Unlink <modname> Usage : Unlinks module(s) from memory @WCREATE
Syntax: Wcreate [opt] or wX [-s=type] xpos ypos xsiz ysiz fcol bcol [bord]
Usage : Initialize and create windows Opts : -? = display help -z = read

command new screen
lines from @XMODE
stdin  -s=type Syntax:
= set screen X Mode
type for a <devname>
window on a [params]

Usage : Displays or changes theparameters of an SCF type device
@COCOPR Syntax: cocopr [<opts>] {<path> [<opts>]} Function: display file
in specified format gets defaults from /dd/sys/env.file Options : -c set columns

per page -f use form feed for trailer -h=num set number of lines after

header -l=num set line length -m=num set left margin -n=num set starting
line number and incr -0 truncate lines longer than Inlen -p=num set number
of lines per page -t=num number of lines in trailer -u do not use title

-u=title use specfied title -x=num set starting page number -z[=path] read file
names from stdin or <path> if given @CONTROL Syntax: control [-e] Usage
: Control Panel to set palettes, mouse and keyboard parameters and monitor

type for
ADDRESSES Mul Lli -V be CONTENTS

Editorial Material: 321:?'“ ® tilitiee
Gordon Bentzen menu as  the

8 Odin Street Control Panel. Editorial.......... Page 2

SUNNYBANK Qld 4109 || Opts : - = Questions/Answers.. Page 3

execute tgle Saving B09 Windows. Page 7

. . environment € BO9 'im ....... Pa 8

lerax_‘y Requests: @GCLOCK| ctorial Gap 12, pag: g

Jean-Pierre Jacquet Syntax:  gelock || Mesbership list ... Page 13
27 Hampton Street Usage : Alarm
DURACK Qld 4077 clock utility for
Multi-Vue.

Selectable from desk utilities menu as Clock. @GCALC Syntax: gcalc Usage :
Graphics calculator utility for Multi-Vue. Selectable form desk utilities menu as

Volume 7 Jan/Feb 1993 Number 1

Calculator., @GCAL Syntax: gcal Usage : Calendar/Memo book utility for
Multi-Vue. Selectable as Calendar from the desk utilities menu. @GPRINT

Syntax: gprint Uq'\ge : Printer setup utility for Multi-Vne Iets nser graphically




AUSTRALIAN 0S9 NEWSLETTER
Newsletter of the National 0S89 User Group
Volume 7 Number 1

EDITOR : Gordon Bentzen
SUBEDITOR : Bob Devries

TREASURER : Don Berrie
LIBRARIAN : Jean-Pierre Jacquet

SUPPCRT : Brisbane 059 Level 2 Users Group.

Here's what's new in the 0S9 world.

As you know we are not the only 0S9 Usergroup to
enjoy the wonders of the 0S9 operating system. We
are all well aware of the existence of the U.S.
Usergroup from which the majority of P.D. material
emanates. The present U.S. Usergroup is a revamp
of the original group which folded some time ago
and it now operates under new rules.

As well as this group, there are other usergroups
actively promoting 0S9 in their own way, not the
least of which is "EUROS9" a usergroup run by Peter
Tutelaers in the Netherlands with the support of
Burghard Kinzel in Germany. We currently exchange
newsletters with this group and are also very
grateful for the many P.D. disks which they have
forwarded on to us.

The OCN, 0S9 Community Network, which communicates
through the FIDO network is very active,
particularly in the U.S. and Canada.

There is also a relatively new group, I believe, in
the U.K. known as the "EUROPEAN 0S9 USERGROUP" plus
others that we know of, "FOS9" (Japan), '"OS9
USERGROUP OF JAPAN" and "EFFO" (Switzerland).

Peter Tutelaers of EUROSY9 has contacted us to
establish our possible interest in new venture he
is proposing to all known O0S9 usergroups. This
'venture' is essentially improving communications
between the usergroups for exchange of information
and public domain software.

Peter proposes to have a few people (two or three)
who would collect newsletters and P.D. stuff from
nominated usergroups, make copies and then forward
on to all usergroups. The details of this scheme
are yet to be worked out.

Bob Devries, Don Berrie, Jean-Pierre Jacquet and
myself (Gordon Bentzen) discussed this proposal at
a very recent newsletter meeting, and we agree that
we should participate and support Peter in this
'venture'. After all, each usergroup was set up
for the main purpose of exchange of information and

for help and assistance to others. This new
'venture' simply extends this concept to an
organised International ‘'usergroup'. Peter has

Page 2

proposed that full details could be worked out at a
meeting on May lst in Chicago USA.

And that leads to the next bit of news. A
"CoCoFest" will be held in Chicago over the weekend
of May lst and 2nd? The 'Fest will be run over the
Friday night, Saturday and Sunday. In conjunction
with that 'Fest, it is proposed to hold a meeting
of representatives of 059 Usergroups around the
world. We have been invited to send a
representative to that meeting.

We have already received an indication
that some of the costs involved in
sending our representative to the
meeting would be covered by the other
Usergroups involved. We have not worked
out what the costs for our Usergroup
would be, but I do expect that some
extra funds could be raised by the sale
of newsletters and PD-Software from
other Usergroups.

Would you as a member of the National

059 Usergroup be prepared to pay a
little more either as an annual
subscription, or perhaps a one off

donation of say $5, 810 or $15 towards
the cost of sending a representative to
Chicago?

Remember that the National O0S9 Usergroup is
operated on a non-profit basis, and that the annual
subscription is designed to cover only the
production (printing) and mailing costs of the
newsletter. This means that we have essentially no
carry-over monies from year to year that we could
use to help fund this exercise. We have not until
now carried any paid advertisements in the
Newsletter, and that, after all, is the main source
of income for most publications. Perhaps a wider
international circulation would make paid ads a
proposition, what do you think?

Well, there is something to think about! -
Unfortunately we do not have much time to think if
we are to have a representative in Chicago in May.
We would need to be making definite arrangements by
the end of February.

Jan/Feb 1993



AUSTRALIAN 0S9 NEWSLETTER

If you think that this is too good an opportunity
for the Australian National OS9 Usergroup to miss,
a short note in return mail with your pledge of

support would be welcome.
Cheers, Gordon.

000000000c000000000C0C00000000

0S9 Frequently-Asked Questions List

Updated 13 Jamuary 1993

This is the fifth revision of the 0S9 FAQ list.

As in the last edition, addresses will be
referenced by mmber (e.g. [1]) and the address
will be listed at the bottom of the file. This
(hopefully) will make for easier reading.

