

NATIONAL 0S9 USERS GROUP NEWSLETTER

EDITOR : Gordon Bentzen
HELPERS : Bob Devries and Don Berrie

SUPPORT : Brisbane 059 Level 2 Users Broup
Another newsletter hits the streets!

This here is the {ifth one, and we ain’t about to stop here. In this issue you’ll find some aore of Don
Berrie’s Disk lapper, and also the explanation of the workings of the C programme from last aonth. Also, it
has been brought to sy attention that there’s some people in the national user group who are new to the world
of 059. #ell, we'd like to provide something of interest for every-one, so there’s an section in this
newsletter for those people too.

¥e would like to see some input froz other people in the group to add to our collection of aaterial, One
avenue open to us is a section dealing with problees of 0S% users around Australia. We would like to print
these probless in the newsletter, along with whatever answers we can provide. S0 get those probless on paper,
and send thea to us. Your problee might be concerning other people, toc, and the answers could help athers.

I's sure that inforsation about rumning 059 on other oystems besides the Colour Coeputer would smake
interesting reading for us all, How about it, all vou other system users?

Well here’s the November issue. I hope you all learn sosething fros it.

14P (Part 2)

PR 2R Rt ittt iiiaioetietoeiitiiotisiissietississsestitststist!
Disk lapper Progras for CoCo 0S9 Level II
Copyright (c) 1988 by D.A. Berrie
Reieased to the Public Domain - March 1988,
R0 PRttt ittt vt eiietitiititstetsotieiseciiosesitssteiipsiss!

Progras Description :

lap 1s a sector based disk-zapper for use with Colo 089 Level II. It is presented as Pasic0% code and
consequently needs access to the Basic(9 sodule to execute. The progras also needs access to the G6fx2 sodule

in order to do the windowing and other screen manipulations. To avoid conflicts with other windows which aay

already be active, the program uses the /W window descriptor. The progras sets up & new window and then

directs all output to it, thereby avoiding the necessity to run the process froa a window of a particular

type to give the correct display., This dictates that both the /W descriptor, and one other free window
descriptor need to be available to the progras.

The program has inbuilt help messages and is easy to operate. A word of CAUTION, You can make persanent
changes to your disk structure, including the possibility of saking a disk UNREADABLE. If you are unsure of

what you are doing, do not use the "M* (for sodify) option froe the main senu-bar.

For a description of the floppy disk setup under 0SY, read Chapter 5 of the Technical Reference Section of
the Level II Manual.

System Requiresents :

0s9 L2; S512K; qrfint or windint moduley basicQ9 f{or rumnb +for a packed version}y gfx2; syscall; shell;
display; xeode; and dir acdules,

Page 2

NATIONAL 0S9 USERS GROUP NEWSLETTER

Instructions :

Type in the program after starting Basic09 with 30K of memory. You should end up with 18 separate pracedures.

zap helpmess scn winopen
winclose ascil change sWopen
swclose helprass2 modify closerr
calc header getser getdev
directary getdevnanm

The best way to run the program is to pack it into I-code and run it using RunB. After you have typed in the

code, f{and Saved it just in casel simply type pack¥ and the modules will be nmerged, and saved

execution directory under the name zap.
Program Usage : zap <CR’

Disclaiamer :

As the use of this prograa is beyond the infiuence of the author, no responsibility can be accepted. However,
the program does work, 1f used correctly, and has been subjected to extensive error testing.

Help :

Should you experience any problees, or have any questions about the operation of the progras,

tfree to contact me on (07} 375-3236.

Please feel free to distribute copies of this progras.

PROCEDURE helpmess?
ON ERROR 6OTO 1G0O
DIM title:5TRINGL40]
PARAN wpath:BYTE
PARAM key:STRING{1]
PRINT #wpath,” "t
title="MODIFY OPTION®
RUN header (wpath,title)
PRINT #wpath,
PRINT #wpath,
PRINT &wpath,® USE :®
PRINT #wpath,
PRINT #wpath, "ARROR keys for*®
FRINT #wpath, " cursor aovement”
PRINT #wpath," 2-digit Hex. number®
PRINT #wpath,” to change byte"
PRINT %wpath, "<H’ to display”
PRINT #wpath,” this aenu"
PRINT ¥wpath,“<W} to write changes®
PRINT #wpath,® to disk"
FRINT #wpath,"{8> to return to"
PRINT #wpath, " main aenu"
PRINT #wpath,
PRINT $wpath,"Press Any Key to Continue®
BET #wpath, key :
END :
100 RUN closerr (wpath)
END

