
Tha Ufia F o n Di ThE

FEflfl-EFiSEY LOLOB OIIFUTEFi
BIS

uuuuuuuuuuuuJ
JUNE

CLUE
NEW MEE11NG ROOM FOR PJCCC

Rick Hengeveld

The FJ000 was never a club that could
be considered "At a standstill Seems that
the PJCCC i s on the move againl This
time thanks t o Richard Kravitz our move
will be to a new meeting area. Tentatively
we w ill be moving to r corn 1U in the rr air
college hail. Many thanks to Richard for all
the leg and contact work he's put i n tci
secure our meeting areas.

Coming up a t the June meeting, We'll see

1992

Clyde Oa.no demo the "Simply Better" word
processor. The system looks like a wirinerl

Welcome back to Fete Unks! After a bout
of pneumonia with complications, Pete is
back on duty with the 68D Express.

Remember the PJ000's main goal is to
help and support its members. So i f your
having any problerris or questions, feel free
to ask them at our next meeting.

IF YOU MISSED OUR LAST MEETING
YOU MISSED A GREAT

TELECOMMUNICATIONS DEMO!

THE LIBHRHY
CRR

Alan J . Wagner

Welcome once again t o the Library Car.
Make sure you pull up a comfortable seat
this month a s were going t o be getting
into trying t o figure out just what were
going to do with our project program. A s
you may know I doubled as editor las t
month, so I didnt get quite as t a r as I
would have liked t o have been b y this
time, b u t l l l t r y t o make t h i s a s
informative a s ever. L a s t time I asked
you to think about how you might go about
setting up the program, but t o do i t in
english n o t BasicO9. I s tar ted m y
cogitation o n t h e subject and found i t
easiest for me to write an outline. I am
not going t o t r y t o include, the entire
outline i n the Express, but rest assured
that the entire program WILL make i t t o
these pages. Wha t I will include is enough
of the outline so you can see how I am
going about designing the program. T h e
following i s some o f that outline and the
stream o f thought notes I made to myself.

Yes, I did the notes and outlines on a

word processor. I find i t easier t o just
plop things down on the c r t and arrange
them i n a logical order later. N o t e that
the section labeled Menu outline i s jus t
that a n outline f o r the menu that would
appear upon startup. T h e r e are no real
details a s t o how these things wi l l be
actually encoded in BasicO9, as well there
should not be a t this time. H e r e we are
just trying to get a general feel for where
we want the program t o g o and what
features we feel should be included.

Main program should be just menu to sub
routines.

Title page with copyright t o myself and
club should appear before first menu. Make
it a press key to continue.

Menu outline

Create new database
II. Select existing base

1. A d d data
2. Update data

a. Search by field
1)oisplay record
2)Change record

b. S o r t by field
3. V iew data

a. Search by field
1)Print on screen
2)Print on paper

b. S o r t by field
4. Delete data

NOTE: Must have double
check against
accidents

lll.De.le.te entire database
NOTE: Must have double

chock agnt
accidents

IV. Exit program.

Create database would create a directory
using user given database name. Directory
will contain the main record file and an
index file for each field by which searches
will be allowed.

SimUar items under 11.2 and 11.3 will call
same subroutLne. M u s t include flag t o
indicate what t o do with record once
found, depending on calling routine. T h i s
would branch t o another subroutine t o
either just display or also allow changes.
Add data could create a blank record and
then call the update routine.

Only record indices for specified fields will
be sorted during any given access to the
sort, F lags must be set in all indices
when an add data is done. A flag must
be set in only those field indices effected
when a n update occurs. Pe rhaps a
separate f i l e f o r the flags would be
appropriate so that only one fi le would
have to be opened to update the effected
index flags.

A X 4 X X 4 X X X 4 X A X . 4 I X 4

The above is only my first draft of the
menu section of the program and will likely
have a t least a few changes as we go
along. N o t everything in these notes will
be included and some things not there will
appear. T h i s is all part of the process.
Even now as I am assembling this into the
article, I noticed some things that weren't
as clear I as I felt they should be, so I
rearranged some of i t . Notice too how I
made notes concerning subroutines and
possible variables as the ideas occurred to

flie. I f you don't got thoffi recordod
they occur, you'll forget them by the time
it comes around to including them in the
program.

