Unlink <modname> Usage : Unlinks module(s) from memory @WCREATE
Syntax: Wcreate [opt] or /wX [-s=type] xpos ypos xsiz ysiz fcol bcol [bord]

Usage : Initialize and create windows Opts : -? = display help -z = read
command new screen

wan s—nre | AUSTRALIAN OS89 | ¢, 50"
we o a| NEWSLETTER | Zinimes

window on a . [params]

Usage : Displays or changes theparameters of am SCF type device
@COCOPR Syntax: cocopr [<opts>] {<path> [<opts>]} Function: display file
in specified format gets defauits from /dd/sys/env.file Options : - set columns
per page -f use form feed for trailer -h=num set number of lines after

header -l=num set line length -m=num set left margin -n=num set starting
line number and incr -o truncate lines longer than Inlen -p=num set number
of lines per page -t=num number of lines in trailer -u do not use title

-u=title use specfied title -x=num set starting page number -z[=path] read file
names from stdin or <path> if given @CONTROL Syntax: control [-e¢] Usage
: Control Panel to set palettes, mouse and keyboard parameters and monitor
type for

ADDRESSES Multi-Vue. CONTENTS

.. : Selectable f
Editorial Material: dz:ﬁ able lrom

utilities

Gordon Bentzen menu as the
8 Odin Street Control Panel. BALEOIAL. oo Page 2
SUNNYBANK Qid 4109 Sf:scut'e " he | ¢ tutorial Chap 11 Page 3
. environment file 0SK Platforms...... Page 7
Library Requests: @GCLOCK | Mtrosd.ooooooe Page 8
Jean-Pierre Jacquet Syntax: gclock | From Librarian..... Page 10

27 Hampton Street Usage : Alam

DURACK Qld 4077 clock utility for

‘ Multi-Vue.
Selectable from desk utilities menu as Clock. @GCALC Syntax: gcalc Usage :
Graphics calculator utility for Multi-Vue. Selectable form desk utilities menu as

Volume 6 December 1992 Number 11

Calculator. @GCAL Syntax: gcal Usage : Calendar/Memo book utility for
Multi-Vue. Selectable as Calendar from the desk utilities menu. @GPRINT

AUSTRALIAN 0S9 NEWSLETTER
Newsletter of the National 0S9 User Group
Volume 6 Number 11

EDITOR : Gordon Bentzen
SUBEDITOR : Bob Devries

YREASURER : Don Berrie
LIBRARIAN : Jean-Pierre Jacquet

SUPPORT : Brisbane 0S9 Level 2 Users Group.

SEASONS GREETINGS

Yes it 1is that time of year again when many of us
prepare for Christmas celebrations in one way or
another. Perhaps the time of year will mean a
welcome break from studies or work, a well earned
holiday, a time to share with your family or maybe
like me, it will be just more work as usual.

In whatever way you plan to spend the time, we wish
you a very merry Christmas and a happy new year -
from Bob Devries, Don Berrie, Jean-Pierre Jacquet and
Gordon Bentzen.

We have gained quite a few new members in the last
year and we again welcome you and thank you for your
interest. We are most grateful for the support of
those members who have renewed subscriptions this
year. Some of our long term supporters have moved
away from the CoCo or 0S-9 and have continued to
subscribe. Qur special thanks to you.

JANUARY / FEBRUARY NEWSLETTER

This is a good time to remind you that at this time
of year, we too take a little holiday from newsletter
production. This December issue will be the last
until early February 1993. A newsletter WILL NOT be
sent out in January.

COCOFEST-_MELBOURNE

In the editorial last month I presented some comments
on the CoCoFest held in Melbourne 24th & 25th October
1992 and this month we have a couple of shots which
were taken from my video and digitized.

Page 2

A new member writes :-

"These days I find that 99% of the time I use 0S-9
rather than Tandy Basic, and I like the windowing
capabilities of 0S-9. I would also like to upgrade
to a hard drive for my CoCo, but need some expert
advice as to what to buy that would be compatible
with our Australian electrical standards.

My hardware set-up consists of a CoCo3 with 512k,
Multi-pak interface (with CoCo3 upgrade), two floppy
drives (FD-502), (M-8 Colour Monitor and a DMP-200
Printer."

Solution :-

Given the available hardware, as above, probably the
easiest and cheapest way to a CoCo Hard Drive would
be the Burke & Burke XIC system. The Burke & Burke
system uses their interface to adapt an IBM type
drive and controller.