Cheers Dlon Berrie,

PROCEDURE modify

0N ERROR 6OTO 10

BASE 0

PARAM wpath:BYTE

PARAM cecdat (236) :EYTE

PARAK iblkno: INTEGER

PARAM PATH:BYTE

PARAM NAME:STRINGI4]

PARAM f1ag: INTEGER

DIN x,y,x1,yl: INTEGER

DIM key:STRINGI1}

DIN meter:REAL

x=10 \x1=60 \y=B \y1=8

seter=iblkno

RUN winopen{wpath,x,y,x1,yl)

IF flag=0 THEN
PRINT #wpath,® >>> ND CHANGES MADE {{<"
PRINT #wpath,

PRINT #wpath,® Press Any Key to Continue®
ELSE

PRINT #wpath, "WRITE CHANGES TO DISK®

PRINT #wpath,

PRINT #wpath," ARE YOU SURE {Y/N) :;
ENBIF

GET- #wpath, key-

IF key="Y" OR key="y" THEN
OPEN #PATH, NANE
seter=neter 8256
SEEK BPATH,meter

in your

please feel

NATIONAL

PUT #PATH,secdat
CLOSE #PATH
ENDIF
RUN winclose{wpath)
RUN gfx2{wpath, "CURXY",3,22}
PRINT #wpath,*insert 32 blanks
line";
END
RUN closerr {wpath}
END

100

PROCEDURE closerr
ON ERROR BOTO 100
PARAM wpath:BYTE
10 SHELL “display 1b 23"
66TO 10
100 END
PROCEDURE calc
BASE 0
PARAM wpath:BYTE
DIM title:STRINGL40]
DIM result,nusl,num2: INTEGER
DIM opl,op2:5TRINGLA]
DIN keypress:STRINGL1]
RUN gfx2(wpath, curoff®)
8 PRINT #wpath,CHRS$ ($0C)
PRINT #wpath,” "
title="HEX CALCULATOR"
RUN header (wpath,title)
PRINT #uwpath,

0S? USERS GROUP NEWSLETTER

instead of this

PRINT #wpath,*USE : 0-9 A-F + - § / <cr®

opl="* \opZ=""*
result=¢
PRINT #wpath,
ON ERROR 6OTO 10
6OTO 11
10 RUN g#x2(wpath,®curxy",6,3)
PRINT #wpath, “Xx¥ ERROR®
RUN gfx2(wpath,®bell™}
11 opl=""
keypress=""
REPEAT
opl=opl+keypress
RUN gfxz2(wpath, "curxy®,6,5)
PRINT #wpath,*® :

RUN gfx2(wpath, “curxy®,15-LEN(op1),9)

PRINT #wpath,op!

RUN qfx2(wpath,"color®,1]

6ET dupath,keypress

IF keypress="R" OR keypress="g" THEN
END
ENDIF

RUN gfx2(wpath,"color"®,0)

UNTIL ASC(keypress)=$2A OR ASC(keypress)=$ZB

OR ASC(keypress)=42D DR ASC(keypress)=$2F
RUN gfx2(wpath,"curxy®, 15-LEN(opl),5)

Page 4

RUN gfx2(wpath,"color®,b)
PRINT #wpath,opl
RUN gfx2(wpath,"celor®,0}
opl="$"+opl
nual=VAL (op1)
RUN gfx2{wpath,"curxy”,16,6)
PRINT $wpath,keypress
operator=SUBSTR (keypress, "+-/1")
PRINT #wpath,
ON ERROR GOTO 12
6070 13
12 RUN gfx2(wpath, *curzy*,6,7)
PRINT #wpath, "¥tf ERROR"
RUN gfx2(mpath, "bell"]
13 op2="*
keypress=""
REPEAT
op2=op2+keypress
RUN gfx2{wpath, *curxy*,6,7!
PRINT #wpath,® .
RUN gf«2(wpath, “curxy®,15-LEN{op2i,7)
PRINT #wpath,opz
RUN gfx2{wpath,"color”,1}
BET ¥wpath,keypress
IF keypress="0" OR keypress=*g" THEN
END
ENDIF
RUN g#x2{(wpath,"color”,d)
UNTIL ASC(keypress)=$0D
RUN gfx2(wpath, "curxy",15-LEN(op2),7
RUN gfx2(wpath,®color®,b)
PRINT #wpath,op?
RUN gfx2(wpath, "color®,0)
opZ="$"+op2
nua2=VAL (op2)
ON ERROR GOTO 100
IF operator=1 THEN
result=nual+nual
ENDIF
IF operator=2 THEN
result=npuml-nua2
ENDIF
IF operator=3 THEM
resul t=nusl/nus?
ENDIF
IF operator=4 THEN
result=nualtnua?
ENDIF
PRINT #uwpath,
PRINT #wpath,® RESULT : *;
RUN gfx2(wpath,“revon”}
RUN gfx2(wpath,color*,0,2)
PRINT #wpath,®$*;
PRINT #upath LSING *h4",result
RUN gfx2(wpath,"color®,0,1)
RUN gfx2(wpath,"revoff®)
PRINT fwpath,