Only the roman numeral headings will be in
the "main" program. A l l the rest of the
items wi l l b e i n "subroutine" programs
called from the "main" program. T h i s is
called modular programming. T h e big
advantage o f this i s that i f one module
needs to be changed for whatever reason,
it is very likely that only that module will
need b e changed and n o t t h e whole
program. A l so once we write the modules,
we may find that we can use them in
other programs with little or no changes.

e just call them from the new program.
In addition, we can build the main menu
program and test i t into dummy routines
long before we have to write a file access
routine or have a file for the records.

Each step of the way we can write and
test before having t o write a complex
subroutine. T h i s makes the debugging of
the program easier. Th is is known as top
down programming. T h e r e i s also a
method known as bottom up programming
where one starts with the most elementary
of the subroutines and them builds back up
towards the main control program. T h e
problem with this is that you don't always
know what you need at that very bottom
level until you have written some of the
top. T h e advantage i s that you don't
need t o write dummy subroutines to test
the higher level routines. F o r this series
we a re going t o use the top down
approach.

Let's t ry our hand at the encoding of the
primary menu section. Be low i s how I

attempted t o fulfill the requirements set 0 2 1 8 D I M ans:STRING[1]
out above. 0 2 2 7 D I M x:INTEGER

022E D I M leave:BOOLEAN
PROCEDURE inventory 0 2 3 5 Ieave:=FALSE

0 0 0 0 R E M X K X X K X K X X X X K X X K K K X K X X X 0 2 3 B P R I N T C H R $ (1 2)

UClA R E M 0 2 4 0 R U N PRINTAT(30,5)
K 0 2 4 8 P R I N T "Inventory Program"

0034 R E M B A S I C O 9 0 2 6 0 R U N PRINTAT(30,7)
026B P R I N T "Copyright May 1992"

004E R E M 0 2 8 1 R U N PRINTAT(30,9)
028C P R I N T "Alan J. Wagner, Sr."

006 R E M H o m e Inventory 0 2 A 3 R U N PRINTAT(31,10)
0083 R E M O 2 A E P R I N T "222 Jefferson Ct."

02C3 R U N PRINTAT(32,11)
0090 R E M K Copyright May 1992 O 2 C E P R I N T "Quakertown, PA"

K 0 2 E 0 R U N PRINTAT(37,13)
0087 R E M K O 2 E B P R I N T "and"

02F2 R U N PRINTAT(32,15)
0001 R E M K Alan J. Wagner, Sr. O Z F D P R I N T "The PennJersey"
OOEB R E M K 222 Jefferson Ct. 0 3 0 F R U N PRINTAT(32,16)

031A P R I N T "Color Computer"
0105 R E M Qüaker town , PA 0 3 2 C RUrPRlNTAT(37,17)

0337 P R I N T "Club"
UhF R E M K a r i d 0 3 3 F R U N PRINTAT(28,23)
K 0 3 4 A P R I N T "Press ENTER to

0139 R E M c o n t i n u e ' ;
K 0 3 6 6 a n s : = "

0153 R E M K T h e PennJersey 0 3 6 D I N P U T ans
0372 L O O P

016D R E M K 0 3 7 4 P R I N T CHR$(12)
0379 R U N PRINTAT(30,5)

0187 R E M N C o l o r Computer 0 3 8 4 P R I N T "Main Menu"
K 0 3 9 1 R U N PRINTAT(25,10)

O1A1 R E M K 0 3 9 C P R I N T "1) Create New
Database"

O1BB R E M N C l u b 0 3 8 7 P U N PRINTAT(25112)
03C2 P R I N T "2) Select

0105 R E M K E x i s t i n g Database"
03E2 R U N PRINTAT(25,14)

O 1 E F R E M K X K K K K X K K K K K K X X K X K N K X K K U 3 E D P R I N T " 3) D e l e t e a

0209 R E M D a t a b a s e "
020C R E M Main Menu 0 4 0 6 R U N PRINTAT(25,18)
0218 R E M 0 4 1 1 P R I N T "4) Exi t Program"