A standard IBM or clone type hard drive of say 20, 30
or 40meg would be a good choice. A quarter card
controller of MFM or RLL type would also be selected.
This system will also allow the use of the Burke &
Burke XT-ROM to allow booting directly from the hard
drive. Some of this equipment is becoming hard to
find now, as the IBM and clone world have commonly
gone to IDE drives and controllers.

Our November newsletter included a discussion on the
IDE drives for the CoCo and it seems that this could
be a real option if Burke & Burke do release suitable
drivers. In the meantime we would be glad to hear
from any member who is able to advise of a source for
the MFM and RLL drives and controllers.

Cheers, Gordon.

7 St A _
L to R Don Berrie, Andrew Donaldson, Bob Devrles

December 1992

AUSTRALIAN 0OS9 NEWSLETTER

A C Tutorial
Chapter 11 - Structures and Unions

WHAT IS A STRUCTURE?

A structure is a user defined data type. You have
the ability to define a new type of data considerably
more complex than the types we have been using. A
structure is a combination of several different
previously defined data types, including other
structures we have defined. An easy to understand
definition is, a structure is a grouping of related
data in a way convenient to the programmer or user of
the program.

The best way to understand a structure is to look at
an example, so if you will load and display
STRUCT1.C, we will do just that. The program begins
with a structure definition. The key word "struct"
is followed by some simple variables between the
braces, which are the components of the structure.
After the closing brace, you will find two variables
listed, namely "boy", and "girl".

According to the definition of a structure, "boy" is
now a variable composed of three elements, “initial",
"age", and "grade". Bach of the three fields are
associated with "boy", and each can store a variable
of its respective type. The variable "girl" is also
a variable containing three fields with the same
names as those of "boy"™ but are actually different
variables. We have therefore defined 6 simple
variables.

A SINGLE COMPOUND VARIABLE

Let's examine the variable "boy" more closely. As
stated above, each of the three elements of "boy" are
simple variables and can be used anywhere in a C
program where a variable of their type can be used.
Por example, the "age" element is an integer variable
and can therefore be used anywhere in a C program
where it is legal to use an integer variable, in
calculations, as a counter, in I/0 operationms, etc.

The only problem we have is defining how to use the
simple variable "age" which is a part of the compound
variable "boy". We use both names with a decimal
point between them with the major name first. Thus
"boy.age” is the complete variable name for the "age"
field of "boy". This construct can be used anywhere
in a C program that it is desired to refer to this
field. In fact, it is illegal to use the name "boy"
or "age" alone because they are only partial
definitions of the complete field. Alone, the names
refer to nothing.

November 1992

ASSIGNING VALUES T0 THE VARIABLES

Using the above definition, we can assign a value to
each of the three fields of "boy" and each of the
three fields of "girl". Note carefully that
"boy.initial" 1is actually a "char" type variable,
because it was assigned that in the structure, so it
must be assigned a character of data. Notice that
"boy.initial" is assigned the character 'R' in
agreement with the above rules. The remaining two
fields of "boy" are assigned values in accordance
with their respective types. Finally the three
fields of girl are assigned values but in a different
order to illustrate that the order of assigmment is
not critical.

HOW DO WE USE THE RESULTING DATA?

Now that we have assigned values to the six simple
variables, we can do anything we desire with them.
In order to keep this first example simple, we will
simply print out the values to see if they really do
exist as assigned. If vyou carefully inspect the
"printf" statements, you will see that there is
nothing special about them. The compound name of
each variable is specified because that is the only
valid name by which we can refer to these variables.
Structures are a very useful method of grouping data
together in order to make a program easier to write
and understand.

This first example is too simple to give you even a
hint of the value of using structures, but continue
on through these lessons and eventually you will see
the value of using structures. Compile and run
STRUCT1.C and observe the output.

AN ARRAY OF STRUCTURES

Load and display the next program named STRUCTZ.C.
This program contains the same structure definition
as before but this time we define an array of 12
variables named "kids". This program therefore
contains 12 times 3 = 36 simple variables, each of
which can store one item of data provided that it is
of the correct type. We also define a simple
variable named "index" for use in the for loops.

In order to assign each of the fields a value, we use
a for loop and each pass through the loop results in
assigning a value to three of the fields. One pass
through the loop assigns all of the values for one of
the "kids". This would not be a very useful way to
assign data in a real situation, but a loop could
read the data in from a file and store it in the

Page 3

AUSTRALIAN OS9 NEWSLETTER

correct fields. You might consider this the crude
beginning of a data base, which it is. In the next
few instructions of the program we assign new values
to some of the fields to illustrate the method used
to accomplish this. It should be self explanatory,
so no additional comments will be given.

