Unlink <modname> Usage : Unlinks module(s) from memory
@WCREATE Syntax: Wcreate [opt] or /wX [-s=type] xpos ypos
xsiz ysiz fcol bcol [bord] Usage : Initialize and create windows

Opts : -? lines from
= dsniay AUSTRALIAN OS9 |14 s
roenn ¢ NEWSLETTER | st scren

window on a new screen @XMODE Syntax: XMode <devname>
[params] Usage : Displays or changes theparameters of an SCF
type device @COCOPR Syntax: cocopr [<opts>] {<path>
[<opts>]} Function: display file in specified format gets defaults
from /dd/sys/env.file Options : -c set columns per page -f use

form feed for trailer -h=num set number of lines after header

Gordon ,Bentzen

-I=num set line length -m=num set left margin -n=num set
starting line number and incr -0 truncate lines longer than Inlen
-p=num set number of lines per page -t=num number of lines
in trailer -u

ADDRESSES do not use CONTENTS
Editorial Material: title -u=title

Gordon Bentzen use specfied
8 Odin Street title -x=num Bditorial
tarti 1torial Page?
SUNNYBANK Qld 4109 seat S ;::):% C Tutorial chapl0 .. Page3
. p g_e nu FAT Display prog ... Page6
Library Requests: -z[=path] read | os9 attitude Page]
Jean-Pierre Jacquet file names Ed & Rev Numbers .. Pagel4
27 Hampton Street from stdin or
DURACK QId 4077 <path> if

g i v e n
@CONTROL Syntax: control [-e] Usage : Control Panel to set
palettes, mouse and keyboard parameters and monitor type for

Volume 6 October 1992 Number 9

Multi-Vue. Selectable from desk utilities menu as the Control
Panel. Opts : -e = execute the environment file @GCLOCK

AUSTRALIAN 0S9 NEWSLETTER
Newsletter of the National 0S9 User Group
Volume 6 Number 9

EDITOR : Gordon Bentzen
SUBEDITOR : Bob Devries

TREASURER
LIBRARIAN

Don Berrie
Jean-Pierre Jacquet

SUPPORT : Brisbane 0S9 Level Z Users Group.

This 0S-9 Machine just won't die! I refer of course
to the humble CoCo3 with its Level 2 version of 6809
05-9 which is still in use by the majority of our
members. And a National CoCoFest in Meltburne later
this month even yet!

It is great to see this continued support for 0S-9
and the National 0S-9 Usergroup for yet another year.
Our membership for the new subscription year has
already reached 46 which I must say has somewhat
surprised us in spite of an active International 0S-9
community.

As we have suggested several times before, the future
of 05-9 for personal users will rest with OSK and the
68xxx based machines. We are anxiously awaiting an
article from Don Berrie on his recently acquired MM/1
and from what I have observed of Don's demos, the
MM/1 runs just like a CoCo but MUCH, MUCH faster.

So for those 0SK'ers who have supported us for such a
long time, we are certain to have more of interest
for you in the pages of future newsletters. So what
about an article from you to get things rolling?

It is probably about time that I got serious again
about our appeal for newsletter articles, so how
about each of you take the time to send us something
to share with others. Submissions to the newsletter
can take the form of a tutorial, hints and tips,
questions or problems or even some of those
frustrations. In fact anything at all to do with 0S-
9 would be of interest to others.

HARD DRIVES ARE GREAT

I would like to share with you one of my own little
frustrations which involves Hard Drives on my CoCo3.
I have been running a 20meq Hard Drive and Burke &
Burke XT interface for some time now and wonder how I
ever managed without it. As always happens though,
no matter how much storage space, RAM or whatever one
has, it inevitably seems to decrease to "not enough”.
Now one would think that having a reliable system
that has given very little trouble over the past
twelve months the wise thing would be to leave it
alone.

Well, as we are not always driven by wisdom, I
entered into a programme of significant system

Page 2

improvement. A good friend of mine had generously
offered to me a spare BLL controller card which would
suit the Burke & Burke interface and allow my /HO 20
meg drive to be formatted to 30 meg, and my /H1 10
meg drive to be formatted to 15 meg. A total of 45
meg Hard Disk storage instead of 30 meg. This just
had to be a worthwhile upgrade, so let's get into it.
THE PLAN Now the first thing is to make a "backup”
of /HO. That took just sixteen 80 track 720k disks,
not bad for what was there, and another ten 720k
disks for the data on /Hl. I used the Shareware
programme "Stream" which was mentioned in last
month's editorial. (Stream.ar is available from our
librarian upon request)

Next, new drive descriptors are needed for /HO and
/HL. The utility supplied by Burke & Burke, DDMAKER
is used to make the required descriptors. Then build
a new 0S9Boot which will include the new descriptors.
Now switch off the power and remove the old MFM
controller card from the B & B interface, fit the RLL
controller and put everything back together. Well
done!

Switch on and "boot™ 0S-9 from floppy drive /DO. So
far so good. Make sure pause is not active on the
Term window to be used, tmode -pause. Now the
command, Pormat /HO. Several cups of coffee later, a
"free /HO" command reports 120 thousand odd free
sectors, 30meg, Great!!

Next, "Bootport" 0S9Boot from the floppy to /HO, and
then use "Stream" to restore all the files to the
hard drive. Some time later this process is
completed and the "acid test" is will it still "boot"
from /HO.

YOU GUESSED IT ! CoCo does not want to play anymore,
0S-9 just won't "boot", and then it does. After
several attempts it appears that the No-Go's far
outweigh the Go's. The 0S9Boot is re-installed,
checked, built again etc, until, with time running
short and the newsletter due out, a decision needs to
be made. So everything is undone and the MFM
controller is again in charge of a 20meg /h0 and
10meg /hl.

Where else could one get such entertainment?
Cheers, Gordon.

