AUSTRALIAN OS9 NEWSLETTER

sides ‘No. of cylinders’ (in decimal) :Interleave value: (in decimal) @FREE Syntax:
Free [devname] Usage : Displays number of free sectors on a device @GFX
Syntax: RUN GFX(dunct<args>) Usage : Graphics interface package for
BASIC09 to do compatible VDG graphics commands @GFX2 Syntax: RUN

GFX2([path}funct<args>) Usage : Graphics interface package for BASICO9 to
handle ‘ ‘

‘\;T,fﬁﬁgw EDITOR Gordon Bentzen (07) 344-3881
help o] SUB-EDITOR Bob Devies ©7) 372-7816
fror % TREASURER Don Berrie (07) 375-1284
g;fg\}}tgg LIBRARIAN Jean-Pierre Jacquet (07) 372-4675

Fax M 372-8325
SUPPORT Iosbacs & Uses G

memory @MAKDIR Syntax: Makdir <pathname> Usage : Creates a new’
directory file @MDIR Syntax: Mdir [e] Usage : Displays the present memory
module directory Opts : e = print extended module directory @MERGE Syntax:
Merge <path>

module in
memory from d Gordon Bentzen Arnings -c =
compare modul 8 Odin Street name = link
to module C o SUNNYBANK Qid 4109 i
module M = m4 L]]

U : Set mq
m?f&hrgﬁ,em Jean-Pierre Jacquet

and links an OS 27 Hampton Street
Procs [e] Usagg DURACK Qld 4077

display all prodessm

current data direcl

execution directory path @RENAME Syntax: Rename <ilename> mew filename>

Usage : Gives the file or directory a new name @RUNB Syntax: Runb <i-code
« _BASICO9 mun time nackage i

Yolume 6 August 1992

@TMODE

the operating parameters of the terminal @ TUNEPORT Tuneport <t1 or /p>
[value] Adjust the baud value for the serial port @UNLINK Syntax: Unlink
smodname> Usage : Unlinks module(s) from memory @WCREATE Syntax:

AUSTRALIAN OS9 NEWSLETTER
Newsletter of the National 0S9 User Group
Volume 6 Number 7

EDITOR : Gordon Bentzen
SUBEDITOR : Bob Devries

TREASURER : Don Berrie
LIBRARTAN : Jean-Pierre Jacquet

SUPPORT : Brisbanme 039 Level 2 Users Group.

Well there is no doubt that we will do it all again!
Continue the National 039 Usergroup for another year, that
is.

Subscription renewals for the membership year of September
'92 to August '93 has already reached twenty-eight. This
of course means that the minimum number of twenty is
exceeded.

HARD DRIVES

One of our new members has asked about fitting a Hard
Drive to a CoCo3 and has also mentioned the Burke & Burke
system with XTC Rom.

The Burke & Burke system comprises an interface hoard
which allows an IBM type controller and hard drive to be
used with the CoCo. It really does NEED the use of a MPI
(Multi-Pak). In theory the B & B interface could plug
straight into the CoCo's ROM port, but this would
eliminate the use of a floppy disk controller & drives.
5o for a practical approach, count on using a MPI.

Don Berrie wrote an article for our newsletter which was
included in the April 1989 edition. 1 have heavily edited
this article and included a small part below, ED.

A HARD DISK DRIVE FOR YOUR CoCo
BY Don Berrie - April 1989
For a good general discussion about the available systems
for the CoCo, I recommend that you read the article in
the March 1989 edition of US Rainbow, pages 44 - 56
entitled "Adding a hard drive to your system”, by Marty
Goodman.

THE BURKE & BURKE SYSTEM

The hardware requirements. NOT ALL hard drives and
controllers will work with the Burke & Burke system, but
the main limitation seems to be the controller. Not all
PC-compatible hard disk controllers are alike; some will
not work with the CoCo XT at all, and some will not fit
into the case. The controller case and the interface
software are optimised for use with particular

Page 2

controllers.

Burke and Burke have also, when using their XT-ROM system,
given us the ability to use an “"alternate boot", using an
alternate kernel. This alternate kernel is stored on track
129, and looks for a bootfile called altboot.
So there you have it, a hard drive for your system. When
you have used this type of system, you can really
appreciate the comments of the people who write about 039
really coming into its own with a hard drive. It's really
true. Multiview really shines, and what's more it runs at
a speed that IS useable. Profile, a database programme,
will amaze you. And of course, the hard drive does not use
interrupts, has a 2K buffer (within the controller) and
therefore will really support multi user capacity.

Don Berrie

WANTED

Some time ago one of our members, John McGrath, requested
that we include a "Wanted" ad for him. John is looking
for a RS-232 PAK. If you happen to have one for sale, or
know somebody who has, please contact John McGrath,
Tamworth NSW 067 618071 (home) or during work hours 018
667 662.