100

n

NATIONAL 0S9 USERS GROUP NEWSLETTER

PRINT #wpath," Press @ to Buit"

PRINT #wpath," Any Key to Continue®

BET #wpath,keypress

IF keypress="g" OR keypress="8" THEN
RUN gfx2{wpath,"curon")
END
ENDIF

60TO 8

END

RUN gfx2(wpath, "curon®)

RUN closerr (wpath)

END

PROCEDURE header

PARAM wpath:BYTE

PARAM title:STRINGL40]

KUN gfxZ{wpath,"color”,2,3)
PRINT #wpath,title

RUN gfx2(wpath,"color®,0,1)

PROCEDURE getsec
PARAN wpath:BYTE
PARAM aaxblock: INTEGER
PARAR blkno:REAL
DIM hblkno:STRINGL25]
PRINT #wpath, "SECTOR NUMBER (max:$";
PRINT #wpath USING "H4>",maxblock;
PRINT #wpath,®) :";
INPUT #wpath,® ",hblkno
hblkno="%"+hblkno
0N ERROR 6070 !
blkno=VAL (hbikno)
IF blkno>saxblock OR blkno{0 THEN
6OTO 1
ENDIF
RUN winclose(wpath]
END

PROCEDURE getdev

BASE ¢

N ERROR 6070 10

PARAN wpath:BYTE

PARAM name:STRINGL4]

PARAM path,secdat (256) :BYTE
PARAR maxblock,ident: INTEGER

INPUT #wpath, "RBF Device Naae : ",name

IF LEFT${name,1){>"/* THEN
name="/"+naae
ENDIF
IF RIGHT${name,1}{>"8" THEN
nase=npaaet+"@"
ENDIF
OPEN #path,nane
SEEK #path,! _
GET #path,secdat -
saxblock=secdat (0} $256+secdat {1)-1
ident=secdat (14) §256+secdat {15}

’

END

10 PRINT #wpath,"t3% - DEVICE NAME REGUIRED"

&0TD 5

PROCEDURE directory
PARAM wpath:BYTE
DIM winnaa:STRINBI32]
DIM titie:STRING{403
DIM key:STRINGI1]
DIM pathiist:STRINGL40]

10 RUN gedevnaa(wpath,winnam)
pathlist=""
ON ERROR 6OTO 99
PRINT ¥wpath,® °;
title="EXTENDED DIRECTORY"
RUN header (wpath,title}
FRINT ¥wpath,
PRINT #wpath,

INFUT #wpath,"Directory Pathlist : °,pathlist

IF pathlist="" THEN
END
ENDIF

IF LEFT$(pathlist, 1} (3"/"
pathlist="/"+pathlist
ENDIF

THEN

SHELL ®X¥MODE ®+winnam+® PAR=20 PAUSE"

SHELL "DIR *+pathlist+® E

»"twinnas

SHELL “XMODE *+winnamt® -PAUSE®
PRINT #wpath,"Press Any Key to Continue®

BET ¥wpath,key
END
99 PRINT #wpath,CHRS($0C)

PRINT #wpath, \ PRINT #wpath, \ PRINT #wpath,

PRINT #wpath,"
"y
PRINT #wpath,
PRINT #wpath,
PRINT #wpath,*
PRINT #wpath,
PRINT #wpath,*
Continue®

6ET #wpath,key
BOTE 10

PROCEDURE gedevnaa

1y *; ERR; "