In addition, a complete list of the questions
answered here is given at the top of the file.
Upon compiling the faq, this time, I noticed that
there STILL aren't many questions answered here. If
you feel there is a question often asked that you
don't see answered here, let me know. Supply the
answer, also, if you can; otherwise I'll see if I
can't track it down.

Again, if there are any additions, corrections,
suggestions, comments, flames, or contributions,
please respond in kind to me, Russell Hoffman,
rh2y+@andrew. cmu.edu

Section One: List of answered questions

Q: What is 0597

Q: What is OSK?

Q: Where can I get 0S9?

Q: What machines run 0S97?

Q: Where do I get 059/68000 for the Macintosh?

Q: Where do I get 059/68000 for the Commodore
iga?

Q: Where do T get 059/68000 for the Atari ST?

Q: What is 0S-90007

Q: What software is available for 0S9?

Q: Where can I get pd/shareware/freeware software
for 0S9?

Q: What is the TOP package?

Q: Are there alternative shells for 0597

Q: Can one read/write MS-DOS format disks under

0S9?

Q: What sorts of commumications software is
available?

Q: What about usenet and news?

Q: Is gcc available for 0897

Q: Can I run X1l on 0S9?

Q: What other graphics alternatives are there?

Q: What is a Real Time system?

Q: Does 089 support multiple threads within a

program?

Section Two: Q & A

Jan/Feb 1993

Q: what is 0S9?

A: 089 is a real-time, multiuser, multitasking
operating system developed by Microware Systems
Corporation. It was originally developed for the
6809 microprocessor, in a joint effort between
Microware and Motorola. The original Level T 6809
0S9 0S was capable of addressing 64 kilobytes of
memory. The Level II 6809 0S9 took advantage of
dynamic address translation hardware, and allowed a
mapped address space of one megabyte on most
systems, and up to two megabytes on others, most
notably the Tandy Color Computer III.

In the 1980's, Microware ported O0S9 to the 68000
family of microprocessors, creating 0S9/68000.
Code is mostly portable from 0S9/6809 to 0S9/68000
at the high-level-language source code level. Code
is compatible within either 0S9/6809 or 0S9/68000
at the binary level.

059/68000 provides synchronization and mutual
exclusion primitives in the form of events, which
are similar to semaphores. It also allows
camunication between processes in the form of
named and unnamed pipes, as well as shared memory
in the form of data modules.

0S9 is modular, allowing new devices to be added
to the system simply by writing new device drivers,
or if a similar device already exists, by simply
creating a new device descriptor. All i/o devices
can be treated as files, which unifies the i/o
system. In addition, the kernel and all user
programs are RCMable. Thus, 0S9 can run on any
680x0 based hardware platform from simple diskless
embedded control systems to large multiuser
minicomputers.

Q: what is OSK?

A: OSK is an abbreviation for 0S9/68000. This is
probably due to the common abbreviation '68k' for
the 68000 microprocessor. Also sometimes called
059/68k.

Q: wWhere can I get 0S9?

A: Generally the hardware vendor will ship a
version of 0S9 with the product upon which 0S9 is
intended to be run. Alternatively, O0S9 can be
purchased from Microware [1] itself, for certain

Page 3




AUSTRALIAN 0S9 NEWSLETTER

hardware platforms. In addition, several software
vendors sell customized and enhanced 0S9 packages.
Ultrascience [2] and FLSOFT AG [3] are examples of
such vendors. Note that ELSCFT is in Switzerland.

Q: what machines run 0S9?
A: 059/6809 runs on a variety of platforms,
perhaps the most (in)famous being the Tandy Color

Computer. Other systems include the SWIPC SCB-69,
the Gimix 6809, Smoke Signal Broadcasting's
Chieftain 6809, FHL's TC09, the Febe, and many

others, most of which are SS-50 bus machines. Note
that 0S9/6809 1is no longer supported by Microware,
but many user groups, BBSes, and a handful of FIP
sites offer help and maintain software collections
for 0S9/6809.

0S89/68000 runs on quite a multitude of machines,
including a variety of systems from Hazelwood (such
as the UniQuad I and II), the Gimix Micro-20, the
Atari ST, Commodore Amiga, Apple Macintosh, IMS
Mv/1, FHL TC-70, and a large number of 680xO-based
WE systems, manufactured by such companies as
Radstone Technology, Motorola, Heurikon, Inducom,
Force, Mizar, and others. Gespac also makes a
large number of platforms based on their G-64 and
G-96 bus.

Q: Where do I get 0S9/68000 for the Macintosh?

A:  Ultrascience [2] (A division of Gibbs
Laboratories) makes a version of 0S59/68000 for the
Macintosh. According to their literature, it even
allows the Macintosh operating system to run as a
process under 0S9.

Q: Where do I get 059/68000 for the Commodore
Amiga?

A: Digby Tarvin [4], in Australia,
0S9/68000 for the
$600 US.

has a port of
Amiga, which cost approximately

Q: Where do I get 0S9/68000 for the Atari ST?
A: Cumana [5] and Dr. Keil [6] offer two different
ports of 0S9 to the ST.

Q: what is 0S—90007?

A: 0S-9000 is a portable version of 0S9, written
primarily in C. It can potentially run on any
68020 or higher 680x0 family member, and any
80386sx or higher 80x86 member. Code is portable
across 0S-9000 platforms at the source level.
Theoretically, 0S-9000 can be ported to any modern
computer architecture, though 680x0 and 80x86 are
the only supported microprocessor families at
present.

Q: what software is available for 0S9?

Page 4

A: Nearly any user application can be found either

comercially or in the public
domain/shareware/freeware. Many word-processor,
spreadsheets, databases, and time management

software packages are available from a variety of
vendors. A list of much of the available
comercial software is available from Microware.
They publish the "0S9 Sourcebook', a listing of
hardware and software vendors who sell both 6809
and 68000 software and hardware. It is advisable
to contact the individual companies listed in the
Sourcebook and request a recent catalog, as the
information in the Sourcebook is a tad outdated.

Microware's quarterly magazine Pipelines also
carries new product announcements.
Q: Where can 1 get public-

domain/shareware/freeware software for 0S9?

A: There are many private bulletin boards around.
Hopefully, someone will be publishing a list of all
known BBSes which have 0S9 software. In addition,
there is the Princeton Listserver, which acts as a
mailing server that will mail requested software.
To begin using the Listserver, send electronic mail
to LISTSERV@PUCC.PRINCETON.EDU, with the single
line

HELP

in your message. Also, the 0S-9 User's Group [7]
maintains a library of public domain sofwtare, as
well as distributes a newsletter. Finally, there
are a few anonymous FIP servers worldwide with 0S9
sof tware on them.