October 1992

AUSTRALIAN 0SS NEWSLETTER

A C Tatorial
Chapter 10 - File Input/Output

QOTPUT TO A FILE

Load and display the file named FORMOUT.C for your
first example of writing data to a file. We Degin as
before with the "include’ statement for ‘stdio.h",
then define some variables for use in the example
including a rather strange looking new type. The type
'FILE* is used for a file variable and is defined in
the *stdio.h® file. It is used to define a file
pointer for use in file operations. The definition of
C contains the requirement for a pointer to a 'FILE',
and as usual, the name can be any valid variable name.

QPENING A FILE

Before we can write to a file, we must open it.
What this really means is that we must tell the systenm
that we want to write to a file and what the filename
is. We do this with the “"fopen" function illustrated
in the first line of the program. The file pointer,
'fp* in our case, points to the file and two arguments
are required in the parentheses, the filename first,
followed by the file type. The filename is any valid
DOS filemame, and can be expressed in upper or lower
case letters, or even mixed if you so desire. It is
enclosed in double quotes. For this example we have
chosen the name TENLINES.TXT. This file should not
exist on your disk at this time. If you have a file
with this name, you should change its name or move it
because when we execute this program, its contents
will be erased. If you don't have a file by this
name, that is good because we will create one and put
some data into it.

READING (*r')

The second parameter is the file attribute and can
be any of three letters, "r*, "w', or "a*, and must be
lower case. When an 'r" is used, the file is opened
for reading, a 'w" is wused to indicate a file to be
used for writing, and an *a" indicates that you desire
to append additional data to the data already in an
existing file. Opening a file for reading requires
that the file already exist. If it does not exist,
the file pointer will be set to NOULL and can be
checked by the prograa.

WRITING ("w")
When a file is opemed for writing, it will be
created if it does not already exist and it will be

reset if it does resulting in deletion of any data
already there.

Page 3

APPENDING ('a")

When a file is opened for appending, it will be
created if it does not already exist and it will be
initially empty. If it does exist, the data input
point will be the end of the present data so that any
new data will be added to any data that already exists
in the file.

QOTPUTTING TO THE FILE

The job of actvally outputting to the file is
nearly identical to the outputting we have already
done to the standard output device. The only real
differences are the new function names and the
addition of the file pointer as onme of the function
arquments. [In the example program, “fprintf" replaces
our familiar ‘printf" function name, and the file
pointer defined earlier is the first arqument within
the parentheses. The remainder of the statement looks
like, and in fact is identical to, the ‘“printf"
statement.

CLOSING A FILE

To close a file, you simply use the function
"fclose' with the file pointer in the parentheses.
Actually, in this simple program, it is not necessary
to close the file because the system will close all
open files before returning to DOS. It would be good
programming practice for you to get in the habit of
closing all files in spite of the fact that they will
be closed antomatically, because that would act as a
reminder to you of what files are open at the ead of
each program. You can open a file for writing, close
it, and reopen it for reading, then close it, and open
it again for appending, etc. Each time you open it,
you could use the same file pointer, or you could use
a3 different one. The file pointer is simply a tool
that you use to point to a file and you decide what
file it will point to. Compile and run this program.
When you run it, you will not get any output to the
monitor because it doesn't generate any. After
running it, look at your directory for a file named
TENLINES.TXT and "type® it. That is where your outpat
will be. Compare the output with that specified in
the program. It should agree. Do not erase the file
pamed TENLINES.TXT yet. We will use it in some of the
other examples in this chapter.

QUTPUTTING A SINGLE CHARACTER AT A TIME

Load the next example file, CHAROUT.C, and display
it on your monitor. This program will illustrate how

October 1992

AUSTRALIAN OS9 NEWSLETTER

to output a single character at a time. The program
begins with the 'include' statement, then defines some
variables including a file pointer. We have called
the file pointer ‘'point® this time, but we could have
used any other valid variable name., We then define a
string of characters to use in the output function
using a "strcpy® function. We are ready to open the
file for appending and we do so in the 'fopen"
function, except this time we use the lower cases for
the filemaee. This is done simply to illustrate that
DOS doesn't care about the case of the filename.
Notice that the file will be opened for appending so
we will add to the lines inserted during the last
progra. The program is actually two nested *for'
loops. The outer loop is simply & count to ten so
that we will go through the inner loop ten times. The
inner loop calls the function "putc® repeatedly until
a character in "others® is detected to be a zero.

TEE “putc" PONCTION

The part of the program we are interested in is
the ‘'putc' function. It ontputs one character at a
time, the character being the first arqument in the
parentheses and the file pointer being the second and
last argument. Why the designer of C made the pointer
first in the “fprintf' function, and last in the
'putc® function is a good question for which there may
be no answer. It seems like this would have been a
good place to have used some consistency. When the
textline 'others® is exhausted, a newline is needed
because & newline was not included in the definition
above. A siagle *putc" is then executed which outputs
the "\n* character to return the carriage and do a
linefeed. When the outer loop has been executed ten
times, the program closes the file and terminates.
Compile and run this program but once again there will
be no output to the monitor. Following execution of
the prograe, ‘“type' the file named TENLINES.TXT and
you will see that the 10 new lines were added to the
end of the 10 that already existed. If you run it
again, yet another 10 lines will be added. Once
again, do not erase this file because we are still not
finished with it.

READING A FILE

Load the file named READCHAR.C and display it on
your monitor. This is our first program to read a
file. This program begins with the familiar
include, some data definitions, and the file opening
statement which should require no explanation except
for the fact that am "r' is used here because we want
to read it. In this program, we check to see that the
file exists, and if it does, we execute the main body
of the program, If it doesn't, we print a message and
quit. If the file does not exist, the system will set

October 1992

the pointer equal to NOLL which we can test. The main
body of the program is one 'do while' loop in which a
single character is read from the file and output to
the monitor until an EQF (end of file) is detected
from the input file. The file is then closed and the
progranm is terminated.

