AUSTRALIAN OS9 NEWSLETTER

sides “No. of cyiinders’ (in decimai) :Interleave value: (in decimal) @FREE Svntax:
Free [devname] Usage : Displays number of free sectors on a device @GFX
Syntax: RUN GFX(funct<args>) Usage : Graphics interface package for
BASICO9 to do compatible VDG graphics commands @GFX2 Syntax: RUN
GFXZ([pdth]<funct><aros>) Usage : Graphics interface package for BASICO\J to
handle X none

Usage : N s ;
wf.i(%ow EDITOR Gordon Bentzen (07) 344-3831 !‘gi hlliLnSe

P2l SUB-EDITOR Bob Devries ©7) 372-7815 ’ | topics
from O3 TREASURER Don Eerrie O7) 375-1284 b

single lin
%}%I?Eri LIBRARIAN Jean-Pierre Jacquet (07) 372-4675
. . Fax Messages (07) 372-8325
g:gu;?oi SUPPORT Brisbane OS9 Users Group

MEMOT Yl
text files i%?' e b gt Dol iles

memory @\/IAKDIR Syntax: Makdir 'Dathname> Lsaoe : Creates & new
directory file @MDIR Syntax: Mdir [e] Lsaoe : Dlsplcws the present memory
module directory Opts e = prmt extenoecx module dlI'ECIOI'V C‘\/L_uut Smtd‘c .
Merge «<path» ' .y ndard output
@MFEREE Synt Adg[giss:a_fmjgmcmndgns: M memory
@MODPATCH| Editorial Material: f‘f-{a module in
memory from g Gordon Bentzen rmings -C =
compare modu 8 Odin Street Ename = link
to moedule C SUNNYBANK Old 4109 e V= verify
module M = m4 . . ntw pe {opt]
Usage : Set md ~ubscriptions & Library Requests: mmomtm m =
monochrome Jean-Pierre Jacquet o bo : Creates
and links an OY 27 Hampton Street 5CS Svntax:
Procs [e] L'S&Gﬁ D.L_EA.C_KM A C)pts T @ =
dispiav all prodews e Prints the
current data direch Sk S5 atszihe current
execution directory path @REN f\ME bvde’ Rename <ﬁlename> qnew filename>
Usage : Gives the file or directory a new name @RUNDB Syntax: Rund <d-code
modules_Uisace - BASICOO mn time packace @SETIME Syntaxe_Setime

[w/m . . s o
Yolume % June 1992 Nuomler 3

rDT\/IODE Ao e g
the operating pa..ram terminal @TU\EPORT Tunepon dtl or Ip>
[value] Adjust the baud value for the serial port @UNLINK Syntax: Unlink
modname> Usage : Unlinks module(s) from memory @WCREATE Svntax:

AUSTRALIAN 0S9 NEWSLETTER

Newsletter of the National 0S9 User Group
Volume 6 Number 5

EDITOR : Gordon Bentzen
SUBEDITOR : Bob Devries

TREASURER : Don Berrie
LIBRARIAN : Jean-Pierre Jacquet

SUPPORT : Brisbane 059 Level 2 Users Group.

Those of you who are also supporters of the Australian
CoCo-Link magazine would no doubt be avare that CoCo-Link
vill cease production with the December 1992 edition.
We are of course saddened to hear this news and would
like to offer our congratulation to Robbie Dalzell, Garry
Holder, Sub-Editors and the other helpers for the great
job they have done over the past few years. Their
genuine efforts to help CoCo users and to keep the CoCo
conmunity alive is to be conmended, well doze.

We have covered many times our disappointment with the
Tandy decision to quit the CoCo and I don't want to go
into that agaiz. It is however quite an achievement that
CoCo Usergroups and magazines have been able to continue
for a couple of years after Tandy dropped the product AND
their support.

The Australian 089 Usergroup continues on with the
pronige of bigger and better things in the future. 059
level 2 on the CoCold & 6809 is still hard to beat in many
vays. The huable CoCo is certainly not able to match the
speed, video displays and many other beaut things on
offer in the 68xxx 0S9 machines but the CoCol vwith
Microvare's 059 L2 has set the others a real challenge in
such things as the L2 vindowing systen.

§e believe that the nev 059 68K platforas such as the
MM/t, Delmar and Frank Hogg's machines will ensure a
groving folloving of 059 and maybe even 059000 on those
386 and 486 P.C's.

059 Usergroups in ome form or another are on the
increase. Information about the OCH Community on Fido has
been featured in previous editorials, as well as this we

are seeing talk of the old U.S. 0S9 Usergroup being
reforned with many of those notable names involved.

0f course it may be that we will also have to fold up one
day, but that will be a decision that you, the members,
vill nake. Until then we plan to bring news and articles
of interest to help all members enjoy 089.

[§ TBIS EDITION

Qur tutorial in the 'C* programming language continues
vith Chapter 8. The Rainbow 059 article index continues
vith the 1990 liating.

Bob Devries has generously supplied yet another 'C!
progranae, complete with source code. This programme
vill convert an Aniga Sound Sample file so that it may be
used vith the 059 *Play*.

