
= 3

=

=3 =3 =3

- r k e = 3

e s o ø e x v s s s

OFFICIAL PUBLICATION
OF THE PENN-JERSEY

COLOR COMPUTER CLUB

CONTENTS

TkL[hrarCox V o 1

MtFro tTkqs& ?aq

LLrtS Frcrr a Leak Ver Vaq 11

=3

=3

a

Page 1

yA(7I I1RAR!1 1 U
by Ahus . Wx j re i ! , Si'.

Welcome once again to the 6809 Express library car. The last
two times we discussed a short "C" program and you were to attempt to
get it to compile. I will assume that you met with some success.
This time we will proceed by discussing the five basic variable types
available in "C". W e will find later that some of them can be
expanded upon by the addition of a modifier, but for now we will
stick to the basics. W e will also need to expand a little on the
printf() function from the standard library. This function has many
features that we will be seeing as they need to be brought up. For
the present, accept them as they show up. We will need to have a
session where printf() is all we discuss to tie everything together,
but that will be a session or two from now.

TYPE M E A N I N G K E Y W O R D

Character C h a r a c t e r data c h a r
Integer S i g n e d whole numbers m t
Float F l o a t i n g - p o i n t numbers f l o a t
Double D o u b l e precision d o u b l e

floating-point numbers
Void V a l u e l e s s v o i d

Unlike some languages, in "C" all variables must be declared
before they can be used. The most important part of declaring a
variable is that we are telling the compiler just what kind of data

Page 2

we are going to store in that variable. This allows the compiler to
allocate an appropriate sized chunk of memory to hold the data. Each
of the different types may use a different amount of memory. I say
"may", because each compiler on each different type of computer is
free to represent the data in memory almost anyway the designer of
the compiler sees fit. Some types may in fact use the same amount of
memory. A s an example, the compiler I use on my Coco 3 uses I byte
for char, 2 bytes for int, 4 bytes for float, and 8 bytes for double.
(void was not yet being used when my compiler was written. An ANSI
preprocessor handles changing it to something my compiler can
handle.) I n addition to the above my compiler also has two more
non-basic variable types. They are: unsigned integer using 2 bytes
and long integer using 4 bytes. Don't worry about what each does for
the moment. I mention them only to illustrate that there are two
integer types that use 2 bytes and one integer type that uses 4 bytes
as does the float type. I t is important to keep in mind that once a
variable is declared as a specific type, we should not attempt to
store/retrieve an incorrect type inlfrom it. I f one would do so
without first taking special precautions, some very strange and
unexpected results can be obtained.

Let's look at each of the basic types in turn. The char type
stores characters such as would be expected to be printed on a
printer or the monitor. Because char is usually a one byte variable,
on most systems there can be 256 different symbols stored in them.
The first 128 of them are defmed by the ASCII character set, if that
code is used by your system. (Most do use the ASCII set but not all.
Check in the does for your system to see what it uses.) Wi th some
compilers the type char can also be used to store whole numbers from
zero to 255. For reasons of portability this should be avoided.

Page 3

Next is the signed integer. An integer is assumed signed unless
specifically called as unsigned. I t typically is a two byte or 16
bit variable. A signed 16 bit integer can have a value from -32768
to 32767, but may not include any fractional part. That is, an
integer may hold only whole numbers. I f the integer is specifically
called as unsigned, it may hold numbers from 0 to 65,535. Some
systems have modifiers that can be applied to type integer such that
it may hold values, as unsigned, as high as 4,294,967,295! To know
the values of which your system is capable, you must check your
manual.

A float type variable can contain a decimal or fractional part.
A float number is typically a 32 bit quantity. I t is expressed in
scientific notation and if it is a 32 bit quantity, with a range from
10 to the negative 38th power to 10 to the positive 38th power. The
number of significant digits can vary from 2 to 16, but is usually 6.

A double is, as the name implies, a variable that is double the
size of a float. It is a floating point number in that it can have a
decimal or fractional part. I t may have double the significant
digits as well as double the range.

Void is a valueless variable. Yo u may ask of what use is a
variable that has no value? A function must be declared as being of
some data type and whether or not it takes arguments when it is
declared in ANSI C. This allows ANSI compilers to keep watch over
the program during compiling to make sure that you as the programer
don't ask for a value to be returned from a function that shouldn't
be returning one or that you don't try to pass a value to a function
that shouldn't get one. I f a function is not to return any value or
if it is not to take any argument values, how would you declare it?

Page 4

Now that ANSI has provided us with a data type that has no value, the
answer is easy, use type void! Void also has another use when used
to describe a pointer, it generates a pointer capable of pointing to
any other type. Don't worry about what a pointer is just yet, but it
is one of the more powerful features of the C language and will be
discussed at length in future articles.

