@ MOTOROLA

MC68A39
(1.5 MHz)

MC68B39
(2.0 MHz)

‘Advance Information

FLOATING-POINT ROM

The MC6839 standard product ROM provides fioating point capability
for the MC6809 or MCBBO9E MPU. The MC6839 implements the entire
IEEE Proposed Standard for Binary Floating Point Arithmetic Draft 8.0,
providing a simple, economical and reliable solution to a wide variety of
numerical applications. The single- and double-precision formats pro-
vide results which are bit-for-bit reproducible across all Draft 6.0 im-
plementations, while the extended format provides the extra precision
needed for the intermediate results of iong calculations, in particular the
implementation of transcendental functions and interest calculations.
All applications benefit from extensive error-checking and weli-defined
responses to exceptions, which are strengths of the |EEE proposed
standard.

The MC6839 takes fuli advantage of the advanced architectural
features of the MC6809 microprocessor. It is position-independent and
re-entrant, facilitating its use in real-time, multi-tasking systems.
® Totally Position Independent

. ® Operates in any Contiguous BK Block of Memory
® Re-Entrant
* No Use of Absolute RAM
+ All Memory References are made Relative to the Stack Pointer

® Flexible User Interface ‘
* Operands are Passed to the Package by One of Two Methods
1) Machine Registers are used as Pointers to the Operands
2} The Operands are Pushed onto the Hardware Stack
* The Latter Method Facilitates the use of the MC6839 in High-Level
Language Implementations
@ Easy to Use Two/Three -Address Architecture
* The User Specifies Addresses of Operands and Result and Need
Not be Concerned with any Internal Registers or Intermediate
Results
® A Complete Implementation of the Proposed IEEE Standard
Draft 6.0
¢ Includes All Precisions, Modes, and Operations Required or
Suggested by the Standard
* Single, Double, and Extended Formats
* includes the Following Operations:
Add
Subtract
Multiply
Oivide
Remainder
Square Root
integer Part
Absolute Value
" Negate
Predicate Compares
Condition Code Compares
Convert Integer +— Floating Point
Convert Binary Floating Point~ Decimal String

MOS

(N-CHANNEL, SILICON-GATE)

FLOATING-POINT
READ-ONLY MEMORY

!

C SUFFIX
FRIT-SEAL

CERAMIC PACKAGE
1 CASE 716

24

P SUFFIX

PLASTIC PACKAGE
CASE 709

PIN ASSIGNMENT

At @~ 2allvee
A6l 23[1A8
A5 3 22§11 A9
Aaf]4 21 A2
A3ls 20E
A200e 19 [1A10
a1l 18 fIAN
A0[y 1707
pode 16 [J06
pigwo 15 {105
20 14] 04
vgsO2 131 03

A0 8 — - t————a 9 DO
Al 7 T B b= 10 G
A2 6 T E——— - 11 D2
BLOCK PO Address Memory f——am 3State ——w 13 D3
A4 4 T Matrix | g Output |——a=14 D4
DIAGRAM As 3 —] Decode 8192 x 8) | gl Buffers b— @15 DS
A6 2 - | =16 D6
2; o; N | @17 D7
Ag 22 —
A10 19 —
A11 18 —
A12 21 —
E 20 ' Vee Pin 24
Vgg < Pin 12
ABSOLUTE MAXIMUM RATINGS
Rating Symbol Value Unit This device contans Circuitry 1o protect the
Supply Voltage vee -051t0 +7.0 \ inputs against damage due to high static
input Voltage Vin —065t0 +7.0 v voltages or electric fields; however, it is ad-
Operating Temperature Range Ta Ow +70 °C vised that normal precautions be taken 10
per - avoid application of any voltage higher than
Storage Temperature Range Tstg - 6510 +150 c maximum ‘rated voltages to this high im-
‘ pedance circuil. Reliability of operation is
CAPACITANCE err‘:arr:gleedilf ?SUVS:E? mepL:;S areetﬁ:l:o\/a” ap;
(f=1.0 MHz, T =26°C, periodically sampled rather than 100% tested) scg} 09 age 9. 5s ©
Characteristic Symbol Max Unit '
Input Capacitance Cin 8 pF
Output Capacitance Cout 15 pF

DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted}

RECOMMENDED DC OPERATING CONDITIONS

Parameter Symbol | Min | Nom | Max | Unit
Supply Vol
(?/pcyc mn:satg:e applied at least 100 us before proper device operation is achieved) vee 45 50 55 v
Input High Volitage) - ViH 2.0 - 55 v
Input Low Voltage VIL -05] - 08 vV
DC CHARACTERISTICS
Characteristic Symbol | Min | Typ | Max | Unit
Input Current (Vin =010 5.5 V) lin -10] — | 10 | pA
_Output High Volage ligy = — 220 A) VOH 24 | - - v
Output Low Voltage (i =3.2 mA) VoL - - 0.4 A
Output Leakage Current (Three-State) (E=2.0V, Vg;1=0V to 55 V) Lo -10) - 10 | wA
Supply Current — Active® (Minimum Cycle Rate) ice - 25 | 40 | mA
Supply Current — Standby (E= V|y) Isg — 7 10 | mA

