Unlink <modname> Usage : Unlinks module(s) from memory @WCREATE
Syntax: Wcreate [opt] or /wX {[-s=type| xpos ypos xsiz ysiz fcol bcol [bord]

Usage : Initialize and create windows Opts : -7 = dlsplay help -z = read
command = new screen
lines from J @XMODE
stdin -s=type | Syntax:
= set screen X M o de
type for a <devname >
window on a [params]
Usage : Displays or changes theparameters of an SCF type device
@COCOPR Syntax: cocopr [<opts>] {<path> [<opts>]} Function: display file
in specified format gets defaults from /dd/sys/env.file Options : -c set columns

per page -f use form feed for trailer -h=num set number of lines after

header -l=pum set line length -m=num set left margin -n=num set starting
line number and incr -o truncate lines longer than Inlen -p=num set number
of lines per page -t=num number of lines in trailer -u do not use title

Fax Messages (07) 372-83255;%

. SUPPORT e N anbane 0S9 Users: Group
-u=title use specfied title -x=num set starting page number -z[= path] read file
names from stdin or <path> if given @CONTROL Syntax: contro] [-e] Usage

: Control Panel to set palettes, mouse and keyboard parameters and monitor
type for

ADDRESSES Multi-Vue. CONTENTS

. . . Selectabl fr
Editorial Material: cesbie | rom
G B desk utilities Editorial Page 2
8 gg?ns entzen menu. as the Patches to Kernel ... Page3
in Street Control Panel. C Tutorial Page 3
SUNNYBANK Qld 4109 j Opts : -e = More Patches Page 6
execute the Murphy’s Law Page 7
. environment file {0 o TTTTTT
leraljy Requests: @GCLOCK Renewal Form Page 10
Jean-Pierre Jacquet Syntax: gclock
27 Hampton Street Usage : Alarm
DURACK Qld 4077 clock utility for

Multi-Vue.
Selectable from desk utilities menu as Clock. @GCALC Syntax: gcalc Usage :
Graphics calculator utility for Multi-Vue. Selectable form desk utilities menu as

Volume 6 September 1992 Number 8

Calculator. @GCAL Syntax: gcal Usage : Calendar/Memo book utility for
Multi-Vue. Selectable as Calendar from the desk utilities menu. @GPRINT

AUSTRALIAN OS9 NEWSLETTER
Newsletter of the National 0S9 User Group
Volume 6 Number 8

EDITOR : Gordon Bentzen
SUBEDITOR : Bob Devries

TREASURER : Don Berrie
LIBRARIAN : Jean-Pierre Jacquet

SUPPORT : Brisbane 059 Level 2 Users Group.

The National 0S9 Usergroup Newsletter is no longer alone.
We just have received a copy of the MOTD, the newsletter of
the US 0S9 Users Group. And a fine publication it is too.
International subscriptions are available. You can send
your subscriptions to:

The 059 Users Group
PO Box 434
FARMINGTON

UTAH 84025 USA

Another person who is no longer alone is one of our
members, Andrew Donaldson, the first person in Australia to
get an MM/1. We now have another happy Australian MM/1
owner. None other than our own Don Berrie. So I gquess
that we can expect some comments and further information
about the OSK systems from those users.

Don has promised to write a detailed article on his new
system for a future newsletter, and I am looking forward to
that. He will include tips on how to setup the boards in a
case, operation of serial and parallel ports, installation
of software, and other hardware. Mot for the faint hearted
I gather.

I guess that the news of the Australian CoCo Fest (if
that's what we should call it) is big by now. Especially
with those of our members who live in the Southern States.
There is a good possibility that arrangements will be made
to allow the National User Group to be represented there,
and indeed, Bob Devries, Don Berrie, Jean-Pierre Jacquet
(maybe) and myself are hoping to attend. It will be good
to try to get to know some of the people who are currently
just names on paper.

