-

.

1
1 1
\
.
!
D -
[]
.
)
" Al
J N

AUSTRALIAN 0S9 NEWSLETTER
Newsletter of the National 059 User Group

EDITOR & %Gordon Bentzen
HELRERS : Zob Devries and Don Rerrie

SUPPORT ¢ Brishane (5% Level Z User Group.

Welcome to the lath edition of the Australian 089 Newsietter oroduced in sunny Queensiand.

This edition represents the commencement of our second subscription year and the commitment to produce future
editions through to August 1998, Just in case the above siatements don’t suite add up to you, we produced tuo
newsietters as a trial in 1988, being July and August, and thanks to the support of the members we commenced a

subscription period in September 1988.

We doc hope that all members of the National (5% User Group have enjoyed the many articles aresented over the last
year, and that we have all learnt something new about this powerful operating system.

At the time of writing, we have received a total of 75 subscriztion reneuals which {s more than the minimum we have
et ac being the hasis for continuing this project. e are alzo confident *hat this number will increacse.
M|

This edition will be mailed to all members whose name fas teen in our database. Houwever, the mailing list will b

m

2067

updated at END SEPTEMBER to include only financial members. 5o please send your renewal now so that uou don’t miss
cut on future editions.

I must praise the efforts of Rob Devries and Don Berrie and thank them both for their high quality articles
contributed over the last yeary, because without their dedication to this project we would have had a lot of blank
pages in each Newsletter.

Aleo a2 special thanks to members of the user grous who have faken the trouble to send in articles and to chare
their knowledge with us. These include ﬂﬂ-rge Francisy Nickolas Marentes, *Foskg® Mchau, lap Clarke, Rosz Pratt,
and Phil Frost, Thanks for your participation.

medium by which we can all share in the combined

As uwe have states mang rimes, this newsletter is inftended as
it 4 by many memberz being willing to pass cn their

knowledge of 059 and ifs many appiication programmes,
experiences that thic will be achieved.

In

[1)

e}

fn W

e

L o

e

I}

3 s
,M

We would like to aresent a guection and answer series in the coming months to assist thos
059 and thoce not so new to 059, So come on, let us have those curly questions.

o
=
m
b
=54
m
LY
n
=
Lo
o
@
m
]
3
(=
e
[

-

1 have found from my own limited experience, that there is nothing like having to find the ancwer to a problem to
make you learn. The only problem being that this can be very time consuming, and at times ceem wasteful especially
if someone already has the solution. We do not set ourselves up as experts by any means, but are willing to tackls
any problem relating to the operating cystem. Havina said thaty I must also point out that the modification or
debugging of commercial softuware packages is not our intent, as there does come a point where such a task is just
not practicaly or even possibley without the source code.

Well that is probably enough raving for any month, sc let’s move on to this month's edition and 1 trust that your
continued support will result in some very interesting reading in the months ahead.

Until next month, Happy Computing. - Gordon Bentzen.

AUSTRALIAN 059 NEWSLETTER

The following submission from (le Eskildsen is presented as the first of a three part series. The content of this
series serves as an example of just what can be done with (89 {even with the humble Color Computer) and anctiher
reascn why we all need to maintain interest in this versatile Operating Sysitem. Please let us have your comments
so that we can endeavour to cater to your needs. PRemember, no feecback can be very difficult to deal with.

Editor
FOURTH GENERATION LANGUAGES (46Ls) AND 0S-9
PART 1 - WHAT ARE 4 GLs AND WHAT IS AVAILABLE FOR 0S-9?
This is the first part of what I think will become result. For instance, to add two numbers together
three parts (or perhaps more which may also he might have entered: “111100110011000000000000"
depend on your reactions ta the subject) on 4GLs, This is machine lanquage, the FIRST GENERATION.
what they are, and what is available for the 08-9 Little wonder you had to be a mathematics

operating system. At the end I hope to be able to professor to program the early computers. Next

make you a special offer to try out such a 4GL. For
reasons of space availability in this newsletter
I will obviously have to be fairly brief, however,
I hope to cover the subjects sufficiently to
benefit the general reader. The more
gxperienced reader will probably find that in
particular Part 1 does not provide him with a lot
of new information, but please bear with me.

In the three parts I intend to cover the following
subjects:

Part 1 - What Are 4GLs and What Is Availabie
for 05-3?

Part 2 - A Real 4GL Called Sculptor

Part 3 - A Sample Application Using Sculptor
and a Special Offer to Try It

So, what are 4GLs? As the name implies there must
have been first, second and third generations before
and perhaps fifth, sixth and seventh generations to
follow. Let wus therefore briefly reviex the
history of computing as it relates to software.