*Current is proportional to cycle rate.
AC OPERATING CONDITIONS AND CHARACTERISTICS
. {Read Cycle)
RECOMMENDED AC OPERATING CONDITIONS (Ta =010 70°C, Ve =5.0 V +10%. All uming with t, = t¢=20 ns, load of Figure 1)

Parameter Symbol MCSBABS N!CSBB:SQ Unit
Min | Max | Min | Max

Chip Enable Low to Chip Enable Low of Next Cycle (Cycle Time) tELEL | 480 | - [318 - ns
Chip Enable Low to Chip Enable High ELEH | 300 - 250 - ns
Chip Enabie Low to Qutput Valid {Access) ' tELQV {300 | = | 250 | ns
Chip Enable High to Qutput High Z {Off Time)) EHQZ - 75 60 ns
Chip Enable Low to Address Don’t Care (Hold) LELAX 75 - 60 - ns
Address Valid 1o Chip Enable Low (Address Setup) ‘ tAVEL 0 - 0 - ns
Chip Enable Precharge Time tgqgL | 110 - 70 - ns

FIGURE 1 — AC TEST LOAD

Test Point

100 pF*

50v
RL - 12k

MMD6150
or Equiv

109k

MMD 7000
or Equiv_

*Includes Jig Capacitance

FIGURE 2 — TIMING DIAGRAM

tELEL
ViIH— 3 -\
CHIP ENABLE. E x
ViL— K
e tELEH — IEHF‘:‘L -
tAVEL la—ELAX (EHQZ#
ViH— AVAVY Y ANANY MY
ADDRESS. A VALID X ~ \/\ \ \/* K
VIL_ \/ A/ \\I \I/ [y
l—————tELQV
VOH— 1
DATA OUTPUT, Q —H1 Z VALID) Hi 2
voL— 4
INTRODUCTION operations required or suggested by the IEEE proposed stan-

Since the earliest days of computers it has has been ob-
vious that no computer was capable of doing ali desirable
mathematical operations in binary integer arithmetic. To
meet the needs of those applications requiring the manipula-
tion of real numbers, fioating point (FP) evolved and became
widely used. Unfortunately, each computer manufacturer
created his own floating point (FP) representation and the
ensuing wide variation in formats, accuracy, and exception
handling aimost guarantees that a program executed on one
computer will get different results if executed on another
computer.

Meanwhile, research has been completed which for-
mulates an optional binary floating point representation. Un-
fortunately, the existing manufacturers have far too much
money invested in software and hardware to incur the costs
of conversion to a new standard. Powerful microprocessors,
on the other hand, were in their infancy and the floating
point experts saw the opportunity to standardize a floating
point format for microprocessors. The IEEE appointed a
committee to address the standard and their work resulted in
the /EEE Proposed Standard for Binary Floating Point
Arithmetic Draft 8.0.

The MC6839 represents a complete implementation of the
{EEE proposed standard. Since hardware implementations of
floating point (FP) are always several orders of magnitude
faster (and more expensive} than software implementations,
the MCB839 substitutes increased functionality for speed.
Therefore, the MCB839 supports all precisions, modes, and

dard.

From its very inception, the MB809 microprocessor was
designed to support a concept of ROMable software by an
improved instruction set and addressing modes. It was felt
that the only way to reduce the escalating cost of software
was for the silicon manufacturer to supply software on
silicon. Since the manufacturer can amortize the cost of
developing the software over a very large volume, the cost of
this software, above normal masked ROM costs, will be low.
Also, to be useful in many diverse systems, the ROM must
be position-independent and re-entrant.

The intent of this Advance Information {data) Sheet is to
provide the reader with enough information to make an in-
telligent decision as to whether the MC6838 is applicable to
his system. The intent is not to provide all the details
necessary to interface or program the MC6839, a users
manual is available for that purpose. A familianty with the
MCB809 instruction set is assumed in this document.

PHYSICAL CHlARACTERISTICS

The MC6839 is housed in, one 24-pin 8K-by-8 mask pro-
grammable ROM: the MCM68364. This ROM uses a single
6 V power supply and is available with access times of 260 or
350 ns. The MCB839 is designed to be used in MCB809 or
MCB809E systems with up to 2 MHz internal clocks. Full
device characteristics can be found at the front of this data
sheet.

FLOATING POINT FORMATS

The MC6839 supports the three precisions suggested by the |IEEE Proposed Floating Point Standard: single, double, and extend-
ed. The values occupy 32, 64, and 80 bits (4, 8, and 10 bytes! respectively in the users memory. The formats of the three precisions
are described in the following paragraphs.