A NOTE TO PASCAL PROGRAMMERS

Pascal allows you to copy an entire RECORD with one
statement. This is not possible in C. You must copy
each element of a structure one at a time. As
improvements to the language are defined, this will
be one of the refinements. 1In fact, some of the
newer compilers already allow structure assignment.
Check your compiler documentation to see if your
compiler has this feature yet.

WE FINALLY DISPLAY ALL OF THE RESULYS

The last few statements contain a for loop in which
all of the generated values are displayed in a
formatted list. Compile and run the program to see
if it does what you expect it to do.

USING POINTERS AND STRUCTURES TOGETHER

Load and display the file named STRUCT3.C for an
example of using pointers with structures. This
program is identical to the last program except that
it uses pointers for some of the operations. The
first difference shows up in the definition of
variables following the structure definition. In
this program we define a pointer named "point™ which
is defined as a pointer that points to the structure.

It would be illegal to try to use this pointer to
point to any other variable type. There is a very
definite reason for this restriction in C as we have
alluded to earlier and will review in the next few
paragraphs. The next difference is in the for loop
where we use the pointer for accessing the data
fields. Since "kids" is a pointer variable that
points to the structure, we can define "point" in
terms of "kids". The variable "kids™ is a constant
so it cannot be changed in value, but "point" is a
pointer variable and can be assigned any value
consistent with its being required to point to the
structure. If we assign the value of "kids" to
"point" then it should be clear that it will point to
the first element of the array, a structure
containing three fields.

POINTER ARITHMETIC

Adding 1 to "point" will now cause it to point to the
second field of the array because of the way pointers
are handled in C. The system knows that the
structure contains three variables and it knows how

Page 4

many memory elements are required to store the
complete structure. Therefore if we tell it to add
one to the pointer, it will actually add the number
of memory elements required to get to the next
element of the array.

1f, for example, we were to add 4 to the pointer, it
would advance the value of the pointer 4 times the
size of the structure, resulting in it pointing 4
elements farther along the array. This is the reason
a pointer cannot be used to point to any data type
other than the one for which it was defined. Now to
return to the program displayed on your monitor. It
should be clear from the previous discussion that as
we go through the loop, the pointer will point to the
beginning of one of the array elements each time. We
can therefore use the pointer to reference the
various elements of the structure.

Referring to the elements of a structure with a
pointer occurs so often in C that a special method of
doing that was devised. Using "point->initial" is
the same as using "(*point).initial" which is really
the way we did it in the last two programs. Remember
that *point is the data to which the pointer points
and the construct should be clear. The "->" is made
up of the minus sign and the greater than sign.
Since the pointer points to the structure, we must
once again define which of the elements we wish to
refer to each time we use one of the elements of the
structure.

There are, as we have seen, several different methods
of referring to the members of the structure, and in
the for loop used for output at the end of the
program, we use three different methods. This would
be considered very poor programming practice, but is
done this way here to illustrate to you that they all
lead to the same result. This program will probably
require some study on your part to fully understand,
but it will be worth your time and effort to grasp
these principles. Compile and run this program.

NESTED AND NAMED STRUCTURES

load and display the file named NESIED.C for an
example of a nested structure. The structures we
have seen so far have been very simple, although
useful. It is vpossible to define structures
containing dozens and even hundreds or thousands of
elements but it would be to the programmers advantage
not to define all of the elements at one pass but
rather to use a hierarchical structure of definition.
This will be illustrated with the program on your
monitor.

November 1992

AUSTRALIAN OS9 NEWSLETTER

The first structure contains three elements but is
followed by no variable name. We therefore have not
defined any variables only a structure, but since we
have included a name at the beginning of the
structure, the structure is named "person". The name
"person" can be used to refer to the structure but
not to any variable of this structure type. It is
therefore a new type that we have defined, and we can
use the new type in nearly the same way we use "int",
"char", or any other types that exist in C. The only
restriction is that this new name must always be
associated with the reserved word "struct".

The next structure definition contains three fields
with the middle field being the previously defined
structure which we named "person". The variable
which has the type of "person" is named "descrip".
So the new structure contains two simple variables,
"grade" and a string named "lunch(25]", and the
structure named "descrip". Since "descrip" contains
three variables, the new structure actually contains
5 variables. This structure is also given a name
"alldat", which is another type definition. Finally
we define an array of 53 variables each with the
structure defined by "alldat", and each with the name
"student". If that is clear, you will see that we
have defined a total of 53 times 5 variables, each of
vhich is capable of storing a value.

