AUSTRALIAN OS9
NEWSLETTER

Volume 8

January / February 1994 Number 1

EDITOR:

Gordon Bentzen

SUB-EDITOR: Bob Devries
TREASURER: Jean-Pierre Jacquet

Fax Messages

LIBRARIAN: Rod Holden
CONSULTANT: Don Berrie

SUPPORT:

Brisbane OS9 Users Group

CONTENTS

(07) 344-3881
(07) 278-7209
(07) 372-4675
(07) 372-8325
(07) 200-9870
(079) 75-3537

089 0S89 OS9 OS9 OS9 OS9 OS9 OS9 OSY9

059 0S9 OS9 OS9 OS9 OS9 OS9 OS9 OS9

OS9)|
0S9|
089 |
089
OS9)|
0S9|
0S89
0S9
0S9
0S9
0S9
0S9

Editorialocooevvveriin, Page 2
OS9 BBS Sysop.ccccceueeee. Page 3
CLS Revisited Page 4
Cluster's Last Stand Page 6
The SECAD Experience Page 8
Bootsplitcccooviiiiein Page 9

@©SY
0s9
0s9
0s9
0s9
@©SY
0s9
@©SY
0S9
0s9
0sS9
0s9

0S89 089 OS9 OS9 OS9 OS9 OSY9 OS9 OSY
OS89 089 OS9 OS9 OSY OS9 OSY OS9 OSY

8 Odin Streel

Editorial Materi
Gordon Bentzen

SUNNYBANK Qld 4109

al: Library Requests:
Rod Holden

53 Haig Road
LOGANLEA QlId 4131

AUSTRALIAN 0S9 NEWSLETTER
Newsletter of the National 0S9 User Group
Volume 8 Number 1

EDITOR : Gordon Bentzen
SUBEDITOR : Bob Devries

TREASURER : Jean-Pierre Jacquet
LIBRARIAN : Rod Holden

SUPPORT : Brisbane 0S9 Level 2 Users Group.

Welcome to 1994 and another year of 0S-9. This
edition, Volume 8 -~ Number 1, is the first of
Volume 8 which of course is the eighth year of the
National 0S9 Usergoup. This group was established
by owners and users of the Tandy Color Computer back
in the days of what we now refer to as "the old grey
case" CoCo. In those days, a few members of various
Color Computer user groups became interested in
Microware 0S-9 Level 1 as distributed by Tandy.

Qur support of 6809 05-9 Level 1 and Level 2
continued as Tandy released new versions of the
CoCo, and indeed is still supported and used by many
CoCo owners.

We have at times speculated on the future of 0S-9 as
applicable to the personal, home users and suggested
some likely alternatives to the humble Color
Computer. Once Microware dropped support of the
6809 versions we looked to 0S9 68000 {0SK) and a
number of people in the U.S. devoted a good deal of
time and effort in the development of the SUPER CoCo
while others came up with new computers which would
run OSK in a way that had a CoCo Level 2 look and
feel.

The variations continue as newer platforms appear and
a new interest is being shown in some that have been
around for some time. In this edition our Bob
Devries relates his first experiences with a SECAD
kit.

So it seems that we, the 0S-9 enthusiasts, will
continue to run 6809 0S-9 in spite of it being
unsupported by Microware, and we will continue the
initiatives to allow ecconomical use of 0SK and 0S-
9000.

I understand that Microware are well aware of the 0S-
9 Usergroups around the world and that they wish to
encourage our legitimate use and interest in 0S-9.

One stumbling block of course is price. Not only is
the 05-9 operating system package expensive for the
private user, but the hardware is also relatively
expensive. It is a pity that Microware cannot offer

Page 2

much lower prices to NON-Commercial users on a
continuous basis.

As I have noted before, I did purchase a copy of 0S-
9000 last year at the Chicago CoCoFest at the reduced
price of US$350. Whilst this was a significant
reduction from US$995, the normal price, it still
worked out to be just on A$500 at the time. This
special by Microware was intended to demonstrate
their support of the 05-9 Usergroups and a number of
copies were purchased at that function.

