i

T A E EN EF EE T T _F¥

E.l'S

i
IR 2 N TN T F T T FE ¥

The Official Publication of The

Pl =JERSEY LULUR CURPUTER

falalslalalulalsinlsizisialat
HAYERICE BES ELUE 21E-760-455
a8 (a8 e

JULY - AUGUST 1992

TREASURES ON TAPE

RICK HENGEVELD

Ahh, The dog days of summer are
upon us! This is the time of vyear
we want to just kick back and
enjoy. No time for working.

Well we have a work project coming
up at this months PJCCC meeting,
The club library has had in its
possession & large quantity of tape
based programs. Since virtually
nobody in the club uses tapes, we've
decided to convert these tapes to
disk. If you think you have a very
good collection of Coco software and
you've might slready have these
programs on disk, well guess again,

Most of these programs are titles
that are rarely seen. There's also a
good collection of old "Hot Coco on

tape” in this collection! Many
adventure games and ‘some good
work sof tware,

5o it looks like July will be transfer
month. Also this will be & good
opportunity to see how tape to disk
transfers are done. Hope to see you
there in our new meeting room, 190
in the main college hall.

1322222222222 2222222222223
THERE WILL BE NO ISSUE OF
THE 6809 EXPRESS
IN AUGUST, 50 IF YOU GET
ONE, SOMETHING'S WRONG!

..Editor
2223222222222 2222223333322222233

CHR

ALAN]. WAGNER, S5R.

Welcome to the July session of the
PJCCC 6809 Express Library Car, First
I would like to express my
appollogies for the way the program
printed. [had intended for the
copyright statement to come out s
little more organized. Starting this
month I will be sending any Library
Reports that contain programs to
the editor in Max 10 format so that
| can be a little more sure that the
program will be a bit more readable,
This time we are going to discuss
the program to create the dstabase
and the program to delete an entire
database. [n addition, we will cover
g little extra program needed to
ensure that the directories we
create will be in all capital letters,
This iz to comply with the non-
binding rule of msking all

directories sll capitals to make them
easy to spot when you do & DIR
command,

Let's start with the Makebase
program. Last session we created a
small dummy file called Makebase to
test the Main Menu program. This
time its for real,

PROCEDURE makebase

0000 REM $3$55535 555555555455 554

0014 REM # ¥
0034 REM # BASICO9 #
004E REM # ¥
0009 REM # Make Base ¥
0083 REM # ¥
009D REM #Copyright Jun 1992 +#
00B7 REM +# ¥
00D1 REM # Alan] Wagner, 5r. #
00EB REM + 222 Jefferson Ct. +#
0105 REM # Quakertown, PA #
011F REM # and ¥
0139 REM # 4
0153 REM ¥ The Pennjersey #
016D REM # ¥
0187 REM ¥ (Color Computer %
01A1 REM # *
01EB REM # Club ¥
01EF REM #¥¥¥3533445 3885555044
0209 REM

020C DIM current,filename:

STRING[32]

021C DIM xREAL

0223 DIM oops,path:BYTE

022E DIM ans:STRING[1)

0234 PRINT CHR${12)

023F RUN printst(28,5)

024A PRINT "Home Inventory”
025C RUN printat(28,7)

0267 PRINT "Create Database"

0274 RUN printat(26,9)

0283 PRINT "Copyright June 1992"

029C RUN printat(23,11)

0247 PRINT "Enter path for new
Database:”

02C7 RUN printat(28,13)

02D2 INPUT filename

02D7 IF filename="" THEN END

02E4 ENDIF

02Ee RUN makeupper(filename)

02F0 PRINT CHR$(12)

02F3 RUN printat(20,5)

0300 PRINT "Checking to see if
filename; °

exists.”

0326 ON ERROR GOTO 10

032C FOR x=1 TO 4000

033F NEXT x

0344 OPEN #path.filename:
READ+DIR

0356 RUN printat(20,7)

0361 PRINT filename; " already
exists"

0378 RUN printat(20,8)

0383 PRINT "Returning to Main
Menuy”

039D CLOSE #path

0343 FOR x=1 TO 8000

03B6 NEXT x

03C1 END

03C3 10 oops'=ERR

03CC IF oops{)216 THEN

0308 RUN printat(20,11)

03E3 PRINT "Error number °;