Now that we've discussed some data types, let's take a look at a
program that uses some of them.
#include <stdio.h>

/ print Fahrenheit-Celsius table
for fahr =0, 20, .., 300 */

main(void)
{

mt fahr, celcius;
mt lower, upper, step;

lower 0 ; / * lower limit of temperature table */
upper = 300; / * upper limit */
step = 20; / * step size /

fahr = lower;
while (fahr <= upper) {

celsius = 5 * (fahr-32) / 9;
printf("%d\t%d\n", fahr, celsius);
fahr = fahr + step;

)
}

Page 5

This is a program for those that want to start learning metric
temperature measurement. It will print out a table consisting of two
columns of numbers. The first will be the temperature in Fahrenheit,
the second will be the temperature in Celsius. Admittedly, this
program isn't very fancy. But, let's take a look at it and then
later we can spruce it up a bit.

First off, what's with the verbiage between the 1* and */ marks?
These are comments. They can be put anywhere a blank or newline
character could appear in a C program and the compiler will ignore
anything between the /* and */ marks. A comment could even be put in
the middle of a statement or formula, but that is not good practice
because though it won't confuse the compiler, people are more easily
distracted. Comments are generally put at the end of a line or in
block by themselves. Use them more often than you think you need
them to explain what you are trying to do in this or that part of the
program. Two years from now when you look back on your project,
you'll be scratching your head wondering just exactly why you put
that statement in your program at that spot. A comment now could
save hours later trying to reinvent your code.

Another use for comment marks is to remove a portion of the
program. Let's say you are having a problem getting a portion of
your program to count something correctly and it seems to be exiting
a ioop too soon. You could put in a line that prints the loop count
to the screen with each pass to help follow the flow of the program.
To remove it, just enclose the printout portion of the program with
comment marks and the compiler will ignore it. BUT, it will still be
in your source code to remind you where there was a trouble spot,
waiting to have the comment marks removed and be sent back into
service if a problem ever arises there again.

Page 6

However, be cautioned, comments can be a two edged sword. I f
you open a comment and then don't close it properly, you could
comment out the rest of your program. I f suddenly part of your
program seems to have disappeared, check to see that all comments
have been opened and closed correctly. For instance, if your program
had a fragment like this:

lower = 0; / * lower limit of temperature table
upper = 300; u p p e r limit
step = 20; s t e p size /

The upper = 300 and step =20 have become part of the comment and
would not compile. This could cause the program to give a wrong
result. The proper way to comment is shown in the original program
above.

The lines "mt fahr, celsius;" and "mt lower, upper, step;" are
declarations. A declaration announces the properties of a variable
and must occur before a variable is used. The declarations usually
occur at the beginning of the function in which they are used.
"Special effects" can be obtained by declaring a variable elsewhere,
but let's not confuse the issue just yet.

Now we actually get into manipulating some of our variables.
The next four lines contain assignment statements. "lower" is set
equal to zero, "upper" is set equal to 300, "step" is set equal to 20
and "fahr" is set equal to "lower" which makes it equal zero. These
statements are important in C as the compiler does not assign any
particular value to a variable, only a memory location. There could
be anything left over in that location from the last program that was
assigned there. After being declared, ALL C variables must be
initialized to the value you need them to have going into the

Page 7

program. Do NOT assume they will be zero. You may run the program
several times and the variables just happen to fmd a location that
was zero and it works perfectly. Then just as you think you have
this program running flawlessly and call in a friend to see how great
it is, it crashes. Thus, proving Murphy's Law is alive and well and
operates perfectly on C variables not properly initialized.

Next we come upon a new statement in C, the while conditional
loop. The command while is followed by a condition to be met stated
within the parentheses. in this case, that fahr is to be less than
or equal to upper. I f this condition is met, then the body of the
while loop is executed. The body of the while loop can be one or
more statements enclosed in braces, as in the temperature conversion
program, or a single statement without braces, as in the following
fragment.

while (x <= y)
x x + 2 ;

Before we go any further let's stop for a moment and discuss
style. No, not which type ofjeans are in this year or which tie you
should wear with that new suit, but program entry style. Note how in
the programs we have looked at so far there are portions of them that
are indented. This is to show us humans which parts go together with
what other parts. For instance, everything in the body of the while
loop is indented between the braces that defme its ends. This
allows one to see at a glance what goes with the while. These
indentations don't mean anything to the compiler and are ignored by
it, but make life much easier on us humans. That having been said,
let's cany on.

Those of you who remember the conversion formula from Fahrenheit

Page 8

to Celsius may wonder why the formula is 5 * (fahr-23)I9, when it is
usually expressed as (fahr32)*(5/9). The reason is that in this
program everything is integer math. With 5/9's being less than one,
it would be truncated to zero and all the answers to the formula
would be zero! By multiplying the result of(fahr-32) by 5 first and
then dividing by 9, the formula is not changed, but the integer math
comes out correct.