THO MORE VARIABLES

Since we have a new type definition we can use it to
define two more variables. The variables ™teacher"
and "sub" are defined in the next statement to be
variables of the type "alldat", so that each of these
two variables contain 5 fields which can store data.

NOW T0 USE SOME OF THE FIELDS

In the next five lines of the program, we will assign
values to each of the fields of "teacher". The first
field is the "grade" field and is handled just like
the other structures we have studied because it is
not part of the nested structure. Next we wish to
assign a value to her age which is part of the nested
structure. To address this field we start with the
variable name "teacher” to which we append the name
of the group "descrip", and then we must define which
field of the nested structure we are interested in,
S0 we append the name "age".

The teacher's status is handled in exactly the same
manner as her age, but the last two fields are
assigned strings using the string copy "strcpy"
function which must be used for string assignment.
Notice that the variable names in the “strcpy"
function are still variable names even though they

November 1992

are made up of several parts each. The variable
"sub" 1is assigned nonsense values in much the same
way, but in a different order since they do not have
to occur in any required order.

Finally, a few of the "student" variables are
assigned values for illustrative purposes and the
program ends. None of the values are printed for
illustration since several were printed in the last
examples. Compile and run this program, but when you
run it you may get a "stack overflow" error. C uses
it's own internal stack to ‘store the automatic
variables on but most C compilers use only a 2048
byte stack as a default.

This program has more than that in the defined
structures so it will be necessary for you to
increase the stack size. The method for doing this
for some compilers is given in the accompanying
COMPILER.DOC file with this tutorial. Consult your
compiler documentation for details about your
compiler. There is another way around this problem,
and that is to move the structure definitions outside
of the program where they will be external variables
and therefore static. The result is that they will
not be kept on the internal stack and the stack will
therefore not overflow. It would be good for you to
try both methods of fixing this problenm.

MORE ABOUT STRUCTURES

It is possible to continue nesting structures until
you get totally confused. If you define them
properly, the computer will not get confused because
there is no stated limit as to how many levels of
nesting are allowed. There is probably a practical
limit of three beyond which you will get confused,
but the language has no limit. In addition to
nesting, you can include as many structures as you
desire in any level of structures, such as defining
another structure prior to "alldat™ and using it in
"alldat" in addition to using "person".

The structure named "person" could be included in
"alldat" two or more times if desired, as could
pointers to it. Structures can contain arrays of
other structures which in turn can contain arrays of
simple types or other structures. It can go on and
on until you lose all reason to continue. I am only
trying to illustrate to you that structures are very
valuable and you will find them great aids to
programming if you use them wisely. Be conservative
at first, and get bolder as you gain experience.
More complex structures will not be illustrated here,
but you will find examples of additional structures
in the example programs included in the last chapter

Page 5

AUSTRALIAN 0OS9 NEWSLETTER

of this tutorial. For example, see the "finclude"
file "STRUCT.DEF".

WHAT ARE UNIONS?

Load the file named UNIONL.C for an example of a
union. Simply stated, a union allows you a way to
look at the same data with different types, or to use
the same data with different names. Examine the
program on your monitor. In this example we have two
elements to the union, the first part being the
integer named "value", which is stored as a two byte
variable somewhere in the computers memory. The
second element is made up of two character variables
named "first" and "second".

These two variables are stored in the same storage
locations that "value" is stored in, because that is
what a union does. A union allows you to store
different types of data in the same physical storage
locations. In this case, you could put an integer
number in "value", then retrieve it in its two halves
by getting each half using the two names "first" and
"second". This technique is often used to pack data
bytes together when you are, for example, combining
bytes to be wused in the registers of the
microprocessor. Accessing the fields of the union
are very similar to accessing the fields of a
structure and will be left to you to determine by
studying the example.

One additional note must be given here about the
program. When it is run using most compilers, the
data will be displayed with two leading f's due to
the hexadecimal output promoting the char type
variables to int and extending the sign bit to the
left. Converting the char type data fields to int
type fields prior to display should remove the
leading f's from your display. This will involve
defining two new int type variables and assigning the
char type variables to them. This will be left as an
exercise for you. Note that the same problem will
come up in a few of the later files also.

