Unlink <modname> Usage : Unlinks module(s) from memory @WCREATE
Syntax: Wecreate [opt] or WX [-s=type] Xpos ypos xsiz ysiz fcol bcol [bord]

Usage : Initialize and create windows Opts : -? = display help -z = read
command new screen
lines from @XMODE
stdin -s=type Syntax:
= set screen X M o de
type for a <devname>
window on a [params]
Usage : Displays or changes theparameters of an SCF type device
@COCOPR Syntax: cocopr [<opts>] {<path> [<opts>]} Function: display file
in specified format gets defaults from /dd/sys/env.file Options : -c set columns

per page -f use form feed for trailer -h=num set number of lines after

header -l=num set line length -m=num set left margin -n=num set starting
line number and incr -o truncate lines longer than Inlen -p=num set number
of lines per page -t=num number of lines in trailer -u do not use title

-u=title use specfied title -x=num set starting page number -z[=path] read file
names from stdin or <path> if given @CONTROL Syntax: control [-e] Usage
: Control Panel to set palettes, mouse and keyboard parameters and monitor

type for
ADDRESSES Multi-Vue. CONTENTS
Editorial Material: gzlfﬁtable umfirt?;ns
Gordon Bentzen menu as the || o
8 Odin Street Control Panel. gcdi:_:gal """ i;g: ;—
Opts : - = | O Poe-ecee
SUNNYBANK QIld 4109 efecute e C Tutorial.... Fage 5
. environment file 0z-0S9 BBS. Page 7
Library Requests: @GCLOCK Rewrite....... Page 8
Jean-Pierre Jacquet Syntax: gclock || Help-......... Page 9
27 Hampton Street Usage : Alarm | QadA....... Page 10
DURACK Qld 4077 clock utiity for
Multi-Vue.

Selectable from desk utilities menu as Clock. @GCALC Svntax: gcalc Usage :
Graphics calculator utility for Multi-Vue. Selectable form desk utilities menu as

Volume 7 May 1993 Number 4

Calculator. @GCAL Syntax: gecal Usage : Calendar/Memo book utility for
Multi-Vue. Selectable as Calendar from the desk utilities menu. @GPRINT

yntax: gprint Tlsnge - Printer setyp utility for Multi-Vue Tets nser graphically

AUSTRALIAN O0S9 NEWSLETTER
Newsletter of the National 0S9 User Group
Volume 7 Number 4

EDITOR : Gordon Bentzen
SUBEDITOR : Bob Devries

TREASURER : Don Berrie
LIBRARIAN : Jean-Pierre Jacquet

SUPPCRT : Brisbane 0S9 Level 2 Users Group.

Well, here it is, the month of May. When you
read this; Gordon Bentzen will be in USA chatting
with Colour Camputer users over there, and getting
as much information for us as he can. I am standing
in for him this month. We are looking forward to
hearing about new material, and new alliances with
othe 0S9 users around the world. Who knows what
will eventuate? I think it may well be the start of
a whole new era for the Australian 0S9 users.

I continue to be surprised by calls from Colour
Computers who want to become members of this
Usergroup. Here I keep thinking that all the old
users have got out of the CoCo scene, but no....
more pop up all the time. Great!

I know we have talked about this before, and I
have seen the same comments on the 0S9 echo on FIDO-
Net, but here goes anyway. I would like to know
what you people ocut there would like see in the way
of software for 0S9. Maybe it is already written,
and we can tell you where to find it, either in the
Public Domain, or as commercial software. If your
wants are not too extravagant, maybe we will be able
to write it ourselves. In fact I'm sure same of you
will have done some of that already. Maybe you have
written a script file that does samething on your
system? Please realise that other people can
benefit from what you have done, even if it seems
insignificant to you. Have a look at the article
about script files in this issue, it gives same
examples of how things can be done without writing
special programmes to do them. I myself use script
files for a lot of things. If I want to call up the
Profile database programme, I use a script called
'"PF' which changes directories for me, and starts up
Profile. That way it is always at hand.

