AUSTRALIAN O59 NEWSLETTER

| sides ‘No. of cylinders’ (in decimal) :Interleave value: (in decimal) @FREE Syntax: §
Free [devname] Usage : Displays number of free sectors on a device @GFX
Syntax: RUN GFX(dunct<args>) Usage : Graphics interface package for B
BASIC09 to do compatible VDG graphics commands @GFX2 Syntax: RUN §
GFX2([path]dfunctargs>) Usage : Graphics interface package for BASIC09 to '
handle ——

| wingow] EDITOR Gordon Bentzen (07) 344-3881

bt o] SUB-EDITOR Bob Devries O7) 372-7816
| from O TREASURER Don Berrie O7) 375-1284

single lin
IO LIBRARIAN - Jean-Pierre Jacquet (07) 372-4675
Fax Messages (07) 372-8325

| ;rﬁgutp‘;lo SUPPORT Brisbane OS9 Users Group

| Memory
| text files (‘},;,:?L"%Es- g?»m e = gt -:
§ memory @MAKDIR Sy mtax: Makdir <pdthn.1me> Usaoe : Creates a new
E directory file @MDIR Syntax: Mdir [e] Usage : Dlspldy< the present memory &
t module directory Opts : e = prmt e"dended module duectorv @VIERGE Syntax: g
Merge <path> f—=— gndard output §
: @MFREE Syn Aidempmﬂms& RA M memory }
| @MODPATCH] Editorial Material: :?'-a module in §
§ memory from Gordon Bentzen e rnings -C =

j compare modu 8 Odin Street piname = link §

b to module C T K Old 4 ﬁ V = verify E
f module M =m .] ntype fopt] B

Usage : Set md Subscriptions & Library Requests: _A_omtor m=-§
monochrome Jean-Pierre Jacquet
! and links an OS 27 Hampton Street ,CS Syntax: §
} Procs [e] Usag joens Opts 1 e = §
j display all prodesmermrrmmrree———rrew e rrr————— Prints the §
| current data direckGiie sa B e '*’ﬁfvm]
} execution directory path @RENAME byntdx. Rename <ﬁlendme, <new ﬁlename> :
E Usage : Gives the file or directory a new name @RUNB Syntax: Runb d-code £
moduie> Lisage = BASICO9 mn fime nackace @SETIME Svntax: Setime §

| the operatm'o parameters “of the terminal @T’ YNEF’ORT 'Tuneport dtl or !p>
i [value] Adjust the baud value for the serial port @UNLINK Syntax: Unlink E
l <modname> Usage : Unlmks module(s) from mermory @WCREATE byde' g

AUSTRALIAN 0S9 NEWSLETTER
Newsletter of the National 0S9 User Group
Volume 5 Number 10

EDITOR : Gordon Bentzen
SUBEDITOR : Bob Devries

¥

TREASURER : Don Berrie
LIBRARIAN : Jean-Pierre Jacquet

SUPPORT : Brishane 059 Level 2 Users Group.

As you can see we are still producing the newsletter, and
in fact we have changed the format to give you more
information for gyour money. With smaller margins all
round, we can fit more words on each page. Of course,
this means we have to think up more to go into it.

One of the hardest things that we have to do is to try to
provide articles of interest to our readers. It would be
extrepely helpful to us, if you could provide us with
some ideas as to the type of article that YOU would like
to read. To do this, simply drop us a line, and we will
take it from there.

We would, for example, like to publish articles which
include source code, but many of the public domain
submissions that we receive, or that we get from overseas
sources, only contain executable code. This almost
alvays precludes the use of those submissions as material
for the HNewsletter. We figure that it is better to
distribute that material on disks via our Public Domain
library systen.

This month we feature a Basic09 programme by Bob Devries
vhich will read an BSDos 'tokenised' file {i.e. one saved
normally, not in ASCII), and print it to standard out in
ascii. This means, that if you want to convert such a
progranme to Basic0%, all you need do is read it from
your RSDos disk {using the programme RSDos) and run it
through this programme, with its output re-directed to a

Page 2

file. This will save having to go back to RSDos and
convert the file to ASCII.

We also have more text from the BitNet syster with
discussions about ‘¥Windows' on OSK machinmes. It seems
that there are quite a lot of different ideas about how
that should be implimented.

For those who have a lot of back-issues of 'The Rainbow’,
ve have continued the listing of the index of all the 039
articles which appeared, along with their authors, and
page numbers. ’

We have some nevs items from American 059 users, and what
they have to put up with over there. It makes some very
interesting reading.

Well as you can quess I am back from Europe and the
holiday is over. I must say that it is good to be back
hore again to things familar. I will never complain
again about the cost of living in Australia again but the
experience in U.%. and Europe is one not to missed.

Ke do hope that you find something of interest in this
edition and remind you all that we will be happy to
include 2ny articles which you may wish to share with
other members.

