S
=
-iuli

The Ufficial Publication of 1he

PEH-JERSEY LOLUR CUMPLTER

PUWVEIHG!ZIﬂﬂS

N|R]RJu N N[N[0]N|N]N]

i

e15-rel-0456

JUNE

1992

NEW MEETING ROOM FOR PJCCC
Rick Hengeveld

The PJCCC was never a club that could
he considered "At a standstili® Seems that
the PJCCC is on the move again! This
time thanks to Richard Kravitz our move
will be to a new meeting area. Tentatively
we will be moving to room 180 in the main
college hall. Many thanks to Richard for all
the leg and contact work he's put in to
secure our meeting areas.

Coming up at the June meeting, We'll see

Clyde Gano demo the "Simply Better" word
processor. The system looks like a winner!

Welcome back to FPete Unks! After a bout
of pneumonia with complications, Pete is
back on duty with the 6809 Express.

Remember the PJCCC's main goal is to
help and support its members. So if your
having any problems or questions, feel free
to ask them at our next meeting.

IF YOU MISSED OUR LAST MEETING
YOU MISSED A GREAT
TELECOMMUNICATIONS DEMO!

CAR

Alan J. Wagner

Welcome once again to the Library Car.
Make sure you pull up a comfortable seat
this month as we're going to be getting
into trying to figure out just what we're
going to do with our project program. As
you may know | doubled as editor last
month, o | didn't get quite as far as |
would have liked to have been by this
time, but 'l try to make this as
informative as ever. Last time | asked
you to think about how you might go about
setting up the program, btut to do it in
english not Basic0d. | started my
cogitation on the subject and found it
easiest for me to write an outline. | am
not going to try to include the entire
putline in the Express, but rest assured
that the entire program WILL make it to
these pages. What | will include is enough
of the outline so you can see how | am
going about designing the program. The
following is some of that outline and the
stream of thought notes | made to myself.

Yes, | did the notes and outlines on a

word processor. | find it easier to just
plop things down on the crt and arrange
them in a logical order later. Note that
the section labeled Menu outline is just
that an outline for the menu that would
appear upon startup. There are no real
details as to how these things will be
actually encoded in Basic09, as well there
should not he at this time. Here we are
just trying to get a general feel for where
we want the program to go and what
features we feel should be included.

HAXHH KA MA MR KA H A KA RN KRR KR RN H A NN

Main program should be just menu to sub
routines.

Title page with copyright to myself and
club should appear before first menu. Make
it a press key to continue.

Menu outline

I, Create new database
Il. Select existing base
1. Add data
2. Update data
3. Search by field
1)Display record
2)Change record
b. Sort by field
3. View data
a. Search by field
Print on screen
Z)Print on paper
“b. Sort by field
4. Delete data
NOTE: Must have double
check against
accidents
IIl.Delete entire database
NOTE: Must have double

gheck against
accidents
IV. Exit program.

Create database would create a directory
using user given database name. Directory
will contain the main record file and an
index file for each field by which searches
will be allowed.

Simifar items under 12 and L3 will call
same subroutine. Must include flag to
indicate what to do with record once
found, depending on calling routine. This
would branch to another subroutine to
either just display or also allow changes.
Add data could create a blank record and
then call the update routine.

Only record indices for specified fields will
be sorted during any given access to the
sort. Flags must be set in all indices
when an add data is done. A flag must
be set in only those field indices effected
when an update occurs. Perhaps a
separate file for the flags would be
appropriate so that only one file would
have to be opened to update the effected
index flags.

HARARAARRRL AR AR AR AR XA KRR AURRANLL

The above is only my first draft of the
menu section of the program and will likely
have at least a few changes as we Qo
along. Not everything in these notes will
be included and some things not there will
appear. This is all part of the process.
Even now as | am assembling this into the
article, | noticed some things that weren't
as clear | as | felt they should be, so |
rearranged some of it. Notice foo how |
made notes concerning subroutines and
possible variables as the ideas occurred to

me. If vou don't gat them recorded as
they occur, you'll forget them by the time
it comes around to including them in the
program.