Australian COCOPEST!

I had a call from John Ikin, Melbourne, just after we
mailed out our July newsletter. He spoke of a possible
CoCoFEST in Melbourne later this year. See also the note
by Andrew Donaldson, about page 7. Anyway if you are
interested there are a couple of names to contact. No
doubt we will hear more as arrangements are finalized.

SUBSCRIPTIONS
I would like to remind you to complete the
application/renewal form and mail off your cheque if you
have not already done so as the current subscription year
ends with this edition. If have been expecting back-
issues or we have missed any, please let us know and a
correction will be made. To those members who have
already responded we thank you for your continued support.
Cheers, Gordon.

August 1992

AUSTRALIAN 0S9 NEWSLETTER

A 'C' Tutorial
Chapter 9 - Standard Input/Output

THE STDIO.H HFADER FILE

Load the file SIMPLEIO.C for our first look at a file
with standard I/0. Standard I/0 refers to the most usual
places where data is either read from, the keyboard, or
written to, the video monitor. Since they are used so
much, they are used as the default I/0 devices and do not
need to be named in the Input/Qutput instructions. This
will make more sense when we actually start to use them so
lets look at the file in front of you. The first thing
you will notice is the first line of the file, the
finclude "stdio.h" line. This is very much like the
fdefine we have already studied, except that instead of a
simple substitution, an entire file is read in at this
point. The system will find the file named "stdio.h" and
read its entire contents in, replacing this statement.
Obviously then, the file named "stdio.h" must contain
valid C source statements that can be compiled as part of
a program. This particular file is composed of several
standard fdefines to define some of the standard I/0
operations. The file is called a header file and you will
find several different header files on the source disks
that came with your compiler. Each of the header files
has a specific purpose and any or all of them can be
included in any program. Most C compilers use the double
quote marks to indicate that the "include" file will be
found in the current directory. A few use the "less than"
and "greater than" signs to indicate that the file will be
found in a standard header file. Nearly all MSDOS C
compilers use the double quotes, and most require the
"include" file to be in the default directory. All of the
programs in this tutorial have the double quotes in the
"include" statements. If your compiler uses the other
notation, you will have to change them before compiling.

INPUT/OUTPUT OPERATIONS IN C

Actually the C programming language has no input or
output operations defined as part of the lanquage, they
must be user defined. Since everybody does not want to
reinvent his own input and output operations, the compiler
writers have done a lot of this for us and supplied us
with several input functions and several output functions
to aid in our program development. The functions have
become a standard, and you will find the same functions
available in nearly every compiler. In fact, the industry
standard of the C language definition has become the book
written by Kernigan and Ritchie, and they have included
these functions in their definition. You will often, when
reading literature about C, find a reference to K & R.
This refers to the book written by Kernigan and Ritchie.
You would be advised to purchase a copy for reference.
You should print out the file named “stdio.h"™ and spend
some time studying it. There will be a lot that you will

August 1992

not understand about it, but parts of it will look
familiar. The name "stdio.h" is sort of cryptic for
"standard input/output header", because that is exactly
what it does. It defines the standard input and output
functions in the form of ¥defines and macros. Don't worry
too much about the details of this now. You can always
return to this topic later for more study if it interests
you, but you will really have no need to completely
understand the "stdio.h" file. You will have a tremendous
need to use it however, so these comments on its use and
DUrpOSe are necessary.

OTHER INCLUDE FILES

When you begin writing larger programs and splitting
them up into separately compiled portions, you will have
occasion to use some statements common to each of the
portions. It would be to your advantage to make a
separate file containing the statements and use the
#include to insert it into each of the files. If you want
to change any of the common statements, you will only need
to change one file and you will be assured of having all
of the common statements agree. This is getting a little
ahead of ourselves but you now have an idea how the
#include directive can be used.

BACK TO THE FILE NAMED "SIMPLEIO.C"

Lets continue our tour of the file in question. The
one variable "c" is defined and a message is printed out
with the familiar "printf" function. We then find
ourselves in a continuous loop as long as "c" is not equal
to capital ¥. If there is any question in your mind about
the loop control, you should review chapter 3 before
continuing. The two new functions within the loop are of
paramount interest in this program since they are the new
functions. These are functions to read a character from
the keyboard and display it on the monitor one character
at a time. The function “getchar()" reads a single
character from the standard input device, the keyboard
being assumed because that is the standard input device,
and assigns it to the wvariable "¢". The next function
"putchar{c)", uses the standard output device, the video
monitor, and outputs the character contained in the
variable "c". The character 1is output at the current
cursor location and the cursor is advanced one space for
the next character. The system is therefore taking care
of a lot of the overhead for us. The loop continues
reading and displaying characters until we type a capital
X which terminates the loop. Compile and run this program
for a few surprises. When vyou type on the keyboard, you
will notice that what you type is displayed faithfully on
the screen, and when you hit the return key, the entire
line is repeated. In fact, we only told it to output each

Page 3

AUSTRALIAN 0S9 NEWSLETTER

character once but it seems to be saving the characters up
and redisplaying them. A short explanation is in order.

