR., NW

42 'CANTON, OH 44718

5@ IFX=gTHENPCLEARS:X=1:GOTO5@
62 CLEAR3@g@,&H7FFF:DIMF$(68),GS
(42,3P) ,X$(22) : FB=4HFF@P: DK=&HCP

P4:PB=PEEK(DK+2) *256+PEEK (DK+3) :

DR=PEEK(PB+1)

72 DATA GRAPHICOM PIX,graphicom

pix,COCO MAX PIX,coco max pix,ST

ANDARD PIX,standard pix,SEE WORK

ING PIX,see working pix,PIX DRIV

E,pix drive, , ,QUIT,quit,TEMPOR

ARY SAVE SCREEN 1, temporary save
screen 1,TEMPORARY SAVE SCREEN
2,temporary save screen 2

82 DATA SAVE SCREENS 1/2,save sc
reens 1/2,ABORT SAVE,abort save,

X

9% READXS (X) : IFX$ (X) <>"X"THENX=X

+1:GOTO99

199 PMODE4,1:X$="PIX FILES":GOSU
B81@:LN=p: FORX=PTO6: PRINTR66+64*
X,X$ (2%X) :NEXT:GOTO758

119 JX=JOYSTK(P) :JY=INT(JOYSTK(1
)/18) :JY=JY=(J¥=5) : IFTY<>LN THEN
PRINT@66+64*LN, X$ (2*LN) : SOUND1gg2
1

'

12¢ PRINT@66+644%JY,X$(2*TY+1);:1

FJY>2THEN13PSELSEIFIX<32THENPRINT
": load SAVE":LS=gELSEPRINT": L

OAD save":LS=1

139 IFPEEK(FB)AND1THENLN=JY:PRIN

T@331,DR:GOTO11PELSEON JY+1 GOTO
159,398,568,719,7408,119,779

149 'emm=- graphicom load/save
158 X$=X$(2) :GOSUBB1g

16¢ GOSUB87Q2:IFYN=gTHEN1gg

17§ GOSUB9gP:IFN=STHEN1@2p

189 GOSUBB1@:GOSUB8B8P: IFYN=ATHEN
1PPELSEGOSUB250: IFSN<PTHEN1@20EL
SEIF LS THEN22g

198 ‘=== load graphicom

2pP PCLS1:SCREEN1:W=2:AD=&HEPP:G
0SUB328:GOTO1p8

21f 'ewana save graphicom

22p SCREEN1:AD=&HEPP:W=3:GOSUB32
P:IFSN=gTHEN1gg

23§ GET(216,162)-(255,191) ,GS,G:
PMODE4 ,5:SCREEN1:PUT(X1,Y1)~ (X2~
2,Y2-2),GS,PSET:SN=P:AD=4H2600:W
=3:GOSUB32@:GOTO1@p

24p '=-=-~-==load graphicom directo

ry

25¢ PMODE4,5:PCLS1:SCREEN1

26f AD=KH26PP:SN=§:W=2:GOSUB32¢
279 '=m——- select pix

28¢ X=INT(JOYSTK(P)/11):Y=INT(JO
YSTK(1)/13)

298 Yl=(Y=-(Y>@))*32:X1=X*42+1:X2
=X1+41:Y2=Y1+31:FORC=gTO1:COLORC
tLINE(X1,Y1)-(X2,Y2),PSET,B:NEXT
3p¢ IFPEEK(FB) AND1THEN28PELSESN=
Y*6+X~-4 :PMODE4,1: IFSN<PTHENCLS:P
RINT"abort from graphicom":RETUR
NELSERETURN

319 '====~graphicom i/0,w=2/3=re
ad/write, tr=track,s=sector,a=add
ress,dk=dskcon

329 S=SN+*24:TR=INT(S/18) :S=S-(TR
*18)+1

33¢ IFTR>17 OR (TR=17 AND S>1)TH
ENS=S+2:IFS>18THENS=S~18:TR=TR+1
34¢ FORI=@TO23:A=AD+256+*I1:POKEPB
,W:POKEPB+1,DR: POKEPB+2,TR: POKEP
B+3,S:POKEPB+4,INT(A/256) : POKEPB
+5,A-256*INT(A/256) :EXEC PEEK(DK
) *256+PEEK (DK+1)

35p S=S+1:IFS>18THENS=1:TR=TR+1
36@ IFTR=17 AND S=2THENS=4

379 NEXT:RETURN

38P '====- coco max load/save

399 X$=X$(2):GOSUBS1P

4pp GOSUBB7@:IFYN=@THEN1p#

41p GOSUB81P:GOSUB8BP: IFYN=gTHEN
1PPELSEIF LS THEN46p

42p '=-===load coco max

43P GOSUBSPP:IFN=PTHEN1@2pELSEPC
LS1:SCREEN1:LOADMFS (VAL(KS$)) +DR$

449 GOSUB8S1g:PRINT"COPY SCREEN 2
TO WORKING PIX?":GOSUB85@:IF YN
THENFORX=5TO08:PCOPY X TO X-4:NE

XT:GOTOLlPPELSELRP

450 'memmaa save CoCoO max

4690 GOSUB8lg:LN=@:FORX=gTQ3:PRIN

T@66+64*X, XSG (2*X+14) : NEXT

479 JX=JOYSTK(Q) :JY=INT(JOYSTK(1
)/22) :IFLN<>JY THENPRINT@66+LN*6

4,X$(2%LN+14) : SOUND12Z, 1

482 PRINT@66+64*TY,X$(2*TY+15):1I

FPEEK(FB) AND1THENLN=JY:GOT0472

492 ON JY+1 GOTOS@g@,519,539,199

5¢2 IFFREE(DR)>2THENT1(DR)=1:SCR

EEN1:SAVEM"TEMP/PP1"+DR$, &HEZP, &

H25FF, §HAP27 : GOTO47gELSE1P38

519 IFFREE(DR)>2THENT2(DR)=1:SCR

EEN1:FORX=1TO4:PCOPY X TO X+4:NE

XT:SAVEM"TEMP/@@2"+DRS, &H2628, &H

3DFF,&HAP27 :GOTO47PELSELP3P

528 IFJY=3THEN1g@

539 GOSUB81@:IFT1(DR)=g OR T2 (DR

)=2THEN1@SPELSELINEINPUT"FILE NA

ME? "“;F$:IF F$="" OR LEN(F$)>8 T

HEN1p4p

549 T1(DR)=P:T2(DR)=g:PCLS1:SCRE

EN1:LOADM"TEMP/@@1"+DRS : KILL"TEM

P/@P1"+DR$: PMODE4 , 5: PCLS1:SCREEN

1: LOADM"TEMP/@@2"+DRS : KILL"TEMP/

PP2"+DR$:SAVEM F$+"/MAX"+DRS, &4HE

29, &HIDFF, &HAP27:GOTO1@P

5§58 '~=---gtandard load/save

56 X$=X$(4):GOSUBS1P

579 GOSUB87@:GOSUB830: IFYN=PQTHEN

199

589 GOSUB81@:GOSUBB8Q: IFYN=@THEN

1PPELSEIF LS THEN68P

599 '====~~load standard

629 GOSUB9@P: IFN=PTHEN1g20

61p '=--=-=check file length

629 NAS=F$ (VAL(KS))+DR$S:OPEN"D",

1,NAS$,1:FIELD1l,1AS C$:R=1

639 GET#1,R:IFASC(CS)=255THENG50

640 GET#1,R+1:L=256*ASC(C$) :GET#

1,R+2:L=L+ASC(CS) :GET#1,R+3:A=25

6*ASC(CS) :GET#1,R+4:A=A+ASC(C$):

SA=A:R=R+L+5:GOT0639

659 GET#1,R+3:E=256*ASC(CS$) :GET#

1,R+4:E=E+ASC(CS) : EA=A+L~1:CLOSE

#1

669 IF EA-SA<>&H17FF THENCLS:PRI

NT"not a picture file":GOTOlg2gE

LSEPCLS1:SCREEN1: LOADMNAS : GOTO18

)]

679 '-~---gsave standard

68¢ IFFREE(DR)<3THEN1g3@

690 GOSUBS1¢:LINEINPUT"FILE NAME

J/EXT? ";FIS:IFLEN(FI$)>13 OR FI$

=""THEN1@PELSESCREEN1:SAVEM FI$+

DR$, &HE@P, &H25FF, &HAP27 :GOTO180

789 Vmm——— see working pix

71 SCREEN1:GOSUB83g

72¢ IFPEEK(FB)AND1THEN72PELSElgp

738 'e===-pix drive,dx=number of
drives

749 DX=2:DR=DR+1:IFDR=DX THENDR=

2

758 DR$=":"+MID$(STR$(DR),2,1):P
RINTE@331,DR:SOUND1@g, 1:GOTO118
769 '====- quit

779 X$=X$(12) :GOSUBB1@

788 PRINT"ARE YOU SURE?":GOSUB8S5
g

792 IF YN THENUNLOAD:CLS:END ELS
E129

8pp '=--==title display

81p CLS:X=LEN(X$):Y=INT((32-X)/2
) :PRINTSTRINGS (Y, "*") X$STRINGS (3
2=X=Y,"an)

820 '===e=- fire button debounce
839 FORX=PTOlPP:NEXT:IFPEEK(FB)A
ND1THENRETURNELSES39

84p ‘=——=- prompts

858 IFJOYSTK(@)<32THENPRINT@135,
"yes NO":YN=1ELSEPRINT@135,"YES

no":YN=g

860 IFPEEK(FB)AND1THENS8SPELSE83p
879 PRINTXS(LN#2)" DISK IN DRIVE
"DR"?":GOTO85P

889 PRINT"READY TO ";:IF LS THEN
PRINT"SAVE?":GOTO85P0ELSEPRINT"LO

AD?":GOTOBS@

899 '-----disk file search

98¢ CLS:PRINT"SEARCHING...":N=@:
FORZ=3TO11:DSKI$ DR,17,2%,B$(2),B
$(1) :FORQ=PTO1: FORW=ATO3 : K§=MID$
(B$(Q) ,W*32+41,32) : IF ASC(K$)=255
THENZ=99:W=Z:Q=Z:GOT0958

91p IFASC(K$)=pTHENISPELSEON LN+
1 GOT0928,939,94p9

92p IFMID$(K$,12,1)=CHR$(1) AND
LEFTS (K$,11)="PICTURESGCM" THENN=
1:GOTO95PELSESS9

938 IFMIDS(K$,9,3)="MAX" AND MID
$(K$,12,1)=CHRS (2) THENN=N+1:F$ (N
) =LEFTS (XS, 8) +"/MAX" : GOTOS5PELSE
958

949 IFMIDS(KS,12,1)=CHRS$(2) AND
MIDS$ (K$,9,3) <>"MAX"THENN=N+1:F$(
N)=LEFTS (K$,8)+"/"+MIDS$ (KS$,9,3)
959 NEXTW,Q,Z:IFN=@ AND LN=@THEN
CLS:PRINT"not a graphicom disk":
RETURN

960 IFLN=PTHENRETURN

978 IFN=PTHENCLS:PRINT"no pictur
es" :RETURN

980 CLS:Q=1:FORZ=1TO3:FORW=1TO3@
:PRINTE@ (W=1)*16,""; : PRINTUSING" §
#";Q::PRINT"."F$(Q) :IFQ=N THENW=
99:Z=W

998 IFINT(Q/38)=Q/3fTHENPRINTR48
P, "CONTINUE..."; : LINEINPUTKS$:NEX
T2

1999 Q=Q+1:NEXTW,Z:PRINT@489,"";
:INPUT"NUMBER OF PIX TO LOAD":K$
1IFK$="YORVAL(K$)<1l OR VAL(K$)>N
THENN=@ : GOTOS7@ELSERETURN

1Pl Vvmmm- erroxr messages

1028 SOUNDS5@,19:FORX=STO10Pp: NEX
T:GOTO1pP

1838 CLS:PRINT"no room on disk":
GOTOl1p2p .

1949 CLS:PRINT"improper file nam
e":GOTO1p28

1858 CLS:PRINT"no temporary file
";:IFT1(DR)=@ AND T2 (DR)=gTHENPR
INT"s"ELSEIFT1 (DR)=gTHENPRINT" 1
"ELSEPRINT" 2"

1968 GOTOlp2p ~

PAGE 36

Australian RAINBOW

March IW

UTILITY

16K BASIC

UTILPACK

by Rod Hoskinson

RIDDLE: Extended Color Basic users have
the EDIT command, MC-10ers have their
little e, but how do CoCo wusers without
Extended Basic edit a basic program line
without retyping the whole of it all over
again?

ANSVER: Using the LEDIT command, of
course. LEDIT? No, it has nothing to do
with those little red 1lights. LEDIT
stands for LINE EDIT, and is available via
UTILPACK.

Ready for another riddle? Okay, why is
this new thing called LEDIT, rather than
just edit?

ANSVER: for the very good reason that

this preserves compatibility with ECB and
DECB, because there 1is something in
UTILPACK for all CoCo Users.

I bet there is not a reader out there
who has not at some time cursed CoCo's
destructive cursor. Everyone must know the
feeling - you have just typed a long line
from command mode or during an INPUT, then
you realise you have made an error at the
start of the line.

Vell curse no more, and enjoy the luxury
of on screen editing with UTILPACK!

Have you ever wondered what it would be
like to have a few more BASIC commands at
your disposal? Can't remember all those
peeks and pokes? Then know that UTILPACK
also feastures FAST, to put CoCo in the
1.78 MHz mode, SLOV to bring CoCo back to
a more leisurely 0.89 MHz, and COLD to
perform a cold start.

ECHO ON will copy all screen output to
your printer if it is online, and ECHO OFF
will stop this.

To get this package of utilities up and
running, type the following program, then
do a few CSAVEs before RUNning. The
program includes a checksum to help detect
typing errors. [f the program detects a
checksum error, you will have to carefully
re-examine the DATA lines.

The BASIC program pokes UTILPACK,
is 806 bytes
memory. The

which
of machine code, into high
machine code 1is position

independent (it can go anywhere in
memory), and it 1is automatically poked
into the top of RAM for a 16k or 32k user.

Additionally the program automatically
configures itself for non-ECB, ECB, or
Disk ECB. (I have tried it on non-ECB and

ECB and it works fine. [haven't tried it
with a disk system but am almost certain
it will run with no trouble).

Once you have RUN UTILPACK, you should
see a sign on message and immediatley
notice a change - the cursor should be a
steady block square. If you have got this
far, chances are things are 100% 0.K. If
you have repeated trouble, I suggest you
obtain this program on a CoCoOz cassette,
if you have not already done so.

Now you should be ready to try out
UTILPACK. Type away at the keyboard, then
hit the left arrow (backspace) key. The
cursor will move, but will not delete any
characters, Try the right arrow key for
forward cursor movement. The cursor will
be the inverse of the current character.
Hitting the shift left or right arrow will
move the cursor to the start of end of the
buffer,

To delete the character under the
cursor, hold down the clear key (which has
been reprogramed as a control type key),

and press the left arrow. To open up a
space for 1insertion, hold clear down and
press the right arrow key. To use the

CLEAR key as normal, hold clear and press
the commercial at (@) sign . This clears
the screen and homes the cursor.

Because the shifted right arrow is now
used for cursor movement, you obtain a
closed square bracket by pressing the down

arrow. Pressing any key other than those
described will replace the current
character.

You can use this screen editor in
command mode, or from an INPUT or

LINEINPUT command within a program.

To use the new LEDIT command, type
LEDIT, followed by the line number of the
line you wish to edit. If the 1line does
not exist you will generate a UL ERROR.

March 19864.

Australian RAINBOW

PAGE 37

The line you are editing will be printed
with the cursor at the start. You have all
the features of the screen editor at your
disposal. Vhen you have finished editing,
press <ENTER>. Pressing BREAK at this
stage will cancel any changes you have
made. You can always enter or break no
matter where in the 1line the cursor is
located.

ECHO OFF.

If you 1like the features of UTILPACK,
you should get into the habit of
installing it at the start of any
programning session. The new commands are
tokenised and can be used in immediate
mode within a program. Make sure UTILPACK
is running before CLOADing a program that

uses the new commands.

Apart from LEDIT, +try the other new I hope you will find this program
commands: FAST, SLOW, COLD, ECHO ON or |useful.
The listing: 0,0,0,0,86,7E,B7,1,82,30,8D, 0, F3 84,81,0,27,80,30,1,17,0,E, DC, 88,
,BF,1,83,F6,1,67,E7,8C,26,BE, 1,6 ¢3,0,1,DD, 88,17,0,4,5C, 16, FF, 6D,
1 REX UTILPACK=ENHANCEMENTS TO B 8, AF, 8C,21,B7,1,67,30,8D,0, 4, BF, DE, 88, A6,C4, 81, 40,25, F,81,80,25,

ASIC BY ROD HOSKINSOR V1.1 1986
2 GOTO 10

3 CSAVE"UTILPACK"

10 POKE32767,50

20 IFPEEK(32767)=50 THEN AD=3196
2 ELSE AD=15578

30 CLEAR200, AD-1

40 IFPEEK(32767)=50 THER AD=3196
2 ELSE AD=15578

50 CHECKSUM=0

60 FOR 1=AD TO AD+805

70 READ Q$:GOSUB270

80 POKEI,Q

90 CHECKSUM=CHECKSUN+Q

100 KEXT I

110 IF CHECKSUM<>84404 THER PRIN
T"ERROR IN DATA-RETRY":EED

120 IFPEEK(298)=0 THEN POKE AD+6

9,42: POKEAD+172, 185: POKEAD+176, 1

81:ELSE IFPEEK(308)<>0 THER POKE
AD+69,62: POKE AD+172,229:POKE A
D+176,225

130 EXEC AD

140 CLS:PRINT"BASIC ENHARCEMEKRTS
V1.1 1986 BY ROD HOSKINSON A
RE KOV LOADED":PRINT"NEN="MEX+30
93

150 NEV

160 DATA 30,8D,0,49,31,8D,0,8C,1
0, AF,8D,0,41,31,8D,0,98,10, AF,8D
,0,3A,31,8D,0,AC, 10, AF, 8D, 0,9D,3
1,8D,0,AA, 10, AF, 8D, 0,96,31,8D,0,
A8,10, AF, 8D,0,8F,31,8D,0,A4,10,A
F,8D,0,88,31,8D,0,C0,10, AF,8D,0,
81,CE,1,34,C6,B,BD,A5,9A

170 DATA 20,B,5,75,C4,75,D9,0,0,

1,68,39,34,4,D6,6F,C1,FE,27,B,E6
,8D0,0,C,C1, FF, 26,3, BD, A2, BF, 35,4
,7E,82,73,0,46,41

180 DATA 53,D4,53,4C,4F,D7,43,4F
,4C,C4,45,43,48,CF,4C,45,44,49,D
4,34,1,81,02,22,9,80,CE, 48,33,8D
,0,6,6E,D6,6E,9F, 1,46,75,F6,75,F
D,76,4,76,9,76,2E, 7F,FF,D7,9D, 9F
, 35,81, 7F, FF,D6,9D, 9F, 35, 81,F, 71
,7E, A0, 27,9D, 9F, 81,20,27,FA,81,A
A

190 DATA 27,7,81,88,27,B,BD,A5,C
9,6F, 8D, FF, A5, 9D, 9F, 35, 81, 6F, 8D,
FF,9D, 64, 8D, FF, 99, 9D, 9F, 35, 81,9D
,9F, BD, AF,67,BD, AD,1,24,3,7E, AE,
D2, BD, B7,C2, 8E,2,DD, A6, 80,81,0,2
6,FA,30, 1F, AF, 8D, 1, A7,DC, 2B, BD, B
D,CC,BD, B9, AC, 8E, 2, DD, A6,80,AD,9
F