Site Operator IP address
hermit.cs.wisc.edu - moved to
cabrales.cs.wisc.edu
cabrales.cs.wisc.edu Jim Pruyne 128.105.2.70
waarchive.wustl.edu Steve Wegert
128.252.135.4
lucy.ifi.unibas.ch Marc Balmer 131.152.81.1

Don't forget the often overlooked mailserver on
cabrales. The e-mail address is
os9archive@@cabrales.cs.wisc.edu, and a message with
"help" as the body will return some help text. This
provides a way for those without FIP access to
snarf stuff from cabrales via mail.

Cabrales contains mostly 0S9/68000 software,
including the complete TOP package, many FEFFO
disks, GCC and G++, (and many other W products),
ka9q, TeX, and quite a bit of 6809 software.

Jan/Feb 1993




AUSTRALIAN O0S9 NEWSLETTER

Wuarchive has mostly 6809 0S9 software; Lucy is
meant to be a european duplicate of cabrales.

Q: what is the TOP package?

A: TOP is an acronym for "The OS9 Project'". It is
a collection of 0S9/68000 software developed
primarily in Germany. Much of it seems to be an
attempt to make O0S9 a little more UNIX-like. Many
standard unix utilities are provided, as well as a
complete UUCP mail implementation, and a more
secure password file and login program. Many
traditional unix games are also provided. The
total package consumes approximately 16 MB of disk
space, though much of this is source code.

Q: Are there alternative shells for 059?

A: Yes, there are. Microware sells mshell, an
enhanced shell. 1In addition, there are several
public domain shells available. The most notable of
which is the Bourne shell, sh, available in the TOP
package (0S9/68000). It supports aliasing, command-
line editing, history, environment variable
replacement, shell scripting, the " command’
operator (which uses the output of the command as
arguments to the called program), and a startup
file. A PD version of ksh is available on cabrales.

For 0S9/6809, there is Shell+ and of course if you
have a Color Computer, there is always Gshell, a
graphical shell.

Q: Can one read/write MS-DOS format disks under
0s9?

A: Yes, there are several public-domain and
cammercially avaliable utilities to accomplish this
task, for both 0S9/6809 and OSK. One of the more
interesting is the MSFM file manager which appears
in _0S9 Insights , a book by Peter Dibble,
available through Microware. MSFM is an actual
file manager, which allows you to mount an MS-DOS
floppy as part of the 0S9 file system.

Q: Wwhat sorts of commmications software is
available?

A: Many public domain utilities, available from
your local BBS, include terminal emulators and file
transfer utilities (such as xmodem, ymodem, zmodem,
and kermit protocols.) Sterm, a non-commercial

package, also supports Compuserve B+ protocol. In
addition, many software vendors sell various
equivalent packages. C-kermit is available in
source and executable form for 089/68000 on
cabrales.

Also, Microware sells the NFM Network File

Manager, which is a local-area networking protocol
for small networks of strictly 0S9 based camputers.

Jan/Feb 1993

NFM runs on virtually any network interface,
including direct serial links, ARCnet, Ethernet,
and others.

Microware also sells the ISP, or Internet Support

Package, which is a relatively complete TCP/IP
package, including telnet client and server
apllications, and FIP client and server. It also

provides a C BSD 4.2  compatible socket library.
Closely related is the ESP, or Ethernet Support
Package. This is similar to ISP, but is for
particular Ethernet boards. Current word from
Microware says that the ESP is now obsolete, and
has been replaced by a preconfigured version of the
ISP.ISP supports Ethernet and SLIP, although there

is no current SLIP driver supported by Microware.

Microware also sells NFS, or Network File System,
for 059/68000. This allows an 0S9 system to share
files in a heterogeneous envirorment (i.e. not all
the machines on the network run 0S9.) NFS requires
ISP or ESP.

Finally, there is a port of the Phil Karn ka9q
internet software package, which supports a single-
user interface to TCP/IP. It includes a telnet
client, an FIP client and server, and SMIP. Source
and executables may be found on cabrales. Note that
the executables on cabrales have a bug in the FIP
server which causes it to bus trap occasionally.
Hopefully someone will take the time to find this
and correct it.

Q: what about usenet and news?

A: Several ports of UUCP software are available
for both 0s9/6809 and 0s9/68k. A port of C news
and Rn are available on cabrales. TOP has ported
Notes, which maintains Notesfiles. There is a
program which will transfer between Notesfiles and
netnews. The TOP package in its entirety may be
found on cabrales.

Rick Adams' UUCP port for the Color Computer may
be found on wuarchive, as well as on Delphi and

Compuserve.

Q: Is gcc available for 0597
A: gcc and g++ are available for 059/68000, both
in 0S9 executable form and cross-compiler form.

Versions 1.37, 1.39 and 1.40 were ported to
0S9/68000 primarily via the work of Stephan
Paschedag. Source and binaries are available on

cabrales.cs.wisc.edu via anonymous FIP. The 1.40
version supports 68040 optimizations.

Q: Can I run X11 on 0S97?
A: Yes. Microware sells a port of X1IR4 (client

Page 5




AUSTRALIAN OS9 NEWSLETTER

and server plus optional Motif) , as well as do

Eltek Electronik GmbH [8]

Q: What other graphics alternatives are there?

A: Several other organizations have various
graphics packages for 0S9. Reccoware Systems [9]
has a port of the Bellcore MR window manager.
Gespac [10] produces G-windows, a portable
windowing package which has device windows and a
very Motif-looking interface. For the M¥/I,
Interactive Media Systems [11] is producing K-
windows, window manager similar to Multi-Vue, the
0S9 window package for the Tandy Color Computer
III. Microware also sells RAVE, the Real-Time Audio
Video Environment.

Q: What is a Real Time system?

A: A real-time system is any system whose
correctness depends not only on the correctness of
the applied algorithms, but also in the timing of
the execution of those algorithms. Refer to the
netnews comp.realtime newsgroup for more
information.

Q: Does 0S89 support miltiple threads within a
program?

A: No, not directly like Mac does, but through the
use of user installed periodic interrupts or
alarms, a user program can support it's own
threads. Consult a good operating systems book for
more details.

Section Three: Addresses, by reference mmber
(1]
Microware Systems Corporation

1900 N.W. 1l4th Street Des Moines, Iowa 50322
Phone: (515) 224-1929 Fax: +1 (515) 224-1352

Microware Systems Corporation

Western Regional Office

2041 Mission College Boulevard Santa Clara,
California 95054

Phone +1 (408) 980-0201 Fax +1 (408) 980-1671

Northeastern Regional Office
One Crank Rd Hampton Falls, NH 03844
(6039294107 (603)929-4233 fax

Southeastern Regicnal Office
P.0O. Box 510358 Melbourne Beach, FL 32951-0358
(407)725-2840 (407)725-2487 fax

Microware Systems (UK) Limited
Leylands Farm, Nobs Crook

Colden Comon Winchester, Hants.
England, SO2! 1TH

Phone: +44 703 601990 Fax:  +44 703 601991

Page 6

Microware Systems K.K.