SINGLE FORMAT
All single precision numbers are represented in four bytes as:

| 1 je—8—ft——23 bits——>

Isl exponent [significand J

The exponent is biased by + 127. That is exponent of: 20 is 127, 22 is 128, and 2— 2 is 125. The significand is stored in sign
magnitude rather than twos complement form. The equation for the single form representation is:
x=(—1)sx 2lexp—127) x (1. significand)
] =sign of the significand
exp = biased exponent
significand = bit string of length 23 encoding the significant bits of the number that follow the binary point, yielding a 24-bit signifi-
cant digit field for the number that always begins ‘1

Examples:
+1.0= 1.0x20=$3F 80 00 00
+30= 15x21=$40 40 00 00
-1.0=-10x20=¢BF 80 00 00

DOUBLE FORMAT
All double precision numbers are represented by an 8-byte string as:

| 1 fe=11 bits—|e—— 52 bits——>|

[s[exponent I significand J

For double formats the exponent is biased by + 1023. The rest of the interpretation is the same as for single format. The equa-
tion for double format is:

x={(-1)s x 2lexp—1023) x {1. significand)

Examples:
70= 1756 =22= 40 1C 00 00 00 00 OO0 0O
~300=-1875x24= $CO 3E 00 00 00 0O 00 OO
0.25= 10 x22=$3F DO 00 00 00 00 00 00

EXTENDED FORMAT

Single- and double-formats should be used to represent the bulk of floating point (FP) numbers in the user's system {e.g.,
storage of arrays). Extended should only be used for intermediate calculations such as occur in the evaluation.of a complex expres-
sion. In fact, extended may not be used at all by most users, but since it is required internally, it is optionally provided. Extended
numbers are represented in 10 bytes as:

| 1 |15 bits—}e—64 bits——»]

le exponent |1_ significant I

A notable difference between this format and single and double is the 1.0 is explicitly present in the significand and the exponent
contains no bias and is in twos complement form. The equation for double extended is:

x= (= 1)$ x 28XP x significand
where the significand contains the explicit 1.0.

Examples:
05= 10x2-1= $JF FF 8 00 00 00 00 00 00 00
-10=-10x20 = $0 00 8 00 00 00 00 00 00 00
3840= 15x28 = s00 0B CO 00O OO OO0 OO 00O OO OO
BCD STRINGS

A BCD string is the input to the BCD-to-Floating-Point conversion operation and the output of the Floating-Point-to-BCD con-
version operation. All BCD strings have the following format:

0 5 6 24 26
[se [4 digit BCD exponent | sf| 19 digit BCD fraction | p |

se = sign of the exponent. $00= plus, $0F = minus. (one bytel
sf =sign of the fraction. $00=plus, $OF = minus. {one byte)
p = number of fraction digits to the right of the decimal point. {one byte)

All BCD digits are unpacked and right justified in each byte:

7 0
0000 [09

The byte ordering of the fraction and exponent is consistent with all Motorola processors in that the most-significant BCD digit is
in the lowest memory address. -

Examples:
2.0=2.0x100 (p=0)
Address Data

0000 00 {se=+}
0001 00 00 00 OO0 {exponent=0])
0005 00 (sf= +]
0006 00 00 00 00 00 [fraction=2}
0008 00 00 0 0 0
0010 00 00 00 00 0
0015 00 00 00 02
0019 00 ip=0}
or 2.0=20,000x 10~ 4(p=0)
Address Data
0000 OF fse= -]
0001 00 00 00 O4 {exponent = 4}
0005 00 fst=+}
0006 00 00 00 00 00 {fraction= 20000}
000B 00 00 00 00 00
0010 00 00 00 00 02
0015 00 00 00 00
0019 00 lp=0j

(The above might be the output of a Floating-Point-to-BCD with k="5)

or 20=2.0x100 (p= 10}
Address Data

0000 00 (se= +1

0001 00O 00 00 00 {exponent =0}

Q005 00 {sf=+]

0006 00 00 00 00 00 [fraction=20000000000)
0008 00 00 00 02 00

0010 00 00 00 OO0 00

0015 00 00 00 00

0019 0A {p=10}

INTEGERS

Two sizes of integers are supported; short and double,
Short integers are 16 bits long and double integers are 32 bits
long. The byte ordering is consistent with all Motorola pro-
cessors in that the most-significant bits are in the lowest ad-
-dress.

SPECIAL VALUES

No derivable fioating point format can represent the in-
finite number of possible real numbers, so it is very useful if
some special numbers are recognized by a floating point
package. These numbers are: +0, —0, + infinity, — infini-
ty, very small (aimost zero) numbers, and in some cases un-
normalized numbers. Also, it is convenient to have a sepcial
format which indicates that the contents of memory do not
contain a valid floating point number. This ‘'not a number”’
might occur if a variable is defined in a HLL and is used
before it is initialized with a value. The most positive and
negative exponents of each format are reserved to represent
these special vaues.