200 DATA A0,2,81,0,26,F6,EC,8D,1
,8E, 83,2,DD,34,6,DC, 88, A3,E1,DD,
88,8E,2,DD, 17,0, 1A,25, 8, 8E, 2,DD,
OF, A6, 7E, AC, A8, 7E, AC, 76, 8E, 2, DD,
32,62, AF,8D,1,67,6F,84,6F,1,C6,1
,17,0,93,17,1,52,81,BF,10,27,0,A
6,BD,A1,C1,81,0,27,F0,81

210 DATA 8,27,4A,81,9,27,5D,81,1
5,10,27,1,64,81,5D,10,27,1,7D, 81
,A,10,27,1,91,12,12,12,12,81,3,1
A,1,10,27,1,2A,81,D,26,3,16,1,48
,81,C,27,BF,8C, 3,DB, 27, BA, A7, 80,
AC,8D,1,12,25,6,6F,84,AF,8D,1,A,
5C, AD, 9F, A0,2,17,0,37

220 DATA 20,A2,8C,2,DD,27,9D,17,
0,2Dp,30,1F,DC, 88,83,0,1,DD, 88,17
,0,21,54A,20,8B,8C,3,DB, 27,86, A6,

6,86,20,A7,C4,20,EE, 80,40

230 DATA A7,C4,39,8B,40,A7,C4,39
,BD,A1,C1,81,0,10,27,FF, 48,81,8,
27,1C,81,9,27,44,81,40,26,11,BD,
A9, 28, 8E, 2, DD, AF, 8D, 0,90,6F, 84,6
F,1,16,FF,26,16,FF,28,DE, 88, 34,5
0,1F,12,31,21,A6,A0,A7,80,81,0,2
7,6,AD,9F, A0,2,20,F2,86,20, AD, OF
240 DATA A0,2,30,1F, AF,8D,0,64,3
5,50, DF, 88,17,FF,92, 16, FE, FC, DE,
88,34,50, AE, 8D, 0,52,8C,3,DA, 25,5
135,50, 16, FE,EA, A6, 84,A7,1,AC, E4
,27,4,30,1F, 20,F4,86,20, AD, 9F, A0
+2,A7,80,A6,80,AD,9F,A0,2,34,2,1
F,A8,81,80,26,7,EE,63,33,C8,E0
250 DATA EF,63,35,2,81,0,26,E5,3
0, 1F, AF, 8D, 0,13,35,50,DF, 88,17,F
F,41,16,FE, AB, 86, FD, B7, FF,2,B6, F
F,0,39,2,DD,34,1,17,FF, 2E, AC, 8D,
FF,F5,27,E, DE, 88,33, 41, DF, 88, 30,
1,AC, 8D, FF,E7,26,F4,35,1,34,1,BD
,B9,58,8E,2,DC,35,81,4F,20,D8
260 DATA 17,FF,8,8C,2,DD,27,B,54
,30, 1F, DE, 88, 33, 5F, DF, 88,20, F0,1
7,FE,FS, 16, FE, 5F, 17, FE, EF, AC, 8D,
FF,B6,27,B,5C, 30,1, DE, 88,33,41,D
F,88,20,EF,17,FE,DB, 16,FE, 45,86,
5D, 16, FE, 7D

270 Q$=RIGHTS (00" +Q$,2)

280 AS=LEFT$(Q$,1):B$=RIGHTS (Qs$,
1

290 IFA$>="A"THENH=ASC(A$)-55 EL
SE H=ASC(A$)-48

300 [FB$>="A"THENL=ASC(B$)-55 EL
SE L=ASC(B$)-48

310 Q=Hx16+L: RETURK

One-Liner Contest Winner. . .

This short program, called Grader, is mighty useful
to students who have a number of test grades and want
to compute their grade average. All grades must be

entered in number form.

Hint . ..

Repairing Deluxe Joysticks

There have been a number of reports of problems with

The listing:

1 CLS:T=@:G=g:A=p:INPUT"# OF TES
TS" ;N:FORX=1TON: INPUT"GRADE";G:T
=T+G:NEXTX:A=T/N:PRINT"YOUR AVER
AGE IS ";A:INPUT"AGAIN";A$:IFAS=
"Y"THENGOTO1ELSEEND

Judy Zoll Leo
Skillman, NJ

Radio Shack's Deluxe Joystick, where the stick becomes
loose and you no longer have control. I've found that a pin
that holds one of the control levers to the joystick ball tends
to work itself out of the ball.

After opening the joystick case, you'll see a pin on one
of the levers that now faces the case instead of the ball. Hold
the stick so that the hole in the bail lines up with this pin,
and use needle-nose pliers to push the pin back into place.

- Ed Ellers

PAGE 38

Australian RAINBOW

March 1988.

»o Y R

-,
o g

®

13 P Y.
\« B ln g ® thekid.

R, “Cap-
tain Nick Hazard is sailing through
deep space in his Blue Death Suit. He
sends another dread Rotundo to its
maker!”

“That’s not Captain Nick Hazard,” |
told the kid. “It’s a hummingbird. And
the orange things are just bubbles, not
some kind of space creatures.”

“They’re the most-feared space crea-
tures of all! They want to turn Captain
Nick inside out!”

“Will you stop it?” I asked. “This is
a non-violent arcade game for CoCo
computers with at least 16K memory,
Extended Color BASIC and one joy-
stick.”

“This is the most violent game I've
cver played!" yelled the kid. “Ping!
Pow! Bar-room! Yucko, look at 'em
splatter!”

I withdrew. The kid playing the game
Bubble War was and still is my son. He's

10. At age 3 he wanted a toy gun. When
my wife and 1 refused, he chewed a
graham cracker into the shape of a
pistol and genially “powed™ anyone
who came near his high chair.

Not much has changed in the last
eight years.

Despite its name, Bubble War is a
gentle but tricky arcade game that
involves nothing more violent than a
blue hummingbird popping orange
bubbles. It demonstrates how to have
fun without destroying the universe.

. If your computer won'’t accept the
speed POKE 65495, 0, delete Line 130.

At the start of the game, a white
screen bordered by green appears.
Within it is a wing-flapping blue hum-
mingbird. Using the joystick, you can
move the bird around the screen at a fair
clip. It goes either northeast, southeast,
southwest or northwest, depending on
the quadrant in which the joystick is
being held. Push the firebutton on the
joystick and the hummingbird fires in
the general direction it’s traveling — left

By Richard Ramella

if moving westward, right if ecastward.

Aim and fire to burst bubbles. Hits
are scored according to the current size
of orange bubbles appearing on the
screen. Avoid taking the hummingbird
too near any orange bubble or debris
thereof; this will end the game.

From time to time, the action freezes
and a colorful series of concentric
circles spreads over the screen. The
screen blanks and play resumes. This is
done to wipe out bubble debris.

To see a current score during the
game, press keyboard letter *X°, then
press any other key except SHIFT or
BREAK to continue play.

My son persists in imagining danger
and triumph in his games. Sometimes I
try to tell him that all computer arcade
games are comprised in totality of but
one fundamental idea. There are teams
of light, whether two pixels or a thou-
sand complex graphics shapes. One
team chases, the other evades. As the
player you may be on either side. The
mind fills in the rest of the fantasy.

The listing: BUBBLWAR

1P REM * BUBBLE WAR * TRS-8¢ EX
TENDED COLOR BASIC 16K *

119 REM * BY RICHARD RAMELLA *
129 REM * REQUIRES ONE JOYSTICK
*

139 POKE 65495,p9
149 CLEAR 256
158 PLS$="L255;GFEDCBA"

168
179
188
199
2pp
219
229
239
249
259
269
279
28p

DIM M1(1,6),M2(1,6)

PRINT @ 235,"BUBBLE WAR"
PMODE 3,1

PCLS 1

COIOR 3,5

P=128

Q=96

FOR G=1 TO 2
CIRCLE(19,19),5,3,1.5
CIRCLE(1p9,5),7,3,.3

299 LINE(4,11)-(17,11) ,PSET

3pp IF G=1 THEN LINE -(1g,15),PS
ET ELSE LINE -(1@,5),PSET

319 LINE ~-(4,11),PSET

32 IF G=1 THEN GET(,P)-(28,28)
+M1,G ELSE GET(2,2)~(2p,2p) ,M2,G
339 PCLS 1

349 NEXT G

359 SCREEN 1,1

36@ CIRCLE(128,96),255,6

379 U=119

March 1984.

Australian RAlﬁEw

389 R=86

398 IF U<5 THEN U=5 ELSE IF U>22
9 THEN U=229

49p IF R<1l THEN R=1 ELSE IF R>17
g THEN R=179
419 CT=CT+1:
B 1¢88: CT=p
42p PUT(U,R)~-(U+2@,R+2p),M1, PSET
43 PSET(X,R-1,3)

44p IF PPOINT(U-1,R-1)=8 OR PPOI
NT(U+1@,R-1)=8 OR PPOINT(U+21,R-
1)=8 OR PPOINT(U-1,R+1@)=8 OR PP
OINT(U+21,R+1§)=8 OR PPOINT(U-1,
R+21)=8 OR PPOINT(U+1@,R+21)=8 O
R PPOINT(U+21,R+21)=8 THEN 878
459 S=RND(PG)

468 IF S=1 THEN GOSUB 628

479 K=JOYSTK(g)

489 L=JOYSTK(1)

498 PUT(U,R)~-(U+2p,R+20),M2, PSET
599 IF K>31 THEN U=U+4

519 IF K<31 THEN U=U-4

528 IF L>31 THEN R=R+4

539 IF L<31 THEN R=R-4

549 PK=PEEK(65288)

IF CT>15@ THEN GOSU

PAGE 39

559 IF PK=126 OR PK=254 THEN GOS
UB 598

569 XGS$S=INKEYS

579 IF XG$="X" THEN GOSUB 98¢
589 GOTO 39p

598 IF K>31 THEN GOSUB 718

689 IF K<31 THEN GOSUB 798

619 RETURN

629 G=RND(255)

639 P=RND(191)

648 IF G>U-21 AND G<U+42 AND P>R
-21 AND P<R+42 THEN 7¢g

659 CIRCLE(G,P),HG,8

668 PAINT(G,P),8

679 NN=NN+1

680 IF NN=1@ THEN HG=HG+5: NN=@:
JX=JK+1: IF JK=2 THEN PG=PG-1
698 IF PG<1 THEN PG=1

789 RETURN

719 M=U+22

728 N=R+9

73¢ IF M>253 THEN RETURN ELSE PS
ET(M,N,3)

748 S=RND(PG+28)

758 IF S=1 THEN GOSUB 62

762 V=PPOINT(M+2,N)

77§ IF V<>5 AND V<>7 THEN 93¢ EL
SE PRESET(M,N): M=M+5: GOTO 738
783 RETURN

798 M=U-1

899 N=R+1p

819 IF M<2 THEN RETURN ELSE PSET
(M,N,3)

828 S=RND(PG+20)

83 IF S=1 THEN GOSUB 629

849 V=PPOINT (M-2,N)

858 IF V<>5 AND V<>7 THEN 939 EL

SE PRESET(M,N): M=M-5: GOTO 81¢
869 RETURN

879 FOR T=1 TO 15

888 PUT(U,R)~-(U+28,R+28),M1,NOT
899 PLAY PLS

9@ NEXT T

918 XX=1

920 GOTO 988

939 IF V=6 THEN 958

949 IF V=8 THEN CIRCLE(M,N),25,5
: PAINT(M,N),5,5: PLAY PL$: SC=S

C+(HG*18)

958 IF V=6 THEN PRESET(M,N)

96@ CIRCLE(128,96),255,6

97¢ RETURN

98¢ IF XX=1 THEN POKE 65494,8: P

RINT @ 331,"F I N A L";

999 PRINT @ 235,"BUBBLE WAR";
1999 PRINT @ 363,"S C O R E";
1919 PRINT @ 394,SC;

1p§p IF XX=1 THEN YU=YU+1l: PLAY

PL

1939 IF XX=1 AND YU<4@ THEN 1829
ELSE IF YU=49 THEN END

1949 PRINT @ 448,"TAP A KEY TO R

ETURN TO GAME";

1958 XX$=INKEY$

1962 IF XX$<>"" THEN CLS: SCREEN
1,1: RETURN ELSE 105p

1878 END

1¢8@ FOR BN=§ TO 15¢ STEP 3

1¢99 CIRCLE(129,96),BN,1+RND(3),
1

1199 IF BN<2@ THEN PLAY "T128;CD
EFGAB"

1119 NEXT BN

1128 PCLS1

113§ CIRCLE(128,96),255,6
1148 RETURN

1158 END

116§ REM * END OF LISTING

continued from Page 13

Commandos

3§52 I$=STRS(I):H$=STRS (H+5):V$=
STRS (V+5)

3p54 DRAW"C“'PIS'“' IBM"+HS+" 2 "4VS+
BLS$

3956 NEXTI,J

3968 LI=LI-1:IF LI<=g THEN 3989
3978 ON PH GOTO 358,1999,20979
3§8p CLS:PRINT"YOUR TEST IS OVER
n

3298 PRINT" **RATING**"
3122 PRINT"LAST LEVEL COMPLETED:
":Lv=-1

311 PRINT" § OF LIVES SAVED:";

312¢ IF PH>2 THEN PRINTLV ELSE P

RINT LV-1

3139 PRINT"RANK:";:IF LV =1 THEN
PRINTR$ (1) ELSE IF LV =6 AND I

I=1 THEN PRINTRS(6) ELSE PRINT R

$(LV-1)

314¢ PRINT"SCORE:";SC

3159 IF LV<6 OR II=g THEN 3155

ELSE PRINT"TIME TO COMPLETE COUR

SE:";TT/1p$:GOTO 3168

3155 PRINT"PRESS ANY KEY"

3156 A$=INKEY$:IF A$="" THEN 315

6 ELSE 6pgp

316 PRINT"PRESS ANY KEY"

3179 A$=INKEY$:IF AS=""THEN 317¢

3180 PMODE3,1:PCLS:SCREEN1, g

3198 CIRCLE(158,58),22,2:PAINT(1

59,58),2,2:CIRCLE (158,50) ,39,2

32¢9 PAINT(158,25),3,2

3219 DRAW"C2;:BM16@,80:ND7@G1gH1P

ND7SL1PDBPELIPD2PEIPFLPU2BF1PUBHN

L1gR1PU2PEIPHIGU2PL2PH1SG1PL29D2

P#G1PF1pD2PR1P"

3229 DRAWMC3;BM14f,40;R2PBG2PR2P

BH2PBG5D1PR7UI@BRSNR7D5R7DSNL7BR

SUSNR1PESFSD5"

323 PAINT(135,1¢9) ,4,2:PAINT(16
5,1¢9),3,2

324p COLOR2,1:LINE(4p,60)~-(192,6
p) ,PSET:LINE(2p9,68)~(254,68) ,PS
ET

3259 DRAW"BM119,20:NH2@BR8ZNE2PB
D8PNF3PgBLEAGI"
326P A$=INKEYS$:IF AS="" THEN 326

2

3278 GOTO 6999

4998 'WIN

4019 'LV1

492¢ GET(5,138)-(28,139),C,G
43P H=5:V=139

4249 PUT(H,V)=(H+15,V+18),D

4959 V=V-5:PUT (H,V)~(H+15,V+1g),
c,PSET

4p69 IF V<=1§ THEN 4158 ELSE 424

J')

4979 'LV3

4975 IF LV=6 THEN 4159

4989 PCLS(1)

4090 DRAW"C2;BM2g,85;D1PR1PBR5NR
1PUSNRSUSR1PBRSDSFS5ES5USBR5NR1EDS
NRSD5R1@BRSNR1gU1G"

4190 FORI=1TO LV+1:LINE(95+(I*5)
,85)~(95+(1I*5),95) ,PSET:NEXT
4119 FORI=1TO1@PP:NEXT

4159 'WIN1,2,3

4155 II=1:GOSUB5PPP

4156 SC=SC+(LV*1gg8)

4157 IF TI<2pp THEN SC=SC+(2¢p~T
I)

4158 TT=TT+TI

4169 PH=PH+1:IF PH>3 THEN PH=1:L
V=LV+1

417¢ IF LV>6 THEN 3989

4189 ON PH GOTO 35¢,1p999,2829
59¢9 'THEME

5819 2$="02BG":X$="A03C"

5922 PLAY"T603L4DDXZ$;ACBGO3DDXZ
$;XX$;02L2A03L4DD"

PAGE 4@

Australian RAINBOW

-

E
e
R s T

’

5§39 PLAY"XZS$;XX$:02BGAO3CXZS$;A0
3002L2G"

5848 RETURN

6999 'HIGH SCORE

6019 IF SC>SC(1f) THEN 6g29 ELSE
6149

6929 SC(11)=SC:N$(11)=N$:LV(11l)=

v

6839 SC=p

6049 IF SC=1 THEN 6149

6059 SC=1

6§68 FORI=1TO1lp@

6@7p IF SC(I)<SC(I+1l) THEN 6p8p
ELSE 6119

6P8p SC=g:S=SC(I):SC(I)=SC(I+1):
SC(I+1l)=S

6499 NS=NS(I):NS(I)=N$(I+1):NS$(I
+1)=N$

6199 LV=LV(I):LV(I)=LV(I+1):LV(I
+1)=LV

6110 NEXT

6129 GOTO 6p4p

6140 CLS:PRINT@1P,"*HIGH SCORE*"
6158 PRINT" ~=ecccccccccncccaaaes
PUORppp———

6168 FORI=1TO1P:IF SC(I)=g THEN
61882

6178 PRINTNS(I)"
VEL: "LV (I)

6188 NEXT

6192 PRINT:INPUT"WANT TO PLAY AG
AIN(Y/N)";:AS

6292 IF A$="Y" THEN 15p

621 END

7929 '1

7819 N=LEN(N$)

7p2@ IF N>1p§ THEN 739 ELSE IF N
<1@ THEN 7949 ELSE RETURN

7839 NS$=LEFT$(NS,10)

7235 RETURN

7p4p FORI= 1 TO 12-N

7250 NS=N§+" ®

7p6@ NEXT:RETURN a

"sc(I)" LE

March 1983.

DTSR LTI —— -, [

“It changes the DSKI$, DSKOS,
DSKINI and BACKUP commands to

operate at 36 tracks. It keeps a

spare

copy of the disk directory at Track 36. It
can recover directories with logical errors
and last, but most important, it can

recover directories with physical errors.”

Crash-Proof It!

fter seeing a letter in “Down-
Aloads” from a reader who was

having problems restoring a
damaged Track 17 on a disk, I wrote
this program, Crashproof. It is very
short and only uses up one granule. 1
used to keep Zapper on every disk to
store and retrieve directories, but at a
cost of five granules.

Crashproof requires a 64K disk sys-
tem. A copy should be kept on every
disk for convenience. The program does
four things: It changes the DSKIS,
DSKO$, DSKINI and BACKUP commands
to operate at 36 tracks instead of 35. It
keeps a spare copy of the disk directory
on Track 36. It can recover directories
with logical errors and last, but most
important, it can recover directories
with physical errors.

After the conclusion of an input/
output session, I type RUN“CP” and
press ENTER at the main menu. In a few
seconds, Track 17 is safely stored at
Track 36. If you maintain directories
with more than 40 files it is advisable to
change the ‘8’in lines 150 and 220 to 11.
A logical crash can be repaired in about
a minute and a physical crash in about
five mintues.