We welcome a couple of new additions to our PD library.
Bob Devries has, through his involvement with the 0S9
Community Network, managed to obtain copies of the latest
releases of Scribe (an offline BBS mail processing system)
and Stream (a fast hard disk backup system). It certainly

is an improvement to be able to backup a hard drive and
only take about 6 minutes to fill an 80 track (720K) disk!!
These files are available from our librarian, Jean-Pierre.
The usual copying charges will apply. Details of his
address and phone number are on the front cover.

Speaking of the front cover, you will have noticed that, to
celebrate the start of a new subscription year, we once
again, have a new design for the front sheet. Don Berrie
has once again produced a new the front cover.
{Unfortunately, he didn't do it on his MM/1 though - maybe
the next one ...)

One other change that will be obvious is the addition of a
contents list on the cover page. This change has been
incorporated in response to a request from one of our
members. See, all you have to do is ask!!!

Speaking of asking, its the time of the year (isn't it
always) when we take the opportunity to ask you to help
fill the pages of our Newsletter. Remember, this is
supposed to be a community effort, and without the input
from our readers, we sometimes scratch for editorial
material. If you would care to contribute to the
Newsletter, you are more than welcome. No matter the level
of the contribution, even questions, technical or software
related, are welcome. (We also, at this time, would like
to thank those who HAVE contributed in the past, and urge
them to continue to do so.)

As this Newsletter is the first one of a new subscription
year, and if you are one of those who have not yet renewed,
you are receiving this issue on a complimentary basis, and
this will be the LAST issue that you will receive. (Unless
you resubscribe}. If you do not intend resubscribing, we
would like to thank you for your support in the past, and
wish you the best of 1luck in your future computing
endeavours. If you still wish to subscribe, then don't
miss this opportunity{!

Cheers - Gordon

000000000000000000000000000000

Page 2

September 1992

AUSTRALIAN 0S9 NEWSLETTER

A Patch to a Patch
by Bob Devries

I have been running a 1 Meg CoCo 3 for some time now,
and have really enjoyed it. To make it possible to use 0S9
and be able to use all that extra memory, a patch needs to
be done to the '0S9P1' part of the system. This file lives
in the kernel, which resides on track 34 of the boot disk
if you are using a floppy boot. The required patch is
supplied with the package with the 1 Meg upgrade. The
other thing the patch allows is use of O0SK type filename,
that is files starting with numbers, hyphens etc.

Well, word has come from USA that the patch has a bug,
and needs to be patched. There seems to be a problem with
'data blocks' being allocated that were already being used
by programmes. Some of the programmes that were affected
were Stream (hard drive backup programme), and MVCanvas.

Here is the document supplied with some additional
comments.

IMPORTANT NOTES ON USING REPACK

If you are using repack with a modified version of the 089
kernel, please read the following instructions.

Some versions of the 0S9 kernel that have been patched to
support 1Meg/2Meg memory and OSK/MS-DOS file name formats
contain a bug that will cause your system to crash when
running REPACK.

The bug is in the FSAllImg service call, in module OS9P1.
The bug causes 0S9 to treat previously allocated 8K memory
blocks containing 0S9 modules as if they were writable data
memory when allocating additional memory to a process.

Under certain conditions, the process corrupts its own
executable code by overwriting it with data.

The following patch to your modified 059P1 module fixes the
bug:

New Value

Offset 0ld Value

S083E $85 $81 \These two lines added
$0840 $27 $26 / omitted in original text
$09D7 $85 $81

$09DB $27 $26

You must also fix the 0S9P1 module CRC after making these
changes.

Burke & Burke has included a utility called "kfix" on the
File System Repack disk. This utility will correct the bug
in 0S9P1 and will automatically update the module CRC in
memory. Note that you will have to use COBBLER or some
other utility to save the fixed 0S9P1 module to disk for a
permanent correction. To use kfix, add the line:

kfix
to your STARTUP file.
--EOF--

As usual, this patch, in an archive called rpkfix.ar,
will be available from dJean-Pierre Jacquet, our PD

librarian.
Bob Devries

000000000000000000000000000000

A C Tutorial
Chapter 9 - Standard Input/Output
Part 2

WHICH METROD IS BEST?