In this issue also, I have written a utility to

rewrite a file starting from an offset within that
file. Sometimes useful for cutting extraneous data
fran the front of a file. It is programmes like
that which I love to write. Usually someone at a
Usergroup meeting will say, how can I do this, or,
why doesn't this programme allow this? This will
usually get my ideas flowing hot again, and out pops
a little utility programme. It doesn't matter that
the utility has been done before, because usually I
have learnt samething in it's writing. Please ask
me to solve your problems, it will help me to
continue my learning of the C programming language.
As always, if you haven't got the 0S9 C compiler,
the programme will become available in our PD
library.

The last of the series 'A C Tutorial' is
featured in this issue. It has been a long stretch,
but I think it has been worth printing. While some
of the comments in the series have been specifically
MS-DOS oriented, most of the text could be applied
to the 0S9 C campiler. The complete archive, which

includes the source code of the programmes
mentioned, is available from our PD library. It is
rather large, 198,400 bytes, so users with only

single-sided disk drives would need to have it split
up. I'm sure Jean-Pierre would do that if you ask
hime nicely.

I would like to hear from you what you would
like to feature in the Newsletter as a replacement.
We have also received a PASCAL tutorial, but I have
not really given much thought to using that for two
reasons. 1. The tutorial is aimed at the MS-DOS
Turbo-Pascal, and 2. 0S9 Pascal is not very widely
used, and is very out-of-date. Let me know what you
think.

Regards,
Bob Devries

©000000000c000000000CC0000O00C0

Page 2

May 1993

AUSTRALIAN 0S9 NEWSLETTER

Script2 - Some More Shell+ v2.0 Scripts
by Steve Clark

This file contains some more shell+ scripts for
the new version of Shell+ for 0S-9 Level II on the
Color Computer. With the numerous capabilities
provided by Ron Lammardo, Kevin Darling and Kent
Myers, I offer these as suggestions only, you will
need to modify them to your liking. In most cases, ‘1
am sure there are alternate ways to do what these
scripts do. Some of these wuse other programs
available on-line on variocus information services. I
will try to mention these when they are encountered.

Batchfmt — Batch Formatting Floppies

If you need to format a series of floppies, say
to use for backing up your hard disk, this shell
script automates some of the process. You supply an
initial name, and the script formats a floppy with
"name00001" then asks if you want to do it again.
By replying yes, the script prampts you to insert a
new disk, etc. Drive /d0 is hard wired into the
script, but you can change it (or add an option to
ask which drive). It uses the GOTO and INC options
fram the new shell+.

*batchfmt
display c
load format
prampt Disk Name: wvar.0
*1oop
inc.1
display c
echo Place disk in drive /d0
prompt Press ENTER when ready to format Z0%Z1:
var.2
format /dO r "“%0Z1"
display 7 a
proampt Another (y/n):
if [-y]
clrif
goto loop
fi
unload format
echo Batchfmt Dene.

Deskmate - Run Deskmate 3 Applications

This shell script runs deskmate 3 applications
by presenting a memu and starting either the
deskmate interface, or one of several deskmate
applications. As with other scripts, you will have
to use your own subdirectory names (I use
/dd/usr/data/ss). It will set up a type 1l window
and run the specified deskmate program in that
window. See the script for further information.

May 1993

*deskmate — deskmate execute
onerr goto +trap

display ¢

chd /dd/USR/DATA/SS

chx /dd/USR/DATA/SS/QMDS
path=/dd/QDS

echo DeskMate

display a

echo 1 DeskMate Desktop

echo 2 Spreadsheet

echo 3 Word Processing

echo 4 Cammunications
display a
prampt Select:
goto +labelZ0
*labell

xmode /wb type=l;display c>/wb (deskOD>/wh;xmode
Jwb type=80)&

goto +finis

*]abel2

xmode w7 type=1;display
dmledgerO>>/w7 ;xmode /w7 type=80)&
goto +finis

*label3

xmode /w8 type=l;display c¢>/w8 (desk dmtext<>>>/w8;
xmode /w8 type=80)&

goto +finis

var.0

c>/wl (desk

*labelé

xmode /w9 type=l;display ¢>/w9 (desk dmterm
termstatO>>/w9;xmode /w9 type=80)&

*finis

display a

echo Task started in another window.
echo Use CLEAR key to change windows.
*trap

Playit - Play Sounds from a Meru

I found Kevin Darling's play program
fascinating to use, and have collected several
digitized sound files. The one thing I never can
remenber is what parameters to pass to each file.
One way to handle this (or to have the camputer
remember for you) is to maintain a script file such
as '"playit" and put the parameters in. Again,
specify your own directory structure.