It is important to note to beginners
that all disks must have been formatted
to 36 tracks before any files are stored
on a disk. After choosing Option 1, any
subsequent DSKINIO formats 36 tracks.
Therefore, a RUN“CP~ only has to be
done once to format a new box of disks.
After all disks are formatted, LORD“CP”
again and RUN1@1@. Pressing any key
puts a copy of Crashproof on your disk.

By Terry Wilson

Option 2 performs the transfer of Track
36 to Track 17; Option 3 allows a back
up of all 36 tracks to another disk. After
this operation is complete, RUN“CP”
again and choose Option 2. As with any
new utility, practice on an insignificant
disk first.

Crashproof has been written from
information gathered from previous
issues of RAINBOW, so no big feather in
my cap. However, thanks to this infor-
mation, Crashproof'is a very useful, up-
to-date utility,

(You may contact the author of this
program with any questions you have at
3436 Casa Grande, Baton Rouge, LA
70814, phone 504-272-4652. Please
enclose an SASE when writing.) 0O

Editor's Note: If you have the newer Radio Shack Disk BASIC
L1 ROM, then you will need to change the POKE addresses
in lines 60 and 200. Change the values in Line 60 from & HD 446
and EHDIBO 1o &HDS34 and LKHD29D respectively. Also,
change the values in Line 200 from &HD572 and &HDS9S to
&HDSESF and &HDSA2 respectively.

The listing: CRASHPRF

1 THRARRARARRARRARRANAR R R R AR AR
‘e CRASH PROCF IT!! *
'x TERRY L. WILSON *
'» 3436 CASA GRANDE *
'n BATON ROUGE LA. *

*

B

. ZIP CODE 7g814
TARRRARKRAAR AR AR R AR R AR RN R AR
'

CLEAR999

1¢ DATA 26,88,198,128,8,183,255,
222,166,128,183,255,223,167,31, 1
49,224,9,37,241,57

2p FORI=1TO21:READA:A$=A$+CHRS (A
) tNEXTI

3§ P=VARPTR(AS)+1

49 POKEP,126

58 EXECP'NOW IN 64K

69 POKE&HDA446,&H23 : POKEGHDL1Bg, §H
24 'ENABLES TRACK36

VENOAVMEWN

7f CLS:PRINT@39,"CRASH PROOF IT!
tn

8¢ PRINT:PRINT" (1) FORMAT NEW
DISK TO 36 TRACKS": PRI
NT" (2) RECOVER CRASHED DISK":P
RINT" (COPY TRACK 36 TO 17)
"

99 PRINT"
e

(3) STILL BAD??":PRIN
(OPTION #2 FAILED)"

19p PRINT:PRINT" ENTER YOUR
CHOICE OR"
118 PRINT:PRINT" PRESS <ENT

ER> TO":PRINT"
TRACK 36"

12¢ INPUT®
HEN78

139 CLS:ON A GOTO 178,218,238

149 PRINT" IF THIS DISK IS CR

ASHED" : PRINT" CRASH PROCF W
ILL CATCH IT":DIR

15¢ FOR X=2 TO 8:DSKI$ 9,17,X,A$
,BS:DSKOS p,35,X,AS$,B$: PRINT"TR.
17 SEC.";X"TO TR. 36 SEC.";X:PR
INTAS ; BS :NEXT

160 PRINT"DIRECTORY STORED AT TR

ACK 36":FORX=1 TO 1PP@:NEXT:GOTO
79

17¢ CLS:PRINT@73,">>>CAUTION<<<"
:PRINT: PRINT" YOU ARE ABOUT TO C

COPY TRACK 17 TO

";A:IFA>3T

LEAN THAT DISK AND FORMAT IT
TO 36 TRACKS"
189 INPUT" SURE" ;X$: IFLEFTS (

X$,1) <>"Y"THEN79

198 PRINT" INSERT DISK TO BE FOR
MATED" : PRINT" PRESS ANY KE
Y":EXEC44539

2pp POKE&HD572,&H24:POKE&HD595, &
H24:DSKINIg
21§ CLS:PRINT"INSERT BAD DISK IN
TO DRIVE @":LINEINPUT" PRESS <E
NTER> WHEN READY";X$
22 FOR X=2TO 8:PRINT"TRACK";X:D
SKI$ @,35,X,A$,BS:DSKOS £,17,X,A
$,B$:PRINTAS : PRINTES : NEXT : PRINT"
DIRECTORY RESTORED" : FORX=1T0Q460:
NEXT:GOTO78
23p CLS:PRINT"THIS OPTION CREATE
S A BACKUP":PRINT"COPY OF THE CR
ASHED DISK. THE":PRINT"BACKUPS C
OMMAND HAS BEEN CHANGED";:PRINT"
TO BACKUP ALL 36 TRACKS SO WHEN"
:PRINT"YOU HAVE MADE A NEW COPY,
YOU": PRINT"MUST RUN CRASHPROOF
AND CHOOSE"
249 PRINT"OPTION #2 TO RESTORE T
HE DIREC- TORY ON YOUR NEW COPY.
"

25¢ PRINT:PRINTMTYPE 'YES'

U ARE READY TO BACKUP@"

26§ INPUT" READY";X$:IF

X$="YES"THENBACKUPS

278 GOTO7§

199 ' USE A RUN1@§1p AFTER YOU
HAVE FORMATED ALL YOUR
NEW DISK

1§18 CLS:PRINT@4#,"CRASH PROOF I

T!!1":PRINT@99,"SAVE A COPY TO E

VERY DISK":PRINT@137,"PRESS ANY

KEY":EXEC44539: IFFREE () >JTHENSA

VE"CP": PLAY"G" :GOTO1@18

128 PRINT" THIS DISK IS F

ULL" : EXEC44539:GOTO1910

IF YO

March 1984.

Australian RAINBOW

a
PAGE 41

ASSEMBLY FILE

by Kevin

Appendix Il of Villiam Bardens' book
COLOR COMPUTER ASSEMBLY LANGUAGE
PROGRAMNING contains some very useful and
very interesting information. Although it
can take a bit of understanding.

Listed is the complete instruction set
of the 6809 CPU along with the number of
clock cycles required to execute the
instruction, the number of bytes the
instruction consumes and some good extra
information.

Let's take a 1look at one of the load
instructions, LDA for example. By now you
should have a fair understanding of the
various addressing modes of the 6809. From
the table we can immediately see that the

LDA instruction can take the forms of
Immediate, Direct, Indexed or Extended
addressing. When the assembler assembles

the DIRECT form of the instruction it will
convert the line LDA #34 to the numbers
$96 and $34. These are the numbers you see
as the object code for the line of source
code you typed in using your assembler
program. Obviously they cconsume two bytes
of memory space and if you look to our
table you will find that this is exactly
the number of bytes that the instruction
was supposed to consume. Also you may like
to note that the instruction took 4 clock
cycles, although that is generally of
little use unless you really need to find
ways to make your program run fast.
Although [rather suspect that tightening
up your programming techniques will gain
you more speed in that case.

But what happens in the case of indexed
addressing? You will see a separate table
titled INDEXED ADDRESSING MODES.

Using Indexed addressing we could have
the line LDA ,X+ which translates to $A6

$80. How did 1 get the $807 Well if you
look to the supplementary table you will
see that with Auto Increment Indexed

Addressing which is what we are doing you
will find the binary code for the postbyte
opcode. In our example this binary value
is 1RR00000. So what do these RR bits

PAG

Australian RAINBOW

mean? Unfortunately it seens the
publishers have 1left one very important
footnote. Essentially the {ootnote says
that for register X you substitute 00 for
the RR within the binary number. Likewise
Y=01, U=10 and S=11. VWhere this table
shows the assembler form of the
instruction merely substitute the name of
the register you wish to index for the
variable R.

Understand? No then play with and think
about it for a while. Still looking at the
same table you will see here the number of
clock cycles and the number of bytes to be
ADDED to the nubers given in the main
table.

On to the description column. Again this
information is most useful once you begin
to understand the shorthand. Most of the
shorthand is explained well enough in the
Legend at the end of the table so let's
just look at our own example. Quite simply
the contents of memory are loaded into the
A register. But note M does not have to be
memory. It can also refer to the postbyte
value when using Direct addressing, so
don't get caught out. As always a bit of
study and more practice will develop your
understanding.

Now we come to the
instruction will have on
Code Register. The only bits of the CC
Register we worry about here are the
Half-carry, Negative, Zero, Overflow and
Carry bits. Again our LDA instruction will
test both the Negative and Zero bits, set
them if found to be true, otherwise
cleared. The overflow bit will be cleared
always upon execution of the LDA
instruction.

Dig into this information, type up a few
short listings comparing the assembled
output with what the tables tell you the

effect the
the Condition

code should be. You should this way
improve your understanding of Assembly
Language no end and likewise have found

the most useful ready-reference
the 6809 you could want.

guide to

March 1986.

ODDS and ENDS #l

by Andrew Simpson

MACHINE LANGUAGE used to be this thing

that I could 1load but not list; 1 could
play but not change.

Then one day 1 got the book TRS-80
COLOR COMPUTER ASSEMBLY LANGUAGE
PROGRAMMING.

Now Machine Language is this wonderful
thing that lets me <(when 1 learn) do

almost anything with my CoCo.

When I was about 1/2 way through the
book | discovered that the text screen is
at &H400 to &HSFF. So if I POKE &HSFF,65 1
put the letter A on the bottom right of
the screen and the screen does not scroll
up.

So can | reverse the process? I try a ?
PEEK (&HS5FF) <ENTER> & the computer
replies with 65 - which is the decimal
number for A, (refer to your CHR$ codes in
the back of GETTING STARTED WITH COLOR
BASIC).

So now, every time I want to find out
what is on the screen, I can! (I have not
thought of a program that will wuse this,

but one day 1 will.)

After a bit, [got to wondering why I
couldn’t do the same thing in the graphic
screen. From all the things | had read, I
understood the graphic screen was at
&H600. So I POKEd into &H600.

I tried to put a few things there -
&H12, &H76, &HFF etc., but nothing
happened. So | thought - if I poke from
4H400 on, while looking at the graphic
screen, and wait for it to change color, I
should be able to find where that happens.
So I wrote this program:

10 PMODE4, 1: SCREEN1, 1: PCLS
20 FOR A= &H400 TO &HFFFF
30 POKE A,65

40 NEXTA

Then | ran the program and sat waiting,
wondering if it would work. Then suddenly,
a line went across the screen.

It was not a true line.

1 pressed <break> and looked at A. The
number I had was part of the way through
the screen. So 1 thought "why can't I use
the PPOINT so the computer will stop when
it gets to the end? It could stop and tell
me the number”.

First I needed to make the line a true
line, not a dot. I had learned from my
book that 1 memory point = 8 screen
points. For example, the letter A in
binary = 01000010. So on the screen, [get
the first 8 dots which are black white
black black black black white black. So to
make the screen white I must use a symbol
that is 11111111, ie &KFF.

Then I wrote this program:

10 PMODE4, 1: SCREEN1, 1: PCLS

20 FOR A= &H2500 TO &H400 STEP-1
30 POKE A, &HFF

40 IF PPOINT(0,0)=5THEN PRINTA:S
TOP

50 NEXTA

Then | made the number &HEQO the start
and I got the other points the same way.

All this proves that the if start of
the screen is &HE00, then the end of the
PMODE4,1 screen 1is &H25FF; the start of
the PMODE 4,5 screen is &H2600 and the end
is &H3DFF.

But when I took out my disk controller
I found that the screens had moved. I
tried my program again and the screen was
at &H600. This means that without my
(TANDY 1.0) disc controller the screen for
PMODE4,1 is at &H600, the end at &HLDFF
and PMODE 4,5 starts at &H1EOO and ends at
&H35FF.

Now I have that information, I can save
the screen to disk. I ran a good graphic
screen program and typed SAVEM "NAME”,
&HE0O0, &H25FF, &HEO0O0 <ENTER>. (For non
disk users, change &HE0O0 to &H600 and
&HE0OO to &H1DFF.)

Then [wrote a program that will load
the screen:

¢non disc > 10 PMODE4, 1:SCREEN1, 1:PCLS
<use CLOAD> 20 LOADM"SCREEN"
30 RUN”NAME"

It loaded the screen so quick that if
you blink you would miss it! (I am not

kiding!) (Cassette was a bit slower.)

From my work with the book I had
learned how to move memory locations
around.

—
March 1984.

Australian RAINBOW

PAGE 43

1 thought, "why can't 1 move the screen

up?”.
Vell, 1 can! And here is the program:
00010 x PMODE SCREEN UP
00020 x BY
00030 x ANDREV BRUCE SIMPSON
00040 x 20/12/1985
7FFO0 00100 ORG $7FF0
7FF0 8E OE00 00110 START LDX #$0E00
7FF3 A6 84 00120 LOOP LDA X
7FF5 A7 88 EO 00130 STA ~-#20,X
7FF8 A6 80 00135 LDA , X+
7FFA 8C 25FF 00140 CMPX #325FF
7FFD 25 F4 00150 BLO LOOP
7FFF 39 00160 END RTS
0000 00170 END

00000 TOTAL ERRORS

END 7FFF
LOOP 7FF3
START 7FF0

Type it in and save it FIRST.

Before you LOADM you must CLEAR 16,
&H7FF0. (16K'ers CLEAR 16, &H3FFO and
change line 100 from 7FF0 to 3FF0.)

For those of you who do not
EDTASM+ then the BASIC listing is:

2 ' PMODE SCREEN UP

have

venue. SEAGULLS
- GOLD COAST

price $ 39.95
sat nite meal

BE

included

|
THERES

Australian RAINBOW

4" BY

6 ' ANDREV BRUCE SIMPSON

8 ' 20/12/1985

10 CLEAR19, &H7FED

20 FORA=&HTFED TO &H7FFF

30 READ B:POKE A,B

40 NEXTA

50 DATA &H41 ,&H42 , &H53 , &HSE , &HOE
,&HOO0 , &HA6 ,&H84 ,&HA7 , &H88 , &HEO

, &HA6, &H80 ,&H8C ,&H25 , &HFF , &HZ25,
&HF4 , &H39

Those without disk drives should change
the M.L. listing line 110 to 0600 instead
of 0EOO0 and line 140 to 1DFF and not 25FF.

In the BASIC listing change the DATA
statements from &HOE, &HO00 to &HO06, &HOO
and &H25, &HFF to &H1D, &HFF, line 10 fron
&H7FED to &H3FED.

Now to use it, all you have to do is
EXEC&H7FF0 and for 16K'ers EXEC&H3FFO. The
PMODE 7,1 screen will scroll up one place.

You can save the normal screen to disk
or tape by wusing SAVEM "NAME", &H400,
&HSFF, &H400 then just wuse the same

program that 1 used to load the graphic
screen except take out line 10.

But can 1 make the screen scroll down?
See you next time!

T
STOCKTAKING SPECIALS!

While they last - send a copy
of this ad to get this special!!

TEAC FD55F DSDD 80 Track Drives
with head load solonoid to reduce

19575

Normally $246.41

While they last
Printers: \q

(O o B S A e R I $439.33
CPBROT \alh Ol d g b o it atias $482.42
CPBYAD v vvinpandunnain i $707.70

CoCo Disk Drive - includes Power Supply,
Case, Cables, 1.4 DOS, 40 Track DSDD.
Drive expandableto 2drives $399.00

Phone for further details
All prices include Tax
Please allow for P & P. Bankcard Welcome.
Dealer enquires welcome.

eneroy

ENEROY CONTROL INTERNATIONAL PTY (1D
PO 80 6507 Goosre Cla 4300

BrsDore AUSIRALIA

Phane (0)) 288 24%% Teles AALI778 ENTCON
PO Box 12153 Wellngion Nomt NEW ZEALAND
Pnone 4 176 462 Tix N7 3D13S

CONTROL

Prices subject lo change withoul notice

March 1986.

— 16K E
BARDEN’S BUFFER ECB

mm—

The Straight, Hard Facts
about Assembly Language

By William Barden, Jr.

“W ant to speed up your
programs 300 times?
Want to learn skills that
will make you rich? Try Color Compu-
ter assembly language! To see if you
have the aptitude, code this problem in
BASIC and send us the result: 2 + 2 =7,
If you pass this simple test, we'd like to
enroll you in ‘Famous Programmers’
School !™

I closed the coding pad cover on
which this advertisement was printed
and sat back in my Realistic DC-5 desk
chair, reflecting. That’s the trouble with
assembly language, it's misunderstood
— too many myths abound about it.
Maybe I can dispel some of those myths
in this column. I'll give you the straight,
hard facts about assembly language. If
you're satisfied, you might be interested
in dropping in from month to month
and following this column.

Fact Number 1: Assembly Language
is Fast

Assembly language is fast! As you
know, every microcomputer (indeed,
every computer) has a built-in set of
machine language instructions. Every
program, whether it’s written in the OS-
9 ¢ language or Extended Color BASIC,
must ultimately be translated into
sequences of machine language instruc-
tions. If you can write directly in ma-
chine language or its fraternal twin
brother, assembly language, you are
operating at peak speed on the Color
Computer.

As an example of this blinding speed,
consider the program in Figure 1. It's a
“bubble sort” in Extended BASIC that
sorts a “worst case” set of characters on
the screen. The Extended BASIC pro-
gram takes an estimated 4,800 seconds
to do the sort. Now look at Figure 2,
an assembly language equivalent. (The
assembly language here has been con-
verted into machine language and em-
bedded into Extended BASIC DATA
statements, which are then moved and

executed.) The assembly language ver-
sion takes six seconds!

Expect to see increases in speed in
assembly language from dozens to
hundreds of times over “interpretive”
BASIC and from three times to dozens
of times over compilers such as BASIC09
and C.

Assembly language is the standard by
which every other language is based.
When programmers want to develop
impressive code, they invariably pick
assembly language to do the develop-
ment. Sure, C and PASCAL might be
used for some programs where speed is
not extremely critical, but assembly
language is always the choice when the
absolute fastest speed is required.

Fact Number 2: Assembly Language
is Tedious to Code

This is the most detrimental thing
about assembly language, and | don’t
want to downplay it. There’s no ques-

Figure 1: Bubble Sort in BASIC

1¢¢ REM EXT BASIC BUBBLE SORT
11 REM FILL SCREEN WITH CHARS
12¢ CLS

139 FOR I=&H4PJ8 TO &HSFF

149 POKE I,RND(127)

15 NEXT I

16§ REM ACTUAL SORT

17¢ BEND=&HS5FF

189 I-&H4@Z

199 SWAP=§

299 IFPEER(I)<=PEEK(I+1)THEN26Q
219 FIRST=PEEK(I)

228 SECOND=PEEK(I+l)

239 POKE I,SECOND

24@ POKE I+1,FIRST

25@ SWAP=1

260 I=I+l

27¢ IF I<>BEND THEN 208

287 BEND=BEND-1

29¢ IF BEND~&H3FF THEN 31§
3¢@ IF SWAP<>@ THEN 18§

31¢ GOTO 318

March 1986.

Australian RAINBOW

tion that assembly language is a very
tedious language to code. It may take
10 times longer to code a large program
in assembly language than in BASIC. Is
there any solution to this? Not really. In
spite of “macro™ assemblers, interactive
editors, debug packages and books that
promise to teach you assembly language
in days, it remains tough to use.

One approach in using assembly
language is to use it sparingly. Use it in
short assembly language subroutines to
speed up BASIC or other languages in
those areas where speed is important.
The bulk of the code can be the higher
level BASIC, C or PASCAL. That way, you
can have the best of both worlds: the
programming ease of the higher level
language and the speed of assembly
language.