Reqards, Gordon

November 1991

AUSTRALIAN 0S9

NEWSLETTER

Read RSDos BASIC tokenised files
by Bob Devries

RSDos basic tokenized

fere is a programme which will read a RSDos BASIC 00C8 IF flag=1 THEK
tokenised file and print it out as ASCII text. You must 00D4 line-token*256
of course have some way of moving the file from a RSDos 00E0 GET #path,tcken
disk to 089, but there is already a utility to do this 00EA line=linettoken
called 'RSDos*. It is in our PD library. 00F6 [F line=0 THEN
0102 END
This programme expects the filename on the command 0104 EXDIF
line, and prints the ASCII to STDOUT, so you can redirect 0106 GET #path,token
it to a file, or the printer. If you don't give it a 0110 line=token*256
name, it prints a usage message. This is donr by setting 011¢C GET #path,token
up an O ERROR GOTO linme first up, and then using the 0126 line=linettoken
PARA¥ line, which reads in the variables from the command 0132 PRINT line; * *;
line. If none exist, an error 56 would occur, but as it 013C flag=0
is trapped, the programme quits cleanly. 143 GET ¥path,token
014D ENDIF
After opening the file, the programme jumps over the 014F IF token{>0 THEN
first five bytes, and reads the pext two to get the first 0158 flag=0
line number. It then enters a loop to keep reading 0162 IF token>127 THEN
characters until a zero value is read, which is the end 016E token=token-127
of line character, and prints a carriage return. After 0179 [F token=128 THEN
skipping two bytes ({the address pointer to the next 0185 RESTORE 1020
line), it reads two bytes for the next line number. This 0184 GET #path,token
goes on until three zero bytes are read in a row, which 0194 token=token-127
neans the end of the programme has been reached. The 019F ELSE
file is then closed and the programme ends. 01A3 RESTORE 1010
01A8 ENDIF
Here is the source. 01AR FOR x=1 TO token
0188 READ command
PROCEDURE translate 01C0 HEXT x
0000 ON ERRQR GOTO 1000 01CB PRINT conmand;
0006 PARAM file:STRING[100] 0101 ELSE
0012 DI¥ token:BYTE 0105 PRINT CHES{token);
0019 DIM command:STRING[20] 01DC ENDIF
0025 DIM path:INTEGER 01DE ELSE
002€ DI¥ x:INTEGER 01E2 PRIKT
0033 DIN flag,ernum:INTEGER 01E4 flag=1
003E DIN line:IKTEGER 01EB ENDIF
0045 flag=0 01ED ENDWHILE
004C OPEN #path,file:READ 01FL CLOSE #path
0058 FOR x=1 TO § 01F7 END
0068 GET #path,token 01F9 1000 ernun=ERR
0072 NEXT x 0202 IF ernumn=56 THEN
007D GET #path,token 020 PRINT "usage:translate (filename)®
0087 line=token*256 022C PRINT *© converts

0093 GET #path,token

programme to ASCII®

009D line=linettoken 0267 ERD

0049 PRINT line; * *; 0269 ENDIF

0083 WHILE HOT(EOF(#path)) DO 0268 PRINT *0SY error *; ernum; * has occured!®
00BE GET #path,token 028D END - S .

028F 1010 DATA ®FOR*,*GO",*REM",*'",“ELSE", *IF® °DATA" "PRINT', "ON®,'INPUT®

0203 DATA "END*,"NEXT®, ®DIM","READ®,"RUN","RESTORE",*RETURN","STOP"
0311 DATA *PORE", ®CONT®, "LIST®,*CLEAR", *NEW" *CLOAD", "CSAVE" *OPEN"
034F DATA ®CLOSE®,*LLIST",'SET", *RESET", ®CLS","MOTOR","SOUND®, *AUDIO*

November 1991

Page 3

AUSTRALIAN 0S9 NEWSLETTER.

038F
03CE
03FD
0414
0454
0488
04C9
04E2
04F9
0938
056D
0940
058D
05F%
0624
0664
0683
069D
0§DC
0714
0735
0753
078E
07BE
07DE
0807
082D
084F

KORE COMPARES

The

1020

involved.

rather

strange

DATA *EXEC®,*SKIPF®,*TAB(*,*T0*,*SUB*, *THEK",*NOT®,*STER*,"OFF"
DATA I+H’I_l'lkl’l,lll'l'IANDI'IORII’I>H'I:HII<I

{* connands for ECB follow *))

DATA *DEL*, “EDIT*,*TRON*,*TROFF®,*DEF*,®LET*,*LIKE",*PCLS"
DATA ®"PSET","PRESET®,"SCREEN®,*PCLEAR®,"COLOR®,“CIRCLE"

DATA *PAINT®, “GET®,*PUT", *DRAW", *PCOPY®,*PMODE®,*PLAY", *DLOAD®
DATA "RENUM®, °FK*, "USING*

{* commnands for DECB *|

DATA *DIR®,*DRIVE®,*FIELD®,*FILES*,*KILL®,®LOAD",*LSET", "MERGE"
DATA "RENAME®,*RSET®,"SAVE" “WRITE®, "VERIFY", "UNLOAD®

DATA *DSKINI®,*BACKUP®, *COPY", “DSKIS",*DSK0S",*DOS"

(* commands for SECB (CC3) *)

DATA *WIDTH®,*PALETTE®,*HSCREEN",®LPOEE*,*HCLS", "HCOLOR"