We have examined two methods of reading characters into
a C program, and are faced with a choice of which one we
should use. It really depends on the application because
each method has advantages and disadvantages. Lets take a
look at each. When using the first method, DOS is actually
doing all of the work for us by storing the characters in
an input buffer and signalling us when a full line has been
entered. We could write a program that, for example, did a
lot of calculations, then went to get some input. While we

September 1992

were doing the calculations, DOS would be accumulating a
line of characters for us, and they would he there when we
were ready for them. However, we could not read in single
keystrokes because DOS would not report a buffer of
characters to us until it recognized a carriage return.
The second method, used in BETTERIN.C, allows us to get a
single character, and act on it immediately. We do not
have to wait until DOS decides we can have a line of
characters. We cannot do anything else while we are
waiting for a character because we are waiting for the
input keystroke and tying up the entire machine. This

Page 3

AUSTRALIAN OS9 NEWSLETTER

method is useful for highly interactive types of program
interfaces. It 1is up to you as the programmer to decide
which 1is best for your needs. I should mention at this
point that there is also an "ungetch" function that works
with the "getch" function. If you "getch" a character and
find that you have gone one too far, you can "ungetch" it
back to the input device. This simplifies some programs
because you don't know that you don't want the character
until you get it. You can only "ungetch" one character
back to the input device, but that is sufficient to
accomplish the task this function was designed for. It is
difficult to demonstrate this function in a simple program
S0 its use will be up to you to study when you need it.
The discussion so far in this chapter, should be a good
indication that, while the C programming language is very
flexible, it does put a lot of responsibility on you as the
programmer to keep many details in mind.

NOW TO READ IN SOME INTEGERS

Load and display the file named INTIN.C for an example
of reading in some formatted data. The structure of this
program is very similar to the last three except that we
define an "int" type variable and loop until the variable
somehow acquires the value of 100. Instead of reading in a
character at a time, as we have in the last three files, we
read in an entire integer value with one call using the
function named "scanf". This function is very similar to
the "printf" that you have been using for quite some time
by now except that it is used for input instead of output.
Examine the line with the "scanf" and you will notice that
it does not ask for the variable "valin" directly, but
gives the address of the variable since it expects to have
a value returned from the function. Recall that a function
must have the address of a variable in order to return the
value to the calling program. Failing to supply a pointer
in the "scanf" function is probably the most common problem
encountered in using this function. The function "scanf”
scans the input line until it finds the first data field.
It ignores leading blanks and in this case, it reads
integer characters until it finds a blank or an invalid
decimal character, at which time it stops reading and
returns the value. Remembering our discussion above about
the way the DOS input buffer works, it should be clear that
nothing is actually acted on until a complete line is
entered and it is terminated by a carriage return. At this
time, the buffer is input, and our program will search
across the line reading all integer values it can find
until the line is completely scanned. This is because we
are in a Jloop and we tell it to find a value, print it,
find another, print it, etc. If you enter several values
on one line, it will read each one in succession and
display the values. Entering the value of 100 will cause
the program to terminate, and entering the value 100 with
other values following, will cause termination before the

Page 4

following values are considered.
IT MAKES WRONG ANSWERS SOMETIMES

If you enter a number up to and including 32767, it
will display correctly, but if you enter a larger number,
it will appear to make an error. For example, if you enter
the value 32768, it will display the value of -32768,
entering the value 65536 will display as a zero. These are
not errors but are caused by the way an integer is defined.
The most significant bit of the 16 bit pattern available
for the integer variable is the sign bit, so there are only
15 bits left for the value. The variable can therefore
only have the values from -32768 to 32767, any other values
are outside the range of integer variables. This is up to
you to take care of in your programs. It is another
example of the increased responsibility you must assume
using C rather than a higher level language such as Pascal,
Modula-2, etc. The above paragraph is true for most MS-DOS
C compilers. There is a very small possibility that your
compiler uses an integer value other than 16 bits. If that
is the case, the same principles will be true but at
different limits than those given above. Compile and run
this program, entering several numbers on a line to see the
results, and with varying numbers of blanks bhetween the
numbers. Try entering numbers that are too big to see what
happens, and finally enter some invalid characters to see
what the system does with nondecimal characters.