CHECK SYNTAX®

Press Any Key to

TYPE registers=cc,a,b,dp:BYTE; x,y,u: INTEGER

DIN regs:registers
PARAN wpath:BYTE

PARAM winnaa: STRINGL3Z]
DIM i:INTEGER

DIM callcode:BYTE
regs.a=wpath

regs, b=$0E

regs.x=ADDR (winnaa}
callcode=$8D

RUN syscall{calicode,regs)
FOR 1=1 T8 32

Page S

NATIONAL 0S9 USERS GROUP NEWSLETTER

EXITIF MID${winnam,i,1) >CHR$ (128) THEN
winnas="/" + LEFT$(winnaa,i-1) + CHR$
{ASC(MID$(winnam,1,1)}-128)
ENDEXIT
NEXT i
END

trrrtrrtrr Nt
X ROGUE f
t SOFTNARE REVIEW 1t
SEEEEEEEEEEEEEEEEE

By Nickolas Marentes {CoCol Commercial Frograsaer)

Oh wow' Another new game for ay Cofol and it’s +4rom Epyx, the sob who did "Koronis Rift" (which I reviewed
last issuej. This has gotta be good!

The packaging states *Rogue is so full of unpredictable monsters, ever-chanmging magic and hidden dangers that
it’s never the same game twice” and “You could spend hundreds of hours playing it...and you still wouldn’t
uncover all its secrets”. Sounds impressive so without further ado, [opened the package and began to delve
inside. Once inside I extract a manual and a disk, Opening the manual I...aaw what the heck! Rather than beat
around the bush, I°11 tell you right now that this program is absolute #%i$¥, Whatever you do DON’T buy this
prograe. [don’t think that this program is even worth ®pirating®' (great way to cut down software piracyl.

NEGATIVE FOINTS:

There are three versions of this progras on the disk. One uses the 40 colusn text screen, the other the 80

column text screen. Both look dull. I find it hard to imagine an "8" is the hero, ":* the floor, */* a door,

"%" as food and so on through 43 different sysbols. The third version of the program had hope (HAD). I quote

"MAKEGW - Opens a full screen graphics window that allows you to play Rogue with graphic images on screen for
sany of the iteas in the game. It looks qood!''” unquote. Well, it was better, but still dull, especially in

black and white (I thought I bought a COLOR computer?). By the way, you need 512K to use this option.
Wasteful isn’t 1t. The pictures on the back of the packaging look great compared to the actual screen. The

progras is very hard to control in that there are so many keys to control the “action®. Sound...well, it

sounds better with the voluse turned down. Yes, that good! The price of this package is extraordinarily high

for a prograz of its calibre. At $49.953, Tandy are really pushing their luck. I could go on but this review

is only supposed to go for one page so I'1l get on to the paragraph.

POSITIVE PDINTS:
Um...well...er...the packaging looks all right !?
CLOSING COMMENTS:

I hope Tandy sack the guy who pasced this prograe through the Cosputer Marketing division. More prograss like
this and a lot of Cofol owners are going to dump their CoCo for a Commodore or Atari. It's also bad exposure
for the 0S-9 operating systea ot which this program is running under. tuckily for the author, his name isp’t
printed anywhere. 1 can understand why this program is claised to be °The college mainfrase classic”. In
those days, coaputer gases and graphics were still quite archaic. I suppose this program could be classified
as "a blast froam the past®, it certainly is prisitive enough. As one CoCo guru said to ae atter seeing it,
"this one’s a dud'®. I agree.

Page &6

NATIONAL 0S9 USERS GROUP NEWSLETTER

STARTING QUT WITH 059
Where Do [Start?

Lots of people sust be asking theaselves that question when they first look at 059, whether it be
Level One or Level Two. The answer, of course, is 'at the beginning’. Oh, sure, but just where is that? Well,
when you purchase 059, you get come disks, and a manual. You should at least read the first chapter of the
manual first! This will tell you how to start 0S? running on your computer. If you are starting with Tandy's
version of 059, it is supplied on 35 track, single sided disks. This combination will work on all disk drive
coabinations unless you have B0 track drives that only work on 80 tracks and are not ’switchable’. Hawever
lacking in space the 630 sector disk i1s, it 15 a good starting point.

bet the systea going. Of course, you should use a BACKUP of the original disks. You can create the
backup an a colour computer by using the Disk Basic cosmand ’BACKUP’. Of course this will only work on the
disks as supplied by Tandy in the original foreat, not with previously asodified system disks.