Next we see the printf() function call. That's right, printf()
is a function defmed in the standard library as defmed by the ANSI
Standard. There is really no input or output that is part of the C
language. This is one of the reasons C is transportable to so many
computers; each implementation must defme its input and output via
the standard library functions defmed by ANSI and written to access
the hardware upon which each implementation is destined to operate.

This call of pnntf() introduces some new formating arguments.
The %d's tell printf() to expect decimal numbers. (That is in
contrast to float, double, hex or octal, which printf() can also
accept. I know that can be confusing because we said this is all
integer stuff and integers can't have a decimal.) The \t is a tab
request. While the \n is the newime we saw in the first program.
One thing to keep in mind when using printf() with % constructions,
each construction requires a corresponding second argument that
matches the expected type and number of constructions. A s an
example, in our statement there are two % constructions calling for
decimal (integer) values. I n the latter half ofthe parenthetical
part of the statement, two integer variables are supplied, thus
fulfilling the requirements.

The next line should look fairly familiar. Here we are

Page 9

incrementing the variable fahr by the value of the variable step.
This is identical to how it would be done in BASIC.

Next we come to an indented closing (or right) brace. This is
the end of the block of code that makes up the while loop.
Encountering this brace, the program goes back to the while statement
itself and checks the conditional part of the statement and i f true,
executes the loop again. The last line of the program has another
closing brace. This matches the opening brace right after the
opening statement of this program, main. Please note that even
though our indenting lines up and helps us to see which braces go
together, the compiler couldn't care less how far a brace is
indented. It simply matches an opening brace with the next closing
brace it comes upon using the method of last in first out. A missing
opening or closing brace can give the program real fits and generate
long lists of errors as the compiler attempts to make sense of the
code.

This brings us to the end of this session. Next time we will
make this program a little more professional looking. Even though it
will work as it is, there are ways to say the same thing in shorter
and faster ways. 'Till then, Happy computing.

• n • m e • i i a i i j
by Rick Hengeveld, Sysop

The Maverick BBS has logged in excess of 1000 calls. We also are currently canying over 240
files for download. Recently a few on-line games were added and these are proving to be very
popular, stop in and try your skills against the other users!

Page 10

In the last 6809 we discussed the various features of VBBS. I hope that will help those that had
both questions and problems using the system. This month we'll look into downloading files
from the BBS. This is the cheapest and easiest way of getting new files for your Coco or
MS-DOS machine. Some have been scared off of this, thinking that all this data transfer is to
complicated. Once you have the hang of it downloading is very simple and a great help to your
software library.

Due to the various types of terminal software in use it is very difficult to give a step by step
procedure to the end user.(you) So I'll attack the subject in general terms. First once your on line
and have moved to the transfer section you can view the different software directories via the
"C" change directory command. With over 200 titles available it is necessary to categorize the
available programs to assist the user in finding those files that would interest them. There are 3
areas each for RS-DOS, 0S9 and MS-DOS users. These are divided into entertainment,
productivity and utility sections. Once you've selected the directory your interested in (just
follow the prompts) you can view the files offered for download. To list the files you select
"L"ist from the main prompt. You will then be presented with a prompt that says "File Mask"
What this is asking is "Do you want me to list only certain files?" Simply pressing enter will
show you all the available files in the current directory, typing *.rep would show you only files
with a "REP" extension. This is simply another way to narrow down a search for a specific file.
Those that are new to downloading should simply press enter at the File Mask prompt and list all
the files in the current directory. This will give you a better overview of what is available. The
system will scroll up a single screen full of files and then pause so you can study the list and
choose any files you may want to receive. At the bottom of the list you will see a prompt asking
you to hit enter or if you wish to place any of the files in a batch, more on batches later. Pressing
enter will list the next screen full of file that are available in the current directory. Most Coco
users should write down the complete names of any files they wish to receive during this listing
operation, after selecting these files they can then start a download by selecting "D"ownload
from the main menu. After pressing "D" you will again see the File Mask prompt. This time
enter the name of the file you wish to receive. The system will locate the file and ask which
transfer protocol you wish to use. This is the function that confuses many users. Here is the
simple rule for Coco users. Select DSZ - Xmodem. All Coco terminals support Xmodem. So
what's all this protocol stuff about? Protocols are simply a method to check that the data being
sent over the phone line was in fact received and was correct. To do this check both systems
have to do the error checking using the same method. Only a few Coco terminal software
packages support Ymodem batch and very few if any support the Zmodem protocol. Most
MS-DOS terminals support the Y & Zmodem protocols. These protocols are both batch type

Page 11

protocols. So what is meant by "Batch"? Lets go back to the file list where you can select the
files you wish to receive. At the end of each page of displayed files you are asked if you wish to
"B"atch any of the listed files. By selecting batch the system will tag those files and set them
aside for you. After making all your selections you can start a download of all the files you
selected. In this way you can download a multitude of files while leaving your terminal
unattended! To accomplish this you need to select a protocol that supports batch. Both DSZ
Ymodem and DSZ Zmodem support this batching mode. These protocols work much like
Xmodem however unlike Xmodem these correction methods also send and write the file names
to your directory. In this way multiple files are sent in one shot.

