
'

~~I
~

.I
<

: - {

,.

I

: · THE ULTIMATE, ·
I
1 COLOR C MPUTER

~-

I
I
I
I
I
I
I
I
I
I . . .,
I
I

REFE ~UIDE

AND···

. ..

David D. McLeod

and.

Robert van der Poel

*** CJID Jlicrn, Edmontcm., Alberta., CANADA ***

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

/

**
* *
* THE UC, TIHA TE *
* *
* COLOR COMPUTER *
* *
* ~fQ:B.lil:J.~ £1Jl.l.l2JS. ~li.IJ. 1:,004K.l. r. *
* *
* by *
* *
* Davld D HcL~od « Rob~rt van d~r· Po~l *
* *
**

--Published By--

CMD Micro Computer Services Ltd.
10447 - 124 Street

Edmonton, Alberta, Canada T5N 1R7

Copyright <c> 1985 David 0. McLeod I Robert van der Poel

I
I
I
I
I
I
I
I
I

All rights reserved. Printed in CANADA. No part of this I
publication may be reproduced, stored in any retrieval system,
or transmitted in any form or by any means--electronic,
mechanical, photocopying, recording, or otherwise--without the I
express written consent of the publisher.·

I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit

TABLE OF CONTENTS

Introduction ... 2

BASIC Command Reference •..•.••••••••••••••..•••••••••...••••.•• 4

&H/Sc:O •••
ABS • ••••••••••••••
AND ••.••.
Arithmetic Operators ••
AS •.•
ASC ••
ATN.
AUDIO ••
BACKUP .•
CHR$ •••••••••.
CIRCLE.
CLEAR •••
CLOAD ..•
CLOADM ••••
CLOSE ••••
CLS ••.
COLOR ••
CONT •.••••••
COPY •.••••••
cos •••
CSAVE.
CSAVEM •••••
CVN •••
DATA.
DEF ••
DEL.
DIM.

. . . .

DIR • •.••••••
DLOAD/DLOADM .•
DOS •.•
DRAW ••
DRIVE ••
DSKINI •.
DSKI$/DSKO$.
EDIT .•
ELSE •...•••
END.
EOF.
EXEC •.
EXP .•.
FIELD.
FILES.

.
. . .

.

.....
... . ..

..
.

...
. . •

. ...

.6
•• 8

. .•....... 9

. -..

10
12

. ••• 13
•• 14

. ...•• 15
16
17

• 18
.20

..22
.23• 25

..26

. .

. .. • •• 28·
• • 29

.30
.• 32

.33
• . 34
• • 35

. .•.... 36
• ••• 38

.40
• 4 143
.44
.46

• • 47
• • 51

. 52
• •• 54

.56
...•...... 58

• •.• 59
• • 60

•••.••••• 61
• •• 6 2

. .•.. 6 3
• •• 6 5

The Ultimate Reference Guide And Toolkit

FIX.
FN ..
FOR-NEXT-STEP.
FREE.
GET . .•••.•• GET #.
GOSUB-RETURN/ON-GOSUB-RETURN ..
GOTO/ON-GOTO ...
HEX$ • ..••.••.
IF-THEN-ELSE.
INKEY$.•.••
INPUT/LINE INPUT ..
I NSTR •......
INT ...
JOYSTK •.
KILL
LEFT$.
LEN •.
LET . ••.•••.
LINE •.
LINE INPUT.
LIST/LLIST.
LOAD •• ••••••
LOADM.
LOC .•
LOF.
LOG ..
Logical Operators ..
LSET .. .
HEM .. .
MERGE.
MID$
MID$ - •.
MKN$...
MOTOR ..•••...•.•
NEW ...
NEXT .•
NOT ...
OFF /ON •.
OPEN
OR ••••
PAINT ..
PCLEAR •.
PCLS ...
PCOPY.
PEEK ..
PLAY.
PMODE ..
POINT.

...

i i

.• 6 7
. •. 68

. 70
. • 72

. 73
.76

. 77
• • 79

• ••••• 8 1
..82

. 8 4
. . 85
..88

.89
. . 90

• 9 1
..92

.•. 93
• •• 9 4
.. 96
. • 98

••• 99
.100
. 102

104
.105

106
. 107

109
. 110
• 1 1 1

•••• 1 1 3
114

• • • 1 1 6
• • • • • • 1 1 7

118
• 119

. ..•••.... 120
• 1 2 1

• •• 12 2
• •••••••••• 1 25_

126
. 128
. 130
. 131

• •• 132
• ••• 133

. •. 136
. •••• 1 37

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit

POKE.
POS • ••••••••••••
PPOINT •••
PRESET ••
PRINT •••
PRINT !!? ••
PRINT TAB ••
PRINT USING.
PUT •••
PUT # ••
READ ••

. . . .
Relational Operators ••• . •'. RENAME ••
RENUM ••••
RESTORE ••
RETURN.

.
..

RIGHT$ ••••••••
RESET.
RND •••
RSET ••
RUN ••
SAVE.
SAVEM.
SCREEN •••••••
RESET.
SGN ••
SIN .•••
SKIPF •••
SOUND.
SQR ••••••
STOP ••••
STR$ ••

. . . .

.......

.

...
.

.
. .

... ' ..

i i i

138
. 140
• 142

143
..144
. . 147

• ••••••••••• 1 48

.
.....

. 150
153

. . 155
.157

158
• 160

• ••••. 162
. .. 16 4

165
166
167

. •.•••.••• 168
..170

. 171
• •••••••••• 17 3

....

175
• 177

. 179

. 181
• 182

183
.185

STRING$.
• 186

187
. •• 188

• • 189
. • 191

• ••• 192
TAB •••
TAN •••
TIMER.

.
TRON/TROFF •••••••••
UNLOAD ••
USING.
USR ••
VAL ••
VARPTR ••
VERIFY •••

.

...

WRITE . ••..•••••••.••••

. ..•.... 193
• 195

..196
197

..198

..201

..202
• .•• 204

. • 205

The Ultimate Reference Guide And Toolkit iv

Program Optimization Techniques••................... 208

Using REM Statements ...••.
Subroutines •.•••....•
Variables and Constants ..•••....•••••.

Simple Variable Storage
Array variable storage
Variable Positioning .••••••
Declared Constants ..
FOR-NEXT Variables.

Machine Language ••..•.••
Defined Functions .•••...•.
Multiple Statement Lines.
Command Selection .•
Spaces .•.
Colons .•
Summary.

. -

.209
. . 212
.215
.215

.. 222
•••••• 2 33

••• 236
.239

. . 2 41
.247

• . 249
.251
.253

.... 254
.255

BASIC Subroutines .. 258

GRNUMBER.
BREAKDIS ..
BAUDRATE ••
JOYSTICK •••
JOYORKEY.

. . . .

TOBASIC.
DPEEK ••
DPOKE•.
SYSTEM .•
GETDATE •.
CASSNAME •••••••••
INKEY$ ••
KEYINPT.
LINEINPT.
READY# .••
PRESCON 1.
PRESCON2 ••
PRINTON •.
NEATPRNT •.
SCREENPT ..
MENUDISP ••
CHKDRIVE •.
DIR • ••••••
DISKNAME •.
FILEXIST •.
HRINPUT.
HRPRINT ...••.
HRCHRSET ..
PCLEARO •••

. ..

. .

. •• 26 1
•••••• 26 3

. ..

•• 265
.267

. .. 269
.271
.273

• • 274
.• 275
. . 277
.280

• •• 282
•. 283

• •••• 285
.287

••• 289
. . 290
• • 291

...•... 29 3
.294
.295

.• 297

.• 299
. 30 1

.303
305

. . 308
.310

. .•. 317

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit v

Machine Language Subroutines •••••••••.••••••••••••••.....•••• 320

INPUT. • . 322
FLASH.325
SCROLL.329
TIMER ••334
CLOCK •• • ••••. 339
INVERT •• • • 347
SCRAMB •.•.. 351
BORDER ••354
MLSET •• 357
RESTORE •• • 362
PACK .•• 365
EDLIN. • • 370
SEARCH •• • 377

Reference Tables •••••••••••••••••••••••••••••••..•••••••••.•• 382

BASIC
BASIC

Keywords •••••••••.•.•• Keywords by Function ••
BASIC Error Codes .••••.••••
Alphabetical Listing of Subroutines.
Printable ASCII Characters.
POKE ASCII Characters •••••••••••••••••
Hexadecimal-Decimal Conversion Chart •.

• • 382
••••••••• 38 4

. . 386
. 390

. . 393
• •. 394

.395

\

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

**
* * *
*
*
*

INTRQDUCTIQN * *
*
* **

The Ultimate Reference Guide And Toolkit 2

INTRODUCTION

This book is the most comprehensive BASIC reference manual
currently available for the Color Computer. But that's not all!
It also includes a large collection of BASIC and machine
language subroutines. These routines, ln addition to a series of
very useful utility programs, are available separately on a
pre-recorded cassette tape -- to order your copy, please use the
form in the back of the text.

This book is NOT a training manual. We have not made any
attempt to teach you how to write programs. Instead, we have
chosen to provide a great deal of valuable information which, if
used properly, will help you to write programs that run faster
and better than before.

The text is divided into four sections. Section One
contains the BASIC command reference. All BASIC, Extended BASIC
and Disk BASIC keywords are discussed here in great detail. For
easy lookup, they are all listed in alphabetical order; each one
starts on its own page. The discussion for each command includes
the required syntax structure, a description of the purpose of
the command, any limitations which might be imposed on parameter
values, and a complete listing of potential errors. For most of
the commands, we have included a sub-section containing numerous
hints and suggestions which will help you to make the most of
command limitations.

Section Two describes numerous techniques that, if followed
closely, will help you to write more concise and faster
executing programs.

In Sections Three and Four, you will find a large selection
of BASIC and machine language subroutines which you are free to
use in your own programs. The discussion gives full details on
the purpose, entry requirements and exit conditions, and sample
calls for each routine. If you examine the routine listings
closely, you will very likely discover some additional
<undocumented> programming tricks that can easily be adapted to
your own programming environment.

We believe that you will find this manual to be a valuable
programming companion. Just remember that it is a reference and
not a tutorial; use it as such. Happy programming!

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

** ~ ..
* * * Section One *
* * * BASIC COMMAND REFERENCE *
* * **

The Ultimate Reference Guide And Toolkit 4

I
I
I

BASIC COMMAND REFERENCE I
This sections provides you with a comprehensive reference

to all the statements and functions which are available in Color I
BASIC, Extended Color BASIC, and Disk BASIC. The keywords are .
contained in the text in alphabetical order for easy selection.
The discussion for each keyword is broken down into 6 primary

1 topics which are described for you below.

Syntax

Here you will find the formal syntax specification for each
included keyword. We have· adhered to a number of (relatively
standard) rules for our syntax specifications:

1. BASIC Keywords are printed in upper case letters.

2. User-supplied information is indicated by the presence
of italics.

3. [Qptionall parts of each command are shown enclosed
within square brackets.

4. Some commands allow certain parts to be repeated
numerous times. In this case, any repeated part is
replaced by an ellipsis <· ••• ·>.

Purpose

This category provides you with a detailed description of
the command--particularly with respect to how it is USUALLY
used. In this descrlptlon, you will find out what the command
does and any peculiarities it might involve.

Arguments

Most of the BASIC keywords require specific user-supplied
information in order for them to work correctly. In this area,
we outline what the arguments are, and the allowable limits of
the arguments.

Potential Errors

Each BASIC command can foul up in one way or another. This
segment of the discussion tells you which errors are most likely
to occur. We have attempted to be as exhaustive as possible with
this part of the keyword description, but we cannot guarantee
that we have not overlooked a potential error for a particular
keyword.

I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit

We have deliberately failed to discuss syntax
type mismatch <?TM> errors in this section
extraordinary cases>, because they are usually quite
locate and fix.

Examples

5

<?SN> and
<except in
trivial to

Every keyword is accompanied by a series of one or more
examples of how lt is NORMALLY used. We do not in any way intend
that these examples should limit your imagination!

Notes/Suggestions

Except for a few extremely un-complicated keywords, you
will always find one or two extra notes which <we believe> will
help you to make better use of the keyword in question.

The Ultimate Reference Guide And Toolkit

Syntax

&H string expression
&[OJ string expression

Purpose

&H/&0

6

These two statements allow you to represent 16-bit unsigned
integer numbers in either hexadecimal <&H> or octal <&O> format.

Arguments

&H - string expression may be from 1 to 4 characters in
length; each character must be selected from the set ro, 1, 2,
3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, Fl. This allows a range of
hexadecimal numbers from &HOOOO to &HFFFF <O to 65535).

&£01 string expression may be from 1 to 6 characters in
length; each character must be selected from the set (0, 1, 2,
3, 4, 5, 6, 7, 81. This allows a range of octal numbers from
&0000000 to &0177777 CO to 65535>. Note that element ·a· should
not be included in the set of valid octal digits; however, a bug
in BASIC allows it to exist. If the ·o· is deleted, then the
argument is evaluated as octal notation.

Potential Errors

OV - the value of string expression exceeds 65535.

Examples

POKE &HOOB2, &H33

A = PEEK <&H0095)

A = &010

A = &10

Notes/Suggestions

Hexadecimal notation is much more common than octal
notation today because of modernized computer architecture.
Since most processors have word sizes that are a m~ltiple of 4
bits instead of 3 bits, octal notation is virtually obsolete.

There are a couple of reasons why hexadecimal notation is

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 7

to be preferred over decimal notation (but not in all
applications, of course>. First of all, BASIC is able to process
numbers in this format about 50% faster than it can process the

·same numbers in decimal. This is because the conversion from
ASCII-coded hexadecimal to floating-point binary is a very
simple process, while the same conversion of ASCII-coded decimal
is quite a bit more time consuming. Second, machine-language
code in DATA statements is much easier to disassemble when it ls
kept in hexadecimal format. For these reasons, any time your
application does not require floating-point accuracy and the
magnitude of the data is between 0 and 65535, you should use
hexadecimal notation. Bear ln mind, however, that this notation.
will always require 2 extra bytes of memory whenever it is used.

Th~ two statements A = &HlOOO and A = VAL <•&H• + F$)
<where F$ = •1ooo•> perform exactly the same function. In both
cases, A will have the value 4096. But note that the first
statement is faster than the second. The only time the second

.form should be used is when you want to convert a string that
was formulated by the HEX$ command.

•

The Ultimate Reference Guide And Toolkit 8

Syntax

numeric variable = ABS (expression)

Purpose

This function returns the absolute value, or magnitude, of
expression. This means that the sign value of expression is
ignored and the result is always a positive number.

Arguments

expression must evaluate to any positive or negative
n\lmber in the range l0-38 to 10•3•.

Potential Errors

OV - the magnitude of expression exceeds to•:se.

Examples

A= ABS C2 *X+ SIN C3.14159>>

Notes/Suggestions

Use ABS and SGN together to separate any number into its
sign and magnitude parts.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit

~

SEE LOGICAL OPERATORS

9

The Ultimate Reference Guide And Toolkit 10

ARITHMETIC OPERATORS

Syntax

1. Unary Plus --
numeric variable = + expression

2. Unary Minus --
numeric variable = - expression

3. Exponentiation --
numeric variable = expression ~ expression

4. Multiplication--
numeric variable = expression * expression

5. Division --
numeric variable = expression I expression

6. Addition --
numeric variable = expression + expression

7. Subtraction --
numeric variable = expression - expression

8. Strlr-g Concatenation --
string variable = stringl + string2

Purpose

These operators are used in performing arithmetic
calculations. Items 1 to 7 in the syntax list are ordered
according to the precedence value of the operation; thus 1 unless
parentheses are used to force a different order of precedence,
unary plus and minus will be carried out first 1 followed by
exponentiation~ followed by multiplication and division,
followed finally by addition and subtraction.

Arguments

expression may evaluate, for the most part 1

positive or negative value in the range to-ae to
depending on the operations actually performed, as long
result that ls passed to numeric variable ls in
range.

to any
1 o•:te,
as the

the same

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~~·

The Ultimate Reference Guide And Toolkit 1 1

strlngl and strlng2 may be any string of from 0 to 255
characters, each of which may have any ASCII value between 0 and
255, as long as the result which is pass·ed to string variable
is not longer than 255 characters.

Potential Errors

10 - a •division by zero• has been attempted; the
expression immediately following a .,. (division>
sign ls equal to zero.

LS - you have attempted a string concatenation which would
normally produce a string longer than 255 characters.

OS - a string resulting from a concatenation ls longer than
the amount of reserved string space will allow.

OV - the result of an operation is outside the allowable
range of 10-311 to t0•311 •

ST - a formula Ca series of concatenations> for producing a
string is too complex for BASIC to handle.

Examples

A = 2 I C 3 * B>

A$ = A$ +STRING$ Cto,·*·r +A$

Notes/Suggestions

You must always be aware of the order in which operations
will be performed, especially when your expression consists of a
series of different operations. Consider the first two examples
above, each of which produces a different result. In the first
example, •2 I s· is evaluated first, and then the result is
multiplied by B. In the second example, however, the parentheses
force the computer to perform the •g * a· operation first and to
use the result as the denominator for the division into 2.

The use of parentheses In numeric operations makes it quite
easy to alter the order of precedence for any· series of
operations. But remember that each parenthesis takes up an
additional byte of memory and actually slows down the speed of
the operation, so use parentheses only when they are absolutely
necessary.

The Ultimate Reference Guide And Toolkit

~

SEE FIELD

12

I
I
I
I
I

.I
I
I
I
I
I
I
I
I
I
I
I
I/'

1,~

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit

Syntax

numeric variable = ASC (string expression).

Purpose

This function returns the ASCII code of
encountered character in string expression.

Arguments

13

the first

string expression may be a string variable name~ a string
literal, or a formula which evaluates to a valid character
string.

Potential Errors

FC - string expression is a null (zero length> string.

Examples

A = ASC CT$)

A = ASC C*HI*)

IF ASC CQ$) = 8 THEN •••

Notes/Suggestions

The third example above could have been written as •rp Q$ =
CHR$ (8) THEN ••• ·and would produce the same result. Note,
however, that for·· an ·IF-THEN• application, the ASC function
is marginally faster than the CHR$ function.

The Ultimate Reference Guide And Toolkit 14

Syntax

numeric variable = ATN (expression)

Purpose

This function returns the arctangent of expression in
radians. <Arctangent is defined as the angle whose tangent is
expression.>

Arguments

expression may be any signed value whose magnitude is in
the range 1 o-a to 1 o•:s•.

Potential Errors

OV - the magnitude of expression.exceeds 10•3 •

Examples

A = ATN CX + Y>

IF ATN CA> < PI/3 THEN •••

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 15

AUDIO .

Syntax

AUDIO argument

Purpose

This statement allows you to enable or disable sound from
the cassette player to the T.V. speaker. It can be used in
conjunction with the MOTOR statement to allow the simultaneous
playback of music or other recorded data while a BASIC program
ls executing. AUDIO is automatically turned off whenever BASIC
encounters an error.

Arguments

The only valid arguments are ON or OFF.

Potential·Errors

. None.

Examples

AUDIO ON

AUDIO OFF

The Ultimate Reference Guide And Toolkit 16

BACKUP

Syntax

BACKUP source lTD destination]

Purpose

This statement allows you to duplicate the contents of the
diskette in the source drive. If no destination drive is
specified or destination is the same as source~ you are
prompted as necessary to swap diskettes ln the source drive. A
NEW is automatically performed when you execute a BACKUP; i.e.~ ·
any BASIC program will be removed from memory.

Arguments

Both source and destination must be expressions that
evaluate to an integer value from 0 to 3.

Potential Errors

DN - drive number either unspecified or out of range.

IO - source disk is unreadable or destination disk is
flawed or unformatted.

VF - VERIFY is turned on; the last written sector cannot
be read back. <This 1s a specialized IO error.>

Examples

BACKUP 0 TO 3

BACKUP 1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I,

I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 17

Syntax

string variable = CHR$ (expression)

Purpose

This function creates a string consisting of one character
whose ASCII code value ls specified by expression.

Arguments

Since the character created must have a valid ASCII code,
expression must evaluate to a number ln the range 0 to 255.

Potential Errors

FC - expression is outside the range 0 to 255.

Examoles

A$ = CHR$ C&H3F)

A$ = CHR$ (128> + •Aac• + CHR$ Cl29>

IF A$ = CHR$ (Q) THEN •••

Notes/Suggestions

In the third example above, the same outcome can be
achieved by ·IF ASC CA$) = Q THEN •.. ·, which executes slightly
faster.

The Ultimate Reference Guide And Toolkit 18

CIRCLE

Syntax

CIRCLE CX, YJ, R l, C, HW, start, endJ

Purpose

This statement causes a circle of radius R to be drawn at
centre point <X, YJ. If specified, C defines the color of
the points in the circle <BASIC's default is the current
foreground color>; HW defines the height-width ratio, which
allows for horizontal or vertical elliptic shapes (default value
is 1); start defines the start point of a circular arc
(default value is O>; end defines the end point of a circular
arc <default value is 1>.

Arguments

X - a valid horizontal co-ordinate from 0 to 255

Y -a valid vertical co-ordinate from 0 to 191

R - may be any positive value such that
R * HW < 65536

C - may be any value from 0 to 8

HW - may be any value from 0 to 255 <values between 0
and 1 produce horizontal ellipses; values above 1
produce vertical ellipses>

start - may be any fractional value from 0 to 1

end - may be any fractional value from 0 to 1 <start
and end represent fractions of 360 degrees or
2 * PI radians>

Potential Errors

FC - one or more of the above arguments is Care> beyond
allowable limits.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 19

Examples

CIRCLE ex, Y>, too, , .95, , .9

. CIRCLE (127, 95), R

Notes/Suggestions

It is possible to cause unusual patterns to be created by
POKElng color mask values directly into memory location &HOOB2.
However, if you do this, do not include a color argument in the
CIRCLE statement. (This same technique works for DRAW, LINE, and
PAINT as well.)

The Ultimate Reference Guide And Toolkit 20

CLEAR

Syntax

CLEAR £string space] £, highest address}

Purpose

This statement performs two separate functions. First, it
causes all BASIC variables to be reset--that is, numeric
variables are all set to zero, and string variables are all set
to null. Second, it allows you to reserve memory space for
string allocation and/or for other protected usage <usually
machine-language programs or sub-routines>. Note that the syntax
for this command is a little unusual--If highest address is
present, string space must also be present. The converse is
not true.

Arguments

string space must be a numeric expression that
how many memory locations are to be reserved for
allocation. BASIC's default value ls 200 bytes.

highest address must be a numeric expression that
the last memory location BASIC is permitted to use.
default value will be the highest available RAM location
for a 16K machine, &H7FFF for a 32K machine>.

Potential Errors

defines
string

defines
BASIC's
<&H3FFF

FC- string space is bigger than the physical RAM limit,
or highest address is not between &HOOOO and &HFFFF
CO to 65535>.

OM - one of the arguments has caused available program
memory to drop below 60 bytes or highest address is
above the physical RAM limit.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit

Examoles

CLEAR

CLEAR 50

CLEAR 200, &H3FOO

Notes/Suggestions

21

It is possible to cause an irreversible OM error with this
command lf you are not careful. Try the following experiment f6r
yourself immediately after power-up (but not when you have a
program ln memory!) Type CLEAR 0 <ENTER>, followed by CLEAR
MEM-58 <ENTER>. These two commands (both of which should
terminate with the normal OK prompt) will cause all but 60 bytes
of free memory to be reserved as string space. You can verify
this by typing PRINT HEM <ENTER>. Note, however, that any
subsequent command that involves any kind of processing will
result in an OM error. The only way to recover from this error
is to power down and power up again CRESET will not work). This
example should demonstrate the caution required when using the
CLEAR command.

The Ultimate Reference Guide And Toolkit 22

CLOAD

Syntax

CLOAD lfilenamel

Purpose

load a BASIC program from
provided, the first
loaded, the program may

This statement allows you to
cassette tape. If filename is not
encountered program will be loaded. Once
be executed by means of the RUN command.

Arguments

filename may be any character string of from 0 to 8
characters in length. Each character may have any ASCII value
from 0 to 255. Note that. a null string is treated as if no
filename were specified and that a filename that exceeds 8
characters in length will be truncated to the 8 character limit.

Potential Errors

FM - the encountered file is not a BASIC program.

IO - the program is loading into bad memory <possibly ROM)
or the tape is unreadable Cpossibly·because the volume
is set incorrectly>.

Examples

CLOAD

CLOAD •pROGRAM•

CLOAD F$

Notes/Suggestions

When the CLOAD statement appears in a program line after an
ELSE or THEN statement, CLOAD must be preceded by a colon <:>;
otherwise, an SN ERROR will occur.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 23

CLOAPM

Syntax

CLOADM lfilenameJ l, offset]

Puroose

This statement allows you to load a machine-language
program into memory. If filename is not specified, the next
encountered program will be loaded. If offset is supplied,
this value will be added to the start, end and entry addresses
of the program, thus causing the program to load into a
different place in memory. Once loaded, the program may be
executed by means of the EXEC command.

Arguments

filename may c~ any character string of from 0 to 8
characters ln length. Each character may have any ASCII value
from 0 to 255. Note that a null string is treated as if no
filename were specified and that a filename that exceeds 8
characters in length will be truncated to the 8 character limit.

offset may be any numeric expression which evaluates to
between &HOOOO and &HFFFF <O and 65535>. Note that offset may
only be present lf filename is specified or a null string ("*)
is used.

Potential Errors

FC - the specified offset is out of range.

FM the encountered file is not a machine-language
program.

IO - the program is loading into cad memory <possibly ROM>
or the tape is unreadable <possibly because the volume
is set incorrectly>.

The Ultimate Reference Guide And Toolkit

Examples

CLOADM

CLOADM •pROGRAM•, &H1234

CLOADM F$

CLOADM ••, &H1234

Notes/Suggestions

24

CLOADM may be used within a BASIC program to load a
co-resident machine-language program. However, you should use
the CLEAR statement to protect memory before loading.

When the CLOADM statement appears in a program line after
an ELSE or THEN statement, CLOADM must be preceded by a colon
(:); otherwise, an SN ERROR will occur.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I -..

I
I
I
I
.I
I
I
I·

The Ultimate Reference Guide And Toolkit 25

CLOSE

Syntax

CLOSE ll#J buffer] l#£#1 buffer] £# ••• 1

Purpose

This statement causes open files to be closed in the order
specified. If no buffer # is supplied, all files will be
closed in the reverse sequence in which they were opened. Note
that CLOSElng a file that was opened for <O>utput may result in
a final clock of data being written to the specified buffer#.

Arguments

buffer # may be an expression which evaluates to a number
between -2 and 15, which correspond to the following _devices:

-2
-1

0
1-15

Potential Errors

- printer CRS-232>
- cassette
- screen/keyboard
- disk

DF - the CLOSE statement resulted in a write attempt to
disk, at which time the disk was found to be full.

FC - buffer # is out of range.

Examples

CLOSE

CLOSE 1

CLOSE #2, #-1, #3

Notes/Suggestions

When closing multiple open files (especially when one or
more of them is open for <O>utput>, always close them in the
reverse order to which they were opened. If you do not do this.
final data clocks may be written to the wrong buffer, causing
the file's integrity to be destroyed. This is particularly
dangerous when your files happen to be on different disk drives,
in which case both directory allocation tables may also pe
incorrectly written!

The Ultimate Reference Guide And Toolkit 26

Syntax

CLS {color code}

Purpose

This statement causes the normal text screen to be cleared
to the specified color, and updates the print position so that
the next PRINT will occur in the upper left corner of the
screen. When no color code is specified, the screen is
actually filled with modified spaces <value &H60 or 96>. When
color code is specified, the screen is filled with a value
that represents a corresponding graphic character.

Arguments

color code may be an expression which has any value from
0 to 255, although only values from 0 to 8 wlll actually cause a
color to be selected. Values from 9 to 255 will cause the word
•MICROSOFT• to appear in the upper left corner of the screen,
but this is not a bona-fide error, since your program still
retains control. color code values from 0 to 8 result in the
following colors:

0 - (value &H80 or 128) - clack
1 - <value &H8F or 143) - green
2 - <value &H9F or 159) - yellow
3 - <value .&HAF or 175) - clue
4 - <value &HBF or 191) - red
5 - (value &HCF or 207) - cuff
6 - <value &HDF or 223) - cyan
7 - <value &cHEF or 239) - magenta
8 - <value &HFF or 255) - orange

Potential Errors

FC - the specified color code is out of range.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
,I
I
I
I
I
I
I
I
I
I
:J

I
I
I

The Ultimate Reference Guide And Toolkit

Examples

CLS

CLS 3

CLS <X>

Notes/Suggestions

27

Although it is permitted to enclose the color code in
parentheses, this practice is not required. Consider the fact
that each parentesis requires an additional byte of memory space
within your program •••

The Ultimate Reference Guide And Toolkit

COLOR

Syntax

COLOR [foreground} £, background}

Purpose

statement allows you to specify
CIRCLE, DRAW, LINE, PAINT,
color (used by PCLS and
specified will be changed.

This
Cused by
background
argumentCs>

Arguments

28

the foreground color
and PSET> and/or the

PRESET>. Only the

Both foreground and background may be expressions which
evaluate to numbers between 0 and 8.

Potential Errors

FC - one or both of the specified color codes is Care> out
of range.

Examples

COLOR 2

COLOR I X

Notes/Suggestions

It is possible to create some very unusual and striking
patterns by POKEing values directly into memory before using any
of Extended BASIC's graphic commands. To do so, POKE any value
from 0 to 255 into location &HOOB2 to affect foreground color,
or into location &HOOB3 to affect background color. This
technique precludes the need for the COLOR command.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I

' I
·I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 29

Syntax

CONI

Purpose

This statement is used in debugging BASIC programs. It
allows you to continue program execution after you have pressed
the <BREAK> key~ or the program has encountered a STOP command.
It will work as long as no BASIC error was produced, and you
have not EDITed any BASIC lines.

Arguments

None.

Potential Errors

CN - program execution cannot be resumed because either a
BASIC error occurred or you EDITed a BASIC line.

Examples

CONT

The Ultimate Reference Guide And Toolkit 30

Syntax

COPY source lTD destination}

Purpose

This statement allows you to COPY a disk file specification
from one place to another. If no destination is supplied, you
are automatically prompted to change diskettes as required.

Arguments

source and destination must be valid
specifications. A filespec consists of 3 parts:

disk file

filename - any character string
in length; the ASCII value of each
and 255 except that the value may
c·.·>, slash c•1•>, or colon <•:•>.

of from 1 to 8 characters
character must be between 1
not correspond to period

extension any character string of from
characters in length; the same ASCII requirements as
filename must be met. The extension is separated
filename by a period <·.·> or a slash c·1·>. ·

1 to 3
for the
from the

drive - (optional) must be a number from 0 to 3. The
drive number may appear at the start or the end of the filespec;
it is always separated from the body of the filespec by a colon
<·:·>. If no drive number is specified, BASIC will use the
current default drive.

Potential Errors

AE - destination filespec already exists.

OF - there is not enough room on the destination disk for
the new file.

FN- invalid filename or extension.

IO - source diskette is unreadable or destination
diskette is flawed or unformatted.

VF - VERIFY is turned on; the last written sector cannot
be read back. <This is a specialized IO error.)

WP - destination diskette has a write-protect tab on it.

I
I
I
I
I
I
I

' I
I
I
I
I
I
I
I
I
I
-I

I
I ,.
I
I
I
I

/

I
I
J
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit

Examples

COPY •pROGRAM/BAs•

COPY •FILE.EXT:t• TO •o:NEWFILE.EXT•

COPY Fl$ TO F2$

Notes/Suggestions

31

If you have Disk BASIC Version 1.0 in your system, you may
never get an •?IO ERROR• when executing this command. Due to a
bug in the ROM, lt is likely that your computer will hang up
instead. If this happens, you can regain control by pressing
RESET, or by turning the computer off and then on again. This
problem does not seem to occur in computers with Disk BASIC
Version 1.1.

..
The COPY command may be used as an alternative to the

BACKUP command CSee our utility ·DsKMAN• for examples of this>.
Although quite a bit more time consuming, COPY will allow you to
completely clean up an old disk where several files have been
KILLed and the disk over-written. Additionally, COPY can be used
wlthln a BASIC program, whereas BACKUP cannot.

An existing file can be duplicated on the same disk -- all
you need to do is use different filenames for~source and
destination with the same drive numbers.

The Ultimate Reference Guide And Toolkit 32

Syntax

numeric variable = COS (expression)

Purpose

This function returns the cosine of expression, which is
assumed to be a radian angle. The returned value is always a
rational number between -1 and +1.

Arguments

expression may be any positive or negative value In the
range 1 o-:~~• to 1 o•:~~•.