17-3, Sotokanda 2-Chome
Chiyoda-Ku Tokyo 101, Japan
Phone: +81 3-~3257-9000 Fax: +81 3-3257-9200
Microware Systems France
Chateau de la Saurine

Pont de Bayeux 13590
Meyreuil France

Phone: +33 42 58 63 00 Fax:

(2]
Ultrascience Box 847 Wheeling,
Illinois 60090 UsA

(708)-808-9060 FAX: (708)-808-9061

(3}
ELSOFT AG Zelgweg

12 CH-5405 Baden-Daettwil

Tel. +41 56 83 33 77 Fax. +41 56 83 30 20

(4]
Digby Tarvin, Technical Director
Tesseract Pty. Ltd

Coamputer Consultants

53 George St.

Redfern,

New South Wales Australia, 2016
Fax: 011-61-2-698-8881

+33 42 58 62 28

Fmail: digbyt@extro.ucc.su.oz.au

{5]
Cumana Ltd.

The Pines Trading Estate

Broad Street

Guildford Surrey England, GU3 3BH

Phone: +44 483 503121 Fax: +44 483 503326

(6}
Dr. R. Keil GmbH

Gerhart-Hauptmann-Str.

30 D-6915 Dossenheim

Tel. +49 6221 86 20 91 Fax. +49 622] 86 19 54

(7]
0S-9 User's Group

PO Box 465 Goshen,
Indiana USA 46526—0465

(8}
Eltek Electronik GumbH
Galileo-Galilei-Strasse 11

D-6500 Mainz 42

Germany

Phone: (6131) 588-0 fax: (6131) 588-199

Jan/Feb 1993




AUSTRALTAN

0S9 NEWSLETTER

(91
Reccoware Systems

Wolfgang Ocker

Lochhauser Strasse 35a

D-8039 Puchheim

Voice: +49 89 80 77 02 Fax: 49 89 80 29 67

(10]
To contact Gespac,
call toll-free 1-800-4GESPAC

(11]
Interactive Media Systems

238 Catawba Averue,
Davidson,

North Carolina USA 28036
Phone: 704/892-6233

or

IMS SALES

1840 Biltmore Street NW
Suite 10

Washington DC USA 20009
Phone: (202) 232-4246

0000000coc0000000000CCOCCO000

Saving window status in Basic(9
by Bob Devries

One of my pet hates with programmes written for
0S9 (and indeed any computer), is programmes which
having created a special screen type for running
in, proceed to quit WITHCUT RESTORING the screen
that I was running.

The fault lies squarely with the (lazy)
programmer, because it is mostly very easy to save
the current screen settings, and restore them after
the progranme has finished. I guess the place to
start is to save the current settings from what the
techos call the PD.OPTS section. The information
from the PD.OPTS can be easily saved in a 32 byte
buffer (make sure it is in the main routine of your
programme). Here is a Basic09 sample:-

TYPE registers=cc,a,b,dp:byte; x,y,u:integer
DIM regs:registers

DIM getstt,setstt:byte

DIM opt_buff(32):byte

getstt=$8D \ (* Get Status system call
setstt=$8E \ (* Set Status system call

regs.a=0 \ (* use SIDIN all others are automatic
regs.b=0 \ (% GS_OPT call

regs.x=ADDR(opt_buff) \ (¥ address of 32 byte
buffer

RUN syscall(getstt,regs) \ (** do the job

That piece of code is broken up into the
DIMension statements, including the TYPE complex
variable for the CPU registers, setting the various
variables to their values (see comments), and the
actual code for the operation. You only need to
change the PD.OPTS of ONE of the standard paths,
all the others merely mirror SIDIN, so what you
change in one, is also changes in all the others.

Jan/Feb 1993

The code to reset the PD.OPTS is véry simple:-

regs.a=0 \ (* SIDIN again

regs.b=0 \ (* SS OFT call

regs.x=ADDR(opt_buff) \ (* address of 32 byte
buffer of previous

RUN syscall(setstt,regs) \ (* Set Status call this
time.

Now you may quit.
0K, but I'm not finished yet!

We still need to deal with changes to the
screen, like screen type, palette colours, and
foreground, background, and border colours.

Now, there are (at least) two ways to do this.
I have used both successfully, so I will show you
what I have done. The first method assumes plenty
of memory, because it involves creating a new
screen OVER THE TOP OF the existing screen. This
is a bit more involved for future pieces of code as
you will see. Here is the code:- (I'm assuming
previously DIMmed variables for clarity.)

(* first open a path to a new descriptor

OPEN #wpath,"/w' :UPDATE \ (* UPDAIE essential here
RUN gfx2(jwpath,"DWSET",7,0,0,80,24,0,1,2) \ (set
up type 7 graphics screen

RUN gfx2(#wpath,"SELECT") \ (* make the new screen
visible

RUN gfx2(#wpath,"FONT",200,1) \ (** select font to

use

Now, that piece of code assumes 1. that you
have the descriptor '/w' in memory (from your
boot), and 2. that you have merged sys/stdfonts

(although this can be done within the programme).

Page 7



AUSTRALIAN O0S9 NEWSLETTER

One niggly problem with this approach is that
AlL print statements and gfx? commands MUST quote
the fwpath, else the printing will go to the
(invisible) window underneath.

To reselect the original window, here's what
you do:—

RUN gfx2(0,"SELECT") \ (* select the old screen
RUN gfx2(jhwpath,"DWEND") \ (* kill off the old
screen

0K, so much for the first method. Here's
another way:-

DIM pals(16):BYIE \ (* Palette reg buffer

DIM sels(3)BYIE \ (* Fore, background and border
regs buffer

DIM sctyp:BYIE \ (* screen type code 1..8

DIM screen x:INTEGER

DIM screen_y:INTEGER

TYPE registers=cc,a,b,dp:BYIE; x,y,u:INTEGER

DIM regs:registers

DIM getstt,setstt:BYIE

getstt=58D

setstt=S8E

regs.a=0 \ (* stdin path

regs.b=§91 \ (*SS.Palet

regs.x=ADDR(pals) \ (* address of palette buffer
RN syscall(getstt,regs) \ (* do Get Status call

You now have the palette registers of the old
screen.

regs.a=0 \ (* stdin path

regs.b=896 \ (* SS.FBRgs

regs.x=ADDR(sels) \ (* buffer for colour registers
RUN syscall(getstt,regs) \ (* do Get Status call

Now you have the colour registers.

regs.a=0 \ (* stdin...

regs.b=893 \ (* SS.ScTyp

RUN syscall(getstt,regs) \ (* do Get Status call
sctyp=regs.a \ (* save screen type returned in A
reg

Now you have the screen type.

regs.a=0 \ (* stdin...

regs.b=526 \ (* SS.ScSiz

RUN syscall(getstt,regs) \ (* do Get Status call
screen x=regs.x \ (* X size in X reg

screen y=regs.y \ (* Y size in y reg

Now you have the screen size. This info is
probably all you need. I know that things like
working area can be different, but most of the info
is saved, though you could probably take this to
all sorts of depths. Now you can kill off the old
screen, and restart a new one.