00ps;
has occured.” .
- 0408 RUN printat(20,12)
0413 PRINT "Check out what

happened, then try

again.”
043F RUN printat(20,14)
044A PRINT "Press ENTER to
return to
Main Menu.";
0472 INPUT ans
0477 END
0479 ENDIF
0478 PRINT CHR$(12)
0480 RUN printat{23,5)
048B PRINT “Creating New
Database

Directory”

04AE RUN printat(28,7)

04B9 PRINT filename

04BE SHELL "makdir "+filename
04CD CREATE #path.filename+

"/Dbase"\WRITE
04E2 CLOSE #path
04E8 CREATE #path.[filename+

"/mfr.idx" WRITE
04FF CLOSE #path
0503 CREATE #*path,filename+

"/dscrip.idx " WRITE
051F CLOSE #path
0325 CREATE #path.,filename+

"/wherepurc.idx"WRITE
0342 CLOSE #path -
0548 CREATE #path,filename+

/location.idx“ WRITE
056¢ CLOSE *path

0564 PRINT CHR$(12)

056F RUN printat(23.3)

0574 PRINT filename; " directory
and files

created.”

059F FOR x=1 TO 6000

05B2 NEXT x

058D END

Much of what I've done this time
has been covered before. Note the
line that begins at offset 02D7.
Here we check to see if the
filename given is longer than a
single carriage return. If it is, we
end the program and return to the
Main Menu. Two lines further down
we run a program called
"makeupper” and pass it the
variable filename,

PROCEDURE makeupper

0000 PARAM target:STRING
0007 DIM wINTEGER

000E FOR x=1 T0 LEN(target)
0020 IF ASC(MID$(target,x,1))

(=122 AND ASC{MID$
(target,x,1)))=97 THEN

0041 I[F x=1 THEN

004D target:=CHR$(ASC(MID$
(target,x,1))-32)+
RIGHT¢(target,
LEN(target) -x)

006D ELSE

0071 target:=LEFT¢(target,

¥-1)+CHR$(ASC(MIDS
(target,x,1))-32)+

RIGHT¢(target,LEN
- (target)-x)
009c ENDIF
009E ENDIF
00AD NEXT x
0047 END

Note how when we declare the
variable target to bea param and a
string, we don't declare the length.
Basic09 automatically declares the
string storage space to be 32 bytes
long. Don't confuse the length of
the storage space with the length
of the string, [If you look at the
line that starts at offset 000E, we
have a statement LEN(target). This
returns the length of string target.
If the length of the storage were
the same as the length of the
string, this would always return the
number 32, but it doesn't. What it
returns is the actual length of the
data in the variable target. For
instance if we had declared the
filename to be CLYDE, the statement
LEN(target) would return the
number 5. This then gives us a way
to look at each byte of the string
without wasting effort looking
through blank or garbage areas of
the varible storage.

In the next line we check to see
where in the ASCII code that byte is
located. The statement ASC(string)
returns the ASCIl value of the first
character in the string. We will be
interested in more than the first
character of target, so ['ve used the
command MID§(string,start,quantity)
to return to ASC a one character
string obtained x characters into
the string varible target.

122 is the ASCII value for the letter
"% 97 is the ASCIl value for the
letter "a". If the value returned by
ASC is equal to either or between
these values, then we have to act
on it because it is a letter, but is

not a capital. If this is the first
letter, it is a special case as there
are no letters to its left. Using
LEFT$ and RIGHT$, we disect target
and reassemble it with the letter in
- question converted to a capital,

This admittedly gets a little
complex, but stick with me and I
think [can walk you through it.
Since we have several statements or
. commands nested inside each other,
it is best to analyze them from the
inside out, This is the way the
computer will execute them. In the
middle is the same statement we
had a line or two earlier. The
MID§(target,x,1) returns a single
character string that the ASC, that
precedes it, converts to a number
equal to the string's ASCII value. On
the other end of this parenthetical
statement we find "-32" The
numerical difference between a
small letter and its capital
equivalent happens to be decimal 32.
By subtracting 32 from the ASCII
value of a small letter we arrive at
its capital ASCIl wvalue. The CHR$
now converts this converted value
back to a string charactetr. The plus
sign concatenates this character
with the rest of the target
variable. RIGHT§(stirng,number)
returns the "number" of characters
from the righthand end of the
string., Since we want only those
characters to the right of wherever
the xth character is, we can
subtract ¥ from the length of the
string and it will return just what
we need.

~ partially capitalized.