Compile and run this program and observe that the
data is read out as an "int" and as two "char"
variables. The "char" variables are reversed in
order because of the way an "int" variable is stored
internally in your computer. Don't worry about this.
It is not a problem but it can be a very interesting
area of study if you are so inclined.

ANOTHER UNION EXAMPLE

Load and display the file named UNION2.C for another
example of a union, one which is much more common.
Suppose you wished to build a large database

Page 6

including information on many types of vehicles. It
would be silly to include the number of propellers on
a car, or the number of tires on a boat. In order to
keep all pertinent data, however, you would need
those data points for their proper types of vehicles.

In order to build an efficient data base, you would
need several different types of data for each
vehicle, some of which would be common, and some of
which would be different. That is exactly what we
are doing in the example program on your monitor. In
this program, we will define a complete structure,
then decide which of the various types can go into
it. We will start at the top and work our way down.
First, we define a few constants with the #defines,
and begin the program itself. We define a structure
named "automobile™ containing several fields which
you should have no trouble recognizing, but we define
no variables at this time.

A NEW CONCEPT, THE TYPEDEF

Next we define a new type of data with a "typedef".
This defines a complete new type that can be used in
the same way that "int" or "char" can be used.
Notice that the structure has no name, but at the end
where there would normally be a variable name there
is the name "BOATDEF". We now have a new type,
"BOATDEF", that can be used to define a structure
anyplace we would like to.

Notice that this does not define any variables, only
a new type definition. Capitalizing the name is a
personal preference only and is not a C standard. It
makes the "typedef" look different from a variable
name. We finally come to the big structure that
defines our data using the building blocks already
defined above. The structure is composed of 5 parts,
two simple variables named "vehicle" and "weight",
followed by the union, and finally the last two
simple variables named "value" and "owner". Of
course the union is what we need to look at carefully
here, so focus on it for the moment.

You will notice that it is composed of four parts,
the first part being the variable "car" which is a
structure that we defined previously. The second
part is a variable named "boat" which is a structure
of the type "BOATDEF" previously defined. The third
part of the union is the variable "airplane" which is
a structure defined in place in the union. Finally
we come to the last part of the union, the variable
named "ship" which is another structure of the type
"BOATDEF". I hope it is obvious to you that all four
could have been defined in any of the three ways
shown, but the three different methods were used to

November 1992

AUSTRALIAN OS9 NEWSLETTER

show you that any could be used. In practice, the
clearest definition would probably have occurred by
using the "typedef” for each of the parts.

WHAT DO WE HAVE NOW?

We now have a structure that can be used to store any
of four different kinds of data structures. The size
of every record will be the size of that record
containing the largest union. In this case part 1 is
the largest wunion because it is composed of three
integers, the others being composed of an integer and
a character each. The first member of this union
would therefore determine the size of all structures
of this type.

The resulting structure can be used to store any of
the four types of data, but it is up to the
programmer to keep track of what is stored in each
variable of this type. The variable "vehicle" was
designed into this structure to keep track of the
type of vehicle stored here. The four defines at the
top of the page were designed to be used as
indicators to be stored in the variable "vehicle".

A few examples of how to use the resulting structure

are given in the next few lines of the program. Some
of the variables are defined and a few of them are
printed out for illustrative purposes. The union is
not used too frequently, and almost never by
beginning programmers. You will encounter it
occasionally so it is worth your effort to at least
know what it is. You do not need to know the details
of it at this time, so don't spend too much time
studying it. When you do have a need for a variant
structure, a union, you can learn it at that time.
For your own benefit, however, do not slight the
structure. You should use the structure often.

PROGRAMMING EXERCISES

1. Define a named structure containing a string
field for a name, an integer for feet, and
another for arms. Use the new type to define an
array of about 6 items. Fill the fields with
data and print them out as follows. A human
being has 2 legs and 2 arms. A dog has 4 legs
and 0 arms. A television set has 4 legs and 0
arms. A chair has 4 legs and 2 arms. etc.

2. Rewrite exercise 1 using a pointer to print the
data out.

000000000000000000000000000000

Programming for new platforms

(Amiga-4000, Atari Falcon 030 and Kix/30)
By Michael Kearney

First thing, I am not a "programmer”, (yet). I am
more the hardware type, but am trying to learn C. I
am writing this as personal opinion only and I hope
it doesn't offend anyone.

Anyway,on with the showcovevviianen.