No matter what terminal software you use, The Maverick's prompts and keyboard inputs are the
same, however telling the BBS what you want sent and the protocol to send the file in is not
enough. You must prepare your system to receive the file that is sent. As I stated near the
beginning of this article it is difficult to give a step by step procedure since every users terminal
software will need different keyboard inputs to start a download. You must become familiar with
your terminal software and know the inputs required to prepare your terminal to receive a
download. Speaking for myself I can help those who use the Ultimaterm package, Procomm or
Telix. There are a good number of files currently on the Maverick system that are quite unique.
And I would seriously doubt that many of you have these files. So give it a try, as with most
things you can't hurt the system from your end, and even disconnecting during your call will
simply result in the BBS resetting for the next call.

PLCRTS FRoM. a a , c q V N
bq 14.Vetr Unks

I have taken some bad advice in my time. One of the dumbest suggestions I ever
followed came from a popular CoCo support magazine. This advice had nothing to
do with the CoCo or any other computer. I t had to do with ice and how to avoid
slipping on it. At the same time as gaining instant traction, one could avoid doing
harm to concrete driveways and the like. And besides, instead of chemicals getting
into the lawn, a little more dirt wouldget added to it. So the advice went. How
could I go wrong?

Page 12

Falling on my butt has never been one of my favorite pastimes, so I did as advised
and came home with 50 lbs. of kitty litter. I sprinided it liberally on the ice over
which Beverly and I had to tread. We had instant traction. Then it snowed and
hailed and rained some more.

I had instant mud. Semi-frozen instant mud. I applied more kitty litter. Once
again, instant traction. Then it snowed and hailed and rained. We were back to
instant mud. Slippery, slushy mud.

It didn't take a great deal of skill to figure out where my wife, my dog, or I was at
any given time. Just following the muddy footprints would lead right to us.

We gave the remaining 25 lbs. of kitty litter to a friend who owns a cat. Now that
the snow has melted we see the first half of the bag is still with us. We have the
only blacktop driveway in town with a dried mud trail through it. Our carpeting
fared a little better thanks to Beverly's work with the vacuum.

The moral of the story is that CoCo support publications are good sources of CoCo
support. But to avoid falling on your behind, get your advice at a hardware store.

Moving along to a different topic, let me say that I could use a software review or
two. Hardware reviews would be welcome too. Or, how about an item on a
computer show?

Upload your articles to THE MAVERICK BBS in ASCII just like Clyde did with
his Atlanta adventure. And speaking of Clyde, HAPPY FIFTIETH to Clyde and
Ruth!

See you at the meeting!

• - ,--------

- I

OUI?9 p 1 c 0 JIAJ

/ S

' .

DiFc Fi ' tcn r Th
PE111-ERSE ca

IflPLTE £LLB

HV}i S V 1 3 1 1 J

. J 0 t p 3 ' U f l H

BJ irW3
3E3!-U2

1i h j D

6 8 0 9 E X P R E S S
T h e 6 8 O 9 E X P R E S S . t h e O f f u C i l
p u b I . i C t , O f l O F t h e P E N N - J E R S E Y C O L O R
C O M P U T E R C L U B . T h e C l u b i b b e i n t h e
! r e t e r L e h h Y b t L e o F K o r t h e t e r f l
P e n r L v e n m d u n 9 e c t i o n O f
N o r t r e t e r n N e . J e r L e . A n n o n - p r o f i t
o r 9 n z o t i o n r e p r i n t n ' p e r t o f t h i s
n e u l e t t e r p r o v i d e d c r e 0 t i 9 v e r l .
P J C C C , L I g l d L e x d h e n 9 e f l C . : (e t t e r
• , t h 5 f l o t h e r C D L p u t e r C l u b . S e n t
r e u e t L t o E D I T O R , 6 8 0 9 E X P R E S S ,
P e n n - J e r e C o l o r C o r p u t e r C l u b , 1 4 5
S e v e n t h S t , P L t i p b u r , N J 0 8 8 6 5 .
P J C C C n o r e p O n . . b i t . t f o r
e r r o r s o r o m . o n : . P J C C C n o
L b L t ' F o r r e g e r e u L t i n 9 f r o r t h e
U C o f , n f o r r 5 t , o r l o r p r o r w
C O f l t n e c 1 i n t t f l e L S I e t t e r ,

GET ONLINE WITH THE MAVERICK
BBS! DIAL 215-760-0456