DOS IS HELPING US QUT (OR GETTING IN THE WAY)

We need to understand a little bit about how DOS works
to understand what is happening here. When data is read
from the keyboard, under DOS control, the characters are
stored in a buffer until a carriage return is entered at
which time the entire string of characters is given to the
program. When the characters are being typed, however,
the characters are displayed one at a time on the monitor.
This 1is called echo, and happens in many of the
applications you run. With the above paragraph in mind,
it should be clear that when you are typing a line of data
into "SIMPLEIO", the characters are being echoed by DOS,
and when you return the carriage, the characters are given
to the program. As each character is given to the
program, it displays it on the screen resulting in a
repeat of the line typed in. To better illustrate this,
type a line with a capital X somewhere in the middle of
the line. You can type as many characters as you like
following the "X" and they will all display because the
characters are being read in under DOS, echoed to the
monitor, and placed in the DOS input buffer. DOS doesn't
think there is anything special about a capital X. When
the string is given to the program, however, the
characters are accepted by the program one at a time and
sent to the monitor one at a time, until a capital X is
encountered. After the capital X is displayed, the loop
is terminated, and the program is terminated. The
characters on the input line following the capital X are
not displayed because the capital X signalled program
termination. Compile and run "SIMPLEIO.C". After running
the program several times and feeling confidant that you
understand the above explanation, we will go on to another
program. Don't get discouraged by the above seemingly
weird behavior of the I/0 system. It is strange, but
there are other ways to get data into the computer. You
will actually find the above method useful for many
applications, and you will probably find some of the
following useful also.

ANOTHER STRANGE I/0 METHOD

Load the file named SINGLEIO.C and display it on your
monitor for another method of character I/0. Once again,
we start with the standard I/0 header file, we define a
variable named "c", and we print a welcoming message.
Like the last program, we are in a loop that will continue

to execute until we type a capital X, but the action is a
little different here. The "getch{}" is a new function
that is a "get character" function. It differs from
"getchar()" in that it does not get tied up in DOS. It
reads the character in without echo, and puts it directly
into the program where it is operated on immediately.
This function then reads a character, immediately displays
it on the screen, and continues the operation until a
capital X is typed. When vyou compile and run this
program, you will find that there is no repeat of the
lines when you hit a carriage return, and when you hit the
capital X, the program terminates immediately. No
carriage return 1is needed to get it to accept the line
with the X in it. We do have another problem here, there
is no linefeed with the carriage return.

NOW WE NEED A LINE FEED

It is not apparent to you in most application programs
but when you hit the enter key, the program supplies a
linefeed to go with the carriage return. You need to
return to the left side of the monitor and you also need
to drop down a line. The linefeed 1is not automatic. We
need to improve our program to do this also. If you will
load and display the program named BETTERIN.C, you will
find a change to incorporate this feature. In BEITERIN.C,
we have two additional statements at the beginning that
will define the character codes for the linefeed (LF), and
the carriage return (CR). If you look at any ASCII table
you will find that the codes 10 and 13 are exactly as
defined here. In the main program, after outputting the
character, we compare it to (R, and if it is equal to CR,
we also output a linefeed which is the LF. We could have
just as well have left out the two #define statements and
used "if (¢ == 13) putchar(l0);" but it would not be very
descriptive of what we are doing here. The method used in
the program represents better programming practice.
Compile and run BETTERIN.C to see if it does what we have
said it should do. It should display exactly what you
type in, including a linefeed with each carriage return,
and should stop immediately when you type a capital X. If
you are using a nonstandard compiler, it may not find a
"CR" because your system returns a "LF" character to
indicate end-of-line. It will be up to you to determine
what method your compiler uses. The quickest way is to
add a "printf" statement that prints the input character
in decimal format.

to be continued.....

Are your VEF pictures squashed?
by Bob Devries

One of our Sydney members, Bob Barker, asks "How can I
easily tell if a VEF picture is squashed or not?" The

Page 4

first answer that comes to mind is, simple, look at the
first byte of the file. On reflection, I realise that

August 1992

AUSTRALIAN OS9 NEWSLETTER

While that is true, it is not really easy to read the
first byte of a file, without a lot of rigmarole. So, I
wrote two programmes to do it. First, a Basic0Y
procedure, the small one, and then a C programme, the
larger one.

The Basic09 procedure 1is very simple, it uses the
command line argument for a filename, reads the first
byte, and prints a line to tell vou whether the file is
squashed or not. That is all it will do. The C programme
1s much more sophisticated. It allows a command line
switch (or option) to print more information about the
file, and will do more than one filename on the command
line, or it will read STDIN to get filenames, so you can
pipe the filenames to it.