Potential Errors

None.

Examples

A = COS <2 * PI I 7)

A = COS ((90 * <2 * PI>>! 360)

IF COS <X> < 0 THEN

Notes/Suggestions

Given that PI is defined as 3.1415928, given that in any
circle 360 degrees = 2 * PI radians, and given an angle A in
degrees, it is possible to convert to a radian angle R by means
of the formula

R = <A * 2 * PI> I 360
= 0.01745329 * A.

Similarly, given any radian angle R, A can be obtained from the
formula

A = (360 * R> I <2 * PI>
= 57.29578 * R.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I~

I
I
I

•
I
I
I
I
I ,.
II
I
I

The Ultimate Reference Guide And Toolkit 33

CSAVEi

Syntax

CSAVE filename

Purpose

This statement causes the BASIC program currently in memory
to be written out to cassette tape. If this command is included
within a program and it follows a THEN or ELSE statement, it
MUST be preceded by a colon. ·

Arguments

filename may be any character string of from 0 to 8
characters in length. Each character may have any ASCII value
from 0 to 255. If the filename exceeds 8 characters in length,
it will be truncated to the 8 character limit •

Potential Errors

None.

Examples

CSAVE •pROGRAM•

CSAVE F$

The Ultimate Reference Guide And Toolkit 34

CSAVEM

Syntax

CSAVEM filename, start, end, entry

Purpose

This statement causes a machine-language file to be written
out to cassette tape. It duplicates the contents of memory from
start to end inclusive. entry must be supplied so that
when the file is re-loaded, BASIC will be able to EXECute the
program. If this statement is used within a BASIC program and it
follows a THEN or ELSE statement, it MUST be preceded by a
colon.

Arguments

filename may be any character string of from 0 to 8
characters ln length. Each character may have any ASCII value
from 0 to 255. If the filename exceeds 8 characters in length,
it will be truncated to the 8 character limit.

start, end, and entry must be valid addresses in the
range &HOOOO to &HFFFF <O to 65535).

potential Errors

FC - start, end, or entry values are out of range.

Examples

CSAVEM •pROGRAM•, 1234, 2345, 1234

CSAVEM •FILE·, &HlOOO, &HlFFF, &HllOO

CSAVEM F$, A, B, C

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I

' I
I
I
I
I·
1',

I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 35

Syntax

numeric variable = CVN (string expression)

Purpose

This statement converts a 5-character string, which
represents a floatlng-polnt numoer, so that it can oe displayed.
Although it is used primarily to decode data that was encoded oy
the MKN$ command, it will work on any 5-character string.

Arguments

string expression must oe exactly 5 characters in length,
out each character may have any ASCII value from 0 to 255.

Potential Errors

FC - string expression is not 5 oytes long.

Examples

A = CVN (A$)

A = CVN <•HELLo•>

IF CVN (X$ + Y$) < lE-10 THEN •••

I

The Ultimate Reference Guide And Toolkit 36

Syntax

DATA £data itemJ £, data JtemJ I, ••• 1

Purpose

This statement permits the construction of one or more
lists of constant data that are accessed by means of the READ
statement. Depending on the nature of each data item, data may
be read into either a numeric variable or a string variable.

Arguments

data items must be separated by commas. In the case of
numeric data, data item must be written as a number in a
format that is acceptable to BASIC (e.g. 4096, 4.096E+3, or
&HlOOO.> In the case of string data, data item may be any
combipatlon of characters, except that colons and commas may not
be part of the string unless the entire string is surrounded by
quotation marks.

Potential Errors

None.

Examples

DATA 1, 2, 3

DATA "1, 2, 3"

Notes/Suggestions

The DATA statement is a very peculiar instruction, in that
it ls possible to append additional statements to the end of a
data list and to both execute the added Instructions and read
~hem as if they were actual data entries! Consider the following
examples:

00010 DATA
:CLS
:POKE &H500, &HFF
:A = PEEK C&H500)

00020 FOR I = 1 TO 5
:READ B
:PRINT B
:NEXT I

00010 DATA
:CLS
:POKE &H500, &HFF
:A = PEEK <&H500)

0002·0 FOR I = 1 TO 5
:READ BS
:PRINT B$
:NEXT I

I
I
I
I
I
I

' I
I
I
I
·a

.. ,
I
·I ,,
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 37

These two short BASIC programs are identical except that example
#2 reads the data into string variable B$ instead of numeric
variable B. Curiously, example #2 will RUN without error, but
example #1 produces a ·?sN ERROR IN to•. Note, however, that
this error does not occur until after line 10 bas been
completely executed. This is verified by the fact that the
screen clears, an orange graphic block appears on the centre
line, and variable A has been assigned the value 255. What this
strange error means, then, is that no error occurred until the
READ statement was encountered in line 20. But what about
example #2? If you RUN it you will notice that B$ takes on the
value of the tokenlzed BASIC statements one at a time for each
pass through the READ loop. Essentially, this means that both
colons and commas are recognized as delimiters. If you remove
the colon between DATA and CLS in example #2, the screen will
not clear, but the remainder of the instructions will be
executed, and you will get an •?aD ERROR IN 20·.

We have not discovered any particular usefulness for this
odd quirk ln the DATA statement, but you may be able to figure
out some purpose for it.

The Ultimate Reference Guide And Toolkit

Syntax

DEF FN name (numeric variable) = expression
DEF USR lnumberJ = address

Purpose

38

This statement allows you to define one or more
mathematical functions and up to 10 machine-language sub-routine
functions.

Arguments

a. DEF USR

number may be any decimal digit from 0 to 9. If not
specified. zero is automatically assumed . .

address may be an expression which evaluates to a 16-bit
integer number between &HOOOO and &HFFFF (0 and 65535).

b. DEF FN

name may be any character string consisting of the upper
case letters of the alphabet and/or the digits from 0 to 9. The
first character in the name must be an upper-case letter. If the
string consists of more than 2 characters, only the first 2
characters will be recognized by BASIC. Note that these are the ·
same rules that apply to all numeric variables.

numeric variable must
does not require a parameter,
parameter".

be specified even if the function
in which case it becomes a "dummy

expression may be any numeric
long as it evaluates to a positive or
1 o~:a• and 1 o•:al.

or string expression as
negative number between

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I.
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit

Potential Errors

ID - DEF can only be used within a BASIC program; i·t
cannot be used as a direct statement.

OV - address is out of range.

Examples

DEF USR = &HlOOO

DEF USRO = 4096

DEF FN A <X> = 2 * X + COS <X>

DEF FN B <Y>. = LOG <Y> + LOG <2 * FN A <X>>

DEF FN C <A> = INSTR <A~ A$, •.•>

39

The Ultimate Reference Guide And Toolkit· 40

Syntax

DEL lstartlinel l-1 lendlinel

Purpose

This statement causes BASIC program lines to ce DELeted
from the cody of the program.

Arguments

Both startline and endline must ce legitimate line
numbers <i.e. from 0 to 63999) 1 even though the referenced lines
do not have to actually exist in memory. Note that one or coth
of the arguments must ce present--that is, either startline or
endline <or coth 1 separated cy a hyphen) must ce specified.

Potential Errors

FC -no line number has ceen supplied.

Examples

DEL 10

DEL 10 - 50

DEL - 50

DEL - -- same effect as a NEW

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 41

Syntax

DIM variable ((size £, •••])] [, variable] £, ••• 1

Purpose

This statement
variable in the list,
numeric variable or
list may refer to all
and array variables.

allocates sufficient memory space for each
and lnltlallzes the value to zero for a
null for a string variable. The variable

variable types including simple variables

Arguments

variable may be any legitimate variable name consisting
of the upper-case letters of the alphabet and the digits from 0
to 9. The first character must always be an upper-case letter;
lf the name ~xceeds 2 characters ln length, only the first 2
will be recognized by BASIC. If the variable name is terminated

,by a ·$·, the variable will be recognized as a string variable.

size is used to specify the number of elements in each
dimension of an array variable. The limits on the value of
size will depend on the amount of free memory available, and
on the number of dimensions in the array. When the program is
run, the actual number of elements wlll be size + 1.

Potential Errors

BS the value of size exceeds 13106 C32K machine>.

DO - the specified variable has been dimensioned before
<variables cannot be dimensioned twice ln the same
program unless a CLEAR statement has been executed
first>.

FC - the value of size exceeds 32767.

OM - the value of size ls too large for the amount of
free memory remaining.

The Ultimate Reference Guide And Toolkit

Examples

DIM A, B, A$

DIM A C6, 6, 3)

Notes/Suggestions

42

Whenever a new variable is introduced in a BASIC program,
the interpreter automatically performs a DIM, which means that a
search is done to see if the variable already exists. If not,
then space must be allocated for the new variable. This is
particularly noteworthy when the new variable is a simple
variable, in which case all previously defined array variables
must be moved upward in memory to make room for the new
definition. This, of course, takes time.

In order to eliminate or reduce this time, it is good
practice to DIMension all variables just once in an
initialization segment of your program. Sin~e BASIC ~st search
for variable names as they are referenced, it also makes good
sense to place the most frequently used variables at the
beginning of the search area. This can be accomplished by
DIMensioning them in the desired order~ Determining the
frequency of variable usage is a difficult and time-consuming
task, and for this reason, we have developed a utility program
C"VARLIST·, available separately on tape> which will do the job
for you. Once you have the ordered list of variable names, you
can construct a DIM statement which will preset the entire
variable space for you. This DIM statement should list the
simple variables first, followed by array variables.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 43

Syntax

DIR £drivel

Purpose

This statement allows you to read the contents of the
DIRectory sectors on the diskette in the specified drive.

Arguments

drive must evaluate to a number between 0 and 3. If not
specified, the current default drive will be used.

Potential Errors

ON - drive is out of range.

FS - one of the entries in the directory has been
improperly written to disk and therefore, BASIC is
unable to determine the nature of the file. This is
most likely to happen after a file has been opened for
output. but is never properly closed.

IO - the disk is not properly inserted in the drive, the
door is not closed, or the data on the disk: is
unreadable.

Examples

DIR

DIR 2

Notes/Suggestions

BASIC makes no explicit allowance for sending the output of
the DIR command to the printer. This can be accomplished,
however, by the following statements, which replace the above
examples:

POKE &H006F, &HFE: DIR <ENTER>

POKE &H006F, &HFE: DIR 2 <ENTER>

The Ultimate Reference Guide And Toolkit 44

DLOAD/DLOADM

Syntax

DLOAD (filename] l, baud}
DLOADM (filename} £, baudJ £, offset}

Purpose

These statements allow you download a BASIC or
machine-language program from another computer which acts as a
host machine. In order for the commands to work, your computer
must be hooked up to the host via the RS-232 ports <this may be
a direct connection through a network controller or it may be
through a pair of telephone modems>, and the host must be
running a controller program which will recognize and respond to
special serial transmission codes from your computer.

Arguments

filename may be any character string of from 0 to 8
characters in length. Each character may have any ASCII value
from 0 to 255. Note that a null string is treated as if no
filename were specified, in which case the host computer
decides which file will be transmitted, and that a filename that
exceeds 8 characters in length will be truncated to the 8
character limit.

baud must be either 0, which corresponds to a baud rate
of 300 bits per second, or 1, which corresponds to 1200 bits per
second. If no baud value is specified, the last defined baud
rate will be used. On power-up, BASIC sets the baud to 300.

offset must evaluate to an integer number from &HOOOO to
&HFFFF <O to 65535).

Potential Errors

FM - you have requested a BASIC program file by means of
the DLOADH command, or you have requested a
machine-language file by means of the DLOAD command.

IO- your computer is not able to receive valid data from
the host, even after 5 separate attempts.

NE - the requested file is not present in the host's
memory.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit

Examples

DLOAD •PROGRAM·~ 0

DLOADM , ~ &HlOOO

Notes/Suggestions

45

If you have only Extended BASIC in your computer~ you will
discover that the DLOADM command contains a small bug, in that
you cannot specify a literal filename. For example~ if you type
DLOADM •MLPROG·~ the computer will respond with a •?TM ERROR·.
This bug can be overcome by replacing the command with the
following statements:

F$ = •MLPROG·: DLOADM F$

If you have Disk BASIC in your computer, this bug will not
occur.

The Ultimate Reference Guide And Toolkit 46

Syntax

DOS

Purpose

This statement is made available in Disk BASIC Version 1.1.
Its purpose is to permit toe loading and auto-execution of a
machine-language program (usually an operating system, such as
OS-9). It causes the computer to read in all of track #34 from
the disk in drive #0 and to store the data in memory starting at
&H2600. If the first two bytes of this data are equal to the
ASCII values for ·as·, then control is passed to the program
starting at &H2602; otherwise, a RESET is performed.

Arguments

None.

Potential Errors

IO - one or more sectors on Track #34 is Care> unreadable.

Examples

DOS

Notes/Suggestions

Beware of using this command when you have an unsaved BASIC
program in memory. Obviously, if there is a legitimate program
on Track #34, you will lose control of the computer. But, even
if the data on Track #34 is not valid, your program will likely
be destroyed, especially if the computer is configured at PCLEAR
4 or higher.

Whether you have a program in memory or not, following a
failed DOS command, you will have to perform a NEW in order to
fix BASIC's pointers. DOS does not do this for you.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 47

Syntax

DRAW strlng

Purpose

This statement ls used to draw lines on the high resolution
graphics screens. By varying the angle, scale, color and
direction of the lines, you can create quite complex figures.

Arguments

In the following discussion, the word ·cursor" is used to
indicate the position at which the next DRAW will occur. No
cursor is used by the statement, but the word is used here as a
convenient descriptor.

Strlng can include any of the following:

Move cursor- •M• followed by the X~Y co-ordinates.
The two co-ordinates must be separated from each
other by a comma. Each co-ordinate must be an
integer between 0 and 255. If a number greater
than 191 is specified for the Y co-ordinate, the
line will be drawn at the edge of the screen.

Blank move - •aM· followed by the X,Y co-ordinates
<see above>.

Move offset- "BM" or "M" followed by the X,Y
co-ordinates, with each co-ordinate preceded by
a •+• or ·-·. This will move the cursor the
number of points specified by the arguments from
the current cursor position.

Draw line - the letters U, D, L, R, E, F, G, H will
draw a line in the direction indicated in the
diagram below. The number of points drawn is
specified by the number following the letter. If
no number is included, a default of 1 is used.
All the parameters must be between 0 and 255~

u
H E

L R
G F

D

The Ultimate Reference Guide And Toolkit 48

Draw blank line - •B• preceding a letter in the above
diagram will move the cursor in the the direction
indicated, without a line being drawn.

No update - •N• preceding a letter in the above
diagram will cause the line to be drawn without
the cursor position being updated.

Color - ·c· followed by a number between 0 and 8 will
change the foreground color to the one specified
by the number.

Angle - ·A· followed by an integer between 0 and 4 will
cause the angle at which subsequent lines are
drawn to be changed. On powerup the default value
of 0 is used. Any additional draw commands will
be executed at the new angle. The following angle
arguments are valid:

0 - 0 degrees
1 - 90 degrees
2 - 180 degrees
3 - 270 degrees

If an •A2• is included, a ·u1o· would draw a line
down 10 points, rather than in the up direction
expected.

Scale - ·s· followed by an integer between 1 and 62 will

I
I
I
I
I
I
I
I
I
I
I
I

change the scale at which subsequent lines are

1 drawn. On powerup the default value of 4 is used.
The argument represents a fraction with 4 as its
denominator. For example, a ·s1· will draw the
subsequent commands in 1/4 scale and a ·s12· will I
draw the subsequent commands in 12/4 Cor 3X>
scale.

Delimiters -any of the arguments can be separated from I
each other by spaces or semicolons •;•.
Delimiters are optional in the above operations
and should generally not be used due to the I
memory they consume.

I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 42

To pass a numeric parameter to string, the following
syntax ls allowed:

operation = variable;

where operation is the letter M, U, D, L, R, E, F, G, H,
S, C, or A and variable is any numeric variable. Note
that a semicolon must follow variable, even if it is at
the end of a string.

Substrings can be executed within a DRAW statement with the
following:

Xsubstring;

where substring is a previously defined string variable.
Note that a semicolon must follow the variable name, even
if it is at the end of a string.

Potential Errors

FC - any error in the syntax of the string will result in
the FC error.

Examples

DRAW •BM120,120;USO;L30;030;R30•

DRAW •BM120,120ULNL20BD10G44•

DRAW A$

DRAW •BMS0,30M+l0,-10Sl2C3U3DSA1U303•

Notes/Suggestions

The ·=· syntax is not described in the Radio Shack
documentation for Extended Color Baste and deserves a ott more
explanation. If you wish to pass a variable to a DRAW command,
Going Ahead with Extended Color Basic suggests that you
convert the variable to a string as in the following example:

10 FOR V = 0 TO 3
20 A$ = •A• + STR$ CV>
30 DRAW A$ + ·u4R4D4L4•
40 NEXT V

The Ultimate Reference Guide And Toolkit 50

A much simpler, and faster, loop can oe constucted using the ·=·
syntax, as the following example illustrates:

10 FOR V = 0 TO 3
20 DRAW ·A=V;U4R4D4L4•
30 NEXT V

Note that the variaole name can oe any 2 letter combination -- V
is used here for angle. When the ·=· is encountered in the
string, the angle takes on the value of ·=v;·. The first time
the aoove loop ls interpreted lt would oe equivalent to
•AOU4R4D4L4•; the last time through the'loop, •A3U4R4D4L4·.

With the same technique, you can pass co-ordinate values as
well. In the following example, the figure will oe drawn in five
different locations on the screen:

10 A$ = ·u4R4D4L4•
20 FOR T = 1 TO 5
30 READ X, Y
40 DRAW ·sM=X;,=Y;• +A$
50 NEXT
60 DATA 10, 15, 35, 40, 100, 90, 200, 90, 20, 180

In this example the cursor is positioned to location 10, 15 on
the first pass. Note that ·=x;· takes the place of •to• in the
string and ·=y;• takes the place of ·15•.

If the variaole after the ·=· is a complex expression <e.g.
A+Y>, the expression will not be evaluated and the value of the
first variaole <e.g. A> will oe used.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 51

DRIVE

Syntax

DRIVE expression

Puroose

This statement causes a new default drive number to be
defined. This default drive number Is then used by other disk
commands when the drive number portion of the file specification
is omitted.

Arguments

expression must evaluate to a number between 0 and 3.

Potential Errors

ON - the drive number is either out of range or not
specified.

Examples

DRIVE A

DRIVE 2

Notes/Suggestions

Disk BASIC does not provide a way to determine what the
default value is currently set to. Obviously,· if you never leave
the direct command mode, you will always know what the default
is, since BASIC initializes the default to drive #0 on power-up,
and the only time it can change is when you give the computer an
explicit command to do so. But within a program, it is a
different story, since the program can never be sure that the
default drive is set to any specific value. Fortunately, there
is an easy way to overcome this small problem. The default drive
number is stored at memory location &H095A--lt is a simple case
of PEEKing into this location to determine what value is stored
there. CPOKElng a number from 0 to 3 into this address has
exactly the same effect as executing a DRIVE instruction.>

The Ultimate Reference Guide And Toolkit 52

DSKINI

Syntax

DSKINI drive l, skip factor}

Purpose

This statement is used for formatting the diskette in the
specified drive, with the specified skip factor, which
determines the order in which sectors are physically written to
the disk--if not specified, BASIC uses a default value of 4. Any
BASIC program resident in memory at the time the command is
executed will be lost. When complete, the routine reads back
each sector on each track to verify that it can in fact be read.
The final result ls a diskette formatted to have 35 tracks of 18
sectors each, where each sector contains 256 bytes of &HFF.

Arguments

drive may be any expression which evaluat.es to a number
between 0 and 3.

skip factor must evaluate to a number between 0 and 16.

Potential Errors

ON - drive is either out of range or unspecified.

IO - the disk is not inserted correctly; the drive door is
not closed; there is a bad connection between the
computer and the drive; the drive itself is faulty;
the disk did not format correctly, resulting in bad
reads; or the disk has a physical flaw on it.

WP - the disk has a ·write protect• tab on it.

Examples

DSKINI 0

DSKINI 1, 8

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 53

Notes/Suggestions

The skip facto.r, when specified, is used by BASIC in
determining the physical order of sectors on each track at the
time the disk is formatted. If sectors are written on the disk
in numerical order (which indicates a skip factor of O>, this
allows no time for processing between sector reads, which means
that the disk has to rotate at least one extra time before the
next sector can be read. Each extra disk rotation costs valuable
time, especially when a lengthy file ls being loaded. To reduce
the. delay, BASIC sets up a default skip factor of 4, which
causes the sectors to be written in quite a different order <1,
12, 5, 16, 9, 2, 13, 6, 17_, 10_, 3 1 14, 7, 18, 11, 4, 15, 8). If
you consider this to be a circular table_, you will notice that
between every pair of sequential sectors_, there are 4 other
sectors which will be •skipped" during the disk rotation. This
sequencing seems"to provide the optimum disk I/0 rate for almost
all applications. In our experimentations, we found that skip
factors less than 4 and higher than 8 produced the most
noticeable differences in file loading speed. But of course, our
tests were not conclusive_, and we invite you to experiment with
skip factor for yourself.

I
I

The Ultimate Reference Guide And Toolkit 54

I
DSKI$/OSKO$ I

Syntax

DSKI$ drive, track, sector, string variableJ, string variable2 II
DSKO$ drive, track, sector, string varlable1, string variable2

Purpose II
These statements permit direct access to the sectors on a

standard formatted diskette. You can input a sector with· DSKI$
or output a sector with DSKO$.

Arguments

drive must be a number between 0 and 3.

track must be a number between 0 and 34.

sector must be a number between 1 and 18.

string variable/ and string variable2 will be defined
according to the nature of the operation selected. On input~
string variable/ will contain the first 128 bytes of the
sector and string variable2 will contain the second 128 bytes
of the sector. On output~ each of these strings must be defined
to contain exactly 128 characters of data each.

Potential Errors

FC - drive; track~ or sector are out of range

IO - the disk is not properly inserted in the drive; the
door is not closed; on a read~ it is found that the
disk is unreadable; or on a write~ it is found that
the specified track/sector cannot be found <possibly
because the disk is unformatted).

VF - VERIFY is on~ and following a write~ the controller
was unable to read back the same sector.

WP - there is a ·write-protect• tao on the disk.

I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 55

Examples

DSKI$ O, 17, 3, A$, B$

DSKO$ D, T, S, A$(0), A$(1)

Notes/Suggestions

Although this may be an example of overstating the obvious,
be aware of the fact DSKO$ causes new data to be written to the
specified track/sector--that is, any data that exists on that
sector at the time you execute the DSKO$ instruction will be
destroyed. Therefore, do not use this instruction unless you are
completely sure of what you are doing, especially lf you are
modifying the directory area of the disk <Track 17, Sectors 2
through 11).

The Ultimate Reference Guide And Toolkit 56

Syntax

EDIT line number

Purpose

This statement allows modification of the specified line
number. Note that it actually causes you to enter the Edit mode
of computer operation. Once you are in the Editor, there are
several sue-functions that can ce called, which are described
eel ow.

Arguments

line number must ce any valid line number from 0 to
63999.

Sue-Functions

n SPACEBAR - Move cursor n spaces to right. If •n•

n LEFT ARROW

n S char

n C new chars

n D

n K char

A

E

is omitted, 1 is used.

- Move cursor n spaces to left. If ·n· is
omitted, 1 is used.

- <S>earch for the nth occurrence of
char. If "n" is omitted, 1 is used.

- <C>hange the next n characters to
new chars, starting with the character
under the cursor. If •n• is omitted, 1
is used.

- <D>elete the next n characters, starting
with the character under the cursor. If
•n• is omitted, 1 is used.

- <K>ill all characters from the cursor
position to the nth occurrence of
char. If "n" is omitted, 1 is used.

- Cancel <A>ll changes, but remain in the
Editor.

- <E>xit Editor; retain all changes.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
. I

I
I
I
I
I
I
I
I
I

The Ultimate Reference Gulde And Toolkit 57

Q

L

I

H

X

- Cancel all changes and (Q)uit the
Editor.

- Re-display <L>ine, complete with all
changes made so far.

- Begin <I>nserting new characters,
starting at the cursor. All characters
under the cursor and to the right will
be moved to make room for the new
characters.

<H>ack all characters from the cursor to
the end of the line, and begin inserting
new characters.

- E<X>tend line: move the cursor to the
end of the line and begin inserting new
characters.

SHIFT UP ARROW - terminate insertion of new characters •

ENTER

Potential Errors

- global exit from Editor, regardless of
sub-function being executed.

FC- line number is either out of range or unspecified.

UL - line number does not exist ln memory.

Examples

EDIT 1000

Notes/Suggestions

During the development phase of any BASIC program, it ls
sometimes useful to insert a line containing an EDIT instruction
into the body of the program. When this is done, program
execution stops at the EDIT instruction, and the specified line
is displayed for editing. This can be a very helpful tool,
especially when you are trying to do something like creating a
properly formatted PRINT statement. Of course once the desired
format is obtained, the line containing the EDIT command should
be removed.

The Ultimate Reference Guide And Toolkit

ELSE

SEE IF.

58

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 59

Syntax

END

Purpose

This statement ls used as a program terminator, and is
similar to the STOP statement, except that following an END
command, program continuation is not possible. 'It is not
strictly required within the body of the program unless the
program must be terminated somewhere in the middle (but its
presence does ensure that any OPEN files are properly CLOSEd>.
That is, if no END statement is encountered, program execution
will continue until the physical end-of-program is reached.

Arguments

None.

Potential Errors

None.

Examples

IF A= B THEN ••• ELSE END

The Ultimate Reference Guide And Toolkit 60

Syntax

numeric variable = EOF (buffer)

Purpose

This function is used in conjunction with cassette or disk
files, opened for input, to determine whether an End-Of-File
condition has occurred. Use of this command helps to prevent
attempts to read past the end of the open file. It is only
required when the physical size of the file is not known. This
Is a strictly Boolean (logical> operation; that is, numeric
variable is given a Boolean value of either -1 for •true• or 0
for •false·, where •true• indicates that the end of the file has
been reached.

Arguments

buffer may ce an expression, cut must evaluate to a valid
number as follows:

-1
1 to 15

Potential Errors

for cassette files
for disk files

DN - buffer Is out of range.

NO - the file that uses buffer has not been opened.

Examples

A = EOF <2>

IF EOF <DV> = -1 THEN

IF EOF <DV> THEN

Notes/Suggestions

Because of the Boolean nature of the EOF instruction, no
equality operator is necessary in an IF .•• THEN statement. Thus,
examples 2 and 3 above perform exactly the same function. Note,
however, that example 3 requires less memory and is marginally
faster than example 2 (faster because the equality relationship
does not have to ce evaluated>.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
\I
~ \

The Ultimate Reference Guide And Toolkit 61

Syntax

EXEC !address}

Purpose

This statement is used for transferring control to a
machine-language program or subroutine, where address must be
the start of a valid machine-language instruction. If control is
transferred temporarily to a subroutine which is being used in
conjunction with a BASIC program, control can be returned to the
BASIC program by means of an ·RTs· operation code.

Arguments

address must evaluate to a valid number between &HOOOO
and &HFFFF (0 and 655~5>.

Potential Errors

FC - either no address has been defined <by a CLOADM or
a LOADM or by a previous EXEC command) or the
specified address is out of range.

Examples

EXEC

EXEC &HA928

Notes/Suggestions

EXEC should be used in lieu of USR for all subroutines
whlch do not involve the passing of parameters to or from the
routine. There are two reasons for this suggestion: first. EXEC
is faster, does not require as much memory, and generally does
not require any external definitions to be made; second. the USR
functions are still available for additional subroutines which
involve parameters.

The Ultimate Reference Guide And Toolkit 62

Syntax

numeric variable = EXP (expression)

Purpose

This function calculates the value of the Napierian base
(2.71828183) raised to the power expression. It is the logical
inverse of the LOG function Ci.e. LOG CEXP <expression>> =
expression>.

Arguments

expression may
from -1 o-:, to -1 o•:s7 or
88.0296919.

Potential Errors

evaluate to. any
any positive number

OV - expression is out of range.

Examples

A = EXP <X + Y>

IF SGN CEXP CZ>> (1 THEN •••

negative
from 1 o-n

number
to

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I·
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 63

FIELD

Syntax

FIELD l#J buffer, slze AS string variable l, ••• 1

Purpose

This statement is used for formatting records in direct
access disk files. When executed, each record ln the file will
have a number of variable slze fields. The number of fields is
limited only by the physical limits imposed on the 'length of a
normal BASIC program line.

Arguments

buffer may be any disk buffer number, from 1 to 15, which
has been opened for <R>andom or <D>irect access.

size may be anY. integer number from 0 to 255, as long as
the sum of all size's and each Individual size do not exceed
the total record length as specified in the OPEN statement.

Potential Errors

FC - slze is out of range.

FO - the sum of 1 or more sizes exceeds the total record
length.

Examples

FIELD #1, 15 AS Rl$, 15 AS R2$

FIELD 1, Rl AS Rl$, R2 AS R2$, R3 AS R4$

Notes/Suggestions

· When a string variable has been FIELDed for use with GET or
PUT, it should not be used for any other purpose because the
integrity of the disk file may be destroyed. What's worse is
that such a logic error is impossible to spot unless an ·?sE
ERROR• occurs following an LSET or RSET attempt. Consider the
following broken sequence of BASIC Instructions:

The Ultimate Reference Guide And Toolkit 64

100 FIELD #1, 10 AS A$, 10 AS B$

••• program continues •••

••• program continues •••

300 GET #1, R

Under normal circumstances, you would expect the GET
statement in line 300 to assign values to oath A$ and B$,
depending on what is contained in the disk file. Unfortunately,
this is not the case. Although B$ is indeed properly defined,
examination of A$ will reveal that it has been set equal to
·HELLo·, which is not at all what the program intended. In this
example, no error is generated, making it quite difficult to
locate the logic bug.

Consider the following different sequence of instructions:

100 FIELD #1, 10 AS A$, 10 AS B$

••• program continues •••

••• program continues •••

300 LSET A$ =STRING$ (10, •*•>

This time, an ·?sE ERRoR· occurs in line 300, indicating
that the interpreter no longer considers A$ to ce fielded
(because of the intervening assignment in line 200). This makes
the debugging process a little easier, cut if you think about
it, you will realize that the error is still the same.

The moral of the story ls that FIELDed string variables
should only ce used with GET, PUT, LSET and RSET statements .••

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 65

FILES

Syntax

FILES lbuffersl l, memory space)

Puroose

Thls statement defines the number of disk buffers active
and/or the amount of additional memory space ~o be reserved
for the buffers. This memory space is considered additional
because BASIC always reserves a minimum of 256 bytes of memory
for each buffer. Note that one or both parameters must be
present.

Arguments

buffers may be an expression, but must evaluate to a
number from 0 to 15.

memory space may be an expression which must evaluate to
a number from 0 to the amount of free memory remaining.

Potential Errors

FC - buffers is out of range, or memory space is
greater than &H7FFF (32767). ,

OM - memory space is greater than the amount of free
memory remaining.

Examples

FILES 0, 0

FILES , 3000

FILES 2

The Ultimate Reference Guide And Toolkit 66

Notes/Suggestions

Because of a bug in Disk BASIC ROM Version 1.0, the FILES
command does not always work as advertised. Worse yet, the error
is inconsistent in that it happens under some circumstances but
not under others. The problem can usually be overcome by means
of a couple of reverse referencing GOTO's, as follows:

00010 GOTO 30
00020 GOTO 40
00030 FILES 3, 256

:GOTO 20
00040 your program goes here

Generally, if you are increasing the number of buffers, the
reverse referencing routine should be at the beginning of your
program; on the other hand, if you are decreasing the number of
buffers, the routine should be near the end of the program.

Unfortunately, this type of fix does not always work <as it
does with PCLEAR>. If you get an ·?sN ERRoR• when you run the
program, usually it will disappear when you run it a second
time. Alternatively, you can remove the FILES statement from the
body of the program, and type it in directly from the keyboard
before loading the program.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 67

Syntax

numeric variable = FIX (expression)

Purpose

This function truncates the fractional part of expression
and returns the Integer part as the result. It Is similar to INT
except that INT performs rounding whenever expression is
negative, whereas FIX does not.

Arguments

expression may be any positive or negative value within
the full range from 1041 to to~•.

Potential Errors

OV - expression is out of range.

Examples

A = FIX <A>

IF B =FIX CB> THEN •••

The Ultimate Reference Guide And Toolkit 68

Syntax

numeric variable = FN function name (expression)

Purpose

This function allows you to obtain a numeric result from a
function of one or more variables. The function being named must
have been previously defined by the DEF FN statement.