CAUTION CAOTION CAOTION

At this point, we have the poteatial for one of
the most common and most perplexing problems of
programming in C. The variable returned from the
"getc' function is a character, so we could use a
"char® variable for this purpose. There is a problem
with that however, because on some, if not most,
inplementations of C, the EOF returns a minus onme
which a ‘'char" type variable is not capable of
containing. A “char' type variable can only have the
values of zero to 255, so it will return a 255 for a
minus one on those compilers that use a minus one for
EOF. This is a very frustrating problem to try to
find because no diagnostic is given. The program
simply can never find the EOF and will therefore never
tersinate the loop. This is easy to prevent, always
use an "int" type variable for use in returning an
EOF. You can tell what your compiler uses for EOF by
looking at the 'stdio.h® file where EOF is defined.
That is the standard place to define such values.
There is another probles with this program but we will
worry about it when we get to the next program and
solve it with the ome following that. After you
compile and run this program and are satisfied with
the results, it would be a good exercise to change the
name of “TENLINES.TXT' and run the program again to
see that the NOLL test actually works as stated. Be
sure to change the name back because we are still not
finished with "TENLINES.TRT".

READING A WORD AT A TIME

Load and display the file named READTEXT.C for an
example of how to read a word at a time. This program
is nearly identical as the last except that this
program uses the "fscanf' function to read in a string
at a time. Because the 'fscanf' fuaction stops
reading when it finds a space or a newlinme character,
it will read a word at a time, and display the results
one word to a line. You will see this when you
compile and run it, but first we must examine a
progranming problen.

THIS IS A PROBLEM
Inspection of the program will reveal that when we
read data in and detect the EOF, we print out

something before we check for the EOF resulting in an
extra line of printout. What we usually print out is

Page 4

AUSTRALIAN OS9 NEWSLETTER

the same thing printed on the prior pass through the
loop because it is still in the buffer 'oneword'. We
therefore must check for EOF before we execute the
‘printf* function. This has been done in READGOOD.C,
which you will shortly examine, compile, and execute.
Compile and execute the original program we have been
studying, READTERT.C and observe the output. If you
haven't changed TENLINES.TXT you will end up with
'Additional® and ‘lines." on two separate lines with
an extra "lines." displayed because of the "printf"
before checking for EOF., Compile and execute
READGOOD.C and observe that the extra 'Ljnes.' does
not get displayed because of the extra check for the
EOF in the middle of the loop. This was also the
problem referred to when we looked at READCHAR.C, but
[chose not to expound on it there because the error
in the output was not so obvious.

FINALLY, WE READ A FULL LINE

Load and display the file READLINE.C for an
example of reading a complete lime. This prograa is
very similar to those we have been studying except for
the addition of a new quantity, the NULL. We are
using "fgets' which reads in an entire lime, including
the newline character into a buffer. The buffer to be
read into is the first arqument in the function call,
and the mazimua number of characters to read is the
second arqument, followed by the file pointer. This
function will read characters into the input buffer
until it either finds a newline character, or it reads
the maximua number of characters allowed minus one.
[t leaves ome character for the end of string NULL
character. In addition, if it finds an EOF, it will
return a value of NULL. In our example, when the EQF
is found, the pointer "c" will be assigned the value
of NOLL. NOULL is defined as zero in your ‘'stdio.h’
file. When we find that "c" has been assigned the
value of NULL, we can stop processing data, but we
nust check before we print just like in the last
prograa. Last of course, we close the file.

HOW TO USE A VARIABLE PILENANE

Load and display the file ANYFILE.C for an example

of reading from any file. This program asks the user
for the filename desired, reads in the filename and
opens that file for reading. The entire file is then
read and displayed on the monitor. It should pose no
problems to your understanding so no additional
comments will be made. Compile and rum this program.
When it requests a filename, enter the name and
extension of any text file available, even one of the
example C progranms.

HOW DO WE PRINT?

Load the last example file in this chapter, the
one named PRINTDAT.C for an example of how to print.
This program should not present any surprises to you
so we will move very quickly through it. Once again,
we open TENLINES.TXT for reading and we open PRN for
writing. Printing is identical to writing data to a
disk file except that we use a standard name for the
filename. There are no definite standards as far as
the name or names to be used for the printer, but some
of the usual names are, "PRN", "LPT", 'LPTI', and
'LPT2". Check your documentation for your particular
implementation. Some of the newest compilers use a
predefined file pointer such as °stdprn' for the print
file. Once again, check your documentation. The
program is simply a loop in which a character is read,
and if it is not the EQF, it is displayed and printed.
When the EOF is found, the input file and the printer
output files are both closed. You can now erase
TENLINES.TXT from your disk. We will not be using it
in any of the later chapters.

PROGRAMMING EXERCISES

1. Write a program that will proept for a filename
for a read file, proampt for a filename for a write
file, and open both plus a file to the printer.
Enter a loop that will read a character, and
output it to the file, the printer, and the
monitor. Stop at EOF,

1. Prompt for a filename to read. Read the file a
line at a time and display it on the monitor with
line numbers.

000000000000000000000000000000

Page 5

October 1992

AUSTRALIAN OS9 NEWSLETTER

Here

received through my affiliation with the 0S9 Community

File Allocation Table Display
by Chris Bergerson
edited by Bob Devries

is one of the programmes [have recently boundaries. Previously, the amthor just left in the
map what data was read even though it did not

Network, a group of 089 users who communicate represent the FAT data. Here now is the Basicl9
reqularly via the FIDO BBS network. I have made one programse, with the document file after, as produced
sodification to the programme, coamented by Chris Bergerson, and included in the archive.

appropriately, to clear the garbage from the display
where the graphics went beyond the actual FAT table

PROCEDURE fat_display

0000
0042
0068
0069
008E
0097
0098
0045
0081
00c4
00CB
00F9
011D
0138
013¢C
013D
0163
0184
0182
01BD
01E7
01F2
0228
0253
0262
0293
02AF
02E0
02FF
0300
0311
0328
0335
0359
038D
03AF
0301
0382
0413
041D
0428
044C
0464
0488