¥ay back in the dim, dark ages of the forties the
first computers started to appear and, as we al

know now, the internal workings is based on the
binary (two state) principle such as
positive/negative, on/off and expressed
mathematically as 0 and 1. In order to get the
computer to work the “programmer’ had to enter a
long string represented by 0s and 1s which had the
effect of switching the gates in the circuit on and
off in order ta finally arrive at the desired

Page 3

someone decided to group the binary digits (bits)
together in groups of four and use the hexadecimal
numbering system to represent the bits so the
string above becomes: {111 0011 001t 0000 0000
0000" or hex F 33 00 0" which incidentally in
809 machine language means to add the value stored
in hex address 3000 to the value in register D. This
s somewhat easier to read, but to use it in the
computer it was necessary to make a simple program
that could translate the hex numbers into binary.
Now! Aren't you gqlad you don’t have to program like
that?

The SECOND GENERATION was born when someone decided
that the above method was a bit too cumbersame for
his 1iking and came an the idea of using mnemanics ta
represent the individual machine lanquage
instructions, such as add, subtract, store, move
data, etc as well as performing jumps from one
place in the program to another perhaps depending
on a condition that had been tested for, and so on.
This lanquage is of course Assembler, where
one mnemonic instruction carrespand to one machine
tanquage instruction. This is therefore known as a
"low level’ programming tanguage because it is very
close to the way the hargware (the Central
Processing Unit or CPU) works and that also
accounts for the fact that Assembler language
differs from one type of processor to another
such as Motorala 6809 (in the CoCo) and Intel 8088 in
the original IBM PC. Still, this was a vast
improvement over the first generation way of
pragramming but again necessitated that a program was
developed {in the first generation lanquage) to

AUSTRALIAN 059

translate the programmer’s Assembler lanquage
instructions and this program is simply known as
"the Assembler®. The add instruction shown above
now looks like this: "ADDD $3000" in 6809 Assembler
language which, I amsure you will agree, is a lot
gasier than the First Generation. Sometimes you
hear a programmer say that he is programming in
machine language. What he probably means is that
he is programming in Assembler language and his
program is assembled into machine language. As you
can probably imagine this is the most effecient way
of programming and that is the reason why most
system functions and system software is written
in Assembler although there is at least onme
notable exception which I will explain under Third
Generation languages.

The THIRD GENERATION languages came into existence
when some programmers realized that it was too
tedious to program in Assembler language since even
a short program may soon run into hundreds and
thousands of instructions. The idea was therefore
conceived to develop a 'high level' programming
language where one instruction may be
translated into many machine lanquage
instructions. In other words, it would now be
possible to write programs with fewer instructions
which would mean that it could be written and
debugged in & shorter time (fewer instructions -
fewer potential bugs). Two of the first 3GLs were
FORTRAN and COBOL. Other 3GLs include (yes, you
quessed it) BASIC as well as PASCAL, RPG, PL1, and
many others. How would you now perform the example
instruction shown in the preceeding paragraphs?
¥ell, you cannot! (At least I don't think you can
in any of the languages mentioned.} This is why 3GLs
are called 'high level’ languages. [said in the
previous paragraph that there was an exception and
that is the ’C’ programming language, which is a
very powerful 3GL but at the same time it allows the
programmer to dive down to a low level close to
the hardware whenever required and as a result C is
also very useful for systems programming. Of course
the 3GL cannot directly be executed by the
processor, so a translating program, called a
compiler, had to be developed for each language,
This introduced a new benefit, namely that of
partability of an application. By developing
compilers for e.g. COBOL in Assembler language for
many different processors it became possible towrite
a program in COBOL and then part the source program
to different hardware and recompile it using the
resident COBOL compiler.

Page 4

NEWSLETTER

Now then, what about FOURTH GENERATION languages?
Well, there seems to De several different
opinions about what constitutes a 4GL, however, we
can probably agree that it has to be even more
powerful than a 3GL, i.e. one 4GL instruction must
result in evenmore work being done by the processor.
All of this is aimed at improving the productivity
of the programmer so that he can churn out more
and more solutions in as short a timeframe as
possible. 4GLs usually have some of the following
characteristics. 1) A powerful database management
system (DBMS), perhaps a relational DBMS, which
will store and retrieve the data for the
pragrammer without him having to actually tell the
system where or how to do this, thus removing an
enormous burden from the progrrammer. 2) A
powerful programming language which performs the most
work with the Tleast number of instructions. 3) A
program generator of some sort whereby the
programmer or perhaps even the end user can
specify his requirements and the generator then
automatically 'writes' the program (with no bugs),
4) The ability to modify (or fine tune) a program
generated by the program generator. It should be
easier to learn than 3GLs and it should be possible
for an experienced programmer to produce a desired
result in a much sharter timeframe, some say as much
as ten times faster than using a 3GL, this however,
would vary from ‘lanquage to language, still
it would be a considerable improvement.