Arguments

function name may be any combination of upper case
letters and/or digits, as long as the first character is an
upper case letter. If the name Is more than 2 characters in
length, only the first 2 characters will be recognized.

The limits on expression will vary according to the
nature of the function, but lt must always evaluate to a numeric
quantity.

Potential Errors

FC - expression is out of range for one of the terms of
the function.

OV - same as FC.

UF - function name has not been defined.

Examples

A = FN Z <X * Y>

A = FN Z CFN Z (3))

IF FN Z CA) < A THEN

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I~

I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 69

Notes/Suggestions

The FN instruction can save a falr·amount of memory if you
have a function which is to be called from many different places
in the program. It is, however, dreadfully slow when compared to
the equivalent set of simple in-line statements. In fact, in
some cases, we have noted as much as a 50% reduction in speed
when the FN statement was replaced by the equivalent in-line
code. Obviously, the more complex and/or deeply nested the
function, the more time is used up ln the calculation.
Therefore, unless memory is a serious consideration in your
program, we don't recommend the usage of this . particular
command.

The Ultimate Reference Guide And Toolkit 70

FOR-STEP-NEXT

Syntax

FOR variable= start TO end !STEP rate] .•• NEXT !variable]

Purpose

This composite statement defines a repetitive loop. The set
of statements between FOR and NEXT will be executed a
predetermined number of times~ depending on the magnitude of
start, end, and rate. The loop may be of very small slze,
encompassing no instructions at all~ as in a time-wasting loop,
or lt may span the whole program. Loops may be nested within
other loops to a degree that will exceed most application
requirements.

Arguments

variable must
that variable may be
statement; in this
computer assumes that
to be used.

be any valid numeric variable name. Note
omitted "from the NEXT portion of the
case~ when a NEXT is encountered, the
the most recently named loop variable is

start, end and rate may be expressions which
evaluate to positive or negative numbers ln the entire range of
the computer (i.e. to-n to 10 .. 311). If rate is omitted~ a
value of +1 is used by default.

Potential Errors

NF - a NEXT was encountered before a loop was properly
initiated by means of the FOR statement. <Note that
the reverse never occurs--that is~ if a loop is

·started with the FOR statement but the corresponding
NEXT is missing~ no error will be generated.>

Examples

FOR I = 1 TO 10: NEXT

FOR I = 1 TO 10 STEP 2:- NEXT I

Notes/Suggestions

Although it is
loop without properly
statement, this is

quite acceptable to BASIC to exit from a
terminating it by means of the NEXT

not considered good programming practice.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 71

Granted, BASIC is able to resolve these lncompleted loops ~
of the time. The hardware stack ls never properly cleaned up,
however, when you exit by means of a GOSUB to a routine that
does not terminate with a corresponding RETURN. What this means
is that lt is quite possible to cause stack overflow if the
incomplete FOR loop is executed enough times, which wlll result
in an •?oM ERROR" that is very difficult to trace. To avoid this
condition, it ls recommended that you exit the loop correctly.
If it is necessary to leave the loop before it has completed by
itself, all you have to do is force variable to some value
higher than end <or lower· if it is a descending loop) and
execute a NEXT statement, as in the following example:

00010
00020
00030

00040

FOR I = 1 TO 50
A = X * 2 + 34
IF A > B THEN I = 51

:NEXT I
:GOTO 1000

GOSUB 200
:NEXT I

An infinite <non-terminating) loop can be implemented if a
STEP rate of zero is specified. This could be used instead of an
unconditional GOTO in a subroutine loop. For example, the
following subroutine, which uses no line number references, will
flash a "?• until a key is pressed:

01000 FOR T = 0 TO 1 STEP 0
:I$ = INKEY$
:IF I$ = •• THEN PRINT CHR$(8) "?•;
:NEXT
:ELSE T = 2
:NEXT
:RETURN

The Ultimate Reference Gulde And Toolkit 72

Syntax

numeric variable = FREE (drive)

Purpose

This function returns the number of free granules remaining
on the disk in the specified drive.

Arguments

drive must evaluate to a number from 0 to 3.

Potential Errors

IO - the disk is not properly inserted in the drive; the
drive door ls not closed; or the directory track
CTrack #17) ls not readable.

Examples

A = FREE CO>

IF FREE CDR> < 2 THEN •••

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I·
I
I
I
I
I
. I
I
I

The Ultimate Reference Guide And Toolkit 73

Syntax

GET <xl, yl) - (x2, y2), array variable, l, Gl

Purpose

This statement is used to save the contents of a graphics
rectangle. This data can then be placed in a different location
with the PUT statement.

Arguments

XJ, X2, YJ, Y2 must all be numeric expressions between 0
and 255. If the expression has a decimal value, the integer
portion is used.

variable must be a numeric array variable that has been
dimensioned. The following formulas can be used to calcua~ate
the required array size:

1. Using the ·G· option,

width X height

size = -------------- - 1
n

where width and height are the size of the graphics
rectangle in pixels and the value of n is determined by
the graphics mode being used.

PM ODE

3 & 4
2 & 1
0

value of n

40
80

160

The intermediate result of width X height should be
rounded up to the next whole number, as should the final
answer •

The Ultimate Reference Guide And Toolkit

2. Without the "G" option,

width
----- X height

n
size = -------------- - 1

5

where width and height are the size of the graphics
rectangle in pixels and the value of n is determined by
the graphics mode being used.

PMODE

3 & 4
2 & 1
0

value of n

8
16
32

The intermediate result of width I n should be
rounded up to the next whole number, as should the final
answer.

74

The resulting value of size from method 1 or 2 must be
used in a DIMension statement to reserve room for the graphics
data (eg. DIM GRC34> >.

Potential Errors

FC - the size of the rectangle is larger than the array
size; the co-ordinates are out of range;
or variable has not been dimensioned.

Examples

GET <A, B) - CA+30, B+30>, GR, G
GET (20, 20) - (30, 30), DO

Notes/Suggestions

When the "G" option is used, the graphics data
complete detail. This ensures smooth animation
games, etc. It also slows down the execution
command. The following two programs were timed to
difference in speed.

is stored in
ln graphics
speed of the
measure the

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I·
~
I
I

I

·I
I
I
I
I
I
I
I
I
·I

' I
I
I
II
I
I
I

The Ultimate Reference Guide And Toolkit 75

PROGRAM A

00010 PMODE 4
00020 DIM A C255)
00030 FOR T = 1 TO 10
00040 GET CO, 0) - ClOO, 100>, A, G
00050 NEXT

PROGRAM B

00010 PMODE 4
00020 DIM A C262)
00030 FOR T = 1 TO 10
00040 GET CO, 0) - (100, 100>, A
00050 NEXT

Program B executed in slightly over 1.1 seconds while program A
took 9.6 seconds. Repeated experiments ln other PMOOEs yielded
similar results. Generally, a speed increase of 5 to 8 times can
be expected when the ·G· option is deleted. A corresponding
speed difference is found when the PUT command is used to
replace the data on the graphics screen with or without the
action options.

The following general rules can be used in determining if
the ·G· option should be used:

1. If any of the PUT action options need to used, the "G"
must also be used. Note, however, that the effect of PUT
without an action is similar to that of one using PSET
as the action.

2. If the origin and destination addresses of the rectangle
are different in PMODE 2 or 4, the •G• option must be
used. If it is not specified, garbage may result when
the data Is PUT. Keep this ln mind when GET/PUT are used
to save a background display during game animation in
PMODE 4. You do not need to use "G• in these cases.

3. If very smooth animation in PMODEs 0, 1, or 3 is
required, •G• should be used.

When a program using GET and PUT is being developed,
routines should be tried without the ·G·. Then, if the results
are unsatisfactory, the •G• can be added. In many cases a
combination will be most efficient. Just remember that if PUT
actions are to be specified, the "G. must be used in GET and
if the •G• is used, the PUT action must be used.

The Ultimate Reference Guide And Toolkit 76

GET #

Syntax

GET #buffer £, record number]

Purpose

This statement is used to retrieve
<random) access disk file and place it
data can then be assigned to variables
INPUT, or automatically to variables that

data from a direct
in a disk buffer. This
with INPUT and LINE
have been FIELDed.

Arguments

Buffer - must be a numeric expression equal to an OPEN
disk file buffer (i.e. between 1 and 15).

Record number can be any numeric expression between 1
and 32767. If no record number is specified, the current record
pointer <LOC) is used. LOC is incremented after every GET.

Potential Errors

BR - record number is 0; the record specified cannot
exist on the disk due to the physical size of the
disk; or the record specified causes the file size to
exceed 612 sectors.

ON - the buffer specified refers to a disk buffer not
reserved with FILES, or buffer is out of range but
less than 32768.

FC - record number is less than 0 or greater than 32767;
or buffer is less than 1 or greater than 32767.

IE - the record specified is past the end of the file.

IO - the disk is not properly inserted in the drive; the
drive door is not closed; or the disk is unreadable.

NO - the buffer specified has not been OPENed.

Examples

GET #1

GET #8, LOF + 1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I

' I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 77

GOSUB-REIURN/ON-GOSUB-RETURN

Syntax

GOSUB line number ••• RETURN
ON expression GOSUB linel l, llne2J l, ••. 1 ••. RETURN

Purpose

The GOSUB statement allows you to temporarily pass control
to a subroutine starting at the specified line number. If used
in conjunction with the ON statement, control may be passed
subject to the outcome of a conditional test to one of a series
of different line numbers. In both cases, the subroutine is
terminated by a RETURN statement, which causes the main program
to be re-entered at the statement following the GOSUB call.

Arguments

line number, llnel, llne2, etc., must all be valid
numbers between 0 and 63999.

expression must evaluate to an integer number 'between 1
and 255.

Potential Errors

FC - expression is out of range.

UL- the line number referenced by the GOSUB or ON-GOSUB
statement does not exist ln memory.

Examples

GOSUB 1000

ON A GOSUB 100, 200, 300

ON SGN <A> + 2 GOSUB 100, , 200

The Ultimate Reference Guide And Toolkit 78

I
I
I

Notes/Suggestions Jl
The ON-GOSUB statement in example .2 above tells the

computer •tf A= 1 then GOSUB 100; else if A = 2 then GOSUB 200; I
else if A = 3 then GOSUB 300•. But what if A is some value other
than 1, 2, or 3? In that case, control is passed to the
statement following the ON-GOSUB statement, even if it is on the
same line. This, of course, is true only when A is between 1 and ·t
255. "

Notice the syntax of example 3, in which a line number has I
been deliberately omitted from the list. This format is useful
when it ·is known beforehand that the expression will never be
equal to the value which references the missing line <in our

1 example, the value ls 2.> BASIC treats this as a reference to
line #0 and will produce a ·?uL ERROR• only when A= 2 and line
#0 does not exist in memory. Use of this syntax can save you
quite a few bytes of memory, especially when the potential range I
of values for the expression is large, but only a few of the
values will ever be used in the ON-GOSUB statement. There is,
however, one major glitch ·in this type of format: whenever you I
renumber the program, all line numbers following a blank comma
will not be renumbered correctly. For this reason, use the
format only in the final, correctly numbered version of your

1 program.

' I
I
I
I
I
I
I

I
I
I
I
_,.

·t
I
I
I
·I
I
I
~a

'I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 79

GOTO/ON-GOTO

Syntax

GOTO line number
ON expression GOTO linel l, line21 l, ••• 1

Purpose

The GOTO
control to a
number. If used
may be passed,
one of a series

statement allows you to unconditionally pass
program segment starting at the specified line
in conjunction with the ON statement, control
subject to the outcome of a conditional test, to
of different line numbers.

Arguments

line number, linel, line2, etc., must all. be valid
numbers between 0 and 63999.

expre~sion must evaluate to an integer number between 1
and 255.

Potential Errors

FC - expression is out of range.

UL- the line number referenced by the GOTO or ON-GOTO
statement does not exist in memory.

Examples

GOTO 1000

ON A GOTO 100, 200, 300

ON SGN <A> + 2 GOTO 100, , 200

u
\

r

The Ultimate Reference Guide And Toolkit 80

Notes/Suggestions

The ON-GOTO statement in example 2 above tells the computer
•tf A= 1 then GOTO 100; else if A= 2 then GOTO 200; else if A
= 3 then GOTO 3oo·. But if A is some value other than 1, 2, or 3
(within the range 1 to 255), then control is passed to the
statement following the ON-GOTO statement, even if it is on the
same program line.

In example 3, we have shown that lt is possible to have a
list of line numbers with •holes• in it. This format is useful
when you know beforehand that the expression will never be equal
to a value which will cause a missing line number to be
referenced. BASIC will treat the missing line number as a
reference to line #0. In our example, BASIC will report a "?UL
ERRoR· only if the expression is equal to 2 AND line #0 does not
exist in the program. This syntax can save you several bytes of
memory space when the potential range of values for expression
Is large but only a few of them will ever be used to reference
existing lines. But beware! If you try to renumber a program
containing this type of line, all line numbers following a blank
comma will be left as they are. Therefore, use this format with
caution, and then only in the final version of your program.

I
I
I
I .,
I

' I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
II
I
I
I ,,
,,
I
I
1:

I
i ~·

I
I
I
I

The Ultimate Reference Guide And Toolkit 81

Syntax
' string variable = HEX$ (expression)

Purpose

This function converts expression from a numeric decimal
quantity to an ASCII string of from 1 to 4 hexadecimal digits.

Arguments

expression must evaluate to a number from 0 to 65535.

Potential Errors

FC - expression is out of range.

Examples

A$ = HEX$ ClOOO>

PRINT HEX$ CA>

A$ = RIGHT$ cc·ooo· + HEX$ CA>>, 4)

Notes/Suggestions

Example 3 above provides a quick and convenient method of
obtaining a formatted 4-character hexadecimal string.

Conversion of a hexadecimal string back to decimal can be
accomplished by means of the VAL function in conjunction with
•&H• notation, as in A = VAL c·&H• + HEX$ CA>>.

The Ultimate Reference Guide And Toolkit

IF-THEN-ELSE

Syntax

IF condition THEN statementl !ELSE statement2J
IF condition GOTO line number !ELSE statement2J
IF condition GOSUB line number !ELSE statement2J

82

This composite statement allows for conditional execution
of segments of BASIC code. Whenever condition is found·to be
true, statementl is executed or control is passed to line
number. If condition is found to be false then BASIC checks
for the existence of an ELSE statement. If one exists,
statement2 is executed; otherwise~ control is passed to the
line following the IF-THEN statement.

Lines 2 and 3 of the syntax lines above are given to show
that the THEN statement may be omitted only when It would be
followed by a GOTO or GOSUB statement.

Arguments

condition may. be any expression involving the use of
optional relational operators C<, =~ or >> that will be
evaluated by BASIC to a value of -1 for true or 0 for false.

statementl and statement2 may be any legitimate BASIC
command or combination of commands separated by colons. As well~
they may be line numbers~ which will be treated by BASIC as if
they were preceded by GOTO statements.

line number may be any number from 0 to 63999.

Potential Errors

The types of errors possible will be determined by the
types of commands used In the arguments list.

Examples

IF A = -1 THEN 200

IF A < 0 THEN PRINT ·ooNE·: END ELSE 200

IF A + B <> 15 THEN A = 1: B = 1: GOTO 200

IF A GOSUB 300: GOTO 200 ELSE A = NOT CA>

·I
I
I
I
I
I·
I
I
I
I
,J
I
I
rl

I
I
I
I
I

I
I
I
I
I
t
I
I

' I
I
I
I
I
I
~

I
I ~

I
I

The Ultimate Reference Guide And Toolkit 83

Notes/Suggestions

Relational evaluations are not restricted to use within
IF-THEN statements. They can be employed anywhere, even directly
from the keyboard. For example, typing "PRINT A < o• will cause
the computer to respond with either -1 or 0 depending on the
current value of A. Similarly, instead of using the PRINT
statement, you could just as easily assign the result of such a
test to another variable, as in "B =A < o·. In this case, B
will now take on the value -1 or 0, depending on the current
value of A. Now that B has been given a Boolean (logical> value,
the IF statement can be used to test B directly, without the
need for any relational operators, as in ·rF B THEN ••• •.

An understanding of this technique can sometimes totally
eliminate IF-THEN-ELSE statements. For example, suppose you
wanted to toggle a variable between 13 and 19 each time through
a program segment. Traditionally, this would be accomplished by
means of a statement like

IF A = 13 THEN A = 19 ELSE A = 13.

But, considering that 13 and 19 could just as easily have
been -1 and o, it is possible to rewrite the line without the
use of the IF-THEN-ELSE statement, as follows:

A = -6 * <A = 13) + 13

Now study this statement closely. The relation in .. parentheses'
will always result in a value of -1 or 0. Multiplying that value
by -6 will result in a value of 6 or 0. Adding 13 will result in
value of 19 or 13. Variable A does not even have to be defined
the first time through the loop, in which case it will be given
the value of 13. <Remove the parentheses and A will always have
the value of a--think about it.>

What is the advantage of this unusual type of notation? For
one thing, you can now append a series of additional statements
to the end of the line, without worrying about whether or not
they will be executed. This means a saving of a few bytes of
memory in its own right. For another thing, the second notation
takes up less memory than the first, although, admittedly, it
does execute more slowly. We will leave it to you to experiment
further with the above variation and to decide for yourself
where or when to use it.

The Ultimate Reference Guide And Toolkit 84

INKEYS

Syntax

string variable = INKEY$

Purpose

This function allows you to scan the keyboard for a single
key stroke Cany key> and to retain the ASCII value of that
keystroke in string variable.

Arguments

None.

Potential Errors

None.

Examples

A$ = INKEY$

IF INKEY$ = •• THEN ...

,,
I
I
I
I
t
I
I
I
I
I
I
I
I
I
II

·J
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I

' I
I
I
I

The Ultimate Reference Guide And Toolkit

INPUT/LINE INPUT

Syntax

INPUT c·message•;J variable list
INPUT #buffer, variable list
LINE INPUT c•message•;J string variable
LINE INPUT #buffer, string variable

Purpose

85

These statements allow you to obtain data either from the
Keyboard or from a cassette or dlsk file which has been opened
for input Ca disk file may also be opened for direct or random
access>. If the data source is the Keyboard then the statemerits
allow the printing of a message as part of the command. During
execution of the program, the requirement of data input from the
Keyboard is signified by the presence of BASIC's normal flashing
cursor. When this appears, simply type the necessary data. If
you make a mistake, you can press the left arrow to erase the
last character and retype it. <SHIFT> <LEFT ARROW> will cause
the entire line to be erased, and <CLEAR> will cause the screen
to be cleared. If multiple entries are to be made, they can be
separated by commas. To terminate data entry, press the <ENTER>
key.

Arguments

•message• may be any combination of characters enclosed
by quotation marks and terminated by a semi-colon. The INPUT
statement will add a •? • (question mark followed by a space) at
the end of the message. The LINE INPUT statement displays the
message exactly as printed without adding the extra characters.

buffer may be -1 for a cassette file or 1 to 15 for a
disk file.

variable list may be any number of
variables Cslmple or array type). If more
listed, then the second and subsequent
preceded by commas. Note that this format is
the INPUT statement.

numeric or string
than one variable is
variables must be
acceptable only for

string variable
variable. LINE INPUT
argument.

may be any simple or array string
will allow only one variable name as its

The Ultimate Reference Guide And Toolkit 86

Potential Errors

ER - you have attempted to INPUT some data from a direct
<random) access disk file without having first
performed a corresponding GET.

FD - you have attempted to read string data from an open
file into a numeric variable.

FM - the specified buffer has not been opened for input.

ID - you have attemped to use INPUT or LINE INPUT in the
direct mode. These commands may only be used within a
BASIC program.

IE - you have attempted to read data from past the end of
the file. Use EOF to determine if the end of file has
been reached.

OS - you have not cleared enough st~ing space.

You may also experience the following messages during INPUT
from the keyboard <they do not appear if LINE INPUT is used):

?? - The computer is expecting more than one data item to
be entered, but you have not completed the list. The
•??• will continue to appear until all specified
variables have been assigned a value.

REDO - The computer is expecting numeric input but you have
entered non-numeric <string> data.

EXTRA IGNORED - You have entered more data items (separated
by commas) than the computer required.

Examples

INPUT •ENTER YOUR NAME CLAST, FIRST>•; L$, F$

INPUT #1, A$, B$, C$

LINE INPUT .ENTER YOUR NAME? ·; N$

LINE INPUT #-1, A1$

I
I
I
I
I
i
I
I

' I
I
I
I

' I
I
I
I
I

I
I
I
I
I
I

' I
~

I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 87

Notes/Suggestions

There are some interesting differences between cassette
files and disk files, in terms of reading the data by means of
the INPUT statement. In cassette files, INPUT will return only
7-blt ASCII data (in fact, the ASCII value of each character in
the string will be between &H20 and &H7A>, even though the data
may have been correctly written in 8-blt format. Furthermore,
when you issue a command like •INPUT #-1, A$•, BASIC will read
data from the buffer until a carriage return is encountered or
the length of A$ is 255 characters.

In disk files, the data is read back in full 8-bit binary
format, which means that the full range of values from 0 to 255
can be read into a string. As well, input is terminated not only
when a carriage return is detected or when the string length
reaches 255 characters, but also when a comma is detected.

On the other· hand, LINE INPUT treats the data in both
cassette files and disk files in exactly the same manner.
Individual characters are limited to 7-bit ASCII format in the
range &H20 to &H7F, and input continues until string length
reaches 255 characters or a carriage return is detected.

Thus, if you wish to write a program that contains a
·general-purpose routine to read data from an open file, whether
it is a cassette file or a disk file, you must use the LINE
INPUT statement in order to remain completely general.

When using INPUT or LINE INPUT to read data from a direct
access disk file, you must use the GET statement before
attempting Input, as in the following example:

00010 OPEN •o•, #1, •FILE.DAT:t•
00020 EF = LOF <1>

:R = 0
00030 R = R + 1

:IF R > EF THEN CLOSE #1
:END

00040 GET #l1 R
:INPUT #1, A$
:PRINT A$
:GOTO 30

The Ultimate Reference Guide And Toolkit 88

INSTR

Syntax

numeric variable = INSTR (fpositlon,J search string, target)

Purpose

This function allow·s you to examine a search string for
an occurrence of target. If specified, position tells the
computer at which character to begin the search. If it is not
specified, the search will always start at the first character
in search string. If target is found in search string, the
position of target is returned. If target does not exist, a
value of 0 is returned.

Arguments

position may be any value between 1 and 255.

search string and target may be any legitimate strings
of from 0 to 255 characters in length, and each character in the
strings may have any value between 0 and 255.

Potential Errors

FC ~position is out of range.

Examples

A = INSTR <AS, •THE•)

A = INSTR <P, A$, •THE•>

IF INSTR (•123456·, A$) <> 0 THEN •••

Notes/Suggestions

The INSTR function, in conjunction with the INKEY$
function, provides a very convenient method of allowing a user
to select from a list of menu options, as in the following
example:

00100 AS = INKEY$
00110 IF A$ = •• THEN 100
00120 ON INSTR <•123•, A$) GOTO 200, 300, 400
00130 GOTO 100

I
I
I
I
I
I
.I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 89

Syntax

numeric variable = INT (expression)

Purpose

This function converts a rational number to an integer.
When expression ls positive, the result is exactly the same as
for the FIX function--i.e. the fractional part of expression
is merely truncated, and the integer part is retained. When
expression is negative, however, the result is a little bit
different. In this case, INT causes the magnitude of the integer
portion of the number to be increased by one if the fractional
part is not precisely equal to zero. For example, INT
<-3.0000001) = -4.

Arguments

expression may evaluate to any positive or
number from 10-38 to 10+38.

Potential Errors

OV - expression· is out of range.

Examples

A = INT <X * Y + Z>

IF A <> INT <A> THEN

negative

The Ultimate Reference Guide And Toolkit 90

JOYSTK

Syntax

numeric variable = JOYSTK (potentiometer)

Purpose

This function allows you obtain the analog value of one of
the four joystick potentiometers. The value returned is always
between 0 and 63.

Arguments

potentiometer must evaluate to a number between 0 and 3.
These values correspond to the following joystick readings:

0 - right joystick horizontal data
1 - right joystick vertical data
2 - left joystick horizontal data
3 - left joystick vertical data

Potential Errors

FC - potentiometer is out of range.

Examples

· A = JOYSTK (0)

SET CJOYSTK <O>, JOYSTK <1> I 2, 4>

IF JOYSTK (3) > 31 THEN

Notes/Suggestions

To read the status of the joy~tick buttons you must PEEK
memory location &HFFOO (65280). If the value at this memory
location is ANDed with 3 <To assign the values to variable •A·
you could use A = < PEEK (&HFFOO > AND 3 >> a number of unique
values will be returned as follows:

3 - no buttons are pressed
2 - right button is pressed
1 - left button is pressed
0 - both buttons are pressed

I
I
I
I
I
·I
.I
I
..

I
I
I
I
I

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 91

Syntax

KILL file specification

Purpose

This statement is used for deleting files from a disk,
making the space available for re-use by other files.

Arguments

file specification consists of 3 parts; filename and
extension are mandatory, but drive is optional:

filename any character string of from 1 to 8 characters
in length; the ASCII value of each character must be between 1
and 255 except that the value may not correspond to period
c·.·>, slash (•/•), or colon c·:·>.

extension
characters in
filename must
filename by a

any character string of from
length; the same ASCII requirements

be met. The extension is separated
period c·.·> or a slash c·1·>.

1 to 3
as for the

from · the

drive must be a number from 0 to 3. The drive number
may appear at the start or the end of the filespec; it is always
separated from the body of the filespec by a colon c·:·>. If no
drive number is specified, BASIC will use the current default
drive.

Potential Errors

FN - illegal file specification.

:Io - the disk is not properly inserted in the drive; the
drive door is not closed; or a write error occured on
the directory track.

NE - file specification does not exist on the disk.

Examples

KILL F$

KILL •pRQGRAM/BAS:o·

The Ultimate Reference Guide And Toolkit 92

LEFT$

Syntax

string variable = LEFT$ (string expression 1 length)

Purpose

This function allows you to obtain a portion of string
expression, starting with the leftmost character, consisting of
the number of characters specified by length. If length is
greater than the total length of string expression, then the
entire string is returned.

Arguments

string expression may be any combination of from 0 to 255
ASCII characters; each character may have any ASCII value
between 0 and 255.

length may be an expression which must evaluate to a
number between 0 and 255.

Potential Errors

FC - length is out of range.

Examples

A$ = LEFT$ CB$ + STRING$ (22, B> + C$, 32)

IF LEFT$ CA$, 1) = •y• THEN .••

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 93

Syntax

numeric variable = LEN (string expression)

Purpose

This function returns the length of string expression~
which will always be a value between 0 and 255.

Arguments

string expression
ASCII characters; each
between 0 and 255.

Potential Errors

None.

Examples

may be any combination of from 0 to 255
character may have any ASCII value

A = LEN CB$ + STRING$ (22, B> + C$)

IF LEN CA$) <> 5 THEN

PRINT LEN (A$>

The Ultimate Reference Guide And Toolkit 94

Syntax

LET variable name ~ expression

Purpose

This statement is a rarely used instruction which allows
you to assign a value <either numeric or string> to a
corresponding variable type.

Arguments

variable name may be any combination of upper-case
letters and decimal digits, as long as the first character in
the name is an upper-case letter. If the length of the name
exceeds 2 characters, only the first 2 characters will be
recognized by BASIC. If a •$• follows the variable name, that
variable will be treated as a string variable; otherwise, it
will be treated as a numeric variable.

expression may be either a numeric expression, which must
evaluate to a pes 1 t i ve or negative number between 1 o-:n• and
to~•, or a string expression which must evaluate to a string
of from 0 to 255 ASCII characters, each of which may have any
ASCII value from 0 to 255.

Potential Errors

None.

Examples

LET A$ = •NoW IS THE TIME •

LET A= 1.23 * K +55

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 95

Notes/Suggestions

LET is provided as an optional statement to make Color
BASIC more compaticle with other forms of BASIC which require
its presence. Logically, it makes sense to use this statement in
assigning values to variacle~, since lt helps to remove the
amciguity associated with a statement like •A = 1.23 *X + 55•.
It is not practical, however, to use the LET statement for each
variacle assignment, cecause each occurrence uses up an
additional cyte of program memory. This may not seem llke much
until you consider that it is quite easy to have 500 or more
variacle assignments in a single program--that's 500 cytes of
valuacle memory which could ce used for another one or two
sucroutines.

The Ultimate Reference Guide And Toolkit 96

Syntax

LINE f(XJ, Yl)J - lX2, Y2J, m.ode l, BfFJJ

Purpose

This statement draws a single line on the high-resolution
graphic screen from the starting co-ordinate to the ending
co-ordinate. If no starting co-ordinate lXl, YJ) is specified,
the line is drawn from the last named-co-ordinate, which BASIC
initializes to (128, 96). If used, the B option causes a
rectangle <box> to be drawn, in which case the specified
co-ordinates define the upper left and lower right corners of
the box. If additionally the F option is specified, the box will
be color-filled; the color chosen will be the foreground color
if mode was •psET• or the background color if mode was
•pRESET·.

Arguments

Xl and X2 are the horizontal components
co-ordinates and must evaluate to any number between
65535, although BASIC will modify the number to between
side of the screen> and 255 <right side of the screen>.

Yl and Y2 are the vertical components
co-ordinates and must evaluate to any number between 0
although BASIC will modify the number to between 0 <top
screen> and 191 <bottom of the screen).

of the
0 and

0 Cleft

of the
and 255,

of the

mode must be one of the BASIC keywords •psET• <to draw
the line> or •pRESET· <to erase the lin~>.

The B option may appear by itself but the F must be
preceded by the B option.

Potential Errors

FC - Xl, X2, Yl, or Y2 are out of range.

Examples

LINE CO, 0) - (255, 191>, PSET

LINE - CK, Y>, PSET, B

LINE - <K+33, Y+28>, PRESET, BF

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Gyide And Toolkit 97

Notes/Suggestions

You can obtain a wide variety of interesting screen
displays by POKElng different values (between 0 and 255> into
memory locations &HOOB2 (foreground color> and &HOOB3
(background color>. Of course, you won't notice much difference
from normal line displays unless you use the BF option.

The statement arguments listed above are valid regardless
of which PMODE is active; BASIC fixes the co-ordinate values so
that they are wlthln the proper range.

The Ultimate Reference Guide And Toolkit 98

LINE INPUT

SEE INPUT/LINE INPUT

I
I
.I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 99

LIST/LLIST

Syntax

LIST lstartllneJ I-1 lendllneJ

LLIST lstartllneJ l-1 lendllnel

Purpose

This statement causes the BASIC program in memory to be
LISTed to the screen or LLISTed to the printer. The command may
include a startline; if none is specified~ the first program
line in memory ls used. It may also include an endllne; if
none is specified~ the listing continues until the end of the
program ls reached.

Arguments

Both startllne and endllne may be any number from 0 to
63999. If endllne is smaller than startllne, no listing will
be generated.

Potential Errors

None.

Examples

LIST

LIST - 200

LLIST 150 -

LLIST 100 - 500

Notes/Suggestions

LIST and LLIST may be included within a BASIC program <this
may be handy for de-bugging purposes>, but as soon as the
command is encountered~ the listing is generated and then
program execution ceases.

The Ultimate Reference Guide And Toolkit 100

Syntax

LOAD file specification c. RJ

Purpose

This statement allows you to load a BASIC program from
disk. If the r. Rl option is included, OPEN files will remain
OPEN and the new program will begin executing automatically. If
not, all flles are CLOSEd and the program must be executed
directly from the keyboard by means of the RUN command.

Arguments

A file specification consists of 3 parts:

filename any character string of from 1 to 8 characters
in length; the ASCII value of each character must be between 1
and 255 ·except that the value may not correspond to period
c·.·>, slash c•t•>, or colon c·:·).

extension - (optional> any character string of from 1 to
3 characters in length; the same ASCII requirements as for the
filename must be met. The extension is separated from the
filename by a period c•.•> or a slash c•t•>. If no extension is
included, BASIC will use the default extension •BAs·.

drive - (optional> must be a number from 0 to 3. The
drive number may appear at the start or the end of the filespec;
it is always separated from the body of the filespec by a colon
c•:•>. If no drive number is specified, BASIC will use the
current default drive.

Potential Errors

FM - the specified file is not a BASIC program.

IO - the disk is not properly inserted in the drive; the
door is not closed; the program is loading into bad
memory; or the disk is unreadable.

NE - the specified file cannot be located on the disk.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I.
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit

Examples

LOAD •PROGRAH/BAS:l•

LOAD F$, R

101

The Ultimate Reference Guide And Toolkit 102

LOA PM

Syntax

LOADM (file specification) l, offset]

Purpose

This statement allows you to load a machine-language
program into memory. If offset is supplied, this value will be
added to the start, end and entry addresses of the program, thus
causing the program to load into a different place in memory.
Once loaded, the program may be executed by means of the EXEC
command. Note that OPEN files are left OPEN when this command is
executed.