05-9000 Although it is early days for 0S-9000 I see
this a real option. There are of course some pluses
and some minuses as there are with any other
operating system and hardware.

The one big advantage I see is that it runs on a
standard IBM type 80386 or 80486 box. This allows me
to run MS-DOS stuff which is work related, and that
is something I just can't get away from, like it or
not. Well I suppose the option here is to ONLY do
this "stuff" at work, but it is somtimes convenient
to do it at home.

I have a 386 40mhz machine with two hard drive
particians {a second hard drive is not far away)
which will boot MS-Dos or 05-9000 by simply hitting
"M" or "0" at a boot prompt.

So it does not run on a Motorola processor as 0S-9
was originally designed to do and it does suffer the
hardware limitations and problems of the P.C's and
clones hut it does run fast and a lot of the standard
68K "C" source should compile on the 05-9000 "C"
compiler.

I do not know of any other 0S-9000 user in Australia,
so perhaps you could contact me if you know of
others.

CONTRIBUTTONS
YES! This is another appeal for material for this
newsletter. How about your thoughts on where 05-9 is
going? Or tell us a little about what your plans are
with 0S-9 and why.

Cheers, Gordon.

Jan/Feb 1994

AUSTRALIAN OS9 NEWSLETTER

— A
/N
/ 03 -089\
\ RiBBs 2.1 /

The Natiopal 0S9 Usergroup
(07)-200-9870
300/1200/2400/9600/14400 baud.
20:00 to 21:30 HRS. (AEST)

Co-ordinator: Bob Devries (07)-278-7209
Sysop: Rod Holden

This is (RiBBS).... A Tandy Coco Based BBS program.
This BBS is accessible to Usergroup Members ONLY!
Feel free to look around , and test out the options.

059 for Ever !!!!

Hi, and welcome to all you lucky people who
managed to have a holiday. We are hoping that 1994
is going to be an exciting year in the 039 world with
new software arriving throughout the year. This is
your Sysop once again letting you know what type of
software is available, please read on;

MORE 0SY9 MORE

NAME
More - a file reader/previewer with backup
capabilities

SYNOPSIS
More {-options] [filel ... fileN]

DESCRIPTION

'More' is a file reader/previewer similar to that
provided with Berkeley Unix 4.3 systems. It is used
to pause the file being read so that the reader may
catch up. It can also be used to backup a page, move
forward a page, move forward a line, move to a
specific line in a file, or move to a given
percentage point in a file. 'More' may be used as a
filter, or the filenames may be supplied on the
command line. If 'More' is reading directly from an
RBF device, it will show the percentage point of
where it is in the file. This is unavailable if the

Jan/Feb 1994

file is from an SCF or PIPE device. Also, "More' may
only seek to a given spot in a file if its input is
from an RBF device.

Users may also use navigational commands while at
the pause prompt. A file may be told to page
backward, forward a page, forward a line, to go to a
specific line or percentage point in the file.

The 'Q' command may be used to exit 'More' in mid-
file. Also, keyboard quit and keyboard interrupt may
be used for the same purpose.

Command line options:
-1nn Begin display of file at line 'mn’.
-1nn Begin display of file at percent 'mn’.
-s Use 'simple' mode
{instructions given at each prompt).

Prompt options:
SPACEBAR - Forward one page
RETURN - Forward one line
B - Backward one page
$ - Go to a given percentage point in the file
L - Go to a given line in the file
! - Pork a shell command from the pause point
Q - Quit (same as QUIT or ABORT keys)

EXAMPLES

More
This filters files from standard input

Page 3

AUSTRALIAN 0OS9 NEWSLETTER

More ~1575 myasm.listing
This starts the display at line 575 of the file

More -375 userlog
This seeks to the 75% point of the file and begins
display there.

list sys.bulletin newuser.info ! more -s
This uses standard in as a feed, and uses the
'simple' mode for novice users (explains what to do
when 'More' pauses).