* playit - play sounds
onerr goto +lab

load play

chd /dd/usr/sound

*repeat

echo 1 HAL from 2001 2 lLate Night Breaking
Glass

Page 3

AUSTRALIAN O0S9 NEWSLETTER

echo 3 I'll be back 4 Captain Kirk
echo 5 Disruptor 6 Scotty
echo 7 Clint Eastwood 8 Laugh

echo 9 Monty Python

echo

prampt Which Sound (ENTER to Quit):

goto +1abZ0

*1abl
echo HAL - Can't Do
play 18 cantdo.snd</1
goto repeat

*1ab2
play 11 davidl.pla</1
goto repeat

*1ab3
play 28 back.mac</1
goto repeat

*1abk4
play -29 kirk.pla</1
goto repeat

*1ab5
play -28 dsrpt.pla</1
goto repeat

*1ab6
play -28 scotty.pla</1
goto repeat

*lab7
play -11 clint.pla</1
goto repeat

*1ab8
play 40 laugh.pla</1
goto repeat

*1ab9
play —10 bing.pla</1
goto repeat

*]ab

unload play

var.0

Address - Build an Address File

This won't replace a database by any means, but
it is a quick and dirty way to create a program to
obtain prampted input from a user. It adds to an
address file called "address.dat". You can use the
same idea to create any type of ascii data file. It
uses the IF, append, prompt, and GOTO features of
the new shell+. .

*address

var .0="address.dat"

*repeat

prompt Last Name: wvar.l
pramwpt First Name: wvar.2
prampt Address: wvar.3
prampt City, State: wvar.4
prompt Zip: wvar.5

prompt Phone (999-999-9999): wvar.6

Page 4

prompt Add to file (y/n): wvar.9
if 729=y

echo %1, Z2>+70

echo %Z3>+%0

echo % %5>+7%0

echo %6>+%0

echo —>+%0
else

echo Record not added.
fi
prompt Add Another (y/n):
if Z9=y

clrif

goto repeat
else

echo Done. Z0 Data input complete.
fi

var.9

Man - Online Manuals

One of the nice features of having a hard disk
is the ability to keep some things on-line which you
would otherwise have to store on floppy or in the
case of documentation, keep printed copies. I
created this shell script to simulate the MAN
comand (somewhat) by providing access to
documentation files. I have a subdirectory called
/dd/usr/man which stores the text files I want to
access, and use this script to choose the one I want
to view. Pete Lyall's MORE coamand allows you to
page back and forth within a file, and is perfect
for implementing this application. When you execute
man, something like the following appears:

Directory of /dd/USR/MAN (0:11:48

CLib Datamod MacPaint
Mail

MaxiPic Mkdir NBS
Pilot

Shell TelStar Tiny
UltiMuse

Xcamd Xlisp

which marmual entry:

You then type the name at the prompt (or press ENIER
to ignore) and the docurentation is available. Note
that the exact names will depend on what you have in
the /dd/usr/man directory. This example shows what
I have in mine at the present time. The man script
looks like the following:

*man - marual processor
onerr goto repeat

cd /dd/usr/man

echo

dir /dd/USR/MAN

May 1993

AUSTRALIAN 0S9 NEWSLETTER

echo
*repeat
prompt Which manual entry:
if -r 70
echo
echo Manual for %0: Use SPACE/B to page through,
Q to quit
/dd/cmds /more %0
else
if 70 >= a
clrif
echo — man: No manual entry for %0
goto repeat
fi
fi

var.0

The '"man" included in this archive is a datamod
version, and will look slightly odd if you try to
list it. If you want the pure ASCII, use Ron
Lammardo's datamod or take it from this text file.
It helps to keep the directory sorted (or you may
want to use one of the "LS" type cammands which
print ordered directories).

Tyme - Digital Clock

We all seem fascinated with turning our

expensive computers into cheap clocks, myself
included. I have used the new shell, along with
DATE, DISPLAY, and SLEEP to create an on-screen
digital clock. It doesn't do anything but sit there
and display the date and time in the middle of an 80
colum window. Use it when you are going to leave
your computer idle for a few minutes. To stop it,
use control-E.

*tyme

onerr goto +trap
tmode -pause
display ¢ 05 20
*repeat

display 2 3a 2b
date t

sleep 30

goto repeat
*trap

display c 05 21
date t

echo Tyme end.