Fact Number 3: Assembly Language
is Tedious to Learn

One of the reasons assembly language
columns are so popular in magazines
and why assembly language books sell
so well is that computer hobbyists are
continually looking for magic ap-
proaches to learning it. There really are
none.

Surprisingly, it’s relatively easy to
learn how the machine language in-
structions for a microcomputer work.
They are so rudimentary that they're
easy to comprehend. One instruction
transfers a byte from memory into a
register. Another adds two bytes.
Another compares two values. It's not
too hard to sit down and memorize the
actions of about 60 instructions, as
found in the Color Computer's 6809
MICroprocessor.

There’s much more to assembly lan-
guage than memorizing the actions of
instructions, though. It consists more of
learning programming algorithms and
approaches to doing things — con-
sttucting tables of data, sorting lists,
using linked lists, building subroutines
to print lines, and so forth. Learning

FAGE 45

Figure 2:

Bubble Sort in Assembly Language

assembly language, then, is more a
situation of learning its structures,
approach and philosophy, a kind of
excursion into microprocessor Zen.
However, this leads us directly into . . .

Fact Number 4: Once You've Learned
One Assembly Language, You Know
Them All

Once you've studied the philosophy
of one assembly language and mastercd
the techniques, it becomes extremely
easy to learn the instruction set of the
next microcomputer. Assembly lan-
guage for the Apple Maclntosh’s 68000
is very similar to the Color Computer’s
6809. Assembly language on the Tandy
1000°s 8088 microprocessor is really not
that different than on the Color Com-
puter. Once you've learned one assem-
bly language, regardless which it is,

you're in good stead for the next, since
you've mastered the art of using assem-
bly language instructions to accomplish
useful things.

If you're looking for the ultimate
microprocessor from which to learn
assembly language, look no further
90 percent of what you learn on the
Color Computer is directly applicable
to any other system. Incidentally, the
6809 on the Color Computer is regarded
by many to be as good or better than
the 8088 on IBM compatibles. The
instruction set of the 6809 is built along
classical programming lines, while the
8088 has more idiosyncrasies.

Are You Still with Me?

If so, you're a hard person to discour-
age. You must be a student, confirmed
hacker or masochist, or possibly all

PAGE 44

¢@1¢@ ¥ BUBBLE SORT
4C5B 8E P4gg gg11¢ BUBPlg LDX #5409 POINT TO START OF TEXT SCREEN
4CSE 1¢8E @999 99129 LDY #9 SET SWAP FLAG TO §
4C62 A6 89 g@13g BUB@2¢ LDA , X+ GET ITH ENTRY, INCREMENT
4C64 A1 84 g9149 CMPA , X COMPARE TO ITH+1
4C66 23 @A 99159 BLS BUB@3Q GO IF LESS THAN OR EQUAL
4C68 E6 84 gg16Q LDB » X SWAP HERE - GET ITH
4C6A E7 1F ggL79 STB -1,X STORE IN ITH
4C6C A7 84 gg18g STA X STORE FIRST IN ITH+1
4LC6E 1@8E @p@l ga199 LDY #1 SET SWAP FLAG
4C72 8C @5FF g@2¢p BUBQ@3@ CMPX #$5FF AT END?
4C75 26 EB #9219 BNE BUB@20 GO IF NO
4C77 198C gggP gp229 CMPY #9 YEY, ANY SWAPS?
4C7B 26 DE gp239 BNE BUBZ1l@ IF YES, TRY AGAIN
4C7D 39 go24g RTS RETURN
pagg 99259 END
three. Sigh . . . If you must learn assem-
g9@@9 TOTAL ERRORS bly Ianglgmge, lheil we'll give you some
199 REM BASIC/AL BUBBLE SORT Upa0a oW 10 goiabant .
i;‘g gt;:m 20p,16127 Which Assembler is Best?
As you probably know, an assembler
130 DATA &HBE,&H@4,&HQP,&H1P is a program that takes the source code
140 DATA &H8E,&HPJ,&HPP of your assembly language program and
150 DATA &HA6,&H80,&HAL, &H84 translates it into object code or machine
160 DATA &H23,&HPA,&HE6,&HB4 language. In the process, it provides a
179 DATA &HE7,&H1F,&HA7,&H84 listing of the program and the resulting
180 DATA &H1@,&HBE,&HPP,&HPL machine language, as shown in Figure
199 DATA &HB8C,&H@S5,&HFF,&H26 3.
200 DATA &HEB,&H1@,&HB8C,&HJP . .
210 DATA &HPJ,&H26,&HDE,&H39 1 h'flvc mixed feelings about recom-
211 FOR I=16128 TO 16128434 mending an assembler to use. lnlheca_sc
212 READ A of the Co!or Computer, the Raflm
Shack versions are not bad and fairly
213 POKE I,A inexpensive. In addition, they have
214 NEXT I become a standard. For that reason,
229 FOR I=&H4P@ TO &HSFF we'll refer primarily to Radio Shack
23¢9 POKE I,RND(127) products here. Those with other pro-
240 NEXT I ducts will find, for the most part, that
241 DEFUSR@=&H3FQ@@ the code still applies.
242 SR=USR@(Q)
243 GOTO 243 Non-Disk System Users

If you have a Color Computer with-
out a disk, you'll probably want to get
the Color Computer EDTASM+ As-
sembler/ Editor (Cat. No. 26-3250).
This is a cassette-based system 1 like
very much. The product contains three
functions that would ordinarily be
separate programs — the editor, as-
sembler and debugger. Because the
programs occupy memory at the same
time, there's no loading from cassctte
between functions; you can simply
switch from one to another with a single
keystroke or two.

The editor does pretty much what
Extended BASIC does in editing —
characters on lines can be manipulated
in different ways. The assembler, of
course, translates the source code into
object code and provides a listing. It
also assembles into memory rather than
creating an object file, although this can

Ausiralian RAINBOW

March 1985,

P RS

Figure 3: The Assembly Process
PROGRAM
LISTING
3
PPN
&
NG
&
VIA CASSETTE OBJECT
SOURCE EDITOR ASSEMBLER OR DISK CODE
CODE PROGRAM (MACHINE
IN LANGUAGE)
o enen FILE OR
‘;ff!" IN MEMORY|

also be done. Having the machine
language code loaded directly into
memory bypasses a cassette load of the
object file and allows the debugger to be
instantaneously called after assembly.
The debugger (ZBUG) allows you to
systematically debug the program by
putting in stopping points (break-
points), by stepping through instruc-
tions, by dumping selected areas of
memory, and so forth.

Disk System Users without 0S-9

If you're not an OS-9 user and run
Disk BASIC, then Radio Shack provides
a disk version of EDTASM+ — Color
Disk EDTASM (Cat. No. 26-3254).
This version contains all of the com-
mands of EDTASM+ and a few more

it's essentially an upgrade of the
cassette product. Using Disk ED-
TASM, you can save source and object
files on diskette, a decided advantage
with long programs.

Disk System Users with 0S-9

| know Dale Puckett is going to kill
me for this, but have to say it: Learning
assembly language with the OS-9 edi-

tor, assembler and debugger is much
more of a task than using Disk ED-
TASM. The OS-9 program develop-
ment tools are powerful, but more
complex than the stand-alone Disk
EDTASM, and you must pay more
attention to the OS-9 environment in
which you're operating.

However, if you are a confirmed OS-
9 buff, it is certainly possible to learn
0S-9 assembly language. The instruc-
tions and mnemonics for the 6809 are
the same, as are many of the other
commands provided for assembly. If
you choose the OS-9 route, you'll learn
more about how assembly language
works in an operating system environ-
ment, if you can get past some of the
frustration and complexities of OS-9
itself.

Other Assemblers

A non-Radio Shack product I like is
the Micro Works Macro-80C Disk
Assembler. | started using this product
because there was no disk assembler
from Radio Shack at the time. Al-
though not as integrated as Radio
Shack EDTASM, it is a nice, well-

Figure 4: Typical Macro Use in an Assembler
gg199 SHIFTR MACRO
ggL1g \.L LSRA MACRO
99129 LDB #\ ¢
99139 BNE \.L DEFINITION
99149 ENDM
ARGUMENT PASSED
TO MACRO
4BOD 86 7B 91999 I...DA #123 dummy value
4BOF 8E g4pg @1g1g LDX #5400 dummy value
g1029 SHIFTR macro call
4318 86 22 91939 /LDA #34 dummy value
MACRO .
CALL ’

Narcﬂ 1986.

Australian RAITNBOW

thought out product.

Books and Tutorials

It will surprise some readers to find
out | can't present an entire course on
assembly language in the pages of
RAINBOW. Think about it for a moment,
though. In each column I have about
3,500 words to present my rambling
discourses. That's 42,000 words a year,
which might be enough for an introduc-
tory text on Color Computer assembly
language. There’s also the problem of
new subscribers and just the overall
length of time involved. It’s difficult to
take a semester course over a year or
more. For that reason, I'll use the
column to cover interesting points
about assembly language programs,
present some practical, short programs
and, in general, act as a supplement to
your own study.

An obvious question you might have
is, “What books can | use to learn

assembly language?” It's embarassing to
recommend my own Radio Shack
book, Color Computer Assembly Lan-
guage Programming (Cat. No. 62-
2077), but at $6.95 you can’t go too far
wrong.

I honestly don’t know of many books
to recommend on the topic, other than
the books on the 6809 microprocessor
itsell. Some of these do a good job of
explaining the operation and use of
6809 instructions. A good one is Lance
Leventhal's Osborne/McGraw Hill
book 6809 Assembly Language Pro-
gramming. However, all of these ge-
neric books suffer from the same prob-
lem, though no fault of the author
they are not machine specilic. They tell
you about 6809 microprocessor instruc-
tions, but not how these instructions are
used on any specific machine, such as
the Color Computer. One must, if only
for an absolute reference, is Motorola's
MC6809 Programming Manual, avail-
able from Motorola Semiconductor
Products, Inc., 3501 Ed Bluestein Blvd.,
Austin, TX 78721.

Another product is Dennis Kitsz's
Green Mountain Micro tutorial course
called “Learning the 6809." It comes
complete with audio tapes of 24 lessons
and programs and a 224-page manual.
This course is geared around ED-
TASM+, the cassette version of Radio
Shack’s editor/assembler/debugger,
and is excellent. It covers not only the
instruction set of the 6809, but also the
structure and hardware of the Color
Computer. About the only criticism
that can be made of the course is its
price of $99, a little dear for many
CoCoists.

Another product is the Assembly

PAGE 47

Language Tutor (26-3148, Page 46 of
Computer Center Catalog RSC-15).
The Assembly Language Tutor is a
complete subset of an editor, assembler
and debugger. It contains 30 lessons
loadable from cassette, together with a
large manual. The neat thing about the
Tutor is that it contains an assembly
language interpreter that runs your
programs or lesson programs. As the
interpreter oversees and controls things,
it prevents you from making addressing
errors, attempting to execute data
rather than instructions and clobbering
critical memory areas. It holds your
hand, so to speak, to make assembly
language learning a lot more palatable.

10 Most-Often Asked Questions
about Assembly Language

In future columns I'll try to answer
your questions about assembly lan-
guage. If you have questions please
drop me a line at RAINBOW, or leave a
message on Delphi or the CoCo SIG of
CompuServe, I'll try to answer the most
common questions. For this [irst col-
umn, I'll answer 10 questions that keep
popping up again and again.

Question 1: What are Macros
and Why are They Used?

A “macro” is simply a sequence of
instructions, ranging from one to
hundreds. A typical macro might con-
sist of four instructions, such as the ones
shown in Figure 4. The instructions in
this figure shift Register A right in a
logical shift a specified number of
positions. The macro is defined in a
definition shown in the first part of the
listing. Later, the macro can be “in-
voked™ by writing down the macro
name as shown in the SHIFTR mne-
monic.

When the assembler sees the macro
name in place of the usual instruction
mnemonic, it searches a list of macro
definitions, finds the instructions de-
fined for the macro and automatically
generates the instructions as if you had
typed them in at that point. If the macro
is invoked 10 times in a program, the
same instructions are generated for each
occurrence.

The advantage of the macro is that
only one line of code can produce many
lines automatically. Macros are a sort of
“in-line” subroutine. In the example in
Figure 4, the macro used one argument,
but the line invoking the macro may
also contain more arguments that are
used within the macro body of code.

Question 2: What is Position-
Independent Code and Why is it So
Important?

Position-independent code is also

PAGE 48

called relocatable code for some mi-
croprocessor instruction sets. Position-
independent code is not at all important
when instructions are assembled for a
specific location in memory. Figure 5,
for example, shows an LDA CONSTI
instruction, which loads Register A in
the 6809 with the contents of a memory
location called CONSTI, a constant.
After assembly, the location of
CONST]1 is at location $400A and the
LDA address is $4000. As long as the
program is loaded in the $4000 memory
area, the LDA operates as it should,
loading Register A with the contents of
memory location $400A.

Suppose the machine language code
is moved to $7000. The LDA should
refer to a location (Hex A) 10 bytes
away from the start of the program at
$700A. Instead, it refers to location
$400A! The LDA is not position-
independent.

In the last part of the figure, the LDA
CONST i has been replaced with an
LDA CONSTI,PCR instruction. This
instruction assembles without an abso-
lute memory address — the address is
computed from the current contents of
the PC (Program Counter) register and
an offset value in the instruction. The
position-independent form of the LDA
always loads the value 10 bytes away
from the program start, and is position-
independent.

It’s important to have position-
independent code in several cases. OS-
9, forexample, loads assembly language

code in different memory areas and
much of the code must be position-
independent. Even if you arc not using
0S-9, you cannot always guarantee that
your program will be loaded in a spe-
cific memory area unless you take pains
to do so. If your code has been con-
verted to machine language DATA
bytes and relocated to an array area in
BASIC, for instance, you might not be
able to know beforehand where that
array area will be.

On the other hand, for simple pro-
grams outside of an OS-9 environment,
youdon't have to worry too much about
position-independent code. Simply
assemble your programs at a specific
memory area and never move the ma-
chine language bytes anywhere else.

Question 3: What's the Proper Way to
Write Assembly Language Programs?
Actually, there is no single way to
solve a problem in assembly language
code. There are usually many ways to
write the assembly language code for a
particular problem. Some ways might
be more efficient than others, but as-
sembly language is so fast that you can
afford to be sloppy and still get the job
done. At first, concentrate only on
program design — using the right plan
or algorithm to solve the problem.
Later, as you become more experienced
in assembly language, you can make
your code more efficient and elegant.
Assembly language is a great deal less
interactive than a higher level language

Figure 5: Position-Independent Code Example
Original Code: POINTS TO $400A
4999 g9199 ORG s4g99
40gg B6 4@PA @911@ START LDA CONST1
4993 C6 1g go12g LDB #5192 constant
4995 8E gagg @pL3ig LDX #5409 screen start
4pgs 28 34 goL4g BRA NEXT jump over CONSTL
4P9A FF @g158 CONSTL FCB $FF constant
Relocated Code: STILL POINTS TO $400A!
7999 AIW ORG $aggg
7998 B6 4@PA @F11§ START LDA CONST1
7993 C6 19 gg12g LDB #5180 constant
7995 8E gagg Pg9L3g LDX #5400 screen start
7998 29 34 ggL4g BRA NEXT jump over CONSTL
100A FF @PgL5F CONSTL FCB $FF constant
doie il Fois THIS DISPLACEMENT ADDED TO PC
2 TO GET ADDRESS OF CONST1
4gpg gp19g ORG $4929
4gPP A6 8D 9@@7 @g11g START LDA CONST1

Australian RAINBOW

March 1556.

Semmm—

such as BASIC. You must carefully plan
out the program design before even
starting to code the problem. You
should even consider “flow charting”
the problem to get a clear idea of how
toproceed. Breaking up alarge problem
into modules (subroutines) is also a
good idea.

Question 4: What about 1/0
Operations in Assembly Language?

Input/output in Color Computer
assembly language is best handled by
using the BASIC “I/O drivers.” The [/O
drivers are assembly language code
contained in BASIC ROM; they handle
such 1/ O as text screen display, reading
a character from the keyboard, reading
and writing to tape and disk files, and
other operations.

Some of the 1/0O calls are “docu-
mented,” that is, defined in Radio
Shack documentation. Other /O calls
are usable, but may change in subse-
quent versions of BASIC or new systems.
Of course, you can write your own |/
O drivers from scratch within your
assembly language program, but it’s less
work to use standard drivers.

Going Ahead with Extended Color
BASic lists standard 1O drivers near
the back of the book, and the Assembler
manuals also reference I/O drivers. A
typical driver is POLCAT (a little Texas
humor there), the “Poll Keyboard for a
Character™ ROM subroutine, accessi-
ble by a call to location $A000. If a key
is being pressed, it will be returned in
Register A with the ‘Z’ flag set.

Question 5: What are Condition
Codes and What are They Used for?

The condition codes in the 6809 are
a set of eight “flags.” Although these
flags are separate from each other, they
are grouped together as the condition
codes register to make them easier to
handle. The main purpose of the flags
is to record the results of arithmetic
instructions.

In adding or subtracting two
numbers, for example, it's handy to
know whether the result of the opera-
tion is a negative number, zero or
greater than zero. The condition codes
record this information as part of the
add or subtract instruction. The condi-
tion codes can be tested by Branch
instructions. This sequence subtracts 12
from the contents of Register B and
branches (a BASIC BOTO) to location
NEXTI if the result of the subtract is
2ero:

SUBB #12
BEQ NEXTI

subtract 12
branch if result=0

Some instructions set the condition
codes and some do not. All of the
arithmetic instructions do set the con-
dition codes so a Branch instruction can
be used to alter the path of the program,
if necessary.

Question 6: What are Interrupts?

Interrupts are used in computers to
temporarily suspend execution of one
program, called the *“background”
program, and to initiate a short new
program called a “foreground™ pro-
gram. If the Color Computer is being
used to monitor a nuclear reactor, for
example, it might be beneficial to have
the CoCo suspend printing paychecks
and ring a bell when the coolant temper-
ature reaches a critical point. An inter-
rupt provides this ability.

There are two basic types of inter-
rupts, maskable and non-maskable. A
maskable interrupt can be enabled or

disabled under program control. A non-
maskable interrupt is always active and
cannot be disabled. The CoCo has both.

When aninterrupt occurs and it is not
catastrophic, the interrupt action is
taken (such as ringing a bell for one
second) and the interrupted program is
then resumed. The interrupted program
isn’t aware that the interrupt occurred
and goes blithely on its way, churning
out the remainder of the paychecks. In
a way, then, interrupts allow a type of
“multitasking,” where one task is a
much higher priority than the other.

You may never use interrupts in your
beginning assembly language program-
ming and don't have to be aware of
them in many short assembly language
programs.

Question 7: What is Reentrant and
Recursive Code?
Reentrant code relates to the inter-

Figure 6: Reentrant Problem

MEMORY

/P"\/-‘—'/

JSR "A"

SUBROUTINE “A"

VAR1-1234 ™,
VAR2-5678

,L/\——"‘___

G INTERRUPT
PROCESSING ROUTINE
\ JSR “A"
(5
—hem— N

(S)AT END OF INTERRUPT PROCESSING
SUBROUTINE “A" IS REENTERED AT INTERRUPT
POINT WITH INVALID VAR1 AND VAR2

(1)MAIN PROGRAM CALLS SUBROUTINE “A"

(2)IN THE MIDDLE OF THE SUBROUTINE AN
INTERRUPT OCCURS. VAR1 AND VAR2 HAVE
STORED TEMPORARY RESULTS

{3INTERRUPT PROCESSING ROUTINE 1S
STARTED

(4 HOWEVER, INTERRUPT PROCESSING ALSO
CALLS "A", THE SUBROUTINE IS REENTERED,
AND VAR1 AND VAR2 ARE USED AGAIN

March 1986.