Only the roman numeral headings will be in
the “main" program. ANl the rest of the
items will be in "subroutine” programs
called from the “main* program. This is
called modular programming. The big
advantage of this is that if one module
needs to be changed for whatever reason,
it is very likely that only that module will
need be changed and not the whole
program. Also once we write the modules,
we may find that we can use them in
other programs with little or no changes.
We just call them from the new program.
In addition, we can build the main menu
program and test it into dummy routines
fong before we have to write a file access
routine or have a file for the records.

Each step of the way we can write and
test before having to write a complex
subroutine. This makes the debugging of
the program easier. This is known as top
down programming. There is also a
method known as bottom up programming
where one starts with the most elementary
of the subroutines and them builds back up
towards the main control program. The
problem with this is that you don't always
know what you need at that very bottom
level until you have written some of the
top. The advantage is that you don't
need to write dummy subroutines to test
the higher level routines. For this series
we are going to wuse the top down
approach.

Let's try our hand at the encoding of the
primary menu section. Below is how |

attempted to fulfill the requirements set
out above.

PROCEDURE inventory
0000 REM **%*xxxxxxxnxsxxxxxsxux

EIOIA REM *
0034 REM * BASICO9
004E REM *
006 REM * Home Inventory .
x0083 REM ~
009D REM * Copyright May 1992
?087} REM
0oD1 REM * Alan J. Wagner, Sr. *
00EB REM * 222 Jefferson Ct.
0105 REM * Quakertown, PA
01 REM * and
0139 REM *
0153 REM * The Penndersey
xUIBD REM *
0187 REM * Color Computer
01A1 REM *
01BB REM * Club
x01D5 | REM *
OIEF REM Fonms s e wnxoon
0269 REM
020C REM Main Menu
0218 REM

0218 DIM ans:3TRING[1)

0221 DIM X:INTEGER

022 DIM leave:BOOLEAN

0235 leave:=FALSE

0238 PRINT CHR$(12)

0240 RUN PRINTAT(30,5)

0248 PRINT ‘“Inventory Program"

0260 RUN PRINTAT(30,7)

0268 PRINT "Copyright May 1992"

0281 RUN PRINTAT(30,9)

028C PRINT “"Alan J. Wagner, Sr."

0ZA3 RUN PRINTAT (31,10)

02AE PRINT “222 Jefferson Ct."

02C3 RUN PRINTAT(32,11)

02CE PRINT “Quakertown, PA"

02ED RUN PRINTAT (37,13)

02EB PRINT “and"

02F2 RUN PRINTAT(32,15)

02FD PRINT “The PennJersey”

030F RUN PRINTAT (32,16)

031A PRINT "Color Computer"

03zC RUN PRINTAT (37,17)

0337 PRINT “Club"

033F RUN PRINTAT (28,23)

034A PRINT "Press ENTER to
continue";

0366 ang="

036D INPUT ans

0372 LOOP

0374 PRINT CHR$(12)

0379 RUN PRINTAT(30,5)

0384 PRINT "Main Menu”

0391 RUN PRINTAT(25,10)

039C PRINT "1y Create New
Database”

0287 RUN PRINTAT(25,12)

03C2 PRINT “2) Select
Existing Database"

03E2 RUN PRINTAT(25,14)

03ED PRINT "3) Delete a
Database"

0406 RUN PRINTAT(25,16)

0411 PRINT "4) Exit Program"

0425 ang.="

042C WHILE ans<"1" OR
ans>"4" DO

0441 RUN PRINTAT(25,20)

044C PRINT “Enter selection

0461 INPUT ans

0466 PRINT CHR$(9);
CHR$(3)

046F ENDWHILE

0473 ON VAL(ans) GOSUB
10,20,30,40

048C EXITIF feave THEN

0495 PRINT CHR$(12)

049A ENDEXIT

049E ENDLOOP

04A2 END

04A4 10 RUN makebase

04AB RETURN

04AD 20 RUN existing
04B4 RETURN
04B6 30 RUN basedelete
048D RETURN
04BF 40 leave:=TRUE
04C8 RETURN