Arguments

A file specification consists of 3 parts:

filename any character string of from 1 to 8 characters
in length; the ASCII value of each character must be between 1
and 255 .except that the value may nbt correspond to period
c·.·>, slash c·/·), or colon c·:•).

extension - (optional) any character string of from 1 to
3 characters in length; the same ASCII requirements as for the
filename must be met. The extension is separated from the
filename by a period c·.·> or a slash c·1·>. If no extension is
included, BASIC will use the default ext~ndion ·siN·.

drive - <optional) must be a number from 0 to 3. The
drive number may appear at the start or the end of the filespec;
it is always separated from the body of the filespec by a colon
c·:·>. If no drive number is specified, BASIC will use the
current default drive.

I
I
I
I
I
I
I
I
I
I
I
I
I
I

offset may be any numeric expression which evaluates to I
between &HOOOO and &HFFFF CO and 65535>.

I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 103

Potential Errors

FC - the specified offset is out of range.

FH - the specified file is not a machine-language program.

IO - the disk is not properly inserted in the drive; the
door is not closed; the program is loading into bad
memory; or the disk is unreadable.

NE - the specified file cannot be located on the disk.

Examples

LOADH •pROGRAM•, &H1234

LOADH F$

Notes/Suggestions

LOADH may be used within a BASIC program to load a
co-resident ~achine-language program. If the program loads into
high RAM, however, you should protect memory by means of the
CLEAR statement before you load the program. Once the program
has been loaded, it can be executed either via the EXEC
statement, or via a USR call (providing, of course, the entry
address has been properly defined by a DEF USR statement).

. I

The Ultimate Reference Guide And Toolkit 104

Syntax

numeric variable = LOC (buffer)

Purpose

This function returns the current record number of an open
disk file.

Arguments

buffer must evaluate to a number between 1 and 15,
corresponding to the open file being accessed.

Potential Errors

NO - the specified buffer has not been opened.

Examples

A= LOC (1)

IF LOC < 100 THEN ..•

Notes/Suggestions

The LOC function may be used with any type of opened disk
file, whether it is opened for input, output, or direct access.
Normally, however, it is used only with direct access files.

direct access, the LOC
GET or PUT statement is

record following that
LOC can be used to

When a file is first opened for
points to record #1. Each time a
executed, LOC ls updated to point to the
specified by the GET or PUT. Thus,
sequentially access the file.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
·I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 105

Syntax

numeric variable = LOF (buffer)

Purpose

This function returns the highest numbered record in a
direct <random> access disk file.

Arguments

buffer must evaluate to a number between 1 and 15,
corresponding to the open file being accessed.

Potential Errors

NO - the specified buffer has not been opened.

Examples

A = LOF <1>

GET #1, LOF (1)

Notes/Suggestions

Like LOC, the LOF function may be used with any type of
opened disk file, whether lt ls opened for Input, output, or
direct access. Normally, however, it is used only with direct
access files. When such a file is opened for the first time, LOF
is given a value of 0 to start.

Example #2 above not only GETs the last record ln the flle
Cthis will produce an ?FC ERROR if the file has been opened for
the first time>, but it also updates the LOC pointer to one
record beyond. This provides a quick and convenient method of
setting pointers for the purpose of adding data to a file.

The Ultimate Reference Guide And Toolkit 106

Syntax

numeric variable ~ LOG (expression)

Purpose

This function returns the natural or Naplerian (base e =
2.71828183> logarithm of expression.

Arguments

expression must evaluate to a positive number in the
range 1 o-3 • to 1 o•::s•.

Potential Errors

FC - expression is not a positive number•

OV - expression is out of range.

Examples

A = LOG CX)

A = LOG CSIN CX>>

IF LOG <X> < 0 THEN . . .
Notes/Suggestions

BASIC does not provide a means of obtaining the common or
base 10 logarithm of a number. A simple conversion factor allows
you to find the common logarithm quite easily, as follows:

A = LOG CX> I LOG ClO).

Since •LoG Cto>• is a constant, the statement can be rewritten:

A = LOG <X> I 2.30258509.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
-I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit

LOGICAL OPERATORS

Syntax

numeric variable = expression AND mask
numeric variable = expression OR mask
numeric variable = NOT expression

Purpose

107

Logical operators are
contained ln expression. AND
called a mask to modify
complements> each bit in the
operate on 16 bits of data.

used for modifying the bit patterns
and OR use another bit pattern,
the data, while NOT inverts Cor
data pattern. These statements will

Arguments

Both expression and mask must
between 0 and 32767 or -1 and -32768.

Potential Errors

FC - expression or mask is out of

Examples

A = A AND B OR C

A = A AND (8 OR C>

IF NOT <A OR B> THEN . . .
Notes/Suggestions

evaluate to numbers

range.

The normal order of precedence for logical operations ls
NOT, AND, OR. This order can be altered by means of parentheses.
In example #1 above, BASIC will determine the result of ·A AND
B• first, and the result will be ORed with c. In example #2,
however, the parentheses force the OR operation to be carried
out first; the result is then used as a mask for A.

Whenever the result of a logical operation ls negative, it
can be made positive by adding 65536 to it. If the magnitude of
the number was originally below 256, then you can add 256
instead. Now the data can be safely converted to hexadecimal
notation, which makes more sense than decimal notation when
dealing wlth bit-patterns.

The Ultimate Reference Guide And Toolkit 108

BASIC does not provide an exclusive-OR statement with its
logical operators. This can be artificially performed~ however~
with the following sequence of instructions~ where ·v· is the
original data value~ and •M• is the mask:

A= CV OR M> AND <NOT <V AND M>>.

The use of OR and AND
statements. In this case the
values and the statement
truth values returned.

is very common in IF - THEN - ELSE
variables are evaluted to boolean
is executed in accordance with the

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 109

Syntax

LSET fielded string variable = string expression

Purpose

This statement is used in conjunction with direct <random>
access disk files. It transfers and left justifies string
expression into fielded string variable. If the length of
string expression is greater than the field size for the
specified variable, then the excess characters are truncated. If
the length of string expression is less than the field size
for the specified variable, then the new string is blank-filled
on the right. The primary purpose of this statement is to
prevent field overflow when writing new records to the file.

Arguments

string expression must evaluate to any combination of
from 0 to 255 ASCII characters,. each of which may have any ASCII
value from 0 to 255.

fielded string variable
variable name which has been
statement.

Potential Errors

may be any legitimate
previously defined in a

string
FIELD

SE - you have named a string variable which has not been
previously fielded.

Examples

LSET A$ = 8$

LSET A$ = •NoW IS THE TIME

LSET A$ = MKN$ <A>

Notes/Suggestions

•

See FIELD
variables.

for additional information about fielded

The Ultimate Reference Guide And Toolkit 110

Syntax

numeric variable = MEM

Purpose

This function returns the amount of free memory remaining.
The result will depend on whether or not there is a BASIC
program in memory and how long the program is.

Arguments

None.

Potential Errors

None.

Examples

PRINT MEM

IF HEM< 2000 THEN •••

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
·I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 1 1 1

MERGE

Syntax

MERGE file speclflcatlon £, RJ

Purpose

This statement is used to overlay one BASIC program with
another. The program to be merged must be stored on disk in
ASCII format, which is done by using the •, A• option when
saving the program. When MERGElng, duplicate lines will be
overwritten. For example, if the program being merged contains
lines 10 and 20, and the program in memory also contains these
lines, the resulting program will have line 10 and 20 from the
new program and the original lines will be lost. If the £, Rl
option is used, all OPEN files will remain OPEN and the new
program will begin executing automatically, starting at the
first program line; otherwise, all files will be CLOSEd.

Arguments

A file speclflcatlon consists of 3 parts:

filename - any character string
in length; the ASCII value of each
and 255 except that the value may
<·.·>, slash <•t•>, or colon <•:•>.

of from 1 to 8 characters
character must be between 1
not correspond to period

extension (optional) any character string of from 1 to
3 characters in length; the same ASCII requirements as for the
filename must be met. The extension is separated from the
filename by a period (•.•) or a slash <•t•>. If no extension is
included, BASIC will use the default extension •sAs·.

drive (optional) must be a number from 0 to 3. The
drive number may appear at the start or the end of the filespec;
it is always sepa~ated from the body of the filespec by a colon
<·:·>. If no drive number is specified, BASIC will use the
current default drive.

The Ultimate Reference Guide And Toolkit

Potential Errors

FM - the specified file is not a BASIC program stored in
ASCII format.

IO - the disk is not properly inserted in the drive; the
door ls not closed; the program is loading into cad
memory; or the disk is unreadable.

NE - the specified file cannot ce located on the disk.

Examples

MERGE •EXAMPLE.PRG•

MERGE F$, R

112

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 113

Svntax

·string variable= HID$ <string# start C# count])

Purpose

This function sets a string variable equal to a portion
of another string. The start specifies the first character of
string to be used and count defines the number of characters
to be used. If count is not specifled 1 then that portion of
string from start to the right end of the string will be
returned.

Arguments

string may be any combination of from 1 to 255
characters, each of which may have any ASCII value from 0 to
255.

Both start and count may be numeric expressions which
must evaluate to numbers between 1 and 255.

If start is beyond the last character of string, a null
string will be returned. If count is greater than the length
of the string from start, the string returned will contain
everything from start to the end of the string.

Potential Errors

FC - start or count is out of range.

Examples

A$ = HID$ <A$, A, 2)

A$ = HID$(A$ 1 3)

IF HID$ <A$, 3, 2) = •gg• THEN

The Ultimate Reference Guide And Toolkit 1 1 4

MID$ =
Syntax

MID$ <strlngl, start l, countl> = strlng2

Purpose

This alternate form of the MID$ function allows you to
change a portion of a pre-defined strlngJ. Note that, in this
case, the MID$ statement appears on the left side of the equals
sign. When the function is used in this way, strlngl is
modified to contain strlng2. If count is not specified, then
BASIC will use a default count equal to the length of
strlng2, which is treated as a maximum number of characters to
transfer into strlngl; however, BASIC will only continue to
transfer characters as long as the original length of strlngl
is not changed. For example, if A$ = •HELLo·, then the statement
MID$ <A$, 3) = •GOODBYE• will result in the new string A$ =
•HEGoo·.

Arguments

· strlngJ must be a pre-defined string variable.

strlng2 may be ~ny combination of from to 255
characters, each of which may have any ASCII value from 0 to
255.

Start may be a numeric expression which must evaluate to

I
I
I
I
I
I
I
I
I
I
I
I

a number between 1 and 255 and less than or equal to the length I
of strlngJ.

Count may be a numeric expression which must evaluate to
between 1 and 255. I

If you specify a decimal expression which contains a
fractional part <e.g. 3.98>, only the integer part of the number I
<in this case, •3•) will actually be used. If start is beyond
the length of strlngl, no changes will occur. If count is
greater than the length of the strlngJ from start, strlngJ

1 will be modified to its end.

I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I·
I
I

The Ultimate Reference Guide And Toolkit

Potential Errors

FC - start or count is out of range; or start is
greater than the length of strlngl.

Examples

MID$ (A$, 3) = •GoODBYE•

115

The Ultimate Reference Guide And Toolkit 116

Syntax

string variable = MKN$ (expression)

Purpose

This function changes expression into a 5-byte string
which corresponds to the normal floating-point format for all
numeric information. Although used primarily for storing numeric
data ln a direct <random> access ~isk file, it can be used
anywhere within your program. The string can be converted back
to a number by means of the CVN function. ·

Arguments

string variable may be any legitimate string variable.

expression must evaluate to a positive or negative number
in the range 1 o-3 • to 1 o•3•.

Potential Errors

OV - expression is out of range.

TM - expression is not numeric, or string variable is
not a legitimate string variable.

Examples

A$ = MKN$ C234)

IF MKN$ CA> <> 5.9 THEN •••

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 117

MOTOR

Syntax

MOTOR argument

Purpose

This statement causes the cassette motor to be turned on or
off. This can be used ln conjuctlon with AUDIO to add spoken
instructions or music to a BASIC program. Once turned on, the
cassette motor will remain on until a MOTOR OFF instruction ls
encountered, any BASIC error occurs, or when a CSAVE or CLOAD
has been completed.

Arguments

argument must be either ON or OFF.

Potential Errors

None.

Examples

MOTOR ON

MOTOR OFF

The Ultimate Reference Guide And Toolkit 11 B

Syntax

NEW

Purpose

This statement deletes the BASIC program currently in
memory and cancels all variable values. It has no effect on USR~
EXEC, PCLEAR or CLEAR values.

Arguments

None.

Potential Errors

None.

Examples

NEW

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
~a·

The Ultimate Reference Guide And Toolkit 119

~

SEE FOR-STEP-NEXT

I
The Ultimate Reference Guide And Toolkit 120 I

I
NOT

SEE LOGICAL OPERATORS
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit

OFF/ON

SEE AUDIO
SEE HDTOR
SEE ON-GOSUB-RETURN
SEE ON-GOTO
SEE VERIFY

1 2 1

The Ultimate Reference Guide And Toolkit 122

Syntax

OPEN mode, l#J buffer, filespec l, size]

Purpose

This statement OPENs a specified filespec for input,
output, or direct (random> access, with communications
channelled through buffer. Files on tape or disk must be
OPENed before they can be written to or read from. When OPENing
a disk file, you can include an optional size argument, which
specifies the the number of bytes to be occupied by each record
in the file. If not specified, size is defaulted to a value of
256.

Arguments

mode must be either a string variable or a string literal
which evaluates to one of the following:

I - to input data from a sequential disk or cassette
file.

0 - to output data to a sequential disk or cassette
file.

R or D - to input or output data to a random access
disk file.

buffer must be one of the following <note that it is not
necessary to OPEN either the printer or the screen/keyboard>:

-2 - printer
-1 - cassette

0 - screen/keyboard
1 to 15 - dlsk

A cassette filespec consists of one part:

filename any character string of from 0 to 255
characters in length; the ASCII value of each character must be
between 0 and· 255. If the length of the filename is 0, then
BASIC will use a default name consisting of 8 spaces. If the
length exceeds 8 characters, then only the first 8 characters
will be used.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 123

A disk filespec consists of 3 parts:

filename - any character string
in length; the ASCII value of each
and 255 except that the value may
c·.·>, slash (.,.,, or colon c·:·>.

of from 1 to 8 characters
character must be between 1
not correspond to period

extension (optional> any character string of from 1 to
3 characters in length; the same ASCII requirements as for the
filename must be met. The extension is separated from the
filename by a period c·.·> or a slash c•1•>. If no extension is
included, BASIC will use the default extension •oAT·.

drive (optional> must be a number from 0 to 3. The
drive number may appear at the start or the end of the filespec;
it is always separated from the body of the filespec by a
colon c•:•>. If no drive number is specified, BASIC will use the
current default drive.

size may be an expression which must evaluate to an
integer number between 1 and 32767.

Potential Errors

OF - the OPEN statement resulted in the creation of a new
file, at which time the disk was found to be full.

ON - buffer is out of range.

FC - size is out of range.

FH - mode is not legal; or, in a cassette system, the
file found is not a data file.

FN - filespec is not a legal disk file specification.

IO - the disk is not properly inserted in the drive; the
door is not closed; or (opening for input or direct
access) the directory track is unreadable.

NE - (opening for input> filespec does not exist on the
disk.

OB - there is not enough memory space available for use
as a buffer <usually occurs when size is too large.>

VF - <opening for output or direct access> VERIFY is on;
during creation of a new file, the controller was
not able to read back a sector on the directory track.

The Ultimate Reference Guide And Toolkit 124

WP - <opening for output or direct access> during creation
of a new file, the disk was found to be write
protected.

Examples

OPEN •I•, #-1 1 ·oATA•

OPEN ·a·, 2, ·oATA.DAT•

OPEN •R•, 8, ·oATA:2•, 355

OPEN A$, #3, B$

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
·-~
I
I
I
I
1/
I
I
I
I
I
·I
I

The Ultimate Reference Guide And Toolkit 125

Q.B.

SEE LOGICAL OPERATORS

The Ultimate Reference Guide And Toolkit 126

PAINT

Syntax

PAINT CX, f) £, paint colorl I, border color]

Purpose

This statement PAINTs a specified area of the graphic
screen a specified paint color. The area to be painted must be
surrounded by an unbroken line of the border color, where CX,
f) ls the co-ordinate pair of a point within that area. If
paint color is omitted, the current foreground color is used;
if border color is omitted, the current background color is
used.

Arguments

X may be a numeric expression which
number between 0 and 65535, although
number to between 0 and 255.

must evaluate to a
BASIC will modify the

f may be a numeric expression which must evaluate to
between 0 and 255, although BASIC will modify the number to
between 0 and 191.

paint color may be a numeric expression which must
evaluate to between 0 and 8.

border color may be a numeric expression which must
evaluate to between o and 8.

For any of these arguments, if rational numbers are
supplied, only the integer part of the number will be used by
BASIC. For example, a paint color of 3.652 will cause an
actual color value of 3 to be used.

Potential Errors

FC - one of the arguments is out of range.

Examples

PAINT C20, 30), 3, 2

PAINT C3*A, 20+B>, ,Cl/2

PAINT CX, Y>, C

I
I
I
I
-1~

I

•
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 127

Notes/Suggestions

You can generate some very interesting patterns with the
PAINT statement oy altering the foreground color value, which ls
stored at memory location &HB2. Try POKEing different values
into this location and using the PAINT statement without
specifying a paint color:

00010 POKE &HB2, &H4D
00020 PAINT< X, Y >, , 3

The above example will PAINT the area starting at X, Y to a
striped pattern until a border color of 3 ls reached. The
effect of this •wallpaper poke• varies with different PMODEs.

•

The Ultimate Reference Guide And Toolkit 128

PCLEAR

Syntax

PCLEAR expression

Purpose

This statement reserves memory pages for use in high
resolution graphics applications. It also resets all variables
in the same manner that CLEAR does. Memory is reserved in blocks
of 1536 bytes (called •graphic pages·.> A PCLEAR 4 <the default
after a cold start> reserves 4 * 1536, or 6144 bytes for
graphics.

Arguments

expression must evaluate to a number between 1 and 8.

Potential Errors

FC - expression is out of range; or there is not enough
free memory remaining to reserve the area specified.

Examples

PCLEAR 3

Notes/Suggestions

In many applications, ·there is no need to have any memory
reserved for graphic use. Unfortunately, the lowest allowable
value that the PCLEAR statement will accept is 1, which still
reserves 1536 bytes of memory that could be used by your
program. It is possible, however, to execute an artificial
•pcLEAR o·, with the following statements:

POKE &Hl9, &HOG: NEW
POKE &H19, &HOE: NEW

Obviously, because of the
necessarily be completed
memory.

(Non-disk systems>
<Disk systems>

NEW statement, this method must
before the program is loaded into

When the PCLEAR statement is included in a BASIC program,
it is possible that you will experience an ·?sN ERROR• when you
run the program. Although this may be a legitimate error in the
spelling of the keyword, it is more likely that your program is
syntactically correct, but has just been subjected to one of the

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I

' I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 1?9

rare bugs found in Extended BASIC Version 1.0. <Version 1.1 bas
been fixed to eliminate this problem.) This bug only shows up
when your program contains a PCLEAR statement that causes·a new
PCLEAR value to be selected. In order to overcome this problem~
you can do one of three things:

1. Try RUNning the program a second time.
2. Execute the PCLEAR statement directly from the keyboard~

and eliminate the statement from the program.
3. Set up the PCLEAR statement within a short program

segment that contains at least one reverse-referencing
GOTO statement.

Methods 1 and 2 are inconvenient# since they involve more typing
than is normally required when RUNning a program. Method 3 is
also a minor inconvenience# but at least the fix can be included
within your program~ as in the following example:

00010 GOTO 30
00020 GOTO 40
00030 PMODE 0: PCLEAR 8: GOTO 20
00040 your program goes here

If you are using PCLEAR to reduce the number of graphic pages
being reserved (e.g. changing from PCLEAR 4 to PCLEAR 2)~ this
program segment should be somewhere near the end of your
program. If you are Increasing the number of graphic pages Ce.g.
changing from PCLEAR 4 to PCLEAR 8)# the segment should appear
near the beginning of your program.

The Ultimate Reference Guide And Toolkit 130

Syntax

PCLS lcolorJ

Purpose

This statement causes the graphics screen to be cleared to
the color specified. If color is omitted, BASIC uses the
current background color.

Arguments

color may be a numeric expression which must evaluate to
between 0 and 8.

Potential Errors

FC - color is out of range.

Examples

PCLS

PCLS X+l

Notes/Suggestions

The syntax of this command
within parentheses, but this
avoided, since each parenthesis
memory space.

allows you to enclose color
is not· required and should be

uses up an additional byte of

If you wish to experiment with unusual patterns, try
POKElng memory location &HB3 <which contains the background
color val~e) with different values between 0 and 255, and then
executing the PCLS statement without specifying a color.

10 POKE &HB3, &H4D
20 PCLS

The above example fills the graphics
pattern. The effects obtained by using
different for various PMODEs.

screen with a striped
this method will be

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
·/

I
I
I
I

' I
I
I
·~

I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toglklt 131

PCOPY

Syntax

PCOPY source page TO destination page

Purcose

This statement
graphics area to be
size is always 1536
such a rapid rate,
animation.

Arguments

causes the contents of source page in the
copied into the destination page. Page

bytes. Since the statement transfers data at
it can be used to simulate high-speed

Both source page and destination page may be
expressions which must evaluate to numbers between 1 and 39.

Potential Errors

FC - source page or destination page is out of range.

Examples

PCOPY 1 TO 3

Notes/Suggestions

Extreme caution must be exercised when using this command,
because BASIC does not check to see lf either argument refers to
a reserved graphics area. For this reason, if a PCLEAR· 4 was
executed, followed shortly thereafter by a PCOPY 1 to 5, the
BASIC program in memory would be <partially> destroyed, since it
would be overwritten by the contents of graphics page 1.

The Ultimate Reference Guide And Toolkit 132

Syntax.

numeric variable = PEEK (expression)

Purpose

This function is used to determine the contents of a
location in memory.

Arguments

expression ·must evaluate to an integer number between 0
and 65535.

Potential Errors

FC - expression is out of range.

Examples

A = PEEK <X>

IF PEEK <&HCOOA) = 0 THEN

I
I
I
'-·

' 'I
I
I
I
I
·J.·

'I -·

'I
I
I
I
I
I
I
I

I
I
I
I;
I
-~

I
I
I
I
I
I
I
~,

I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 133

Syntax

PLAY string

Purpose

This statement is used in the creation of single note
music. By varying the tempo# speed 1 volume 1 length and pltch 1

you can produce different melodies as well as interesting sound
effects.

Arguments

string may be any combination of
parameters~ which may be listed ln any order:

the following

Tempo - •T• followed by a digit between 1 and 255. The
higher the value 1 the faster the melody plays.

Note length - •L• followed by a digit between 1 and
255. The higher the value 1 the shorter the
note length.

Octave ·a· followed by a digit between 1 and 5.

Volume - ·v· followed by a digit between and 255.

Pause - •p• followed by a digit between 1 and 255.

Note - ·N· followed by a digit between 1 and 12,

or a digit between 1 and 12 followed by a
semicolon C;>,

or the letters A, B, C, D, E, F or G. These
letters represent musical notes and can be
made ·sharp• by following them with a •#• or
•+• and made flat by following them with a
·-·. Note that both ·a+• and ·c-· are illegal
syntaxes, even though •E+· and •p-· are
allowed.

The Ultimate Reference Guide And Toolkit 134

Tempo~ volume and note length can be followed by the
following symbols:

·+· - adds 1 to the current value.

·-· - subtracts 1 from the current value.

·>· - multiplies the current value by 2.

•<• - divides the current value by 2.

If the digit following note length or pause is followed by
a dot (.)~ the value of the note will be increased by 1/2. An
additional dot will increase the new value by 1/4 the original
value. Any number of dots can be used.

To pass a numeric parameter to string, the following
syntax is allowed:

operation = variable;

where operation is the letter T~ V~ L, N, P or 0 and
variable is any numeric variable. Note that a
semicolon must follow variable, even if it is at
the end of a string.

Substrings can be executed within a PLAY statement with the
following:

Xsubstring;

where substring is a previously defined string
variable. Note that a semicolon must follow the
variable name, even if it is at the end of a string.

Potential Errors

FC - this will occur if there is any error in the syntax of
the string.

I
I
I
I
I ,_

I
t
I
I
I
I
t
I
I
I
I
I
I
I

'I
.M .. -

1
I
I
I
I·:
I.

I
I
.1
'•.

I
I
I.
I
I .. -
1
I
I
I

The Ultimate Reference Guide And Toolkit 135

Examples

PLAY •T4;V4;02;L4;1;2;3;4;5•

PLAY •T+N4N5N6N7N8•

PLAY •T5VBLBABCD+E+FG•

PLAY ·v=B;N=NN;•

PLAY •L32AP4DP4L>EP4L>FP4L>XA$;•

Notes/Suggestions

The ·=· syntax is not supported in the Radio Shack
documentation for Extended Color Basic and deserves a bit more
explanation. If you wish to pass a variable to a PLAY command~
Going Ahead with Extended Color Basic suggests that you
convert the variable to a string as in the following example
which plays the entire range of pitches available with PLAY:

10 FOR 0 = l TO 5
20 0$ = ·o· + STR$CO>
30 PLAY 0$
40 FOR N = 1 TO 12
50 N$ = •N• + STR$CN)
60 PLAY N$
70 NEXT N, 0

A much simpler, and faster, loop can be constructed using the
·=· option to pass variable values directly to the string, as
shown in the following example which plays the same notes as the
program above:

10 FOR 0 = 1 TO 5
20 FOR N = 1 TO 12
30 PLAY ·o=O;=N;•
40 NEXT N, 0

When the ·=· sign is encountered in a play string, the value of
the variable is subsituted for the ·=· and the variable. For
example, the first time through the above loop, the string would
be interpreted as though lt was •ot t•.

If the variable after the ·=· is a complex expression (e.g.
A+Y>, the expression will not be evaluated and the value of the
first variable (e.g. A> will be used.

The Ultimate Reference Guide And Toolkit 136

PM ODE

Syntax

PMODE graphics mode l, start page}

Purpose

This statement sets the graphics mode for high resolution
graphics. The following modes are available:

pmode resolution colors pages used

0 128 X 96 2 1
1 128 X 96 4 2
2 128 X ·192 2 2
3 128 X 192 4 4
4 256 X 192 2 4

Arguments

graphics mode may be a numeric expression which must
evaluate to between 0 and 4.

start page may be a numeric expression which must
evaluate to between 0 and 8. This value must represent a page
that was previously reserved with a PCLEAR statement, and must
also be greater than or equal to the number of reserved graphics
pages, minus the number of pages required for the mode
specified. If start page is omitted, the current start page
(default = page 1> will be used.

Potential Errors

FC - graphics mode or start page are out of range; or
an Insufficient number of graphics pages have been
reserved.

Examples

PMODE 4

PMODE 2, 5

' I
I
I
I
I
~a

I
I
I
I
I ,,
I
I
I
I
I
I

I
I
I
I
I
I
I
I
~

I
I
I
I
I
I
I
I
I
~-

1
I

The Ultimate Reference Guide And Toolkit 137

POINT

Syntax

numeric variable = POINT ex, Y)

Purpose

This function returns the value of a specified pixel on the
low resolution graphics screen Cthe normal text screen>. If the
pixel is part of a text character CASCII values 0 to 127>, a
value of -1 will be returned; otherwise the color value of the
pixel will be returned.

Arguments

X, which represents
co-ordinate pair, may be a
evaluate to between 0 and 63.

Y, which represents
co-ordinate pair, may be a
evaluate to between 0 and 31.

Potential Errors

the horizontal component
numeric expression which

the vertical component
numeric expression which

FC - X or Y is ·care> out of range.

Examples

A = POINT (12, 3)

IF POINT CA, B*3) = -1 THEN PRINT •TEXT•

ON POINT CX, Y> GOTO 100, 200, 300

of a
must

of a
must

The Ultimate Reference Guide And Toolkit 138

Syntax

POKE memory location, value

Purpose

This statement is used to define the contents of a specific
memory location. Although used primarily for placing machine
language program instructions into memory <to be used in
conjunction with a BASIC program>, it can also be used for
graphics. On the normal text screen, POKE is the only statement
that will allow certain characters <particularly inverse video
characters> to be displayed.

Arguments

memory location may be a numeric expression which must
evaluate to between &HOOOO and &HFFFF <O and 65535>.

value may be a numeric expression which must evaluate to
between 0 and 255.

If a rational number value is supplied for either argument,
only the Integer portion of the number will be used.

Potential Errors

PC - memory location or value is out of range.

Examples

POKE 16345, 23

POKE 1024, ASc<•o•>

I
I
I
I
I
I
I
I

.,

I
I
I
I
I
I
I
I
I ---

1
1-

I
I
I
I
·a
I}
f,
I
I
I
e
I
I
a
I
~-

1 ,.
I
;I

The Ultimate Reference Guide And Toolkit 139

Notes/Suggestions

The following short program displays all of the graphics
characters available on the text screen using both POKE and
CHR$. This serves to demonstrate the differences in screen
output between the two methods.

00010 FOR C = 0 TO 255
00020 PRINT@C, CHR$ <C>;
00030 NEXT C
00040 p = 256
00050 FOR C = 0 TO 255
00060 POKE P + C + 1024, C
00070 NEXT C
00080 GOTO 80

.
The Ultimate Reference Gulde And Toolkit 140

Syntax

numeric variable = POS (device number>

Purpose

This function returns the current column position of the
printer head or the cursor on the screen. The returned value can
be examined to see if a line feed is required before another
item ls printed.

Arguments

device number may be an expression which must evaluate to
one of the following values:

-2 - printer
-1 - cassette

0 - screen
1 to 15 - dlsk

Note, however, that the returned value is only significant when
device number ls 0 <screen> or -2 <printer). If any of the
other allowable device numbers is specified, POS will always
return a value of 0.

Potential Errors

DN - device number is ·not a legal file buffer.

NO -device number is a legal file.buffer argument, but
the file is not open.

Examples

PRINT POS (0)

A = POS <-2>

I
I
I
I
I
{I
I
I
I
I
I
I
I
S·

' I .,
I
I·

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 141

Notes/Suggestions

This short program will print text on the screen without
word •wraparound·.

00010 FOR T = 1 TO 18
00020 READ A$
00030 IF 32 - POS (0) < LEN (A$) THEN PRINT
00040 PRINT A$;
00050 IF POS<O> = 0 THEN PRINT • •;
00060 NEXT T
00070 DATA THIS, SHORT, TEST, WILL, SHOW, HOW
00080 DATA THE, POS, FUNCTION, CAN, BE, USED
00090 DATA TO, FORMAT, TEXT, ON, THE, SCREEN.

.)

The Ultimate Reference Guide And Toolkit 142

PPOINT

Syntax

numeric variable = PPOINT (X, Y)

Puroose

This function returns the current
high resolution graphics screen. In the
will aways be a 0, 1 or 5 <depending
selected). In four color modes, a number
returned.

color of a pixel on the
two color modes this
upon the last color set
between 1 and 8 will be

Arguments

X, which is the horizontal component of a
pair, may be a numeric expression which must evaluate
0 and 65535, although BASIC will modify the value to
and 255.

co-ordinate
to between
between 0

Y, which is the vertical component of a co-ordinate pair,
may be a numeric expression which must evaluate to between 0 and
255, although BASIC will modify the value to between 0 and 191.

Potential Errors

FC - X or Y is out of range.

Examples

A= PPOINT <128, 96>

IF PPOINT <X, Y> = 4 THEN SOUND 100, 2

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit

Syntax

PSET (X, Y l, color])
PRESET (X, YJ

Purpose

PRESET/PSEI

143

This statement allows you to set <turn on> or reset (turn
off> a specific plxel on the high resolution graphics screen.
PSET allows a color to be specified, but if color is not
speclfled, the current foreground color ls used. PRESET resets a
pixel to the current background color.

Arguments

X, which is the horizontal component of a co-ordinate
pair, may be a numeric expression which must evaluate7.to between
0 and 65535, although BASIC will modify the value to between 0
and 255.

Y, which ls the·vertlcal component of a co-ordinate pair,
may be a numeric expression which must evaluate to between 0 and
255, although BASIC will modify the value to between 0 and 191.

color may be a numeric expression which must evaluate to
between 0 and B.

Potential Errors

PC - X, Y, or color is out of range.