Australian RAINBOW

PAGE 49

rupts just discussed. When a subroutine
can be interrupted and is used by both
the main program and an interrupt, it
is said to be reentrant. Unless care is
taken in the way variables are handled
within the subroutine, it is possible to
clobber the variables used by the main
program when the interrupt code calls
the subroutine again (see Figure 6). This
problem is usually handled by not
having a common subroutine for both
the main program and interrupt proce-
dure, or by using the stack to store
temporary data.

Again, as in the case of Question 6,
don’t worry about reentrant code unless
you are doing interrupt processing, and
even then it often won't be a problem.

A recursive subroutine calls itself,
possibly several times. Like reentrant
code, special actions must be taken to
save all levels of processing, usually in
the stack.

Question 8: How Can I Use Assembly
Language to Speed Up My Graphics?

Assembly language can be used to
speed up graphics and with great suc-
cess, but you may have more work than
you bargained for. For one thing, to
process graphics you'll need your own
set of assembly language subroutines to
handle graphics actions, such as draw-
ing lines, creating shapes and imple-
menting windows.

An alternative is to use some of the
built-in graphics contained in ROM
code. However, this latter course has

built-in dangers, as most of the ROM
calls are not documented by Radio
Shack. If they are used, be prepared to
change addresses when the next version
of BASIC or a new system appears.

Creating your own graphics subrou-
tines may involve a great deal of work.
The Extended BASIC CIRCLE command,
for example, draws a circle by drawing
a polygon of many sides. It takes some
effort to implement such code in assem-
bly language!

Question 9: How Can I Use Assembly
Language for Sound?

Assembly language can be used for
incredible sounds from the CoCo.
Sound is produced in the CoCo by a
digital-to-analog converter, which al-
lows you to synthesize sounds by creat-
ing a wave form, as shown in Figure 7.
The tones used for cassette tape, for
example, are actually created from a
sinc wave table in ROM, a series of
numeric values that are continually
output to the D-to-A converter.

To use this feature of the CoCo, it's
necessary to learn a little bit about the
CoCo hardware interface. This is not
too difficult, and we'll cover it in future
columns. Assembly language, by the
way, is fast enough to create sounds up
to the frequency limits of the sound
hardware used in the system, whereas
BASIC is much too slow to produce
custom sounds outside of the tones in
the SOUND or PLAY commands.

Question 10: How Can I Get a Listing
of the BASIC Interpreter?

Microsoflt, the author of CoCo
BASIC, understandably doesn’t pass out
listings of the BASIC interpreter. How-
ever, several companies have produced
listings of all versions of BASIC. These
are not official listings, but have been
compiled by “disassembling™ BASIC to
list the instructions used, figuring out
what the instructions do, then adding
their own comments. For the most part,
these listings are very well-done and
reveal such things as ROM subroutine
calls and BASIC procedures. They're
invaluable to anyone interested in the
“internals” of BASIC and how functions
and commands are implemented in
assembly language.

Another alternative to discovering
the secrets of BASIC is to disassemble it
on your own. This can be done by using
the ZBUG mnemonic mode in ED-
TASM+ or Disk EDTASM. This mode
displays the contents of memory as
instruction mnemonics by converting
the machine code numeric values into
the appropriate instructions.

In future columns we'll talk in-depth
about all of the topics mentioned here.
Once again, if there are any topics you'd
like discussed, write me at RAINBOW,
contact me at Delphi or CompuServe,
or simply write to P.O. Box 3568,
Mission Viejo, CA 92692. See you next
month. In the meantime, keep assem-
bling! O

Figure 7: Digital-to-Analog Wave Forms

/—\/
J- 64 DISCRETE LEVELS
[1 I et
60+
a 50+
DIGITAL-TO- | ANALOG
8-BIT __ | ANALOG SOUND 404
BYTES CONVERTER | ourt 304
IN COCO [
20 +
107
TIME
=] ASSEMBLY LANGUAGE
ALLOWS INTERVALS
AS SHORT AS
10 USECS (10/1,000,000 SEC.)

)

PAGE 58

Australian RAINBOW

March 1986.

S —— .

What’s the Diagnosis?

By Craig V. Bobbitt

assembly language mem-
ory checker for the Color
Computer, Memory Diag-

nostic has two modes:

1) Short — Every byte is tested to see
that each of its bits can be cleared and
set (compared to correct values in
Register A), then the bytes adjacent to
the target byte, which contain the
complement of the target, are tested to
make sure they don’t follow the target
(a common memory chip problem).

2) Long — All bit combinations are
written into each memory location and
checked against Register A.

The program is relocatable and
Jjumps over itself during execution. It is
heavily commented and should be fairly
easy to follow. It has only been tested
on a 64K machine, but it should work

in any system configuration of the
CoCo.

Lines 96-157 are the body of the
short option.

are the body of the
long option.

display error mes-
sages.

Lines 159-177

Lines 179-END

The listing details how to force an
error to see how that part of the pro-
gram works. Memory Diagnostic is
intended as a confidence check for the
RAM-SAM portion of the Color Com-
puter.

(If you have any questions regarding
this program you may contact the
author at P.O. Box 584, Greenville, TX
75401, phone 214-457-4476. Please
include an SASE when writing.) a

Lines 45-75 display the title and
request memory size.
_ U o) Lines 78-84 move BASIC to RAM
(Craig Bobbitt lives in Greenville, if 64K is selected.
Texas, and works on computer and | ines 86.95 request long or short
peripheral hardware as a test engineer.) diagnostic.
The listing: MEMDIAG
gag1 NAM MEMDIAG 2.2
9992 OPT NOG
ggg3 *MEMORY DIAGNOSTIC FOR 64K TRS8§ COLOR COMPUTER
9994 *2g APRIL 84
ggg5 *(C) BY CRAIG V. BOBBITT

pgg6
p997
gggs8
9999
peLg
gg11
9912
9913
gg14
gg15
9916
9917
9918
#9019
gg29
gg21
gg22
g923
9924

*P.0 BOX 584
*GREENVILLE, TX 75481
Fedorkrkninkrdokkdoiioininioinioininiokininkninininioiinicirioiniaiok ook

THIS PROGRAM RUNS A MEMORY TEST ON ALL

LOCATIONS IN THE COLOR COMPUTER FROM
g9gg TO END OF MEMORY.
ERRORS ARE REPORTED TO
THE SCREEN AND THE OPERATOR HAS THE OPTION
OF ENDING THE TEST OR CONTINUING WITH
THE NEXT LOCATION.
THE SHORT TEST PUTS A PATTERN OF ALL ONES
AND ALL ZEROS IN EACH LOCATION COMPARING
IT VERIFIES BOTH OF THOSE VALUES.
ADJACENT BYTES CONTAIN COMPLEMENTED DATA
AND THEY ARE CHECKED TO INSURE THEY DON'T
FOLLOW THE TARGET BYTE.
THE LONG TEST WRITES ALL COMBINATIONS IN

EACH BYTE OF MEMORY VERIFYING THAT THEY ARE

ANY DATA

THE

READ BACK CORRECTLY.

9925
9926
9927
g928
9929
9939
g931
9932
9933
g934

¥ % k ok % ok Ok X % Ok Ok X ¥ X X X % F ¥ X X X X X ¥

EXECUTION TIME FOR

THE SHORT TEST IS ABOUT 12 SECONDS, THE
LONG TEST TAKES ABOUT 6 MINUTES

ALL LOCATIONS ARE RESTORED TO THEIR
ORIGINAL VALUES
THE PROGRAM JUMPS AROUND ITSELF.

TO FORCE AN ERROR, LOAD PROGRAM AT $309g
(DEFAULT) AND EXEC &H3@66 SELECT SHORT OPT

Ok K K K % Ok O % F % ¥ ¥ ¥ % ¥ X K ok Ok Ok X X ¥ X

March 1984.

Australian RATNBOW

3g99
AlCl

Agg2
3¢9

3992
3995
3999
3ggc
3ggF
3911
3913
3915
3g17
3919
391B
3g1D
3g1F
3923

3925
3928
3g2¢
392F
3933

3935
3938
3g3c
3g3F
3943

3945
3948
3g4c
34T

3953
3956
3959
3958
3g5E
3969
3964

3966
3969
396D
3979
3973
3975
3979
3978
3g7F
3981
3983
3986
3g8A
3g8F
3991
3993
3997
3999
399D
3g9F

g935

gg36

g937

$g38

9839

p84p

gg4l

gg42
1A59 9943

[/ TR
BDA928 gg4s
318D@293 @@46
179141 gg47
BDAL1Cl 9948
27FB gg49
8131 ggsg
2719 9951
8132 g@52
271¢C g@53
8133 9954
2728 @955
8134 9856
19279285 9957
20E7 @958

@59
8E3FFF 7 13]
AF8D@2C5 @g61
8E3136 9962
AF8DP136 Pg63
2931 9964

p@65
8E7FFF 9066
AF8D@2B5 $@67
8E3332 gg68
AF8D@126 9969
2921 9979

#9871
8EFEFF 9972
AF8D@2A5 @@73
8E3634 gg74
AF8DPL16 @@75

9876

2977
8E800Q gg78
B7FFDE 9979
A680 gpsg
B7FFDF g8l
A71F 9982
AC8D@28D @983
25F@ 9984

g985
BDA928 9986
318DPPE5S P@87
17¢@DD ggss
BDA1C1 @989
27FB gaog
ADYFAQ@2 $@91
814C 9992
19279@9E 9@93
8153 g94
26E3 gg9s
8EFFFF 9g96
318DFF76 @@97
1gAF8D@267 $@98
3gg1 #9899
E684 9199
E78Dg25D @191
E61F g192
E78Dg258 @193
E6Q1 9194
E78Dg258 g185

*PROGRAM IS RELOCATABLE
ORG $3ggg
GETCHR EQU $AlCl KEYBOARD INPUT
CHROUT EQU $A@@2 SCREEN OUTPUT
START ORCC #$50 TURN OFF INTERRUPTS
.MSIZE JSR $A928 CLEAR SCREEN
LEAY MSGL,PCR FIND THE MESSAGE
LBSR DISPLA WRITE IT
GETSIZ JSR GETCHR LOOK FOR A CHARACTER
BEQ GETSIZ WAIT FOR KEYPRESS
CMPA #'l /16K/
BEQ .16K
CMPA #'2 /32K/
BEQ .32K
CMPA #'3 /64K/
BEQ .64K
CMPA #'4 /ABORT/
LBEQ DONE
BRA GETSIZE ILLEGAL OPTION
.16K LDX #$3FFF TOP OF RAM FOR 16K
STX MEMEND,PCR SAVE IT
LDX #"16
STX HEADER+23,PCR PUT 16 IN OUTPUT STRING
BRA WRTHDR CONTINUE
.32K LDX #$7FFF TOP OF RAM FOR 32K
STX MEMEND,PCR SAVE IT
LDX #"32
STX HEADER+23,PCR
BRA WRTHDR
.64K LDX #S$FEFF TOP OF RAM FOR 64K
STX MEMEND,PCR SAVE IT
LDX #"64
STX HEADER+23,PCR
*GO TO 64K MODE
LDX #$8999 START OF ROM
MOVE STA $FFDE SWITCH PAGE
LDA X+ GET BYTE FROM ROM
STA $FFDF SWITCH PAGE BACK
STA -1,X STORE IN RAM
CMPX MEMEND,PCR END OF ROM
BLO MOVE
WRTHDR JSR $A928 CLEAR SCREEN
LEAY HEADER,PCR GET ADX OF HEADER
LBSR DISPLA WRITE IT
INPUT JSR GETCHR GO GET A CHARACTER
BEQ INPUT WAIT FOR IT
JSR [CHROUT] ECHO CHARACTER
CMPA #'L LONG DIAGNOSTIC?
LBEQ LONG YES
CMPA #'S SHORT?
BNE WRTHDR BAD INPUT RETURN
LDX #$FFFF FIRST LOCATION -1
LEAY START,PCR
STY TEMP,PCR SAVE START OF PROGRAY
SLOOP LEAX 1,X
DB X SAVE THE BYTE
STB TARGET,PCR
DB -1,X GET LOWER ADJACENT BYTE
STB LOWER,PCR STORE IT AWAY
LDB 1,X GET UPPER ADJACENT BYTE
STB UPPER,PCR STORE IT

PAGE 52

Australian RAINBOW

March 1986.

39A3
I9AS
39A7
39A9
39AB
39AC
3PAE
1980

3983
3986
3988
3g8C

3gBE
3gcp
39G2
3gC5
3gc7
3gC9
3gce
3gCD
3gCE
3gpg
3gD2
3gD4
3gD6
3gD8
3gDB
3gDE
IgEG
3gE4
3gE6
3gE8
3gEA
3gED
3gEF
3gF1

3gF4
39F8
3gFA
3gFE
31p9
3194
3196
310A
319E
3112
3116
311A

311D

3129
3122
3124
3125
3127
3129
312¢
312E
312F
3131
3133
3135
3139
313D
3141

| 3143

C6FF
E71F
E791
6F84
4F
Al84
2793
1791BB

8coggg
2714

AC8DP235
279E

E1g1
2793
1791A9
E11F
2793
1791A2
43

53
6391
631F
6384
A184
2793
179193
8CPgpg
2714
AC8D@20D
279E
ELLF
2793
179181
E191
2793
17917A

E68DJLFB
E791
E68DJLF6
E784
E68D@1F1
E7iF
AC8DJLE7?
1927§1CA
AC8DJLDD
1926FF79
3g8DP1DD
16FF72

8EQPPP

E684
6F84

4F

A184
2793
179142
6C84

4c

81p9
26F2
E780
ACBDJLB8
19270198
AC8DJ1AE
26DD
398D@1Bg

9196
9197
g1g8
g1g9
g11g
g111
g112
g113
g114
g115
g116
g117
g118
g119
g12g
g121
g122
g123
@124
g125
9126
9127
g128
g129
g139
9131
g132
9133
g134
g135
g136
9137
9138
9139
gLsg
g141
9142
9143
glas4
@145
@146
9147
9148
9149
g15¢
g151
g152
g153
g154
g155
g156
g157
g158
9159
gLeg
g161
9162
9163
9164
9165
9166
9167
9168
9169
g179
g171
g172
9173
9174
g175
9176

LDB #§FF COMPLEMENT OF TARGET BYTE

STB -1,X SET ADJ BYTES TO COMPLEMENT
STB 1,X

CLR X CLEAR CURRENT LOCATION

CLRA ZERO TO START

CMPA X ARE THEY EQUAL??

BEQ SCONT YES GO AHEAD

LBSR ERROR ERROR IF NOT EQUAL

% DON'T DO ADJACENT BYTES IF AT START
%* OR END OF MEMORY

SCONT CMPX #g START OF MEMORY?

BEQ SCONT2 YES DON'T DO ADJ BYTES
CMPX MEMEND,PCR END?
BEQ SCONT2 YES DON'T CHECK ADJ BYTES
*HAVE ADJACENT BYTES CHANGED?
CMPB 1,X UPPER ADJACENT
BEQ SCONT1
LBSR ERROR REPORT ERROR
SCONT1 CMPB -1,X LOWER ADJACENT
BEQ SCONT2
LBSR ERROR
SCONT2 COMA COMPLEMENT THE GOOD VALUE
COMB COMPLEMENT ADJ BYTES
coM 1,X
coM -1,X
coM X
CMPA ,X ALL BITS SET??
BEQ SCONT3 YES GO AHEAD
LBSR ERROR
SCONT3 CMPX #§@ FIRST LOCATION?
BEQ SCONTS
CMPX MEMEND,PCR
BEQ SCONTS
CMPB -1,X B SHOULD = ADJ BYTES
BEQ SCONT4
LBSR ERROR
SCONT4 CMPB 1,X
BEQ SCONTS
LBSR ERROR

*RESTORE ALL BYTES
SCONT5 LDB UPPER,PCR

STB 1,X

LDB TARGET,PCR

STB X

LDB LOWER,PCR

STB -1,X

CMPX MEMEND,PCR HAS ALL MEMORY BEEN TESTED
LBEQ DONE IF ALL MEMORY TESTED

CMPX TEMP,PCR ARE WE IN THE PROGRAM AREA
LBNE SLOOP NO KEEP GOING

LEAX EXIT,PCR FIND PROGRAM END

LBRA SLOOP GO TO IT

LONG LDX #§ FIRST LOCATION

LLOOP LDB »X SAVE BYTE IN B
CLR X CLEAR TARGET BYTE
CLRA CLEAR COMPARATOR

LCONT CMPA X COMPARE
BEQ LCONT1 IF EQUAL NO ERROR
LBSR ERROR REPORT THE ERROR

LCONT1 INC »X INCREMENT TARGET ADX
INCA INCREMENT COMPARATOR
CMPA #§ ALL COMBINATIONS TESTED?
BNE LCONT NO DO IT AGAIN
STB » X+ RESTORE BYTE AND POINT TO NEXT ONE
CMPX MEMEND,PCR ARE WE FINISHED
LBEQ DONE YES
CMPX TEMP,PCR PROGRAM AREA?
BNE LLOOP DO ANOTHER LOCATION

LEAX EXIT,PCR GO AROUND PROGRAM AREA

March 1984.