First, here's the code for the Basic09 procedure:

PROCEDURE checkVEF
ON ERROR GOTO 10
PARAM file:STRING[80)
DIM path:BYTE
DIM char:STRING[1]
The C programme is much more complex, but then, it
also does more. Here's the code:

#include <stdio.h>
#define TRUE 1
#define FALSE 0

struct header |{
char sqsh; /* squashed = 128 else 0 */
char sctp; /* screen type 0, 1, 3 & 4 %/
char pal[16]; /* palette register contents */
b

main{arqc,argv)
int argc;
char *argv[];
{
int verbose = FALSE; /* verhose flag */

int count = 1; /* arqument counter */
char file[256]; /* filename string */

char *fgets(), *gets(); /* prototype function */
char *r_err; /¥ error value */

int error; /¥ error value */

FILE *ifp,*fopen(); /* file pointer */
struct header head; /* declare structure */

if (arge > 1)
if (argv{l][0] == '-') /* correct option ? */

DIM ernum: INTEGER

OPEN #path,file:READ

GET 4path,char

IF ASC{char)>127 THEN

PRINT "Squashed VEF picture"
ELSE

PRINT "Unsquashed VEF picture"
ENDIF

CLOSE #path

END

10 ernum=ERR

IF ernum=56 THEN

PRINT "Usage: CheckVEF <file>"
ENDIF

END

As you can see, it is simple. The on error goto makes
due allowance for the misquided user, who forgets how to
use it. If a filename 1is supplied, the file is opened, a
byte is read, and if the first byte is qreater than 127,
the picture is squashed VEF, else it is not. The file is
then closed, and the procedure quits. Simple.

/* structure for packet to read from VEF file */

if (toupperfargv[1]{1]) t= V') { /* no... tell nim' ¥/
fprintf(stderr, "Usage: CheckVEF {-v] file file ...\n");

exit(0); /* and exit */
b else {

August 1992

Page 5

AUSTRALIAN 0S9 NEWSLETTER

verbose = TRUE; /* vyes, be more wordy */
!
if (verbose == TRUE) count+4; /* set counter past switch */
for(;;) { /* forever loop */
1f ({(verbose == TRUE) && {argc > 2)} ((verbose == FALSE) & (arqc > 1}}} {
if (count < arge) { /* command line filenames ? */
strepy(file,argv[count++]};
} else {
exit(0);
!

} else |
r_err = gets{file); /* or piped ? */
if (r_err == NULL) exit(errno); /* quit if any error ¥/
}
if ((ifp = fopen(file,"r")} == NULL) { /* open the file */
fprintf(stderr,“Can't open $s\n",file}; /* if error, skip */
} else {
error = fread(ghead, sizeof(struct header), 1, ifp);
if (error == NULL) {
fprintf(stderr,"Can't read data from $s\n",file);
} else {
printf("%s is %s VEF file.\n",file, (head.sgsh < 0) ? "a squashed" : "an unsquashed");
if (verbose) { /* if verbose print more info */
printf("Picture is "};
switch(head.sctp) {
case 0:
printf("320 x 200, 16 colour\n");
break;
case 1:
printf("640 x 200, 4 colour\n");
break;
case 3:
printf("320 x 200, 4 colour\n");
break;
case 4:
printf("640 x 200, 2 colour\n");
break;
!
printf("Palette registers are: %2d, %2d, %2d, %2d\n",head.pal[0], head.pal[l],head.pal[2],head.pal[3]);

printf(" $2d, %2d, %2d, %2d\n",head.pal(4}, head.pal[5], head.pal{6], head.pall7]});
printf(" $2d, %2d, %2d, $2d\n",head.pall8],head.pal[9],head.pal(10],head.pal[11]);
printf(" $2d, %2d, 32d, %2d\n\n",head.pal{12],head.pal[13},head.pal[14] head.pal[15});
}
!
fclosefifp);
!
!
!
Usage for this programme is as follows: the '-v' option must be the first arqument. You may also
‘pipe' the input to the programme. Say for argument's
CheckVEF [-v] file file ... sake you have a directory full of VEF files. The command

then might be 'ls *.vef ! CheckVEF' or 'ls *.vef !
30 you can type ‘CheckVEF picture.vef' or 'CheckVEF -v CheckVEF -v'. The output should look something like this:
picture.vef'. More than one filename may be given, but

Page 6 August 1992

AUSTRALIAN 0OS9 NEWSLETTER

bilbo.vef is an unsquashed VEF file.
without the '-v' option and with the '-v' option:

bilbo.vef is an unsquashed VEF file.

Picture is 320 x 200, 16 colour

Palette registers are: 62, 0, 35, 63
49, 4, 7, 56

60, 6, 39, 53
63, 63, 63, 63

As is usual, these programmes will be available from
our librarian, Jean-Pierre Jacquet. They will probably
end up on disk 12 of the library.