Use these as supplied, or use them to generate
ideas for your own shell+ scripts.

Steve Clark ~ Compuserve 73135,1204 <EOF>

00000000cc0000000000OE0O00O000

Chapter 14 - Example Programs
WHY THIS CHAPTER?

Although every program in this tutorial has been
a complete program, each one has also been a very
small program intended to teach you some principle
of programming in C. It would do you a disservice
to leave you at that point without intreducing you
to a few larger programs to illustrate how to put
together the constructs you have learned to create a
major program. This chapter contains four programs
of increasing complexity, each designed to take you
into a higher plateau of programming, and each
designed to be useful to you in some way.

DOSEX will illustrate how to make DOS system
calls and will teach you, through self-study, how
the system responds to the keyboard. WHATNEXT reads
comands input on the command line and will aid you
in setting up a variable batch file, one that
requests an operator input and responds to the input
by branching to a different part of the batch file.

LIST is the source code for the program you used
to print out the C source files when you began
studying C with the aid of this tutorial. Finally we
care to VC, the Visual Calculator, which you should
find to be a useful program even if you don't study
its source code. VC uses most of the programming

May 1993

techniques we have studied in this course and a few
that we never even mentioned such as separately
campiled subroutines.

We will take a look at the example programs one
at a time but without a complete explanation of any
of them because you have been studying C for some
time now and should be able to read and understand
most of these programs on your own. One other thing
must be mentioned, these programs use lots of
nonstandard constructs and you will probably need to
modify scme of them to get them to compile with your
particular compiler. That will be left as an
exercise for you.

DOSEX.C - The DOS Example Program

The copy of DOS that you received with your IBM-
PC or compatible has about 50 internal DOS calls
that you can use as a programmer to control your
peripheral devices and read information or status
from them. Same of the earlier IBM DOS marwals, DOS
2.0 and earlier, have these calls listed in the back
of the manual along with how to use them. Most of
the manuals supplied with compatible computers make

Page 5

AUSTRALIAN O0S9 NEWSLETTER

no mention of these calls even though they are
extremely useful. These calls can be accessed fram
nearly any programming language but they do require
some initial study to learn how to use them. This
program is intended to aid you in this study.

Display the program on your monitor or print it
out for reference. It is merely a loop watching for
a keyboard input or a change in the time. If either
happens, it reacts accordingly. In line 23, the
function "kbhit()" returns a value of 1 if a key has
been hit but not yet read fram the input buffer by
the program. This is a nonstandard function and may
require a name change for your particular compiler.
There will probably be several similar calls that
will need changed for your compiler in order to
carpile and run the programs in chapter 14.

Look at the function named 'get time" for an
example of a DOS call. An interrupt 2l(hex) is
called after setting the AH register to 2C(hex) =
44(decimal). The time is returned in the CH, CL,
and DH registers. Refer to the DOS call definitions
in your copy of DOS. If the definitions are not
included there, Peter Nortons book, '"Programmers
Guide to the IBM PC" is recommended as a good
reference marual for these calls and many other
programming techniques.

Another useful function is the "pos_cursor()"
function that positions the cursor anywhere on the
monitor that you desire by using a DOS interrupt.
In this case, the interrupt used is 10(hex) which is
the general monitor interrupt. This particular
service is number 2 of about 10 different monitor
services available. This particular function may
not be needed by your compiler because some
campilers have a cursor positioning function
predefined for your use. This function is included
here as another example to you.

The next function, service nmumber 6 of interrupt
10(hex) is the window scroll service. It should be
self explanatory. In this program, the cursor is
positioned and some data is ocutput to the monitor,
then the cursor is "hidden" by moving it to line 26
which is not displayed. After you compile and run
the program, you will notice that the cursor is not
visible on the monitor. This is possible in any
program, but be sure to put the cursor in view
before returning to DOS because DOS does not like to
have a "hidden" cursor and may do some strange
things.

Sare time spent studying this program will be
valuable to you as it will reveal how the keyboard
data is input to the computer. Especially of
importance is how the special keys such as function
keys, arrows, etc. are handled.