CHARACTER STRING INPUT

Load and display the file named STRINGIN.C for an
example of reading a string variable. This program is
identical to the last one except that instead of an integer
variable, we have defined a string variable with an upper
limit of 24 characters (remember that a string variable
must have a null character at the end). The variable in
the "scanf" does not need an & because "big" is an array
variable and by definition it is already a pointer. This
program should require no additional explanation. Compile
and run it to see if it works the way you expect. You
probably got a surprise when you ran it because it
separated your sentence into separate words. When used in
the string mode of input, "scanf" reads characters into the
string until it comes to either the end of a line or a
hlank character. Therefore, it reads a word, finds the
blank following it, and displays the result. Since we are
in a loop, this program continues to read words until it
exhausts the DOS input buffer. We have written this
program to stop whenever it finds a capital X in column 1,
but since the sentence is split up into individual words,
it will stop anytime a word begins with capital X. Try
entering a 5 word sentence with a capital X as the first
character in the third word. You should get the first
three words displayed, and the last two simply ignored when

September 1992

AUSTRALIAN OS9 NEWSLETTER

the program stops. Try entering more than 24 characters to
see what the program does. It should generate an error,
but that will be highly dependent on the system you are
using. In an actual program, it is your responsibility to
count characters and stop when the input buffer is full.
You may be getting the feeling that a lot of responsibility
is placed on you when writing in C. It is, but you also
get a lot of flexibility in the bargain too.

INPUT/OUTPUT PROGRAMMING IN C

C was not designed to be used as a language for lots of
input and output, but as a systems language where a lot of
internal operations are required. You would do well to use
another language for I/0 intensive programming, but C could
be used if you desire. The keyboard input is very
flexible, allowing you to get at the data in a very low
level way, but very little help is given you. It is
therefore up to you to take care of all of the bookkeeping
chores associated with your required I/0 operations. This
may seem like a real pain in the neck, but in any given
program, you only need to define your input routines once
and then use them as needed. Don't let this worry you. As
you gain experience with C, you will easily handle your I/0
requirements. One final point must be made about these I/0
functions. It is perfectly permissible to intermix "scanf"
and "getchar" functions during read operations. In the
same manner, it is also fine to intermix the output
functions, "printf" and “putchar".

IN MEMORY 1/0

The next operation may seem a little strange at first,
but you will probably see lots of uses for it as you gain
experience. Load the file named INMEM.C and display it for
another type of I/0, one that never accesses the outside
world, but stays in the computer. In INMEM.C, we define a
few variables, then assign some values to the ones named
"numbers" for illustrative purposes and then wuse a
"sprintf" function. The function acts just like a normal
"printf" function except that instead of printing the line
of output to a device, it prints the line of formatted
output to a character string in memory. In this case the
string goes to the string variable "line", because that is
the string name we inserted as the first arqument in the
"sprintf" function. The spaces after the 2nd %d were put
there to illustrate that the next function will search
properly across the line. We print the resulting string
and find that the output is identical to what it would have
been by using a "printf" instead of the "sprintf" in the
first place. You will see that when you compile and run
the program shortly. Since the generated string is still
in memory, we can now read it with the function "sscanf".
We tell the function in its first arqument that "line" is
the string to use for its input, and the remaining parts of

September 1992

the line are exactly what we would use if we were going to
use the "scanf" function and read data from outside the
computer. Note that it is essential that we use pointers
to the data because we want to return data from a function.
Just to illustrate that there are many ways to declare a
pointer several methods are used, but all are pointers.
The first two simply declare the address of the elements of
the array, while the last three use the fact that "result",
without the accompanying subscript, is a pointer. Just to
keep it interesting, the values are read back in reverse
order. Finally the values are displayed on the monitor.

IS THAT REALLY USEFUL?