Bob Devries

Australian COCOPEST!

Australians! f{and everyone else..) A company called
REMCOMS 1is organising a COCOFEST in Melbourne Australia
some time in October! Date is not finalised. Will probably
be in Dandenong somewhere.

REMCOMS recently got the rights to sell nearly all the
brands of COCO software in Australia. They even are
allowed to reproduce some names here. If they have your
name, you would have got a catalogue in the mail. (Oh and
they run a BBS too).

The COCOFEST is a great idea, my MM/l will be there ;-)
More details as they come to hand. (ask me if you want the
phone number.. the hours are complicated)

-Andrew Donaldson.
P.S. T have nuffin to do with REMCOMS.

P.P.S. They are even putting an ad in the Herald/Sun for
a week!

Microware's 'pipelines’

Just got the latest issue of Microware's "Pipelines”
(Spring 1992). The MM/1 is mentioned TWICE in this issue.
First in a new Microware product announcement header. It
says, "Microware has recently released two new products
for consumer-oriented 0S-9 computers systems, such as CD-I
and the MM/1." Both are software products, one being
ariver for MIDI support, and the other is a graphics
library which can be used to display CD+G graphics data.

Me, I am having loads of fun with my MM/1 and a Yamaha
PSR-48 synth in MIDI mode by merely using UltiMusEK from
KalaSoft and the MIDI Paddle board for the /tl device port
on the motherboard from Kevin Pease, the designer of the
original MM/1.

Later, in Pipelines, in the "New Vendor Products" section,
the MM/1 is mentioned in a blurb for the relatively new
magazine, "The 68xxx Machines", saying, "The magazine
covers technical tips and software information for 0S-9
based computers like the MM/L."

There is also a couple of VERY interesting articles of how
05-9 is being used in the field, one story of a GESPAC
MPU-20 (a 16 Mhz 68020 with 512K ram) diskless system
which is the "brain" of an underwater exploration vehicle
called "The Sea Squirt", being developed at the Underwater
Vehicles Laboratory at MIT (Cambridge).

August 1992

The other story is how two French organizations are using
0S-9 based systems for research and data collection. One,
AETA (Applications Electronigues des Techniques Avancees
in Fontenay aux Roses) is using a 68030 based system
running 0S-9 to test astronauts for zero-G orientation
abilities. Another French company, ESRF (The European
Synchroton Radiation Facility at Grenoble) is using 68030
based systems to monitor and control atomic research.

There is also an announcement of the latest version of 0S-
9000, Version 1.3, which adds DOS emulation support for
0S-9000. This is called "vPC" for "Virtual PC" by
Microware.

But for me, the best article, is the centerpiece story, a
story written by the well-known Peter Dibble on signal
handling with C, a story titled, "Fine Tuning Signal
Handling", with several examples of C source code.

Pipelines is free to any 0S-9 user (I think, they don't
charge me for it!). Just call or write to Microware to
get on their mailing list!

Zack Sessions

sessions@seg.uncwil.edu

University of North Carolina at Wilmington

"Good health is merely the slowest form of dying."

Page 7

AUSTRALIAN OS9 NEWSLETTER

This message was captured from the comp.os.o0s9 newsgroup.

o +
1! 11
!1 The "0S9 Underground” Magazine now incorporates '68xxx Machines' !!
11 1
!! Former subscribers of '68xxx Machines' will receive a larger 11
1! magazine, with all the articles you were used to... plus you 1!
1! will get MORE 0S9! 11
1! 11!
1! "OS9 Underground” Subscribers will get almost double the issue 11
1! now. 11
1! 1
1! The 0S9 Underground is THE Magazine for 0S9... 1!
o +

e ———— e ———— e ————— - +
1! 11
1! Haven't gotten a free trial issue yet2?22? !!
11 11
11 Reply to this message with your Name and !!
1! address and I'l1l send you Issue #1... 1"
11 11
11 Or USMail to: 11
11 Fat Cat Publications 1
11 4650 Cahuenga Blvd. Ste #7 !!
1 Toluca Lake, Ca. 91602 11
11 1!
o ——————————— +
Fm e ———— e +
1! Wwhadda ya waitin' for? !!
e +
\!/ StG Net International Zog's Cavern BBS (818) 761-4135

Z{(0)G In support of 0S9 on an 0S9 Network!

/!\ SysOp:Alan Sheltra - Editor of "The 0S9 Underground™ Magazine

Hard disk interface options

>> What interfaces are currently available? What other
hardware will I need? What type of hard drive should I be

looking for?

The two most popular interfaces are the Burke&Burke

CoCo-XT and the Disto 4-in-1 board.