Examples

PSET CX, Y, 3>

PSET (126, 98)

PRESET CA+3, B*4>

The Ultimate Reference Guide And Toolkit 144

PRINT

Syntax

PRINT l# device,J largumentJ ldelimiterJ l ••• J

Purpose

This statement will write the argument to the device
specified. In the absence of an output device, the screen is
used by default. If a semicolon C;> is used as a delimiter to
terminate the statement, a carriage return will not be executed.
If a comma <,> is used, spaces will be printed up to the next
comma field position. BASIC will allow the use of •7• as an
abbreviation for the PRINT statement.

Arguments

device may be a numeric expression which must evaluate to
one of the following values:

-2 - printer
-1 - cassette recorder

0 - screen
1 to 15 - disk files

All of these buffers except for 0 <screen> and -2 <printer> must
be properly OPENed for output in order for communication to take
place.

argument may be any valid numeric or string expression.

delimiter may be either a semicolon <;> or a comma <,>.

The actual effect of the print delimiters varies from one
output device to another--

Screen

Printer

Comma <,>

no carriage return;
tabs to the next
column position

no carriage return;
tabs to next column
position, stored at
memory location 153

Semicolon <;>

no carriage return

no carriage return

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit

Cassette inserts some extra
spaces at the end
of the record

Disk no carriage return;
does a TAB<15)

no effect

no carriage return

145

Of particular importance here is the fact that carriage
returns are not inserted into sequential disk files. This means
that if the following PRINT statement was executed:

PRINT #1, •HARRY•; 346

and the data was subsequently read back by the statement:

INPUT #1, A$, A

an IE or FD error would occur, and A$ would contain the value
·HARRY346•. For this reason lt ls recommended that you use a
separate PRINT statement for each data item when writing to
sequential files. If the program ls written for cassette it will
be easy to update later to disk.

Potential Errors

OF - the PRINT # statement caused the buffer to be written
out to disk, at which time the disk was found to be
full. ~·

ON - the device number is out of range.

NO - the output device or buffer has not been OPENed.

VF - VERIFY is on; the buffer has been written out to disk,
cut DOS is unable to read the sector back.

WP - the disk is write-protected.

Examples

PRINT A$

PRINT 3*4, A$; R

PRINT #-.1, A$ ·

The Ultimate Reference Guide And Toolkit 146

Notes/Suggestions

It is possible to include TAB and USING as part of the
syntax for the •pRINT #• statement~ as in the following
examples:

PRINT #-2, TAB C20); A$;

PRINT #1, USING •#####.##•; A

See PRINT TAB and PRINT USING for more details.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 147

PRINT @

Svntax

PRINT@ screen location, [argument ldelimiterJJ l ••• J

Purpose

This statement is for displaying text· and graphics
characters at a specific position on the text screen. BASIC
allows the use of •?• as an abbreviation for PRINT.

Arguments

screen location may be a numeric expression which must
evaluate to between 0 and 511.

argument may be any numeric or string expression.

delimiter may be either a semicolon C;> or a comma C,>.

Potential Errors

FC - screen location is out of range.

Examples

PRINT @ 235, A$

PRINT @ N * 3 1 A$, N;

Notes/Suggestions

It is possible to include USING as part of the syntax for
the •PRINT @• statement, as ln the following example:

PRINT @224, USING •#####.##•; A

See PRINT USING for more details.

The Ultimate Reference Guide And Toolkit 148

PRINT TAB

Syntax

PRINT TAB (expression> l;J

Purpose

This statement is used to position the screen cursor or the
printer bead prior to displaying data. You may use the
abbreviated version of PRINT, which is ·?·.
Arguments

expression may evaluate to any number between 0 and 255.

Examples

PRINT TAB C8> A$

PRINT #-2~ TAB (8) A; A$; TABC24); B; B$

Potential Errors

FC - expression is out of range.

Notes/Suggestions

When TAB is encountered, the cursor is moved the numb~r of
positions specified by expression from the start of the
original print line. This is best demonstrated by means of an
example program:

00010 PRINT@ 200, •rEsT•;
00020 PRINT TAB C45);
00030 PRINT •TAB•

To determine where the word ·rAB• will be printed, we must
determine the print position of the first line in the print
series. In this example, it is 192 (the first print position of
the line containing screen position 200). Adding the value of
expression Cin this case, 45> to 192, we arrive at a •TAB•
position of 237. The same logic is used when printing data on a
printer.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I .
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 149

Note that lf the new · position is less that the current
cursor or printer head position, TAB will have no effect.

TAB can be included ln the argument lists of PRINT # and
PRINT @, as in the following examples:

PRINT #-2, TAB <A>; A$

PRINT @224, A$; TAB (8)J B$

See PRINT @ and PRINT # for more details.

•

The Ultimate Reference Guide And Toolkit 150

PRINT USING

Syntax

PRINT USING format string; agrument list [delimiter}

Purpose

This statement prints
predetermined format. It
columns of numeric data,
allows the use of •7•
statement.

text
is

and
as

on the screen or printer in a
particularly useful in printing
in formatting displays. BASIC

an abbreviation for the PRINT

Arguments

format string may be any string literal or string
variable containing valid format codes. The following codes are
available:

FOR NUMERIC DATA

,

**
$

$$

specify the number of digits

include a decimal point

use commas to separate thousands, hundred
thousands, etc.

fill leading blanks with asterisks

place dollar sign at beginning of field and
spaces between •$• and first digit of number

float dollar sign immediately in front of number

**$ fill blanks with asterisks and float dollar sign

•••• I I I I

+

print in exponential format

display sign of number whether positive or
negative

if ·-· is leading character then always display
it as a negative sign; if ·-· is last character
then display sign only when negative.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit

FOR STRING DATA --

% ___ %

chars

display first character of string

select n characters from the beginning of the
string, where •n• is equal to the number of
blanks plus 2

display as string literals

151

argument list may be a combination of either numeric
expressions or string data, but each argument ln the llst must
match format string. Agruments can be arranged in a list
seperated by commas (,). If there are more arguments than fields
in format string, then format string will be repeated.

Delimiter can
the argument list.

Potential Errors

be a comma C,> or a semicolon <;> to end
' ..

% - not a bona-fide error, this indicates field overflow
Cthe data ls too large for the format string>.

TM- the arguments and the format string do not match Cle.
one is string data, the other numeric).

Examples

NUMERIC DATA

In the following table, we have shown what happens if you
issue a command like

PRINT USING A$; A

where A$ is equal to the format string in the left ~olumn, and A
is set equal to either 1234.56 or -1234.56.

The Ultimate Reference Guide And Toolkit

Format string

#####.##

#####.####
####.##

####,#.##
**#####.##

$#####.##
**$#####.##

##.##tttt
#####tttt

+####.##
####.##+

-#####.##
####.##-

STRING DATA

1234.56

1235
1234.56

1234.5600
1234.56

1,234.56
***1234.56

$ 1234.56
***$1234.56

1.23E+03
1235E+OO
+1234.56
1234.56+

- 1234.56
1234.56

-1234.56

-1235
-1234.56

-1234.5600
%-1234.56
-1,234.56

**-1234.56
$-1234.56

**$-1234.56
-1.23E+03
-1235E+OO

-1234.56
1234.56-

--1234.56
1234.56-

152

(note rounding>

(field overflow>

<note rounding>

(double ·-·>

.. . In the following examples, A$: "Bob", B$ =
represents a blank.

"Dave• and a

BobDav

PRINT USING "% __ %_and_% __ %"; A$, B$

Bob __ and_Oave

PRINT USING "!'s_Score_=_####" + CHR$(13) +
"!'s_Score_=_####";A$, 123, B$, 456

B's_Score_= __ 123
O's_Score_= __ 456

Notes/Suggestions

PRINT USING may be used in conjunction with PRINT @ or with
PRINT #, as ln the following examples:

PRINT @224, USING "#####.##"; A

PRINT #-2, USING "#####.##"; A

See PRINT @ and PRINT # for more details.

I
I
I
I
I
.I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 153

Syntax

PUT (XJ, YJ) - <X2, Y2>, variable l, action)

Purpose

This statement is used in conjunction with the GET
statement to move graphics on the high resolution graphics
screen. When properly used, fairly fast animation is possible.

Arguments

XJ and X2 may be numeric expressions which must
evaluate to between 0 and 65535, although BASIC will modify the
values to between 0 and 255.

YJ and Y2 may be numeric expressions which must
evaluate to between 0 and 255, although BASIC will modify the
values to between 0 and 191.

variable must be a numeric array variable that has been
previously dimensioned.

al':tlon
long as the ·G·

PSET

The follow options are allowable as actions, as '
option was used with the GET statement:

- sets the pixels that were set in the original
· rectangle.

PRESET - resets the pixels that were set In the
original rectangle.

AND

OR

NOT

- compares each pixel of the orginal rectangle
with that in the destination rectangle. If
both pixels are set. then the pixel in the
destination rectangle will be set; if not,
the pixel will be reset.

- compares each pixel of the original rectangle
with that In the destination rectangle. If
either pixel ls set, the pixel in the
destination rectangle will be set; otherwise
1 t w ill be .reset •

- reverses (complements) the state of each
pixel in the destination rectangle regardless
of the contents of the PUT array.

The Ultimate Reference Guide And Toolkit 154

Potential Errors

FC the size of the rectangle is larger than the array
size; Xl, X2, Yl, or Y2 is out of range; or variable
has not been dimensioned.

Examples

PUT <A, B> - <A+30. B+30>. GR, PRESET

PUT (20, 20) - (30, 30>, DO

Notes/Suggestions

If garbage is appears on the screen. instead of the data
from the GET statement, one of the following conditions may be
present:

.1. The •G•. option was used with GET and action was not
used wlth PUT.

2. The •G• option was not used with GET and action was
used with PUT.

3. The size of the GET and PUT rectangles do not match.

4. Part of the PUT rectangle ls off the edge of the screen;
eg. PUT (180, 180) - <200, 200>, A

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 155

PUT #

Syntax

PUT #buffer C, record number].

Purpose

This statement is used with direct <random) access disk·
files to transfer data from a specified open buffer onto the
disk itself. PUT # is employed after data has been placed in the
buffer by means of either the PRINT, WRITE, LSET or RSET
statement.

Arguments

buffer may be a numeric expression which must evaluate to
an OPEN disk file buffer in the range 1 to 15.

record
evaluate to
specified,
Incremented

number may be a numeric expression which must
between 1 and 32767. If no record number is

the current record <see LOC> is used. LOC is
after every PUT.

Potential Errors

BR - record number is 0, or record number has caused
the file size to exceed 612 physical disk sectors.

OF- the PUT statement caused the"buffer to be written out
to disk, at which time the disk was found to be full.

ON - the buffer specified refers to a disk buffer not
reserved wlth FILES, or buffer is out of range (but
less than 32768).

FC - record number is less than 0 or greater than 32767;
or buffer is less than 1 or greater than 32767.

NO - the buffer specified has not been OPENed.

VF - <VERIFY is on> you have PUT a record which caused a
disk write to take place and the subsequent read
attempt failed.

WP - you have attempted to PUT a record on a disk which is
write-protected.

The Ultimate Reference Guide And Toolkit 156

Examples

PUT #1

PUT #0, R

PUT #8, LOF + 1

Notes/Suggestions

If record is greater than the last record in the file
<e.g. •puT#l, too· when the last record is currently #50>, the
file will be enlarged to accommodate the specified record. The
records in between (in this case, records 51 to 99> will contain
the information that was on the disk at the time of the PUT -
in other words, garbage. If you are going to write data in a
non-sequential manner, be sure to set all the records to some
type of •null• value when opening the file for the first time.

I·
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 157

Syntax

READ variable l, variable] l ••• J

Purpose

This statement reads numeric or string values in sequential
order from corresponding DATA statements and assigns the values
to the specified variables.

Arguments

variable may be any string or numeric variable.

Potential Errors

OD - there is no more data to READ
'

SN - an attempt ls being made to assign string data to a

Examples

numeric variable. The line number in the error message
is the line number of the DATA statement containing
the string data.

READ A$

READ A

READ A, A$, B, B$

The Ultimate Reference Guide And Toolkit 158

RELATIONAL OPERATORS

Syntax·

1. Equal To
£numeric variable =J expression = expression

2. Less Than
£numeric variable =J expression < expression

3. Greater Than
{numeric variable =1 expression > expression

4. Less Than Or Equal. To
£numeric variable =J expression <= expression

or

£numeric variable =J expression =< expression

5. Greater Than Or Equal To
£numeric variable =1 expression >= expression

or

£numeric variable =J expression => expression

6. Not Equal To
!numeric variable =1 expression <> expression

or

£numeric variable =1 expression >< expression

Puroose

These relational operators are used whenever you want to
·compare two expressions to determine if they are equal or
whether. one is larger than the other. The result of the
comparison is converted to a Boolean value of 0 for false or -1
for true. Although such operators are normally used in
conjunction with the IF-THEN-ELSE statement~ the result can
easily be passed to a numeric variable and used for any ~ther
purpose. <See IF-THEN-ELSE for more details.)

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 159

Arguments

expression may be either a string expression or a numeric
expression, but both expressions must be of the same type. If
numeric, expression will be limited according to which .terms
<COS, LOG, SQR, etc.> lt contains, but under most circumstances,
it may take on any positive or negative value in the range
1 o-:s• to 1 o•3•.

Potential Errors

None •

. Examples

A = A = B

A = A$ = B$

IF SIN <A> (• 0 THEN ••••

Notes/Suggestions

Whenever possible, avoid the use of ·<=·, ·>=·, and •<>·,
since each of these notations requires extra memory for storage,
and BASIC spends a little more time evaluating the relation.
There ls almost always a way to rewrite the comparative test so
that less time and memory are used up. For example, suppose you
were testing for a non-zero value:

00010 IF A <> 0 THEN 30
00020 PRINT •FALSE•
00030 ••• program continues •••

If the test ls successful, control is transferred to line
30. Why not save 7 bytes of memory and marginally increase the
speed of the program by testing for 0 instead, and rearranging
the program a little:

00010 IF A = 0 THEN PRINT •FALSE•
00020 ••• program continues •••

The Ultimate Reference Guide And Toolkit 160

RENAME

Syntax

RENAME current name TO new name

Purpose

This statement is used to change the name of a disk file or
program as lt physically appears on the disk.

Arguments

Both current name and new name must be legal disk file
specifications. A file specification consists of 3 parts:

filename - any character string
in length; the ASCII value of each
and 255 except that the value may
c·.·>, slash c•J•>, or colon c·:•).

of from 1 to 8 characters
character must be between 1
not correspond to period

extension any character string of. from 1 to 3
characters in length; the same ASCII requirements as for the
filename must be met. The extension is separated from the
filename by a period c·.·> or a slash c·1·>. For the RENAME
statement, the extension must be supplied.

drive (optional> must be a number from 0 to 3. The
drive number may appear at the start or the end of the filespec;
it Is always separated from the body of the filespec by a colon
<•:•>. If no drive number is specified, BASIC will use the
current default drive. Note that the drive number must be the
same for both names.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit

Potential Errors

AE - new name already exists on the disk.

FC - the drive numbers in current name and new name do
not match.

FN- one of the names is illegal.

1 6 1

IO - the ,disk is not properly inserted in the drive; the
drive door is not closed; the controller is unable to
read the directory track.

NE - current name does not exist on the disk in the drive
specified.

VF - VERIFY is on; after writing the sector containing new
name back to disk, the controller was unable to read
back that sector.

WP- the disk is •write protected•.

Examples

RENAME ·rROGRAM.BAs· TO •GAME.BIN•

RENAME ·oLD.DAT:t• TO •NEW.DAT:t•

RENAME F$(8) TO F$(9)

The Ultimate Reference Guide And Toolkit 162

RENUM

Syntax

RENUH lnewlineJ l, startlineJ l, increment}

Purpose

This statement is used to renumber some or all of the lines
in a BASIC program. As well, it correctly renumbers line numbers
referenced by GOTO, GOSUB, THEN, ON ••• GOTO and ON ••• GOSUB
statements. Note that RENUH cannot be used to rearrange the
order of lines, only to change their numbers.

Arguments

newline is the new line number of the first line in the
program to be renumbered, and can be any valid line number from
0 to 63999. If omitted, number 10 is used by default.

startline is the first line to be renumbered, and can be
any valid line number from 0 to 63999. If omitted, the first
line number in the program is used.

Increment is the rate at which line
increase in size, and can be any integer value
as long as the increment does not cause any
above 63999. If omitted, an Increment of 10 is

Potential Errors

numbers are to
from 1 to 63999,
line number to be
used by default.

FC- an attempt has been made to change the order of lines;
the Increment is out of range; or the increment has
caused the appearance of a line number greater than
63999. <If this error occurs, the line numbers in the
program will ~be altered.>

SN- a line number greater than 63999 has been encountered
following a GOTO, GOSUB etc. <If this error occurs,
you may find that your program has been converted into
garbage!)

UL - a line referenced in a GOTO, GOSUB, etc. did not exist
in the program before renumbering. <If thls error
occurs, the program will still be completely
renumbered and the GOTOs, etc. will now reference
non-existent or wrong lines.>

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
·I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit

ExamPles

RENUM

RENUM 1000, 400, 10

RENUM , , 1

RENUM 1000, , 1

Notes/Suggestions

163

To avoid the frustration of discovering a ream of UL errors
during a RENUM, use the following statement before actually
attempting to renumber the program:

RENUM 63999, 63999

BASIC will go through the entire program and report any UL
errors; however, since both startline and newline are
greater than the highest line in the program <or the same if you
happened to have line 63999 in your program) the program in
memory will be unchanged. You can now go through the progam and
correct the affected lines, before the line numbers are actually
changed. If you wish to have the list of undefined line numbers
sent to the printer, use the following:

POKE &H6F, &HFE: RENUM 63999, 63999.

The Ultimate Reference Guide And Toolkit 164

RESTORE

Syntax

RESTORE

Purpose

This statement is used to set BASIC's DATA pointer back to
the beginning of the program. Following a RESTORE, the next item
to be read by a READ statement will be the first DATA item in
the program.

Arguments

None.

Potential Errors

None.

Examples

RESTORE

IF A$ = ·xxx• THEN RESTORE

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And· Toolkit

RETURN

SEE GOSUB-RETURN

165

The Ultimate Reference Guide And Toolkit 166

RIGHT$

Syntax

string variable = RIGHT$ (string expression, position)

Purpose

This function is used to obtain the rightmost portion of
string expression, from a given starting position.

Arguments

string expression may be any combination of from 0 to 255
characters, each of which may have any ASCII value from 0 to
255.

position may be a numeric expression which must evaluate
to between 0 and 255. If position is greater than the length
of string expression, the entire string expression will be
returned.

Potential Errors

FC - position ls out of range.

Examples

A$ = RIGHT$ CA$ + CHR$ C13> + B$, X>

IF RIGHT$ CB$, 3) = ·xxx· THEN •••

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 167

RESET

SEE SET/RESET

The Ultimate Reference Guide And Toolkit 168

Syntax

numeric variable = RND (expression)

Purpose

This function returns a positive pseudo-random number, the
magnitude of which depends on the nature of expression, and·
also causes the random •seed• to be updated for subsequent
calls. It is called a •pseudo-random number• because, although
the sequence of numbers generated exhibits all the qualities of
a list of true random numbers, the list can be predicted
whenever the random •seed" is known.

Arguments

expression may evaluate to any positive or negative
number in the range to-u to 10•3•.

Potential Errors

None.

Examples

PRINT RND (8)

A = RND (0) * 10

R = RND C-X>

Notes/Suggestions

If expression is a positive number greater than or equal
to 1, then the random number will will always be a positive
integer number in the range 1 to expression.

If expression is a positive number less than 1, then the
random number will always be a positive rational number between
0 and 1.

If expression ls any negative number, then the random
number will always be a positive rational number between 0 and
1, but note that for every potential negative value of
expression, there is precisely one value that will be
returned. For example, RND C-1) will always return the same
value of .522222849.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
·I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 169

When the computer is first turned on, the random •seed" is
always set to the same value, and for this reason, RND will
return the same series of values in the same order. To overcome
this problem <which causes random-generated games to always run
the same way), use a command like the following in your program:

00010 T = RND <-TIMER)

This causes the random •seed• to be more randomly reset each
time the program Is run. The "-· sign is used to force the
computer to select a rational number Instead of an integer
number.

The Ultimate Reference Guide And Toolkit 170

Syntax

RSET fielded string variable = string expression

Purpose

This statement is used in conjunction with direct (random>
access disk files. It transfers and right justifies string
expression into fielded string variable. If the length of
string expression is greater than the field size for the
specified variable, then the excess characters are truncated. If
the length of string expression ls less than the field size
for the specified variable, then the new string is blank-filled
on the left. The primary purpose of this statement is to prevent
field overflow when writing new records to the file.

Arguments

string expression must evaluate to any combination of
from 0 to 255 ASCII characters, each of which may have any ASCII
value from 0 to 255.

fielded string variable
variable name which has been
statement.

Potential Errors

may be any legitimate
p~evlously defined in a

string
FIELD

SE - you have named a string variable which has not been
previously fielded.

Examples

RSET A$ = B$

RSET A$ = •NoW IS THE TIME •

RSET A$ = MKN$ CA>

Notes/Suggestions

See FIELD for more information concerning the use of
fielded variables.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit

Syntax

RUN £11ne number]
RUN lfllespecl

Purpose

171

This statement is used to start the execution of a BASIC
program. If the optional line number ls Included, the program
will start execution at the line specified. If you have a disk
system, you may also supply the filespec option, which causes
the specified program to be loaded from the dlsk·and to be
executed starting at the first line. Note that if the former
<RUN lllne numberJ> type of command Is used, all OPEN files
are left OPEN; otherwise, files are CLOSEd before execution
takes place.

Arguments

line number may be any valid BASIC line number from 0 to
63999.

A filespec consists of 3 parts:

filename any character string of from 1 to 8 characters
in length; the ASCII value of each character must be between 1
and 255 except that the value may not correspond to period
c·.·>, slash c•t•), or colon c•:•).

extension - <optional> any character string of from 1 to
3 characters in length; the same ASCII requirements as for the
filename must be met. The extension is separated from the
filename by a period c·.·> or a slash c•t•>. If no extension is
included, BASIC will use the default extension ·aAs·.

drive - <optional> must be a number from 0 to 3. The
drive number may appear at the start or the end of the filespec;
it is always separated from the body of the filespec by a colon
c·:·>. If no drive number ls specified, BASIC will use the
current default drive.

The Ultimate Reference Guide And Toolkit 172

Potential Errors

FM - you have made an attempt to load a file which Is not a
BASIC program.

FN- the specified filespec is illegal.

IO - the disk is not properly inserted in the drive; the
drive door is not closed; or the data on the disk is
unreadable.

NE - filespec does not exist on the disk.

UL- the line number specified does not exist.

Examples

RUN

RUN 100

RUN •GAME•

RUN •GAME.NEW:t•

Notes/Suggestions

If you are using the RUN statement wlthln one BASIC program
to call another program, you must use a string literal for
filespec. If you need to use a variable name, then use the
LOAD statement with the ·,R• option instead. LOAD A$, R and
LOAD •PROGRAM• , R and RUN •PROGRAM• all work; RUN A$ does not.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I'
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 173

Syntax

SAVE filespec

Purpose

This statement causes the BASIC program currently in memory
to be written out to disk. If the specified filespec already
exists on the disk# the new file will over-write the old one.
Note that OPEN files are left OPEN.

Arguments

A filespec consists of 3 parts:

filename any character string of from 1 to 8 characters
in length; the ASCII value of each character must be between 1
and 255 except that the value may not corres~ond to period
c·.·>, slash c•t•>, or colon c·:·>.

extension - <optional> any character string of from 1 to
3 characters in length; the same ASCII requirements as for the
filename must be met. The extension is separated from the
filename by a period c·.·> or a slash c•t•>. If no extension is
included, BASIC will use the default extension •BAs·.

drive - (optional> must be a number from 0 to 3. The
drive number may appear at the start or the end of the filespec;
lt ls always separated from· the body of the filespec by a colon
c·:·>. If no drive number is specified, BASIC will use the
current default drive.

Potential Errors

OF- the disk you are saving the program on is full. If you
get this error, check the disk directory. If any room
was available when the SAVE started# some of the
program will be SAVEd and a directory entry will be
made; however, you will not be able to LOAD any of the
program.

FN - filespec is not a legal disk file specification.

IO - the disk is not properly inserted in the drive; the
drive door is not closed; when scanning the
directory for a filespec match, the controller was
unable to read a sector; or, a write error occurred.

The Ultimate Reference Guide And Toolkit 174

VF - VERIFY is on; following a sector write; the controller
was unable to successfully read back the same sector.

WP - the disk you are SAVEing to has a "write protect" tab
on it.

Examples

SAVE •GAME•

SAVE ·aAME.BBB•

I
I
I
I
I
I
I
I
I
I
I
I
I
il
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 175

SAVEM

Syntax

SAVEH filespec, start, end, entry

Purpose

This statement causes a binary machine-language file to be
written out to disk. It duplicates the contents of memory from
start to end inclusive. Entry must be provided so that
when the file is re-loaded, BASIC will be able to EXECute the
program. If filespec already exists on the specified disk, the
old file will be over-written by the new file. Note that OPEN
files are left OPEN.

Arguments

A filespec consists of 3 parts:

filename any character string of from 1 to 8 characters
in length; the ASCII value of each character must be between 1
and 255 except that the value may not correspond to period
c·.·>, slash c•J•), or colon c·:·>.

extension - <optional> any character string of from 1 to
3 characters in length; the same ASCII requirements as for the
filename must be met. The extension is separated from the
filename by a period c·.·> or a slash c•J•>. If no extension is
included, BASIC will use the default extension ·srN·.

drive - <optional> must be a number from 0 to 3. The
drive number may appear at the start or the end of the filespec;
it is always separated from the body of the filespec by a colon
<•:•). If no drive number ls specified, BASIC will use the
current default drive.

start, end, and entry must be valid addresses in the
range &HOOOO to &HFFFF CO to 65535) •.

Potential Errors

OF - the disk you are saving the program on is full. I~ you
get this error, check the disk directory. If any room
was available when the SAVEH started, some of the
program will be saved and a directory entry will be
made. You will be able to LOADH the portion of
the file that was saved, but you will get an •?IE
ERROR·.

The Ultimate Reference Guide And Toolkit

FC - start, end, or entry values are out of range.

FN - filespec is not a legal disk file specification.

IO - the disk is not properly inserted ln the drive; the
drive door is not closed; when scanning the
directory for a filespec match, the controller was
unable to read a sector; or, a write error occurred.

176

VF - V8RIFY is on; following a sector write; the controller
was unable to successfully read back the same sector.

WP - the disk you are SAV8ing to has a •write protect• tab
on it.

Examples

SAVEH •GAH8·, 12345, 23456, 12345

SAVEM •GAME.BBB•, &HOEOO, &HOFOO, &HOF12

Notes/Suggestions

SAVEM can be used to save a graphics screen to disk, to be
loaded later by a BASIC program. The following example will save
the current graphics screen <notice bow we prevent inadvertant
execution of this file by specifying an entry point of &HA027,
which is BASIC's RESET ~ntry address>:

50000 P = P8EK C&HBA> * 256 + P8EK <&HBB>
50010 M = PEEK <&HB6>
50020 IF H = 0 THEN M = 1536

:ELSE IF H = 1 OR H = 2 THEN H = 3072
:8LS8 H = 6144

50030 SAVEH ·scREEN•, P, P + M, &HA027

To re-load the screen just
comput"er has been set up for the
existed when the SAVEH was done.
the data:

50050 SCREEN 1, 1
50060 LOADH ·scR88N•

saved, first make sure the
same graphic configuration that
Then use the following to load

,,
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 177

SCREEN

Syntax

SCREEN mode l, colorsetl

Purpose

This statement is used to select either the graphic screen
or the text screen as well as one of the two different
colorsets available.

Arguments

mode may be a numeric expression which must evaluate to
between 0 and 255. If mode ls o, then the text screen will be ,
selected. Any other value will cause the graphics screen to be
selected.

colorset may be a numeric expression
to between 0 and 255. If lt is omitted, then
of two defaults, depending on the value
0 then the default colorset ls also 0; if
BASIC will use the last defined colorset.

Potential Errors

which must evaluate
BASIC will use one
of mode. If mode is

mode is 1, then

PC - either mode or colorset is out of range.

Examples

SCREEN 1, 0

SCREEN 1

SCREEN 0, 1

The Ultimate Reference Guide And Toolkit 178

Notes/Suggestions

Normally, BASIC automatically returns to SCREEN o, 0 <the
normal text screen) when a PRINT or INPUT statement is
encountered, when an error occurs, or when the end of the
program is reached. You can disable this automatic return by
means of the statement •poKE 359, 57•. To return to normal
operation, use the statement •poKE 359, 126·.

You can obtain a few additional graphic modes not normally
accessible through BASIC by POKElng values into memory location
&HC1, which is where the SCREEN colorset values are normally
stored. The value to POKE must be between 0 and 255 and should
be a multiple of 8 for best results. Once the new value has been
POKEd, simply execute a ·scREEN t• command to cause the graphic
display to change. You will discover, as you experiment with
this technique, that the results will vary depending on which
PMODE has been selected.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
./

I ,,
I
I

I
I

' I
I

' I
I
I

The Ultimate Reference Guide And Toolkit 179

·SET/RESET

Syntax

SET ex, Y, color)

RESET ex, f)

Purpose

These statements are used to control individual pixels on
the low resolution (text> screen. SET causes the specified pixel
to be illuminated with the specified color. RESET will turn
the specified pixel off, and is, ln effect, a SET with a color
value of 0. These commands produce the best results when the
screen has been cleared to black by means of a •cLS o• command.

Arguments

X, which is the horizontal component of a co-ordinate
pair, may be a numeric expression which must evaluate to between
0 and 63.

Y, which is the vertical component of a co-ordinate pair,
may be a numeric expression which must evaluate to between 0 and
31.

color may be a numeric expression which must evaluate to
between 0 and 8.

Potential Errors

FC - X, Y, or color is out of range.

Examples

SET C1, 2, 3)

SET . (X, Y, C+ 1 >

RESET <X * 3, Y I 3)

The Ultimate Reference Guide And Toolkit· 180

Notes/Suggestions

Each PRINT @ screen location contains 4 pixels which can be
SET or RESET. All SET pixels in the same screen location must be
SET to the same color. This is a hardware limitation and bas
nothing to do with software. For example, if you SET the pixel
at (30, 40) to color #2 and subsequently SET the pixel at (31,
40) to color #4, both pixels would end up being SET to color #4
because they are both in the same PRINT @ screen location.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I ,.
I
I
I
I
I
I
I
I
I
I
I
I --·

' .,
I
I

The Ultimate Reference Guide And Toolkit 1 8 1

Syntax

numeric variable = SGN (expression)

Purpose

This function is used to determine the sign of a number. It
returns a value of -1 if expression is negative, 0 if
expression is equal to 0, and 1 if expression is positive.
SGN may be used in conjunction with ABS to separate any number
into its sign and magnitude parts.

Arguments

expression may be any positive or negative value ln the
range 1 o-s• to 1 o•:t•.

Potential Errors

None.

Examples

A = SGN <A>

ON SGN CA> + 2 GOTO 100, 200, 300

The Ultimate Reference Guide And Toolkit 182

Syntax

numeric variable = SIN (expression)

Purpose

This function returns the sine of expression, which is
assumed to be a radian angle. The returned value is always a
rational number between -1 and +1.

Arguments

expression may be any positive or negative· value In the
range to~• to to~•.

Potential Errors

None.

Examples

A = SIN ((90 * C2 * PI>> I 360)

IF SIN CX) < 0 THEN

Notes/Suggestions

See CDS for an explanation of the conversion of angles
from degrees to radians and vice versa.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

' I
I
I

I
I
I
I
I
I
I
I
I
I -
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 183

SKIPF

Syntax

SKIPF (filename}

Purpose

This statement allows you to search a cassette tape for the
end of a file called filename. If filename is omitted, the
cassette will stop at the end of the first file encountered.
When a file ls found, the name is displayed at the top of
screen, along with the flashing ·s·. If this name is the same as
the specified filename, the ·s· turns into an ·F~.

Arguments

filename may be any character string of from 0 to 8
characters in length. Each character may have any ASCII value
from 0 to 255. If the filename exceeds 8 characters in length,
lt will be truncated to the 8 character limit.

Potential Errors

IO - the data on the tape is unreadable.

Examples

SKIPF

SKIPF •GAME•

SKIPF F$

Notes/Suggestions

The SKIPF statement provides a convenient means of
verifying that a tape file has been correctly written, and ls
particularly useful following a CSAVE or CSAVEM statement. After
the program has been saved, rewind the tape and use the SKIPF
instruction to read over the file. If no •?IO ERROR• occurs, you
will know that the program has been correctly saved; otherwise,
you can easily repeat the CSAVE or CSAVEM instruction, since the
program will still be intact in memory.