DATA "HPAINT®,"ECIRCLE","HLINE®, “HGET", *HPUT®,"HBUFF'

DATA *HPRINT®, “ERR®,"BRK*®,"LOCATE" “HSTAT" “HSET®, “HRESET®
DATA "HDRAW®, "CMP"®, “RGB®, “ATTR"

(* function commands CB *)

DATA “SGN®, ®INT®, *ABS",*USR®,"RND®,“SIN®, "PEEEK",*LEN®,*STRS"
DATA ®VAL®,®ASC*,"CHRS®, "EOF®,*JOYSTK®,*LEFTS" *RIGHTS"®,"MIDS"
DATA *POINT®,*INEKEYS®,"MEN"

(* function conmand for ECB ¥)

DATA “ATN®,®COS",“TAN® *EXP®,*FIX",*LOG"®,*POS",*SQR",*HEXS"
DATR "VARPTR®,*INSTR"®,"TIMER®,*PPOINT", *STRINGS"

{* function commands for DECB *)

DATA *CVN®, *FREE",®LOC*,°LOF*® "MENS®, 'AS*

{* function commands for SECB {CC3) *)

DATA *® \{* enpty one for CC3 bug *)

DATA "LPEEE®,"BUTTON","HPOINT", "ERKC®,*ERLIN®

000000000000000000000000000000
A C Tutorial

Chapter 4 - Assiqoment & Logical compares
Continued...

parentheses. To understand this we must understand just the value of 1009.

The expression *r != s® will evaluate as a ®true® since statement. The value

*r® was set to 0.0 above, so the result will be a non- but different compilers may assign a different value
zero value, probably 1. Even though the two variables long as it is non-zero.

that are compared are "float® variables, the result will The next example should belp clear

be of type "integer®. There is no explicit variable to ahove in your mind.

an implied
this case, is assigned to the integer variable *x*.

integer. Finally the resulting number, ! in is non-zero, which
therefore assigned 227.

If double equal signs were used, the phanton value, group, compares °"x"

Page 4

since the single equal sign is used, the value 1
simply assigned to "x", as though the statement were not
compares in the second group are a bit more in parentheses. Finally,
Starting with the first compare, we find a assignment in the parentheses was non-zero, the entire
looking set of conditions in the expression is evalvated as "true®, and *z® is assigned
Thus we accomplished two things in
what a *true' or "false® is in the C language. A “false" this statement, we assigned *z® a new value, probably I,
is defined as a value of zero, and *true" is defined as a and ve assigned *z® the value of 1000.
non-zero value. Any integer or char type of variable can in this statement so you may wish to

be used for the result of a true/false test, or the going on. The important things
result can be an implied integer or char. Look at the values that define *true® and "false", and the fact that
first compare of the second group of compare statements. several things can be assigned

assigned to

result of the

We covered a lot

x was probably a l

some of the
In this-example,- "x* is assigned the
vhich it will be assigned so the result of the compare is value of 'y", and since the result is 11, the condition
and the variable ®z" is
The third example, in the second
If the restlt is true,
namely I, would be compared to the value of ®x", but neaning that if "x' is not zero, then "z* is assigned the

November 1991

AUSTRALIAN 0S9 NEWSLETTER

value of 333, which it will be. The last example in this
group illustrates the same concept, since the result will
be true if 'x* is non-zerg. The compare to zero is not
actually needed and the result of the compare is true.
The third and fourth examples of this group are therefore
identical.

ADDITIONAL COMPARE CONCEPTS

The third qroup of compares will introduce some
additional concepts, namely the logical *ARD® and the
logical "0R". We assign the value of 77 to the three
integer variables simply to gqet started again with some
defined values. The first compare of the third qroup
contains the new control "8&", which is the logical
*AND®. The entire statement reads, if "x® equals "y® AND
if *x* equals 77 then the result is "true®. Since this
is true, the variable z is set equal to 33. The next
compare 1in this qroup introduces the ® * operator which
is the *0R*. The statement reads, if "x* is greater than
y OR if "z* is greater than 12 then the result is true.
Since *z* is greater than 12, it doesn't matter if "x* is
greater than *y" or not, because only one of the two
conditions must be true for the result to be true. The
result is true, so therefore "z' will be assigned the
value of 22.

LOGICAL EVALUATION

When a compound expression is evaluated, the
evaluation proceeds from left to right and as soon as the
result of the outcome 1is assured, evaluation stops.
Namely, in the case of an "AND® evaluation, when one of
the terms evaluates to ‘false', evaluation 1is
discontinued because additional true terms cannot make
the result ever become “true®. In the case of an “0R"
evaluation, if any of the terms is found to be "true®,
evaluation stops because it will he impossible for
additional terms to cause the result to be *false®. In
the case of additionally nested terms, the above rules
will be applied to each of the nested levels.