WHATNEXT.C - The Batch File Interrogator

Page 6

This is an example of how to read the data on
the command line following the function call. Notice
that there are two variables listed within the
parentheses following the main() call. The first
variable is a count of words in the entire command
line including the command itself and the second
variable is a pointer to an array of pointers
defining the actual words on the command line.

First the question on the comand line, made up
of some nmumber of words, is displayed on the monitor
and the program waits for the operator to hit a key.
If the key hit is one of those in the last "word" of
the group of words on the command 1line, the number
of the character within the group is returned to the
program where it can be tested with the "errorlevel"
comand in the batch file. You could use this
technique to create a variable AUTOEXEC.BAT file or
any other batch file can use this for a many way
branch. Compile and run this file with TEST.BAT for
an example of how it works in practice. You may
find this technique wuseful in one of your batch
files and you will almost certainly need to read in
the cammand line parameters someday.

An interesting alternative would be for you to
write a program named "WOULD.C" that would return a
1 if a "Y" or "y" were typed and a zero if any other
key were hit. Then your batch file could have a
line such as;

WOULD YOU LIKE TO USE THE ALTERNATIVE METHOD (Y/N)

Dos would use "WOULD" as the program name,
ignore the rest of the statement except for
displaying it on the screen. You would then respond
to the question on the monitor with a single keyhit.
Your batch file would then respond to the 1 or O
returned and either run the alternmative part of the
batch file or the primary part whatever each part
was.

WOULD YOU LIKE PRIMARY (Y/N)
IF ERRCRLEVEL 1 QOTO PRIMARY
(secondary commands)

GOTO DONE

:PRIMARY

(primary commands)

:DONE

LIST.C - The Program Lister

This program is actually composed of two files,
LIST.C and LISTF.C that must be separately compiled
and linked together with your linker. There is
nothing new here and you should have no trouble
compiling and linking this program by reading the
documentation supplied with your compiler.

The only thing that is new in this program is
the inclusion of three "extern" variables in the
LISTF.C listing. The only purpose for this is to
tie these global variables to the main program and

May 1993

AUSTRALIAN O0S9 NEWSLETTER

tell the compiler that these are not new variables.
The compiler will therefore not generate any new
storage space for them but simply use their names
during the compile process. At link time, the
linker will get their actual storage locations from
the LIST.OBJ file and use those locations for the
variables in the LISTF part of the memory map also.
The variables of those names in both files are
therefore the same identical variables and can be
used just as any other global variables could be
used if both parts of the program were in one file.

There is no reason why the variables couldn't
have been defined in the LISTF.C part of the program
and declared as '“extern" in the LIST.C part. Scme
of the variables could have been defined in one and
some in the other. It is merely a matter of
personal taste. Carried to an extreme, all of the
variables could have been defined in a third file
and named "extern" in both of these files. The
third file would then be coampiled and included in
the linking process.

It would be to your advantage to compile, link,
and run this program to prepare you for the next
program which is camposed of 5 separate files which
must all work together. VC.C — The Visual Calculator
This program finally ties nearly everything together
because it uses nearly every concept covered in the
entire tutorial. It is so big that I will not even
try to cover the finer points of its operation.
Only a few of the more important points will be
discussed.

The first thing you should do is go through the
tutorial for VC included in the file VC.DOC. There
are several dozen steps for you to execute, with
each step illustrating some aspect of the Visual
Calculator. You will get a good feel for what it is
capable of doing and make your study of the source
code very profitable. In addition, you will probably
find many ways to use the Visual Calculator to

solve problems involving calculations where the
simplicity of the problem at hand does not warrant
writing a program.

Notice that the structure definitions, used in
all of the separate parts of the program, are
defined in the file SIRUCT.DEF. During program
development, when it became necessary to change one
of the structures slightly, it was not necessary to
change it in all of the files, only one file
required modification which was then 'included" in
the source files. Notice that the transcript data
is stored in a doubly linked list with the data
itself being stored in a separate dynamically
allocated char string. This line is pointed to by
the pointer "lineloc™.

For ease of development, the similar functions
were grouped together and compiled separately.
Thus, all of the functions involving the monitor
were included in the file named VIDEQ.C, and all of
the functions involving the data storage were
grouped into the FILE.C collection. Dividing your
program in a way similar to this should simplify
debugging and future modifications.