It seems sort of silly to read input data from within
the computer but it does have a real purpose. It is
possible to read data in using any of the standard
functions and then do a format conversion in memory. You
could read in a line of data, look at a few significant
characters, then use these formatted input routines to
reduce the line of data to internal representation. That
would sure beat writing your own data formatting routines.

STANDARD ERROR OUTPUT

Sometimes it is desirable to redirect the output from
the standard output device to a file. However, you may
still want the error messages to go to the standard output
device, in our case the monitor. This next function allows
you to do that. Load and display SPECIAL.C for an example
of this new function. The program consists of a loop with
two messages output, one to the standard output device and
the other to the standard error device. The message to the
standard error device is output with the function "fprintf”
and includes the device name "stderr™ as the first
argument. Other than those two small changes, it is the
same as our standard "printf" function. (You will see more
of the "fprintf" function in the next chapter, but its
operation fit in better as a part of this chapter.) Ignore
the line with the "exit" for the moment, we will return to
it. Compile and run this program, and you wiil find 12
lines of output on the monitor. To see the difference, run
the program again with redirected output to a file named
"STUFF" by entering the following line at the Dos prompt;
B> special >stuff More information about I/0 redirection
can be found in your DOS manual. This time you will only
get the 6 lines output to the standard error device, and if
you look in your directory, you will find the file named
"STUFF" containing the other 6 lines, those to the standard
output device. You can use I/0 redirection with any of the
programs we have run so far, and as you may guess, you can
also read from a file using I/0 redirection but we will
study a better way to read from a file in the next chapter.

WHAT ABOUT THE exit(4) STATEMENT?

Page 5

AUSTRALIAN 0S9 NEWSLETTER

Now to keep our promise about the exit(4) statement.
Redisplay the file named SPECIAL.C on your monitor. The
last statement simply exits the program and returns the
value of 4 to DOS. Any number from G to 9 can be used in
the parentheses for DOS communication. If you are
operating in a BATCH file, this number can be tested with
the "ERRORLEVEL" command. Most compilers that operate in
several passes return a 1 with this mechanism to indicate
that a fatal error has occurred and it would be a waste of
time to go on to another pass resulting in even more
errors. It is therefore wise to use a batch file for
compiling programs and testing the returned value for
errors. A check of the documentation for my COMPAQ,
resulted in a minimal and confusing documentation of the
"errorlevel” command, so a brief description of it is given

in this file.
PROGRAMMING EXERCISE

1. Write a program to read in a character using a loop,
and display the character in its normal "char" form.
Also display it as a decimal number. Check for a
dollar sign to use as the stop character. Use the
"getch" form of input so it will print immediately.
Hit some of the special keys, such as function keys,
when you run the program for some surprises. You will
get two inputs from the special keys, the first being a
zero which is the indication to the system that a
special key was hit.

000000000000000000000000000000

More patches...

For those of you who experience loss of data transmission
while using a terminal program and CLEARing to a window
with Multivue menus, the enclosed file provides a fix that
should solve the problem. I remember that Kevin Darling
mentioned these patches a long time ago on CIS, but I never
got around to doing it for fear of screwing something up.
The enclosed file was prepared by a user (Lee Veal I think)
who figured it all cut. Enjoy.

Hugo Bueno Delphi: MRGOOD Compuserve: 71211,3662
and coming soon UUCP: ...!bluehausihugo

I just put a patch in my WindInt module that eliminates
a very bothersome (to me at least) occurence, when I'm
using GShell. If you've used GShell, you've probably
noticed that, when you use the <CLEAR> key to switch to a
different window, the menu bar at the top of the screen
does what I call a rollover. The line that used to
contain the menu bar, now displays the program name and
horizontal stripes, when the GShell window is not in the
active window. To illustrate, open a Calendar from the
Tandy Menu 1list. When another window is made the active
window, the GShell window looses control of the keyboard
and mouse. Watch closely, just before the Calendar screen
is made the active window, you may see the process of the
rollover start just before the GShell screen is replaced
with the Calendar window.