One such 4GL is SCULPTOR which I have used on and
off for the last coupie of years to develop real
applications in that are installed and running at
customer sites. In Part 2 I will describe some of
the main functions of Sculptor and in Part 31
will present a sample application. The Sculptor
distributor for Australia has kindly agreed to
provide a demo version so that you can try out the
sample application. If you like it you can then
obtain Scuiptor either from myseif or from the
distributor. There may be other 4GLs available for
05-9 but I have never seen them, but [would of
course be interested to hear about and particularly
to try out any other 4Gls. Questions or comments
should be addressed to:

Ole Eskildsen

11 Monarch Street
Kingston QLD 4114
Tel: (07) 209 4322

o
Il
_...;
- -
1 g
| “
&
.Lw [al<]
b woe
e w-d O
<+ I
bl &
) . mw
g Nl m ot
N o i
o [z= (]
g w [T}
Lol N w..
e ¢ N
—)
= & =
Aﬂ s ot
4 T o
d =
T
b= N
u M
=2 <.
o -
<« e B e
oy . m_._
= = N
o & 0

LN (a9
as =1
W
= g
o
ue
EZ (=
(] a 0
S noee b
o am
e (I 1T b T it}
5. o4 Lo o
(AL o= ey i L
[iT) oo [R (=3
= crd e 1) et
ar Ll az
5. M 5 A=
R e a =
EZ
(=] ES [(£ =1
uro= (v} o 2
e Ll |
e fniet
[] on un
o) = Sm
[1 L 10} [ad]
Za L) S

Py

Coien

NEWSLETTER

g

5

Q

AUSTRAL ITAN

~
H

=
E}

R 3 P
0 re

[
&

may

A
may have

e recor

T

it

in any

i

e
H=

e

Level

159

"
u
>
pi
Fa

on’
LE FOR LEVEL

h
1

PATCH 059 PROF

7

227 41 32
55 &7
26 24

E4 .
s i

1
i

¢ 1228

¢
£

r

[t]

-~

ile

f

ile pro

C1228 3 %
122C 78 @9

ch patch_profile

IS

save /gl/cmds/prof

modpa

T
—
oy
o

[w

|

QL
=

u
=

8
-~
o]
3
s
3

&
——

)

Bls

¢ 543 81 32

€ 544 39 C?

£ 543 25 B4

£ 547 5 9F

£ 548

209

-,
Fj
i

load /di/cmds/mgt

modpa

-

i
L

tch patch_mg

save /oB/oads/mgt

o
=4

s

mpraad nom
PR =i SR R & 1

:
Y

(v
H

{2mpor

4

AUST!

={tempst

-

38t

GG

-
i

-
anooand

;
i

©

#/

i

p

=
]
o

P

ildsen

3

0le Esk

By

CALENDAR

*
¥

-

—

9

[

-t

cursar{

[}
P
i
ol
=

ode

&3

ALY

-

s
T

(2

pas
Q1@
ameL

d

=or

or{

U

#

c

11

c

ur
ur

[t}
L
g
w
i
e
I

ma
breais

o

anothe

H

the program o
e Converted to ZAS

k

i

AUSTRALIAN 057 MNEWSLETTER

fo licpn [- Tz "
the Yszer Group public iT 4au R
H © R #13008 0
typei cal {FHY, 19897
i3 i oyl

o

and then use your editor or word processor {0 add 5 messagey print it gut and
the year,

1

end it {o gour

Flease enjoy it and happy computing,.. Chesrs, dlsz
a wthyyriSTRINGDA
3
a nonthyyeart
g A, ?,S.U.F‘R =
a1 DIM J3RES
&
a month=Val imth?
a year=yaL {ur}
a
2 28R IF monthiR GR
g PRINT "Usagei
2 PRINT * ke radirected.’
PRINT dizplaged?
PRINT * -2399°
NT
VB=2 AC=0 1[=8 \J=8
FRINT
{=4
I L <

RALTIAN

-
H
H

AUS

= =
=]
bt o
or '
LL.
«
o]
b o
e
o]
Lt
o
-
d =
WAl o=
=
"
=
1]
pred =
e o)
[v EL
R g 0
1 &
4 [
[} [\Tj = 4
== et I)
=T = vl o] 4]
[XN) b -4 [IO .
aZ [5 54 il v om om .
[[N o] ot AT
el | R S v \
e BT ENOEL OB =T
e G, [= P4 e by
1] [= Sl = s S 2
[[N B =
E TN
[el R L |
L
e =
[T} iy
4 1
(R} (o]
. W m '~ () B3 B3 Ul L Wl S e U Py LI O D - s r~ o o
01 F. <C 2 [T T T~ e A o5 T S = T~ T e’ N 0 R T S %] — d e
CdoCyoed oy Do o B T e I o T 0 S b B ot B o B B O I o T it (LAY s RN n
<2 o= B I o | [T e = I o= R = R ot = T T B o= B R = T~ R | (=] =] == I s I]