Page 8

I recommend getting

the interface first, and then buying an appropriate hard
drive and/or controller, since each one has somewhat
particular hardware requirements (the CoCo-XT only works a
particular type of 8-bit PC/XT controller card, and the
Disto drivers require a SCSI drive that supports an
uncommon 256-byte sector size).

August 1992

AUSTRALIAN 0S9 NEWSLETTER

~ Burke&Burke CoCo-XT.

Adapts a PC/XT-style controller card to a Cofo.
Requires an appropriate 8-bit MFM or RLL controller card
and an appropriate MFM or RLL drive. Pluses: Excellent
drivers and support software by Chris Burke; such drives
and controllers are often cheaply available new or used;
Chris also sells a ROM for booting 089 from the hard
drive. Minus: Requires a Multipak, or some very careful
hacking (address conflicts with floppy controller,
requires source of +12v). There's also a version with a
built-in RTC.

- Disto 4-in-1 card.

This card goes inside a Disto controller, providing an
RTC, Parallel printer port, serial port, and a SCSI hard
disk interface. Lots of people used to use this with an
Adaptec SCSI-MFM controller, but with the prices of
embedded SCSI drives coming down out of the stratosphere,

that's changing. Pluses: MNo Multipak required; also gives
you parallel and serial port; SCSI drives can be carried
to lots of other computers. Minus: reguires a Disto Super
Controller, Super Controller II, or Mini Expansion Bus and
MultiPak; drivers included are not great, much better ones
are available free (I don't know if anyone has yet written
deblocking drivers to use with 512-byte sectors, so it may
still require a drive that can do 256-byte sectors, such
as the Seagate N-series. Ken Scales knows about this, I
beleive.); may be hard to find, since I think CRC (the
company that marketed the Disto products) died a while
back, Dave Meyers at CoCoPRO! may have used ones(?).

A number of people have built their own hard disk
interfaces, usually SCSI, since the hardware is pretty
easy. This does have the drawback of requiring you to
write your own drivers, though. <grin>

- Tim Kientzle

Add a second port to your Deluxe RS-232 PAK

In reference to several users asking about a second serial
port for CoCo 0S9, a reprint of an article I posted to CIS
a while ago. It seemed short enough to send up as a list
message, Bob Brose. {jriver!os9!boblist@uunet.UU.NET)

IMPORTANT NOTE: DO NOT ATTEMPT THIS MOD UNLESS YOU ARE
VERY HANDY WITH A SOLDERING IRON AND ARE EXPERIENCED WITH
PIGGYBACKING CHIPS. THERE IS NO WARRANTY EXPESSED OR
IMPLIED. YOU ARE RESPONSIBLE FOR YOUR OWN WORK!

Hardware Modifications

Materials needed:
6551 chip
1489 chip
1.8432 Mhz crystal

If you need more than just Transmit data for outgoing
lines, a 1488 will also be needed.

Remove the existing 6551 from it's socket.

On the new 6551, bend pins 2,5,6,7,8,9,10,11,12,16 and 17
up so they point directly away from the body of the chip.
Place the new 6551 over the old 6551 (line up the pin 1's)
and solder the following top pins to the bottom pins 1, 3,
4, 13, 14, 15, 18, 19, 20, 21, 22, 23, 24, 25, 126, 27, 28
without getting any solder on the lower parts of the legs
of the lower 6551.

August 1992

Plug the 6551 stack back into it's socket. (if your 6551
wasn't socketed you can still do the mod but it will be
harder to solder the 2 chips together on the board, be
careful not to short any connections with solder blobs}.

Connect a short jumper from the 741s04 pin 9 to the top
6551 pin 2. This provides the select signal for the new
6551 {FF6C-FF6F).

Assuming a 3 wire port (which is all I needed), connect
the following on the top 6551 together:

pins 1, 9, 16, 17

This sets the cts, ded and dsr lines to low {true for
them) which is correct for a three wire line with no
hardware handshaking. If you want a full port, DO NOT
connect these pins together, you will need to connect 9,
16 and 17 to gates on the soon to be piggybacked 1489
instead.

Topins 6 and 7 on the top 6551, solder a 1.8432 MHZ
crystal. This is necessary as the two 6551's cannot share
the same crystal because of the way they generate a signal
from it. Alternatly, you can make a crystal generator out
of spare gates on the 741s04 with one crystal and feed the
signal into both pin 6's on the 6551's {leaving pin 7's
unconnected) but this requires much more work and since
crystals are about $1 really isn't worth it.

Piggyback the new 1489 on top of the current one making

Page 9

AUSTRALIAN 0S9 NEWSLETTER

sure that the pins 1 line up, bending up all pins on the
new 1489 except 7 and 14. Solder the 2 pin 7's together
and the 2 pin l4's together making sure not to short out
any other pins or traces. Connect a wire from pin 3 of the
piggybacked 1489 to pin 12 of the top 6551 (this is
receive data).