What's the point? Well, the point is, that every time
that rollover takes place, the routine that does the flip-
flop seizes the system. In other words, it disallows any
another process to run during the period of time that the
rollover is being done. That's not a big deal most of the
time, but it can be deadly, when one of those processes
that gets "stiff-armed" is a communications program like
SuperComm or XCom9, just to name two.

Page 6

If you're downloading scmething using XMODEM with any
communications program, and you flip away from the
communications screen to the GShell window, then
interrupts coming from the serial port will be lost. If
interrupts are lost, so too, will be the data. Invariably,
the Xmodem block that is being transmitted during the
rollover will have to be re-transmitted, when the Xmodem
routine detects the short block.

The following fix was applied to my system to eliminate
the rollover entirely. Now, when I use the <CLEAR> key to
switch from the communications screen to the GShell, no
rollover occurs at all. And consequently no interrupts
are lost, therefore no data are lost either.

This fix was given to me by Kevin DBarling after a
discussion of the above problem on CompuServe several
weeks ago. I finally got off my big dead rear and applied
the fix to my system at work. It worked perfectly.

The fix itself is extremely simple in its purpose,
which is, if you, don't want the rollover to occur, then
don't go to the routine that does the rollover. The
application of the patch on the other hand may be a little
more difficult. Not because the patch is complicated, but
because several WindInt patches have been made public.
Those patches may have caused the ML instructions that
need to be changed to be in a different place than they
were in the original version of WindInt.

Here goes anyway.
*kkk Warning *kkk
Do not apply this to your working copy of 0S-9/Multi-
Vue. Make a back up of your working copy and patch, then
test with the backup copy.

Near $CAO into WindInt should be something like

September 1992

AUSTRALIAN OS9 NEWSLETTER

2503 17 03 91 9E A5
Change the 17 03 91
to 1212 12

Then just past that around $CC5 you'll see
25 03 17 07 1F 9E A5
Change the 17 07 IF
to 12 12 12

According to Kevin, the numbers after the 17 in each
case may not be exact, but the 2503 and the 9EA5 before
and after each patch area should be the tipoff.

When I applied the fix to my WindInt module the
displacements that Kevin had given ($CAO and $CC5) were
each a little lower than they needed to be. This was
probably due to the different patches that we had in our
respective WindInt modules.

I used DED to scan the 0S9Boot (and the WindInt within
it) for the 25 03 and the 9E A5 combos. I found them
quickly and easily using DED.

I recommend that anyone thinking about applying this
patch use DED to find and make the patch, then again to
verify the module for the CRC update.

I've been using the patched modules for several days
now with no ill-effects. And what's even better than
that, is that now, I can switch through windows that have
Multi-Vue menu bars without seeing the communications

program suffer through lost data and lost interrupts. To
me the obvious advantage of that is that, if I have a text
editor up and running in one window, SuperComm running in
another, and GShell in another, when I start a long
download with SuperComm, and then I want to go over to
text editor, I don't have to worry so much about lost
interrupts, lost data, or block retransmits. Also, the
screen switch seems to be faster. I say seems because you
don't have to wait for the rollover.

For the technically-oriented the code that is replacing
the 17 xx xx code is a series of three NOPs. A NOP is a
mnemonic which stands for No OPeration. It holds a place
in memory, allows the instruction processor to progress,
but no data or registers are accessed, cleared, loaded,
stored, or anything else during the "execution” of the
NOP. A NOP instruction doesn't even effect the condition
code.

The $17 op code that is being replaced by the $12s is a
Long Branch to Subroutine (LBSR). The two bytes following
the $17 is a 16-bit displacement that will be used to
calculate the ultimate branch location from the end of the
3-byte LBSR instruction. The old LBSR instructions near
$CA0 and $CC5 are being replaced by NOP instructions.
Those LBSR instructions are branching to the routines that
do the menu bar flip flop. Use this fix in good health.
Lee

000000000000000000000000000000

MURPHY'S LAW AND OTHER OBSERVATTONS

Things could be worse; given enough time, they will be

Anyone who has had any contact at all with computers-
building, repairing or programming them - knows Murphy's
Laws. However, many people are unaware of the advent of
machines and, later, computers.