0425
042C

ans>"4 DO
0441
044C

0461
0466

CHR$(3)
04 BE
0473

10,20,30,40
0480
0495
04 9A
04 9E
04 A 2
04A4 10
04 A B
O4AD 20
04 B 4
04B6 30
0480
O4BF 40
04C8

an8:
WHILE ans<"l" OR

RUN PRINTAT(25,20)
PRINT REnter selection

INPUT ans
PRINT CHR$(9);

E ND H ILE
ON VAL(ans) GOSUB

EXITIF leave THEN
PRINT CHR$(12)

ENDEXIT
ENDLOOP
END

RUN makebase
RETURN
RUN existing
RETURN

RUN basedelete
RETURN
lea ve:=T RUE
RETURN

ALL Basic08 programs start with the tine
"PROCEDURE 'name". T h i s i s important
to remember. I f y o u create t h e
procedure/program i n the Basic09 editor,
the addition of this line is automatic, But ,
if you use your favorite wordprocessor,
you must remember to put this line In as
the very f i rst thing in the file. N o
spaces, carriage returns, o r any other
characters may precede this information or
BasicO9 won't recognize i t a s a valid
procedure! A s a reminder, the numbers at
the beginning of each line are the memory
offset, from the beginning of the procedure,
of the first actual character of that line.

Now let's get into the commands. REM is

tho reniark coniniand. Anything that
follows this command Is ignored by the
computer when the program i s executed,
These lines are put i n there fo r the
benefit of the humans that my look at the
listing. T h e y are useful to document a
program, t o leave yourself notes as to
where a certain section i s headed while
you are still developing the program, and
to record copyright information. DIM is the
command t o dimension a variable. W e
exercised this one over the last couple of
sessions.

PRINT causes the program to place what
follows on the path named or, as in all
the cases in our example, on the default
path, which i s t h e terminal o r c r t .
CHR$() causes the PRINT command t o
send the value in the parentheses down the
selected path. T h i s can be any number
from 0 to 255. Some of these numbers
represent the letters, numbers, and other
characters on the keyboard. Others o f
these are non-printable signals or commands
to the device a t the end o f the path.
CHR$(12) is just such a command. T h i s
tells the terminal to clear the screen and
position the cursor in the upper left of the
screen. I f we had sent this to a printer,
most printers would have executed a form
feed. I n the section of your 089 manual
called "089 Commands", Appendix B, pages
4 & 5, have a listing of the "characters"
that a r e effective o n a n alphanumeric
screen.

Basic09 does not have a built-in command
to locate the cursor on the screen as does
RSDOS. What i t does have is also in the
above mentioned appendix. I f you opened
to that appendix, you may have noticed
that i f you send a "2" to the terminal,

you can then send two more numbers that
represent the column and the row where
you want the cursor to appear. I wrote a.
short program I called PRINTAT (after the
RSOOS command). T h e reason I felt a
program was necessary was tha t the
column and row don't equate the way you
and I think. Y o u have to add hex 20
(decimal 32) to each number before sending
it or the cursor won't be where you want
it, I t seemed easier th let the computer
do the task. O n c e the program was
written I no longer had t o do the math
and the call f o r positioning the cursor
seemed more familiar.

This also demonstrates another important
aspect o f Basic09. Y o u can call one
program from within another. Y o u can
even pass variables back and forth and
the calling program doesn't get blown away
because the second program was called,
The first program's variables remain intact
as does the pointer to the location where
execution was within t he program s o
execution proceeds where i t left o ff upon
return. I f recall I had spoken of modular
programming. Th i s is the key that allows
us to do it!

PROCEDURE printat
0000 P A R A M x,.y:INTEGER
00DB D I M column,row:INTEGER
0016 co lumn=x+32
0021 r o w = y + 3 2

002C PRINT CHR$(2); CHR$(column);
C HR$(row);

003C E N D

Notice the command PARAM. T h i s acts
very much the same as a DIM command
but tel ls the program t o expect these
variables t o be passed from a calling

program. I f you look a t t he menu
program, notice how when I called printat I
had two numbers in parentheses. These
are the numbers printat takes to be x and
y respectively. Y o u are not limited to
integer numbers, but can pass any variable
type as long as you keep the types the
same. Neither program is aware of what
the variable is called in the other program.