Australian RAINBOW

PAGE S3

LLOOP

[CHROUT]
, Y+
DISPl

GO DO IT AGAIN

SEND A CHAR TO SCREEN
GET A CHAR

PRINT IT

RETURN

*SCREEN MESSAGES X'S WILL BE FILLED IN WITH
* CORRECT VALUES IN ERROR ROUTINE

3147 2gD7 g177 BRA
9178
3149 AD9FA@@2 $179 DISP1L JSR
314D A6AJ g18g DISPLA LDA
314F 26F8 g181 BNE
1151 39 g182 RTS
9183
9184
g185
g186
3152 29 g187 HEADER FCS
3182 gD §188 ERMSG FCS
DATA=XX/
31BC gD g189 CONTN FCS
31D8 gD g19¢ LAST FCS
329C 43 g191 MSGlL FCS
9192
326E 3436 §193 ERROR PSHS
327 AF8DEY78 G194 STX
3274 A78D@P76 @195 STA
3278 318DFFP6 $196 LEAY
327C 31A815 9197 LEAY
327F 3¢8D@P69 @198 LEAX
3283 8D2E g199 BSR
3285 3121 9299 LEAY
3287 8D2A 9291 BSR
3289 31A810 9292 LEAY
328C 8D25 9293 BSR
328E AE62 9294 LDX
3299 312E 9295 LEAY
3292 8DLF 9296 BSR
3294 318DFEEA §2§7 LEAY
3298 17FEB2 9298 LBSR
3298 318DFFLD @209 LEAY
329F 17FEAB 9219 LBSR
32A2 176F1C 9211 ANSWER LBSR
32A5 27FB 9212 BEQ
32A7 ADIFAPP2 $213 JSR
32AB 8159 9214 CMPA
32AD 2702 9215 BEQ
32AF 2927 9216 BRA
32B1 35B6 9217 GOBACK PULS
9218
32B3 A684 9219 CONVRT LDA
32B5 84Fg 922¢ ANDA
2994 9221 RPT
9222 LSRA
9223 ENDR
3287 44 + LSRA
3288 44 + LSRA
32B9 44 + LSRA
32BA 44 + LSRA
32BB 8109 $224 CMPA
32BD 2E@4 9225 BGT
328F 8B3g 9226 ADDA
32C1 2992 9227 BRA
32C3 8837 9228 LETR ADDA
32C5 ATAQ 9229 CONCNT STA
32C7 A680 923g LDA
32C9 B4GF 9231 ANDA
32CB 8199 9232 CMPA
32CD 2EJ4 9233 BGT
32CF 8B3g 9234 ADDA
3201 2§92 9235 BRA
32D3 8837 $236 LETR1 ADDA
32D5 A7A4 §237 CNCNT STA
32D7 39 9238 RTS
9239
3208 318DFEFC $24¢ DONE LEAY
32DC 17FEGE 92641 LBSR

/ MEMORY DIAGNOSTIC 64K

<@D>SHORT OR LONG?/

/<@D>DATA ERROR : <PD>ADDRESS=XXXX<@D>EXPECTED DATA=XX<@D>ACTUAL

/<@D>WANT TO CONTINUE? (Y OR N)/
/<9D>DIAGNOSTIC COMPLETE<PD><@D>**PRESS ANY KEY TO CONTINUEsk/

/COLOR COMPUTER MEMORY DIAGNOSTIC<@D>
)<@D><@D> 1) 16K<PD> 2) 32K<@D> 3) 64K<@D> 4)ABORT/

Y < ¢
LOCTN, PCR
AREG, PCR
ERMSG, PCR
21.%
LOCTN, PCR
CONVRT
1,Y
CONVRT
16,Y
CONVRT
2,8

14,Y
CONVRT
ERMSG, PCR
DISPLA
CONTN, PCR
DISPLA
GETCHR
ANSWER
[CHROUT]
#'Y
GOBACK
DONE
D,X,Y,BC

X
#$FP
4

#9
LETR
#$39
CONCNT
#$37

, X+
#$JF

LETRL
#539
CNCNT
#$37
oy

LAST,PCR
DISPLA

SAVE REGISTERS

SAVE LOCATION

SAVE GOOD VALUE

FIND ERROR MSG

POINT TO OUTPUT BUFFER
CONVERT THE LOCATION TO ASCII

NEXT OUTPUT LOC

CONVERT IT

OUTPUT LOCATION DATA EXPECTED
CONVERT IT

GET OLD X VALUE

LOCATION FOR ACTUAL VALUE
CONVERT

FIND ERROR MSG

WRITE IT TO SCREEN

FIND CONTINUE MESSAGE
WRITE IT

KEEP LOOKING
ECHO ANSWER
IS IT A YES?
YES GO BACK WHERE YOU CAME FROM

RETURN

GET FIRST BYTE
GET LEFT 4 BITS

IS THIS A NUMBER
NO ITS A LETTER

CHANGE IT TO ASCII
PUT IT IN OUTPUT STRING
GET IT AGAIN

GET RIGHT BITS

IENTER MEMORY SIZE (1l-4

PAGE 54

Australian RAINBOW

March 1986.

e —————— .

32DF BDALCL $242 DONEl JSR GETCHR IS THERE A KEY PRESSED
32E2 27FB 9243 BEQ DONEl

32E4 1CAQ 9244 ANDCC #$AQ RESTORE INTERRUPTS
32E6 B7FFDE 9245 STA $FFDE TURN OFF 64K MODE

32E9 7EAQ27 9246 JMP $Ag27 GO TO BASIC RESET ROUTINE
32EC #9247 LOCTN RMB 2

32EE 9248 AREG RMB 1

32EF §249 TEMP RMB 2

32F1 §250 MEMEND RMB 2

32F3 §251 UPPER RMB 1

32F4 §252 TARGET RMB 1

32F5 9253 LOWER RMB 1

32F6 9254 RMB 1

32F7 12 §255 EXIT NOP

3999 9256 END START

NO ERROR(S) DETECTED

SYMBOL TABLE:
16K 3925 32K 3935 .64K 3945 .MSIZE 3992
ANSWER 32A2 AREG 32EE CHROUT Agg2 CNCNT 32D5
CONCNT 32C5 CONTN 31BC CONVRT 32B3 DISP1 3149
DISPLA 314D DONE 32D8 DONE1l 32DF ERMSG 3182
ERROR 326E EXIT 32F7 GETCHR AlCl GETSIZ 3ggcC
GOBACK 32B1 HEADER 3152 INPUT 3978 LAST 31D8
LCONT 3125 LCONT1 312C LETR 32C3 LETRL 32D3
LLOOP 312 LOCTN 32EC LONG 311D LOWER 32F5
MEMEND 32F1 MOVE 3g56 MSG1 320¢ NARG gggg
SCONT 3¢B3 SCONT1 3gCS SCONT2 3gcC SCONT3 3¢DB
SCONT4 3PED SCONTS 30F4 SLOOP 3@8F START 30gg
TARGET 32F4 TEMP 32EF UPPER 32F3 WRTHDR 3066
CMD=MEMDIAG.TXT >/P

~\
CoCo MERGE
continued from Page 31 00290 STX $19
00300 LEAY PMG,PCR
00100 OR6 32500
9 00310 COM S4,PCR TOGGLE SWITCH
00110 START LEAX MERGE,PCR PUT MERGE ADDR INTO P BR PRINT 50 T0 SCAN PRINT SUB
00120 STX $148 JMP TABLE b I N
00130 CLR S4,PCR SET SWITCH FOR MERGE b e RETURN T0 BASIC
00140 RTS L :
00350 RS LOX)STR.PCR GET START ADDR
00150 STR RMB 2 START POINTER STORAGE 04340 : e S PUT IN POINTER
160 B | SUITCH STORAGE 00370 LEAY PRT,PCR GET PROMPT ADDR
00170 PMG FCC /MERGE INITIATED/ 08368 R Si.peR TOG6LE S4ITCH
)
00180 FCB 40D 00390 BSR PRINT B0 TO SCRN PRINT SuB
00190 PRT FCC /MERGE COMPLETED/ 00400 LDX ¥SABEF
00200 FCB 30D 00410 MP $ACY9 RETURN TO BASIC
00210 MERGE (MPA H$5C LOOK FOR CONTROL CHR 0o42p pxi7 gp $8273 NORMAL RETURN
00220 BNE BT EXIT IF NOT CONTROL goq30 PRINT LDB #s19 # OF CHRS IN PROMPT
00230 ST Su,PCR CHECK SUITCH SETTING 0p4dp PRI Lpa Y+ GET CHR
00240 BNE RST 00450 JSR $A282 PRINT CHR ON SCREEN
00250 DX $19 GET START ADDR 00440 DECR
00260 STX)STR,PCR STORE IN STR 00470 BNE PR
00270 LX 18 GET END ADDR 00480 RTS
00280 LEAX -2,X VERWRITE END FLAG gg49p BND

March 1984. Australian

ML UTILITY

16K
ECB

By Mike Dean

0 you have a lot of assembly
Dlanguagc listings, but do not

have an editor/assembler? Are
you hoping to purchase an editor/
assembler in the future, but won’t have
the extra money to do so for some time?
If you answered “yes” to either of these
questions, then read on.

Debug is a utility that can display 30
bytes and their corresponding charac-
ters on the screen at any address. It can
also make hard copy printouts in listing
form, so if any of your computer pals
want a listing, the program can easily
generate one. Debug is essentially an
address modifier. Anyone who has
worked with the debug program on the
Model III should be familiar with this
version.

Debug requires a 16K Extended
Color BASIC computer. No prior load-
ing instructions are required unless the
machine code you're going to type in
requires them. To make sure the ma-
chine code starts after your BASIC
program, type in the command PRINT
PEEK(27)%*25S6+PEEK(28); this returns
the end address for the program. If the
address is where the code will be placed,

I suggest using the PCLEAR command to
move the program back in memory.

The following keys are used in the
program.

Key Operation

N Restarts program for a
*N*ew address

J *J*ump to specified ad-
dress

: Go to the next page of
addresses

- Go to the previous page
of addresses

S *S*aves machine code
with the CSAVEM com-
mand

L *L*oads machine code
into memory with the
CLOADM command

P *P*rints a listing of ma-
chine code to the screen
or printer

Hexadecimal numbers
used when modifying ad-
dresses

Move cursor in modifica-
tion mode

Arrow keys

PAGE 52

When you have finished typing in
Debug, save it since a possibility exists
that the code you may JUMP to might
not let you return to Debug. After
saving Debug, type RUN and press
ENTER. The credits appear and the
program asks the address at which you
would like to start. You must respond
in hexadecimal.

After pressing ENTER, the address
you requested will be in the upper left-
hand corner of the screen. The contents
of each address are displayed with each
corresponding address. Press the semi-
colon (;) key and the next page of
addresses will appear on the screen.
Press the minus (-) key and the address

Sample Run

80p@: 45 58 BE 8§ DE CE
8006: @1 2A C6 A BD AS
8g@C: 9A BE B2 77 AF 43
8012: AF 48 8E 89 4C BF
8¢18: g1 @D 9E 8A BF g1
8¢1E: 12 BD 82 9C CC 2C
8@24: @5 DD E6 8E g1 3E
802A: 9F BP CE B4 4A C6
8030: QA EF 81 5A 26 FB
8036: 86 7E B7 g1 9A B8E

Austiralrlan RAINBOW

March 1283,

. |

typed in at the start of the program will
be the address in the upper left corner.

Find an assembly listing in an issue
of THE RAINBOW and type in the Hex
numbers only. Once you reach the end
of the page, a tone will sound. This
indicates that you can either examine
your typing accuracy or go to the next
page. When you are finished typing in
the code, press the ‘S’ key. Type the start
address at the first prompt, press ENTER
and type the ending address. Next, press
ENTER and type the execution address.
The program then asks for the filename.
Type an appropriate name and press
ENTER; the machine code will then be
saved. The program goes back to the
starting address you specified and

displays the memory contents. To test
your program save, press the ‘L’ key,
Type in the filename or press ENTER for
the next file. The file will be loaded and
you will go back to the starting address
of the file just loaded.

For a better chance of finding typing
errors, I have incorporated a print
feature for those with printers. All you
have to do is press the ‘P’ key and let
the printer do the rest. The printout
duplicates the format used on the
screen. This makes it easy to type in
from a Debug-generated listing.

To experiment with Debug, load it
and type in Listing 2 — Jjust type Hex
numbers on the keyboard. The graphics
that are produced should be easier to

test if you have a Hex to binary chart.

Debug has alleviated my hand-
assembly problems. Once you get used
to the format, listings can be entered in
a matter of minutes. I have used Debug
to type in the first two installments of
Screen 51 by Chris Bone and R. Bartly
Betts. (These installments can be found
in the December 1984 and January 1985
issues of RAINBOW.) Use Debug as much
as possible. You'll be amazed at the
accuracy compared to typing DRTA
statements.

(Questions about Debug may be sent
to Mike at R.R. 1, Box 117, Knoxville,
IL 61448, phone 309-289-6987. Please
include an SASE for a reply when
writing.) a

The listing: DEBUG

1 CLS:PRINTE197, "MACHINE LANGUAG
E DEBUG";

2 PRINT@233,"VERSION g2.p2";

3 PRINT@259,"BY MIKE DEAN JANUA
RY 1985";

4 FORSW=pgTO15p8¢:NEXT

5 CLS:LINEINPUT"ADDRESS (HEX) : ";
AS:LO=VAL("GH"+AS):CLS:IFLO>65¢4
6THENLO=65446

6 ZV-LO:FORDP-ﬂTO448$TEP32:ZQ$'H
EX$ (2V)

7 IFLEN(ZQS)<4THENZQS-"E"+ZQS:GO
TO?

8 PRINTE@DP,ZQS$":";

9 ZV=2V+6 :NEXT:2ZV=LOC

1p FORDP=6T0454STEP32

11 FORQP=DP TODP+16STEP3

12 ZQ$=H£X$(PEEK(ZV))

13 IFLEN(ZQS)<2THENZQ$="ﬁ"+ZQS
14 PRINT@QP,ZQS::ZV-ZV*I:NEXTQP,
DP:ZV=L0OC

15 ZV=LOC:FORDP-lﬁSﬂTOlAQBSTEPJZ
tFORQP=PTOS

16 POKEQP*DP,PEBK(ZV):ZV=ZV+1:NE
XTQP,DP

17 AP!ﬂ:BPOG:PO-LO:PX=1B59

18 PRINT@(AP*BP),STRINGS(Z,Zp?);
19 AS=INKEYS

2p IFAS="N"THENRUN

21 IFAS-“:”THENLO-LO+9ﬁ:IFLO>654
46THENLO-65446:GOTOGELSEG

22 IFAS-"-"THENLO-LO-Sﬂ:IFLO<9TH
ENLO=0:GOTOSELSE6

23 IFAS<>CHRS (9) THEN26

24 GOSUBd3:PRINT@(AP+BP),ZQS?:BP
=BP+3:IFBP>22THENBP-6:AP.AP+32:P
0=P0+1:PX=PX+27:GOTO44

25 PO-PO+1:PX-PX+1:GOT018

26 IFA$<>CHRS (8)THEN29

27 GOSUBGJ:PRINT@(AP+BP),ZQS::BP
=BP-3:IFBP<6THENB?-21:AP=AP-32:P
0=PO-1: PX=PX-27:GOT045

28 PO=PO~1:PX=PX-1:G0T0O18

29 IFAS<>CHRS$ (10) THEN32

3p GOSUB43:PRINT@(AP+BP),ZQS;:AP
=AP+32:IFAP>448THENAP=448:GOTOIB
31 PO=PO*6:PX=PX+32:GOT018

32 IFAS<>"AWTHEN3S

33 GOSU843:PRINT@(AP+BP),ZQS::AP
-AP-32:IFAP<ﬁTHENAP=H:GOT018

34 PO=PO~6:PX=PX-32:G0T018

35 IFA$="L“ORA$=”S"THEN(GELSEIFA
$-"J"THEN59ELSEIFA$-"P“THENGE

36 IFA$=>"ﬁ"ANDA$<="9"ORA$->"A“A
NDAS<="F"TH£NPRINT@(AP+8P),AS::B
P=BP+1:GOTO038

37 GOSU843:PRINT@(AP+BP),ZQS;:GO
TOl8

38 B$=INKEY$:IFB$=“”THEN38

39 IFB$=>"9"ANDB$<-”9"ORB$=>”A"A
NDBS<-“F"TH£NPRINT@(AP+BP),BS;:E
LSE38

4P POKEPO,VAL("&H"+(A$*B$)):POKE
PX,VAL("&H"+(A$+B$)):GOSUBG3:PRI
NT@(AP+BP-1),ZQSI:POKEPX,VAL("&H
"+20$)

41 BP-BP+2:IFBP>22THENBP=6:AP-AP
+32:PX-PX*27:PO=PO+1:IFAP>448THE
NSOUNDI28,3:GOT044EL5544

42 PO=PO+1:PX=PX+1:GOT018

43 ZQ$=HEX$(PEEK(PO)):IFLEN(ZQS)
-lTHENZQS-"D"*ZQs:RETURNELSERETU
RN

44 IFAP>448THEHAP-448:BP‘21:PO'L
O+89:GOTO18ELSE18

45 IFAP<ﬂTHENAP-ﬂ:BP=6:PO-LO:GOT
Ol8ELSE18

46 CLS:IFPEEK(49152)=68THENDV-1£
LSEDV=~1

47 IFAS="L"THENS6

48 PRINT® RESPOND IN HEXADEC
IMAL"

49 LINEINPUT"START ADDRESS:";s5%:

S=VAL("&H"+S$)

5¢ LINEINPUT"ENDING ADDRESS: ";ES
:E=VAL("&H"+ES$)

51 LINEINPUT"EXECUTION ADDRESS: "
;D$:D-VAL("&H"+D$)

52 LINEINPUT"FILENAHB:":FS

53 IFDV=1THENSS

54 PRINT"PRESS PLAY&RECORD. ": PRI
NT"PRESS ANY KEY WHEN READY":EXE
CAHA171:CSAVEHF$,S,E,D:lo=S:CLS:
GOTO6

55 SAVEM Fs,s,E,D:LD-S:CLs:GOTos
56 IFDV=-1THENSS8

57 LINEINPUT"FILENAME:";FS:LOADH
FS:LO-PEEK(487)'256+P£EK(488):C
LS:GOTO6

58 PRINT"PRESS PLAY AND ENTER TH
E”,"FILENAME:";:LINEINPUTFS:CLOA
DM PS:LO-PEEK(487)*256+P£zx(488)
:CLS:GOTO6

59 CLS: LINEINPUT"ADDRESS (HEX) :»
tASIEXEC VAL("GH”+A$):GOT05

6p CLS: LINEINPUT"START ADDRESS" ;

SS:ST-VAL("&H"¢SS)

61 LINEINPUT"END ADDRESS";; ES:EN=
VAL('&H“+£$):LINEINPUT“SCREEN OR
PRINTER? " ;DV$:IFDV$="PuTHEN bv

=~2ELSEDV=g

62 IF(EN-ST)/6=INT((EN-ST)/G)THE
N63ELSEEN=EN+1:GOT062

63 FORDP=ST TO EN STEP6:2Q$=HEXS
(DP)

64 IFLEN(ZQS)<4TH£NZQ$-"ﬂ”+ZQ$:G
TO64

65 PRINT#DV,2Q$":";

66 FORDD=DP TODP+5

67 ZQS-HEXS(PEEK(DD)):IFLEN(ZQs)
<2THENZQ$="g"+2Q$

68 PRINTHDV," "+2Q%;

69 NEXTDD:PRINT!DV,"":NEXTDP

78 PRINT"PRESS A KEY TO CONTINUE
":BXEC&HAI?I:LO=ST:CLS:GOT06

A~

CoCo Cat

| THERE THEY G0 oFr
70 _SCHOOL AGAI"

’ THEY Daw'r REAL/ZE ’
WHAT ONE CAT cAv o
WHEN LEF7 govE /
WITH A compPrrER!

k!’ﬂ ® o

¥

2 A

THEN Ascarmy
MAVYEE THEY !

L/

March 1984,

o

Australian RAINBOW

PAGE 57

FORTH FORUM

by John Poxon

This article is the first in a series
of nine for 1986 dealing with the FORTH
language. The emphasis throughout will be
on simple explanations of aspects of

FORTH and elementary routines which you
may find wuseful for your FORTH
programmes. More specifically, the topics
for each month will (hopefully) be as
follows: -
March - A brief introduction to
FORTH:
AXFORTH: Reverse Polish
Notation.
April - More about Reverse Polish
Notation (RPN): using the
STACK.
May - Colon definitions: the
AXFORTH editor: CONSTANTs
VARIABLEs and BASEs.
June - Comparisons and decisions.
LOCPs
July - More about LOOPs: Some
interesting FORTH words.
August - Precision: Single and

Double length words.
September- String handling.

October - Data logging and control
of external devices.

November - To be decided.

FORTH 1is unlike any other language

that you've probably met so far. Doubtless
you've been used to a fixed syntax, and
either interpretation or compilation of
your code to make a program "RUN".

FORTH syntax may be (to a large
extent) defined by you, and either
interpreted or compiled, depending on your
whim and the circumstances. More about
these mysteries later!