(¢ Procedure to graphically display a disk's File Allocation Table
{+ C. Bergerson 7/31/88 089 Level II

TYPE registers=cc,a,b,dp:BYTE; x,y,u:INTEGER

DIM regs:registers

DIM dpath:BYTE

DIM spath:INTEGER

DIM name:STRING[3]

DIN i,dd map,pages,count:INTEGER

DIM gr:INTEGER

DIM map(4960):BYTE \(+ Approximately 10 meg at a time.
VAV ULV L LN\ (4960482256-10,158,080)

DIM z:INTEGER \(+ Added by Bob Devries

RON syscall{$0C,regs) \(# Get process, user IDs
gr=regs.a \(+ Group #= Process ID

SHELL "merge /dd/sys/stdfonts;display 1b Ja c8 01°

OPEN #spath,'/w*

RON gfx2(spath, "DWSet",5,0,0,80,10,1,0,2)

RON gfx2(spath,*Select")

PRINT §spath, "Graphic File Allocation Table Display...'
INPUT §spath, *Disk name to display, (e.g. /H0): ",name
OPEN #dpath,name+"@":READ

SEER #dpath,4 \(t+ Go to LSO, byte 4 for dd_map

GET #dpath,dd map \(¢ Get size of FAT
pages=INT((dd_map-1)/4960)+1 \(# Do about 10 meq at a time
SEER #dpath,256 \(# Go to start of FAT

FOR count=1 TO pages
(¢ RON gfx2(spath,'clear")
GET #dpath,map
IF count=pages THEN \(+ Added by Bob Devries
FOR z=dd_map- (pages-1)+4960 T0 4960 \(+ Added by Bob Devries
map(z)=255 \(+ Added by Bob Devries
NEXT z \(+ Added by Bob Devries
ENDIF \(+ Added by Bob Devries
RUN gfx2(spath, "GPLoad",qr,1,5,639,61,4960)
POT $spath, map
RUN gfx2({spath,"Bell")
RON gfx2(spath,"Put®,qr,1,0,0)
RON gfx2(spath,"Curki*,0,8)
PRINT #spath,'page *; count; * of '; pages; ' °;
RON gfx2(spath, "CurX¥",20,8)

October 1992

Bob Devries

Page 6

AUSTRALIAN OS9 NEWSLETTER

04A0 INPOT #spath,"Press <enter> to continue®,name

04Ch NEXT count

0401

04D2 RON gfx2("KillBuff’,qr,1)
(04EA RON gfx2(1,"Select")

04FB RUN gfx2(spath, 'DWEnd")
050D CLOSE #dpath

0513 CLOSE #spath

Just what we needed... another utility for
graphically displaying a disk's free space!

This program will create the required type 5
window, and then ask for the name of the disk. It
works quite well for hard disks. For floppies, only
the first few lines will be meaningful, since I assume
that the File Allocation Table represents at least 10
meg.

Blue, (or black on a monocrome monitor),
represents used clusters. White means that the
clusters are free. Each pixel is one cluster.

Runb and Gfx2 must be in memory or in your

current execution directory! Program also will
attempt to load /dd/sys/stdfonts, so you better be
sure they're there. After unARing, be sure to set the
¢ attribute, and move to your execution directory.
Call by simply typing:

fat display

I find this util kind of interesting for seeing
how 059 fills up the disk.

Questions/comments are welcome.

Chris Bergerson
CIS 72221,121

000000000000000000000000000000

Getting the 059 Attitude

{This is a limited peek into a powerful, complex
system. It is not intended as a "how to' manmual,
rather to help you "get the feel'. Some specifics are
given and every attempt has been made to be accurate
in these cases.)

From the very outset I will make it clear that, as
it comes, 059 for CoCo 1is a rather crippled system
because of its packaging and lack of support from the
producer. There are several things you can do, as
soon as you are able, that will make it wvastly
superior to what it is in its original form.

First, have Level 2 on a CoCo3. There is no
comparison between a 32 or 40 column screen and an 80
column screen, but for strange reasons 059 arrives in
a low resolution package and on single sided, 35 track
disks. Personally, I wouldn't even consider using it
that way. It is like having a powerful new car with
special full time brakes installed and all but one
window painted black.

So you have an 80 column computer; how do you get 059
to use it? There is an article by RICKULAND entitled
*The First Step" included in this collection. It
tells you how to switch to 80 columns, double sided 40
track disks and high speed drive stepping. It is a

Page 7

fairly long tedious procedure, but when it's done,
you'll be able to see what you're doing and you'll
have more than double the disk space.

Another real aid in using 0S9 is in the System
Modules database. It is written by 089 programmer
Kevin Darling and is called SCF EDITOR PLUS - LEVEL
TWO0. Again it is a task and a half to imstall, but is
WELL worth it. It is a command line editor that makes
life in the 059 world of long command lines greatly
easier, especially if you're not an expert typist. If
you do not have a friend who can install this feature
for you the guys on the SIG will help you through it
like they did me. I will talk more about this later.

There are many other improvements and additions to
0S89 that you will get as you go along, but these are
tops in my opinion. Next in line would be the new
shell, SHELL+, with several improvements. As of this
writing the highest version is v2.1. The soomer you
can arrive at an updated system the better off you'll
be.

Coming to 059 from CoCo Disk Extended Color BASIC
involves something besides the software and dreams of
owning a hard drive - if you don't already have one.
No doubt you've heard about the power and versatility

October 1992

AUSTRALIAN OS9 NEWSLETTER

of 0589, It is, indeed, several steps ahead of DECB in
nany respects. But the change in environments can be
almost overwhelming if you don't grasp a few
essentials - a few of the differences between DECB and
059. You can't maintain a DECB attitude while
learning 089.