PRECEDERCE OF OPERATORS

The question will come up concerning the precedence
of operators. Which operators are evaluated first and
vhich last? There are many rules about this topic, which
your compiler will define completely, but I would suggest
that you don't worry about it at this point. Instead,
use lots of parentheses to qroup variables, constants,
and operators in a way meaningful to you. Parentheses
always have the highest priority and will remove any
question of which operations will be done first in any
particular statements. Going on to the next example in
group three, we find three simple variahles used in the
conditional part of the compare. Since all three are
non-zero, all three are "true®, and therefore the "AND"

November 1991

of the three variables are true, leading to the result
being "true*, and *z" being assigned the value of 11.
Note that since the variables, *r*, 's', and *t' are
*float® type variables, they could not be used this way,
but they could each be compared to zero and the same type
of expression could be used.

Continuing on to the fourth example of the third
group ve find three assigument statements in the compare
part of the "if" statement. If you understood the ahove
discussion, you should have no difficulty understanding
that the three variables are assigned their respective
nev values, and the result of all three are non-zero,
leading to a resulting value of *TRUE®.

TEIS IS A TRICK, BE CAREFUL

The last example of the third group contains a bit of
a trick, but since we have covered it above, it is
nothing new to you. HNotice that the first - part of the
compare evaluates to *FALSE®. The remaining parts of the
compare are not evaluated, because it is an “AND® and it
vill definitely be resolved as a “FALSE® because the
first term is false. If the program was dependent on the
value of *y* being set to 3 in the next part of the
conpare, it will fail because evaluation will cease
following the ®FALSE® found in the first term. Likevise,
z vill not be set to 4, and the variable *r® will oot
be changed.

POTENTIAL PROBLEM AREAS

The last group of compares illustrate three
possibilities for getting into a bit of trouble. All
three have the common result that *z* will not get set to
the desired value, but for different reasons. In the
case of the first one, the compare evaluates as "true?,
but the semicolon following the second parentheses
terninates the *if® clause, and the assigoment statement
involving *z" is always executed as the next statement.
The *if*® therefore has no effect because of the misplaced
senicolon, The second statement is much more
straightforvard because *x* will always be equal to
itself, therefore the inequality will never be true, and
the entire statement will never do a thing, but is wasted
effort. The last statement will always assign § to "x*
and the compare will therefore always be *false®, never
executing the conditional part of the °®if" statement.
The conditional statement is extremely important and must
be thoroughly understood to write efficient C programs.
If any part of this discussion is unclear in your mind,
restudy it until you are confident that you understand it
thoroughly before proceeding- onward... -

THE CRYPTIC PART OF C

There are three constructs used in C that make no
sense at all when first encountered because they are not

Page 5

AUSTRALIAN 059 NEWSLETTER

intuitive, but they qreatly increase the efficiency of
the compiled code and are used extensively by experienced
C programmers. You should therefore he exposed to them
and learn to use them because they will appear in most,
if not all, of the programs you see in the publications.
Load and examine the file named CRYPTIC.C for examples of
the three new constructs.. In this program, some
variables are defined and initialized in the same
statements for use below. The first executable statement
simply adds 1 to the valve of ®x", and should come as no
surprise to you. The next two statements also add one to
the value of 'x*, but it is not intuitive that this is
vhat happens. It is simply by definition that this is
true. Therefore, by definition of the C lanquage, a
double plus sign either before or after a variable
increments that variable by 1.

Additionally, if the plus signs are before the
variable, the variable is incremented before it is used,
and if the plus signs are after the variable, the
variable is wused, then incremented. In the pext
statement, the value of "y* is assigned to the variable
tz", then 'y* is incremented because the plus signs are
after the variable 'y*. In the last statement of the
incrementing group of example statements, the value of
y is incremented then its value is assigned to the
variable "z®. The next group of statements illustrate
decrementing a variable by one. The definition works
exactly the same way for decrementing as it does for
incrementing. [If the minus signs are before the
variable, the variable is decremented, then used, and if
the minus signs are after the variable, the variable is
used, then decremented.

THE CRYPTIC ARITHNETIC OPERATOR

Another useful but cryptic operator is the arithmetic
operator. This operator is used to medify any variable
by some congtant value. The first statement of the
*arithnetic operator® group of statements simply adds 12
to the value of the variable "a®. The second statement
does the same, but once again, it is not intuitive that
they are the same. Any of the four basic functions of
arithmetic, "+%, ®-%, *** or */" can be handled in this
vay, by putting the function desired in front of the
equal sign and eliminating the second reference to the
variable name. [t should be noted that the expression on
the right side of the arithmetic operator can be any
valid expression, the examples are kept simple for your
introduction to this new operator. Just like the
incrementing and decrementing operators, the arithmetic
operator is used extensively by experienced C programmers
and it would pay vou well to understand it

THE CONDITIONAL EXPRESSION

The conditional expression 1is just as cryptic as the
last two, but once again it can be very useful so it

Page 6

would pay you to understand it. It consists of three
expressions within parentheses separated by a question
mark and a colon. The expression prior to the question
mark is evaluated to determine if it is “true® or
false. If it is true, the expression between the
question mark and the colon is evaluvated, and if it is
pot true, the expression following the colon is
evalvated. The result of the evaluation is used for the
assignment. The final result is identical to that of an
"if* statement with an ‘'else® clause. This is
illustrated by the second example in this gqroup. The
conditional expression has the added advantage of more
compact code that will compile to fewer machine
instructions in the final program. The final two lines
of this example program are given to illustrate a very
compact way to assign the greater of two variables "a® or
*ht to 'c", and to assiqn the lessor of the same two
variables to *c®. Notice how efficient the code is in
these two examples.