A disk readsr/verifier programmer in 'C*, also by Beb
Devries is included.

We have all seen the *More® utility in use under NS-DOG
or the *'C' version on a CoCo. Well in this edition we
bhave the source for an assembler version by Boisy Pitre
for you to type in.

e do hope that you find something useful in this edition
and remind you that our P.D. library continues to grov
slovly with all sorts of interesting and useful utilities
and programmes from oveseas and local authors. ALl these
and our UGCAT {Catalogue of Usergroup P.D. softvare} are
available for our usual nominal copy fee.

Cheers, Gordon.

000000000000000000000000000000

A C Tutorial
Chapter 8 - Pointers

WHAT IS A POINTER?

Simply stated, a pointer is an address. Instead of
being a variable, it is a pointer to a variable stored
gomevhere in the address space of the progran. It is
alvays best to use an example so load the file named
POIRTER.C and display it on your monitor for an example
of a progran vith some pointers in it. For the moment,
ignore the data declaration statement vhere ve define
Yindex® and two other fields beginning with a star. It

Page 2

is properly called an asterisk, but for reasons we vill
see later, let's agree to call it a star. [If you observe
the first statement, it should be clear that ve assign
the value of 39 to the variable *index'. This is no
surprise, ve have been doing it for several programs mov.
The next statement hovever, says to assign to ®pti® a
strange looking value, namely the variable "index' with
an ampersand in fromt of it. In this example, ptl and
pt2 are pointers, and the variable *index® is a simple
variable.

June 1992

AUSTRALIAN 0S9 NEWSLETTER

Hov ve have a problem. We peed to learn hov to uge
pointers in a program, but to do so requires that first
ve define the means of using the pointers in the progran.
The folloving two rules will be somevhat confusing to you
at first but ve need to state the definitions before we
can use them, Take your time, and the vhole thing will
clear up very quickly.

TWO VERY IMPORTABT RULES

The following two rules are very important when using
pointers and must be thoroughly upderstood.

l. A variable name vith an ampersand in fromt of it
defines the address of the variable and therefore
points to the variable. You can therefore read line
six as "ptl {s assigned the value of the address of
index".

2. A pointer with a "star" in front of it refers to the
valae of the variable pointed to by the pointer.
Line nine of the program can be read as 'The stored
{gtarred} value to vhich the pointer ‘'ptl" paints is
assigned the value 13'. Now you can see why it is
convenient to think of the asterisk as a star, it
sort of sounds like the word store,

NEMORY AIDS

1. Think of & as an address.
2. Think of * as a star referring to stored.

Agsure for the moment that "ptl" and ‘'pt2" are
pointers (we will see hov to define them shortly). As
pointers, they do not contain a variable value but an
address of a variable and can be used to point toa
variable. Line six of the program assigns the pointer
*pt1" to point to the variable ve have already defined as
"index" because we have assigned the address of 'index"
to 'pti". Since we have a pointer to "index*, we can
panipulate the value of ‘index* by using either the
variable name itself, or the pointer. Line nine modifies
the value by using the pointer. Since the pointer 'ptl"
points to the variable ®index", then putting a star in
front of the pointer name refers to the memory location
to vhich it is pointing. Line nine therefore assigns to
*index" the value of 13. Anyplace in the program vhere
it is permissible to use the variable name "index®, it is
also pernissible to use the name '*ptl® since they are
identical in meaning until the pointer is reassigned to
gsone other variable.

ANOTHER POINTER
Just to add a little intrigue to the system, we have

another pointer defined in this program, *ptl*. Since
*pt2" has not been assigned a value prior to statement

June 1992

seven, it doesn't point to anything, it contains garbage.
0f course, that is also true of any variable until a
value is assigned to it. Statement seven assigns "ptl"
the same address as "ptl", so that nov "pt2" also points
to the variable *index’. So to continue the definition
from the last paragraph, anyplace in the program where it
is pernissible to use the variable "index®, it is also
pereissible to use the name "*pt2" because they are
identical in meaning. This fact is illustrated in the
first "printf" statement since this statement uses the
three means of identifying the same variable to prinmt out
the same variable three times.

THERE IS ONLY ONE VARIABLE

Note carefully that, even though it appears that
there are three variables, there is really only one
variable. The two pointers point to the single variable.
This is illustrated in the pext statement which assigns
the value of 13 to the variable "index', because that is
vhere the pointer "ptl" is pointing. The pext *printf"
statenent causes the nev value of 13 to be printed out
three times. [Keep in mind that there is really oonly one
variable to be changed, not three. This is admittedly a
very difficult concept, but since it is used extensively
in all but the most trivial C programs, it is well worth
your time to stay with this material until you understand
it thoroughly.

BOW DO TOU DECLARE A POINTER?