RN gfx2(0,"DWEND") \ (* Kill old screen
RN gfx2(""DWSET",7,0,0,80,24,0,1,2) \ (*
your screen

RUN gfx2("SELECT") \ (* make it visible
RUN gfx2("FONT",200,1) \ (* select a font

set up

Now you can use the screen to your heart's
content, and you don't have to worry about a path
to the screen. To restore, you must reverse the
previous procedure, although, not in as many steps.

RUN gfx2(0,'"DWEND")

regs.a=0 \ (* stdin...

regs.b=$97 \ (% SS.DFPal

regs.x=ADDR(pals) \ (* palette regs

RN syscall(setstt,regs) \ (* do Set Status call
RUN efx2("DWS
ET",sctyp,0,0

,Screen x,screen y,pals(1),pals(2),pals(3))

RUN gfx2("SELECT") \ (* make it visible

Now you are back to where you started. If you
had a need to change things like the screen pause

etc., you should have also used the routine at the
start of this article. One point I must stress
again, 1is that you MUST use variables declared in

the main part of your programme (as in main() in C
progranming) because otherwise your variable
contents will be lost.

I hope that this will help programmers (and
experimenters) to programme more neatly, and
perhaps I have been able to impart soame of my
experiences to someone. If so, great.

Regards, Bob Devries

000000000000000000CC00000000000

Windows for Basic09 - another way
by Bob Devries, programme by Gene Krenciglowa

After I wrote the article on Basic09 and
windows for this issue, I came across a sample

Page 8

programme whilst perusing messages on the 059 echo
on FIDONET. It just shows that I can't think of

Jan/Feb 1993




AUSTRALIAN 0S9 NEWSLETTER

everything, and that there is always some other way
of doing the same thing. In this case, Gene's way
has some distinct advantages, and is a great
example of the use of the ISDUP system call from
within Basic09. Aint science wonderful! Thanks,
Gene!

PROCEDURE dwsel

TYPE registers=cc,a,b,dp:BYIE; X,y,u:INTEGER

DIM regs:registers

DIM winl,Dup,outstd,outdup,wlast :BYTE

outstd=1 \Dup=5$82

RUN showscrn(outstd)

regs.a=outstd \RUN syscall(Dup,regs) \outdup=regs.a
PRINT "outdup '"; outdup

CLOSE #foutstd \(* free up path 1

OPEN #winl,"/w":UPDATE

RUN gfx2(winl,"DWSET",1,0,0,40,24,0,2,1)

RUN gfx2("SELECT") \RUN delay

RUN showscrn(winl)

RUN gfx2(outdup,"SELECT") \(¥ Y the key line -
before CLOSE #winl

RUN delay

CLOSE #winl \(* free up parh 1

regs.a=outdup \RUN syscall(Dup,regs) \wlast=regs.a
CLOSE #outdup

RUN showscrn(wlast)

END

PROCEDURE showscrn

PARAM wn:BYTE

DIM zz:STRING[1]

PRINT "path number = "; wn; "
GET #hwm,zz

END

press any key"

PRCCEDURE delay

DIM i:INTEGER

RUN gfx2('"BELL") \ FOR i=1 TO 10000 \NEXT i
END

By the way, Gene is from Canada. The tagline on
his message reads: DISCUS BBS, Hull Quebec,Canada
(819)771-3792 (1:163/519).

Bob Devries

000000000000000C00000CCO0CO000

A C Tutorial
Chapter 12 - Dynamic Allocation

WHAT IS DYNAMIC ALLOCATION?

Dynamic allocation is very intimidating to a
person the first time he comes across it, but that
need not be. Simply relax and read this chapter
carefully and you will have a good grounding in a
very valuable programming resource. All of the
variables in every program up to this point have
been static variables as far as we are concerned,
(Actually, some of them have been "automatic" and
were dynamically allocated for you by the system,
but it was transparent to you). In this chapter,
we will study some dynamically allocated variables.
They are simply variables that do not exist when
the program is loaded, but are created dynamically
as they are needed. It is possible, using these
techniques, to create as many variables as needed,
use them, and deallocate their space for use by
other variables. As usual, the best teacher is an
example, so load and display the program named
DYNLIST.C.

We begin by defining a named structure "animal"
with a few fields pertaining to dogs. We do not
define any variables of this type, only three
pointers. If you search through the remainder of
the program, you will find no variables defined so
we have nothing to store data in. All we have to
work with are three pointers, each of which point

Jan/Feb 1993

to the defined structure.
we need some variables,
dynamically.

In order to do anything,
so we will create some

DYNAMIC VARIABLE CREATION

The first program statement,
something to the pointer 'petl"

which assigns
will create a

dynamic structure containing three variables. The
heart of the statement is the "malloc" function
buried in the middle of the statement. This is a

"memory allocate" function that needs the other
things to completely define it. The "malloc"
function, by default, will allocate a piece of
memory ont a "heap" that is '"n" characters in length
and will be of type character. The '"n" must be
specified as the only argument to the function. We
will discuss "n" shortly, but first we need to
define a "heap".

WHAT IS A HEAP?

Every compiler has a set of limitations on it
as to how big the executable file can be, how many
variables can be used, how long the source file can
be, etc. One limitation placed on users by many
compilers for the IBM-PC and compatibles is a limit
of 64K for the executable code. This is because

Page 9




AUSTRALIAN OS9 NEWSLETTER

the TBM-PC uses a microprocessor with a 64K segment
size, and it requires special calls to use data
outside of a single segment. In order to keep the
program small and efficient, these calls are not
used, and the program is limited but still adequate
for most programs.