So, you can use the same variable name
in t w o programs, even i f they don't
represent the same thing or maybe even
the same type. What is important is that
the order in which the variables are sent
and expected. I f the first variable sent is
an integer, t he receiving program had
better be looking for an integer in its first
PARAM variable. I f the receiving program
is looking for a string as the fourth
PARAM variable, the fourth variable in the
parentheses o f the call to that program
had better b e a string. I f t h i s
arrangement is not adhered to, the program
will assume i t was sent the proper stuff
and attempt t o use what i t gets.
Needless to say, the results won't be what
you're expecting and can not be predicted.

Notice in the PRINT command that there
are three CHR$() commands connected by
semi-colons. S e m i -colons allow u s t o
concatenate CHR$() commands s o tha t
they are sent in one continuous stream
with n o carriage returns i n between.
Notice also the semi-colon a t the end of
the line.
This tells the terminal to wait a t that
point for more characters to follow. I f
the semi-colon weren't there, the terminal
would execute a carriage return putting the
cursor a t the beginning of the next line
and defeating the whole purpose of sending

th char t r in th p l a c e .I i i

You might think that calling an outside
program would take a lot of time, but that
just isn't so. I f the programs are stored
as separate files, the first time the second
program is called, i t will have to be called
frorri disk. A f t e r that, however, i t is in
memory and can be called as quickly as a
subroutine within the same program. I f the
programs are all stored in one file on the
disk, which can easily be done, they are
all loaded at once so there isn't even the
wait on the first call.

You may have noticed tha t i n t he
assignment statements such a s "leave
:=FALSE" and 'ans:='" that I included a
colon before the equals sign. T h i s is not
really needed bu t i s recommended t o
differentiate between a n assignm ent
statement and and a test for equality.

INPUT accesses the path from the terminal
and requests data from t h e terminal.
Whatever is typed is then entered into the
variable(s) that appear after the INPUT
command. I n this case the variable ans.
If you look back. at the beginning of the
menu program the DIM statement for the
ans variable dimensioned ans as being one
character long. What happens i f you type
more than one character in reply to the
INPUT comrriand?
More than one letter wilt appear on the
crt, but only the first is captured by the
variable. The rest fall on the floor behind
the computer. Yo u always wondered where
that pile of stuff came from. Well, now
you know.

The LOOP command has a companion that
you'll find near the end of this program.

It i know s ENDLOOP. This pair dftne
the beginning and end o f a never ending
loop. The re are only two ways out of
the loop. O n e is the group of commands
EXlTlF/T HEN/ENDEXIT which appear near
the end of the program. They work like
an IF/THEN/ENDIF group. That is to say,
EXITIF a statement is TRUE THEN do all
the command statement lines up t o the
EXITIF statement. There doesn't have to
be any lines between the THEN and the
EXITIF or there can be as many as i t
takes t o leave the loop i n an orderly
manner. I n our case there i s one
statement which clears the screen. When
the ENDEXIT statement is encountered, the
program immediately goes to the ENDLOOP
statement and executes whatever i s the
next statement. I n this case the END of
the program.

There is a WHILE/DO/ENDWHILE loop after
we print the menu t o check f o r a n
appropriate response. BasicO9 has a
number o f looping statements that make
programming easier. A WHILE loop
continues t o go around as long as the
conditional part of the statement is TRUE.
In this case, as long as ans is less than
1 or more than 4. Because the numbers
are represented as a string, the comparison
is by their ASCII value. T h i s has the
advantage in this case of also checking for
letters and other keyboard characters
without giving an error for type mismatch.

A WHILE loop checks for the condition at
the top or beginning o f the loop. T h i s
means tha t i f the condition fails upon
entering t h e loop, t h e loop i s NOT
executed even once. T h i s i s why I
assigned a null t o ans before the WHILE
loop was encountered, to ensure that we

would enter the loop. There i s a loop
arrangement that checks for the condition
at the bottom of the loop, but that is a
topic for another time.