[f this is not the first character,
then the program proceeds to the
line at offset 0071, This line is the
same as the last one discussed
except for the LEFT$ statement,
Once having progressed beyond the
first character, we have to account
for the characters to the left of
the xth charcter we are now
examining, LEFT$ works simialr to
RIGHT$ except that it returns the
number of characters from the
lefthand end of the named string.
By subtracting one from x, we get
all the characters to the left of the
xth character., By concatenating
the LEFT§, the MID§ that we
converted, and the RIGHT$, we have
converted the xth character and

‘reassembled the string target back

to its form but now
This process
continues until the end of the
string is found by the FOR/NEXT loop.
An interesting experiment is to add
a line "PRINT target" just before the
"NEXT x" statement. Each time
through the {oop the statement will
print the current target string,
You will see the letters capitalized
before your very eyes, but don't
blink. Basic09 is very fast! You can
run this experiment by booting
Basic09, making the experimental
change to the program, then typing
‘tun makeupper("a string"). "A
string" must be in quotes, but can
be any string up to 32 characters
long. The single quotes are just to
set the command line apart from
the text in this document and

original

should NOT be typed on the command
line in Basic(9,

Now that we've taken makeupper
apart, tet's get back to makebase,
On the line that starts at an offset
of 0326, we encounter yet another
new command. ON ERROR GOTO
allows us to trap system errors that
would otherwise crash the program.
If an error occurs, the program
immediately goes to the line called
out in this command. Then we can
put a routine there to handle the
error.

Next we find a little FOR/NEXT
timing loop. | found that the
following sequence of events can
happen so fast that you don't get to
read the statement that we are
checking for the files existance.
Next we OPEN & path to read a
directory filename. To open a path
requires a wvariable in which to
store the path number returned by
the command. This path number is
used to refer to the file opened.
Several paths can be opened at once
and can even be to the same file if
needed. Back in the DIM statements
we dimensioned a variable called
path as a byte. Since the number
of paths are limited to a maximum
less than 256, we will be quite safe
with this variable type.

The filename has been defined
several lines earlier and would be
the name of the file you wish to
open.

After the colon, there are several
options Basic09 allows., You can read,
write, update, exec, and/or dir.
Read and write mean just what you

might think. If you anticipate
having to do both with a file, open
the file for update. If the file is in
the current execution directory,
open the file with exec. If the file
you are opening is a directory, use
dir. Since we don't want to take a
chance at damaging any data,
opening the file with a read option
is a safe way to go. Also if we find
the file, we expect it to be a
directory, so the dir option is
appropriate.

We really want this to fail with
an error 216, "File not found’
because we are attempting to
create a new file. Just in case we
do find it, the next couple of lines
report that condition, CLOSE the
path, give us time to read the
message, and return us to the Main
Menu. = Notice the ¢lose command
uses the path variable to close the
specific path we just opened.

As 1 said before, we really are
gxpecting an ertor 216, So, starting
with line 10 (the only numbered line
in this whole program), we attempt
to handle any errors that may try
to trip us up. In line 10, we equate
oops to ERR.,. ERR is the inate
variable in Basic09 that captures
the last error number. ERR can be
accessed only once before Basic09
resets it. To be sure we don't loose
the number before we are done
with it, it is always a good practice
to equate it to a less wvolatile
variable.

Since we expect error 216, we have
to account for all the others in an
intelligent way. If its not 216, the

program reports it, tells us to check
it out, and then returns us to the
Main Menu when we are ready. This
allows the person running the
program time to think about what
‘happened, record the etrror number
for future reference and then
return to the main menu,
~If it was an error 216, then the if
statement of the last several lines
falls through and the program
clears the screen and tells us it is
creating the new database
directory. '
The command SHELL, is the way
Basic09 accesses the 039 shell in
which it is itself running. To use
shell, you enter shell and then a
string that would be the command
you would type if you were at the
039 command prompt outside of
-.Basic09. . 'In -our case here, the
command is MAKDIR. But makdir
requires a name or path for the
new directory. Qur wvariable
filename is already a string, so we
concatenate the wvariable to the
quoted string and the whote thing
gets sent to the shell.
Now that we have our newly
~ created directory, we have to
populate it with the files we will
need to operate our database. The
create command works exatly like
the open command, with the
exception that it is used
exclusively to create a new file.
All of the options mentjoned for
open will work with create,
although creating a file in the read
mode seems a little silly since vyou
can't read a still empty file,

.

iy

Once the program has created all

the files, it announces that fact

and . gives you time to read the

announcement.