BUGS
The backup algorithm sometimes moves back farther
than directed. This seems to be the case primarily
when the current file point is less that the size of
the backup buffer (i.e. closer to the beginning of
file).

The line count can occasionally get confused., It
will usually hide the line count unless it 'knows'
for sure where it is. After a seek operation, it
cannot know. A seek to line 1 the 0 percentage point
will usually serve to resynchrorize the line count.

A number of other features could he added:
0 - Wildcards on the command line

0 - Pattern matching for start point
(both internal and command line)

0 - Display of current filename (if known)
at pause prompt, on request.

0 - Skipping to next or previous Nth files

This version of 'More' is being supplied on an AS-IS
basis. That is, it is being uploaded lest it die in
obscurity in some subdirectory. Support or
maintenance is neither implied nor likely.

AUTHOR
Peter W. Lyall, Jr. 1040 Stern Lane Oxnard, CA 93035

Yes as you can see by the baud rates that I am now
running a 14400 modem for those people who are lucky
enough to have one. The software for 68000 and OSK
is now on the BBS, but it is suggested strongly that
you send disks through the mail unless you are rich
to pay your phone bill at 2400 baud. My system now
has 1 x 30meg, 1 x 60meg, 2 x 5 1/4 80 track, 1 x5
1/4 40 track and 1 x 3 1/2 80 track, so there should
ot he a problem meeting your media requirements.
See you in the bit stream, Happy CoCoing.

Sysop
Rod Holden

CLS - Revisited
by Bob Devries

Well, since I got my SECAD OSK computer running, I
have been learning about the TERMCAP library. Thanks
to Bob van der Poel and his series in 'The 0S9
Underground’, and a fairly well written example in
the OSK C compiler manual, I have prepared vyet
another version of (LS.

When the original article about CLS appeared some
time ago, Don Berrie and myself were just learning
how to cope with the Atari version of 0SK. We
decided that we couldn't live without a CLS command,
S0 we wrote one in assembler, because that would make
the smallest binary file. MNow while that is
certainly true, sending a chr$(12) to the screen, is
NOT PORTABLE, and is frowned upen in the OSK world.

Now we have a concept called "the Termcap library'.
There is a file called termcap in the /dd/SYS
directory, which lists all of the character strings
which are needed to manipulate the screen. The file
doesn't only have the capabilities of MY computer,
but also a variety of other computers, including the
Coco3 screen (80*24). So now I can write a programme

Page 4

in C which will do a clearscreen on ANY computer
screen, even terminals connected to my computer via
the serial port(s).

There is one drawback, however. The code gets to be
a 107 larger. While this was a serious consideration
in the Colour Computer version, it is of less concern
when we're dealing with a computer with 4MB of RAM.

Jan/Feb 1994

AUSTRALIAN 0OS9 NEWSLETTER

So here's the code for CLS mk III:

#include <stdio.h>
#include <termcap.h>

#define TCAPSLEN 400
extern char *getenv();
char tcapbuf[TCAPSLEN]; /* buffer for extracted termcap strings */

char PC_;
char *BC;
char *UP;
short ospeed;
char *CL, /* Clear screen character */
*CM,
*CE,
*S0,
*SE,
HO; / Home cursor character */

/* function to write one character */
int tputc(c)
char c;

{
}

return write(l, &c, 1);

/* function to write a terminal control string */
putpad(str)
char *str;

{
}

main()

{

tputs(str, 1, tputc);

register char *term type, *temp;
auto char tcbuf{l1024]; /* buffer for tgetent */
auto char *ptr;

/* find out if TERM variable has been set */

if ((term_type = getenv("TERM")) == NULL) {
fprintf(stderr, "Environment variable TERM not defined!\n");
exit(1l);

}

/* find the terminal type in termcap file */

if (tgetent(tcbuf, term_type) <= 0) {
fprintf(stderr,"Unknown terminal type '%s'!\n");
exit(1l);

ptr = tcapbuf;