Of special interest is the "monitor()" function.
This function examines the video mode through use of
a DOS command and if it is a 7, it assumes it is a
monochrome monitor, otherwise it assumes a color
monitor. The colors of the various fields are
established at this time and used throughout the
program. Most of the data is written directly to
the video memory, but some is written through the
standard BIOS routines.

The file DEFIN.C is simply a catalogue of the
functions to aid in finding the functions. This file
was generated as one of the first files and was
maintained and updated for use during the entire
design and coding lifetime.

Feel free, after understanding this code, to
medify it in any way you desire for your own use.

00000000co0000000000C000000000

0z -~ 0S9 BBS
by Rod Holden - Sysop

Hi, this is your Sysop once again letting you lnow
how the BBS is coming along and what sort of info is
available.

The King James bible is now unpacked. I had to be
careful when unpacking it because for instance when
you unpack John and then unpack John 1, Jotn_1 will
write over the top of John, because the filenames
had spaces in them. To get around this problem you
must first unpack John 1 which will show as John
then rename that file to John 1 or John.l or how
ever you like to rename that file. Sorry if anyone
was misled in the newsletter which mentioned about

May 1993

the bible scarmer. It is currently being written so
stay tuned to this station.

In the 0S9 UTI (0S9 Utilities) directory there is a
file called FIXIXT.AR which has two programmes
called Fixtxt and Lf2Cr. Here is the doc file about
it:

Fixtxt
Use: Fixtxt path

or: Fixtxt <pathl >path2

Page 7

AUSTRALIAN 0S9 NEWSLETTER

Strips linefeeds and other control codes, fixes
backspaces, tabs, and removes trailing spaces. A
large buffer is used for significant time savings
over similar programs.

Lf2Cr

Use: 1f2cr path
or: 1f2cr <pathl >path2

Similar to fixtxt, except it replaces linefeed with
carriage retumns.

Warning: The non-filter mode of these programs will
modify the file. Use ONLY cn text files, and use a
backip if the text is important!

If anyone in the user group has software that is PD
(that is not in the PD library and is not commercial
software) feel free to upload it to the BBS or send
a copy to Bob Devries or Jean-Pierre Jacquet (your

disk will be returned) so other users can obtain a
copy.

I said in the newsletter that I was adding a second
HD to my system as I was ruming out of space for
the BBS, I now have that second HD which gives a
total space of 9OMB.

Logging On.

Please contact me before logging on so I can enter
your name in the userlog. Then, when you 'log on'
to the BBS type your name (eg: Rod Holden), press
enter, then press enter at the password prompt. If
'setup' is available to you, go into that area and
set the option for mumber of lines per page (24 is
what most users set) and also the option for change
of password and enter your password.

Well that's it from me till next time see you in the
bit stream.
Your Sysop
Rod Holden

PS. New times for OZ — 0S9 BBS are 2000 — 223Chrs (AEST)

0000000000c000000000COCCCCCO000

Rewrite, A utility to strip the front from a file
by Bob Devries

I recently had the need to strip some garbage
characters from the front of an otherwise perfectly
good file. As wusual, I had to write it myself.
Here is the source in C. I first wrote it for use
on my Amiga 2000, using SAS/C, which is ANSI
canpatible, and then copied it to the Colour
Coamputer under 0S9, and, yep, you guessed it, it
didn't work, even when 1 had corverted what I
thought was all the necessary parts.

It seems that the 0S9 C campiler is quite different
in quite a few areas. Firstly, I used the function
'sscanf' to convert the ASCII command line into a
long variable. I came unstuck there. On the Amiga,

/* rewrite — (c) 1993 Bob Devries */
/* rewrites the specified file from ¥/
/* the specified offset. Offset may */
/* be either decimal or hexadecimal */
[* e.g. Ox498 = $498 = 1176 */

#include <stdio.h>
#include <string.h>

ftdefine TRUE 1
main(argc, argv)
int argc;

char *argv(];

Page 8

I had written 'sscanf(argptr,"%lx",&offset)', and
left the 'Ox' on the front of the coamand line
variable. This does not work for CoCo 0S9 C. As
you can see, I had to remove the 'Ox', and change
the function call to 'sscanf(argptr,"%ZX",&offset)’.
Notice the capitalisation of the 'ZX'. Refer to the
C marmual on page 4-26 (as I should have done -~ it
doesn't pay to be too sure of yourself). In the
Amiga version, I also added the 'Ox' instead of the
user supplied '$'. This was also unnecessary. Ok,
so after a bit of trial and error, here is the code.
Bob Devries