The Ultimate Reference Guide And Toolkit 184

To see what programs are stored on an unlabeled tape 1 use
the SKIPF instruction as follows:

SKIPF ·xxxxxx·
The computer will scan the entire tape, displaying all files as
they are encountered. The tape player will not stop unless the
file called ·xxxxxx· happens to be on the tape or an •?tO ERRoR·
occurs, and therefore, once the end of the tape is reached 1 you
will have to press the RESET button.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
t.
I
I
I
I
I
I

The Ultimate Reference Gulde And Toolkit

SOUND

Syntax

SOUND pitch, duration

Purpose

This statement causes a tone of speclfed pitch
duration to be played through the monitor's speaker.

Arguments

185

and

pitch may be a numeric expression which must evaluate to
between 0 and 255. The higher the value, the higher the tone.

duration may be a numeric exresslon which must evaluate
to between 0 and 255. The greater the value, the longer the tone
will be sounded.

Potential Errors

FC - pitch or duration Is out of range.

Examples

SOUND A I 3, B * 2

SOUND 255, 255

The Ultimate Reference Guide And Toolkit 186

Syntax

numeric variable = SQR (expression)

Purpose

This function is used to determine the square root of a
given expression.

Arguments

expression may be positive value in the range l0-31 to
1o•3•.

Potential Errors

FC - expression is a negative number.

Examples

PRINT SQR (16)

A= SQR (1234)

Notes/Suggestions

Even though the exponentiation <t> function can be used to
find a square root CA = 16tC1/2) is the same as A = SQR <16)),
we recommend that you use the SQR function whenever possible,
since it takes less time to execute. However, if you need to
determine a cube root <or any other root> you must use the
exponentiation function. For example,

PRINT 125t<113>

will print •5•, the cube root of 125.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

• I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 187

Syntax

STOP

Purcose

This statement acts as a •breakpoint• and causes the
execution of a BASIC program to be temporarily halted. You can
use it during the debugging phase of program development by
Including it wlthln a program line; ~nee the ·sREAK• message
appears, you can examine the variables to ensure that they all
hold the correct values. Then, when you are satisfied, you can
resume execution by means of the CONT statement. Note that all
OPEN files are left OPEN.

Arguments

None.

Potential Errors

None.

Examples

100 STOP

The Ultimate Reference Guide And Toolkit 188

Syntax

string variable = STR$ (expression)

Purpose

This function is used to convert a numeric value into its
string equivalent. The logical inverse of this function is' VAL,
which converts a string into its numeric equivalent.

Arguments

expression may be any positive or negative value in the
range 1 o-a• to 1 o•a•.

Potential Errors

None.

Examples

A$ = STR$ CA>

Notes/Suggestions

When expression is a positive number, the STR$ function
adds a leading blank to the resulting string. The following
program shows how this blank can be removed.

00010 A$ = STR$ <A>
00020 IF LEFT$ CA$, 1> = CHR$ C32> THEN A$ = HID$ CA$, 2>

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 189

STRING$

Syntax

string variable = STRING$ (expression~ character)

Purpose

This function defines a character string
expression, in which all characters are identical.

of length

Arguments

expression must evaluate to any number between 0 and 255.

character may be a string variable, a string enclosed in
quotes, or an ASCII code value between 0 and 255.

If character is a string that exceeds 1 character ln
length, then only the first character will be used.

Potential Errors

FC - character is a numeric expression outside allowable
ASCII limits.

OS - not enough string space has been cleared.

Examples

PRINT STRING$ C5, •*•>

PRINT STRING$ C5, 42)

A$ = CHR$C42>: PRINT STRING$(5, A$)

''

The Ultimate Reference Gylde And Toglklt 190

Notes/Suggestions

Color BASIC does provide a reverse tab capability; however,
you can artificially produce a reverse tab by using STRING$. For
example,

PRINT STRING$ C9, 8);

will backspace the cursor nine spaces Cnote that the •;• ls
required to prevent a carriage return>. This technique can be
used any time lt ls necessary to reposition the cursor Cas might
be required following an incorrect data entry>:

00010 INPUT.PLAY AGAIN ytn•; I$
00020 IF I$ <> •y• AND !$ <> •N• THEN PRINT STRING$

(32, 8);
:GOTO 10

00030 ' PROGRAM CONTINUES

•

I
I
I
I
I
I
I
I
I
I
I
I
.I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

•

The Ultimate Reference Guide And Toolkit 191

Iall

SEE PRINT TAB

The Ultimate Reference Guide And Toolkit 192

Syntax

numeric variable = TAN (expression)

Purpose

This function returns the tangent of expression, which is
assumed to be a radian angle.

Arguments

expression may be any positive or negative value in the
range 1 o-:a• to 1 o•:~•.

Potential Errors

None.

Examples

A = TAN <RD>

IF TAN CA> < 0 THEN •••

Notes/Suggestions

The TAN function ls quite accurate In all quadrants except
when the angle approaches to within 2 or 3 degrees of 90 or 270
degrees Con either side of the asymptote>. The true tangent of
such angles begins to rapidly cllmb towards infinity, and of
course BASIC is not able to handle infinitely large numbers. To
prevent overflow from occurring, BASIC has imposed a limit on
the output that results in a maximum tangent value of
approximately 13,500,000 (positive or negative>.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit

Syntax

numeric variable = TIMER
TIMER = expression

Purpose

TIMER

193

This dual purpose function makes use of the 60 Hertz
Interrupt capability of the 6809 processor. Each time an
interrupt occurs Cat a processor speed of 1 megaHertz, it occurs
60 times per second>, an interrupt service routine is entered,
in which a two-byte counter is incremented. This counter value
Is passed to numeric variable when TIMER appears on the right
side of the equals sign. When TIMER appears on the left side of
the equals sign, the counter is given a new value equal to
expression. Whenever cassette, disk, and RS-232 IIO is in
progress, the interrupt ls disabled, so TIMER Is only accurate
during cassette, disk and RS-232 inactivity.

Arguments

expression may be any positive value in the range 0 to
65535.

Potential Errors

PC - expression is out of range.

Examples

TIMER = 0

TM = TIMER

sc = TIMER I 60

MN = TIMER I 60 I 60

The Ultimate Reference Guide And Toolkit 194

Notes/Suggestions

Examples #2 and #3 above show how the timer value can be
converted to seconds and minutes respectively. If the processor
did run at exactly 1 megahertz, these two examples would be
exactly correct. Unfortunately, in the Color Computer, the 6809
runs at a slightly slower speed, typically between 0.89 MHz .and
0.93 MHz. This means that the conversion factor will necessarily
be different from 60. We have found that the interrupt routine
is actually entered between 55 and 56 times per second on our
machines and so, for us, a more accurate conversion factor is
about 55.5. You will have to experiment for yourself to
determine the correct conversion factor for your machine.

I
I
I
I
·I

I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit

Syntax

TRON
TROFF

Purpose

TRON/TROFF

195

These statements are used to enable CTRON> and disable
CTROFF> BASIC's line-trace function. When the trace is turned
on, and a BASIC program is executed, the line numbers of the
program are displayed on the text screen as each one is
executed. This feature ls useful during program debugging.

Arguments

None.

Potential Errors

None.

Examples

TRON

TROFF

The Ultimate Reference Guide And Toolkit 196

UNLOAP

Syntax

UNLOAD [drivel

Purpose

This statement closes all data files on the drive
specified. If drlve ls not specified, the files on the default
drive (set by the DRIVE statement) are closed.

Arguments

drive may be a numeric expression which must evaluate to
between 0 and 3.

Potential Errors

FC - drlve is out of range.

Examples

UNLOAD 1

UNLOAD

Notes/Suggestions

WARNING: This function does not work properly with Disk
BASIC Version 1.0. If more than one random access file is open,
an UNLOAD will cause the computer to completely lock-up. This
bug has been fixed in versions 1.1 and later, but because of
this major bug, we do not recommend the use of this
statement--use CLOSE instead.

I
I
I·
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I·
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 197

USING

SEE PRINT USING

The Ultimate Reference Guide And Toolkit 198

Syntax

variable = USR lnumberJ (expression)

Purpose

This function allows you to pass program control to a
machine language subroutine whose entry address has been
previously defined by the DEF USR statement. The subroutine will
accept a single 16-bit CO to 65535> parameter value defined by
expression. If number is omitted, BASIC assumes that the
USRO function is to be used~

Arguments

I
I
I
I
I
I
I
I

variable may be either a numeric variable or a string I
variable, but it must be type compatible with expression.

number must be a d1g1t from 0 to 9.

expression may be either a string expression Ca character
string of from 0 to 255 characters in length, each of which may
have any ASCII value between 0 and 255> or a numeric expression
which must evaluate to between 0 and 32767 Cif a value between
32768 and 65535 is to be sent, it must be passed in the form
•expression - 65536• or BASIC will not accept it.)

Potential Errors

FC - the numeric expression is out of range; or, the USR
function has not been previously defined by a DEF USR
statement.

Examples

A = USRO CO>

A = USR1 (40000 - 65536)

A = USR2 CVARPTR CA$ (0)))

A$ = USR3 <STRING$ (255, • •>>

I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 199

Notes/Suggestions

The USR function Is one
available in Color BASIC. Because
and from the USR routine_ it can
where pure machine-language is to
BASIC.

of the most powerful.commands
parameters may be passed to
be used for almost any purpose·
be preferred over interpreted

As mentioned earlier_ the entry address for the USR
function is defined by means of the DEF USR statement. If you do
not have Extended Color BASIC. however, then you do not have the
luxury of this statement. Instead, you must POKE the two bytes
of the entry address into the two memory locations starting at
&H0113 <275 decimal>--the most significant byte of the address
ls stored at location 275 and the least significant byte of the
address is stored at location 276. <In non-Extended systems,
location 274 contains a •JMP• opcode byte, &H7E or 126.)

Suppose, for example, that you had entered~ a machine
language routine into memory starting at address AD, and this
address just happened to be the normal entry point. The
following segment of BASIC code would properly set up your USR
definition:

00100 MS = INT CAD I 256) * get MS byte of address
00110 LS = INT CAD - MS * 256) * get LS byte of address
00120 POKE 275, MS * define USR entry point

:POKE 276, LS

. . . program continues

Once the entry point has been defined, you can safely make USR
function calls from anywhere within your program.

Since only one parameter may be passed to the routine,
generally the parameter will be a 2-byte address that points to
the start of a string, or to a block of other pertinent data.

Once the USR call has been made, it is a simple matter for
the subroutine to get the parameter by means of a •JsR $B3Eo·
call. This causes the parameter to be stored in the A and B
accumulators Cthe D register>, and the routine can do whatever
is required with the data.

When the subroutine is ~omplete, and lt is time to return
to the BASIC program from which it was called, return can be
accomplished in one of two ways. The simplest way to return is
via an •RTs• Instruction, ln which case no parameter is returned
to the calling program. If it is necessary to return a parameter

The Ultimate Reference Guide And Toolkit 200

to the calling program, you can do so by first loading the A and
B accumulators (the D register> with the desired value and
exiting via a •JMP $B4F4• <~ a •JsR•> instruction. In
examples #1 to #3 above, the parameter will be returned to the
variable on the left side of the equals sign <variable A>.

As pointed out earlier, BASIC will not accept a parameter
value greater than 32767. For this reason, it is necessary to
•cheat• a little, or rather to •tool• BASIC into thinking the
parameter is valid. This is accomplished by using the form
•expression - 65536·. As lt turns out, if this format is used,
the parameter value is not evaluated until the •JsR $B3Eo• call
is made, at which time it Is still possible to get an •?FC
ERRoR· if the parameter is outside the range 0 to 65535.

In example #4 above, you can see that string data may be
supplied as a •pseudo-parameter• for the USR call, as long as
the variable name on the left of the equals sign ls a string
variable. This form of the USR call is quite peculiar ln that
you do not have to make an explicit call CJSR $B3ED> to obtain
the parameter. Instead, on entry to your machine language
routine, the X register is already initialized with the address
of the descriptor of the string that was passed.

Although a little slower than the method described in the
preceding paragraph, It is· possible to pass the VARiable PoinTeR
of a string variable to the USR function. The USR routine may
then alter the contents of the string descriptor or the string
itself. Extreme caution should be exercised when using this
technique, however, because you may inadvertantly destroy part
of the BASIC program. If you are certain that the string is
located in the string pool and not within the body of the
program, then modifications are relatively safe as long as you
do not attempt to make a string longer than it was before the
call was made.

If your BASIC program makes calls to one or more
subroutines that do not accept or return parameters, then you
should use EXEC instead of USR. EXEC is both faster and more
space efficient than USR and, obviously, does not tie up any of
the USR functions. Additionally, EXEC does not require that the
routine(s) be previously defined by the ·oEF USR• statement.

See the section of the Book entitled Machine-Language
Subroutines for numerous examples of the USR function.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 201

Syntax

numeric variable = VAL (string expression)

Purpose

This function is used to convert a string into its numeric
equivalent. If the flrst character of string expression Is not
a number~ a space~ "+•, ·-·, •&H• or "&o•, VAL will return a
value of 0.

Arguments

string expression may be any string literal or string
variable .•

Potential Errors

None.

Examples

PRINT VAL c•123•)

PRINT VAL c·ABC123•)

A = VAL CA$)

Notes/Suggestions

The following program shows how VAL can be used to convert
hexadecimal numbers stored in a DATA statement to decimal
numbers.

00010 DATA 12~ AB, CD, FF
00020 FOR T = 1 TO 4
00030 READ A$
00040 A = VAL c•&H• + A$ >
00050 PRINT A
00060 NEXT T

The Ultimate Reference Guide And Toolkit 202

VARPTR

Syntax

numeric variable = VARPTR <variable name)

Purpose

This function returns a 2-byte address which represents a
pointer to the 5-byte block of memory assigned to variable
name. The actual contents of the memory "block. will vary
according to the type and nature of the variable. CSee the notes
below for more details.>

Arguments

variable name may refer to any legitimate· variable,
including string and numeric variables, simple or array type.

Potential Errors

None.

Examples

A = VARPTR CB$)

A = VARPTR CB$ CO, O>>

A$ = HEX$ CVARPTR CB$))

Notes/Suggestions

The value that is returned following a VARPTR command
always points to a 5-byte block of memory that is occupied by
the specified variable. If the variable is numeric (whether it
is simple or array>, then the block contains the the actual
value of the variable, in floating point format, where byte #0
represents the exponent and bytes #1 through #4 represent the
mantissa. On the other hand, if the variable was a string
variable (again, it can be either simple or array>, then the
block actually represents a descriptor for the string. In this
case, byte #0 of the block specifies the length of the string,
and bytes #2 and #3 contain the address of the first character
in the string. In this descriptor, bytes #1 and #4 are not used.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 203

Every variable also includes a short header block that
contains the variable name and other pertinent Information. In
the case of simple variables, the header is always 2 bytes long
Cit contains only the variable name) and immediately precedes
the 5-byte data block in memory. In the case of array variables,
however, the header block is quite different--its length will
always be 5 bytes plus 2 bytes for each dimension--and it is
located immediately preceding the 5-byte data block for the
lowest numbered element in the array. CSee Program
Optimization Techniques for more details on variable storage.>

VARPTR ls particularly useful ln passing a variable address
to a USR function. The subroutine can then access any portion of
the variable and modify the data if required.

One thing to be aware of when using this function is that
the introduction of a new simple variable causes the array
variables to be moved upward in memory. This can have serious
ramifications when a VARPTR statement ls used to get the address
of an array variable. Consider the following example:

A = VARPTR CA$ CO>>

This is a perfectly acceptable statement and will work correctly
as long as A bas been previously defined. If A has not been
defined, however, the value returned will be 7 bytes lower than

·the actual location of A$ CO>. This is because the address was
calculated first, and then the array variable bad to be moved up
ln memory to make room for the simple variable. Note that this
problem does not occur if you are getting the pointer for a
simple variable. Obviously the solution is to ensure that all
variables are dimensioned, or that you define the variable
before using It to hold the variable pointer to an array
variable. The following approach will always work correctly:

A= 0: A = VARPTR CA$ CO>>.

The Ultimate Reference Guide And Toolkit 204

VERIFY

Syntax

VERIFY argument

Purpose

This statement allows you to enable or disable Disk BASIC,s
sector write-verification feature. Whe~ VERIFY ls on, every
sector that is written to the disk as a result of statements
such as SAVE, WRITE, PRINT, PUT, OPEN and DSKO$ ls read back
again to confirm that the data is accessible. The verification
process does not actually compare the data written to the data
read back. All lt does is read the sector to ensure that the
data can be read and that no CRC error occurs. Obviously, dlsk
writes will require about tw.ice as much time to complete when
the VERIFY feature ls active. When the computer ls first turned
on, VERIFY is OFF.

Arguments

argument must be either ON or OFF.

Potential Errors

None.

Examples

VERIFY ON

VERIFY OFF

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 205

WRITE

Syntax

WRITE l#buffer,J data list

Puroose

This statement is normally used to put data Into a disk
file buffer, but it can be used to send quoted strings to
cassette, printer, or screen as well. WRITE differs from PRINT
in that it automatically encloses data list in quotation
marks. If a LINE INPUT statement is used to read back the data
that was saved with a WRITE statement, the entire data list
will be read as one Item; therefore, INPUT should always be used
when retrieving data saved with WRITE. If buffer is omitted,
the data is written to the screen.

Arguments

buffer may be any numeric expression referring to an open
file buffer between -2 and 15.

data list may be one or more string expressions or
numeric expressions; multiple items must be separated by commas.

Potential Errors

OF - the last WRITE statement caused a buffer-full
condition, which resulted in a new sector being
created on the disk. When the disk write occurred, the
disk was found to be full.

ON - buffer is out of range.

ER - you have attempted a WRITE to a direct <random> access
disk file without having first performed a
corresponding PUT.

10 - the disk is not properly inserted in the drive; the
drive door ls not closed; or a write error occurred.

NO - buffer does not refer to an open disk or cassette
file.

The Ultimate Reference Guide And Toolkit 206

VF - VERIFY is on; the data just written to disk cannot be
read back.

WP - the disk is write-protected.

Examples

WRITE #2~ A$, B~ C$, D

WRITE # F~ A

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
.I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

**
* * * Section Two *
* * * PROGRAM OPTIMIZATION TECHNIQUES *
* * **

The Ultimate Reference Guide And Toolkit 208

PROGRAM OPTIMIZATION TECHNIQUES

The interpreter ROMs developed by Microsoft Corporation for
the Color Computer provide a powerful and versatile
implementation of the BASIC language. In order to make the
language as versatile as possible, however, the developers were
forced to make some sacrifices which resulted in certain
limitations, particularly with respect to execution speed. The
aim of this section is to assist you in making BASIC work faster
and more efficiently. Unfortunately, for reasons which will
become more obvious as we progress, some of the optimization
techniques greatly reduce the readability of your program.

In order to demonstrate the various time-saving programming
techniques, we have put together a series of sample programs
that use the TIMER function to measure loop speeds. You will
notice that the programs are quite trivial; the speed increases
we achieved in these example programs will not necessarily be
the same in longer programs. Consider, for example, the test
programs that appear in the first sub-section, ·using REM
Statements•. You can easily see that Program Bruns almost twice
as fast as Program A. True, but remember that the subroutine
consists only of ·the single statement RETURN. If, instead, the
subroutine contained 30 or 40 statements of code, the speed
increase would not be nearly as dramatic; nevertheless, Program
B would still be faster that Program A.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 209

USING REM STATEMENTS

REMs are used to add comments to a program; comments can be
immensely helpful to you, especially when you return to a
program at some <long) time after the program has been
completed, either to make additions or changes, or to eliminate
a recently discovered bug.

When developing a program, don't skimp on remarks. In fact,
we recommend that you be as liberal as you need to be in order
to make the program completely understandable to you. We also
recommend that you place remarks In their own lines, preferably
with unusual line numbers such as 17, 239, etc. This way, you
can reserve llne numbers that are multiples of 10 to be used by
the legitimate code. Later on, when you decide to remove remarks
to produce your working version of the program, you can be a
little more certain that you are not deleting lines which are
referenced elsewhere in your program.

REMs enhance program readability and help to produce
·self-documenting code·. But that is where their usefulness
ends. REMs use up a great deal of memory and slow down the
operation of a program, particularly when the interpreter has to
scan the remark lines. The following two programs should
illustrate this point:

--- Program A ---

00010
00020
00030
00040
00050
00060
00070
00080

RUN

412

OK

TIMER = 0
FOR T = 1 TO 1000
GOSUB 70
NEXT T
PRINT TIMER
END
REM SUBROUTINE
RETURN

The Ultimate Reference Guide And Toolkit

--- Program B

00010
00020
00030
00040
00050
00060
00070
00080

RUN

270

OK

TIMER = 0
FOR T = 1 TO 1000
GOSUB 80
NEXT T
PRINT TIMER
END
REM SUBROUTINE
RETURN

210

The only difference between the two programs is that the
first calls a REM~ while the second calls the subroutine
directly. The reason for the speed increase is that in Program
A~ line 70 contains a remark which must be interpreted. <In
actual fact~ the interpreter does not use the line link to skip
over the remark; instead~ it must scan the entire line to find
the start of the next line.)

Another reason you should never GOTO or GOSUB to a REM line
ls that problems can occur when you use a utility program <such
as BASMUNCH> at some later date to remove the REMs. Now you~ll
have to go through the program and change all the references to
the deleted REMs.

Speaking of deleting lines~ let's digress for a moment.
Suppose you have deleted a.number of lines from your program but
you are unsure whether you have deleted a referenced line
number. There's a way to get BASIC to let you know: simply
RENUMber the program without changing any line numbers. What was
that again? Well, here's the trick:

RENUM 63999, 63999

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Although the program will not actually be renumbered, any I
referenced line numbers that have been deleted from the program
will be listed as UL errors. The number 63999 Is used because it
is the highest line number allowed by BASIC. Since your program I
cannot have any legitimate line numbers above this number, no
line numbers can change. In spite of this, the interpreter still
goes through the motions and checks all line references. I

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 2 1 1

In general, our approach is to be quite liberal with
REMarks as we develop programs, making certain at all times that
no GOTO, GOSUB or IF-THEN-ELSE statements make reference to a
remark line. We usually accomplish this by reserving line
numbers ending in 7, 8 or 9 for remarks and all other line
numbers for executable code. When program development is
complete, we retain a renumbered copy Cor two or three> of the
fully commented program, and use a utility like BASMUNCH
(available separately> to compress the program. The compressed
version then becomes our working copy of the program.

One last note about REMarks: we have found that typing
comments in lower case (reverse video> makes them easier to find
when scrolling through a listing on the screen.

Ihe Ultimate Reference Guide And Toolki~ 212

SUBROUTINES

Subroutines can be a programmer's best friend. Not only do
they eliminate the need to repeat clocks of code; they also
permit the development of specialized routines that can be
debugged, placed in a separate library, and quickly incorporated
into new programs.

Where is the best location for a subroutine? Well, it
depends on the situation. Subroutines that are used only
occasionally, or those whose speed is not important, should oe
placed at the end of the program. Those used most frequently ln
a given program should be placed either right AFTER the code
calling them, or at the beginning of the program.

When BASIC encounters a statement which makes reference to
a new line number Cl.e. GOTO, GOSUB, or IF-THEN-ELSE), the
destination line number is compared with the line number
containing the calling statement. If the new line is greater
than the current one, the interpreter starts looking for the new
line starting at the current position in the program; otherwise,
it starts at the beginning of the program.

To lllustate, we took a fairly long program C225 lines, 8K>
and inserted the following code:

At the oeg[nning of the program,

00001 RETURN

In the middle,

00099 RETURN
00100 TIMER = 0

:FOR T = 1 TO. 1000
:GOSUB 104
:NEXT T
:PRINT •AFTER CALLING ROUTINE: . . TIMER ,

00101 TIMER = 0
:FOR T = 1 TO 1000
:GOSUB 226
:NEXT T
:PRINT •AT END OF PROGRAM: .. TIMER ,

00102 TIMER = 0
:FOR T = 1 TO 1000
:GOSUB 1
:NEXT T·
:PRINT •AT BEGINNING OF PROGRAM:•; TIMER

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit

00103 TIMER = 0
:FOR T = 1 TO 1000
:GOSUB 99
:NEXT T
:PRINT •BEFORE CALLING ROUTINE: •; TIMER

00104 RETURN

And at the end,

00226 RETURN

RUN 100

AFTER CALLING ROUTINE: 286
AT END OF PROGRAM: 506
AT BEGINNING OF PROGRAM: 262
BEFORE CALLING ROUTINE: 453

OK

213

The different speeds are a direct result of the time spent
searching for the destination line numbers.

A little more food for thought: when a GOSUB statement is
encountered, the return address is saved on the stack.
Therefore, no line number search is performed when the RETURN
statement is encountered. This makes a GOSUB/RETURN combination
quite a bit faster than a similar construction involving two
GOTO statements. Consider the two test programs below.

--- Program A ---.

00010
00020
00030
00040
00050
00060
00070

RUN

256

OK

TIMER = 0
FOR T = 1 TO 1000
GOSUB 70
NEXT
PRINT TIMER
END
RETURN

The Ultimate Reference Guide And Toolkit 214

--- Program B ---

00010 TIMER = 0
00020 FOR T = 1 TO 1000
00030 GOTO 70
00040 NEXT
00050 PRINT TIMER
00060 END
00070 GOTO 40

RUN

281

OK

Note that the placement of the calling statement will have
a great effect on the timing in the above examples. For
instance, if the calling statement were in line 200 instead of
llne 30, Program B would take even longer to execute~

Subroutines can save a great deal of memory. Use them, but
give their placement some thought.

I
I
.I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 215

VARIABLES AND CONSTANTS

Color BASIC allows for two types of variables, namely
simple and array variables. Each of these variable types may
hold either string data or numeric data. Unlike other
implementations of BASIC, Color BASIC does not permit options
for specifying infeger, or single- or double-precision
variables. In the color computer, all numbers are stored as
five-byte floating point values. On the other hand, Color BASIC
allows you to define strings of from 0 to 255 characters in
length, whereas many other versions of BASIC require you to
dimension string sizes at the beginning of the program.

Variable names can be from 1 to 255 characters in length,
but if the name is longer than one character, only the first two
characters are actually used by BASIC. This means that the
variables STREET, STATUS and STRAWBERRY would all be interpreted
as ST. Long variable names can add a great deal to the
readability of a program, but obviously each extra character
that you put into a name uses an extra byte of program memory. A
little less obvious is the fact that long names slow down
program execution. Even though BASIC only recognizes the first
two characters, the interpreter must still scan ALL the letters
of the name--the longer the variable name, the longer this
takes. For these reasons, we recommend that you use
single-letter names for your most frequently used variables, and
two-letter names for all others.

Although no optimization can be gained from this, we also
suggest that you develop a convention for standardizing the
variables that you use. For example, one of us always uses T and
TT in FOR-NEXT loops and the other uses I and J. Which ones are
used - isn't really important, but the consistency is. When we
look at our own programs, this approach helps us to know what
certain variables mean right away. Another example of
standardization is the use of the •o• variables in· the
subroutines in Sections 3 and 4 of this book. By reserving
variables for specific uses, the possibility of duplication in a
long program is reduced. When programming, you ~hould also keep
a written list of the variables you use. Try to use meaningful
names: Both TE an PH seem reasonable for •telephone number•, but
At doesn't.

Storage Of Simple variables

All simple variables and function definitions are stored in
memory in a •variable table• which immediately follows the end
of the BASIC program. The table is expanded in size by the
interpreter as each new variable is declared. The table is never

The Ultimate Reference Guide And Toolkit 216

reduced in size except when a NEW or CLEAR statement is
encountered~ a program is RUN~ or the computer is turned off Cor
a cold restart is performed), in which case all of BASIC~s
pointers are r-eset.

Within the table, all simple variables and functions have
the same format. Each entry consists of·seven bytes. The first
two bytes are the •header block•, which contains the variable
name or the function name. If the name consists of only one
character, then the second byte of the header block is cleared
to zero. In a string variable entry, the most significant bit
(bit 7) of the second byte of the header block is set to one. In
a function definition entry, the most significant bit Cbit 7> of
the first byte of the header block is set to one. BASIC uses
this •masking• technique to distinguish the different types of
entries contained in the table~

The remaining five bytes of the variable entry are the
•data block·. In the case of a numeric variable, these five
bytes are, in fact, the floating point value of the variable. In
the case of a string variable~ the data block contains a •string
descriptor• that reveals the length of the string and where in
memory It is actually located. In the case of a function
definition entry~ the data block contains a •tunction
descriptor· that contains pointers to where the definition is
locatec within your program and to where the parameter variable
is located in the variable table. The charts below give a better
picture of how the data is stored.

Numeric Variable Entry

Bytes Purpose

0-1
2-6

variable name (header block)
floating point value (data block>

String Variable Entry

Bytes Purpose

0-1 name--bit 7 of byte 1 set <header block>
2 length of string \
3 not used \

) (data block)
4-5 address of string I
6 not used I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit

Function Definition Entry

Bytes

0-1
2-3
4-5
6

Purpose

name--bit 7 of byte 0
address of definition
address of parameter
not used

set <header block>
\
> (data block)

I

217

Let's now consider how numbers are actually stored in the
computer's memory. We mentioned earlier that all numeric data is
stored in blocks of five bytes in what is known as •floating
point format•. This concept is best explained through the use of
the more familiar scientific notation. Given the decimal number
123450.987, we can use scientific notation as an alternate
representation, in any of the following forms:

123450.98780
1234.50987E2
1234509878-3
1.23450987E5

In each of these examples, the string of digits to the left of
the letter •E• is called the ·mantissa·, or the value of the
number, while the digits to the right make up the •exponent•, or
the power of ten which must be applied to the mantissa in order
to obtain the true magnitude of the number. If we accept the
fourth example as being the standard format for all numbers
represented in scientific notation, we can say that the number
has been •normalized•; that is, the decimal point is shifted
until there is only one digit to the left of it and for each
shift the exponent is adjusted accordingly. For each shift to
the left, the exponent is increased by one; for each shift to
the right, the exponent is decreased by one. Since this is the
case, it is not difficult to come to the conclusion that the
exponent actually represents the number of times the decimal
point was shifted. A positive exponent indicates that the
decimal point was shifted to the left; a negative exponent
indicates right shifts. From this, we can also conclude that to
obtain the true magnitude of the number, all we have to do is
shift the decimal point the indicated number of positions in the
OPPOSITE direction, adding zeroes if necessary as we proceed.

Because the decimal point moves from one position to
another, the term •floating point• is an apt description, and
the approach just outlined is essentially how BASIC converts
numeric data into the desired representation. In reality, the
Color Computer stores all data as a series of binary digits, so
we end up dealing with a •binary point• instead of a decimal

The Ultimate Reference Gylde And Toolkit 218

point, powers of two instead of powers of ten, and bits instead
of decimal digits.

During the •normalizing• process, the interpreter actually
stops when the most significant bit is immediately to the right
of the binary point, instead of to the left. Then the most
significant bit of the mantissa can be used as a sign bit, 0
being positive and 1 being negative. As far as the value of the
mantissa is concerned, the most significant bit is always
assumed to be 1, regardless of the physical status of the bit.
In this way, BASIC is able to use a single bit position for two
purposes. Just as our decimal exponents above represent the
number of decimal point shifts, so does the binary exponent
represent the number of binary point shifts. Once the binary
exponent has been determined, however, the value &H80 (128
decimal> is added to it, thus giving us what is called a ·biased
exponent•. As a result of the applied bias, any exponent ln the
range &H80 to &HFF <128 to 255) represents a positive exponent,
while results in the range &H7F to &HOt C127 to 1> represent
negative exponents. This actually translates to binary exponents
ln the range -127 to +127. Note .that a stored exponent value of
&HSO actually represents a value of zero. If the stored value is
actually &HOO, this indicates that the whole number Is equal to
zero.

Dlagramatlcally, this is how the floating point data looks
in memory:

Bytes Purpose

0 biased exponent <number of shifts)
1 MS Byte of mantissa

normalized until MS bit set,
then MS bit becomes the sign bit

2-4 3 LS bytes of mantissa

What about the interpretation of floating point binary
numbers? Although the task may at first appear to be monumental,
it is really not that difficult, particularly if you approach
the problem logically. Suppose we examine the data block of a
floating point variable and find the hexadecimal numbers

83 C2 00 00 00

We know that the first byte in the series is the biased
exponent. Since this byte is not zero, we know immediately that
the whole number is a non-zero value, and that we must remove
the bias by subtracting &H80. This subtraction leaves us with an
exponent of +3, which tells us that the mantissa, when

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 219

deciphered~ will have to be multiplied by 23 , or 8.