The detailed description of these special values is given in
a later section.

ARCHITECTURE

All floating point operations are of the “two address” or
“three address” variety; all the user need supply are the ad-
dresses of the operand(s) and the result. The package looks
for operands at the specified locationi{s) and delivers the
result to the specified destination. For example,

Argt + Arg2 -— Result
<source> <source> < destination>

Intermediate results are never presented to the user;
therefore, there are no internal “'registers’’ to be concerned

about, keeping the interface as simple as possible. The end

result is ease of use.

There is a user defined floating point control block (fpcb)
that defines the mode of the package. This control block is
much like the control blocks frequently used to define I/0 or
operating system operations. The fpcb is discussed in detail
in a later section.

SUPPORTED OPERATIONS

The MCB839 supports the following operations. On any
particular call to the floating point ROM a 1-byte opcode
which immediately follows the LBSR instruction chooses the
desired operation. Below are short descriptions of the func-
tions implemented in the MC6839 along with suggested
menmonics. A table containing the opcodes and calling se-
quences for these functions is presented at the end of this
data sheet.

~ Mnemonic

ASCIl

Description

FADD Add arg1 to arg2 and store the result.

FSUB Subtract. arg2 from arg1 and store the result.
FMUL Multiply arg1 times arg2 and store the result.
FDIV Divide arg1 by arg2 and store the result.

" FREM Take the remainder of argl divided by arg2 and

store the result. The remainder is biased to lie in
the range —arg2/2 <remainder< +arg2/2, in-
stead of the usual range of 0 remainder < arg2.
This bias makes the function more useful in the
implementation of trigoppometric and other func-
tions.

FCMP . Compare argl with arg2 and set the condition
codes to the resuit of the compare. Arg1 and arg2
can be of different precisions.

FTCMP Compare argl with arg2 and set the condition

. codes to the result of the compare. In addition,
trap if an unordered exception occurs regardiess
of the state of the UNOR (unordered) bit in the
trap enable byte of the fpcb.

FPCMP A predicate compare; this means compare argl
with arg2 and affirm or disaffirm the input

_ predicate (e.g., ‘is argl =arg2’ or ‘is arg1 < arg2’).

FTPCMP A trapping predicate compare; same as the
predicate compare except trap on an unordered
exception regardless of the state of the UNOR
(unordered) bit in the trap enable byte of the fpcb.

FSQRT Returns the square root of arg2 in the result.

FINT Returns the interger part of arg2 in the result. The
result is still a floating point number. For example,
the integer part of 3.14159 is 3.00000.

FFIXS Convert arg2 to a short (16-bit) binary integer.

FFIXD . Convert arg2 to a long (32-bit} binary integer.

FFLTS Convert a short binary integer to a floating point
result.

FFLTD Convert a long binary integer to a floating point
result. .

BINDEC Convert a binary floating point value to a BCD
decime string.

DECBIN Convert a BCD decimal string to a binary floating
poimt result.

FABS Return the absolute value of arg2 in the resuit.

FNEG Return the negative of arg2 in the result.

FMOV Move (or convert) argt—arg2. This function is
useful for changing precisions (e.g., single to
double) with full exception checking for possible
overflow or underflow.

All routines, except FMOV and the compares, accept
arguments of the same precision and generate a result with
the same precision. For moves and compares the sizes of the
arguments are passed to the package in a parameter word.

Details of each operation can be found in the MC6839
Users Manual.

MODES OF OPERATION

In addition to supporting a wide range of precisions and
operations, the MCB839 supports all modes required or sug-
gested by the IEEE Proposed Floating Point Standard. These
include rounding modes, infinity closure modes, and excep-
tion handling modes. The various modes are selected by bits
in the floating point control block (fpcb) that resides in user
memory. Thus, each user or task can have a unique set of
modes in effect for his calculations. The selection bits are
defined in a later section on the fpchb.

ROUNDING MODES

Four rounding modes are suggested by the |EEE Proposed
Floating Point Standard. They are:

1. Round to nearest {RN)
2. Round toward zero (RZ)
3. Round toward plus infinity (RP)
4. Round toward minus infinity (RN)

Round nearest will be used by most users because it pro-
vides the most accurate answers for most calculations.
Round towards zero (truncate) is useful when the MC6839
implements real numbers in some high level languages that
require truncation {i.e., FORTRAN}. Round towards plus
and minus infinity are used in interval arithmetic.

Normally a result is rounded to the precision of its destina-
tion. However, when the destination is Extended, the user
can specify that the result significand be rounded to the
precision of the basic format — single, double, or ex-
tended — of his choice, although the exponent range re-
mains extended.