TC BE CRYPTIC OR NOT TO BE CRYPTIC

Several students of C have stated that they didn't
like these three cryptic constructs and that they would
simply never use them. This would be fine if they never
have to read anybody else's program, or use any other
programs within their own. [have found many functions
that [wished to use within a program but needed a small
modification to wuse it, requiring me to understand
another person's code. It would therefors be to your
advantage to learn these new constructs, and use them.
They will be used in the remainder of this tutorial, so
you will be constantly exposed to them. This has been a
long chapter but it contained important material to get
you started in using C. In the next chapter, we will go
on to the building blocks of C, the functions. At that
point, you will have enough of the basic materials to
allow you to begin writing meaningful progranms.

PROGRAMNING EXERCISES

1. Write a program that will count from 1 to 12 and
print the count, and its square, for each count.

I I
2 4
3 9 etc.

1. Write a progran that counts from I to 12 and prints
the count and its inversion to 5 decimal places for

each count. This will require a floating point
number. »)

1 1.00000

2 50000

] 33333

4 25000 etc.

3. Write a program that will count from 1 to 100 and
print onty those values between 32 and 39, one to a
line.

November 1991

AUSTRALIAN 0S9 NEWSLETTER

0SK Windows

Tin Kientzle, a reqular writer from the Coo Mailing
List, has posted the following {somevhat lengthy)
message, as a precis of a number of discussions about
vindowing systems for the new (and existing) OSK
machines. Unfortunately, it assumes a knowlege of some
of the prior discussions that have taken place on the
List., It 1is still worthwhile reading, however, as it
raises some interesting possibilities about uses of more
sophisticated windowing systems - Ed.

Wheeee! Boy this discussion took off. Ed Gow's basic
point seems to be to Reep It Simple, which is something I
agree with. It does seem that there are different ideas
of 'simple® around here, though. {qrin) I feel like I‘ve
pretty well outlined =y ideas, so I'll try to keep nay
responses here as gimple as possible... (though I'lIl
doubtless fail {sigh)). I've edited this to keep it
short (!}, so I apologize if things are unclear.

Ed has concerns about my comment
regarding applications re-opening at the
same position they were last at.

Frank Hogg's idea of having applications keep
configuration files in the wuser's home directory was
essentially what I had in mind. The biggest reason I
nentioned this was to make a case for allowing the
application to specify where it's window belongs on the
screen, as opposed to Eddie Xunz's idea that the user
should do that.

Ed asks about another detail:

This raises the window/screen thing
again. - What if the window change
requires a screen change?? What of the
other windows on the screen??

One idea is simply to ignore requests that might require
a screen change. Thus, an application could make sure it
got a window on the current screen by asking for a lxl
vindow with 1 color, then create the window, then ask for
more. The application always has the option of closing
the window and creating a new one if a new screen is
acceptable.

Another idea is that if the change would force a screen
change, you change the screen, then ask the other windows
to re-drav. (Note: Any system that allows overlapping
vindows has to address the question of how to handle
exposures. It seems to me that the burden of re-drawing
exposed graphics windows must rest on the application.
Bit-mapped backing store just takes too much memory.

Though I also feel that the window manager should be

November 1991

responsible for re-drawing text windows in order to keep
simple programs simple.)

Greg Law points out that:

Obviously you don't always need the max
resolution with max colors.

Well put., Hopefully, if the window manager knows what
the applications really need , it can do clever things
like creating a monochrome screen if there's not enough
video memory for something fancier.

Mike fnudsen comments about Eddie's DWSet idea:

Good idea -- a small set of MM/l window
types that can be met on other platforms
ag vell. And right, don't change en!

This is a reasonable idea, except that the "met on other
platforms' requires some conservatise. For example, the
VSC supports a 720-across screen, but that's an uncommon
width, so your "standard" type codes would have to stop
at #40-across. {Or maybe smaller?)

Ed Gow:

Most programs can run in all screen
types. The heavy-duty gqraphics progs
will probably want their own screen
anyvay.

[agree, but with a minor clarification. Most heavy-duty
graphics programs will want a large window, not
necessarily their own screen, as Mike already pointed
out. Some heavy-duty graphics progs will desperately
vant to limit their market {grin) by directly messing
vith video memory. THOSE programs must be given their
own screen, so they won't damage anyone else's window. :-

)
{A qood example might be an X windows server...???)
Ed Gow asks for some clarification:

There is substantial state maintained
between DWWant() calls, who has it?

The window manager creates a window description when the
path is opened, and alters it as requested by the
progran. Once the window is actually created/displayed
(*mapped® in X parlance}, then some of those parameters
pay become unalterable.

»

Fd Gow points out a simplification I've been making:

Page 7

AUSTRALIAN 059 NEWSLETTER

It looks as though the window calls are
making screens in the description above,
but they lack suficient information to
really specify a screen type {border/no
border, interlace, etc.).

First, those DWWant/DWNeed calls aren't creating screens
or wvindows, but just specifying attributes that the
vindov should have when it is created. Attributes for
vhich the application doesn't express a preference will
default.