The existing 1488 has 1 free gate which we will use for
transmit data. Solder a wire from the top 6551 pin 10 to
the 1488 pin 2.

Final assembly:

Get your desired RS232 connector (I used a 25 pin female
like the original). Solder a wire from a conveinent ground
(I used the pad by the right rear mounting screw to pin 7
on the 25 pin RSZ32 connector. Solder a wire from pin 3 of
the 1488 to pin 2 of the RS232 conmnector (this is transmit
data). Solder a wire from pin 1 of the piggybacked 1489
to pin 3 on the RS232 connector (this is receive data).
Note: pins 2 and 3 can be reversed depending on whether
you are talking to a modem or terminal.

Test out the RS232 by plugging it into a multipak
(protects you from major soldering errors) and powering up
your machine. If your machine doesn't act completely
normal, turn it off immediatly and recheck all of you
connections against the above instructions. If everything
is OK, try out a terminal program for the existing RS23Z,
if it works proceed to the software mod section below,
otherwise go back and check your work.

End of hardware mods

NOTES: If you want to hook up other input status lines,
the piggybacked 1489 can be used to hook up the 3 input
status lines, cts dcd and dsr. If you are going to use
this port with a CALL IN modem you will need to do this,
see the 1489 data sheet for pinouts of the unused gates.

Also, if you need to hook up outgoing status lines like
dtr and rts, you will need to piggyback another 1488 on
top of the existing one and conmnect it up. I'm using my
second port for a terminal so none of the handshaking
lines were necessary.

Software Modifications

I use the port only with 0S9 so the changes are minor. You
can use the port with rsdos, but you will need to write
your own software to do so. Remember in RSDOS if you use
both ports as interrupt driven ports, your interrupt
routine will have to check both ports to see which one
caused the interrupt as they are connected together (PC
owners WISH they could actively share interruptsi}).

0S9 instructions.

I use T3 for my new descriptor, I did this by taking an
existing T2 descriptor and changing the least significant
byte of the port address at offset 10h in the descriptor
to 6C from 68. Also you need to change the name of the
descriptor, I did this by changing the hi bit set "2"
which is B2 at offset 38h to B3 (which is a hi bit set
"3"). Don't forget to verify the CRC and save out the new
descriptor. Create a new boot with the T3 and you are
ready to go. The name offset at 38h above will vary from
one descriptor to the next because there are so many
versions of the acia driver around. I use Bruce Istads
with great success and recommend it highly. (SACIA}.

I routinely call in on T2 and then connect to another
computer via T3 and it works completly perfectly.

Happy Computing!

Robert E. Brose II, NOQBJ
uunet!jriver!os9tbob
compuserve 72067,3021

6309 BenchMarks

I tried posting this on the net a long while back, and I
didn't think it made it because of UUCP troubles. Here it
is again. Hope some of this info is useful to all of you
using or contemplating the use of the 6309.

Boisy Pitre US National 0S9 Users Group President

6309 BENCHMARK RESULTS

Using my TIMER utility which benchmarks programs by

Page 10

the system clock,
commands.

I tested the speed of several popular

These tests were run on a 6309-based 512K Tandy Color
Computer 3 running at 1.9625 MHz; Seagate ST-157N-0 Hard
Drive with Ken-Ton SCSI Interface. Although the actual
speeds of these commands may be biased against the
1.789MHz clock in stock CoCo 3's, the time ratio between
the two comparisons are constant. The version of
PowerBoost used for these tests was 1.0.

August 1992

AUSTRALIAN OS9 NEWSLETTER

Keep in mind that the issue here isn't the speed of the
commands themselves, but rather their speed as it relates
to the patched kernel and managers vs. non-patched 0S-9.

Note that all commands were either already in memory,
or previously loaded to aleviate timelapse in loading from
disk. The left column reflects the elapsed time without
PowerBooster 1.0 installed, while the right column shows
the same command run under the same circumstances.

WITH PowerBooster.
WITHOUT POWERBOOSTER WITH POWERBOOSTER

Command line: cobbler /r0 (1)

Start Time: 15:26:34 15:28:30
Stop Time: 15:26:50 15:28:31
Elapsed 00:00:16 00:00:01

Increase: Quite a bit

Command line: mdir

Start Time: 15:25:48 15:28:12
Stop Time: 15:25:52 15:28:14
Elapsed 00:00:04 00:00:02

Increase: Pretty good

Command line: mdir e

Start Time: 15:26:01 15:28:19
Stop Time: 15:26:09 15:28:24
Elapsed 00:00:08 00:00:05

Increase: Considerable

Command line: megaread</dde (2)

Start Time: 16:13:37 16:30:27
Stop Time: 16:14:50 16:31:37
Elapsed 00:0L:13 ... o v o h L. 00:01:10
Increase: Slight

Command line: rz</t2 (3)

Start Time: 16:18:08 16:24:05
Stop Time: 16:23:14 16:29:09
Elapsed 00:05:06 00:05:05

Increase: Very very very very little
NOTES:

(1) The Cobbler command was benchmarked with a 30,535 byte
059Boot file written to a RAMDisk.