NO DOUBLE ROUNDING — The MCB839 is implemented
such that no result will undergo more than one rounding er-
ror.

INFINITY CLOSURE MODES

The way in which infinity is handled in a floating point
package may limit the number of applications in which the
package can be used. To solve this problem, the proposed
|IEEE standard requires two types of infinity closures. A bit in
the control byte of the Floating Point Control Block (fpcb)
will select the type of closure that is in effect at any time.

AFFINE CLOSURE — In affine closure:
minus infinity < fevery finite number} < plus infinity
Thus, infinity takes part in the real number system in the
same manner as any other signed quantity.

PROJECTIVE CLOSURE — In projective closure:
infinity = minus infinity = plus infinity
and all comparisons between infinity and a floating point
number inveolving order relations other than equal (=) or not

equal (#) are invalid operations. In projective ciosure the real
number system can be thought of as a circie with zero at the
top and infinity at the bottom.

NORMALIZE MODE

The purpose of the normalize mode is to prevent unnor-
malized results from being generated, which can otherwise
happen. Such an unnormalized result arises when a denor-

malized operand is operated on such that its fraction remains
not normalized but its exponent is no longer at its original
minimum value. By transforming denormalized operands to
normalized, internal form upon entering each operation, un-
normalized results are guaranteed not to occur.

Thus, when operating in this mode the user can be -
assured that no attempt will be made to return an unnor-
malized value to a single or double destination. A bit in the
control byte of the fpcb selects whether or not this mode is
in effect. This mode is forced whenever the round mode is
either round toward plus or minus infinity. Unnormalized
numbers entering an operation are not affected by this
mode, only denormalized ones are. Unnormalized and
denormalized operands are discussed in a later section.

EXCEPTIONS

One of the greatest strengths of the IEEE Proposed
Floating Point Standard is the regular and consistant handl-
ing of excepticns. Existing floating point implementations
are quite varied in the way they handle exceptions, so the
proposed !EEE standard has very carefully prescribed how
exceptions must be handled and what constitutes an excep-
tign. Seven types of exceptions will be recognized by the
MC6B39. Only the first b are required by the proposed IEEE
standard. They are:

1. Invalid Operation — a general exception that arises
when an operation has gone so wrong that the pro-
gram cannot return any reasonable result or fit the ex-
cepticn into any of the other more specific classes.

2. Underflow — arises when an operation generates a
result that is too small to fit into the desired result
precision.

3. Overflow — arises when an operation generates a
result that is too large to fit into the desired result
precision.

4. Division by Zero — arises when division by zero is at-
tempted.

5. Inexact Result — arises when the result of an opera-
tion was not exact and therefore was rounded to the
desired precisicn before being returned to the user.

6. Integer Overflow — -arises when the binary integer
result of a FIXS(D) operation cannot fit into 16(32)
bits.

7. Comparison of Unordered Values — arises when one
of the arguments to a compare operation is a "NAN"
or an infinity in the projective closure mode. (See the
Infinity and Not a Number paragraphs for further ex-
planation of NANs and infinity .}

For each exception the caller will be given the option of
specifying whether the package should: (1) trap to a user
supplied trap routine to process the exception, or (2) deliver
a default result specified by the proposed standard and pro-
ceed with execution. For most users the default result is ade-
quate and the user need not write any trap handiers_.
Regardless of whether a trap is specified or not, a status bit
will be set'in the status byte of the fpcb and will remain set
until cleared by the caller's program. Selection of whether t0
trap or to continue will be made by setting bits in the trap
enable byte of the fpcb. For more details an the fpcb see the
section on the Floating Point Control Block (fpcb).

If a trap is taken, the floating point package supplies a 3. Underflow
pointer that points to an area on the stack containing the 4. Division by Zero
following diagnostic information: 5. Unordered

1. Event that caused the tiap (overflow, etc.) 8. Integer Overflow

2. Where in the caller's program 7. Inexact Result

3. Opcode The user supplied trap routine (if any) will usually do 1 of 3

4. The input operands things:

5. The default result in internal farmat 1. Fix the result

In the event more than one exception occurs during the 2. Do nothing to the result and allow the floating point
same operation, only one trap is invoked according to the package to deliver the default value to the result.
following precedence. 3. Abort execution.

1. Invalid Operation Sufficient detils on how 1o write a trap routine are fur-
2. Overflow nished in the MC6839 Users Manual.