Jan/Feb 1994 Page 5

AUSTRALIAN OS9 NEWSLETTER

if (temp = tgetstr("PC", &ptr)) PC_ = *temp; /* get pad char
*/
CL = tgetstr("cl", &ptr); /* get cls char */
HO = tgetstr("ho", &ptr); /* get home cursor */
putpad(HO); /* send home cursor, just in case cl doesn't */
putpad(CL); /* send cls character */
}
/* EOF */

Well, compare all that with our earlier version, and
see the major differences. Remember, however, that
this one will work unconditionally, while sending a

chr${12) or whatever, MAY not. By the way, a termcap
library IS available for 089/6809. Just ask your
friendly PD librarian, Rod Holden.

Bob Devries

CLUSTER'S LAST STAND
By Matthew Thompson

The following information was determined from
investigations by Brian White in 1990 and my own
disassembly of RBFman. So it is not just idle
speculation. I am fairly confident that it is
accurate and, dare I say it, authoritative.

There seems to be much confusion about the purpose
and use of clustering in the 0S-9 file system. The
problem is largely due to the fact that the Format
command, as shipped with 0S-9 L2 for the CoCo 3, had
the cluster support removed. Thus nobody could
format with a cluster size greater than 1, and so
nobody really cared.

0S-9 uses 3 bytes for the LSN number, which allows
for devices with 16 million sectors, or 4 gigabytes,
to be used with the 05-9 file system. No matter what
the cluster size is, an LSN is always 256 bytes.
Clustering does not affect the size of LSNs in any
way. They are not scaled up or down or multiplied by
anything. Clustering only affects how LSNs are
allocated, not how big they are. So the largest
drive you can use is 4 gigabytes no matter what the
cluster size is.

However, one of the limitations of 0S-9 is the size
of the allocation bitmap. It is limited to 64K bytes
because the definition of LSNO only specifies two
bytes for the number of bytes in bitmap, so the 64K
limit is fairly carved in stone. But if you do the
math, you get 64K * 8 sectors/byte = about 134 megs.
(Technically, the bitmap is limited to 63.75K because
RBFman uses a single byte internally for the bitmap
sector number, and LSNO is already used.
Incidentally, the 120 megabyte limit of certain other
hard drive systems is because of some technical
limitation of older ST412 drives, or something like

Page 6

that.) That used to be adeguate, but now SCSI drives
with capacities of 170, 340 or more megabytes are not
uncommon. So how can a file system that supports 4
gigabytes get around a bitmap limited to 134 meg?
Fasy, use clustering!

A1l clustering does is change the number of sectors
represented by each bit in the allocation bitmap.
Thus at a cluster size of, say 4, each bit in the
bitmap represents 4 sectors, or 1024 bytes. But the
LSN numbers in the file descriptor and DD.TOT are
still the same old 256 sectors they always were.
However, now all files must be allocated on a cluter
boundary. So if the cluster size was 4, the file
descriptor sector would have to occur on an LSN
ending in either $0, $4, 98 or $C. Also, the first 3
sectors of the file itself would have to immediately
follow the file descriptor, so they would be part of
the same cluster of sectors. Plus, the segment
allocation size is affected by the cluster size. SAS
gets rounded up to a cluster boundary. So if you
have a cluster size of 4, and SAS is set to 10, the
effective SAS will be 12 as it's the next highest
multiple of 4.

On the downside of clustering, there could be sectors
allocated but unused because a file does not
completely use a cluster. Say that a file is only 75
bytes long, and the cluster size is 4. So you have 1
sector for the file descriptor, followed immediately
by 1 sector with the file, and followed by 2 sectors
which are technically tagged as in use because of the
cluster size, but which actually contain nothing.
Such wasted space is the bane of all file systems the
world over, which must balance between the efficient
use of all storage space and the ease of searching
and allocation files. So the higher the cluster

Jan/Feb 1994

AUSTRALIAN OS9 NEWSLETTER

size, the greater the amount of space wasted, on
average.