After working in television for 13 years, I've
decided to start my own video/ audio/computer
services company. I will use a coupla 486 computers
for voice mail and some other things. The
audio/video computers are causing me to have brain
spasms. I can't afford a Cray, Silicon Graphics or
Sun (yet!) so I'm looking at the Amiga-4000, the
Atari Falcon 030 and FHL Kix/30. Now as I understand
it, the Kix/30 is Microware 68k compatible "right out
of the box".

From all the stuff I've read about the others (A
LOT!) there was a "rumor" that the latest version
(2.4?) of OSK was being ported to the Atari Falcon.
And according to the Amiga literature the CPU in the
4000 is "Motorola 68040 compatible". Now I was

November 1992

thinking (dangerous habit_don't try it unless you are
willing to accept the consequences!) that if all the
folk that had a hand in the 0S9-LV2 upgrade could
convince Microware to port OSK over to the Amiga_4000
and the Atari Falcon 030, Microware, along with it's
programmers, could grab a share of an international
market.

Think about it. For the first time (that I can
remember) computers that already have a market,
hardware-wise (Ataris, Amigas) are closer to being
able to run OSK "at power up" than ever before. With
the expertise that some of you have with 0S9/K,
combined with the hardware of these new machines
(browse the Amiga and Atari forums and read the specs
on the Amiga_4000 and Falcon 030) things could get
interesting in the home computer market. Just think
about it.

With Big Blue on the way out/down, there will be a
gap that needs to be filled. There are some die hard
CoCo 0S9'ers out there (like myself) that don't
really want to give up 0S9, but want more computing

Page 7

™

AUSTRALIAN OS9 NEWSLETTER

pover.

But before I spend $2600 or $3000 on a new computer
system, I want to know that I will have hardware
support! And with these new machines being released
WITH FCC Class B, if I can run OSK on either of them
I might be tempted to BUY more than one. And it sure
would be nice to be able to run programs on either.
Again, I am not a programmer, BUT if I were, I would
think long and hard about this one.

After all, are you programming just to make other
people happy? Or to make money/make yourself happy
and then make other people happy, in that order?

These thoughts, ramblings and stuff are my own
opinions. I hope I do not offend anyone. But I was
just thinking about how home computers have changed
and have become business/home computers.

The CPUs have been narrowed down to basically two;
(_68xxxs and 386/486s). Operating Systems have been
narrowed down to a few (Dos, 0S/2, U*ix). OSK has a
place in there. Especially since the new hardware is
being designed to integrate audio/video/voice
recognition. O0SK should fit quite well in that type
of hardware environment. :

This could be the 0SK opportunity of a lifetime.

000000000000000000000000000000
NITROS9
From: Alan Dekok Date: 11-14-92 09:02 print out the individual numbers and lines.
To: All Msqh: 7
Subj.: Nitr0S9 I tried out a bunch of programs, and everything
Area: 039 seems to work the same as before. The docs included

Well, I finally got a copy of Nitr0S9, and
installed it on my system last night. After about
an hour of fiddling in order to get a boot disk with
modules that it liked (floppy systems....), it took
roughly 20 minutes for the whole installation to go.
Then I re-booted and rooted around to see what neat
new toys I had.

It includes: most bug fixes (I didn't check for
all of them), 80x25 windows, enhanced grfdrv, and
MUCH faster screen updates. If you ever had reason
to complain about the slowness of 0S9 screens,(and
have Nitr0S9) then SHUT UP! It's not a problem
anymore <g>. Scrolling was about 35% faster, and
things 1like PROC and PMAP just went <foom> onto the
screen, whereas before you could actually see them

are quite straightforward and idiot proof (heck,
even _I_ understood them). If you can make a new
boot disk, installing this package is not much more
complicated than that.

The only thing I didn't like, was some programs
(games) expect a (40/80) by 24 screen, and the
patches gave a (40/80)x25. This resulted in an
extra line of junk at the bottom of the screen, but
this would happen anytime you extended the screen,
and there's not much you can do about it.

Soo... I'm satisfied. It works, it didn't crash on
me, and it's FAST.

Exactly what I was looking for!

Alan DeKok.