USER INTERFACE

There are two types of calls to the floating point package: register calls and stack calls. For register calls the user loads the
machine registers with pointers (addresses} to the operand(s) and to the result; the call to the package is then performed. For stack
calls the operandl(s) is pushed on the stack and the call to the package is performed with the result replacing the operands on the
stack after completion. The operand(s) must be pushed least-significant bytes first; this is consistent with the other Motorola ar-
chitectures in that the most-significant byte resides in the lowest address. The two types of calls look like:

General form of a register call:

load registers
LBSR fpreg register call
FCB opcode

Example of a position-independent call to the add routine:

LEAU argl, pcr
LEAY arg2, pcr

LEAX fpcbptr, per pointer to fpch
TFR x, d

LEAX result, pcr

LBSR fpreg

FCB fadd

General form of a stack call:
push arguments

LBSR fpstak stack call
FCB opcode
pull result

Example of a stack call to the add routine:

push argument 1
push argument 2

push fpcbptr pointer to fpcb
LBSR fpstak

FCB fadd

pull result

Details of the calling sequence for every type of operation can be found in the MC6839 Users Manual; a reference table of calling
sequences and opcodes can be found at the end of this data sheet.

STACK REQUIREMENTS

When the MC6839 is called by the user, the package reserves local storage on the hardware stack. It then moves the input
arguments from user memory to the local storage area and expands them into a convenient internal format. The operations use
these “internal”’ numbers to arrive at an “internal’’ result which is then converted to the memory format of the result and returned
to the user. For this reason, the user must insure that adequate memory exists on the hardware stack before calling the MC6839.
The maximum stack sizes that any particular function will ever find necessary are:

register calls 150 bytes
stack calls 185 bytes

FLOATING POINT CONTROL BLOCK ({fpcb)

The fpcb is a user-defined block that contains information needed by the floating point package. The fpcb is also used to pass
status back to the caller or to invoke the trap routine. The fpcb must reside in the user RAM space to insure that the package can re-
main re-entrant. The caller of the floating point package must pass the address of the fpcb on each call. The format of the fpeb is:

control byte

trap enable byte
status byte
secondary status byte

A W NN = O

address of trap routine

The meaning of the various bit fields within the fpch are discussed in detail in the following paragraphs.

CONTROL BYTE — The control byte configures the floating point package for the caller’'s operation and is written by the user.
Various fields in the byte set the precision, round, infinity closure, and normalize modes.

7 6 5 4 3 2 1 0

v v v

Precision X NRM Round Mode A/P

Bit 0 Closure (A/P) Bit
0= projective closure
1 =2affine closure
Bits 1-2 Round Mode
00=round to nearest (RN),
01=round to zero (RZ)
10=round to plus infinity (RP)
11=round to minus infinity (RM)
Bit 3 Normalize (NRM) Bit
1=normalize denormalized numbers while in internal format before using. Precludes the creation of unnormalized
numbers.
0=do not normalize denormalized numbers (warning mode)

‘ NOTE
If the rounding mode is RM or RP then normalize mode is forced. Unnormalized numbers dre not affected by bit 3.
Bit 4 Undefined, reserved '
Bits 5-7 Precision Mode
000= Single
001=Double)
010= Extended with no forced rounding of result
011=Extended — force round result to single
100 = Extended — force round result to double
101 = Undefined, reserved
110= Undefined, reserved
111 = Undefined, reserved
Note that if the control byte is set to zero by the user, all defaults in the IEEE Proposed Floating Point Standard will be selected.

STATUS BYTE

7 6 5 4 3 2 1 0
X INX 1oV UN Dz UNF OVF o]

The bits in the status byte are set if any errors have occurred. Each bit of the status byte is a "sticky’’ bit in that it must be manual-
ly reset by the user. The FP package writes bits into the status byte but never clears existing bits. This is done so that a long calcula-
tion can be completed and the status need only be checked once at the end.

Bit0 Invalid opertion {see secondary status)
Bit.1 Overflow

Bit 2 Underflow

Bit 3 Division by zero

Bit 4 Unordered

Bit 6 Integer overflow

Bit 6 Inexact result

Bit 7 Undefined, reserved

TRAP ENABLE BYTE
7 6 5 4 3 2 1 0
X wnx | 1ov | unor| Dz | unF | ovF | 1op

A ‘1 in any bit of the trap enable byte enables the FP package to trap if that error occurs. The bit definitions are the same as for
the status byte. Note that if a trapping compare is executed and the result is unordered, then the unordered trap will be taken
regardless of the state of the UNOR bit in the trap enable byte.

SECONDARY STATUS (SS)
7 6 5 4 3 2 1 0

T T L] L}

X X X Invalid Operation Type

-

The FP package will write a status into this byte any time a new IOP occurs. As is the case with the status bytes, it is up to the
caller to reset the ""IOP type’ field.