I've omitted some window properties that some programs
vill want to specify. By having each call specify a path
nusber, 2 code specifying the parameter, and the
parameter value, we gain the flexibility of being able to
easily add more codes and hence more window options at a
later date. Changable vparameters might include: x-
resolution in pixels, y-res in pixels, x-res/y-res in
chars, name/style/size of font, type of window border,
number of colors, title of window, mouse pointer when in
vindow, background color of window, etc.

Also, one note: I don't think interlace is something that
the application should ever know about, much less be able
to request. I think that the user should be able to
confiqure the window manager to prefer interlaced or non-
interlaced screens. I don't want some application
constantly selecting an interlaced screem when I would
rather have it select a non-interlaced one. Or vice-
versa.

Mike Knudsen is concerned that

ALl this platforn independence is
sloving down Kevin Darling's development
and even causing useful features to be
onitted or implemented in complex,
inefficient ways.

For the most part, the CoCo windowing design is already
pretty hardware independent. There are only 2 few real
linitations in 1it, such as the nmethod of specifying
palettes, and the method of specifying a window or screen
type, and some less-important restrictions on networking
and use of remote terminals (mouse and get/put buffer
mapping). Extensions such as overlapping windows, etc,
only have minor impact on the overall design. As someone
pentioned, a little work in getting the basic interface
right could make a big difference later on. There really
are only a couple of issues.

Ed Gow comments that:
I think that screen creation should be

explicit. There ¢can be some
negotiation, but I think that it would

Page 8

be simplified because of the limited
nuzber of choices of screens, as opposed
to the unlimited types of windows. Then
the window can be made gqiven the screen
constraints,

I don't see this as a simplification. It seems simpler
to me for the program author to simply think in terms of
vhat that progran needs in terms of resolution, colors,
etc, and just ask for that. Pushing screen selection
onto the application just seems redundant. W¥hy should
every application have to ask the window manager what
kinds of screens are available and them have to search
that list to fiqure out which type it prefers, when code
to compare an application's requirements to a list of
possible screen types could be written once and hidden
avay in the window manager? '

I do see one case where the application would need to
specify 2 screen, and that is in the rare case where the
application needs a quick response from the user, where
it might ask that a window be created on the currently
visible screen, in order to get the user's immediate
attention.

I can certainly see a case for screen creation being
explicit. Unfortunately, I don't see a convenient way to
do this that wouldn't make either the application or the
vindow manager more complex.

Suggestions, as always, are welcome.
Ed Gow asks

Let WINDOW creation apply only to the
current screen or a screen explicitly
created by the application for the
vindow. Kost programs can run in all
screen types.

True, and if the window being requested will fit, it
seems clear to me that the current screen is the obvious
place to put that window. But what if it doesn't fit?
What you seem to be suggesting is that either the user
nust explicitly create a new screen, then select that
screen, then somehow tell the application to open it's
vindow there; ‘or the application should ask the user for
permission to create a new screen and do this ([which
seems to suggest that the application must be able to
specify what screen to put a window-on). As a user, the
first one doesn't sound very simple. As a programmer,
the second adds the burden of having to worry about
screens and windows, rather than just windows. Perhaps
you have some proposed interface that would make it
easier than it looks right now? Or maybe I'm missing
sonething obvious? Hmmmm....

November 1991

AUSTRALIAN 0S9 NEWSLETTER

In order to help explain my proposal and viewpoint
better, here's some random thoughts:

I should briefly describe here my personal *vision® of a
nice windowing environment. Some of this comes from
ideas which were actually implemented (?} in some version
of the 059 L2 upqgrade, so I'm certain that Kevin can
inplement much’ of this in some future version of
DWindows. My "vision® 1involves having separate screens,
selectable via function keys or mouse. Each screen can
have multiple overlapping windows. I've heard that this
is actually available in at least one X window manager
already (tvtwn?).

For myself, I see using this to organize things by task.
A screen where I've been working on an article might have
a word processor with a separate previev window and an
on-line dictionary. Another screen where I'm working on
a program would have a couple of editor windows, a
compiler, and a debugger window. A third screen is where
I'n logged into Delphi, with a terminal program, an
editor where I'm composing replies to forum messages, and
a shell window where I'm trying to play with answers to
someone's question. All the screens might have clocks on
them, or maybe one clock program with a window on each
screen? You get the idea. The question is how can the
user (me ;-} easily access these capabilities?

The 1idea I've been working with is that rather than
setting this up by egplicitly creating screens or
designating certain screens, [would simply run the

progran [want, which would appear on the current screen
unless it required something wupavailable there {like too
pany colors). If I wanted it on a different screen, [
drag it to another screen. One of the screens in the
*drag cycle® would always be a blank screen (assuming
available memory) so I can set up things however I wish.
If I'm starting up a graphics editor which requires more
palettes than the current screen has, then I find myself
locking at that graphics editor on a new screen. Which
gives me the option of either dragging other windows onto
this screen, or flipping back and forth., As long as
basic window manipulations are fast and easy, then the
user has convenient flexibility to arrange things as they
vish.