ALL Basic09 programs start with the line
"PROCEDURE ‘'name™. This is important
to remember. If you create the
procedure/pragram in the Basic08 editor,
the addition of this line is automatic. But,
if you use vyour favorite wordprocessor,
you must remember to put this line in as
the very first thing in the file. No
spaces, carriage returns, or any other
characters may precede this information or
Basic08 won't recognize it as a valid
procedurel As a reminder, the numbers at
the beginning of each line are the memory
offset, from the beginning of the procedure,
of the first actual character of that line.

Now let's get into the commands. REM is

the remark command. Anything that
follows this command Is ignored by the
computer when the program is executed.
These lines are put in there for the
benefit of the humans that my look at the
listing. They are useful to document a
program, to leave yourself notes as to
where a certain section is headed while
you are still developing the program, and
to record copyright information. DIM is the
command to dimension a variable. We
exercised this one over the last couple of
sessions.

PRINT causes the program to place what
follows on the path named or, as in all
the cases in our example, on the default
path, which is the terminal or crt.
CHR$() causes the PRINT command to
send the value in the parentheses down the
selected path. This can be any number
from 0 to 255. Some of these numbers
represent the letters, numbers, and other
tharacters on the keyboard. Others of
these are non-printable signals or commands
to the device at the end of the path.
CHR$(12) is just such a command. This
tells the terminal to clear the screen and
position the cursor in the upper left of the
screen. If we had sent this to a printer,
most printers would have executed a form
feed. In the section of your OS9 manual
calied "0S9 Commands", Appendix B, pages
4 & 5, have a listing of the “"characters"

that are effective on an alphanumeric
screen.

Basic09 does not have a built-in command
to locate the cursor on the screen as does
RSDOS. What it does have is also in the
above mentioned appendix. If you opened
to that appendix, you may have noticed
that if you send a "2 to the ferminal,

you can then send two more numbers that
represent the column and the row where
you want the cursor to appear. | wrote a
short program | called PRINTAT (after the
RSDOS command). The reason | felt a
program was necessary was that the
column and row don't equate the way you
and | think. You have to add hex 20
(decimal 32) to each number before sending
it or the cursor won't be where you want
it. It seemed easier tb let the computer
do the task. Once the program was
written | no longer had to do the math
and the call for positioning the cursor
seemed more familiar.

This also demonstrates another important
aspect of Basic08. You can call one
program from within another. You can
even pass variables back and forth and
the calling program doesn't get blown away
“because the second program was called.
The first program's variables remain intact
as does the pointer to the location where
execution was within the program so
execution proceeds where it left off upon
return. If recall | had spoken of modular
programming. This is the key that allows
us to do it!

PROCEDURE printat

0000 PARAM x, yINTEGER

000B DIM column,row:INTEGER

0016 column=x+32

0021 row=y+32

002C PRINT CHR$(2); CHR$(column);
CHR§(row);

003C END

Notice the command PARAM. This acts
very much the same as a DIM command
but tells the program to expect these
variables to be passed from a calling

program. if you look at the menu
program, notice how when | called printat |
had two numbers in parentheses. These
are the numbers printat takes to be x and
y respectively. You are not limited to
integer numbers, but can pass any variable
type as long as you keep the types the
same. Neither program is aware of what
the variable is called in the other program.

80, you can use the same variable name:
in two programs, even if they don't
represent the same thing or maybe even
the same type. What is important is that
the order in which the variables are sent
and expected. If the first variable sent is
an integer, the receiving program had
better be looking for an integer in its first
PARAM wvariable. If the receiving program
is looking for a string as the fourth
PARAM variable, the fourth variable in the
parentheses of the call to that program
had hetter be a string If this
arrangement is not adhered to, the program
will assume it was sent the proper stuff
and attempt to use what it gets.
Needless to say, the results won't be what
you're expecting and can not be predicted.