How to keep a promise and tell you how to declare a
pointer. Refer to the third line of the program and you
vill see our old familiar vay of defining the variable
*index", folloved by two more definitions. The second
definition can be read as *the storage location to which
*pt1" points will be an int type variable®. Therefore,
'ptl® is a pointer to an int type variable. Likewise,
*pt2' i3 another pointer to an int type variable. A
pointer must be defined to point to some type of
variable. Folloving a proper definition, it cannot be
uged to point to any other type of variable or it will
result in a "type incompatibility® error. 1In the same
panner that a "float® type of variable camnot be added to
an 'int® type variable, a pointer to a 'float® variable
cannot be used to point to an integer variable. Compile
and run this program and observe that there is only ome
variable and the single statement in line 9 changes the
one variable which is displayed three times.

THE SECOND PROGRAM WITH POINTERS

[n these few pages so far on pointers, we have
covered a lot of territory, but it is important
territory. We still have a lot of material to cover so
stay in tuge as ve continwe this important aspect of C.
Load the next file named POINTER2.C and display it on

Page 3

AUSTRALIAN 0S9 NEWSLETTER

your monitor 8o we can contimue our study. [In this
progran ve have defined several variables and two
pointers. The firat pointer named "there' is 2 pointer
to a "char® type variable and the second named 'pt'
points to an ‘"int type variable. Hotice also that we
have defined two array variables named ®strg® and ®list®.
We vwill use them to ghow the correspondence between
pointers and array names.

A STRING VARIABLE IS ACTUALLY A POINTER

In the programming language C, a string variable is
defined to be simply a pointer to the beginning of a
string. This will take some explaining. Refer to the
example program on your monitor. Tou will notice that
first we assign a string constant to the string variable
pazed "strg® so we will have gome data to work with.
Hext, we assign the value of the first element to the
variable *one®, a simple “char" variable. Rext, since
the string name is a pointer by definition of the C
language, ve can assign the same value to "two® by using
the star and the string name. The result of the two
agsignments are such that ®one now has the same value as
"two®, and both contain the character 'T®, the first
character in the string.

Note that it would be incorrect to write the ninth
line as "two = *atrg(0];" because the star takes the
place of the square brackets. For all practical
purposes, ‘'strg" is a pointer. It does, however, have
one restriction that a true pointer does not have. It
cannot be changed like a variable, bat must always
contain the initial value and therefore always points to
its string. It could be thought of as a pointer
constant, and in some applications you may desire a
pointer that caonot be corrupted in any way. Even though
it cannot be changed, it can be used to refer to other
values than the one it is defined to point to, as we will
gee in the next section of the progran. Moving ahead to
line 12, the variable ‘'one" is assigned the value of the
pinth variable (since the indexing starts at zero) and
"tyo" is assigned the same value because we are allowed
to index a pointer to get to values farther ahead in the
string. Both variables nov contain the character 'a*.

The C programming language takes care of indexing for
8 automatically by adjusting the indexing for the type
of variable the pointer is pointing to. In this case,
the index of 8 is simply added to the pointer value
before looking up the desired result because a 'char*
type variable is one byte long. If ve were using a
pointer to am 'int" type variable, the index would be
doubled and added to the pointer before looking up the
value becawse an "int® type variable uses two bytes per
value stored. When ve get to the chapter on structures,
ve vill gee that a variable can have many, even into the
hundreds or thousands, of characters per variable, but

Page 4

the indexing will be handled automatically for us by the
systen. Since "there* is already a pointer, it can be
assigned the value of the eleventh element of 'strg® by
the statement in line 16 of the program. Remember that
since "there® is a true pointer, it can be assigned any
value as long as that value represents a "char® type of
address. It should be clear that the pointers must be
*typed' in order to allow the pointer arithmetic
described ia the last paragraph to be done properly. The
third and fourth outputs will be the same, namely the
letter "c*.

POIBTER ARITHNETIC

Not all forms of arithmetic are permissible on a
pointer. Only those things that make sense, considering
that a pointer is an address somevhere in the computer.
[t would nake sense to add 2 constant to an address,
thereby moving it ahead in memory that number of places.
Likewise, subtraction is permissible, moving it back some
nupber of locations. Adding two pointers together would
not make sense because absolute menory addresses are not
additive. DPointer multiplication is also not alloved, as
that would be a funny number. If you think about what
you are actually doing, it will make sense to you vhat is
alloved, and what is not.

NOW FOR AN INTEGER POINTER

The array named 'list® is assigned a series of values
fron 100 to 199 in order to have some data to work with.
Next we assign the pointer *pt® the value of the 28th
element of the list and print out the same value both
vays to illustrate that the system truly vill adjust the
index for the “int" type variable. You should spend some
tine in this program until you feel you Cfairly well
understand these lessons on pointers. Compile and run
POINTER2.C and study the output. You may recall that
back in the lesson on functions we mentioned that there
vere two vays to get variable data back from a function.
One way is through use of the array, and you should be
right on the verge of quessing the other way. If your
guess is through use of a pointer, you are correct. Load
and display the program named TWOWAY.C for an ezample of
this.