DECB is a BASIC language with some of the power of a
DOS {disk operating system) thrown in. 059 is an
operating system with some of the power of a language
thrown in. This much is mundane. But getting into
the actual differences is Dboth interesting and
essential.

A simple concept that sheds light on the move to 059
can be illustrated this way. If you had all the money
you wanted, but all audio/video systems were alike, it
would take you minutes to buy a complete system. But
with all the hundreds or thousands of TVs, CDs, amps,
tuners, speakers, stereos, tape players, recorders,
mlti media systems, etc., etc., in the equation, it
is a major job deciding on an intelligent system
purchase.

The more options an operating system has, the more
decisions you must make, the more you must remember,
and the more occasions you have to make mistakes.
What might involve 3 factors in a simple system might
involve 10 in a more powerful system. The 3 would
give you 9 paths to choose from. The 10 would give
you 100 choices - for starters.

The importance of this point can't be over estimated.
And it directly relates to one of the things that
causes the most trouble and consternation to new 089
users - multiple directory disk organization. That
will be our starting point and our prime
consideration.

For all practical purposes an 089 system might as
well have 6 or 8 (or more) different drives. You can
imagine how much you could do by organizing them all
in creative order! But you can also imagine the
headaches of remembering which drive had what on it if
they weren't organized. This dilemma would ideally be
solved by arranging them in a logical heirarchical
order.

First you would divide everything up into files that
do work and files that are worked on - executable
files and data files. If you have a great many
execntable files yon might have to divide them into 2
or more sets. The data files must Dbe divided into
many more sets and subsets. There are data files like
messages, there are tables, lists, subroutines, logs,
graphics, music, controls, etc. Some files even defy
catagorizing!

October 1992

Which drives would get which files? Remember, we're
talking about much power and large numbers of files!
And, to make it interesting most of the commands you
would use like "deldir" aren't usually in memory, but
on disk! To get all the power, THERE ARE SO MANY
commands they'd choke the computer if you put them all
in memory at the same time! And you'd go crazy looking
for the right ome on the disk - except for the
organization.

(Pay close attention to the use of words like "might"
and "could". This is not a "how to' article. I will
go out of my way to avoid setting down "how to" rules
while hypothesizing.)

A level of organization is USUALLY, but not always
{another variable) indicated by a */" mark. Ilet's
look at some levels.

Within the disk in a drive there might be a section
of compands. Listed under commands {besides scores of
things we usually think of as commands) might be WP, a
word processor, and S5 a spread sheet . Let's see
what this starts to look like. Them I'll back up and
make things better (and relieve those who just KNOW
I'm doing this wrong.).

You start with a */* for the top level /

You add a drive number /d0

You add another */' for a level within d0 /d0/

You add the commands identifier /d0/cnds

You add another level indicator /d0/cmds/

Finally the name of the word processor
/d0/cnds/wp

In BASIC you enter ROUN'WP'. In 0S9 you enter
/d0/cnds/wp. A 3 level command. (Nothing magic about
the "3". There can be more levels.) Let's do a tiny
bit of computing - deleting WP from the disk. That
will add another dimension to remember. If there were
only one level you could enter "del wp." But the
computer wants something like this: del /d0/cmds/wp
The real beginners 059 system usvally starts with 2
drives at the top level of organization. So let's put
a backup copy of WP on the other drive - drive l.
Let's see how complicated this can turn out:

copy /d0/cmds/wp /d1/cmds/wp

Already you can see something that is similar to DECB
- spaces separate items within a statement. Something
different is that both the word "copy" and the word
'WP' are executable and considered commands on the
disk. Some people separate these kinds of files
making yet another thing to remember. Now remember
that you have tons of stuff on your disk - commands

Page 8

AUSTRALIAN OS9 NEWSLETTER

and data. The authors of 089 came up with a way to
cut down on a lot of the typing you need to do to
slice through all the levels of organization. You can
set the system to know what drive and/or level you're
working with and whether it is ezecutable or data.
Voila, the commands CHD (data) and CHE (executable).
(Let's switch to computer talk for these levels of
organization.

What they are called is directories and sub-
directories. Like a general index for an encyclopedia
then a different index for each book.) If you enter
"chx /d0/cmds" you set the executable commands pointer
to that drive and directory. Then you can leave off
that part from a typed command! Since WP is in the
cods directory, to get it you just enter "wp'! At this
point you could delete it by entering 'del wp.'
Simplifies things, doesn't it?

{Let's do some more computerese. After the command
itself, a line Iike we've been using is called a
pathlist. It indicates the path down through the
levels of directories to a given item you're after.
Remember - the effective name [pathlist] of a file
includes the names of the drives and directories above
the filename itself.} These helpful commands {CHD and
CHX) are perhaps even more time saving if you're
dealing with data. For ezample, if you have to
decompress several files that are located in the ARC
directory, you could enter:

*chd /di/arc".

Then you could call all the files without the full
compand line and all the files you decompress
{dearchive} would be stored in that same directory.
(Still more. When you set chx to a directory it is
then called the ‘execution® directory and the system
will look there for any command you use that doesn't
have a pathlist preceding it.) CHD and CHX are a lot
like connecting to two single directory drives, one
for data and one for commands.

That simplifies things doesn't it? But are you
thinking what I'm thinking? Chd and chx are also two
nore things to remember! So what happens if you
forget? You get an error!! If you set "chx /dl/cmds"
and then call for a command that is on drive 0 you
will get an "error 216" - pathname not found. That is
like an NE error in DECB. But you can't just blame
things on CHD or CHX, because the system will have to
look in SOME specific place for what you command. And
if you ask the wrong thing, you get the wrong thing.

Note that the error message uses ‘pathname', not
pathlist. Consider a pathname a segment (between
slashes) of a pathlist. Let's look closer at errors.

Page 9

Forwarned is indeed forarmed. Usually errors are the
bane of the 089 beginners existance. With so many
things to remember it is easy to make multiple
mistakes. And as with other systems the actual error
number doesn't always tell you what's wrong - even if
you look up the number. But there is something you
can keep in mind that will ease your recovery from
such things with the least frustration and time.