One benefit of clustering is that it reduces the size
of the allocation bitmap, and thus reduces the time
spent on long free space searches on full disks.
Actually, a word on free space searches is in order.
Some people seem to think that RBF begins a free
space search from the beginning of the bitmap each
time. Not so. It always remembers where it left off
for each drive (in V.MapSct). BUT, if your disk is so
full that there are no wmore free blocks at least as
big as your SAS, then RBF has to scan the whole map
for the next largest blob of free space. The
solution is to use a smaller SAS, although admittedly
this may increase the fragmentation of files and lead
to more Brror 217's. It is a question of choosing
the lesser of two evils. Use the stock ‘'free'
command to find the size of the largest free blob.
You can also use Sacia with up to a 3.75K buffer if
you are losing serial characters waiting for a free
space search.

Another question is, how well is clustering handled
by 0S-9 and by other utilities? According to Brian
White's tests, clustering is handled perfectly by the
stock RBFman shipped with 0S-9 L2 for the CoCo.
Recently, Mike Guzzi found that the new RBFMan v30,
which supports undeleting, has a bug whereby it does
not properly deallocate all of the sectors when a
file is deleted and the cluster size is greater than
1. While this does not corrupt the file system, it
does end up wasting space. At this time I don't know
the cause of the bug, but it might have something to
do with the fact that the file descriptor shares the
cluster with the first (and possible more) sectors of
the file. Since file deletion is a system call done
by RBFman, the Del command can't be the problem as it
calls RBFman to do the dirty work.

As for utilities, there are problems with a number of
them. The Burke and Burke hard disk utilities state
in the manual that they do not support a cluster size
greater than one. So you can't use Repack unless
maybe they do a patch for it. Tim Kientzle's
replacement Free command doesn't quite get the math
right, as it seems to scale DD.TOT by the cluster
size. The patched version of Ded that displays which
sectors are represented when you are editing the
bitmap doesn't take clustering into account. On the
other hand, the stock Dcheck and Free commands get it
right, so you don't have to worry about them. Dcheck
does have one little bug, according to Brian White,
whereby it doesn't check the last byte of the

Jan/Feb 1994

allocation bitmap. But this is even when the cluster
size is 1.

Another way you can use a large hard drive is with
partitioning, where one drive can be split up into
several smaller logical drives. This way, you can
keep the cluster size at one 1 on each drive. Since
RBFman doesn't support partitioning, it has to be a
function of the device driver to do it. The SCSI
System now includes support for partitioning if you
want it.

Recently, a revised format command, Mformat, has been
made available to format any - disk with a cluster
size beyond 1. So you can now use clustering on any
08-9 disk. Also, the SCSI System comes with its own
formatter which supports higher cluster sizes.

A related question to clustering is, how would it be
if RBFMan handled 512 byte sectors natively? Under
0S-K 2.4, RBFman can configure things so that an LSN
really is 512 bytes, and file descriptors and LSNO
are also 512 bytes long, etc. Well, technically it's
possible, but not practical, under 0S-9 6809, for a
nurber of reasons. Keep in mind that I actually
tried to rewrite RBFman myself to do this, and after
several months realized that it wasn't worth it.

First, it would require a major rewrite of RBFMan,
and would expand its size considerably, gobbling up
precious system space in Level 2. Second, every open
path would require a 512 byte buffer, gobbling even
more system space. Third, 256 byte sectors lend
themselves nicely to quantities that fit in one byte,
a fact which RBF uses extensively. Going to 512
would mean needing two bytes, and this would mean
changing drive table and path extension definitions
around. And if the value was in A or B you couldn't
just use D because the cther accumulator usually had
something significant in it as well. Finally, many
of your favorite 0S-9 utilities just aren't ready for
the shock of 512 byte sectors, and would need to be
rewritten (ie 'Ded'). So while going to 512 natively
under 0S-K wasn't too hard, it would mean a lot of
headaches under 05-9 L2.