Putting the calculated multiplier aside for the moment,
let's turn our attention to the mantissa. The process of
interpreting the mantissa is easier if we convert the
hexadecimal value into its binary equivalent. We will ignore the
least significant three bytes, since they are all equal to zero.
The binary equivalent of the most significant byte is

11000010.

Remember that the most significant bit of this byte represents
the sign of the mantissa. Since this bit is set to one, we know
immediately that the mantissa is negative. We also know that the
original floating point number was •normalized• to make the most
significant bit equal to one, so having removed the sign bit and
having noted its value, we immediately replace the sign bit with
a one, which, in this case does not alter the appearance of the
binary number:

1 (sign bit> 11000010 (normalized 1 bit replaced>

The next thing to remember is that the normalization
process stopped when the bit immediately to the right of the
binary point was set. This means that the string of blts above
should actually be written as

.11000010

What exactly does this mean? If this were a decimal number, we
would be able to arrive at the correct conclusion based on the
knowledge that the first digit to the right of the decimal point
represents 1/10 or 1 * 10-', the second digit represents 1/100
or 1 * 10-2 , the third digit represents 0/1000 or 0 * to-:s,
and so on. Unfortunately, lt is not a decimal fraction but
rather a binary fraction. It is a simple case of replacing the
powers of 10 just mentioned with corresponding powers of 2, with
the following result:

1 * 2-l + 1 * 2-2 + 0 * 2-:s + 0 * 2-·
+ 0 * 2~ + 0 * 2~ + .1 * 2~ + 0 * 2~

This simplifies to:

1 * 1/2 + 1 * 1/4 + 1 * 1/128,

which further simplifies to

97/128

The Ultimate Reference Guide And Toolkit 220

From our very first operation, we know that we have to multiply
this number by a, so we can quickly obtain the number

8 * 97/128 = 97/16 = 6.0625

The only thing left to do is to apply the value of the sign,
which we know is negative. Thus, we know that

83 C2 00 00 00 = -6.0625

As you can see, the process of interpreting floating point
binary data is not that difficult, although admittedly, it does
become more complex when the second, third, and fourth bytes of
the mantissa contain non-zero values. From left to right, the
bits in each byte represent powers of -9 to -16, -17 to -24,
and -25 to -32 respectively. Incidentally, the number +6.0625
would be converted to the floating point value

83 42 00 00 00

because the sign bit would be cleared to zero to indicate a
positive number.

One of the limits of the four-byte mantissa is that the
Color Computer cannot retain more than nine significant decimal
digits. If you want to achieve a higher degree of accuracy, you
must write your own double-precision <or higher>
number-crunching routine. Below is a table that depicts the
absolute limits on the range of displayable numbers.

POSITIVE
MINIMUM MAXIMUM

01 00 00 00 00 <-- floating --> FF 7F FF FF FF
+2.93873588E-39 <-- decimal --> +1.70141183E+38

NEGATIVE
MINIMUM MAXIMUM

01 80 00 00 00 <-- floating --> FF FF FF FF FF
-2.93873588E-39 <-- decimal --> -1.70141183E+38

Let's turn our attention now to the way in which string
variables are structured. As we pointed out earlier, the data
block of a string variable contains only three bytes which are
of any use, namely bytes zero <the string length) and two and
three <the string address>. Since the string length is contained
in only one byte, this means that a string can be from 0 to 255
characters in length. On the other hand, the address is stored

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 221

in two bytes~ which means that the string ~an (theoretically> be
located ~nywhere within the space of 64K of memory~ from address
&HOOOO to &HFFFF. In fact~ BASIC never uses a string address
above &H7FFF because this area is reserved for your interpreter
ROMs.

Suppose that your program.contains the statements

00010
00020
00030

A$ = •HELLO THERE•
B$ = A$
C$ = A$ + ••

The string in line 10 is~ in effect~ a constant value which can
be stored permanently in your program. When BASIC encounters
this line, an entry will be created in the variable table such
that the length byte is set to 11 and the address bytes point
directly to the string in your program. In line 20~ B$ is set
equal to A$. This causes a new entry to be made in the variable
table~ 'cut this time the contents of the data block ·for A$ are
simply copied into the data block for B$; the end result is that
both A$ and B$ point to exactly the. same area of memory. Line 30
produces a slightly different result because C$ is a formulated
string rather than a constant. Even though C$ contains exactly
the same value as A$ because of the null string concatenation~
the address bytes for C$ wil.l point to a place near the top of
your available RAM space~ in a place called the •string pool·.
When the interpreter encounters line 30, it still creates an
entry in the variable table, but this time it must first copy
the contents of A$ into the string pool, perform the
concatenation, and then assign the length and address attributes
to the new variable.

If you want to examine the contents of a simple variable
directly, you can do so by using the VARPTR function. Whether
applied to a numeric variable or a string variable, VARPTR
always returns a two-byte address (from 0 to 65535> which points
to the start of the variable's data block. For example, if you
obtained the VARPTR for variable A~ the address would point at
byte zero of the floating point number, i.e. its exponent. The
remaining bytes of the number can be easily accessed by applying
an offset of 1~ 2, 3~ or 4 to the obtained address. Similarly~
if you want to examine the header block for a simple variable
(the variable name> you can do so by applying an offset of -2
for the first character and -1 for the second character of the
name.

The Ultimate Reference Guide And Toolkit 222

Storage Of Array Variables

In principal, an array is nothing more than a collection
(more specifically, a list) of related variables, each of which
is accessed and/or modified by making reference to its "index•.
In order for Color BASIC to assign sufficient memory space to an
array, the interpreter must know a few things about the
structure: the name of the array, the number of dimensions, and
the number of elements in each dimension. For fairly obvious
reasons, the allocation of space for an array variable is a more
complicated process than for a simple variable, and It Is quite
possible <and likely> that two different arrays will be allotted
different amounts of memory.

Not too many people have difficulty visualizing an array
consisting of from one to three dimenslons.·But the moment the
fourth and subsequent dimensions are introduced, many people
find themselves totally confused. In fact the visualization
process is quite easy, if you work your way up from the simple
to the complex. Suppose, for example, that you have a cash
register in front of you. For the moment, let's assume that the
register contains one drawer, and inside the drawer is a plastic
tray containing five buckets oriented horizontally. This is a
not-quite-typical cash register which can hold the quarters in
one bucket, the dimes in the next, followed by the nickels and
the pennies. The last bucket, of course, will hold our rolled
coins. To identify any given bucket we need only give the bucket
a name such as "A• or "Quarters• or •t•. Having done that much,
it is very easy to specify where to look for a specific kind of
coin. In most computers, the name applied to such a "bucket• is
called an index, and is usually an integer number ranging from
zero to one less than the maximum number of "buckets•. You
should have no trouble realizing that the tray within the cash
register drawer- is, in reality, a one-dimensional array
consisting of five •buckets• or "elements• numbered from zero to
four.

Now suppose we add another tray to the drawer to hold the
$20-dollar bills, the $lOs, the $5s, the $2s, and the $ls
respectively. This tray by itself represents another
one-dimensional array containing five ·buckets•, again numbered
from 0 to 4. With respect to the drawer, however, the second
tray actually adds another dimension to our original array. Now,
to specify where to look for ~ certain denomination of currency,
we must specify not only the bucket number but also the tray
number. Since we have only two trays, we will number them
conventionally from 0 to 1. Thus if tray number 0 contains the

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 223

coin buckets and tray number 1 contains the bill buckets, in
order to specify the location of the $20-dollar bills, we would
have to say •put $20 in tray #1, bucket #o·.

Up to this point, we have adhered pretty closely to the
traditional concept of •two-dimensionality•. We are about to
depart from that narrow path, in order to simplify the concept
of •multi-dimensionality•. In the last example, we ended up with
a two-dimensional array in which each of two •trays• contained 5
•buckets•. If we give the array the name •A•, we can use a BASIC
statement to set aside enough memory for this array:

00010 DIM A <1,4)

The numbers •1• and •4• are used in the DIMension statement,
instead of ·2· and ·s·, because they represent the highest
possible index values that can be assigned. BASIC knows that the
lowest index value is zero in every dimension of the· array, so
sufficient memory will be allocated. <There is nottilng wrong
with using the values •2• and ·s· if it makes you more
comfortable counting from one upwards--just be aware of the fact
that the zeroth element is also reserved by BASIC. As we will
see later, this can be quite costly in terms of total memory
allocation.>

Let's take our example a little further. In any
supermarket, there may be from 10 to 20 separate checkout
counters, each of which has its own cash register. <Already, a
little light is beginning to shine!> That's right--now we must
specify a •cash register• as well as a •tray• and a •bucket•. As
usual, we will number the registers from 0 to 9 Cor 19 if you
happen to be in a super-duper-market!> The BASIC statement that
defines this •three-dimensional• array has to be modified:

00010 DIM A (9,1,4)

In most cities, supermarkets exist as •chains•; that is,
generally, you will find more than one store location in your
city. From store to store, the number of cash registers may
change, but for this example, we will assume that each store has
exactly 10 registers. <Is the light shining a little brighter?>
You've got it--now, in addition to all the other indices, we
must also be able to indicate which store we are referring to,
and (assuming there are seven locations In your city) the BASIC
DIM statement becomes:

00010 DIM A <6,9,1,4>

The Ultimate Reference Guide And Toolkit 224

With this type of approach, lt is quite easy to visualize a
huge chain of stores around the world. To locate a certain
denominatlQn of currency, we would <theoretically> have to
specify the continent, the country, the city, the store, the
cash register, the tray, and the bucket--this is an array ~lth
seven dimensions! A DIM statement for such an array would look
something like the following: .

00010 DIM A C4,11,35,6,9,1,4>

It looks ominous, doesn't it? But it really isn't. It
simply tells us that there are five continents <numbered from 0
to 4>, each of which contains exactly 12 countries <numbered
from 0 to 11>. Within each country, there are 36 cities, each of
which contains 7 supermarkets. Within each supermarket, you will
find 10 cash registers, each of which consists of 2 trays
containing 5 buckets each! Don't worry! You will not likely ever
have to use an array of such a size. This particular array will
require 7~560,019 bytes of memory! Although there are Color
Computers in existence with 128K of BAM, we do not currently
believe that 8 or 9 megabytes will ever become commonplace ln
the CoCo!

In each of the multi-dimensional examples above, we listed
the indices in parentheses from left to right, where the
leftmost index referred to the least specific array identifier
Cin this case, •continent•) and the rightmost index referred to
the most specific identifier (namely, •tray•>. As far as the
BASIC interpreter is concerned, our ordering convention is
completely arbitrary, but from the point of view of being able
to follow the logic of a given program, it makes sense to keep
things orderly.

Now we address the question of how BASIC stores the data in
memory. BASIC reserves an area immediately following the table
of simple variables specifically for array storage. Just as the
simple variable table can contain a mixture of numeric and
string variables, so can the array table contain a mixture of
numeric and string arrays, although each array occupies an area
of memory which must be contiguous (that is, uninterrupted>. As
well, each array may hold only one data type, either numeric
data or string data. Because of this requirement, an array
consists of a header block, which contains information about the
number of dimensions and the number of elements in each
dimension, and a data block, which contains a series of 5-byte
entitles, each of which is either a floating point number or a
string descriptor, depending on the array type.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 225

In order to gain a better understanding of how an array is
physically stored in memory, let us assume that we have a
one-dimensional array named •A• which we have defined by the
BASIC statement ·oiM A <3>·. If we examine the array table after
declaring this array, we will find a series of hexadecimal
values, as follows:

41 00 * array name CA>
00 1B * offset to next array n
01 * number of dimensions
00 04 * number of elements in first dimension
00 00 00 00 00 * data element #0
00 00 00 00 00 * data element #1
00 00 00 00 00 * data element #2
00 00 00 00 00 * data element #3

The data block for this array is 20 bytes long, which makes
sense since we specified 4 elem~nts, each of which:~ccupies 5
bytes of memory. Notice that the value of each element was
automatically set to zero during the execution of the DIM
statement. The header block is a little more interesting. As
with . simple variables, there is space reserved for the name of
the array (bytes #0 and #1). But in addition to these two bytes,,
five additional bytes are reserved. Bytes #2 and #3 represent a
count of the total number of memory locations occupied by the
current array; these bytes are used only when BASIC is searching
through the table for a specific array and are necessary because
of the fact that no two arrays need necessarily occupy the same
amount of space. Byte #4 tells BASIC how many dimensions are

.contained in this array. Since it is only a one-byte value, this
means that it is theoretically possible to have an array of from
1 to 255 dimensions! <However, because of the limitations
imposed on the size of a BASIC program line, it is virtually
impossible to specify such a large array.> Following the
dimension sp~cifier, there will be a pair of bytes for each
dimension which tell BASIC how many elements are in each
dimension. For our single-dimension array example, there are
only two additional bytes (#5 and #6) and these tell us that the
array consists of only four elements.

The Ultimate Reference Guide And Toolkit 226

Now take a look at a similar array 1 A$C3>:

41 80 * array. name CA$ >
00 lB * offset to next array
01 * number of dimensions
00 04 * number of elements in first dimension
00 00 00 00 00 * descriptor element #0
00 00 00 00 00 * descriptor element #1
00 00 00 00 00 * descriptor element #2
00 00 00 00 00 * descriptor element #3

Notice that the only difference between this and the previous
array ls that the name portion of the header contains the value
•so· which indicates that the array is a list of string
descriptors. This 1 you will recall., is exactly the same
convention that is used to differentiate between simple numeric
and string variables. Notice., too, that each of the descriptors
has been set to all zeros. This makes sense if you remember that
when a string variable is DIMensioned, it is set equal to the
null string, which has a length of zero. Since its length is
zero, it doesn't really matter where the address pointer
actually points. The writers of BASIC chose to simplify their
task by making all of the descriptor bytes equal to zero.

Now, let•s skip a few steps and examine the storage of a
small, three-dimensional array which we have initialized as
follows:

00010 DIM I, J, K, X
00020 DIM A <O, 1, 2)
00030 FOR I = 0 TO 0

:FOR J = 0 TO 1
:FOR K = 0 TO 2

00040 A <II J, K> = X
:X = X + 1

00050 NEXT K, J., I

If you examine the logic of this short program, you will see
that we have performed the initialization using •normal
odometer• format. What this means is that the elements of the
array contain the following values:

A co~ 0, 0) = 0
A co .. o, 1) = 1
A co, o, 2) = 2
A <O, 1, 0) = 3
A co, 1, 1) = 4
A co, 1, 2> = 5

I
I

I

1\
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 227

Notice that the rightmost index increases in value first
followed by the next index to the left, and so on, which is
exactly how the odometer In your car works.

When we examine memory following this setup, however, we
are in for a mild surprise:

41 00
00 29
03
00 03
00 02
00 01
00 00 00 00 00
82 40 00 00 00
81 00 00 00 00
83 00 00 00 00
82 00 00 00 00
83 20 00 00 00

* array name <A>
* offset to next array
* number of dimensions
* number of elements In last dimension
* number of elements in middle dimension
* number of elements in first dimension
* data element 0,0,0 <value 0)
*data element 0,1,0 <value 3)
*data element 0,0,1 <value 1)
*data element 0,1,1 <value 4)
* data element 0,0,2 <value 2) -
*data element 0,1,2 <value 5)

There are a couple of interesting points to note in the memory
layout for this array. The first point is the header block has
been increased in size to allow for the specification of the
number of elements in each dimension. This in itself is not
particularly startling. What is noteworthy is the fact that the
dimension size bytes are stored in the opposite order to which
they were listed in the DIM statement. The second point is that
the floating-point values are stored in what is called •reverse
odometer• format <the left-most index increases first, followed
by the next-to-left index, and so on>, which is quite different
from the way in which the array was initialized. This reversal

·of data storage does not make a whole lot of sense until you
consider the steps required for BASIC to locate a specific array
element.

Let's consider how BASIC would locate an element in a
single-dimension array. This is a fairly trivial case: all the
interpreter has to do is multiply the index value by five <since
each element of the array actually occupies five bytes of
memory> and add in the known address of the first element
<element #0) and the location of the desired value is
immediately known.

In a two-dimensional array, the problem is still quite
simple. Suppose we have declared array A as follows:

00010 DIM A Cl, 3)

The Ultimate Reference Guide And Toolkit 228

From this statement we know that the first dimension contains
two elements (#0 and #1>, and the second dimension contains four
elements. Suppose further that at some point In· the program we
make reference to element A (1, 0). How does BASIC know where to
look for that element? The interpreter knows where the array
table starts; with this start point, BASIC searches forward
until it finds the header block for array A. <If the array is
never found, BASIC quickly performs a default DIM statement,
setting aside 11 elements in each dimension.) Now a check Is·
made to ensure that the element specified can in fact
exist--this check verifies that there are exactly two dimensions
in the array and that the subscripts are within limits. If the
check succeeds, then BASIC knows the address of element A <O,
O>. In order to determine the offset of the desired element from
the base address, a calculation must be performed, as follows:

offset = 5 * (1 + 0 * 4).

The ·s· represents the constant size of each data element; the
•t• represents the value of the left subscript; the ·o·
represents the value of the right subscript; and the •4•
represents the number of elements in the second dimension. In
general, a two-dimensional array contains J elements in one
dimension and K elements in the other. If we attempt to access
element <a, b) in the array, the above equation can be
re-written as

offset = 5 * (a + b * KJ.

If we have a three-dimensional array containing J, K, and L
elements in each dimension respectively, and we wish to access
element <a, b, c), the equation becomes a little more
formidable:

offset = 5 * (a + b * K + c * L * K).

This may be a little difficult for you to accept, but if you try
a few examples, you will see that it is correct. It is beyond
the scope of this text to include a proof of this equation;
suffice to say that If you consider the example of a simple
cube, you will begin to understand the need for all the
multiplications.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 229

In actual fact the multiplications are performed ln the
reverse order to that specified above, so that, in reality, the
equation looks as follows:

offset = 5 * (c * L * K + b * K + a)

and this, of course, explains why the data is physically stored
in memory in reverse order to the way in which it is specified.

In general, if we have an N-dimensional array with Aa
elements in dimension #1, Az elements in dimension #2, and so
on, and we wish to access element CJa, Jz, ••• , J">, the
formula required to locate the data is:

offset = 5 * ((J, * A, * A,., * ... * Az) +
(J,_, * A,., * A,.z * * Az) +
(J,.z * A11-z * A,., * ... * Az) +

(J, * A.r * Az) +
(Jz * Az) +
()),))

Our only purpose in writing out this rather ominous looking
formula is to emphasize the fact that each additional dimension
in an array causes the interpreter to go through an additional
level of arithmetic before it can locate a specific element in
the array. This extra level of arithmetic can be quite time
consuming, and therefore it makes sense to use multiple
single-dimensional arrays instead of one multi-dimensional
array. For example, suppose you want to implement a
two-dimensional array, in which one dimension represents a
person's age and the other dimension represents his/her salary.
Obviously, this could be easily implemented as an array such as
AC1,10). But is could also be implemented as two one-dimensional
arrays such as AC10) and BClO>. Now suppose you wanted to obtain
both the age and the salary of the fourth person (element #3) in
the array. In the case of the two-dimensional array, you would
have to access both dimensions of the array Ci.e., age comes
from AC0,3) and salary comes from AC1,3>>, while in the case of
the one-dimensional arrays, you would have to access each array
separately Ci.e., age comes from AC3> and salary comes from
8(3)).

The Ultimate Reference Guide And Toolkit 230

Using the system of multiple single-dimensional arrays
causes more memory to he used for storage of the program and for
storage of the array information in the array variable table,
but the access time is much faster. Consider the following
programs:

--- Program A ---

00010
00020

00030
00040
00050

00060
00070

RUN

607

OK

DIM A<10), B<10)
FOR I = 0 TO 10

:A<I> = I
:B<I> = I
:NEXT
TIMER = 0
FOR I = 1 TO 1000
A = A<3>

:B = B(3)
NEXT
PRINT TIMER

Program B ---

00010 DIM A<l,lO>
00020 FOR I = 0 TO 1

:FOR J = 0 TO 10
:A<I, J> = I
:NEXT J, I

00030 TIMER = 0
00040 FOR I = 1 TO 1000
00050 A = A<O, 3)

:B = A<l, 3)
00060 NEXT
00070 PRINT TIMER

RUN

913

OK

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
·I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 231

The first program# involving single-dimension arrays, runs
almost 30 percent faster than the second program, and each of
these programs does nothing more than make access to two
separate array elements! The lesson ls clear: avoid the use of
arrays if possible# but if you must use them in your program,
make every effort to stick with single-dimension arrays. At the
very least, do ~ use an array variable when a simple
variable will do--

--- Program A ---

00010
00020
00030
00040
00050
00060

RUN

153

OK

CLEAR 1000
TIMER = 0
FOR T = 1 TO 255
A$ = A$ + CHR$ <T>
NEXT T
PRINT TIMER

--- Program B

00010
00015
00020
00030
00040
00050
00060

RUN

207

OK

CLEAR 1000
DIM A$(0)
TIMER = 0
FOR T = 1 TO 255
A$(0) = A$(0) + CHR$ CT>
NEXT T
PRINT TIMER

The Ultimate Reference Guide And Toolkit 232

As with simple variables, you can use the VARPTR function
to obtain the address of any array element. The value obtained
always points to byte zero of the flve-byte data block for the
specified element. In the· case of a numeric array, this will of
course be the exponent of a floating-point number; in the case
of a string array, byte zero represents the length byte of the
string. Each of the other bytes in the data block can be
accessed by applying an offset of 1, 2, 3, or 4 to the obtained
result: If you want to look at the header block of an array by
using the VARPTR function, you must first obtain the address of
the first element in the array (element zero>. Then you can
apply a negative offset whose size will be determined by the
number of dimensions in the array. In general, the header will
be five bytes plus two bytes for each dimension in the array.
Thus, for a single-dimension array, the header will start seven
bytes before the data block for elemen~ zero; for a
two-dimension array, nine bytes before the data block; and so
on.

You can easily determine the total number of elements in an
array by adding one to each of the maximum index values and then
multiplying each of the indices together. Thus, if you declare
the array AC3, 9>, the array will contain 4 x 10, or 40
elements.

Since each element occupies five bytes of memory, the
following formula can be used to determine the total number of
bytes that a DIM statement will reserve for any size array:

SIZE = 5 + (2 x number of dimensions) + (5 x total number
of elements)

I
I
I
I
I·
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 233

Table Lookup And variable Positioning

Now that we have some understanding of the variable tables,
let's look at what happens when a variable is encountered in a
BASIC program.

First, it is determined if the variable is a simple
variable or an array variable and the appropriate table ls
scanned. If the variable is found, its value Cor address if it
ls a string> is accessed or updated, and the program continues.
But. what happens if the variable is not found in the table? If
it is a simple variable, the name ls added to the end of the
simple variable table. But because the array table immediately
follows the simple variable table ln memory, the array table
first has to be moved up 7 bytes to make room for the new simple
variable. On the other hand, if the encountered variable happens
to be an array variable that has not been previously dimensioned
in a DIM statement, lt is given a default DIM value of 10 for
each dimension (i.e., 11 elements) and an appropriate entry is
added to the end of the array variable table.

Two facts are important in the above. First, the tables are
scanned each time a variable name is encountered. Second,
variables are added to the tables as they are encountered in the
program. The process of adding a new simple variable to the
table can be quite time consuming, especially if large arrays
have been dimensioned beforehand;

--- Program A ---

00010
00020
00030

RUN

0

OK

TIMER = 0
A =·1
PRINT TIMER

The Ultimate Reference Guide And Toolkit

--- Program B ---

00005
00010
00020
00030

RUN

14

OK

DIM A(2000).
TIMER = 0
A = 1
PRINT TIMER .

234

The difference in the execution speed of the two programs
<about 1/4 second) is the time required to move the 10 1 007 byte
table to make room for the variable •A•.

The location of a variable relative to other variables in a
program will also affect the execution speed of the program~
particularly during the first run.

--- Program A

00010 A = 0
:B = 0
:C = 0
:D = 0
:E = 0
:F = 0
:G = 0
:H = 0
:I = 0

00015 XX = 0
00020 TIMER = 0
00030 FOR T = 1 TO 1000
00040 XX = XX + 1
00050 NEXT T
00060 PRINT TIMER

RUN

380

OK

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit

--- Program B ---

00005 XX = 0
00010 A = 0

:B = 0
:C = 0
:D = 0
:E = 0
:F·= 0
:G = 0
:H = 0
:I = 0

00020 TIMER = 0
00030 FOR T = 1 TO 1000
00040 XX = XX + l
00050 NEXT T
00060 PRINT TIMER

RUN

333

OK

Even in the simple prog~ams above, with their very
variable tables, the difference in the amount of time
searching for the variable ·xx· is evident. In Program A,
will be the tenth entry in the variable table; in Program
is the first entry.

235

short
spent
·xx·

B, it

From these examples, we can conclude that often-used
variables should be placed as close as possible to the beginning
of the variable table; furthermore, because the array table has
to be moved every time a new simple variable ls encountered. it
makes sense to DIMension all simple variables before arrays are
DIMensioned. Note that:

00010 DIM A, B, C, XX, Zl$

is a perfectly legal statement; DIM needn't only be used to
dimension arrays.

The Ultimate Reference Guide And Toolkit 236

Declared Constants

Let~s leave variables for a moment and discuss constants.
BASIC does not understand a number like 456 or -12345.67. It
must first be converted into a five-byte floating point
representation before the program can continue. On the other
hand, once a variable name is found in the array table~ no
conversion ls necessary since the number Is already stored in
floating point format. Because no conversion is necessary, it
follows that BASIC can process a declared constant much faster
than it can process a number such as 456 or -12345.67.

--- Program A ---

00010
00020
00030
00040
00050

RUN

3560

OK

TIMER = 0
FOR I = l TO 1000
A= SIN<3.14159)
NEXT
PRINT TIMER

--- Program B ---

00005
00010
00020
00030
00040
00050

RUN

2073

OK

PI = 3.14159
TIMER = 0
FOR I = 1 TO 1000
A = SIN<PI>
NEXT
PRINT TIMER

Just by declaring the value 3.14159 as a constant, PI, we
obtained more than a 40% increase in speed!

I
I
I
I
I
I
I
I
I
I
I
I
I
I
1~:

I
I~

I
I

I
I
I
I
·a
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 237

If the constant you are using happens to be an integer
value in the range 0 to 65535, another option is to use •&H•
notation. BASIC is able to convert the number &HFF to floating
point faster than it can convert the number 255, but this method
is still ~ot as fast as using a declared constant.

--- Program A ---

00010
00020
00030
00040
00050

RUN

490

OK

TIMER = 0
FOR T = 1 TO 1000
A = A + 255
NEXT
PRINT TIMER

Program B ---

00010 TIMER = 0
00020 FOR T = 1 TO 1000
00030 A = A + &HFF
00040 NEXT
00050 PRINT TIMER

RUN

334

OK

The Ultimate Reference Guide And Toolkit 238

Program C ---

00005 B = 255
00010 TIMER = 0
00020 FOR T = 1 TO 1000
00030 A = A + B
00040 NEXT
00050 PRINT TIMER

RUN

312

OK

The trick of using hexadecimal notation can also be used
when loading machine language routines from DATA statements. Not
only does the data load more quickly (as expected, according to
the results of the last example>, but it is much easier to
relate hexadecimal numbers back to the original assembly
language source code. Unfortunately, the Increase in speed and
readability is partially nullified by the fact that hexadecimal
notation uses quite a bit more memory.

--- Program A ---

00010

00020
00030
00040
00050
00060
00070
Q0080

RUN

130

OK

DATA 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,. 12, 13, 14,.
15,. 16, 17,. 18, 19,. 20
TIMER = 0
FOR T = 1 TO 20
RESTORE
FOR TT = 1 TO 20
READ A
NEXT T, TT
PRINT TIMER

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
·a
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit

--- Program B ---

00010

00020
00030
00040
00050
00060
00070
00080

RUN

119

OK

DATA &Hl, &H2, &H3, &H4, &H5, &H6, &H7, &HS, &H9,
&HA, &HB, &HC, &HD, &HE, &HF, &HlO, &Hll, &H12,
&H13, &H14
TIMER = 0
FOR T = 1 TO 20
RESTORE
FOR TT = 1 TO 20
READ A
NEXT T, TT
PRINT TIMER

Variables In FOR/NEXT Loops

239

Another use of variables is as counters in FOR/NEXT loops.
The variable name is always required immediately after the FOR
statement, but can be omitted after the NEXT statement--and this
translates to savings in both memory requirements and execution
speed. In a nested loop, ·NEXT:NEXT• uses three bytes of memory;
·NEXTA,B• uses four; and ·NEXT AA, sa· uses eight Clncludlng the
two spaces>. Yet all three notations serve the the same purpose.
The last format is easier to read while the first format is both
quicker and more efficient. Again a short example will
illustra~e the point:

--- Program A ---

00010
00020
00030
00040

RUN

120

TIMER = 0
FOR T = 1 TO 1000
NEXT T
PRINT TIMER

The Ultimate Reference Guide And Toolkit 240

--- Program B

00010 TIMER = 0
00020 FOR T = 1 TO 1000
00030 NEXT
00040 PRINT TIMER

RUN

105

OK

A 13% speed increase simply by leaving out the variable
name in 1 ine 30!

J!atisble Summatl!:

As you can see, there is quite a bit to be learned from
studying the various Idiosyncracies of variable storage. Thls ls
not to suggest that there is anything really complex about
variables, just that there are many things to remember. It all
boils down to a fairly simple, logical approach as you develop
your programs: think about how much space each variable name
will occupy in a program line, the order in which variables
should be dimensioned, where and when variables should be
defined as constant values, that sort of thing.

If you do consider all of the pertinent factors, you will
find your BASIC programs running much more efficiently.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
·I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 241

MACHINE LANGUAGE

Sometimes even the most efficient BASIC program will not
run fast enough. This is particularly true in applications
involving data sorts and/or graphic displays. Whereas the
difference between an efficient and inefficient BASIC program
may be in the order of 30 to 40 percent, machine language
programs will often execute 30 to 100 TIMES·faster than BASIC.
We will not attempt to teach you assembly language in this book,
but some comments on using machine language within a BASIC
progrm are in order.

Marrying BASIC ·and machine language together can often be a
frustrating experience. Two questions must be answered by the
programmer: First, where to place the routine? Second, how to
pass arguments between BASIC and machine language?

Machine Language Placement

Below are several areas that you may wish to consider for
storing one or more machine language subroutines.·

1. The Cassette Buffer

On power up, BASIC reserves a 256-byte buffer at &HOlDA for
cassette operations and a 9-byte buffer at &H0101 for cassette
file names. Since these 265 bytes are used only for cassette
operations, your program can use them for a machine language
subroutine. But be careful: any cassette operation will destroy
the subroutine.

To place the routine ln the cassette buffer you can either
POKE it in from your BASIC program, or if you have disk drives,
assemble the program at &H0101 and perform a LOADM from within
your BASIC program.

2. System RAM

BASIC uses the area from &HOOOO to &H0400 for most of its
house-keeping functions. Some locations are not used. There are
13 unused variable bytes at &HOOF3. These could be used for a
very short routine or for data storage. And if memory ls at a
premium and none of Extended BASIC's graphic functions are being
used, you could consider using the graphic variable area from
&HOOB2 to &HOOCA. Be very careful if you elect to use these
areas--you may create a problem that is nearly impossible to
find using normal debugging techniques.

The Ultimate Reference Guide And Toolkit 242

3. Within A BASIC Program

One area for short machine language programs is right
within your BASIC program, embedded In a series of strings. This
technique, referred to as •string packing,• can also be used to
store graphics data.

In the following example, we will pack a 44 byte machine
language program into a string called M$. To pack data into a
string, first create a dummy string in the program with the same
length as the number of data bytes to be stored.

00010 M$ = •t2345678901234567B90123456789012345678901234•

Next, find the start address of the dummy data by means of the
VARPTR command.

00020 A = VARPTR CM$)
:A = PEEK CA + 2) * 256 + PEEK <A + 3)

Last, POKE the required data values into· successive locations
within the string.

00030 FOR T = 0 TO 43
:READ 0
:POKE T + A, D
:NEXT

00040 DATA 1, 2, 3, 4 •

Once the string has been re-defined, the line that performs the
changes and the line<s> containing the data Clines 30 and 40
above> can be deleted from the program. By placing an •EXEC A•
instruction somewhere in your BASIC program following line 20,
you will cause the machine language routine to be executed.