Everyone seems to agree that a mechanism to create a new
window should specify the resolution, colors, and other
attributes that window should have. My idea essentially
boils down to a method for the application to specify the
things it cares about and let the window manager choose
*reasonable® defaults for the rest. Most applications
would only specify the dimensions of the window and the
number of colors and ignore the rest. If the idea of
letting the window manager select a screen and screen
type based on this information seems unwieldy (I'Il admit
it does have some drawbacks), and you think the
application should be able to control/influence the
creation of new screens, please tell pe (and Kevin, [
suppose) how to do it. :-)

- Tin Fientzle

000000000000000000000000000000

An index of Rainbow 059 articles
conpiled by Bob Devries
August '85 - December 1986

August 1985 page 236
KISSable 059 - Cliffhangers in the micro soaps
Dale L. Puckett -

August 1985 page 246
MAILOS - The remainder of MAILOS's listings
Timothy A. Harris

September 1985 page 238

FISSable 0S9 - A getting-your-feet-wet course in 089
Pascal

Dale L. Puckett

October 1985 page 242

KISSable 0S89 - 0S3 gets good reception at National
Computer Conference

Dale L. Puckett

November 1985 page 218

November 1991

KISSable 059 - Confessions of an enlightened spreadsheet
user
Dale L. Puckett

Hovember 1985 page 241
Learning 059 - The utility room
Brian A. Lantz

December 1985 page 272
KISSable 059 - & time for reflection
Dale L. Puckett

December 1985 page 258

The Utility Roem - Adding more features to the LIST
conmand, part 2

Brian A. Lantz

January 1986 -page 134
Getting Started with 059 - Boot up with a high level

Page 9

AUSTRALIAN 0S9 NEWSLETTER

language
Bruce Warner

January 1986 page 236
KISSable 059 - Four easy assembly language experiments
Dale L. Puckett

February 1986 page 231
Accessible Applications - Getting started with Basic09
Richard ¥hite

February 1986 page 236

KISSable 0S3 - Granting requests for simple device
drivers and descriptors

Dale L. Puckett

February 1986 page 224
059 Tutorial - Creating 0S9 system disks
Donald D. Dollberg

March 1986 page 226
Accessible Applications - Firing up Basic(9
Richard White

March 1986 page 216

The Utility Room - Errors, error messages and error
conditions

Brian A. Lantz

April 1986 page 238
FISSable QSY - Featuring a trig library in C
Dale L. Puckett

May 1986 page 219

Accessible Applications - DeskMate: Good integrated
software

Richard White

May 1986 page 235
fISSable 089 - Featuring a new text formatter
Dale L. Puckett -

June 1986 page 208

KISSable 0SY - The Disk BASIC/0S9 connection

Dale L. Puckett

July 1986 page 212

Accessible Applications - CoCo Wordprocessing

Richard White

July 1986 page 224

FISSable 0S9 - Choices: The reason for modularity

Dale L. Puckett

Rugust 1986 page 197

KISSable 0SS - Experimenting with RAM disks

Dale L. Puckett
September 1986 page 200

KISSable 0S9 - Hard disk makes CoCo 0SS fun

Dale L. Puckett

October 1986 page 1936

KISSable 0S9 - Revving up for fall fun

Dale L. Puckett

November 1986 page 188

Bits and Bytes of BASIC - Basic09 on the Colo 3

Richard ¥hite

Hovenmber 1986 page 199

fISSable 0S9 - Blue sky for 089 Level II

Dale L. Puckett

December 1986 page 195

Bits and Bytes of BASIC - Ddealing with variables 1in

Basic09
Richard ¥White

December 1986 page 198

£ISSable 059 - A bundle of holiday goodies

Dale L. Puckett

Decenber 1986 page 183

0S9 Spocler - Print a file as a background task

Stephen B. Goldberg

000000000000000000000000000000

NEWS Itenms

The following are some examples of prices which are
available to our USA colleques. It makes your mouth
water, and your mind wonder as to whom is making what
profits here in Australia. If you don't believe ne,
check for prices of similar items locally. Prices are in
US dollars.

1¥x9 SIMMS (80ns) $49.77

Page 10

BRAND HEW Sony 3.5* floppy drives

720K, WITH a 5.25" Mounting Kit, $29 each!!!
{$25 each in quantities of 10 or more)

1.44M, §49 each!!!

(§39 each in quantities of 10 or more)

5.25" Mounting Kit, 3 additional)

£Mx9 80ns SIMMS, $199.35!!!

November 1991

AUSTRALTAN 0OS9 NEWSLETTER

Break out those checkbooks!
Toshiba 3.5% Floppy Drive Problem

Well, last nite I finally found the fix for the ongoing
saga of the Toshiba 3.5" floppy that insisted on being
/D1 no matter what. On very close examination {qlasses
off, drive touching my nose) a surface-mount chip
capacitor under the head-step =motor showed printed 'l'
and '0' on opposite sides. Close probing with a
jeweler's screwdriver revealed this "capacitor® to be a
micro slide switch with an invisible handle -- trying to
slide it towards the '0' side caused a satisfying click.

Also satisfied the drive, which is now quite happy as /D0
and can format hi-density clear out to all 80 tracks. If
sopeone had just told me this 3 nites ago!