Any driver which support 512-byte sectors simply uses
various tricks to make the drive look like 256 to
RBFMan. So you have one block on the device holding
two logical 0S-9 sectors. While it is sort of a
kluge, but it seems to do the trick! And you don't
have to modify any utilities or other software to
handle it.

Page 7

AUSTRALIAN OS9 NEWSLETTER

The SECAD AS-68K
"first experiences"™ - by Bob Devries

I bought a SECAD AS68K computer as a kit a few months
ago, and have, over the Christmas break, been able to
get it together, and to work successfully. While
most of my success was probably because I am an
electronics technician, I did have a lot of help from
Mr Jim Adamthwaite, one of the partners of the SECAD
Systems company. Without his careful, though
sometimes wordy, explanations, I doubt if I could
have got it 'just right'.

The kit I purchased, consisted of the PCB, with the
ROMS, and PAL chips (that's Programmable Array
Logic), and 059/68000 Professional. The PCB has some
95 Integrated Circuits on it, 295 components all up.
It took some time to place and solder all the
components, and then check to see everything was OK.

The CPU is a 68000, running at l10Mhz, with a 68450
DMAC (Direct Memory Access Controller), a 68681 DUART
(Dual Universal Receiver Transmitter) for serial
ports, and a 68B21 PIA (Peripheral Interface Adaptor)
for the keyboard. The computer uses 'standard' IBM
XT bus sockets, and a IBM keyboard. Standard IBM I/0
cards are used for floppy disks, hard disks, and
screen. I am currently using a CGA card for my
screen, but I hope to upgrade to EGA soon. My system
at this moment has the following (subject to change
of course):

CGA color screen {using Thomson EGA monitor)

WD TM-262 20MB hard disk with DIC 5150 controller

Digitor (from Disk Smith) multi I0 card for
floppy, serial and printer.

2 * 720K 3.5" floppy drives

4 Megabytes of RAM (the maximum the PCB allows)

0S9/68000 came on 3 * 3.5" ‘universal format'
floppies, and the manuals (two) are A5 size, approx
60mm thick each,

Putting the board together was fairly straight-
forward, although there is no construction manual. I
only had two problems, one was because I assumed that
the lowest 2MB of RAM would be in the lowest numbered
sockets. Of course, I was wrong, and I got a buss
error, and the system just stopped (or rather,
HALTed). The other problem was a wrong capacitor
type connected to the timing crystal for the IBM bus,
vhich caused 'glitches' all over my screen.

Once running, getting the software installed was no

real problem, except that I needed to compile some of
the drivers, since they didn't come in binary form,

Page 8

only in assembler form. Another call to the patient
Jim Adamthwaite. I was even able to modify an
existing device descriptor to be able to read Colour
Computer 0S89 format 3.5" disks.

0Of course, learning to use 059/68000, or rather UN-
learning 059/6809, will take some time. As Gordon
will be able to tell you, learning the new OS has a
rather steep learning curve, and his 059000 is worse,
because there are some MAJOR differences there. For
the moment, I have to be content with using uMacs,
the screen editor supplied, since I don't yet have a
copy of VED/68000. I have a demo version, and it
feels just like the 089/6809 version. I'm using
uMacs now, because my Colour computer's disk
controller died a few days ago, and it will take some
time to fix (it's a Disto SCII).

Lots of the standard utilities work the same, or at
least have enough similarity to 0S9/6809 for me to be
quite at home behind the SECAD's keyboard. In fact,
some of the utilities have options which would be
great in the 6809 version, but are probably not there
because of the memory restraints. Most of the
utilities in OSK are written in C originally, and so
are longer than their assembler counterparts, where
the same ones for 0s9/6809 are in assembler, and so
are smaller.

So now I have an OSK computer, with 4 serial ports, a
printer port, two disk drives, one hard drive, one
internal modem, and a screen which will do 640%200%2
or 320*200%4, a mouse, an 84 key keyboard.