Immediately after the WHILE loop i s an
ON/3OSUB statement. O N the numerical
value o f a variable o r statement that
appears between the ON and the GOSUB,
this statement selects the appropriate line
number. I n other words, If the varible or
statement equate t o a value o f 1 . the
first line number is chosen. I f the value
is 3, the third line number is chosen. This
is one of the very few places in Basic09
where line numbers are required. Once a
line number is chosen the program branches
to that point in the program and executes
the series of statements until a RETIJRN
is encountered. A t that point execution of
the program returns t o the line directly
after the line containing the GOSUB. I n
this case, we check to see i f we have
called for the program to terminate. I f
leave is TRUE then the program exits the
LOOP and ENDs, otherwise i t goes back to
the top of the loop.

There i s just one more thing I need to
cover this session. W e need to construct
a dummy program the menu program can
call to test the various menu item program
calls. What follows is a dummy for the
first menu item. Y o u can write similar
programs for items 2 and 3.

PROCEDURE makebase
0000 D I M x:INTEGER
0007 P R I N T CHR$(12)
000C P R I N T "HELLO FROM

MA K ES A SE!"
0024 F O R x=1 10 4000
0035 N E X T x

0040 E N D

One point of interest before I leave you to
chew on this ' t i l next time. Remember
way back I mentioned that Basic09 was
faster than RSDOS Basic? T h i s little
program makebase is a good example o f
that. Not ice that even though we are
counting t o 4000, the time delay i s not
very long a t all. I f you write a little
program similar to this in RSDOS Basic,
you'll find that a loop that counts to 4000
takes a very noticeably longer time t o
execute.

For those of you who had the chance to
see my computer die before your eyes
during t h e demonstration a t t h e l as t
meeting, you'll be happy to know I got i t
back running the next day. I t was
fortunate that I had a spare 680 laying
around as that is what smoked. I think I
may have moved the multipack enough that
I shorted a couple of the lines that go
directly to the cpu. That'I l get ya every
time. Wel l , ' t i l next time, may all your
computing be enjoyable and all the smoke
you see be from your bar-b-que.

The Maverick Report
Rick Hengeveld

The Maverick BBS has logged over 680
Calls. With a user base o f about 4 0
people. Some o f these forty users are
inactive. I hope your not on that list!

Dont Miss
Clyde Gano's

demonstration of
SIMPLY BETTER

the
outstanding

(and inexpensive)
WORD PROCESSOR

that even
Rick Hengeveld
wants to see1

FRIDAY JUNE 27
7pm

I I l1hhIh lhhI IhhI lhhhIhht I I

66f r
3c 3

T f i ca P.b1ictn t Tha

PTE L2

'UV?1 V ' I I i 1 1

J 0 . t p 3 ' S j U f l . A a a H

rm 3Ui2
'B12 A3E3!-W3

3] u].e3q I33B 4!

6 8 0 9 E X P R E S S
T h e " 6 8 0 9 E X P R E S S " i c t h e o f f i c i o t
p u b t i c o t i o n o f t h e P E N N - J E R S E Y C O L O R
C O M P U T E R C L U B . T h e c t u b i c b o c e d , n t h e
9 r e 0 t e r L e h 9 h V o L t e o f N o r t h e o t e r n
P e n n c l v O n i O n o t u d n 9 e C t i O n o f
N o r t h w e c t e r n N e w J e r c e t j . n o n - p r o f i t
0 r 9 0 n i z 0 t i 0 n m o ' r e p r i n t o r p o r t o f t h i s
n e w l e t t e r p r o v i d e d c r e d i t g i v e n .
P J C C C W i l l g t o d t j e x c h m n g e n e w c t e t t e r
w i t h o n o t h e r c o m p u t e r c l u b . S e n d
r e q u e c t c t o E D I T O R , 6 8 0 9 E X P R E S S ,
P e n n - J e r e C o l o r C o m p u t e r C L u b , 1 4 5
S e v e n t h S t r e c t , P h i t L i p b u r g , N J 0 e 8 6 5 .
P J C C C o c u m e c n o r e c p o n c i b i I i t y F o r
e r r o r o o r o m i o i o n . p J C C C o c u m e c n o
l i b i L i t ' . F o r d o e o g e r e u L U n g F r o m t h e
U e o f o n i n f o r m O t i o n o r p r o g r o m
c o n t o i r i e d i n t h i s n e w s l e t t e r .

GET ONLINE WITH THE MAVERICK
BBS! DIAL 215-760-0456