Try out some cosmands. The most obvious one is the "DIR® comeand. It behaves mostly like the sase
command on most computers-it tells you what is on the disk. Well, not quite everything on the disk, but at
Ieast what is in your current *DATA’ directory. You see 059 can have sore than one of these directories, each
with a different name, and they can all contain different types of files if you like. However, back to the
one we're looking at. When you start up 059 you will be looking at the "ROOT DIRECTORY' of drive zero which
15 called ’/D0°. That is the nase of the drive and the nase of the directory. In this directory you will have
some files like 'startup’ and 059Boot’ and some directory names like 'CNDS'.

How do you tell which is which you ask? Well the convention is to name directories in UPPERCASE and
files in lowercase, but 1f you forget, you can get the ’DIR’ coemand to tell you. Try typing ’DIR E’. Khat
you get now is a bit more inforaation about the files in the directory. Have a look at the one I have below.

Directory of /dl 21:06:22

Owner Last modified Attributes Sector Bytecount Name

0 B7/02/16 1648 ----r-wr A 69ES 059Boot

0 B7/02/16 1649 d-ewrewr 75 5C0 CHDS

¢ B7/02/16 1654 d-ewrewr 7t 140 SYS

0 BL/OB/13 1847 ----r-wr VAY) Co startup

¢ B6/10/22 1606 ~~--r-wr 23 117 window.138s
0 Bb/10/22 1605 --~-r-wr 23C 168 window.t80s
0 B6/10/22 1628 ----r-wr 23F 280 window.glr4

Here is what 15 displayed with the 'E’ extension. First, the user nuaber, in this case 0, which is
you, the superuser, then the date the file was last changed, and then to the wmeat of our question, the
attributes. There are eight attributes used. They are Directory, Non-sharable, Public execute, Public write,
Public read, Owner Execute, Owner Write, and Owner read. The first attribute tells us whether the name in the
directory is in fact a directory name. All the other attributes must also be set, except for Non-share so
that we can use the sub-directory to store files in. The next bit of inforsation is the sector nuaber where
the file or directory starts and the next the length of the file. All nuambers are in HEXADECIMAL. The last is
of course the nage of the fils,

Filenames can be up to 29 characters long with 059, but remember, you have to type those names when
using the Copy command etc. Filenames can have any characters except / # ! $ k& + ., Filenames sust start
with a letter not a nuaber. You can use the underscore and the period but no spaces. So the name
Fruit_and_veges is valid but Fruit and veges 1s not.

Executable files (read prograsaes) should be stored in the CMDS directory, and 059 looks for a
directory called ’/DO/CMDS’ when it starts, so that it can find these files. You may change the ’execution
directory’ to some other directory once the systea has started. Sisilarly, data files and 'shell scripts’ can

Page 7

NATIONAL 0S9 USERS GROUP NEWSLETTER

be stored in any data directory. The file called startup aust be in the root directory for 059 to find it.
What’s in the startup file? Well, here’s a listing of the one fros the disk supplied with Level two 059.

t Echo welcome sessage

echo ¥ Welcome to 0S-9 LEVEL 2
echo § on the Color Computer 3 &

f Lock shell and std utils into meamory
link shell

f Start system time from keyboard
setime (/1

date ¢t

.

You'll notice this one has some comments {starting with an asterisk) in it so that we can see what it
does. The “echo’ command {line 2} will print what is on the line after it to the screen. The link comsmand
sakes sure you can’t remove the shell programse {and its aerged partrers) from mesory. Then you get to input
the time and date, the '{/1’ aeans to get data from the keyboard. After you’ve input the date it is displayed
back at you {just in case you got it wrong).

¥hen 059 Level two starts, it looks for teo {iles, one is the shell script ’startup’ and one is an
executable file called "autoe:’. Level one just looks for ‘startup’. The ’Autoex’ file is useful. In fact no
file called by that name exists on your system disks, but you can renase any executable file in the CMDS
directory to "autoex’ and it will automatically load and execute that file,

Next time I°'1] discuss some more about this Operating Systea of ours and what you can do to custoaise
it for your computer setup.

Bob Devries.

Multi-Vue and the C Prograssing language. (Part 2,)

Because of lack of space, [was not able to put cosgents into the source code for the mouse driven
pull-down menu kindow programee. [will try to sake up for that this sonth.

The first part of the source listing, starting on page 3 of the October issue, is a list of include
tiles, which should be in the directory */DO/DEFS’. The rest of the lines on that page are definitions, which
are replaced in the source with their values {e.q. UPDATE is replaced by 3} by the 'C’ pre-processor.