Software, you ask? Yes, well, ahem. Well, I'll be
starting to write some soon. Of course there are
quite a number of PD archives available, including
some 14.5 MB from the EFFO group (European Forum For
059), which include a C compiler, a Forth compiler,
and lots of utilities. These files are available
from our PD library, but you MUST have 720K disks, or
they won't fit. In fact a couple won't fit on even
that size, so they'll have to be split up. There are
files PD1.lzh to PD9.l1zh and FORUMOl.lzh to
FORUM23.1zh,

Well that's all for now. I'll tell some more of my
experiences next time. If anyone is interested in
buying this kit (or fully built-up) computer, contact
Jim Adamthwaite at:
SECAD SYSTEMS

66 Albert Street
Brunswick East Vic 3057

Ph: (03) 380 9036
Int'l +61 3 380 9036

Jan/Feb 1994

AUSTRALIAN 0OS9 NEWSLETTER

Bootsplit

by Bob Devries
Having recently bought a copy of 059/68000, I found I you can see, it's not too simple, since all sorts of
needed to split a bootfile, to remove a couple of checks for validity need to be done, and the module
modules, and add new ones. So, of course, I'd use in question must be able to be loaded into memory
the bootsplit utility, just like in 0S9/6809 right? from the merged bootfile.
Wrong!!! It doesn't exist. So, what to do....
Write one! The code for this one is really not very 0f course, bootsplit can be used on ANY merged file
difficult. It is merely necessary to open the file, of modules. Although, unlike 0S9/6809, these appear
read enough data from it to fill a structure (from to be fewer in 059/68000. Anyway, here's the €
the module.h file), so as to find out where the source code:

module name, and length are to be found. Well, as

/* Bootsplit for 0S9/68000 *x/
/* by Bob Devries. (c) 1993 */
/* may be freely distributed */

#include <stdio.h>

#ifdef OSK

#include <module.h>
felse

#include "module.h"
#endif

#include <errno.h>

main(argc,argv)

int argc;

char *argvl|];

{
char modfile[33];
char *malloc(),*buffer;
long modpos = OL;
FILE *fopen(), *ifp, *ofp;
struct modhcom module;
int nread;

if ((argc < 2) |
usage();
exit(0);

| (argv[1]{0] == '=")) {

}

if((ifp=fopen(argvi1l],"r")) == NULL)
exit(_errmsg(errno,"Can't open %s\n",argvill));
for(;;) {
if ((nread=fread(&module,sizeof (module),1l,ifp))

NULL)

exit (_errmsg(errno,"Done.\n"));

fseek(ifp,modpos,0);

buffer = malloc(module._msize);

if (buffer == NULL) .
exit(_errmsg(l,"Not enough memory.\n"));

fread(buffer,module._msize,1l,ifp);

modpos += module._msize;

strcpy (modfile,buffer + module._mname);

Jan/Feb 1994 Page 9

AUSTRALIAN 0OS9 NEWSLETTER

if ((ofp=fopen(modfile,"w")) == NULL)
exit(_errmsg(errno,”Can't open
%s.\n",modfile));
printf("%$s\n",modfile);
fwrite(buffer,module. msize,1,0fp);
fclose(ofp);
free(buffer);

}
fclose(ifp);
}
usage ()
fprintf(stderr,"Usage: %s <filename>\n",_prgname());
fprintf(stderr,"Splits merged module to separate files.\n");
}

NOTE: For this programme to compile under 0S9/6809, you'll need to use the kreider library, and use a different
version of the module.h header file. Here's the code for this file:

/* alternate version of module.h for 0S9/68000 compatibility */

struct modhcom {

unsigned _msync, /* sync bytes ($87cd) */
_msize, /* module size */
_mname ; /* offset to module name */
char _mtylan, /* type & language */
_mattrev, /* attributes & revision */
_mparity; /* header parity */
};
ED NOTE :-

We do hope that you find something useful in these
pages and urge you to make a contribution of material
suitable for inclusion in the next newsletter.

Your masterpiece should reach the Editor by the end
of February.

Until next month, HAPPY COMPUTING !

Page 10 Jan/Feb 1994