Now we have the problem of what

to do with a database we no longer

want around. The following is

basedelete.

PROCEDURE basedelete

0000 DIM filename:STRING[21]

00oC DIM errnum,path:BYTE

0017 DIM ans:STRING[1]

0023 PRINT CHR¢§(12)

0028 RUN printat(23,5)

0033 PRINT "Delete database”

0046 RUN printat(25,7)

0051 PRINT "Enter filename to be
deleted "

0072 RUN printat(25,8)

007D INPUT filename

0082 IF filename="" THEN

008E END

0090 ENDIF .

0092 ON ERROR GOTO 10

0098 0PEN #path,filename'DIR

00A4 CLOSE #path ,

00AA SHELL "deldir "+filename

00B9 END

00BB 10 RUN printat(25,10)

0oce PRINT CHR$(3)

00CE RUN printat(25,10)

00D% errnumi=ERR

00DF IF errnum=216 THEN

00EB PRINT "File not found!”

00FE PRINT CHR$(3)

0103 RUN printat{23.11)

010E PRINT "Returning to Main
Menu."

0129 FOR x=1 TO 8000

013 NEXT x

0147 END

0149 ELSE

014D IF errnum=1 THEN

0159 PRINT CHR$(12)

015E RUN printat(25,11)

0169 PRINT "Returning to

Main

Menu.

0184 FOR x=1 TO 8000

0197 NEXT x

01A2 END

0144 ENDIF

01A6 ENDIF

0148 PRINT CHR$(12)

01AD RUN printat(235,10)

01E8 PRINT "Error number °;
erroum,;

occured.”

01D9 RUN printat(25,11)

01E4 PRINT "Check out the efror
and try

again.”

0204 RUN printat(25,14)

0215 INPUT “Press enter to
return to

Main Menu.",ans

0240 END

There is really nothing new in this
program. If you examine it, you'll
find that many of the routines used
here have appeared in the previous
programs. At offset 00AA, we've
used another 0359 shell command,
DELDIR has its own "are you sure”
inate to it. As such I felt we didn't
need vet another one written into
Qur program.

That wraps it up for this session. In
the next session we will cover the
update and view section and that
will pretty much complete this
program., [would like very much to
hear from those of you who are

reading this series and know if you
are interested enough that vyou
would like a disk containing all of
the various procedures that go in to
make up this program. [will make
my files available to any P]JCCC
member who wishes to make a copy.
Anyone else can aquire a copy by
contacting the editor and the PJCCC
will provide a copy for cost plus a
small handling charge that will go
towards the club's treasury.

OUR ASSLSTANT
TREASURER

N 1

Jhe dMaverick Report

RICK HENGEVELD
The Maverick is closing in on 700 calls
since the system went up! The Maverick
continues to perform it's main tasks of
assisting in the publication of the 6809
Express and linking fellow Coco users
together. ;
Seems Richard Kravitz has gotten the
hang of tele-comm as [keep seeing his
name on the logs, good work Richard! And
our Newsletter Editor, Pete Unks has
checked in under MM-1 power! [guess
persistence pays off. '

Speaking of persistence I've managed to
finally gather all the hardware to install a
hard drive system on the Maverick. Now
after 1 manage to talk a certain resident
0S9 expert into configuring some software
we may soon get our act completely
together and expand the Maverick to what |

envisioned it could be - 3 full service BBS.

Basically Speaking
RICK HENGEVELD

Good News, bad news time. First the
bad news (For yours truly) the Coco
cash register/database program |
spent a month writing won't be
needed by my video company. The
good news is that [will not let that
work 2o to waste. [intend to use
the program as a tutorial of RSDOS
basic and share it with 6809 readers,
I hope you agree that this is good
news!

We'll get to the actual coding next
month, but first we'll explore some
reasons you might want to dig a
little deeper into basic than you
may have already gone. By far,
mast people ruf commercial
programs written by the Pros,
Many times these software packages
are written in machine code and
perform flawlessly, S0 why should
you pound the books and keyboard
to create your own?