(Z) The MegaRead command is a custom assembly language
program which reads 40 blocks of 25,000 bytes each from
stdin. This is NOT the same MegaRead utility used by
others for benchmarking purposes.

(3) RZ 3.10 was used to download a 69,971 byte text file

August 1992

at 2400 baud (Viva Modem 24) to a hard drive. No errors
or retries occurred.

COMMENTS:

These are estimates based on my particular system and
are accurate within 1 second. Some commands (i.e.
Cobbler & MDir} show a drastic improvement in speed with
the PowerBoost patches applied, while other commands (i.e.
RZ & MegaRead) show some to very little improvement.

Indeed, the command which showed the most dramatic
increase was the Cobbler wutility. This is due to
Cobbler's heavy dependence on the F$CpyMem call (used in
three different places in the program, and that's not
counting looped calls}). I was so amazed at how much
faster the command ran that I had to try it several times
to be sure I wasn't dreaming!

MDir performs a good margin above the unpatched run.
This command references the F$CpyMem call twice (again,
not counting looped calls) as well as the F$GModDr call.
One can definitely tell the difference when running this
command, with or without the option.

I threw together my own home-brewed version of MegaRead
(which probably doesn't resemble the “"standard" version at
all). Although it performed slightly better after the
PowerBoost, Chris Burke's demonstration with his version
at the ChicagoFest showed a vast increase. (If that
version of MegaRead is available for copying, I would
appreciate a UUENCODED version emailed to me. <hint>)

Although RZ showed hardly any improvement (you could
almost say "no improvement"), I DO notice that my modem
transfers, especially my UUCP transmissions, are
considerably faster with PowerBooster enabled.

Other commands that I noticed significant speed when
using PowerBooster: idir, ddir, proc, pmap, paths (these
commands are part of Kevin Darling's utility package). I
have also noticed speed increases in the MVCanvas graphics
program, particularly when moving the canvas vertically
using the up/down arrow object in the Tools menu. I would
be interested in hearing from others out there with their
observations of the PowerBoost's performance.

The ONLY problem that my system has with the PowerBoost
software (yes there is ONE problem) is random crashes at
various times, especially when running disk intensive C
programs like MAKE and REPACK. I assume this has
something to do with the exotic patches to my system's
modules, but the problem only exists when PowerBoost is
installed.

Page 11

AUSTRALIAN 0OS9 NEWSLETTER

Let's not forget that this is version 1.0 of
PowerBoost. Not nearly all of the drivers and system
modules that could be patched, were patched. To really
squeeze all of the speed out of the 6309, it would take a
total rewrite of the kernel, managers, and drivers. Also
remember that the programs which were tested don't take
advantage of the extra features of the 6309 and were
written with the 6809 in mind.

With the implementation of Native Mode in upcoming

Page 12

releases of Burke & Burke's PowerBoost upgrades, another
significant increase in speed will be attained. In other
words, this is just the "tip of the iceberg."

Lastly, based on just these benchmark figures alone, it
is worth anyone's time and money to purchase the
PowerBoost upgrade {and no, Chris Burke isn't paying me
for this <grin>)

Boisy G. Pitre

August 1992

NATIONATLI, OS99 USERGROUP — AUSTRAI.TA
SUBSCRIPTION RENEWAL / APPLICATION

Subscription Renewal [__] New Subscription [__1]

Surname: First Name : Title

Street:

Suburb: State : Postcode

Country:

Home Phone: Business Phone:

Age Group (please tick) Under 18 [_] 18-25 [__1 26-35 [__1
36-45 [__] 46-55 [__1] over 55 [__]

Do you run 0S9 Level 1[_ 1] 0S9 Level 2[__] OSKI[__ 1 0s9000[__1

Type of Computer for 0S9: RAM K.
Diskette 5.25 Number [__] Tracks | 1 Sides [__1]

Diskette 3.5 Number [__] 720k [__1] l.4meg [__]

Hard Drive Meg |] Controller Type

Printer Type/Model

Modem Type

Special Interests

Can you contribute articles to this Newsletter ?

Date : / / Signature

Amount Enclosed: §$ ($18-00 will cover you for 12 months)
{ A$25-00 Overseas)
(CHEQUES PAYABLE TO: NATIONAL 0S9 USERGROUP)

Please Return Completed Form to :-
NATIONAL 0S9 USERGROUP OR NATIONAL 0OS9 USERGROUP

c/0 GORDON BENTZEN c/o J.P. JACQUET
8 ODIN STREET 27 HAMPTON STREET