The following series of observations have all been chosen
because of their applicability to computerdom.

PREFACE:- We the willing, led by the unknowing, are
doing the impossible for the ungrateful. We have done so
much for so long with so little, we are now qualified to do
anything with nothing.

MURPHY'S LAWS:-

1 - If anything can go wrong, it will.

2 - If there is a possibility of several things going
wrong, the one that will cause the most damage will be
the first one to go wrong.

3 - If anything just cannot go wrong, it will anyway.

4 - If you perceive that there are four possible ways in
which something can go wrong, and circumvent these,

September 1992

then a fifth way, unprepared for, will promptly
develop.

5 - Left to themselves,
worse.

6 - If everything seems to be going well, you have
obviously overlooked something.

7 - Nature always sides with the hidden flaw.

8 - Mother nature is a bitch.

things tend to go from bad to

O'TOLLEL'S COMMENTARY ON MURPHY'S LAWS:- Murphy was an
optimist.

GISBERG'S THEOREMS:-

1 - You can't win.

2 - You can't break even.

3 - You can't even quit the game.

FORTHY'S SECOND COLLARY TO MURPHY'S LAWS:- Just when you
see the light at the end of the tunnel, the roof caves in.

WEILERS LAW:- Nothing is impossible for the man who doesn't
have to do it himself.

Page 7

AUSTRALIAN 0S9 NEWSLETTER

THE LAWS OF COMPUTER PROGRAMMING:-

1 - Any given program, when running, is obsolete.

2 - Any given program costs more and takes longer each
time it is runm.

3 - If a program is usefull, it will have to be changed.

4 - If a program is wuseless, it will have to be
documented.

5 - Any given program will expand to fill all available
memory.

6 - The value of a program is inversely proportional to
the weight of it's output.

7 - Program complexity grows until it exceeds the
capability of the programmer who must maintain it.

PIERCE'S LAW:- In any computer system, the machine will
always misinterpret, misconstrue, misprint or not evaluate
any mathematics or subroutines or fail to print any output
on at least the first run through.

COROLLARY TO PIERCE'S LAW:- When a compiler accepts a
program without error on the first run, the program will
not yield the desired output.

ADDITION TO MURPHY'S LAWS:- In nature, nothing is ever
right. Therefore, if everything is going right.. something
is wrong.

BROOKS LAW:- If a first you don't succeed, transform your
data set!

GROSH'S LAW:- Computing power increases as the square of
the cost.

GOLUB'S LAWS OF COMPUTERDON:-

1 - Fuzzy project objectives are wused to avoid
embarrassment of estimating the corresponding costs.

2 - A carelessly planned project takes three times longer
to complete than expected, a carefully planned project
takes only twice as long.

3 - The effort required to correct course geometrically
with time.

4 - Project teams detest weekly progress reporting because
it so vividly manifests their lack of progress.

(SBORN'S LAW:- Variables won't, constants aren't.

GIB'S LAWS OF UNRELIABILITY:-
1 - Computers are unreliable, but humans are even more
unreliable.

2 - Any system that depends upon human reliability is
unreliable.
3 - Undetectable errors are infinite in variety, in

contrast to detectable errors, which by definition are
limited.

4 - Investment in reliability will increase until it

Page 8

exceeds the probable cost of errors, or until someone
insists on getting some useful work done.

LUBARSKY'S LAW OF CYBERNECTI ENTOMOLOGY:- There's always
one more bug.

TROUTMAN'S ~ POSTULATE:- Profanity is the one language
understood by all programmers.

WEINBERG'S SECOND LAW:- If builders built buildings the way
programmers wrote programs, then the first woodpecker that
came along would destroy civilization.

GUMPERSON'S LAW:- The probability of anything happening is
in inverse ratio to its desirability.

GUMMIDGE'S LAW:- The amount of expertise varies in inverse
ratio to the number of statements understood by the general
public.