The left colusn on page 4 sets up a nusber of structures with pre-defined values. These, as you can
seg, are the naaes in the pull-downs. The one with "Application’ in it is seen only rarely. If you are quick
of eye, you can catch it as you use the ‘clear’ key to switch to and froe other windows.

The function at the top of the right column on page 4 is the interrupt handler. That is, it receives
the values sent by 059 when a keyboard interrupt (BREAK or CTRL BREAK} is sent, or when you push the mouse
button. All it really does is store that value in a variable for us to use later.

Now we come to wain{). We set up a few local variables, set the systes to be unbuffered input and
output (with the setbuf() function) and turn off the text cursor. Curlff is a function in the CGFX library
which should be in the directory /D{/LIB.

Next we set up a framed window on the existing device window (by using stdout}. If the current window
is the wrong type and we cannot coaplete this part, we return an error and exit. Next we set up the interrupt
handler routine, We select the graphics cursor next, The code words used for this are pre-defined in the
header file called ’buffs.h’. A call to _ss_gip then sets up the type of aouse we want, and which joystick

Page 8

NATIONAL 0S9 USERS GROUP NEWSLETTER

port to look for it in. In this case I chose the right socket and used the hires adaptor. _ss_sous then tells
the systes how often to read the joystick and the timeout for the button. Now we tell the 059 kernel what

signal to send when the button is pressed. I chose 10, but any value above 3 will do. We then initialise the
interrupt variable to 0, and go into the main loop of the prograase.

He again use the esig function. Actually, the first one is probably superfluous. We check the sigcode
variable. [If it is ¢ we go to sleep until another interrupt comes along. If it equals 10 (MDUSSIG) then we
reset it to 0 and read the souse packet using a call to the _gs_mous function, to see whether the pointer is
on the control area of the window, that is, the bar at the top. If it is, then we use the switch and case
construct of € with the value returned by _gs_esel to give us the selected pulldown nueber. The nusber
returned by senu select is defined in the data structures on page 3, as is the nuaber of the ites of the
pulldown. Notice here, that the part from the tise that you press the button on the control bar till the tise
you push it again on a selected itez of the pulldown, is all handled by the Windint I/0 driver. Pushing the
cursor arrow is also fully autosatic because we chose to make it FOLLOW the aouse. All that this programee
does now is to use the values returned by Windint to select the correct function in the rest of the
prograsme. By the way, the left aost square on the control bar is actually provided by windint and returns
the value MN_f105, which provides a way to guit. It does not perfore a pulldown. The prograese now goes off
to do the function which was selected from the pulldown menu. When it returas, it does it all again, until
the variable 'quit’ is TRUE (1). Then the graphics pointer is turned off, the signal handler is released, the
text cursor is restored to normal, and normal window is selected, and the programse ends,

The rest of the functions are reasonably self-explanatory, and each function is called with the value
of the pulldown itea as its parameter. I hope this explanation fills the void I left last wmonth. If any of

you have problems or suggestions, feel free to ring me or drop me a line, My address is:-

21 Virgo Street,
Inala. 8ld. 4077

and the phone nuaber is (07} 3727816,

Regards, Bob Devries.

Page 9

NATIONAL 089 USER GROUP NEWSLETTER
REB Patchk ! Puts 059 into RED mode when you boot up.

This patch will eliminate the need to call the "montype’ command from the startup file. It is especially
useful for those who have done the modification to boot straight iato the 88 column screen on startup. It will
produce the correct colours immediately and not wait until the montype cospand is issued. There is one 'gotcha’
with this patch, asy future montype comsmands will not produce anything else other than REB. If this presents so
probless, patch away, You can use the following shell script to make life easier. But first, the following modules
should be in wemory or in the execution directory.

Echo
Load
ModPatch
Save
Attr
Unlink

-X
echo patching VDGInt
podpatch -5 (VEGInt_Mod
echo saving new VDGInt

save VD6Int.io

echo changing attributes...
attr VD6Iat.io e pe -a
echo patching 6rfdrv
sodpatch -s {(6rfBrv_Nod
echo saving new Grfdrv
save Grilry

echo changing attributes
attr 6rfdrv e pe -a

echo finished

That was the first file. You will notice that in line 2 and B the modpatch utility is called with input
redirected from another file, These files are is as follows:-

£ ViGIat Nod ¢
I VB6Int
cgi1326 28

v

¥ Grfdrv_Hod £
1 6rébry

c 980l 26 28

v

Ny thanks to Don Berrie for the code for this one,

Regards,
Bob Bevries,

Page 193