000000000000000000000000000000

2 Meq Upgrade
by Marty Goodman

When Tony Di Stefano designed his 1 meg upgrade
for the CoCo 3, he had HOPED that he could eventually
lay hands on 4 bit wide by 256K DRAM chips that could
be refreshed with a 256 cycle refresh, allowing them
to be used with the GIME chip's memory manager.
With those chips, one could build a 2 megabyte memory
board using a total of only 16 chips, the same number
of chips currently used in a 512K CoCo 3 memory
upgrade board. With this in mind, Tony decoded on

Page 8

the "CPU board" of his 1 meg upgrade BOTH of the two
"missing” GIME chip memory manager bits. He used
only ONE of those two bits (the low order one) for
decoding the 1 megabyte of memory his product was
speced to provide, but his CPU board DOES decode the
second (highest order) missing MMU bit. Over time,
Tony realized that there were NO one megabit DRAM
parts made that could be refreshed with the GIME
chip's 256 cycle refresh. Whether by mistake or

November 1992

AUSTRALIAN OS9 NEWSLETTER

design, Tandy in its layout of the GIME chip had
effectively prevented the use of high density DRAM
chips with 1 or more megabits of memory per chip.

Faced with this reality, Tony decided that it
would be foolish to attempt a 2 meg upgrade. A 2 meg
upgrade would require a total of SIXTY FOUR 256K by 1
chips. That means 48 more loads on each address line
buffer of the CoCo 3 than was originally planned by
the designers! Apart from the physical problem of
where to PUT all those chips, one was faced with the
near certainty that the address and data buffers of
the CoCo 3 would not be able to handle that much fan
out. Tony wisely decided that 1 meg was enough.

Enter the Mad Hacker:

There's always at least one crazy person who,
upon being told something is impossible, will bend
over backwards to show it is not. There may have
been one or two BEFORE the story I am about to tell
you of, but I am familiar only with this one story.
While there may have been previous successful Coco 3
2 meq upgrades, this one is significant because it
has been widely and explicitly publicized thru
Delphi's 0S9 and CoCo SIGs {THE place to be for CoCo
3 hardware news), and provoked within days of its
announcement two other successful 2 meg upgrades to
be done.

I told my friend Dennis McMillian (COCOKIWI on
Delphi) about the fact that the second bit was
decoded. I also told him exactly how the decoding of
the CAS line (that is used as a 512K bank select) is
done on the Disto CoCo 3 1 meg memory upgrade board.
I told him, however, that he would be foolish to try
to do a 2 meg upgrade, because of the "fan out”
problem I spoke of above. Dennis set out to prove me
Wrong.

Dennis noticed that adding sixteen more chips (as
in the official 1 meg upgrade) did NOT result in a
fan out problem. Therefore, empirically, he could
rely on a fan out for a total of 32 chips. He then
checked out specifications for TTL logic chips, and
noticed that the rated output fanout for 74F series
chips was 2.5 times that rated for 74LS series chips.

Denrnis proceeded to destructively remove FOUR
twenty pin IC's from the CoCo 3's main board: IC10,
11, 12, and 13. These are one LS374 and three LS244
chips. He then soldered on sockets where those chips
used to be, and inserted F244 and F374 chips in place
of the LS series chips. Now his CoCo's data and
address buffers were not only faster (which is of

November 1992

help in getting around the delays introduced by the 1
meg upgrade board) but also had 2.5 times the output
drive, and so could reliably drive over twice the
number of memory chips.

We found that the 74F139 chip on the Disto 1 meg
board was used to do the bank selection. It had the
input pins 2 and 3 shorted together. You need to
BREAK the short between those two pins, then send the
low order bank select line {(the line from the CPU
board that formerly went to J5 on the memory board)
to pin 2, and the high order bank select line from
the Disto "CPU board” to pin 3 of the F139 on the
Disto 1 meg memory board.

The high order bank select line is located on the
Disto "CPU board" on the four pin connector J2. On
that board, as you go from the end of that connector
labelled "J2" to the end near the word "OUI", the
pins are as follows: +5 volts, lower order bank
select bit (used with normal 1 meg upgrades), ground,
higher order bank select bit (used only with 2 meg
upgrades).

Now that you have re-wired the INPUTS to the bank
select chip for 2 meq operation you must wire up the
extra 32 memory chips. THIS is a delicate operation.
You must PIGGY BACK the additional 32 chips ON TOP OF
the existing 32 chips that currently populate the two
boards in your one meg upgrade. Alternatively, you
can do "4 stack” and make quadruple piggy backs of
memory chips, and then use ONLY the Disto one meg
board. In any case, each extra layer of chips must
have pin 15 (CAS, used as a bank select) bent out.
And have those pin 15's all wired to each other for
each 16 chip bank. Thus, you have added two new CAS
bank select lines. One goes to pin 6 of the F139 chip
on the disto memory board, and the other goes to pin
5.