Bits 0-4 Invalid Operation Type Field

0=no IOP error
1=square root of a negative number, infinity in projective mode, or a not normalized number
2= (+ infinity) + { —infinity) in affine mode
3=tried to convert NAN to binary integer

4 =in division: 0/0, infinity/infinity or divisor is not normalized and the dividend is not zero and is finite
5=one of the input arguments was a trapping NAN

6= unordered values compared via predicate other than = or *
7=k out of range for BINDEC or p out of range for DECBIN
8= projective closure use of +/— infinity

9=0x infinity

10=in REM arg2 is zero or not normalized or arg1 is infinite

11 =unused, reserved '

12=unused, reserved

13=BINDEC integer too big to convert

14 = DECBIN cannot represent input string

15=tried to MOV a single denormalized number to a double destination

16=tried to return an unnormalized number to single or double (invalid result)

17 = division by zero with divide by zero trap disabled

TRAP VECTOR — If any of the traps occur, the FP packége will jump indirectly through the trap address in the fpcb with an in-
dex in the A accumulator indicating the trap type:

0= Invalid Operation
1= Overflow

2= Underflow

34 Divide by Zero
4= Unnormalized
5= Integer Overflow
6= Inexact Result

If more than 1 enabled trap occurs, the MC6838 will return the index of the highest priorty enabled error. Index=0=invalid
operation is the highest priority, and, index==6 is the lowest.

SPECIAL VALUES (SINGLE- AND DOUBLE-FORMAT)

The encoding of the special values are given below. Generally, when used as operands, the special values flow through an opera-
tion creating a predictable result. Note that as with normalized numbers the extended format differs slightly from the single- and
double-formats.

ZERO

Zero is represented by a number with both a zero exponent and a zero significand. The sign is significant and differentiates be-
tween plus or minus zero.

FI o] o]

INFINITY
The infinities are represented by a number with the maximum exponent and a zero significand. The sign differentiates plus or

minus infinity.
[s] 0 j

DENORMALIZED (SMALL NUMBERS) :

When a number is so small that its exponent is the smallest allowable normal biased value (1), and it is impossible to normalize
the number without further decrementing the exponent, then the number will be allowed to become denormalized. The format for
denormalized numbers has a zero exponent and a non-zero significand. Note that in this form the implicit bit is no longer 1 but is
zero. The interpretation for denormalized numbers is:

Single: X=1{(-1)sx2-126x (0. significand)

Double: X=(-1)$x 2— 1022 x (0. significand) ‘ ,

Note that the exponent is always interpreted as 2 — 126 for single and 2~ 1022 for double instead of 2— 127 and 2 1023 a5 might
be expected. This is necessary since the only way to insure the implicit bit becomes zero is to right shift the significand (divide by 2)
and increment the exponent (multiply by 2). Thus, the exponent ends up with the interpretation of 2~ 126 or 2— 1022

The format for denormalized numbers is:

[s [0 I non-zero 1

Note that zero may be considered a special case of denormalized numbers where the number is so small that the significand has
been reduced to zero.

Examples:
Single:
1.0x2-128 =0.25x 2—126=500 20 00 00
Double: :
1.0x2-1025=0.126%x2-1022= $00 02 00 00 00 00 00 00

NOT A NUMBER (NAN)

A number containing a NAN indicates that the number is not a valid floating number. NANs can be used to initialize areas in
memory to indicate they have not had a valid floating point number stored in them. They are also created by the MC68839 to indicate
that an operation could not return a valid result.

The format for a NAN has the largest allowable exponent, a non-zero significand, and an undefined sign. As an implementation
feature (not required by the IEEE Proposed Floating Point Standard), the non-zero fraction and undefined sign are further defined:

djmm... 11t operation address 00....0000

d: 0= This NAN has never entered into an operation with another NAN.
1= This NAN has entered into an operation with other NANs.

t: 0= This NAN will not necessarily cause an invalid operation trap when operated upon.
1= This NAN will cause an invalid operation trap when operated upon (trapping NAN),

Operation address:
The 16 bits, immediately to the right of the t bit, contain the address of the instruction immediately following the call to the FP
package of the operation that caused the NAN to be created. If d (double NAN) is also set, the address is arbitrarily one of the
addresses in the two or more offending NANs.

SPECIAL VALUES (EXTENDED FORMAT)

ZERO
Zero is represented by a number with the smallest unbiased exponent and a zero significand:

s | 100.....0000 0

INFINITY
Infinity has the maximum unbiased exponent and a zero significand:

Ls [011111 11] 0 J

DENORMALIZED NUMBERS
Denormalized numbers have the smallest unbiased exponent and a non-zero significand:

I s l 100...... 000 10. Nnon-zero]

The exponent of denormalized extended and internal numbers is interpreted as having the exponent value 1 greater than the
smallest unbiased exponent value. Thus, a denormalized number has the exponent — 16384, but has the value:
(—1)8sx2-16383 %0 f

Example:
1.0x2-16387=0625% 2~ 16383=540 00 08 00 00 00 00 00 00 00

NANs

NANs have the largest unbiased exponent and a non-zero significand. The operation addresses "'t and "“d"* are implementation
features and are the same as for single- and double-formats.

d| 0. MMy o]t operation addr. OOOOOOOO]

The operation address always appears in the 16 bits immediately to the right of the t bit.