FORTH is typically much faster than
BASIC and a little slower than Assembly
Language. It therefore is used primarily

in applications which require speed, while
avoiding the large programming time
demanded for Assembly Language. Such
applications may be games, operating
systens, process control applications,
word processing and spreadsheets, etc..
Its inventor, Charles Moore, created
it to allow him to satisfactorily control

an astronomical (optical) telescope at the
Kitt Peak Observatory in Arizona, USA.
FORTH posseses the additional merits
of being compact, easily debugged and
transportable between differing CPUs.

AXFORTH ic an implementation of

FORTH created by John Redmond. It is
available from Rainbow, Tandy or John
Redmond (see ads).

John intended AXFORTH to be almost

entirely compatable with the syntax of the

book "Starting FORTH", by Leo Brodie, of
FORTH inc..
These articles assume that you have

both AXFORTH and Starting FORTH, though
I hope that casual readers will also
benefit from them.

Doubtless by now you're aching to run
the AXFORTH you bought recently. Vell,
load and EXEC it and we'll get on with
using it. (I'11 refrain from such
murderously inane comments as "we'll set

FORTH"”). Forgive my sick humour!

To stimulate your fancy, let’'s muck
about a bit.
Try

PRINT(2 + 2) <ENTER>

It didn't like that, did it? Basic-like
statements cannot function within FORTH
unless specially defined. Cast out
thoughts of "doing” such definitions for
the moment.
Try

22+,
as shown)

{ENTER> (Put 1in all spaces

Much to your delight, 1 suspect, (and
possibly, amazement) a 4 was printed. If
not, you did something wrong. Try again,
(no-one is looking).

Notice that the numbers which are to
be operated on preceeded the operator (the
+). This method of proceeding with
calculations is called Postfix or Reverse
Polish Notation (RPN).

Notice also that each number or other
character in this example was isolated by
spaces. In FORTH each character or group
of characters isolated by spaces is a
FORTH word. FORTH allows any

PAGE 58

Australian RAINBOW

March 1988.

combination of characters to be defined as
a FORTH word and added to the dictionary
currently in use. If you think about this
feature of FORTH for a moment you will
probably see that this is a wonderfully

powerful capability! Obviously, if you
niss a space, FORTH will see the
Incorrect string of characters as an
unknown FORTH word, and suitably

admonish you!

The stop after the + is the FORTH
version of PRINT (unless you make it be
something else, of course). More of that
later: don’'t worry about it for now. I

tend to leap ahead of the main thread of
my explanation from time to time.

To again obtain answers written to
base 10, type DECIMAL before your next
calculation. This will set all future
calculations to decimal wuntil you do
something to alter the current base. Such
a something might, for instance be a
return to hexidecimal by using HEX . There
are ways of using other bases, e.g. base 2
(binary), but I'1l save that for the MNay
issue.

Vhy not put the RAINBOV aside for a
few minutes and play around with a few
calculations in RPN. Check the results
useing your other computer. You know -
the one between your ears! To further aid
your imminent attempts to compute FORTH

Try style, the standard operators are the same

10 10 x . <ENTER> as in BASIC. Those of you who feel really

adventurous might 1like to try chained

You obtained, of course, the value 100. calculations, with the . (PRINT) inserted

If you would like to make the same at interesting points in the process,
calculation in hexidecimal, versus a . at the end only.

try
HEX A A X {ENTER> Good luck! If you would like to talk
Did you get 64, the HEXIDECIMAL about FORTH, please feel free to call me

equivalent of DECIMAL 1007

on (07) 2087820.

continued from Page 5

143 IFF=0THEN149

144 FORI=1TOLER(G$)

145 IFMID$(GS,I,1)=" "THEN147
146 REXTI

147 T$=LEFTS$(GS, [):Y$=MID$(GS, [+
1

148 GS=TS+"("+Y$+"]"

149 E$="":FORI=ST TO S-1

150 T$=HEXS$ (PEEK(I1)):GOSUB158
151 E$=ES$+T$: FEXTI

152 J=INSTR(GS," "):1FJ=0 THEN 1
53 ELSEQ$=MIDS$ (GS,J+1):G$=LEFTS(
G$,J)+STRINGS(6-J," ")+Qs

153 POKE65494, 0: PRINT#DN, RIGHTS (
"0000" +HEX$ (P0),4);" ";ES$; STRING
$(11-LEN(ES),32);GS: POKE65495, 0
154 IFINKEY$=" "THEN10

155 PO=P0+S-P0

156 IFS<=E THEN25ELSE10

157 T$=RIGHT$("0000"+T$,4): RETUR
N

158 T$=RIGHT$("00"”+T$,2): RETURN
159 RETURN

160 PRINT"ASCI1 DUMP"

161 FORS=S TOE

162 T$=RIGHTS (" 0000" +HEX$(S),4)+
" "+RIGHTS (" 00" +HEXS (PEEK(S)), 2)
*” FCC "

163 Q=PEEK(S): IFQ>31 AND Q<128TH
ENT$=T$+CHRS (Q) : GOTO166

164 1FQ>159THENTS=T$+"$80+' " +CHR
$(Q-128):GOTO166

165 T$=Ts+" 27"

166 POKE65494,0: PRINT#DN, T$: POKE
65495, 0: IFINKEY$=" " THEN10ELSENE
XT: GOTO10

167 PRINT"”VORD DUMP"

168 FORS=8 TOE STEP2:T$=RIGHTS ("
0000" +HEX$(S), 4)+" "+RIGHTS (" 000
0"+HEXS (PEEK (S) ¥256 +PEEK (S+1)) , 4
5 FDB $"+RIGHTS$("0000"
+HEXS (PEEK (S) X256 +PEEK (S+1)),4)
169 POKE65494,0: PRINT#DN, T$: POKE

65495, 0: IFINKEY$=" "THEN10ELSENE
XT: GOTO10

170 PRINT"CLOADM PROGRAN": IKPUT"
PROGRAM NAME";R$: INPUT”LOADING O
FFSET"; LO: POKE65494, 0: CLOADNNS , L
0: POKE65495, 0

171 S=PEEK(487)*256+PEEK (488): E=
PEEK (126) %256 +PEEK (127)-1: PRINT”
START ADDRESS=$"; RIGHTS ("0000"+H
EX$(S),4): PRINT"END ADDRESS=38";R
IGHTS (" 0000" +HEXS (E), 4) : PRIFT"EX
ECUTE ADDRESS=$"; RIGHT$ (" 0000"+H
EX$ (PEEK(157) %256+PEEK (158)),4):
GOTO10

172 PRIRT"BYTE DUMP"

173 FORS=S TOE

174 T$=RIGHTS (" 0000" +HEX$(S),4)+
" "+RIGHTS (" 00" +HEXS (PEEK(S)), 2)
$* FCB $"+RIGHTS (" 00"+
HEXS (PEEK(8)),2)

175 POKE65494,0: PRINT#DE, T$: POKE
65495, 0

176 IFINKEY$=" "THEN10

177 BEXT

178 GOTO10

179 DN=-2:PRINT:GOTO10

180 DN=0: INPUT"COLOR";C$: IFC$="0
" THENSCREENO, 1ELSESCREENQ

181 GOTOL10

182 IF(S+T)<OTHENT=65536+T: RETUR
N

183 IF(S+T)>65535THERT=T-65536: R
ETURNELSERETURK

184 Q=VAL("&H"+RIGHT$(GS$,2)):Vs=
185 IF(Q AND128)=128THENVS="E"
186 IF(Q ARD64)=64THENVS=VS$+"F"
187 IF(Q AND32)=32THENVS=VS$+"H"
188 1F(Q AND16)=16THENVS=Vs$+" "
189 IF(Q ARD8)=8THEFVS$=V$+"N"
190 IF(Q AND4)=4THENVS=Vs$+"2"
191 IF(Q AND2)=2THENVS=V$+"y"
192 IF(Q ARD1)=1THENV$=V$+"C":G$
=G$+"="+V$: RETURRELSEG$=GS$+"="+V
$: RETURN

March 1986.

193 S$="HNEGD **Xxt¥i%¥xxCOMD LSRD
¥¥XxxRORD ASRD ASLD ROLD DECD x
X¥xxINCD TSTD JMPD CLRD ":RETURE
194 S$="X¥X(¥¥txx*NOPH SYNCHt%xx
XX¥X¥XLBRARLBSRR:x¥f*xDAAH ORCCMx
e SEXH EXGX TFRN ":RETURN
195 S$="BRAR BRNR BHIR BLSR BHSR
BLOR BNER BEQR BVCR BVSR BPLR B
MIR BGER BLTR BGTR BLER ":RETURK
196 S$="LEAXILEAYILEASILEAUIPSHS
MPULSMPSHUMPULUM*x¥%XRTSH ABXH R
TIH CVAIHMULH xXx¥xSVIH *:RETURN
197 S3="NEGAH¥®Xx¥x¥t¥xCOMAHLSRA
H¥¥¥¥*RORAHASRAHASLAHROLAHDECAHX
¥X¥XINCAHTSTAHXXXXXCLRAH" : RETURN
198 S$="NEGBHk¥x¥x¥x*xx*COMBHLSRB
H¥¥$x*RORBHASRBHASLBHROLBHDECBHX
¥xx¥x INCBHTSTBHXXxx*¥CLRBH" : RETURN
199 S$="REGI ¥xxxxx¥xxxCOMI LSRI
XX¥*XRORI ASRI ASLI ROLI DECI x
X¥¥XINCI TSTI JMPI CLRI ":RETURN
200 S$="NEGE *xx¥txtxx*xCOME LSRE
¥XXK¥RORE ASRE ASLE ROLE DECE x
¥¥xXINCE TSTE JXPE CLRE ":RETURN
201 S$="SUBA1CMPA1SBCA1SUBD2ANDA
1BITAILDA1 **%*XEORA1ADCA10RA1 A
DDA1CMPX2BSRR LDX2 *%xxx":RETURN
202 S$="SUBA CMPA SBCA SUBD ANDA
BITA LDA STA EORA ADCA ORA A
DDA CHPX JSR LDX STX ":RETURN
203 S$="SUBB CMPB SBCB ADDD ANDB
BITB LDB STB EORB ADCB ORB A
DDB LDD STD LDU STU ":RETURK
204 S$="SUBB1CNPB1SBCB1ADDD2ANDB
1BITBILDB1 *¥x¥*¥EORB1ADCB1ORB1 A
DDB1LDD2 **k*¥¥LDU2 *xtxx":RETURN
205 S$="3FHSWI2832CMPDSC2CMPY8E2
LDY 93DCNPD9CDCMPYQEDLDY 9FDSTY
A3ICMPDACICMPYAEILDY AFISTY B3EC
MPDBCECNPYBEELDY BFESTY CE2LDS D
EDLDS DFDSTS EEILDS EFISTS FEELD
S FFESTS ":RETURN
206 S$="3FISWI3832CHPUBC2CHPSO3D
CMPUSCDCNPSA3 ICNPUAC ICMPSB3ECHPU
BCECHPS'" : RETURK

Australian m FZE! 53

0S-9 TUTORIAL

by Jack Fricker

FRICKER’S FOLLIES

Before we get too far | had better clear
up a couple of misprints that occured in

some of my previous columns, the first
being the listings to fix the baud rate
problems (Sept Rainbow). Unfortunately

both listings were labelled version 1.1
when in fact they were 1.1 and 1.0 in
order of printing.

The next problem that occurred is one
you should have already picked up. The
next article (Oct Rainbow) which had a
Basic09 program called Hello also had

misprints. The article talked about using
delimiters on a single line when using
multiple statements using the backslash.

The problem is that when the 1listing was
printed the word processor completely
ignored the backslashes when time came to
print it.

But enough of this, let's get on with

what we are here for, this month's mess
up! (Vatch it! G.)
This month 1 am going to present a

couple of programs of no great worth and
try to explain how they work. These
programs duplicate two of the wutilities
that are supplied with 0S-9. They are here
PURELY as examples and not to replace the
Machine Language programs.

The first will read a disk ASCII file
and list it on the screen. It can easily
be modified to redirect the output to the
printer or any other applicable device.

The explanations will be after the
listings.
PROCEDURE BASIC09-LIST
10 dim filename:stringl32]
rem make filemane no more than 32

characters long.

dim inpath:byte

rem make inpath a 1 byte integer

dim char$:stringl 1000]

rem make char$ long enough to handle
1000 bytes.

print chr$(12)

20 input
listed”, in$

"Name of ASCII file to be

30 open #inpath,filename:read

40 while not eof (#inpath) do
input (#inpath),char$
print char$

50 endwhile
end

Now we are
line at a time.
Ve have already

going to look at this one

covered the Procedure

statement 1in previous articles so we will
look at the second 1line (10) where we
introduce another form of the DINM

statement. We have a different way of
using DIM than you may be used to with the
0S-9 format being DIM filename:stringl32].

Just what is this :string(32] about and
why did we leave the $ out? Firstly as you
may remember the colon () 1is NOT a
delimiter as it 1s in Colour Basic. The
colon is used in this case to pass the
value in the square brackets to the
variable and to let Basic09 know what type
of varaible it is. The value may be
changed up or down as memory permits.

The second line has another form of the
DIM statement, where inpath is defined as
a BYTE integer variable. An integer
variable 1is required where it is used in
the open and input statements.

The next line is much the same as the
first except that this time we have used
the more conventional naming of a string
by using the dollar sign ($).

The print CHR$(12) statement will clear
the screen and home the cursor or it will
send a form feed to your printer if your
printer recognises one.

The INPUT statement is just the same as
the one you are used to in Basic.

The OPEN statement comes next and if you
look at it you will see that is does make
sense. The inpath variable is the one that
we earlier defined as an integer. Basic09
requires that it be an integer and it
assignes its own value when it runs the
program.

PAGE 60

Australian RAINBOW

March 1986.

You must let Basic09 assign its own
values instead of doing it yourself which
is the way Disk Basic does it. 0S9 can
have other files and buffers being opened
and closed by other users on other
terminals and may assign them the values
that you may want to use.

The next lines (40+) introduce you to
the Control structure WHILE/DO ENDVHILE.
This group of statements may be new to
you. What the while/endwhile loop does is
check for a condition much the same way as
the if/then loops that you are used to.

Vhat while means is that while a
condition (test) remains true then it will
do whatever is in the loop and when the
test fails it will exit the loop much the
same as the IF/THEN does. OK, so why did I
use WHILE instead of IF. In this case 1
did it to illustrate the use of "while"!

I could have wused LOOP/ENDLOOP or
REPEAT/UNTIL control loops to do almost
the same thing, but [will leave them
until another time.

The next little offering takes the
program we just looked at and makes it do
something useful. In this case we are
duplicating the MERGE command in 0S9. This
program will ask for two input file names
and one output filename.

BASIC09 merge

dim first:stringl32]
dim second:stringl 32]

dim output:stringl32]
dim inpath:byte

dim outpath:byte

dim char$:stringl 10001

print chr$(12)
input "first filename”, first
input "second filename”, second

input "output filename”, output
open #inpath,first:read
open #outpath,output:write

while not (eof (#inpath)) do
input #inpath,char$

write #outpath,char$

print char$
endwhile

close #inpath
open #inpath, second:read

while not (eof (#inpath)) do
input #inpath,char$
write #outpath,char$
print char$

endwhile

close #inpath
close #outpath

end
As you will have noticed, this program
does not use line numbers at all. As
explained in earlier articles the use of

line numbers is optional.

Hardware Review ()

XPNDR2 and Super Guide —
an Ideal Expansion Card Set

The diversity and number of expansion boards available
for the CoCo never ceases to amaze me. Robotic Micro-
systems plays a major role in this area with their XPNDR?2
plug-in expansion card. This card measures 7 by 4% inches
and provides traces connected to the CoCo 6809 micro-
processor via the game or “expansion port,” as I prefer to
callit, The board is very well-made and features gold-plated
edge connectors and plated through holes.

A nice addition is a red LED mounted at one corner of
the board to remind you that CoCo is turned on. It's also
a reminder not to unplug the board with the power turned
on.

Attached to about the center of the card is a sturdy 40-
pin edge connector socket suitable to plug in your disk
controller, voice pack or any other applicable cartridge. The
controller or cartridge sits vertically, leaving space on either
side of the connector available for experimental circuits.

The 40-pin socket is mounted with wire-wrap pins so easy
connection can be made for experimenting. In fact, the
board is designed to accommodate wire-wrap sockets for
ease of experimenting. A full 24 square inches of component
layout space is also available.

Documentation is complete and detailed. A well-
illustrated booklet titled “Application Notes” is included.
This eight-page booklet is geared toward the experimenter
and especially the beginner with its light touch of technical
subject matter associated with microcomputer interfacing
techniques.

Another item included in the package is called Super
Guide. This little plastic gadget mounts inside the expansion
port and contains a slot that serves to add support to the
XPNDR2 card. This is a very helpful accessory to any
expansion card and is recommended since it prevents stress
and strain on the expansion connector. It also holds the flap
door open and its thin slot (!4 inch) prevents accidental
contact with the connector. It does a great job in accom-
plishing all these tasks and it's not expensive!

If you're into interfacing, you need to look at what
Robotic Microsystems has to offer,

-~ Jerry Semones

—Earch 1986,

Australian EZ:NEU:I

“PAGE &1

[SERESaNLaEay = ———— ="
0S-9

DIR SORT

by Ross McKay

Ross supplied the following utility
written in Basic09 which alphabetically
sorts a directory Dbefore lising in
columns.

Ross is the new meet contact for the
Carlingford Colour Computer Club and can
be contacted on 02-624-3353, or on Tandy
Access BBS.

The Listing:

PROCEDURE adir
(¥ Adir vi.1 - courtesy : --- Rosko ! --- %)

(¥ This is a simple program that opens the specified ¥)

{¥ directory file, reads all valid names, and sorts them %)
(¥ alphabetically before printing them.¥)

(¥ To run the source [unpackedl program from within BASICO9%)
(¥ enter ’run adir("<directoryname>")’ ¥)

{¥ Packing the program will remove remarks and long ¥)

(¥ variable names. ¥)

(¥ Fixed since v1.0 @ *)
(¥ does not itruncate filenames to 16 chars *)
(¥ faster SEEK of third record *)
(¥ will not signal error faor new (empty) directory *)
PARAM direct:STRING
TYPE xbyte=bytl,byt2,byt3:BYTE
BASE 1 FOR x:=1 TO counter
FOR xx:=x+1 TO counter
DIM $#ile(é60):STRINGI(2?] IF file(xx)<file(x) THEN
DIM lsnixbyte swap:=file(xx)
DIM counter:BYTE file(xx):i=file(x)
DIM path:BYTE file(x):=swap
DIM x,xx:INTEGER ENDIF
PIM mi:BYTE NEXT xx
DIM swap:STRINGI[291] NEXT
OPEN #path,direct:READ+DIR FOR x:=1 TO counter
GOSUB 100
SEEK #path,é4 PRINT file(x),
NEXT x
counter:=0 PRINT
WHILE NOT(EOF (Hpath)) DO END
counter:=counter+l
GET #path,file(counter) 100 FOR xx:=1 TO 29
GET #path,lsn m:=ASC (MIDS(file(x),xx,1))
IF ASC(file(counter))=0 THEN EXITIF m>127 THEN
counter:=counter-1 filet(x) :=LEFTS(file(x),xx-1)+CHRS(m-128)
ENDIF ENDEXIT
ENDWHILE NEXT xx
CLOSE #path RETURN

PAGE 62 Australian RAINBOW March 19864.