A heap is an area outside of this 64K boundary
which can be accessed by the program to store data
and variables. The data and variables are put on
the "heap" by the system as calls to '"malloc" are
made. The system keeps track of where the data is
stored. Data and variables can be deallocated as
desired leading to holes in the heap. The system
knows where the holes are and will use them for
additional data storage as more "malloc' calls are
made. The structure of the heap is therefore a
very dynamic entity, changing constantly.

MORE ABCUT SEGMENTS

Scme of the more expensive compilers give the
user a choice of memory models to use. Examples
are Lattice and Microsoft, which allow the
programmer a choice of using a model with a 64K
limitation on program size but more efficient
running, or using a model with a 640K limitation
and requiring longer address calls leading to less
efficient addressing. Using the larger address
space requires inter segment addressing resulting
in the slightly slower running time. The time is
probably insignificant in most programs, but there
are other considerations.

If a program uses no more than 64K bytes for
the total of its code and memory and if it doesn't
use a stack, it can be made into a .COM file.
Since a .CM file is already in a memory image
format, it can be loaded very quickly whereas a
file in a .EXE format must have its addresses
relocated as it is loaded. Therefore a small
memory model can generate a program that loads
faster than one generated with a larger memory
model. Don't let this worry you, it is a fine
point that few programmers worry about.

Using dynamic allocation, it is possible to
store the data on the "heap" and that may be enough
to allow you to use the small memory model. Of
course, you wouldn't store local variables such as
counters and indexes on the heap, only very large
arrays or structures. Even more important than the
need to stay within the small memory model is the
need to stay within the computer. If you had a
program that used several large data storage areas,
but not at the same time, you could load one block
storing it dynamically, then get rid of it and
reuse the space for the next large block of data.
Dynamically storing each block of data in
succession, and wusing the same storage for each

Page 10

block may allow you to mm your entire program in
the computer without breaking it up into smaller
programs.

BACK TO THE "MALLOC" FUNCTION

Hopefully the above description of the "heap"
and the overall plan for dynamic allocation helped
you to understand what we are doing with the
"malloc" function. It simply asks the system for a
block of memory of the size specified, and gets the
block with the pointer pointing to the first
element of the block. The only argument in the
parentheses is the size of the block desired and in
our present case, we desire a block that will hold
one of the structures we defined at the beginning
of the program. The "sizeof" is a new function,
new to us at least, that returns the size in bytes
of the argument within its parentheses. Tt
therefore, returns the size of the structure named
animal, in bytes, and that number is sent to the
system with the "malloc" call. At the completion
of that call, we have a block on the heap allocated
to us, with petl pointing to the first byte of the
block.

WHAT IS A CAST?

We still have a funny looking construct at the
beginning of the "malloc" function call. That is
called a "cast". The '"malloc" function returns a
block with the pointer pointing to it being a
pointer of type "char" by default. Many times, if
not most, you do not want a pointer to a "char"
type variable, but to some other type. You can
define the pointer type with the construct given on
the example line. In this case we want the pointer
to point to a structure of type "animal", so we
tell the compiler with this strange looking
construct. Even if you omit the cast, most
compilers will return a pointer correctly, give you
a warning, and go on to produce a working program.
It is better programming practice to provide the
compiler with the cast to prevent getting the
warning message.

USING THE DYNAMICALLY ALIOCATED MEMCRY BLOCK

If you remember our studies of structures and
pointers, you will recall that if we have a
structure with a pointer pointing to it, we can
access any of the variables within the structure.
In the next three lines of the program, we assign
some silly data to the structure for illustration.
It should come as no surprise to you that these
assignment statements look just like assignments to
statically defined variables.

Jan/Feb 1993




AUSTRALIAN 0S9 NEWSLETTER

In the next statement, we assign the value of
"petl" to "pet2" also. This creates no new data,
we simply have two pointers to the same object.
Since '"pet2" is pointing to the structure we
created above, "petl" can be reused to get another
dynamically allocated structure which is just what
we do next. Keep in mind that "pet2" could have
just as easily been used for the new allocation.
The new structure is filled with silly data for
illustration.

Finally, we allocate another block on the heap
using the pointer "pet3", and fill its block with
illustrative data.

Printing the data out should pose no problem to
you since there is nothing new in the three print
statements. It is left for you to study.

GETTING RID OF THE DYNAMICALLY ALLOCATED DATA

Another new function is used to get rid of the
data and free up the space on the heap for reuse,
the function "free". To use it, you simply call it
with the pointer to the block as the only argument,
and the block is deallocated.

In order to illustrate another aspect of the
dynamic allocation and deallocation of data, an

additional step is included in the program on your
monitor. The pointer "petl" is assigned the value
of '"pet3". In doing this, the block that "petl"

was pointing to is effectively lost since there is
no pointer that is now pointing to that block. It
can therefore never again be referred to, changed,
or disposed of. That memory, which is a block on
the heap, is wasted from this point on. This is
not something that you would ever purposely do in a
program. It is only done here for illustration.

The first 'free" function call removes the
block of data that "petl" and "pet3'" were pointing
to, and the second "free" call removes the block of
data that '"pet2" was pointing to. We therefore
have lost access to all of our data generated
earlier. There is still one block of data that is
on the heap but there is no pointer to it since we
lost the address to it. Trying to "free" the data
pointed to by '"petl" would result in an error
because it has already been "freed" by the use of
"pet3"'. There is no need to worry, when we return
to DOS, the entire heap will be disposed of with no
regard to what we have put on it. The point does
need to made that losing a pointer to a block of
the heap, forever removes that block of data
storage from our program and we may need that
storage later.

Compile and run the program to see if
what you think it should do
discussion.

it does
based on this

Jan/Feb 1993

THAT WAS A LOT OF DISCUSSICN

It took nearly four pages to get through the
discussion of the last program but it was time well
spent. It should be scmewhat exciting to you to
lmow that there is nothing else to learn about
dynamic allocation, the last four pages covered it
all. Of course, there is a lot to learn about the
technique of using dynamic allocation, and for that
reason, there are two more files to study. But the
fact remains, there is nothing more to learn about
dynamic allocation than what was given so far in
this chapter.

AN ARRAY OF POINTIERS

Load and display the file BIGDYNL.C for another
example of dynamic allocation. This program is
very similar to the last one since we use the same
structure, but this time we define an array of
pointers to illustrate the means by which you could
build a large database using an array of pointers
rather than a single pointer to each element. To
keep it simple we define 12 elements in the array
and another working pointer named "point'.