FUBCTIOR DATA RETURN WITH A POINTER

In TWOWAT.C, there are two variables defimed in the
pain program *pecans® and fapples’. Hotice that neither
of these ig defined as a pointer. We assign values to
both of these and print them out, then call the function
"fixup' taking with us Dbath of these values. The
variable *pecans® is simply sent to the function, but the
address of the variable ®apples® is sent to the fenction.
Hox we have a probler. The two arguments are nat the
same, the second is a pointer to a variable. We must

June 1992

AUSTRALIAN 0OS9 NEWSLETTER

gonehov alert the function to the fact that it is
supposed to receive an integer variable and 2 pointer to
an integer variable. This turns out to be very simple,
Botice that the parameter defimitions in the fumction
define "nuts® as an integer, and *fruit® as a pointer to
an integer. The call in the wmain program therefore is
nov in agreement with the function heading and the
program interface will work just fime. In the body of
the function, we print the two values sent to the
function, then modify them and print the new values out.
This should be perfectly clear to you by nov.

The surprise occurs when we return to the main
program and print out the two values again. We will find
that the value of pecans will be restored to its value
before the function call because the C language makes a
copy of the item in question and takes the copy to the
called function, leaving the original imtact. In the
case of the variable ‘*apples®, we made a copy of a
pointer to the variable and took the copy of the pointer
to the function. Since we had a pointer to the original
variable, even though the pointer was a copy, we had
access to the original variable and could change it in
the function. When we returned to the main program, ve
found a changed value in "apples® when we printed it out.
By using a pointer in a function call, we can have access
to the data in the function and change it in such a way
that when we returz to the calling program, ve have a
changed value of data. It must be pointed out however,
that if you modify the value of the pointer itself in the
function, you will have a restored pointer when you
return because the pointer you use in the function is a
copy of the original. In this ezample, there was 1o
pointer in the main program because we aimply sent the

address to the function, but in many programs you will
use pointers in function calls. One of the places you
vill find need for pointers in function calls will be
vhen you request data imput using standard imput/output

routines. These will be covered in the next two
chapters. Compile and run TWOWAY.C and observe the
output,

POINTERS ARE VALUABLE

Even though you are probably somevhat intimidated at
this point by the use of pointers, you will find that
after you gain experience, you will use them profusely in
pany vays. You vill also use pointers in every program
you write other than the most trivial because they are so
useful. You should probably go over this nmaterial
carefully several times until you feel comfortable with
it because it is very important in the area of
input/output which is next on the agenda.

PROGRAMMIRG EXERCISES

1. Define a character array and use "strcpy® to copy a
string into it. Print the string out by using a loop
vith a pointer to print out one character at a time.
Initialize the pointer to the first element and use
the double plus sign to increment the pointer. Use a
separate integer variable to count the characters to
print.

1. Modify the program to print out the string backvards
by pointing to the end and using a decrementing
pointer.

000000000000000000000000000000

CoCo-Link
CaCo-Link is an excellent magazine to help you with the RSDOS side of the Colour Computer. It is a bi-monthly magazine

published by Mr. Bobbie Dalzell. Send your subscriptions to:

CoCo-Link
31 Sedlands Crescent
Pt. Noarlunga Sth.
South Australia
Phone: (08} 3861647

000000000000000000000000000000

An Index of Rainbow 089 Articles
compiled by Bab Devries
January - December '90

January 1990 page 110
One Label or Two - A simple label-maker progran.
feyin Deneen

January 1990 page 56

June 1992

Breakpoint - Don't spend all day looking for a certain
disk.
Greg Lav

January 1990 page 117

Page 5

AUSTRALIAN 0S9 NEWSLETTER

KISSable 059 - Talking about modularity.
Dale L. Puckett

February 1990 page 56

Drive With Speed - Verify makes your 059 floppy drives
vork much faster. :

Stephen B. Goldberg

February 1990 page 122

Breakpoint - Examining a technique for parsing command
line parazeters in C.

Greg Law

March 1990 page 86
Do the Split - Making large files eagier to handle.
Stephen B. Goldberg

March 1990 page 96
Breakpoint - Giving it top priority.
Greg Lav

March 1990 page 6%

KISSable 0S9 - Tales of a new improved 0S9 Level II for
the Color Computer 3.

Dale L. Puckett

April 1990 page 44

Predicting Profits - A helpful program for those planning
a career in business.

David Macias

April 1990 page 113
Breakpoint - Talking about conversions and diversions.
Greg Lav

April 1990 page 52
FISSable 0S9 - A mev look for 0S9.
Dale L. Puckett

May 1990 page 46
Larry's Labeler - Organizing your floppy disks.
Larry Pittean

May 1990 page 30
Breakpoint - Directories and 0S9 file structure.
Greg Law

June 1990 page 36
Type Does Windows - A utility to switch window types.
Chris Swinefurth

June 1990 page 44
Breakpoint - Scaling the directory tree.
Greg Lav

July 1990 page 32
For Your Eyes Only - Logon protection for the single-user

Page 6

059 systen.
Stephen B. Goldberg

July 1990 page 72
Breakpoint - The missing link.
Ggreg Lav

July 1990 page 48
FISSable 0S9 - Loan procedures for MYFinance.
Dale L. Puckett

August 1990 page 20

CoCo 3 GINE CART* 1IRQs Explained - A software technique
that elirinates the cartridge interrupt probles.