Well many times you have needs
that no programmer could anticipate
without full knowledge of vyour
needs. In the case of the cash
register/database program that we
will look at, there were no
commetcial software packages
available that could do exactly -
what | needed. Therefore it became
time to roll my own., Fortunately a
database program is a fairly simple
task to write in basic,

My personal method of writing
software is to break the process
down into several steps. This way
what may look like a huge task
suddenly become very manageable,
So here are the steps | usually
follow,

Step 1. Define your needs, Sounds
simple but this step is often the
toughest hurdie to get past. Trying
to foresee all the

possible needs and functions of a
computer program is a tricky
business. Even the professional
programmer has difficulty with this,
hence we see version 1.0, 1.2, 2.0 of
the same program, Versions 12 and
20 are usually created after a
programmer was heard to say "Nuts,
I never thought of that”

Step 2. Decide the methods you will
use to achieve vyour goals. Often
there are options to consider, in the
case of a database you may create
files with either a direct or a
sequential access system. Speed and
simplicity may be considerations.
Will you be the only person using
the program? If so you can make the
program fairly complex for the end
user. If other people, particularly
non-computer people will be using
the program then you may need the
program to be “Idiot-proof” Planning
ahead for these things will make
writing the actual program a
simpler task.

Step 3. Once Steps 1 and 2 are

complete | break down the tasks |
need the computer to do into blocks
or modules. In the case of a Cash
Register/Data base program [broke
the program down to 4 modules,

1. Cash Register, this section would
handle the pricing calculations.

2, A database to keep logs of a
customer name and address along
with their phone number and the
product purchased.

J. Printing routines to print both
mailing labels and master lists of
our customers along with master
reports foe total sale figures.

4, Setup and screen display. This
section would handle screen width
and color along with printer pokes
and screen menus.

By breaking the program down like
this, no section ended up being more
than 13 or 20 lines long. This keeps

anything from getting out of
control.

Weil the word counter says I've
given vyou enough to chew on for
awhile, Next month we'll start to
put together the program one
section at a time along with an
explanation of how it works. In the
mean time dig out vyour Coco
manuals and blow off some of the
dust! You just might find you get
a lot of pride in rolling your own,
and it's easy!

A PREVIEW OF
COMING ATTRACTIONN !
The Editorial Nfaii is
Delighted to Annovnce These Features

in the September Issve of the
G80% EXPRENSN !

The Final Chapier of
fil Wagner's BasicOd
UATABASE PROGAAINM !

and ias if that weren't enoughl

Feter Unks' Review of
the 055-6B0UU Computer
THE MM/

plus

OATAWNDOWS FOR DSk
TasCom rFOR 03K

and

PRESTO PRARTIER

Miss these at ﬂm- peril of your luture
Happiness!

9670-09.2-C1 "TVIA iS4
AWNEIAVN AHL HLIA INI'INO 139

ARYIR IS MIU =43 u! pauvIkjuon
sTwuibodd 40 uwonRwWaOjIU! Rus joO 25n
24} wodi BunInsad =abeuep 403 Ainigen
OU =3 UWN=SSR J00rd "SUOISSIWO 40 SJ10449
403 ARINQIsuodsad ou Taunsse 2001 d
‘59880 N "B4nqgsdnyiyd “329435 Yiuaaas
S¥T ‘Qnm1g 43IndwOo) 4010) ARISAIL-UUI4
"553Y4dX3 6089 “¥oi1a3 03 Z31sanbad
puas ‘qnio 423ndw@o2 43430 Aurk yy'am
Z423391549Uu IBuRysx: RMPRIE 1¢'m 929rd
‘uaib =t P42 paplaOcaAd a933d1smau
ZIY) 40 j4ed Aurk Juladaa ARw uoiigzuebao
3!1304d-U0u AUy RISJ49Q MaIN ULAS)ISaMYylJdoN
30 SU0i}0a % Buipnyout RiURAIAsSUUI 4
U4dQI3}SRIYIAON 30 HRIN\A uybyay uai1246
24} U paseqg s! gm2 YL "8N19 ¥3ILNdWOD
Y0700 A3SY3C-NN3d 3Yy 3o uoneangnd
18121330 =43 =l w553 8dX3 6089.. =yl
SS34dX3 6089

The Dfficial Pubigarian of The

Pl -Jeraey CILR
LOFUTER fLuB

H. Peter Unks, Editor

FIRST CLASS MAIL

410 el
10 AT

o] {0 UINEN g &yl

TTWrEITIRY

ShAf A% 25 B 23 24 A8 25 B35

3 X

WLKEE-

Eric

_l“Illlll'l'll”ll‘l'llll’”