The "*pet[12]" is new to you so a few words
would be in order. What we have defined is an
array of 12 pointers, the first being "pet[0]", and
the last "pet[l1]". Actually, since an array is
itself a pointer, the name "pet" by itself is a
pointer to a pointer. This is valid in C, and in
fact you can go farther if needed but you will get
quickly confused. I know of no limit as to how
many levels of pointing are possible, so a
definition such as '"int *%9pt" is legal as a
pointer to a pointer to a pointer to a pointer to
an integer type variable, if I counted right. Such
usage is discouraged until you gain considerable
experience.

Now that we have 12 pointers which can be used
like any other pointer, it is a simple matter to
write a loop to allocate a data block dynamically
for each and to fill the respective fields with any
data desirable. 1In this case, the fields are
filled with simple data for illustrative purposes,
but we could be reading in a database, readings
fron scme test equipment, or any other source of
data. A few fields are randomly picked to receive
other data to illustrate that simple assignments
can be wused, and the data is printed out to the
monitor. The pointer ''point" is used in the
printout loop only to serve as an illustration, the
data could have been easily printed using the
"pet[n]" means of definition. Finally, all 12
blocks of data are freed before terminating the
program.

Compile

and run this program to aid in

Page 11




AUSTRALIAN O0S9 NEWSLETTER

understanding this technique. As stated earlier,
there was nothing new here about dynamic
allocation, only about an array of pointers. A
LINKED LIST We finally come to the grandaddy of all
programming techniques as far as being
intimidating. Load the program DYNLINK.C for an
exanple of a dynamically allocated linked list. It
sounds terrible, but after a little time spent with
it, you will see that it is sinply another
programming technique made up of simple components
that can be a powerful tool.

In order to set your mind at ease, consider the
linked list you used when you were a child. Your
sister gave you your birthday present, and when you
opened it, you found a note that said, "Look in the
hall closet." You went to the hall closet, and
found another note that said, '"Look behind the TV
set." Behind the TV you found another note that
said, "Look under the coffee pot." You continued
this search, and finally you found your pair of
socks under the dogs feeding dish. What you
actually did was to execute a linked 1list, the
starting point being the wrapped present and the
ending point being under the dogs feeding dish.
The list ended at the dogs feeding dish since there
wWere no more notes.

In the program DYNLINK.C, we will be doing the
same thing as your sister forced you to do. We
will however, do it much faster and we will leave a
little pile of data at each of the intermediate
points along the way. We will also have the
capability to return to the beginning and
retraverse the entire list again and again if we so
desire.

THE DATA DEFINITIONS

This program starts similarly to the last two
with the addition of the definition of a constant
to be used ldater. The structure is nearly the same
as that used in the last two programs except for
the addition of another field within the structure,
the pointer. This pointer is a pointer to another
structure of this same type and will be used to
point to the next structure in order. To continue
the above analogy, this pointer will point to the
next note, which in turn will contain a pointer to
the next note after that.

We define three pointers to this structure for
use in the program, and one integer to be used as a
counter, and we are ready to begin using the
defined structure for whatever purpose we desire.
In this case, we will once again generate nonsense
data for illustrative purposes.

THE FIRST FIELD

Page 12

Using the "malloc” function, we request a block
of storage on the '"heap" and fill it with data.
The additional field in this example, the pointer,
is assigned the value of NULL, which is only used
to indicate that this is the end of the list. We
will leave the pointer '"start' at this structure,
so that it will always point to the first structure
of the list. We also assign "prior" the wvalue of
"start" for reasons we will see soon. Keep in mind
that the end points of a linked list will always
have to be handled differently than those in the
middle of a list. We have a single element of our
list now and it is filled with representative data.

FILLING ADDITIONAL STRUCTURES

The next group of assignments and control
statements are included within a "for" loop so we
can build our list fast once it is defined. We
will go through the loop a mumber of times equal to
the constant "RECORDS" defined at the beginning of
our program. Each time through, we allocate
memory, fill the first three fields with nonsense,
and fill the pointers. The pointer in the last
record is given the address of this new record
because the "prior" pointer is pointing to the
prior record. Thus "prior->next" is given the
address of the new record we have just filled. The
pointer in the new record is assigned the value
"NULL", and the pointer "prior" is given the
address of this new record because the next time we
create a record, this one will be the prior one at
that time. That may sound confusing but it really
does make sense if you spend some time studying it.

When we have gone through the "for" loop 6
times, we will have a list of 7 structures
including the one we generated prior to the loop.
The list will have the following characteristics.

1. 'start" points to the first structure in the
list.
2. Each structure contains a pointer to the next
structure.
3. The last structure has a pointer that points to
NULL and can be used to detect the end.
start->structl This diagram should aid in
name understanding the structure of
breed the data at this point.
age
point->struct2
name
breed
age
point->struct3
name
breed

age

Jan/Feb 1993




AUSTRALIAN 0S9 NEWSLETTER

. struct?
name
breed
age
point->NULL

It should be clear to you, if you understand
the above structure, that it is not possible to
simply jump into the middle of the structure and
change a few wvalues. The only way to get to the
third structure is by starting at the beginning and
working your way down through the structure one
record at a time. Although this may seem like a
large price to pay for the convenience of putting
so much data outside of the program area, it is
actually a very good way to store some kinds of
data.

A word processor would be a good application
for this type of data structure because you would
never need to have random access to the data. In
actual practice, this is the basic type of storage
used for the text in a word processor with one line
of text per record. Actually, a program with any
degree of sophistication would use a doubly linked
list. This would be a list with two pointers per
record, one pointing down to the next record, and
the other pointing up to the record just prior to
the one in question. Using this kind of a record
structure would allow traversing the data in either
direction.

point-> . ., .

PRINTING THE DATA OUT

To print the data out, a similar method is used
as that used to generate the data. The pointers
are initialized and are then used to go from record
to record reading and displaying each record one at
a time. Printing is terminated when the NULL on
the last record is found, so the program doesn't
even need to know how many records are in the list.
Finally, the entire list is deleted to make room in
memory for any additional data that may be needed,
in this case, none. Care must be taken to assure

that the last record is not deleted before the NULL
is checked. Once the data is gone, it is
impossible to know if you are finished yet.

MORE ABOUT DYNAMIC ALLOCATION AND LINKED LISTS

It is not difficult, and it is not trivial, to
add elements into the middle of a linked lists. It
is necessary to create the new record, fill it with
data, and point its pointer to the record it is
desired to precede. If the new record is to be
installed between the 3rd and 4th, for example, it
is necessary for the new record to point to the 4th
record, and the pointer in the 3rd record must
point to the new one. Adding a new record to the
beginning or end of a list are each special cases.
Consider what must be done to add a new record in a
doubly linked list.

Entire books are written describing different
types of linked lists and how to use them, so no
further detail will be given. The amount of detail
given should be sufficient for a beginning
understanding of C and its capabilities.