Note that the first 512K will be selected by pin
4 of the FI139, and will be found in the PHYSICALLY
LOWER bank of chips on the Disto memory board. Pin 5
selects the next 512K bank, and pin 6 selects the
bank after that. Pin 7 is currently wired so that it
goes to the physically lower bank of chips (original
bank of chips) on the memory board that is plugged IN
to the Disto memory board.

Users on Internet and Delphi 0S9 SIG can tell you
how to patch the 0S9 kernel so that it will recognise
all 2 megs of memory.

This procedure is VERY tedious, highly
experimental, and subject to numerous ways it can

Page 9

AUSTRALIAN OS9 NEWSLETTER

fail. It requires VERY good soldering and
desoldering technique, and should NEVER be attempted
by ANY except the MOST experienced hardware hackers!
However, I now have THREE reports of successful 2 meg
upgrades.

Other Hints: DO NOT USE other than 120 or 150 ns
rated DRAMs. Faster chips (80 or 100 ns) have been
reported to NOT WORK in either one or two meg
upgrades. Bruce Isted and Dave Myers (CoCoPRO!) have
both told me about this. You may wish to use NEC
brand chips. You MAY wish to try using CMOS instead
of NMOS DRAMs to hold down power consumption. Bruce
Isted suggests, if you have problems, you may wish to
use different memory chips, and you may wish to try
shorting out the 120 ohm CAS resistors on the CoCo 3
board, and instead inserting 120 ohm C(AS resistors
for each bank of memory between the relevant pin of
the F139 chip and the CAS lines on each bank of
memory chips.

The best source I know of for CHEEEP memory chips
is an electronic chip SALVAGE company called FOX
Electronics. 120 and 150 ns SOLDER PULL (be sure to
specify long pins if possible!) 41256 DRAMs sell for

about 50 cents each there. They can be reached at
408-943-1577, or at 2558 Seaboard Ave, San Jose, CA
95131. Ask for "Woody" and tell him Marty Goodman
sent ya. They have good prices on other chips, too,
when available: 1 meg by 1 DRAMs 100 ns for $4.00
each, 386-20's for $70 each, 4 by 256K 80 ns DRAMs
for $4.50 each, 27C1024 32 pin "lmegabit" (8 by
128K) CMOS EPROMs for $4.50 each. Prices and
availability and chip brands will vary from day to
day, so CALL before you order!

I personally regard this upgrade as a HIGHLY
impractical, tedious, and potentially dangerous and
flakey thing to do. However, as I noted, at least
three folks have successfully done it, and CLAIM
their computers are running completely reliably.

Given how experimental this procedure is, PLEASE
report your successes or failures to CoCo users at
large via the Internet Mailing List or Delphi's 0S9

or CoCo SIG. I can be reached on Delphi as username
MARTYGOODMAN and via Intermet at address
MARTYGOODMANEBIOTECHNET . COM.

---marty (Goodman)

FROM THE LIBRARIAN
If you have no idea were the Clock module in your CoCo Level 2 0S9Boot file comes from, maybe this will help. By

the way, has anyone got the time? Happy computing!

Jean-Pierre.

Module CRC Origin Comments

clock D28AFD 089 Level II System Disk 60 Hz

clock DDFD68 0S9 Level II System Disk 50 Hz

clock 387089 Public Domain Library $11 serialmouse 60 Hz
clock 3720AE Public Domain Library #11 serialmouse 50 Hz
clock 0AAA6S Disto_4inl 6242.slotl

clock D7C0C4 Disto_4inl 6242.slot2

clock 307F44 Disto_4inl 6242.slot3

clock EDISES Disto_4inl 6242.slot4

clock Clock9 soft.60hz

clock Clock9 dsto2.60hz

clock Clock9 dsto2.54.60hz
clock Clock9 dsto4.60hz

clock Clock9 bb.s3.60hz

clock Clock9 bb.s2.60hz

clock ACF042 Clock9 soft.50hz

clock Clock9 dsto2.50hz

clock Clock9 dsto2.s4.50hz
clock 722150 Clock9 dsto4.50hz

clock Clock9 dstod4.s4.50hz
clock Clock9 bb.s3.50hz

clock Clock9 bb.s2.50hz

clock OCN_0S9SYS Clockbb: bbl
clock DF89F9 Public Domain ? software clock ?

Page 10

CHRISTMAS
GREETINGS

and best
wishes

for
Happiness
in the

NEW YEAR

November 1992