NOW! is the time to subscribe to
Australian RAINBOW

Copies of back issues can be obtained, subject to the av
order form and marking clearly which issues youreqQu
Each issue costs $4 50 including postage and

ailability of stocks, by using this
iretobe senttoyou.

packing Please enclose‘your cheque/money

order made payable to: Australian Rainbow Magazine, PO Box 1742, Southport, 4215,

RATES BOOKS

AUSTRALIAN
RA'NBOW Byte
[—] $3 45 Latest per copy $4.50 D

(] s19 6 months s24.75]

[-'] $31 12 months $39.95 D :;lglp G D
= eadium
AUSTRALIAN
BACK ISSUES BANEC e
'‘85-Apr ‘85 $3.95 acts
MiCo — CoCo/MiCo/ softgold Fo il [j Advanced $1195 D
First Issue Oct ‘83 First Issue Aug "84

.) Aug '84-Jan '85 [] $3.25 MiCo Help ccit comuer.
t ly ' $3.00

$3/copy $3.45/copy e @ Medium it &

MiCoOQz &8 D i 5 s PLUS

MiC ea iIrst issue Dec '8

{(MiCo on Tape) Best of CoCoOz

DISKS & TAPES
Best of CoCoOz

CoCo02 (Games)
(iust CoCo on Tape)

: Blank tapes ‘?'0f$'807517OeaD Part 1 for 14K ECB
) Latest $8

Part 2 for 32K ECB
O 6 months $42 (Some 14k CB on P1)
months

Cassette Cases , 10for$5| l TAPE % 10.00, DISK 8 21.95%
D 12 months $75

First Issue Mar '83 Disks — $3.50 ea D 10 for $29 99 D BULLET|N
or Debit my Credit Card Monthly BOAHD

Rainbow on Tape (program listings) $12 tor month of
Let your computer talk 1o ours!

Plesse note inat RAINBOW on TAPE s insueg viegulany
— CoColink — D
or Annually $144 [_] or Debit my Credit Card Monthiy D Annual Sub $29

l_[[[1] [] [T] [] ﬂ BLOCK CAPITALS B ¥0u 6H0ady Sunscribe 1o SNGr Aesironan Moo

or ‘U.".".“ c o o8se ace s scCription NoO
PLEASE [ee Seecie

D VISA BANKCARD [] Ll l I I I] 1
MASTERCARD D Complete the section below with one letier

hQgure or Space per 3quare
FIRST NAME SECOND NAME

—sonmwe [LL LT T T T T T T T I T I T ITITT]

Addrens

AUSTRALIAN
CoCo/MiCo/sofltgold

Elementary $5 95 D

DCASH

G CHEQUE
D MONEY ORDER

PC

| e 6 R R O

New SubscnplionD Renewal D

March 1984. Australian RAINBOW

PAGE 43

GOLDSOFT

Hardware & Software for your TANDY computer..

HARDWARE

The CoCoConnection:

Connect your CoCo to the real world and control robots, models, experiments, burglar alarms, water reticulation sysltems —

most electrical things.

Features two MC 6821 PIAs; provides four programmable ports; each port provides eight lines, which can be programmed as
an input or output; comes complete with tutorial documentation and software; supplied with LED demonstration unit.
Swilchable memory addressing allows use with disk controller or other modules via a multipack interface; plugs into
Cartridge Slot or Multipack, uses gold plate connectors; a MUST for the hardware designer and debugger!

$206.00
Video-Amp:
Connects simply to your CoCo to drive a Colour or Mono monitor. With instructions $25.00
With instructions and sound $35.00
SOFTWARE
CoCoOz: Each T
The programs you see lis.ed in Australian CoCo Magazine are available on CoCoOz! s:gscr?p‘:?on B midhths sig%
No laborious typing — just (C\LOAD and Go! 12 honths. $75.00
NEW for 1986 ONLY Each DISK $10.95
Subscription on disk, 12 months | $102.50
Rainbow on Tape:
; : . : : : Each Tape $12.00
Australian. The programs you see listed in Australian Rainbow Magazine are available on R
tape. A boon if you don't understand the language! Subscription, 12 months $144.00
American. We also supply the programs found in American Rainbow on tape. Please | NEW for 1986 ONLY Each DISK $15.00
specify either Australian or American. Subscription on disk, 12 months | $172.00
MiCoOz:
The programs in the MiCo section of Australian CoCo Magazine. (For MC 10 computers | Each Tape $8.00
only) Subscription, 12 months $75.00
Back issues of CoCoOz and MiCoOz are always available on tape only.
To be released soon:
GOLDDISK 1000 — programs from 'softgold’ for your Tandy 1000 on disk, and, $10.95
GOLDDISK 4 — programs from ‘softgold' for your Tandy Model 4!
The Best of CoCoOz:
#1 ... EDUCATION programs. Fourteen programs for the teacher or parent. Per Tape $10.00
#2...Part1.. . 16K GAMES. (Mainly ECB). Sixteen programs to keep you on your toes! | Per Disk $21.95
Part 2. . . 32K GAMES. Adventures, simulations and arcade games for everyone!
#3 ... UTILITIES. Programs to make your use of the compuler easier. #3 on Disk $16.00
Spoolers, Reverse Video, Disk utilities and more.
#4 . . . BUSINESS programs. Invoicing, Accounts, Creditors and more. Any two tapes $1795
CoColLink:
CoColink is our Bulletin Board which you can access with any computer if you have a 300 Subscription to CoColLink, 12
baud modem and a suitable terminal program. There is a free visitor's facility, |months $29.00
alternatively membership entitles you to greater access of the many files available.
We can also be contacted through Minerva (OTC) and Viatel (Telecom).
Magazines:
Australian Rainbow Magazine — THE magazine for advanced CoCo users!
Australian CoCo Magazine — THE magazine for the new user of a Tandy computer.
Also suits owners of CoCos, MC 10s, Tandy 1000s, 100s, 200s & 2000s.
Back Issues:
Australian Rainbow Magazine. (Dec '81 to now.)
Australian CoCo Magazine. (Aug '84 to now.)
CoCoBug Magazine. For CoCo — usually 8 programs in each magazine. (Sep '84 to Oct
'85)
Australian MiCo Magazine. For Tandy MC 10 computers. (Dec '83 to Jul '84)
Australian GoCo Magazine. For Tandy Model 100 users. (Jul ‘83 to Jul '84)
See Subscription Page for further details.
Books:
HELP: A quick reference guide for CoCo users. $9.95
FACTS: THE reference for CoCo machine language programmers. $11.95
MiCo HELP: A quick reference for owners of MC 10 computers. $9.95
Othello: by Darryl Berry
The board game for your CoCo. Tape 16K ECB $15.95
Say the Wordz: by Oz Wiz & Pixel Software
Two curriculum based speller programs for your Tandy Speech/Sound Pack. Tape 32K ECB $39.95

Bric a Brac:
Blank tapes . .. 12 for $18.00 or $1.70 each.
Cassette cases . .. 15 for $5.00.
Disks ... (they work!) $3.50 each or $28.95 per box of 10.

HOW TO ORDER

Option 1: Use the subscription form in this magazine.
Option 2: Phone and have ready your Bankcard, Mastercard or Visa number.

Option 3: Leave an order on Viatel, Minerva or CoColink, but be sure to include your Name, Address, Phone Number, Credit
Card Number and a clear indication of what you require, plus the amount of money you are authorising us to bill you.

PAGE 44

Australian RAINBOW

March 19864.

C

COMPUTERW
FOF MICI‘IOS.AREE

1) bankcard

weicomanere

Peter Collison

11 Grantley A
RostrevoryS.AYeS?)l]?%
Phone: (08) 3366588

PanasO DR,VE o
Sideqd d?'c 40-tracy g

Case g k drive, s’,’"gle-
Plus CF pow Imiine

) contr L Supply.
Plete wi °“er

AUT :
ERR(? (line num

c ber) -
th 8-pog ™" COLD (o R PPI G 35-40 TRAC
PCLEA:{C{:? sart) ; pAUD (va:uf,s
0S9/DOs ('.:ca,ges) Sw{fpfprim dir)
A COMPRE i UNNEV(\ya”' vard)

EN
.UQSIVEMANUAL' >

ONLY 54495 & 1UCH MORe

« LOWER CASE KIiT*
TR%}?LOW R CASE PLUS
REVERSE VvIDEO
Now with dual 57 and 7:9
characters. Use your COLOR
BURNER 10 putin your own
spe('u\ character sels
(opuona\)
for visual comliort and Pro
rogramming send for
gOV&[RKH H-Cone m.:s
« COLOR BURNER
An EPROM pro rammer 1§
the perfect (ool for creating
our own pfo ram p

UPER BACK UP
UTILITY ©

. WITH 5.B.U. FROM
COMPUTIZE YOU'LL
NEVER NEED ANOTHER
BACK-UP UTILITY FOR

our o R GURNEK pro- YOUR CO-COIlI
s the most populdf 1. Tape to Tape
2 Tape to Disk
: 3. Auto Relocate
1764(“&7“/“‘“\ 4. Disk to Tape

gASY 1O USE - STEP gY STEP
lNSlRUCTIONS

e ONLY §99.95°*

5. Disk to Disk
* Menu Driven!
* Requires 32K
Extended Co-Co
* Requires 10r2 Drives
« All Machire Language!!!
ese ONLY 549.95°***
(SUPPLIED ON DISK)

han bleep*

. s more ! :
TURES: (hesis that ¥ wning:
e wonic MUse ‘Y';“ in precise “'“pc‘;‘e,:, from 32nd
¢ pant hil“\::“v'“nb e ‘cmpo\. mhy
: sable OtV fi
o whole o€ o ¢ music % .
piler POV oice ine 1000 0% it a
up 0 750 notes Lructions P
(3]

U d Y .

—————————————
(Stop between numbers = b.h. else NACKAY LEN NALONEY 079511333x782 ' LIVERPOOL LEONIE DUGGAN 02-607-3791
a.h.; but, hyphen between = both.) NAFFRA XAX HUCKERBY 051 45 4315 ' MacQUARIEFLDS KEITH ROACH 02 618 2858
ADELAIDE JOHN HAINES 08 278 3560 NAITLAND LYN DAVSON 049 49 8144 * ROSEVILLE KEN UZZELL 02 467 1619 o
ADELAIDE NTH STVN EISENBERG 08 250 6214 MARYBOROUGH NORM VINN 071 21 6638 ' SUTHERLAND IAN ANNABEL 02 528 3391 =
ALBURY ROF DUNCAN 060 43 1031 NELBOURNE: *SYDNEY EAST JACKY COCKINOS 02 344 9111 0
ARNIDALE DANIEL CLARKSON 067 72 8031 ' DANDENONG DAVID HORROCKS 03 793 5157 TAMVORTH ROBERT VEBB 067 65 7256 =)
BAIRNSDALE COLI1N LEHMANN 051 S7 1545 ' DONCASTER JUSTIN LIPTON 03 857 5149 TAHMOOR GARY SYLVESTER 046 81 9318 0
BALLARAT NARK BEVELANDER 053 32 6733 ' FRANKSTON BOB HAYTER 03.783.9748 TARA STEVEN YOUNGBERRY
BLACKVATER ANKIE MEIJER 079.82.6931 ' NARRE VARREN LEIGH EAXES 03 704 6680 TONGALLA TONY RILLIS 058 59 2251 -
BLAXLAND BRUCE SULLIVAN 047 39 3003 * NTH EASTERN KEVIN KAZAZES 03 437 1472 TOOVOOKEA ~ GRAHAN BURGESS 076 30 4254 ¥ <
BOVEN TERRY COTTON C/0 077 86 2220 ' MELTON MARIO GERADA 03 743 1323 TOVESVILLE JOHSN O'CALLAGHAN 077 73 2064 -
BRASSALL BOB UNSVORTH 07 201 8659 ‘' RINGVOOD IVOR DAVIES 03 758 4496 TRARALGON MORRIS GRADY 051 66 1331 - Z
BRIGHTON GLENS DAVIES 08 296 7477 ' SUNBURY JACK SMIT 03.744.1355 UPPER HUNTER TERRY GRAVOLIN 065 45 1698 " -t
BRISBANE: XILDURA SCOTT HOVISON 050 23 6016 URALLA FRANK NUDFORD 067 78 4391)
EAST ROB THONPSON 07 848 5512 NORPHETTVALE KEN RICHARDS 08 384 4503 VAGGA VAGGA CES JENKINSON 069 25 2263 m
SOUTH VEST GRAHAM BUTCHER 07 376 3400 MOREE ALF BATE 067 52 2465 VHITEROCK GLEN HODGES 070 54 6583 . R z
PINE RIVERS BARRY CLARKE 07 204 2806 NORVELL GEORGE FRANCIS 051 34 5175 VONTHAGGI PAT KERMODE 056 74 4583 £ m < - 0
BROKEN HILL DEAN PARADICE 080 6701 XT ISA PAUL BOUCKLEY-SIMORS 077 43 6280 VYNYARD ANDREV VYLLIE 004 35 1839 - Z2 0 N0
BUNDABERG RON SINPKIN C/0 TANDY NUDGEE BRIAN STONE 063-72-1958 YARRAVONGA KEN SPONG 057 44 1488 [+ 4 Ze M0
CAIRNS GLEN HODGES 070 54 6583 NURGON PETER ANGEL 071 68 1628 OO R -
CANDEN KEVIN VINTERS 046.66.8068 NANBUCCA HDS VENDY PETERSON 065 68 6723 m 3 ® b
CANBERRA NTH JOHN BURGER 062 58 3924 NARROMINE GRAENE CLARKE 068 89 2095 SPECIAL INTEREST GROUPS - i
CANBERRA STH LES THURBON 062 88 9226 NEVCASTLE LYS DAVSON 049 49 8144 BUSINESS - ¢ H Q-
CARLINGFORD ROSKO MCKAY 02 624 3353 NOVRA ROY LOPEZ 044 48 7031 BRIZBIZ BRIAN BERE-STREETER 07 349 4696 D -3 O MK Q-
CHURCHILL GEOFF SPOVART 051 22 1389 ORANGE STEVE LOVETT 063.62.4025 TDP - TELEVRITER, DYNACALC PROCOLOR W el gy -
COFFS HARBOUR BOB KENNY 066 51 2205 ' or JIN JAMES 063 62 8625 BRISBANE GEOFF TOLPUTT 07 44 6084 4 g M@ 0)
COONA ROSS PRATT 0648 23 065 PARKES DAVID SKALL 068 62 2682 0S9 GROUPS P WA T m ¥ oo
COORANBONG ~ GEORGE SAVAGE 049 77 1054 PENRITH ALEX SCHOFIELD 047 31 5303 BANKSTOVN CARL STERN 02 646 3619 3 .0 Z
DALBY ANDREV B. SINPSON 074.62.3228 PERTH IAN NACLEOD 09 448 2136 BRISBANE JACK FRICKER 07 262 8869 .
DARVIN BRENTON PRIOR 089.81.7766 PORT LINCOLF BILL BOARDNAN 086 82 2385 CARLINGFORD ROSKO MCKAY 02 624 3353 0 MA ZOoW OxX
DENILIQUIE VAYNE PATTERSON 058 81 3014 PORT MacQUARIE RON LALOR 065 83 8223 COOMA FRED BISSELING 0648 23263 O =X |08 OH
DUBBO GRAENE CLARKE 068 8G 2095 PORT NOARLUNGA ROB DALZELL 08 386 1647 KALGOORLIE TERRY BURNETT 090.21.5212 0 DH ~rd 0O
EMERALD LEIGH EAMES 059 68 3392 PORT PIRIE KEVIN GOVAN 086 32 1368 PENRITH BOB THOMSON 047 30 2468 O @ meEmE Ol
FORBES JOHANNA VAGG 068 52 2943 ROCKHANPTON KEIRAN SINPSON 079 28 6162 SYDNEY EAST JACKY COCKINGS 02.344.9111 %z O<¥r om
FORSTER GARY BAILEY 065 54 5029 SALE BRYAN NcHUGH 051 44 4792 SYDNEY NTH NWARK ROTHVELL 02 817 4627 > 0.0 0
GIPPSLAND STH PAT KERNODE 056 74 4583 SANDGATE MARK NIGHELL 07 269 5090 NiCo GROUPS »
GLADSTONE CAROL CATHCART 079 78 3504 SCARBOROUGH PETER NAY 07 203 6723 LITHGOV DAVID BERGER 063 52 2282 ¢ B N=DHA
GOLD COAST GRAHAN NORPHETT 075 51 0015 SEACOMBE HTS GLENN DAVIS 08 296 7477 PORT LINCOLN BILL BOARDNAN 086 82 2385 - EYDEALCZ |
GOSFORD PETER SEIFERT 043 32 7874 SHEPPARTON ROSS FARRAR 058 25 1007 ROCKHANPTON TIN SHANK 079 28 1846 d <0JMNEA<
GOULBURN VALLEY TONY KILLIS 058 59 2251 SMYTHESDALE TONY PATTERSON 053 42 8815 SYDNEY RAJA VIJAY 02 519 4106 < BHN »
GRAFTON PETER LINDSAY 066 42 2503 SPRINGVOOD DAVID SEAMONS 047 S1 2107 VARRNAMBOOL GARY FURR 055 62 7440 g HD ©
GREENACRES BETTY LITTLE 08 261 4083 STURT MARY DAVIS 08 296 7477 TANDY 1000 / RS DOS
GUYRA MICHAEL J. HARTNANN 067 79 7547 SVAN HILL BARRIE GERRAND 050.32.2838 BRISBANE BRIAN DOUGA® 07 30 2072 - RO)
HASTINGS NICHEAL NONCK 059 79 2879 SYDNEY: MELBOURNE TONY LLOYD 03 500 0878 S O R
HERVEY BAY LESLEY HORVOOD 071 22 4989 ' BANKSTOVE CARL STERN 02 646 3619 SYDNEY ROGER RUTHEN 047.39.3903 5 N0 0
HOBART BOB DELBOURGO 002 25 3896 ' BNKSTVE VEST ART PITTARD 02 72 2881 FORTH < 8
IPSVICH XILTON ROVE 07 281 4050 ' BLACKTOVE KEITH GALLAGHER 02-627-4627 BRISBANE JOHN POXON 07 208 7820
JUNEE PAUL NALONEY 060 24 1860 ' CANPBELLTOVE LEO GINLEY 02 605 4572 PORT LINCOLY JOHN BOARDNAN 086 82 2385 »
KALGOORLIE TERRY BURFETT 090.21.5212 ' CHATSVOOD BILL O' DONNELL 02 411 3336 SYDNEY JOHN REDMOND 02 85 3751
KINGSTON VIM DE PUIT 002 29 4950 ' or NARK ROTHVELL 02 817 4627 ROBOTICS 2z
LEETON CHRIS SAGEL 069 53 2069 ' CLOYTON HERMAN FREDRICKSON 02 6236379 BOVEN TONY EVANS 077 86 2220 0
LEICHHARDT STEVEN CHICOS 02 560 6207 + DACEYVILLE ROBERT NILK SEEAUSTCOCO GOLD COAST GRAHAX NORPHETT 075 S1 0015 (a]
or GORGE ECHEGARAY 02 560 9664 * HILLS DIST DENIS COFROY 02 671 4065 TANVORTH ROBERT VEBB 067 65 7256
L [THGOV DAVID BERGER 063 52 2282 ATHALIE 848 8830 ¥, CES JENKINSON 069 25 2263
AUSTRALIAN RAINBOW MAGAZINE
REGISTEREDBY AUSTRALIANPOST —
PUBLICATION NO.QBG 4009 _.=m=mm
AUSTRALIAN COCO/softgold
REGISTERED BY AUSTRALIAN POST — PAID
PUBLICATIONNO.QBG 4007. ’—_w—:_._—
POBOX { Nan_
SOUTHPORT.QLD. 4215.