Knowing it in advance will at least allow you to
analyze problems in an intelligent way. Remember that
the file name is called *pathlist" because it includes
the path of drives or directories through which the
file is accessed. Any part of the pathlist can give
you the error - not just the file name at the end of
it. Let me describe just one error problem. If the
command you start a line with is not in the directory
of executable commands that you indicate, you can get
a 216 error there. If the drive you name, has the
wrong disk in it, you can get an error from that part
of the pathlist. If the directory you name is not on
the indicated disk, that will give the same error, 216
- pathname not found. And, of course, if the file you
want turns out not to be in the indicated directory,
same thing.

0f course, misspelling can effect any of these

things. At least you now know to look in different
places for trouble. All this really involves a state
of mind. To get at all that power you have to think
differently (and more) with 089 than you did in DECB.
It's like moving into a house with 10 times as many
roons and 10 times the stuff. At first you'll have
trouble remembering where you put everything.

You will find, as you progress, that there are
alternative ways to do a given task. The third
section will involve a little less attitude and a
little more technique. There I will go a little
deeper into some points [have made so far. Now
section two. Beyond the System A sort of philosophy
is also involved when you begin to deal with 089
software. If you used only smoothly functioning,
shrink wrapped commercial software, you probably
wouldn't Dbe reading this. You've probably been on
Delphi to try the 089 SIG's software or ask for help
with something that is not so smooth rumning. There
are beginners who frequent Delphi. Often they're as
full of questions as you are, but they have answers.
At the other end of the spectrum there are some very
expert and brilliant programmers who know 'everything
there is to know" about 059.

Too often, you will find yourself simply talking a
different language than these "tech types.®' It isn't
that they don't want to help. They're helping each
other every day! If you want to know something about

October 1992

AUSTRALIAN OS9 NEWSLETTER

the exact syntax of an obscure part of a brand new
update to the latest XYZ language enhancement, you're
in luck. But if you want to know how to get the menu
on yesterdays spreadsheet it might take longer. Some
very bright programmers dash off experimental programs
for fun, Sometimes they like what they end up with
and post it on Delphi.

Maybe they wrote 2 pages of documentations for a
complicated communications program. Maybe they didn't
finish it. Maybe they forgot they even wrote it!
Grabbing the first thing in sight may or may not be a
good idea. If you're looking to 059 to be the cure
for the common cold, the end all, be all, you need to
rethink things. It is a tough thing to learn. Bat
some of those brilliant programmers I mentioned have
worked long and hard at getting rid of bugs in the
original package and adding yet more power to it.

I guess the irony is that this system sits in sach a
tiny box wishing it had some place to go. Users
require more and more function. That calls for more
and bigger software, and that calls for more memory
and/or data storage space. When that space is
limited, you cut something, What should get cut?

A very appealing -aspect of 0S9 is the ability to smap
from one program to amother with the push of a button.
But with space and CPU speed limited, how many
programs of what size, power and function can you
squeeze into a little CoCo? Working Delphi is nice.
You run a terminal program. Maybe you have an editor
to generate messages which are stored. You download a
file to disk or ramdisk. Maybe you print out
documentation in the background. Fun!

But what are you downloading? A spreadsheet that
will hold all your small business bookkeeping for a
vear? Will you run that at the same time you have a
memory gobbling graphics program in place? And the
graphics user interface you use? And the big game you
didn't finish last time you played?

Then, perhaps more importantly, there is the 6809 CPU
a terrific little chip that could blow the doors off
everything when it first came out (and later). DECB
users who've been around a while remember when
everyone was scrambling to get things running at
double speed - (still less than 2 mhz). If one
program can need that, what about several, running at
once? Some programs take little CPU time. Some take
a lot more, like when there is mach disk I\0. Special
disk controllers can help a lot, but that is only one
of the angles.

Bow successful multi-tasking will be for you will
depend on what you'll be rumning. Don't plan on

October 1992

having three action games rumning on three different
terminals.

With applications growing to accomodate users demands
for computing power, more memory and speed is needed.
If you're a purist of the 68xx genre, the new 68xxx
computers may be interesting. They have many times
more memory and speed than CoCo. You'll find
programmers right on Delphi who are working day and
night to develop applications for these computers.

Take a look at things. If you're a budding
programmer, learning 059 can be very educational. If
you're a hobbiest you can do a lot of experimenting
with 089 software and utilities. You can even run
some of those very good applications programs. Or
power a rock concert via Ultimuse and MIDI!

A little Body For the Attitude

So far, I've given you just a peek at how life can be
in the 089 world. Some things I've described may be
very unlike what you ultimately find to be your
specific experience. But I have been more interested
in the general idea of things. Now I'll touch on a
few points that will probably effect everyday
computing more. Still, this isn't an 059 “how to',
just a whiff of its perfume.

Why is it so important to have so many levels of
directories? Firstly, as I mentioned, there is a lot
of stuff to organize. With people writing constantly
there are new "tools" coming out almost every week!
(I have 16 clocks on file and that isn't all of them.)
By "tools" I mean utilities to do jobs, etc. Earlier
I used "del" in an illustration. That is a very
simple tool. ‘List® is a fairly simple tool. *Free'
is like free in DECB. ‘"Mfree® is like "MEM". (There
ARE differences between such similar DECB and 089
compands but the general idea is the same). Improved
versions of various commands are written, often
somewhat larger. Most veteran 089 users have an
entirely new shell - SHELL +.

Other commands are replaced if the user prefers
something different (and if an alternative is
available}. But you really can't just toss out the
original commands. There WILL be a time when you need
at least some of them if you stick with 059 long! So
you keep copies of them. Probably on a separate disk.
But if you happen to want to use both versions you
night want them on one disk. Youm can't do that with
DECB if you use the same name, but it is easy with
059, because you can put them in different
directories.