ANOTHER NEW FUNCTION - CALLOC

One more function must be mentioned, the
"calloc" function. This function allocates a block
of memory and clears it to all zeros which may be
useful in some circumstances. It is similar to
"malloc" and will be left as an exercise for you to
read about and use "calloc" if you desire.

PROGRAMMING EXERCISES

1. Rewrite the example program SIRUCTL.C from
chapter 11 to dynamically allocate the two
structures.

2. Rewrite the example program SIRUCT2.C from
chapter 11 to dynamically allocate the 12
structures.

0000000000000000000000C0000000

AUSTRALIAN - NATIONAL 0S9 USER GROUP - MEMBERS as at 01/31/93 mm/dd/yy
AMBROSI G. A. 172 OGILVIE STREET ESSENDON VIC 3040
BAILEY Eric 6! WINCHESTER STREET MOONEE PONDS VIC 3039
BARBELER Keith J 37 KUNDE STREET LOGANHOLME QLD 4129
BARKER Robert P.0. BOX 711 LIVERPOOL NSW 2170
BEAMISH T 1 MOUNTAIN HWY WANTIRNA VIC 3152
BEASLEY Drew 7 ESKDALE STREET HOLMVIEW QLD 4207
BENTZEN Gordon 8 ODIN STREET SUNNYBANK QLD 4109
BERRIE Don 25 IRWIN TERRACE OXLEY QLD 4075

Jan/Feb 1993

Page 13




AUSTRALTIAN 0S9 NEWSLETTER

BLAZEJEWSKI

BOARDMAN
BYE

CALE
COSSAR

CUNNINGHAM

DALZELL
DEVRIES
DONALDSON
DONGES
DUNN
EATON
EDWARDS
EVANS
GALL
GODFREY
HARBECKE
HARRY
HASKELL
HOCKLEY
HOLDEN

HUTCHINSON

IKIN
JACQUET
JOHNSON
KINZEL
LARAWAY
LIDGARD
MACKAY
MacKENZIE
MANZI
MARTIN
McGIVERN
McGRATH
McLINTOCK
McMASTER
McNABB
MORTON
MURPHY
MURRELLS
PITRE
PRIMAVERA
REMIN
SINGER
SKEBE
STEMAN
STEVENS
SWINSCOE
TAYLOR
UNSWORTH
WINTER

Total Members

NOW AVAIIABIE: A Queensland based BBS for 0S9 Users. Phone number is (07) 2009870, up to 2400 baud, and

Stan
William
Graham
David
M. E.
Eric
Robbie
Bob
Andrew
Geoff
Wally
David
Peter
John
Brian D
Stephen
Peter
Peter
Ray
Terry
Rod
Simon
John C
J.P.
FRASER
Burghard
Terry
Ron

Rob
Greg
Sam

TED

Jim

A. John
George
Brad
John
David
Kevin
Alan
Boisy G
Camillo
Fred
Maurice
Jeff
John
Darren
Robin
Ray

Rob
Neville
59

51 EVAN STREET

10 ELTHAM AVENUE

9 AIRLIE BANK RD
23 HORNSEY ROAD

12 RAKEIORA GROVE
7 NUTHATCH STREET
31 NEDLAND CRES.
21 VIRGO STREET

5 THE GLADES
P.0.BOX 326

2/10 TARANTO RD

20 GREGSON PLACE
40 DAVISON STREET
80 OSBURN DRIVE

PO Box 131
HEINEMANN ROAD

18 MACHENZIE STREET
47 GLENWOOD DRIVE
34 LEITCHS RD

RM G12, BUILDING 13
53 HAIG ROAD

10 ASCOT COURT

42 SPRUCE DRIVE

27 HAMPTON STREET.
35 ROBSON AVE
LEIPZIGER RING 22A

41 N.W. DONCEE DRIVE

P.0.Box 3002

7 HARBURG DRIVE
346 COOK ROAD

73 CURTIN AVE

7 NILE AVENUE

39 BANK STREET

93 LEMON GUMS DRIVE
7 LOGAN STREET
P.O. BOX 1190

PO BOX 109

c¢/o P.0.BOX 195
108 ADENEY AVE

5 GOULBURN AVE

PO BOX 523

29 RICHARD STREET
11 CORCORAN CRES
217 PRESTON ROAD
23 NORMA ROAD
P.0.BOX 680

16 HEWITT ST

17 MELALEUCA STREET
18 CONIFER ST

20 SALISBURY ROAD

153 LASCELLES STREET

PARKDALE
PORT LINCOLN
MORWELL
FLOREAT PARK
PETONE 6303
INALA
PT.NOARLUNGA STH
INALA

DONCASTER

KIPPAX

MARSFIELD

CURTIN

MITCHAM
MACGREGOR
COORANBONG
REDLAND BAY
MANLY WEST
MORAYFIELD
ALBANY CREEK

UNI OF SA 5095
LOGANLEA

NTH DANDENONG
ROWVILLE

DURACK

GOROKAN

5042 ERFTSTADT
BREMERTON U.S.A.
VICTORIA POINT W
BEENLEIGH FOREST
HMAS CERBERUS
LALOR

SANDY BAY
MEADOWBANK
TAMWORTH
NARRABUNDAH
CROWS NEST
BORONTIA
CONDOBOLIN

KEW

CORIO

WAUKEE U.S.A.
MARYBOROUGH
CANUNGRA

WYNNUM WEST

PALM BEACH
WINDSOR

COLAC

SLADE POINT
BROWNS PLAINS
IPSWICH

BRIGHTON

0000000000000000000CCCC0000000

it currently runs from 9.00 PM until 11.00 PM. (AEST) Give us a call!

Page 14

VIC 3195
SA 5606
VIC 3840
WA 6314

NEW ZEALAND

QLD 4077
SA 5167
QLD 4077
VIC 3108
ACT 2615
NSW 2122
ACT 2605
VIC 3132
ACT 2615
NSW 2265
QLD 4165
QLD 4179
QLD 4506
QLD 4035

POORAKA
QLD 4131
VIC 3175
VIiCc 3178
QLD 4077
NSW 2263
GERMANY
WA 98310
QLD 4165
QLD 4207
VIC 3920
VIC 3075
TAS 7005
NSW 2114
NSW 2340
ACT 2604
NSW 2065
VIC 3155
NSW 2877
VIC 3101
VIC 3214

IA 50263

QLD 4650
QLD 4275
QLD 4178
NSW 2108
NSW 2755
VIC 3250
QLD 4740
QLD 4118
QLD 4305
QLD 4017

Jan/Feb 1993