ZYMURGY'S FIRST LAW OF EVOLVING SYSTEM DYNAMICS:- Once you
open a can of worms, the only way to recan them is to use a
larger can {old worms never die, they just worm their way
into larger cans).

HARVARD'S LAW AS APPLIED TO COMPUTERS:- Under the most
rigorously controlled conditions of pressure, temperature,
volume, humidity and other variables, the computer will do
as it damn well pleases.

SATTERING'S LAW:- It works better if you plug it in.
JENKINSON'S LAW:- It won't work.

HORNER'S FIVE-THUMB POSTULATE:- Experience varies directly
with equipment ruined.

CHEOP'S LAW:- Nothing ever gets built on schedule or within
budget.

RULE OF ACCURACY:- When working toward the solution of a
problem, it always helps if you know the answer.

ZYMUG"S SEVENTH EXCEPTION TO MURPHY'S LAWS:- When it rains,
it pours.

PUDDER'S LAWS:-
1 - Anything that begins well ends badly.
2 - Anything that begins badly ends worse.

WESTHEIMER'S RULE:- To estimate the time it takes to do a
task: Estimate the time you think it should take, multiply
by two and change the unit of measure to the next highest
unit. Thus, we allocate two days for a one hour task.

September 1992

AUSTRALIAN 0S9 NEWSLETTER

STOCKMAYER' THEOREM:- If it looks easy, it's tough. If it
looks tough it's damn near impossible.

ATWOOD'S COROLLARY:- No books are lost by lending except
those you particularly wanted to keep.

JOHNSON'S THIRD LAW:- If you miss one issue of any
magazine, it will be the next issue that contains the
article, story or installment you were most anxious to
read.

COROLLARY T0 JOHNSON'S THIRD LAW:- All your friends either
missed it, lost it or threw it out.

HARPER'S MAGAZINE LAW:- You never find the article until
you replace it.

BROOK'S LAW:- Adding manpower to a late software project

makes it later.

FINAGLE'S FOURTH LAW:- Once a job is fouled up, anything
done to improve it will only make it worse.

FEATHERKILE'S RULE:- Whatever you did, that't what you
planned.

FLAP'S LAW:- Any inanimate object, regardless of its
position, configuration or purpose, may be expected to
perform at any time in a totally unexpected manner for
reasons that are either entirely obscure or elso completely
mysterious.

MAINTENANCE RULES:-

1 - Put it back in the box and let someone elso fix it.
2 - Plug it in.

3 - Kick it.

000000000000000000000000000000

September 1992

Page 9

NATITONATLT, OS99 USERGROUP — AUSTRAILI.LA
SUBSCRIPTION RENEWAL / APPLICATION

Subscription Renewal [_] New Subscription [__]

Surname : First Name : Title

Street:

Suburb: State : Postcode :

Country:

Home Phone: Business Phone:

Age Group (please tick) Under 18 [__] 18-25 [__1 26-35 [__1
36-45 [__1] 46-55 [__1] over 55 [_ 1]

Do you run 0S89 Level 1[__] 0S89 Level 2[_ 1] OSK[__1 089000[__1

Type of Computer for 0S9: RAM K.
Diskette 5.25 Number [__ 1] Tracks [] Sides [__1]

Diskette 3.5 Number [__1] 720k [__1 l.4meqg [__1]

Hard Drive Meg [] Controller Type

Printer Type/Model

Modem Type

Special Interests

Can you contribute articles to this Newsletter ?

Date : / / Signature

Amount Enclosed: $ ($18-00 will cover you for 12 months)
(A$25-00 Overseas)
(CHEQUES PAYABLE TO: NATIONAL 0S9 USERGROUP)

Please Return Completed Form to :-

NATIONAL OS9 USERGROUP OR NATIONAI, 0OS9 USERGROUP
c/o GORDON BENTZEN c/o J.P. JACQUET
8 ODIN STREET 27 HAMPTON STREET

SUNNYBANK QLD 4109 DURACK QLD 4077