UNNORMALZIED NUMBERS _

Unnormalized numbers occur only in extended or internal format. Unnormalized numbers have an exponent greater than the
minimum in the extended format (i.e., they are not denormalized or normal zero) but the explicit leading bit is a zero. If the signifi-
cand is zero, this is an unnormalized zero. Even though unnormalized numbers and denormalized numbers are handled similarly in
most cases, they should not be confused. Denormalized numbers are numbers that are very small — have minimum exponent —
and hence have lost some bits of significance. Unnormalized numbers are not necessarily small (the exponent may be large or small)
but the significand has lost some bits of significance, hence, the explicit bit and possibly some of the bits to the right of the explicit
bit are zero.

[s] > 100...000 0. significand

Note that unnormalized numbers cannot be represented — and hence cannot exist — for single- and double-formats. -Unnor-
malized numbers can only be created when denormalized numbers in single- or double-format are represented in extended or inter-

nal' formats.

Example:

0625x 22 (unnorm.)=$00 02 0B 00 00 00 00 00 00 00

MC8839 CALLING SEQUENCE AND OPCODE REFERENCE TABLE

Function Opcode Register Calling Sequence Stack Calling Sequence!
FADD - $00 U= Addr. of Argument #1 Push Argument #1
FSUB $02 Y~ Addr. of Argument #2 Push Argument #2
FMUL $04 D<= Addr. of FPCB Push Addr. of FPCB
FDIV $06 X« Addr. of Result LBSR FPSTAK
LBSR FPREQ FCB <opcode>
FCB <opcode> Pull Result
FREM $08 Y~ Addr. of Argument Push Argument
FSQRT $12 D« Addr. of FPCB Push Addr. of FRCB
FINT $14 X+ Addr. of Result LBSR FPSTAK
FFIXS - $16 LBSR FPREG FCB <opcode>
FFIXD $18 FCB <opcode> Pull Result
FAB $1E
FNEG $20
FFLTS $24
FFLTD $26
FCMP $8A U< Addr. of Argument #1 Push Argument #1
FTCMP $CC Y+ Addr. of Argument #2 Push Argument #2
FPCMP $8E D= Addr. of FPCB Push Parameter Word
FTPCMP $DO X+~ Parameter Word Push Addr. of FPCB
LBSR FPREG LBSR FPSTAK
FCB <opcode> FCB <opcode>
Pull Result (if predicate compare;
NOTE: Result returned in the CC register. For NOTE: Result returned in the CC register for
predicate compares the Z-Bit is set if predicate regular compares. For predicate compares a one
is affirmed cleared if disaffirmed. byte result is returned on the top of the stack.
The result is zero if affirmed and — 1($FF) if
) disaffirmed.
FMOV $9A U = Precision Parameter Word Push Argument
Y = Addr. of Argument Push Precision Parameter Word
D+ Addr. of FPCB Push Addr. of FPCB
X< Addr. of Result LBSR FPSTAR
LBSR FPREG FCB <opcode>
FCB <opcode> Pull Result
BINDEC $1C U=k (# of digits in resuit) Push Argument
Y = Addr. of Argument Push k
D+ Addr. of FPCB Push Addr. of FPCB
X = Addr. of Decimal Result LBSR FPSTAK
LBSR FPREG FCB <opcode>
FCB <opcode> Pull BCD String
DECBIN $22 U= Addr. of BCD Input String Push Addr. of BCD Input String
D« Addr. of FPCB Push Addr. of FPCB
X< Addr. of Binary Result LBSR FPSTAK
LBSR FPREG FCB <opcode>
FCB <opcode> Pull Bindry Result

1Al arguments are pushed on the stack least-significant bytes first so that the high-order byte is always pushed last and resides in the

lowest address.

Entry points to the MC6839 are defined as follows:
FPREG = ROM start+ $3D
FPSTAK = ROM start + $3F

MCe839 EXECUTION TIMES

Time in ps Using 2 MHz 6809
Single Double Extended
Function Precision Precision Precision
FADD - 1200~ 3300 1600 — 3700 1100 - 3800
t= 1200+ 40(A) + 50(N) t= 1500+ 40(A) + 50(N} t= 1100+ 40(A) + 50(N)
where: L
A= # shifts to align operands
N = # shifts to normalize result
'FSUB ADD+ 1 ADD + 11 ADD+ 1
FMUL 1400 - 1600 41004300 4600 - 4800
FDIV t=2700+60(Q} t= 5000+ 60(Q} 5=6500 + 60(Q)
where:
Q=# of quotient bits which are
. area’'l’
‘FABS 540 750 650
DECBIN 8500 14,000 8500 - 23,000 -
{time depends on magnitude -
of input}
BINDEC 35,000 - 48,000 -

(time depends on # significand
digits requested)

67,000 - 85,000