Full Address Decoding Explained {?777)

Peripherals for the CoCo are all memory-mapped, meaning
that they appear at some memory address (as opposed to
Z80 or 8086, which has a separate set of "I0" addresses).
There are basically two ways for a hardware device to
recognize when it's address is being accessed:

1) *full address decoding® means that it looks at all 16
address lines on the expansion port to determine when it
is being addressed.

2) There is an extra line on the expansion port called

SCS (Spare Cartridge Select} which is only active
(typically) when addresses §FF40-$FFSF are being
accessed. By recognizing SCS, a device need only look at

the botton § lines to determine when it is being
addressed.

The advantage of 1 over 2 is that when using a MultiPak,
SCS is only active for one slot, which creates probleass
if you have multiple devices, since SCS must be
"manually® switched from slot to slot.

A related issue concerns ®"ghosting®, where a device does
pot look at all the necessary address lines, and so
responds to more than one address. The original Tandy
disk controller, for instance, only ®needs® 4 addresses,
but can actually be accessed at 32 different addresses.
(sigh)

TOPS package..

I did some work on the TOPS package THE WHOLE THING is in
one compressed tar file on garfield.catt.ncsu.edu
(incoming directory). It is 7.6 MEG in size and
uncompresses to 15 meg. (The sum total from smilodon was
7.9 meq and would not compress.)

November 1991

Quote of The Month
Lawsuits, like assault rifles and nuke weapons, are qreat
vhen you're going down and want to take a few of the

bastards with you. If you want to go on living and
working, they're a last resort.

How's this for "Vaporware®

The very mninute I saw the first ad for GSolaris at
Infoworld, T grabbed the phone and asked them if they in
fact did have a shipping product, as their ad plainly
proclaims. (Something like, ®Others talk about gqetting
there, we're there now.")

*Sir that product is not available yet.® -

*Your ad says it is.®

'T know that.*®

*Are you telling me that SUN SOFT is advertising a
product with the words “here now", but it isn't
available?®

*Yes"

*That's deceitful."

*Yell, sir, really it isn't. The product will bDe

available in July of 92.°
*Your ad plainly says it is here now.®
*T know that."®

YAre you taking steps to pull the ad, sinoce it is an
obvious shan?®

"Ye don't see it that way sir."

*Exactly how .would you describe an ad that contains an
explicit lie?®

'Sir I'd prefer not to answer that. Would you like me to
send you literature?®

*It seems c¢lear that your ad campaign 1is trying to
capitalize on the current confusion .in the B{ universe
with respect to the fluzy tunes being sung by the various
0S vendors. [Is that in fact so?*

"Tes.*

'So then why o earth would your first contact {the ad)
¥ith your npew desired user base contain specific wilful

Page 11

AUSTRALIAN 059 NEWSLETTER

falsehood? How on earth do you expect to win customers
if the first thing you say to them is a lie?®

*Sir the product will he available in about 11 months.®
*And you call that *Here Now®?*

"Yes."

MM/1 Developers Wanted

ALl 0S-9/0SK Programmers:

INS is looking to expand the base of IDEA developers.
IDEA stands for IMS Developers Association. IDEA offers
several bepefits for those that want to become registered
developers with INS, including the assistance of the most
experience 05-9/0SK people in the country to aid you in
your programrming projects. In addition, IMS offers to
buy up to $500 worth of your product once it is finished.
That is, of course, if it is worth buying {grin}.

I¥S also offers free advertising to IDEA developers. If
developers send a flyer to IMS, it will be included in
all IMS mailings and in the boxes when MM/ls are shipped.
Since the software product ustally sells the hardware,
INS is very interested in getting high quality software
to shov off at demos and shows. Your potential for sales
will be greatly increased.

What does one need to do to become an IDEA developer?
Just send E-mail to me, or a letter to my address below.
Include in your message what projects you have dreamed
up, what you are currently working on, and what you would
like to work on. You don't have to have an established
reputation for excellent programming, nor do you even
need to be an experienced hacker. All you need isa
desire to develop applications for the future of 0SK. *C*
programmers, BASICOY {Microware BASIC), PASCAL,
Assembler..... aey lanquage will do.

We are looking to have a wide software base by the time
the Chicago Fest rolls around in April so please bDe
prompt in your reply. I am the IMS IDEA coordinator
{slave driver is more like it} and will help in any way I
can. Please remember that quite a few people have
expressed an interest in porting UBIX utilities. These
all already exist so if this is you intent, please try
and think up something else. W¥hat we are looking for are
nev and innovative applications that make use of the
MM/1ls qraphics and sound potential. Clones of existing
IBM or MAC applications are 0K, as long as a new "twist"
can be put in to make it unique to the MM/I.

Thanks for your attention.

Mark Griffith

0000000000000000000000000006000

CoCo-Link
CoCo-Link is an excellent magazine to help you with the RSDOS side of the Colour Computer. It is a bi-monthly magazine

published by Mr. Robbie Dalzell. Send your subscriptions to:

CaCo-Link
31 Nedlands Crescent
Pt. Noarlunga Sth.
South Australia
Phone: (08) 3861647

Page 12

November 1991