Bruce Isted.

August 1990 page 64

Living Without Line Numbers - Will the virtues of Basic09
never ceage’

Jean Bergmann

August 1990 page 72
Breakpoint - Basic09 Interfacing.
Greg Lav

August 1990 page 38
EISSable 0S9 - CoCo 3 does windovs.
Dale L. Puckett

September 1990 page 81

If Wife = *Sue,* Bring your Potato Salad - Produce
personalized docueents with this handy mail-merge
utility.

Christopher Jackson

September 1990 page 28
Breakpoint - Reading and writing.
Greg Lav

September 1990 page 39
EISSable 0S9 - 059 gets the grades.
Dale L. Puckett

October 1990 page 44

Displaying Picture Files - Picture storage formats and
displaying irages under 059 Level II.

Tin lientzle

October 1990 page 30
Breakpoint - Easy access.
Greg Law

October 1990 page 58
EISSable 0S9 - 0S9 graphics primitives.
Dale L. Puckett

Bovember 1990 page 48

June 1992

AUSTRALIAN O0S9 NEWSLETTER

Displaying Picture Files, Part [I - Run-length decoding
techniques and displaying images with 059 level II.
Tin Kientzle

Noveaber 1990 page 27
KISSable 0S9 - Automating the online experience.
Dale L. Puckett

December 1990 page 34

Displaying Pictures Using 059 Level II Graphics, Part III
- Another look at data- compression techaiques.

Tin Kieatzle

December 1990 page 41
Alare - A look at sounding the alarm under 059.
David P Boynton

Decenber 1990 page 87
Breakpoint - 'tis the C zen.
Greg Lav

Decenber 1990 page 21
EISSable 059 - Legends of the C.
Dale L. Puckett

000000000000000000000000000000

Converting Aniga 8SVY sound samples
for compatibility with PLAY

With the proliferation of MODEMS among CoCo owners,
comes the likelyhood of acquiring files from other
computers. Sometimes these files can be considerable
fun to use under 0S9 on the CoCo. The files I have been
able to make use of are the IFF 35YX sound sample files
fron the Commodore Amiga. IFF stands for Interchange
File Format, and 8SYX stands for 8 bit Sampled Voice.
Most Amiga sound sample files come as IFF format, and
have a ‘header' of some 60 bytes tacked onto the

/* Convert 3SVX sound samples from Amiga files Ly
/* Copyright (c) 1992, by Bob Devries W
/* Perpission is hereby granted for the nmon-profit t/
/* distribution of this programee as long as the t/
/* source code is included, and this header is left */
/* intact)

Finclude (stdio.h)

struct formdsvx {
char fora[4];
long flen;
char svz[4];

b

struct head {
char header(4];
long blklen;

b

struct veed |
long oneshat;
long repeat;
long samphi;
int speed;
char octave;
char comp;
long volume;

b

pain{argc, argv)

June 1992

beginning of each file to identify it. To allow the PD
‘play' command to automatically playback these files,
this header nmust be stripped off, and replaced by two
bytes to tell 'play* that the file is from an Amiga, the
first byte, and the playback speed, the second byte. To
this end I created the following programme conv8avx in C.
Compile it using the normal C compiler usage., Ho special
headers or libraries are required.

Bob Devries.

Page 7

AUSTRALIAN 0S9 NEWSLETTER

int arge;
char *arqv(];
[
struct forn8svy frad;
gtruct head hdr;
struct veed voices;
int ¢h;
long chunklen;
char nane(256];
FILE *ifp, *ofp, *fopen(};

setbuf{stdin, NULL); /* set buffer to HULL so single key works */
setbuf (stdout,NULL);
pflinit();

if(arge 1= 3) | /* silly user tell hinm hov */
printf({*Usage: %s {infile) {outfile)\n",argv(0}};
exit{l);
}
if(access{arqv(2],27) != -1} [/* file exists - permission OK? */
printf{"\nFile \'$s\' exista ! Overvrite T/N %c¢*,arqv(2],7);
¢h = getchar(};
putchar{'\n'};
if (toupper(ch) 1= 'T') exit{218);
}
if({ifp = fopen(argv(l],*r®)} == NULL) { /* problen reading file */
printf{*Can't open %s\n',argv(l])};
exit{errno};
}
if({ofp = fopen{argv(2],"s"}) == NULL) { /* problem creating file */
printf(*Can't create %s\n®,argv(2]);
exit{errno};
}
/* if the file in less than 12 bytes long it's WRONG! */
if{fread(dfrn8,sizecf{frn8),L,ifp) 1= 1) [
clogseall{ifp,ofp,arqvi2]);
printf{*Incorrect file type in %s\n®,arqv(l]);
exit(l};
}
/* if the vord FORK is not present then illegal file type */
if({strcmp{frn8.forn,"FORK") != 0) & ({strcmp(frm8.svy,"8SVI®) != 0}) {
closeall{ifp,ofp,arqv(2]);
printf{*$s is not an BSVX sample file!\n*,argv[l]);
exit{l);
!
vhile{!feof (ifp)) {
if(fread(&hdr, sizeof (hdr),1,ifp) == NULL) { /* get chunk header */
closeall(ifp,ofp,arqv(2]);
printf(*Brror reading $3\n",argv(l]):
exit{errna);
}
if((hdr.blklen & 1L} == IL) hdr.blklent+; /* 68000 pads to even len */
printf({"Chunk s of lemgth %14 bytes.\n*® hdr.header hdr.blklen};
if {strcap{hdr.header,*BODY*) == 0) break; /* BODY chunk */
if {streap(hdr.header,"NANE') == 0) |
if{fread(name,(int)hdr.blklen,l,ifp} == BULL} {
closeall{ifp,ofp,argv(2]);