May 1993

AUSTRALIAN O0S9 NEWSLETTER

{
FILE *in, *out, *fopen();
int ch;
char temp[32];
char *argptr;
long offset = OL;
long atol();
argptr = argv([3]; /* point to the offset */
if (arge != 4) { /* oops, user error */
fprintf(stderr,"Usage: %s <infile> <outfile> <offset>\n",argv([0]);
fprintf(stderr," <offset> may be either decimal or\n");
fprintf(stderr," hexadecimal. (e.g. Ox498 or $498)\n'");
exit(0);
}
if ((in = fopen(argv([1l],"r')) = NULL) {
fprintf(stderr,"Can't open %s for input.\n",argv[l]);
exit(errno);
}
if ((out = fopen(argv[2],"w")) = NULL) {
fprintf(stderr,"Can't open %s for output.\n",argv[2]);
exit(errno); '
}
if ((argv[3][0] = '0') && (toupper(argv[3][1]) = 'X")) {
argptr += 2; /¥ increment past the Ox */
sscanf (argptr,"%ZX" ,&of fset);
} else if (argv[3][0] = 'S$") (
strepy(temp,++argptr); /* increment past the § sign */
sscanf (temp,"ZX",&of fset); /* the ZX must be capitalised */
} else {
offset = atol(argv[3]);
}
fseek(in,of fset,0);
while (TRUE) {
if ((ch = gete(in)) == ECF) break;
putc(ch,out);
}
fclose(in);
fclose(out);
}
/* EOF */

000000000cC000C0000000CC000000

Conversation of Interest/Help
by Rod Holden

Here is a conversation that took place between available and rumning. And I was amazed (after
myself and Bob Devries. inheriting a collection of 'The Rainbow' dating back
We were talking about how long O0S9 has been to 1983) at reading scme of the articles. I said to

May 1993 Page 9

AUSTRALIAN 0S9 NEWSLETTER

Bob that I feel rather cheated because I wasn't
aware that 0S9 had been going for so long. I bought
my CoCo3 back in 1988 and I learned about 0S9 was in
1989. I said to Bob that I will never be able to
make up for lost time, not to worry we all feel the
same way at one stage or another. I said my
expertise on 089 would fit on the head of a pin, so
to all you users out there, here I am rumning the
National CS9 User Group BBS with limited knowledge
of 089. So if you feel like asking questions no
matter how big or small or silly please contact us
in Brisbane by letter or by logging on to the BBS,
or by phone and we will try very hard to answer your

0S9 Level II is a system that shocks those users who
have been using it for a long, and I can still hear
them say 'why did it do that" or "the instructions
said it is supposed to do this" but it didn't why
not?? Do you sit there for hours scratching your
head reading the instructions over and over again
till you either give up in disgust or throw the
instructions away and you try something different
and find it works, or do you ring someone for help,
or forget all about it because asking makes you feel
like an idiot. Does this sound 1like you, if so
don't dispair, as I said earlier help is around the
corner. We await your questions.

questions. bye
) Rod Holden

000000000c00C0000C000C0CCC0000

Members' Questions and Answers

Brian Palmer, of Balgownie, NSW asks:

I would like to know if there is any way to use the CRCHESTRA 90CC cartridge under 0S9, and also if
there is a way to piggy-back the disused 128K RAM chips, on top of the already installed 512K RAM board.

ANSWER 1. I see no reason why the CRCHESTRA 90CC cartridge could not be used under 0S9, however, as far
as I know, no-one has as yet done so. If someone wrote a programme to use it, it would have to be written
like Kevin Darling's 'PLAY' command, which plays music through the monitor speaker. The main problem with

this programme, is that it stops the interrupts, thus not allowing multi-tasking, which is what 0S9 is all
about.

ANSWER 2. No, the chips removed when you upgrade to 512K are of a different type than those used in the
512K board, and must not be piggy-backed on them. Perhaps if someone who is clever in electronic design
could have a look at the circuit diagram for the RAM board in 'The Rainbow', by Tony Distafano same time
back, they could perhaps be used there. How about it someone? I know there are some electronics experts
down Melbourne way!

Hope this helps, .
Bob Devries.

Page 10 May 1993