Notice in the PRINT command that there
are three CHR$() commands connected by
semi-colons. Semi-colons allow us to
concatenate CHR$() commands so that
they are sent in one continuous stream
with no carriage returns in between.
Notice also the semi-colon at the end of
the line. '

This tells the terminal to wait at that
point for more characters to follow. If
the semi-colon weren't there, the terminal
would execute a carriage return putting the
cursor at the beginning of the next line
and defeating the whole purpose of sending

the characters In the first place.

You might think that calling an outside
program would take a lot of time, but that
just isn't so. If the programs are stored
as separate files, the first time the second
program is called, it will have to be called
from disk. After that, however, it is in
memory and can be called as quickly as a
subrouting within the same program. |If the
programe are all stored in one file on the
disk, which can easily be done, they are
all loaded at once so there isn't even the
wait on the first call.

You may have noticed that in the
assignment statements such as ‘“leave
:=FALSE" and ‘ans:=""" that | included a
colon before the equals sign. This is not
really needed but is recommended to
differentiate between an assignment
statement and and a test for equality.

INPUT accesses the path from the terminal
and requests data from the terminal.
Whatever is typed is then entered into the
variable(s) that appear after the INPUT
command. In this case the variable ans.
If you look back at the beginning of the
menu program the DIM statement for the
ans variable dimensioned ans as being one
character long. What happens if you type
more than one character in reply to the
INPUT command?

More than one letter will appear on the
crt, but only the first is captured by the
variable. The rest fall on the floor behind
the computer. You always wondered where
that pile of stuff came from. Well, now
you know.

The LOOP command has a companion that
you'll find near the end of this program.

It Ig know ae ENDLOOP. This pair define
the -beginning and -end of a never ending
loop. There are only twe ways out of
the loop. One is the group of commands
EXITIF/THEN/ENDEXIT which appear near
the end of the program. They work like
an IF/THEN/ENDIF group. That is to say,
EXITIF a statement is TRUE THEN do all
the command statement lines up to the
EXITIF statement. There doesn't have to
be any lines between the THEN and the
EXITIF or there can be as many as it
takes to leave the loop in an orderly
manner. in our case there is one
statement which clears the screen. When
the ENDEXIT statement is encountered, the
program immediately goes to the ENDLOOP
statement and executes whatever is the
next statement. In this case the END of
the program.

There is a WHILE/DO/ENDWHILE loop after
we print the menu to check for an
appropriate response. Basic08 has a
number of looping statements that make
programming easier. A WHILE loop
continues to go around as long as the
conditional part of the statement is TRUE.
In this case, as long as ans is less than
1 or more than 4. Because the numbers
are represented as a string, the comparison
is by their ABCH value. This has the
advantage in this case of also checking for
letters and other keyboard characters
without ogiving an error for type mismatch.

A WHILE loop checks for the condition at
the top or beginning of the loop. This
means that if the condition fails wupon
entering the loop, the loop is NOT
executed even once. This is why |
assigned a null to ans before the WHILE
loop was encountered, to ensure that we

would enter the loop. There is a loop
arrangement that checks for the condition
at the bhottom of the loop, but that is a
topic for another time.

Immediately after the WHILE loop is an
ON/GOSUB statement. ON the numerical
value of a wvariable or statement that
appears between the ON and the GOSUB,
this statement selects the appropriate line
number. In other words, if the varible or
statement equate to a wvalue of 1, the
first line number is chosen. If the value
is 3, the third line number is chosen. This
is one of the very few places in Basicl9
where line numbers are required Once a
line number is chosen the program branches
to that point in the program and executes
the series of statements until 2 RETURN
is encountered. At that point execution of
the program returns to the line directly
after the line containing the GOSUB. In
this case, we check to see if we have
called for the program to terminate. If
leave is TRUE then the program exits the
LOOP and ENDs, otherwise it goes back to
the top of the loop.