Page 8 June 1992

AUSTRALIAN 0S9 NEWSLETTER

printf(*Brror reading ¥s\n',argv(l]};

exit(errno);
| elge |
printf{*Bame = Y8\n",name};
continue;
} .
}

if (strcmp(hdr.header,'VEDR') == 0) {

/* Voice8Beader */

if(fread(ivoiced,sizeof(voiced), L,ifp) == KULL) |

closeall{ifp,ofp,argv{2]);

printf(*Error reading ts\n®,argv{l]};

ezit{errno);
} else {
continue;
I
}

if(fseek(ifp,hdr.blklen,1) == EOF) {
closeall{ifp,ofp,argv[2]);
printf(*Error reading ¥s\n*,arqv(2]);
exit{l);
}
}
putc(0x80,0fp};
putc{{char){voice8.speed/250),0fp);
chunklen = hdr.blklen;
do {
ch = gete(ifp);
putc{ch,ofp};
} vhile (--chunklen) 0):
fcloselifp);
fclose(ofp);
priotf{*Done tc\n",7);
}

closeall{in,out,nane)
FILE *in;

FILE tout:

char *name;

{
fclose(in);
fclose{out);
unlink(name};
}

00000000000000000000000c000000

VerDisk - Disk verify command for 059

VerDisk was created from a need to sometimes be able
to check vhether a disk had errors on it, without going
to the rather lengthy trouble of reading all the files
oo it, one by one.

VerDisk first opens the target disk as a
directory, and reads the PD OPTS of the path to tell
vhether it is an RBF device.

{* YerDisk - Verify integrity of disk sectors */

June 1992

YerDisk reads LSNO of the target disk to
determine hov many sectors to read and then reads them
one by one, and reports if any errors were found. It
vill not quit on error until the last sector is read.
VerDisk can take multiple device names on the
command line, and vill proceed to check each one of them.
Bob Devries

fext

Page 9

AUSTRALIAN 0S9 NEWSLETTER

/* Joes a sector read for every sector */
/* of the target disk. ¥/
/¥ Copyright (c) 1992, By Bob Devries. k/

/¥ Freely distributab

tinclude (stdio.h)
}define ERROR (-1)

le for non-profit only. k/

/* The following struct is included here because the one
/* gupplied in 'sgstat.h' does not have an identifier, and

/* 30 cannot be used.
/% part.

struct rbfopt |
char sg class,
8g drive,
8g step,
sq dtype,
89 dense;
int sg cyls;
char sq sides,
8q_verify;
int sg spt,
8¢ sptl,;
char 8g intly,
gg salloc,
sg tin;
iat sg exten;
char 8g xxix,
8g att,
sq fdpsn([3],
sg dipsn{3];
long sg dirptr;
int sg dvt;
b
union disksize {
long numsec;
char tseci4];

b

nain(argc, argv)

int argc;

char *argv{]:

{
char sector{256];
char devname{32];
long pos;
int i =1;
union disksize ds

Tou may care to modify the relevant

/% device class - repeated from above
/% drive number

/% step rate

/* device type

/* density capability

{/* number of cylinders {tracks)

/¥ nuaber of sides

/% 0 = verify on writes

/% default sectors per track

/% ditto track 0

/% gector interleave factor

/* sequent allocation size

/* dna transfer mode

/% path extension for record locking
/* junk fill

/* file attributes

/* file descriptor PSH

/% file's directory PSA

/* directory entry pointer

/* address of device table entry

iz;

struct rbfopt *rbf;

int op;
FILE *fp;
pflinit{}; /* we'

11 be printing longs */

dsiz.tsecf[0] = '\0*;

if(!--arge) { /%

printf(*Usage: Y5 /devname [/devname] ...\n",arqv{0]};