You might want to put them on the same level in

Page 10

AUSTRALIAN 0OS9 NEWSLETTER

differently named directories. You could have, for
example, CMDS] and CMDS2. Then it would be possible
to have one version of (perhaps) ATTR in one and
another version in the other - (/d0/cmdsl/attr or
/d0/cmds2/attr). How mmch of this you can do might
depend on your own memory.

Or you might want to put them on different levels.
You could actually have a CMDS directory listed under
the regular CMDS directory (/d0/cmds/cmds/attr),
although it would probably not be a very good idea. A
'dir" could confuse you if you didn't remember which
level you were looking at.

Another reason for various directories is the wide
variety of data you can (sometimes must) have on disk.
Frequently you will see directories named SYS, DOC,
MODULES or ARC. SYS might have data essential to the
function of an assembler. It might have "help" or
'error* messages. 'DOC* would probably have
documentation for programs or commands. "“MODULES®
would likely have descriptions of the parameters of
your various I/0 devices such as your printer or RS-
232 pak (40 isn't unusual). ARC would probably have
archived (compressed) copies of programs, data, or
other files.

As nmentioned, directories CAN be ‘'stacked® nmany
levels deep. One communications program stores
dialing information like this: /d0/sys/dial/filename.
A MultiVue screen icon might be named like this:
/d0/cads/icon/icon.app. I saw an example in which
Basic09 commands were on the same disk with others.
Under the reqular CMDS directory was BASIC09, and
under that was another CHDS. To copy it you could end
up with this line:

copy /d0/Basic09/filename /d1/basic09/filenane.

(Note, above, that I have put directory names in
capital letters but the command lines in lowercase.
If you have many things on the same level, caps make a
directory stand out on the screen. When you set up a
directory (using MAKDIR) you can just enter the name
in caps. After that you need not use caps to call it.
In most cases, 059 accepts lowercase keyboard imput
for the system. Programs run under 059 make their own
decision on that).

If you see the reason for multiple directories, we
can go on. At some point you will probably come
across the phrase ‘Unified I/0 System'. So far I've
referred to pathlists only as long paths through the
naze of directories to files on your disks. But paths
can access other things. Via pathlists you can list a
text file to the screen or you can list it to your
printer or to a screen in another window to be seen

Page 11

later! Via a pathlist you can read imput from your
RS-232 pak (and therefore whatever it is connected
to). You can run a program in a window you don't see.
These things can happen because of this "unified"
systen.

In section one I mentioned that most commands are
usually kept on disk. When you need, for example, the
command "format" it will probably be on disk. When
you enter “format" the computer loads it into memory
and executes it (but not by firing squad) then unloads
it when it is done with it. But you can also load
conmands into memory manuvally, then unload them when
you wish.

(Computereze for 'unload" is "unlink'.)

In section ome I mentioned that mis-spelling
something in a command line could cause an error such
as 216 (pathname not found). Something that you can
do in 059 does make life easier when this and other
things happen - the command line buffer. What you
enter as a command line is saved in memory. You can
then repeat it with the appropriate keypresses. As it
comes, 059 has an command repeat that is activated by
CTRL-A. Before you press <ENTER> you can do some
overstrike type editing.

With one very popular new version of this you use
right arrow or shifted right arrow instead of CTRL-A.
You can easily key over to the offending characters,
change, insert or delete them and repeat the command.
This is the "SCF EDITOR" I mentioned at the beginning
of this article,

This saves MUCE time over typing in whole lines
again, especially when dealing with long full
pathlists. If you're not the best typist, it can be a
life saver. It also comes in handy if, for example,
you have several similar files to copy. By changing
only the actual filename part of the pathlist you
could move several files withont retyping much.

On the other hand, when in doubt about where you are,
you can usually enter a full pathlist to "feed the
hungry computer'. (Sometimes, specific programs might
not allow that).

There are other things that can really frustrate the
beginner. One thing is the time it takes to do
certain tasks according to the manual. For example,
at some point you will wish to rewrite your startup
file. Beginners haul out the "build" command and start
a new startup file from scratch as instructed by the
nanual. One tiny error and you're back to deleting,
renaming, rewriting or what all, from the top down.

October 1992

AUSTRALIAN OS9 NEWSLETTER

Startup is actwally a text file called a script.
{This may be in the manuval somewhere, but I've never
found it. It is definitely not in my indezes). Each
command is on a separate line. If you can get hold of
a line editor such as SLED from Delphi, (or a word
processor) you can load such a script as "startup' and
add or subtract at will. Just loading one and looking
at it will take much of the mystery out of it.

Always press <ENTER> after each command as you would
on the keyboard. Just as in regular word processing,
this will start a new line for the next command.

If you wish to keep a copy of the original startup
file you can rename it the way the manual suggests -
before starting on a new one. Then when you are
finished with the new one you save it to disk as
'startup® just like the original. If your line editor
has an overwrite feature (such as the one in SLED) you
can just write the file into the space where the
original was. Once you get comfortable with the
system you will probably do this.

The "edit" utility that comes with 059 can do this
job. If you find it easy to use, by all means do so.
But with a reqular text editor you can see it all at
once and use the arrow keys to edit.

Since a script is just a series of commands in a text
file, you can write different scripts to do different
things and call them just as you would any other
conmand. This is a good way to set up a series of
comnands you use repeatedly. If a particular program
calls for doing several things to prepare for it, you
can probably do them in a script. You could put your
preparatory commands in it, save it in the 'cmds"
directory as *pstart®, for program start, and do the
job by just entering "pstart' (assuming your chz was
set to "cmds").

Scripts are really very easy to write. You'll see.
But all is not rose petals here either. Sometimes,
even when the script lines appear to be perfect, a
line will just not work. Swapping lines sometimes
pakes a difference. Script lines do not give error
messages. Shell+ will automatically get a script from
the execution directory (set by chx). You can NOT
load a script into memory like other commands unless
you upgrade to Shell+ v2.0 or higher.