There is just one more thing | need to
cover this session. We need to construct
a dummy program the menu program can
call to test the various menu item program
calls. What follows is a dummy for the
first menu item. You can write similar
programs for items 2 and 3.

PROCEDURE makebase

0000 DIM xINTEGER

0007 PRINT CHR$(12)

000C PRINT "HELLO FROM
MAKEBASE!

0024 FOR x=1 TO 4000

0035 NEXT X

0040 END

One point of interest before | leave you to
chew on this 'til next time. Remember
way back | mentioned that Basic09 was
faster than RSDOS Basic? This little
program makebase is a good example of
that. Notice that even though we are
counting to 4000, the time delay is not
very long at all. If you write a little
program similar to this in RSDOS Basic,
you'll find that a loop that counts to 4000
takes a very noticeably longer time to
execute.

For those of you who had the chance to
see my computer die before your eyes
during the demonstration at the Ilast
meeting, you'll be happy to know | got it
back running the next day. It was
fortunate that | had a spare 6809 laying
around as that is what smoked. | think |
may have moved the multipack enough that
| shorted a couple of the lines that go
directly to the cpu. That'll get ya every
time. Well, 'til next time, may all your
computing be enjoyable and all the smoke
you see be from your bar-b-que.

The Maverick Report
Rick Hengeveld
The Maverick BBS has logged over 680
Calls. With a wuser base of about 40
people. Some of these forty users are
inactive. | hope your not on that list!

Don't Miss
Clyde Gano's
demonstration of
SIMPLY BETTER
the
outstanding
(and inexpensive)
WORD PROCESSOR
that even
Rick Hengeveld
wants to seel

FRIDAY JUNE 27
7 pm

9$¥0-092-C12 "TVIA iS4d
ADTIIAVIN dHL HLIA ANIINO Ld9

'AD33R}S MU =iy ui pauIRiucs

Zweiboud 40 UoIR! WUO Ul hue 30 2%Zn
|y} wodl BUNINEIA =IERURP 403 A3ngen
oU =ZJwnsse 9929rd ‘ZUOIZSZIWO 40 S40442

403 AINIQIZuOd=E34 Ou =ZawnsZs' 99330 d

‘59880 N “BJang=dniiyd ‘333435 yjuaaag
Syl ‘Qn1d 433ndwo) 40100 ARISAIC-uUId
‘SS3IU4KI 6089 “¥o 1103 03 Z3=Zanbou

puxs ‘qnia A9indwoa 43Y3lo ARur yi'm
Z433331=mMau sbuayoxas Rp=1B 11tm 9)09rd aLu 5u um‘m!md ‘E!mﬂ\’n m&
‘uaa6 = }PIAD pap!aocad 42332)1=mau

14y 30 j4ed Rue jutudad Arw uoneziuebuo

I P IR I P IR I I I P RITI BRIV I W INIRMIY YL
3'3oad-uou ARuy ‘ROSA3Q0 MIN UAISI2MYUIJON

- “ge B - "J-l:
40 Zuon3oas Buipn)ou! QiU AIRsuuay S S g M d X g ;
UARI=RIYIAON 30 RINIRA UBlya 1 4231246 -~
|4y Ul paz=eqg =! Qn12 Syl "ENT10 ¥ILNdWOO -

Y0100 A3SUIF-NNIJ AUl 30 uonmongnd e e O R S Ee
1Ri24330 =243 =! wSSIUANI 6089, 2y.L v "; ;

SS5S3¥dXK3 6089

G 8 HON Y.

4 AL hl-[‘l-&lbuLul-llli‘t

The Dfficiel Pubication of The

FEI-IERGEY CILR
LOMFUTER LLR

H. Peter Unks, Editor

FIRST CLASS MAIL

-/“lllIlllllll”llll'llll”'