Page 10

dumb user, tell him hov it's done */

*
*
*

t
t
*
*
*/
t
*
*
*/
*
i
t
*
*
*
*
*
*
t
i

June 1992

AUSTRALIAN 0S9 NEWSLETTER

exit{215);
I
vhile(arge--) |
printf{"$s: Checking 3¥s\n®,arqv(0],arqviil]};
strepy(devnane,argv(i));
if({fp = topen{devname,*d"}) == NULL) [/* open as DIR */
printf("ts: Can't open 3s\n",arqv[0],argv[i]};
itt;
continue; /* get next devname if possible */
I
getstat(0,fp,rbf); /* get PD OPTS section of path */
i€{!{rbf-)sg clags != 1)) { /* wrong device type */
printf{"$s is not an BBF device\n",arqv{i}};

close{fp};
it
continue;
}
fclose(fp);

strcat(devoane,"f");
op = open(devname, READ); /* had to do open{) to do rawread */
lseek{op,01,0}); /* seek to start of disk and */
if{{readfop,dsiz.tsect]l,3}) == EOF) [/* read first J bytes */
printf("ts: Could not get disk size of %s\n",argv{0],arqvi]);
close(fp);
itt;
continue;
!
lseek(op,01,0); /* seek back to start */
for{pos=0;pos { dsiz.numsec;postt) [
if(read(op,sector,256) == ERROR) { /* read sectors */
printf(*Sector $1d (31X} on %8 is bad\n",pos,pos,argv(i]);
!
}

close{op); /* finished with this one */
i++: /* point to next ¥/
}
I
/* EOF */
000000000000000000000000000000

NORE - From Boisy G. Pitre

(SPACE) or any other key to advance
one screenful
Usage: More [-1 -v] {file] [...]
-1 = shov the name of the file before vieving

(handy for multiple files)

-y = don't allov lines to wrap around.
This option truncates the lime to a
length of vindow's ¥ size - 1.

Ok quys and gals, here's the newest edition of sy ‘'more’
utility. This one handles multiple files and has a fer
extra options. Hope you like it,

(3322228822228 R R Rttt ittt iititstsassitttsssd

t Nore - Prompts lists a file or files one

t screen at a time.

If no files are specified, STDIN is used. If you are using a terminal other than the
05-9 Level II vindoving system, you vill need
to change the reverse on/off sequence as well

as the clear line sequence

At the --Nore-- prompt, press:
(ERTER> to go advance one line
(BREAK) or 'Q' to quit

W o W 3 W o W M W 3 W W o W

» o W e W

June 1992 Page 11

AUSTRALIAN 0S9 NEWSLETTER

* BOTE: More works great with Shellt's wildcards! R fcb 504 Carriage Return
* [t also works well with external terminals.
* Just change the Reverse on/off and Delline Start pshs % put avay X temporarily,
* bytes to match your terminal's codes. leax IntSvc,pc point to the interrupt
* If you are running 'more' on a terminal, * gervice routine
* it assumes an 80z24 terminal screen size. 089 F§lept and make the system aware of
x it
* By: Boisy G. Pitre puls X then get ¥ back for processing
* 1204 Love Street cle Path Clear the path (assume stdin)
' Brookhaven, NS 39601 clr LFlag
* Internet: bgpitredseabass.st.usn.edu lbsr GetSize
' b Parsing of the line is done here

ifpl Parse lda Xt

use /DD/DEFS/08%defs capa #5320

endc beq Parse

capa #'-

* Terminal specific equates: begq GetOpt
ISIZE equ 80 capa #50d
YSIZE equ 24 bne (Openlt
DELEE equ §3 tst Path
REVOR equ $1£20 beq Cycle
REVOFF equ §1£21 lbra Done

nod Size,Hame,PrgratObjct,Reent+],Start,Fin GetOpt lda 3t

Name fes N/

Ed fcb 2
Path rab 1
Response rmb 1
(i} rab l
iL rab l
18 rab l
L rab 1
Lflag rab 1

Buffer rmb 250
FileBaf rab 60
Stack b 200

* T pake the Parms buffer large in case
* the wildcard ezpansion is long,

t elgse the syatem crashes. TYou can

* alternately use the shell's memory

E 4

capa #520
beq Parse
anda #§df
capa #'L
bne I[sity
con LFlag
bra Parse
IsIt¥ cmpa #'W
lbne Done
lda i
deca
gta g
bra Parse

* Here, ve test to see if the -1

t flag i3 set {to display the file
* header) If so, we print it, else
* ye continue with reading...
Openlt leax -1,x

nodifier {i.e. #4k) to insure a big buffer. tst LFlag

Paras rab 4096 beq (Open?
pshs 2
Fin equ lbsr PutHead
puls x
Message fdb REVON Reverse Video on dec TH Decrement counter twice to take into
fec /--More--/ dec TH account the header (two lines)

fab REVOFF Reverse Video off

Messlen equ t-Nessage

Header fdb $0a0d
fec [¥kk8%k Pila: |
Headlen equ t-Feader

Open? lda $Read. Prepare for reading
089 [$0pen Then open the file

lbes Error Exit on error
pshs x Save X for later use
sta Path ...elge save the path

bra Readlin and read the line

Delline fcb DELEE Delete line char

Page 12

June 1992

AUSTRALIAN 0S9 NEWSLETTER

lda
gta
bsr

Cycle

lda
ldy
leax
089
bes
tst
beq
pshs
1db
leax
dech
bae
lda
sta
actually

puls

Readline

Loop

Writefut lda
089
bes
dec
bne
leax
ldy
lda
089
bes
lda
ldy
leax
089
bes
bsr
bra

PutCR leax

lda

1dy

089

bcs

rts

lda
1dy
leax
089
bes
rts

FillLine

EOF caph
bae
tat

beq

June 1992

1L Get the lov order hyte
YH and use the high as a counter
PutCR

Path Get the path
§250 1ax ‘chars read = 250
Buffer,u point to the buffer
[$Readln and read the line
EOF if error, check for EQF
| I3 high order byte set?
WriteQut HNope, continue as normal
X else loop until end of the
(.| string and place a (R at the
1,2 end.
This i3 unnecessary if the line