I have tried to say (perhaps warn), in a simple way,
how complex 059 can be. (Even the explanation has
become somewhat complex.) [have tried to offer some
preparation for dealing with that by covering an area
or two that has been especially problematic for the
new 059 wuser - the manwals can be very frustrating
sometimes. Perhaps the best preparation is to tell

October 1992

you that this is just the "tip of the iceberg."
The Firing Line

Since directories and the CHD and CHX commands are at
the center of a lot of beginners problems here is
still more to help make things clear.

When you type in a line like:
list /dl/modules/bootlist

the system looks for those names on the disk. It
looks first for "list" in the execution directory then
looks for a descriptor named 'd0*, a directory named
'modules" and a file named "bootlist'. It must have
the numbers that these names represent, and it scours
one or more disks looking for them in logical ways.

But when you use CHD and CEX those numbers are stored
for quick use. If the 'CMDS" directory is, for
example, on line 1 to drive 1 and on sector 872, the
CHX command stores that information. It is as if a
big arrow were pointing to that sector. After that,
any time the system “sees" a command it jumps to those
numbers - that sector. That is why it cannot look for
the 'CMDS" directory by name.

Bere are some typical command line problems.

Say you have put a system disk in drive 0 and issued
a 'CEX /d0/ceds" command. Then you enter:

copy /d0/sys/stdptrs /dl/sys/stdptrs

Things will probably be okay. But if you were in a
hurry it may be:

cpy /d0/sys/stdptrs /dl/sys/strptrs
The system cannot find "cpy" and you get a 216 error.

If you put the disk in but forgot the CHX command, a
perfect command line will probably give you a 215
error - bad pathname - because the system jumped to
sector so-and-so and there was no "CMDS" directory
there! See?? Right there is where a lot of
frustration comes in., (Sometimes this may work,
because if the command is in memory [where the system
first looks] it will work anyway.)

Ycopy /d0/sys/stdptrs /dl/sys.stdptrs"
isn't a hard mistake to make if you're not a good
typist. This will cause the system to store a file in
the directory last indicated by CED and name it
'sys.stdptrs."

Page 12

AUSTRALIAN OS9 NEWSLETTER

*copy /d0/sys/strptrs /d0/sys/stdptrs"
will probably give you a 218 error - file already
exists.

copy /d0/sys/stdptrs /dl/sys/stdprts
will not give you an immediate error. But when
something looks for "stdptrs" and there is nothing but
*strprts® it is 216 time again.

Believe it or not, if you have set CHE to /dl/cmds,
for instance, and you decide to use a command (let's
say "list") which is in your /d0/cmds directory you
can enter something like:

/d0/cads/1ist /d0/txt/message.

Lastly let me touch on redirection again. While
naking up a new bootfile (0S9Boot} I had some
problems. I decided to use the "ident utility to
look at what was in the file. With 30 or 40 or more
nodules in 059Boot you just can't get the idea on the
screen. So I redirected the output of the ident. A
normal ident on a single module might look like this:

ident /d0/modules/cc3disk.dr
By redirecting output like this:
ident /d0/059Boot >/p

I had all of the modules information sets printed out
in hardcopy instead of the screen.

You don't have to be typing command lines to get
errors. Some utilities REQUIRE certain CHD settings,
and if you just forgot to do one the utility could be

getting the wrong information or none at all.

To really bring your system up to date, RICKULAND is
distributing some very cheap sets of all the things
you need to make a new system out of what you started
out with, Contact him on the 059 Sig.

This 1is really a good idea, because you can spend
days, weeks or even months acquiring all the patches
and getting them flawlessly into place. AND you will
find that some of the very good public domain software
available does not work well unless the original bugs
are eliminated from the operating system itself.

I'm going to mention something Rick suggested, so you
can "chew® on it. It comes with a sort of catch 22
built in so be careful how you size it up.

Although the 059Boot file must be in one contiguous
file, not stored in various parts of the disk, it does
not need to start at the beginning of the disk. So
you could put your commands directory on the disk
first - on all your system disks - and the pointer set
up by the CHX command would be the same for every
disk. Therefore you would not have to reset it except
for times when you used /dl.

The trick here is that by the time you might feel you
have the expertise to do this you would probably have
several system disks set up the other way. Those
disks would require °CHXing" as usual and the mix
pight not be worth the effort.

Jinm Lalone {upper middle class neophyte) On Delphi:
TERMITE

000000000000000000000000000000

Page 13

October 1992

AUSTRALIAN 0S9 NEWSLETTER

FROM_THE_LIBRARIAN

Have you come to the same problem I came to lately?
After updating my Boot file several times with modules
from the public domain library, I could not tell later
where these were coming from. When "Ident" gives you
edition and revision numbers, those might not have
been changed by the programmer who wrote the new

version., And what about those you patched with
*Ipatch"? I found that the only reliable informaticn
is the CRC number, and if I had a listing of all the
versions I know of a particular module with their CRC
numbers, life would be much easier. So, here are a
few:

cclio F737C2
cclio 923705

rel 6FD34C
rel B1F86C

089 Level II System Disk
Public Domain Library $11

059 Level II System Disk
Public Domain Library $11

cclio.dr

serialmouse/cclio. joy.ipc

boot (03DCAE
boot 800496

059 Level II System Disk
Public Domain Library #11

o0s9pl 969494
0s9pl C21516

059 Level II System Disk
Public Domain LIbrary $11

Kevin Darling

059 L.II Development System
089 L.II Development Systenm
089 L.II Development System

Rammer.ar
r0 96k.dd
r{ 128k.dd
r0 192k.dd

rl (4B49F
r 12523C
10 A42C1D
0 30083C
ram E863B3

rammer 15C571

059 L.II Development System
Kevin Darling

ram.dr
Rammer.ar

They will be more for you next time. Happy computing!

Jean-Pierre

October 1992

Page 14