Loop is less than ¥H, but doesn't slow
$50¢ down the processing considerably

X and would take [onger if we
X checked to see if a CR existed.
13 Prepare to write to stdout
I§¥ritln Write!
Error if error, leave
| else decrement the counter
ReadlLine if not 0, more lines to shov

Mesgage,pc Prepare to shov message
t¥esslen

tl to stderr...
[§¥rite write it!

Error

2 Hov get response
il of one character
Response,t from stderr
[§Read

Error

Killline

TestInp

CR,pc
3

£l
ISWrite
Error

$] Here ve send a delete line char
$l to clean the prompt.

Delline,pc

[§Write

Error

$ESEOF Check for end-of-file
Error
Path
Done

If the path is stdin, we can quit

puls 2 else there may be more files
lbra Parse on thecommand line.

Done clrb

Error 089 F§Exit

TestInp lda Response Here ve test

& the response at prompt
capa #5304 i8 it er?
beq Oneline yep, go up one line
anda #3df else mask uppercase
capa #Q is it @?
lbne Cycle nope,

t nust be space or other char
bra Doze else ve quit

IatSve bsr EillLine Interrupt service routine
bra Done

Oneline lda tl e go here if (ENTER) vas pressed
sta TH,u to increment only one line
lbra Readline

t Here, ve actually print the header
* for the file we are vorking on.
PutHead pshs x

leax Header,pcr
ldy tHeadLen
lda H

039 I8Write
bes Error
puls X

bsr SaveFile
lda 31

leax FileBuf,u
ldy 60

039 I§uritla
bcs Error

rts

REEXRRARRRR AR RRRRRRARRRRRRRAREERRAEERREL

t Saves filename in buffer
%

t Eutry: ¥ - Address where filename is
§
* Exit:
%

Hone. Filename is stored in FileBuf

SaveFile pshs ¥

leay FileBuf,u
SaveF? lda B

cepa #§20

boe SaveF3

lda $50d
SaveFd sta N

capa B304

bne Savef?

puls x

Page 13

AUSTRALIAN 0S9 NEWSLETTER

rts rts
* If this is true, then we are probably dealing with a

GetSize pshs x * terminal, not a hardware vindov.

lda il Using stdout... % §e'll assume 80%24 a3 the terminal size.

1db $526 . ChekErr cmpb #E$UnkSve

089 [$GetStt Find the size of window bne Error

bes ChekErr lda FISIZE

8ty i Save the X value sta iL

8ty 18 Save the Y value lda FISIZE

clr i Clear high-order byte of ¥ gta iL

dec iL Decrement the X value clr b(}|

dec 1L Decrement the Y value rts

dec 1L and dec ¥ again enod

lda 1L Do the initial load Size equ b

gta (| of the counter end

puls X

000000000000000000000000000000
Scribe -- Selected measages from the 039 area on 5-05-1992

Good nevs to all you HD owner who can't seem to find the time HDKIT requires to backup your hard drive......
Bring on "STREAN'.......

Prrxxxkkkrrr ABOUT FOUR TIMES FASTER THAN HDEIT trstrrittxix

Some time ago, Bruce Isted wrote a backup program called STREAM. It has since been tested extensivly by five or six
beta testers. I'm pleased to tell you that it is now available as of about a week ago when Kin Bergman phoned Bruce
and asked if it was OF to add it to the OCN Library. It is also available on the EKeyboard BBS (see tag line} as of
this day.

HD Kit vas and still is a great program but some what SLOW. Bruce still recomends using Pete Lyall's "Files® module
from BD Kit or D.P. Johnson's °LS® command, with STREAN.

Here is a comparison between the two programs using a 20 meg HD and THREE types of disk drives (1440 sect., 2880
gect & 1.44 meg).

STATS OF STREAN VS HD EIT (using a 20 meg ST-225 Hard Disk Drive)

Std disk Drives !! 80 tk disk drives !! L.44 meq disk dr.
1440 Sector Drives!! 2880 Sector Drives!! 5760 Sector Drives

...

disks Backup TIME:!!disks Backep TINE:!!disks Backup TINE:
used 1 disk TOTAL!lused 1 disk TOTAL!'used 1 disk TOTAL
55 9.5ain 52ain!! 28 1%.min 535min!! not tried via HD KIT

55 1.8ain 99min!! 28 4.min 11Znin!! 14 8.min 11Zmin via STREAN

...

000000000000000000000000000000

Page 14 June 1992