There are a number of drawbacks to this technique: First,
&HOO's and &H22's can not be contained in the packed string. An
&HOO would be Interpreted as an end-of-line marker, while an
&H22 would be interpreted as a quotation mark. Second, if you
renumber the program after the string has been packed, strange
things may happen if it contains any of the following values:
&HOI, &H02, &H03, &HA5 CGOTO token>, or &HA6 CGOSUB token>.
Third, if you save the program in ASCII format, ·any values
greater than $7F <which are treated as BASIC tokens by the ASCII
SAVE command) will be untokenized (i.e., converted to their
fully written format>. This, quite obviously will render your
routine totally useless.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

·I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 243

Instead of using •string packing•# you may want to use a
technique known as •REM packing•. The technique for this is
essentially the same as that for string packing: Create a dummy
REM statement of the proper length, find its start address and
POKE the actual data into successive memory locations.

To find the address of the REM statement, you can either
use a monitor or use a line of code similar to the following:

00010 A = PEEK C&H2F> * 256 + PEEK C&H30)
:REM************

00020 IF PEEK <A> <> Ascc•*•> THEN A = A + 1
:GOTO 20

Line 10# which contains the REM statement, passes the start
address of the current program line to the variable A. Line 20
scans the line for the first •*·· Once the first asterisk is
found, subsequent lines can POKE the desired values into the REM
statement, in the same way that string packing is performed.
Once the packing is accomplished, the lines which perform the
packing can be safely deleted.

All of the cautions mentioned in the discussion on string
pack.lng apply to REM packing. The only real advantage that REM
packing has over string packing is that you can include &H22s in
the REM line.

4. At the end of a BASIC program.

One of our favorite areas for machine languge routines is
at the end of a BASIC program. Routines which are appended in
this manner do not need to be POKEd in every fime the program is
run; furthermore, they are invisible t~ the user and they are
safe from BASIC routines like RENUM.

This technique is possible because of the manner in which
BASIC keeps track of the location of a program. The start
address of your program is stored at locations &H0019 and
&HOOlA, while the end address is stored at locations &HOOlB and
&HOOlC. These addresses are used whenever a program is SAVEd,
LISTed or RUN. They also allow the interpreter to determine
which areas are available for variable tables, etc. But note
that when a program is RUN or LISTed, the end address is not
really used at all. Instead, execution of the selected command
continues until three consecutive z~ro bytes are encountered.

The Ultimate Reference Guide And Toolkit 244

To add a machine
program, you must first
program. This can be
statement:

language routine to the end of a BASIC
determine the end address of the

accomplished by the following PEEK

PEEK C&HlB> * 256 + PEEK C&HlC>

Once you have determined the end address, you can POKE your
machine-language routine into successive memory locations
starting at this address. When that task is complete, then you
must modify the contents of the above addresses C&HOOlB and
&HOOlC> to point one byte past the end of your routine. This
will effectively make BASIC believe that your routine is part of
the BASIC program. Now all you have to do is SAVE or CSAVE the
modified program. When you subsequently reload the .program the
routine will still be Intact.

In order to be able to execute the subroutine, your BASIC
program will have to include a line which calculates the start
address of the routine. The calculation is very simple--the
start address of the routine is equal to the new end address .of
the BASIC program minus the length Cin bytes> of the routine.
Once the start address is known, you can set up a DEF. USR
statement or you can use the EXEC command to execute the
routine.

The routine will move up and down in memory as lines are
added or deleted from the BASIC program. For this reason, it is
quite important that the routine be written in position
independent code. Remember, your routine will be CC>SAVEd and
CC>LOADed right along with the BASIC program. But beware: if you
attempt to save the program using the ASCII format, the appended
routine will be lost.

To assist you in appending machine language
BASIC programs, we have included a special utility,
the program tape you can order by using the form at
this text.

routines to
MLAPPEND, on
the back of

5. Graphics Dis~lay Memory.

If your application
extended graphic functions,
graphics display can safely
machine-language routines •
CC>LOADMed into this memory

does not require any of BASIC's
then the memory that Is reserved for
be used as a storage area for

. As before, routines can be POKEd or
area.

I
I
I.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I.
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 245

Just remember that if you decide to use graphic memory for
your routines~ you must avoid the use of all graphic commands~
or else you run the risk of completely destroying the code.

6. At the end of RAM.

This is the area recommended in the BASIC reference manuals
for machine language routines. Two steps must be followed: first
a CLEAR statement must reserve sufficient memory~ then the
routine must be POKEd into memory.

Calling Routines and Passing Parameters

Machine language routines can be called from BASIC by
either an EXEC statement or a USR function. Unless you are
passing an argument with the USR function 1 use the EXEC
statement--it is much faster~ The following programs~ both of
which call an RTS instruction~ show the difference in speed
between the two BASIC commands:

--- Program A ---

00010
00020
00030'
00040
00050
00060
00070

RUN

304

OK

POKE &HOlDA~ &H39
DEFUSR 0 = &HOlDA
TIMER = 0
FOR T = 1 TO 1000
A = USR 0 <O>
NEXT T
PRINT TIMER

The Ultimate Reference Guide And Toolkit

--- Program B ---

00010
00020
00030
00040
00050
00060
00070

RUN

126

OK

POKE &HOlDA, &H39
A = &HOlDA
TIMER = 0
FOR T = 1 TO 1000
EXEC A
NEXT T
PRINT TIMER

246

The
followed
need the
default.

first EXEC statement in a program must always be
by an address argument. But subsequent EXECs do not

address specified. The last address used becomes the

There are a number of ways that arguments can be passed
back and forth between BASIC and machine language routines. The
easiest Cand quickest> way is to use the USR function (for
details, see USR and VARPTR in section 1). By using a
combination of USR 3nd VARPTR, a string containing a list of
arguments could be passed from BASIC. The machine language
routine could them modify the string as necessary before
returning to BASIC.

Another method, which happens to be quite slow, is to
values into a reserved area of memory. These values could
be used and/or modified by the machine lanuage routine
PEEKed by the BASIC program following the return.

POKE
then
and

I
I
I ,,
I
\I
I
I
I
I
I
I
I
I
I
I
'I
I
I

I
I
I
I
I.
il ,.
I
I

'\
I
~I·

I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 247

QEFINED FUNCTIONS

Extended Color BASIC allows you to use the DEF FN command
to define a function of a single variable. This feature can be
quite useful in any program that requires similar complex
calculations to be carried out in several different areas of the
program. The DEF FN command will generally save you a fair bit
of memory if it is used frequently in the program. But that is
where its advantage ends. If execution speed is of importance,
then don't use it--instead, replace all function calls with
in-line code, which is about 20% faster.

As another alternative, consider the use of a subroutine.
You may not get a dramatic increase in speed Cln most cases, a
subroutine ls actually slightly slower than the FN statement)
but you will get almost the same savings in memory space.

--- Program A

00010
00020
00030
00040
00050
00060

RUN

3673

OK

DEF FN A<X> = SINCX>
TIMER = 0
FOR I = 1 TO 1000
B = FN A(3.14159)
NEXT
PRINT TIMER

:END

Program B

00020
00030
00040
00050

TIMER
FOR I
GOSUB
NEXT

= 0
= 1 TO 1000
70

{~ .

The Ultimate Reference Guide And Toolkit

00060 PRINT TIMER
:END

00070 B = SIN<3.14159>
:RETURN

RUN

3728

OK

--- Program C

00020
00030
00040
00050
00060

RUN

3558

OK

TIMER = 0
FOR I = 1 TO 1000
B = SINC3.14159)
NEXT
PRINT TIMER

:END

248

The actual speed differences will depend on the placement of the
subroutine~ and on the complexity of the calculations being
performed. Remember~ too, that you can do a lot more with
subroutines than you can with function calls; you are not
limited to performing calculations.

I
I
I
II
;t.
I .,
I --
1

t'
I
·I,
I
I
I
I _ ...

I
I
I

I·
I
I
II
I
I
I
I
I
I· --;

I
I
II
I
I
I

'
' I

The Ultimate Reference Gulde And Toolkit 249

MULTIPLE STATEMENT LINES

You can save quite a bit of memory and improve the
execution speed of your program, just by placing consecutive
statements on the same program line instead of putting a single
statement on each line. Obviously, this approach results in
virtually unreadable code, but remember, this section is devoted
to a discussion of program optimization, not beautification!

Each program line you create carries with it five bytes of
overhead: two for the line number, two for the line link, and an
end of line marker. On the other hand, a colon separating two
statements is only one byte long. This means that each line you
eliminate by cramming statements on the previous line saves you
four bytes of memory space. In a long program, that savings can
convert to several hundred bytes.

--- Program A ---

00010
00020
00030
00040
00050

RUN

723

OK

TIMER = 0
FOR T = 1 TO 1000
A = A + 44
NEXT T
PRINT TIMER

--- Program B

00010 TIMER = 0

RUN

702

OK

:FOR T = 1 TO 1000
:A = A + 44
:NEXT T
:PRINT TIMER

The Ultimate Reference Guide And Toolkit 250

Not a substantial speed increase, we admit. Remember that the
·interpreter has to scan everything within your program, and this
includes things which are not visible such as the line link and
the end-of-line marker. If you remove unnecessary bytes from
your program by putting as.much as you can on a single line,
then the scanning process can be executed much ·more quickly, and
this is where the speed increase comes from.

The BASHUNCH. utility <available separately>
compress BASIC programs and thereby save a great deal
by creating multiple-statement program lines <some of
longer than the maximum 254 bytes you can type in
keyboard.>

is able to
of space
which are
from the

I
I
I
I
I
I
I
I
I
I
-~

I
I
I
I
I
I
I -
I
I

II
I
I'
...../

I
I
I
\I
I ,,
I
I,

I ,,,
' !

I
I ,,
I
r
I

The Ultimate Reference Guide And Toolkit 251

COMMAND SELECTION

There are as many ways to write any single program as there
are different programs to write! But only one or two selected
approaches will produce the •best• program; i.e. the program
with the best execution speed and minimum memory requirements.

Often, by using the fastest option or command available,
great overall speed increases can be attained. For one example,
consult our discussion of the •G• option for GET/PUT in section
one.

In the following examples, Program A demonstrates one
method of selecting a subroutine from a menu. Program B, which
uses the ELSE statement instead of multiple lines, is a slight
improvement, but Program C, with its use of INSTR and ON GOSUB,
fs nearly twice as fast and much more concise.

--- Program A ---

00010 TIMER = 0
00020 As = ·o·
00030 FOR T = 1 TO 1000
00040 IF A$ = •A• THEN GOSUB 110
00050 IF A$ = •B• THEN GOSUB 120
00060 IF A$ = ·c· THEN GOSUB 130
00070 IF A$ = ·o· THEN GOSUB 140
00080 NEXT T
00090 PRINT TIMER
00100 END
00110 RETURN
Q0120 RETURN
00130 RETURN
00140 RETURN

RUN

1132

OK

The Ultimate Reference Guide And Toolkit

--- Program B ---

00010 TIMER = 0
00020 A$ = ·D·
00030 FOR T = 1 TO 1000
00040 IF A$ = •A• THEN

:ELSE IF A$ =
:ELSE IF A$ =
:ELSE IF A$ =

00080 NEXT T
00090 PRINT TIMER
00100 END
00110 RETURN
00120 RETURN
00130 RETURN
00140 RETURN

RUN

1002

OK

Program C ---

00010 TIMER = 0
ooo2o A$ = ·o·

•B•
·c·
·o·

00030 FOR T = 1 TO 1000

GOSUB 110
THEN GOSUB
THEN GOSUB
THEN GOSUB

120
130
140

00040 ON INSTR <•ABeD•, A$) GOSUB 110, 120, 130, 140
00080 NEXT T
00090 PRINT TIMER
00100 END
00110 RETURN
00120 RETURN
00130 RETURN
00140 RETURN

RUN

595

OK

252

I
I
I
I
I
I
I
.I
I
· .. I
I
I
I
I

' I

I
·:

I
I
I
I
I

'

I!
I
I
'I ~

I
I
IJ
I
I
I
a
' I

The Ultimate Reference Guide And Toolkit 253

SPACES

Spaces between functions.and variables undoubtedly make a
program easier to read, but they consume valuable memory. Not
only that, each space must be interpreted by BASIC, and this
wastes valuable tlme.

Spacing is required only when a BASIC keyword directly
follows a variable name or when two simple numeric variables
occur one after the other.

The following examples show cases when no spacing is
necessary:

1. PRINTA8
.$. functions as the dellmeter.

2. IFA<3>THENGOT040
·>· functions as the delimeter.

3. IFT$=Z$THEN40ELSEIFY=H<S>GOSUB100
•>• and •$• function as delimiters •

But the spaces ARE required in the following examples:

4. PRINTA B
If no space was included, BASIC would assume that
you were referring to the variable ·As·.

5. IFA GOT040
Without the space, BASIC would assume the
variable •AGOT040•

6. IFT=Z THEN40ELSEIFY=H GOSUBlOO
Without any spaces the variable after the first ·=· would be •zTHEN40ELSEIFY•, and after the
second, •HGOSUBlOO.•

The problem is not really with BASIC's interpretation
routines, but rather with the routine that tokenizes the line
when it is input from the keyboard. Once the keywords have been
tokenlzed, the .spaces can be safely deleted by a machine
language utility like BASMUNCH.

The Ultimate Reference Gulde And Toolkit 254

COLONS

Colons are used to separate multlpl~ statements on one
line. They are not required in front of ·ELSE• or ••• (the short
form for REM>. When BASIC tokenlzes either of these statements,
it automatically inserts an invisible colon in front of the
keyword. Were you to put a colon in when typing the line, you
would end up with two of them. The colons inserted by the
tokenlze routine do not show up during a LIST, but you can see
them if you use a monitor program.

I
I
I
a·
I

' -I
I
I
I
~~

I
I
-~

I
I
I
I
D

' I

I
I
I
I
I

' I
I
I
I
I
I
I
t
I
I
I

' I

The Ultimate Reference Guide And Toolkit 255

SUMMARY

In this section we have attempted to show you some tricks
that will save memory and speed up program execution. By using
~11 the techniques presented here, you should easily be able to
achieve speed increases in the order of 10 to 30% over a
•sloppy• programming style. Similar gains in memory usage should
also be achieved. Here is a summary of our suggestions:

1. Avoid the use of REMs within your program; certainly; if
you must include them, make sure that no part of your
program makes a direct call to a line containing only a
REMark.

2. Use subroutines for sections of code that must be used
frequently. This will save quite a bit of memory. In
order to make the subroutine run as fast as possible,
try to place it as close as possible to the beginning of
the program.

3. DIMension ALL variables. In particular, declare the
simple variables first, followed by array variables,
ordered according to frequency of use within the
program. You can obtain a very good frequency count by
using the utilities VARCOUNT, VARXREF and LINEXREF
<available on the program tape you can order with the
form supplied at the back of this book>.

4. Avoid the use of array variables whenever simple
variables will do. If you must use arrays, try to stick
with single dimension arrays. Above all, always
DIMension the array to the exact size needed; that way,
you will be reserving only the amount of memory that you
actually need.

5. Declare ALL constants at the beginning of your program;
it will run much more quickly if you refer to a
constant's name (e.g. PI> rather than to its value <e.g.
3.14159).

6. Do not be afraid to marry machine-language routines into
your BASIC program. Machine language executes from 50 to
100 times faster than the equivalent BASIC Instructions;
furthermore, machine language enables you to do things
which simply cannot be done in BASIC. Use the MLAPPEND
utility to append· the routlne(s) to the end of your
BASIC program. ·

The Ultimate Reference Guide And Toolkit 256

7. Remember that EXEC is a faster instruction than its USR
equivalent. Use EXEC whenever you wish to call a· machine
language routine without passing any parameters.

B. Avoid using DEF FN in your program; direct in-line code
is much faster.

9. Place as many statements as possible on the same line,
separated by colons. At the same time, eliminate
unnecessary spaces between keywords and variable names.
Do NOT precede an ELSE statement or an abbreviated REM
(') statement with a colon--BASIC automatically does
this for you.

10. If you are unsure which sequence of commands to select
for a particular task, experiment. Use our examples in
this section to set up fair timing loops. The results
will speak for themselves.

An unfortunate drawback to our suggestions is that you will
wind up with completely unreadable programs. The solution is

. simple. Write the program with well placed subroutines and
efficient algorithms. Comment the program with lots of REMs and
leave plenty of blanks between variable names and keywords. Use
the VARCOUNT, VARXREF, and LINEXREF utilities to help you
determine the location and frequency of usage of all your
variables and to help you define a series of proper DIM
statements. Make sure you save a copy of the easy-to-read
program. Then, after the program has been fully debugged and
documented, use the BASMUNCH utility to strip out the comments
and the extraneous spaces and compress the program into as
little space as possible. Then renumber the program starting at
line zero and incrementing by one's <we have not mentioned this
trick before, but we know that you will find this a very easy
way to produce marked Increases in execution speed as well as
memory savings we'll leave it to you to figure out why •••)
Save this as your execution copy. Don't lose the original
program, though -- you will need· to retain it in case you ever
want to make changes. Remember, a compressed program is nearly
impossible to change.

I
I
I
I
I
I
I
I
I
I
I
I
I

' I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

**
* * * Section Three *
* * * BASIC SUBRQUTINES *
* * **

The Ultimate Reference Guide And Toolkit 258

BASIC SUBROUTINES

A complete subroutine library can be a programmer's best
friend, but for general-purpose subroutines to be useful, t~ey
must meet the following requirements:

1. They must be completely debugged. A programmer has
enough on his mind when writing a program; he must be able to
rely on the subroutines in his library.

2. By their very nature. general~purpose subroutines should
not be too limited in their application.

3. Variables used by subroutines should not conflict with
those already used by the main program.

We believe that the subroutines included here meet all of
the above requirements. In addition, we have attempted to make
them as efficient as possible in their use of both memory and
processor time.

Variables Used

. In order to make the subroutines as conflict-free as
possible, we have reserved the variable names starting with the
letter •o• for the exclusive use of the subroutines. Examples of
these variables include 00, 09$, 04C> and 01$(). All the
variables that are not passed to the routines as parameters are
lnltiallzed by the routines. These particular variables were
chosen for use by the subroutines because of their infrequent
use in BASIC programs. No doubt, one reason for this is the
confusion between ·o· and •o• that can easily arise. If you
decide to use our philosophy in your own general-purpose
subroutines, we suggest this procedure:

l.·Write and debug the routine using meaningful variable
names.

2. Ensure that any variables
assigned to them by the main program
subroutine.

that do not have values
are initialized by the

3. After the routine is debugged, change the variable names
to those reserved for subroutine use.

Types of Routines Included

The· routines included in this section are grouped into two
categories. Section Three contains subroutines written ln BASIC

I
I
I
I
I
I
a·
I
I
I
s
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultlmate.Reference Guide And Toolkit 259

which are easily incorporated into your own programs. Section
Four is devoted to a collection of machine language routines
that can greatly enhance the speed of your BASIC programs.

Line numbers 40000 - 49999 have been reserved for the BASIC
routines, and 50000 - 59999 have been reserved for the machine
language routines. All the routines begin with a REM line that
contains the name of the routine in lowercase <reverse video>
letters. The use of lowercase letters makes it easier to find
comments in a screen listing.

Format of Routines

The first section of each routine contains a brief
commentary on the use of the routine. If unusual programming
techniques are used, note of this i~ made in this section.

Each routine also has a section detailing the:variables
used by the routine, the entry requirements and·-the exit
conditions. Please be careful to note the e~fect the routine has
on the variables: the values of the parameters, even though they
are not intended as returned values, may be modified.

Finally, each routine shows a typical or sample call, as
well as the actual listing of the subroutine. This is included
to show a procedure for calling the routine; the actual use
will, in most cases, be much more complex.

Using the routines with Cassette Systems

For those using cassette systems, three options are
available. First, you could key in the program code from the
listings supplied. <Due to the variables used and the
opportunities they present for error, we do not recommend this
procedure. Instead, we suggest that you purchase our tape, which
contains all of the subroutines, along with a collection of
valuable utility programs. We have included an order form at the
end of the text.> The second method is to use a cassette merge
system that simulates the operation of the MERGE statement of
Disk BASIC. One such system is supplied with •platinum
Worksaver· <available from Platinum Software, P.O. Box 833,
Plattsburgh, N.Y. 12901). A third alternative is to append the
subroutines to your existing BASIC program as needed with the
following method:

1. Make sure that the lowest line number in the program to
be appended is higher than the highest line number of the
program in memory.

The Ultimate Reference Guide And Toolkit 260

2. CLOAD the first program.

3. Find the start addresses of the BASIC program by typing:

PRINT PEEKC25)~ PEEKC26) <ENTER>

Write down the two displayed values for use in step 6.

4. Now change the address of the start of BASIC to the end
of the current program by typing the following:

POKE 25~ PEEKC27) <ENTER>
POKE 26, PEEKC28) - 1 <ENTER>

5. Now CLOAD the second program. At this point if you LIST~
RUN, or modify the program, you will only affect the second
program. Your first program is still there~ but it is invisible
to BASIC.

6. To complete the appending of the two programs~ type the
following: ·

POKE 25, first value from step 3 <ENTER>
POKE 26, second value from step 3 <ENTER>

The two programs will now be appended. To append an additional
program, just start over at step 3.

Transferring to Disk

If you are fortunate enough to have a disk system, we
suggest that you transfer all the subroutines onto a special
•subroutine disk•. If you save them all in ASCII format, you can
later use Disk BASIC~s MERGE statement to add the subroutines to
your programs as required.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit

Purcose

GRNUMBER INIT CGOSUB 40000>
GRNUMBER MAIN CGOSUB 40020)

261

This subroutine can be used to display a score, or any
other number, on a high resolution graphics screen. The first
part of the routine, •GRNUMBER INIT•, puts the information
required to draw the numbers into the array 01$. This routine
must be called during program initialization. The second part,
•GRNUMBER MAIN•, draws the number at the top right corner of the
screen. Any postive or negative number Cless than 10 digits in
length> can be displayed. If you wish to use a different screen
location, modify the co-ordinates of the first DRAW statment in
line 40020. To change the size of the digits displayed, change
the •s4• in line 40020 to a different scale value -- .·sa· will
draw the numbers twice as large <use only multiples of 4,
otherwise the digits will not be drawn properly>.

The colors used by the DRAW command must match the
foreground and background colors of your graphics screen. If the
numbers do not print properly, change the values of •c• in
01$(10> in line 40010. The first •c• <currently ·co·> must be
set to the background color; the second <currently •ct•> to the
foreground. Note that you may have to reset the COLOR when
returning from this routine to your own BASIC program.

Entry Requirements

1. Variable 01 must be set to the value of the number to
be displayed.

2. GRNUMBER INIT must have been called before calling
GRNUMBER MAIN.

Since the size of array 01$ is 11 elements, a DIM statement
is not necessary. However, good programing practice calls for
the DIM statement as in our sample call.

Exit Conditions

None.

Varlaples Used

01, 02, 03, 04, 05, 01$, 01$().

The Ultimate Reference Guide And Toolkit

Sample Call

00010 DIM 01$ (10>
00020 GOSUB 40000
00030 01 = 1234
00040 PMODE 4
00050 SCREEN 1, 1

00060 GOSUB 40020

•

30000 END

Subroutine Listings

39999 REM grnumber inlt
40000 01$(0) = •ut2R6D12L6BLtO•

:01$(1) = •aR6NU12BLt6•
:01$(2) = ·u6BU6R6D6NL6BD6L6BLtO•
:01$(3) = •R6U6NL5U6L6BD12BL10•
:01$(4) = ·ao6U6BR6D6NL6D6BL16•
:01$(5) = •su6U6R6BD6NL6D6L6BL10•

40010 Ol$(6) = •u12R6BD6NL6D6L6BL10•
:01$(7) = ·sU12R6D12BLt6•
:01$(8) = ·ut2R6D6NL6D6L6BLtO•
:01$(9) = ·su6U6R6D6NL6D6L6BLtO•
:01$(10) = ·coU12R6D6NL6D6L6Ct•
:RETURN

40019 REM grnumber main
40020 DRAW ·s4BM245,12;•

:01$ = STR$ (05)
:02 = LEN (01$) - 1
:01$ = RIGHT$ (01$, 02)
:FOR 03 = 0 TO 02 - 1

* DRAW data into array * number to display * graphics mode

* go display it

* more instructions

:DRAW 01$(10> + 01$(VAL <MID$ COl$, 02 - 03, 1>>>
:NEXT
:DRAW 01$(10)
:IF 05 < 0 THEN DRAW ·so6R6BD6BLt6•
:DRAW 01$(10)

40030 RETURN

262

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
\I

I
\

I
\

I

The Ultimate Reference Guide And Toolkit 263

BREAKPIS CGOSUB 40100)

Puroose

This subroutine disables the <BREAK> key during a BASIC
program's execution, except during INPUT or LINE INPUT. Since
BASIC scans for the <BREAK> after every instruction, an increase
in speed will be achieved after this routine has been
implemented. The routine modifies the RAM hook at &H019A,
sending BASIC to a new routine at &HOOFS. This new routine skips
the check for the <BREAK> and <SHIFT><!> keys. IRON is also
disabled by this routine. The new routine at &HOOFS- is:

LEAS
AN DCC
JMP

2,S remove return address
#$AF enable lnterupts
$AOA5 re-enter interpreter

Before doing the required POKEs, the hook ls checked to see
if it has been modified. If It has, a RETURN Is done; otherwise,
the new routine is POKEd in, and a RUN is done. This RUN ls
necessary to properly initialize the routine. The JMP
instruction at &H019A is first changed to an RTS while the new
routine is. being POKEd; it is then changed back to JMP.

Entry Requirements

None.

Exit Conditions

1. The <BREAK> key and trace function are disabled ••

Variables Used

None.

Sample Call

00010 GOSUB 40100 * call BREAKOIS

* more instructions

30000 END

The Ultimate Reference Guide And Toolkit

Subroutine Listing

40099 REM breakdis
40100 IF PEEK <&H019B> = &HOO THEN RETURN

:ELSE POKE &HF8,&H32
:POKE ScHF9.,&H62
:POKE ScHFA,ScHlC
:POKE &HFB,&HAF
:POKE &HFC,ScH7E
:POKE &HFD,ScHAD
:POKE &HFE,ScHA5
:POKE &H019A,ScH39
:POKE ScH019B,&HOO
:POKE &H019C,&HF8
:POKE ScH019A,ScH7E
:RUN

I

264 I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1:

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 265

BAUORATE <GOSUB 40200)

Purpose

This subroutine is used to set the RS-232C port's baud rate
delay value. It is very useful for people that own printers
which operate at non-standard (other than 600 baud) rates. If
the <ENTER> key ls pressed ln response to the prompt a default
rate of 600 baud will be used. To select one of the other
available rates, press the corresponding number key.

Entry Requirements

None.

Exit Conditions

1. The printer baud rate delay will be set to the one
selected.

Variables Used

01$.

Sample Call

00010
00020
00030
00040
00050

30000

•

PRINT
PRINT
PRINT
PRINT
GO SUB

END

•pRINTER BAUD RATE INITIALIZATION•
•PRESS 1 TO 6 TO SELECT NEW RATE•
• OR <enter> FOR DEFAULT OF 600•

40200 * call BAUDRATE

* more instructions

The Ultimate Reference Guide And Toolkit

Subroutine Listing

40199 REM baudrate
40200 PRINT • 1= 300 2= 600 3=1200 4=2400 5=4800 6=9600

BAUD RATE? •;
40210 01$ = INKEY$

:PRINT CHR$ (8);
:IF 01$ = > •1• AND 01$ < = •6• THEN 40230
:ELSE IF 01$ = CHR$ (13) THEN 01$ = •2•
:GOTO 40230

40220 PRINT CHR$ (128>;
:GOTO 40210

266

40230 POKE 150, VAL <MID$ <•tao 87 41 18 7 t•,<VAL (01$) - 1
) * 3 + 1,3))

:PRINT 01$
:RETURN

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
'I ·\
I
]

i

The Ultimate Reference Guide And Toolkit 267

JOYSTICK CGOSUB 40300>

Purpose

When using joysticks, the right horizontal joystick value,
JOYSTK<O>, must always be read before any other value can be
read. This is due to the fact that the routine ln Color BASIC
that reads the joystick ports is only executed on a JOYSTK<O>.
When JOYSTKCl> to JOYSTKC3> are used, the values stored at
memory locations $015A to $0150 are assigned to the variable
without actually reading the ports •. This means that if you are
using the left joystick in a game, you must read the right
horizontal joystick, even though you have no use for the value.

This short routine forces Color BASIC to update the values,
and then assigns them to 00 and 01. The trigger status is also
checked and returned in 02.

For the proper
must be set. For one
subroutine JOYORKEY.

Entry Requirements

operation of this routine the variable OJ
method of setting this value see our

1. OJ must be set as follows:

to read the right joystick OJ = &H015A,
to read the left joystick OJ = &H015C.

Exit Conditions

1. 00 - horizontal data.

2. 01 - vertical data.

3. 02 - trigger status with the following meanings:

Variables Used

0 = both triggers pressed,
1 = left trigger pressed,
2 = right trigger pressed,
3 = no triggers pressed.

OJ, 00, 01, 02.

The Ultimate Reference Guide And Toolkit

Sample Call

00010 OJ = &H015A
:GOSUB 40300

00020 PRINT "HORIZONTAL = ·oo
00030 PRINT "VERTICAL =
00040 PRINT "TIGGER STATUS
00050 IF 02 = 0 THEN PRINT
00060 IF 02 = 1 THEN PRINT
00070 IF 02 = 2 THEN PRINT
00080 IF 02 = 3 THEN PRINT
00090 PRINT • PRESSED"

•

30000 END

Subroutine Listing

40299 REM joystick
40300 EXEC &HA9DE

:00 = PEEK <OJ + 1)
:01 = PEEK (OJ)

"01 - ..
- !I

"BOTH";
"LEFT";
"RIGHT";
"NONE•;

:02 = CPEEK C&HFFOO> AND 3>
:RETURN

I
268 I

I

* right joystick
I
I

* go read * display results

I
I

* more instructions

I
I
I
I
I
I
I
I
I
[

F·
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 269

JOYORKEY <GOSUB 40400)

Purpose

Games and other programs using joysticks for input should
give the user the option of deciding which joystick he would
like to use or, if no joysticks are available, the option of
using the keyboard. This subroutine will display the message
•* * * PRESS THE JOYSTICK BUTTON OR <K> TO START • at the bottom
of the text screen. Since this message is longer than 32
characters, we have developed a horizontal scroll routine that
displays the message 30 characters at a time.

The message continues to scroll until one of the joystick
triggers is pressed or the <K> key ls pressed.

This routine ls designed to be used in conjuction with
JOYSTICK which requires the variable OJ set to the lef.t or right
joystick.

Entry Requirements

None.

Exit Conditions

1. OJ = 0 if the keyboard is selected,
= &H015A if the right joystick ls selected,
= &H015C if the left joystick is selected.

Variables Used

00$, 00, OJ.

Sample Call

00010 GOSUB 40400 * call JOYORKEY
00020 PRINT ·usER WANTS TO USE THE • • * display results ,
00030 IF OJ = 0 THEN PRINT •KEYBOARD•
00040 IF OJ = &H015A THEN PRINT •RIGHT JOYSTICK•
00050 IF OJ = &H015C THEN PRINT •LEFT JOYSTICK•

• * more instructions
. .

30000 END

The Ultimate Reference Guide And Toolkit 270

Subroutine Listing

40399 REM joyorkey
40400 00$ = •* * * PRESS THE JOYSTICK BUTTON OR <K> TO START •
40410 FOR 00 = 30 TO 1 STEP - 1

:PRINT @480 + 00, MID$ (00$,00,1);
:NEXT
:00$ =MID$ (00$,2) +LEFT$ <00$,1)
:IF INKEY$ = •K• THEN OJ = 0
:RETURN
:ELSE IF <PEEK <&HFFOO> AND 3) = 1 THEN OJ = &H15A
:RETURN
:ELSE IF <PEEK <&HFFOO> AND 3) = 2 THEN OJ = &H15C
:RETURN
:ELSE 40410

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 271

TOBASIC CGOSUB 40500)

Purpose

This subroutine should be included in all of your BASIC
programs. When the <Y> key is pressed in response to the •RETURN
TO BASIC?• prompt, the routine first CLOSEs any files that are
still OPEN. If disks are present their drive heads are reset to
track zero <this will prevent the annoying •thunking• noise that
the drives make from time to time when searching for the
directory track immediately after power-up>. A POKE is done to
reset the computer to memory map type 0, and BASIC's cold start
routine is entered. A new program can now be loaded, without
having to worry about ML routines, CLEARs and PCLEARs •left
over• from your last program. If the <N> key is pressed, a
RETURN is done; any other keypress ls ignored.

A word of. warning: Since the program in memory is
effectively destroyed, don't append this routine until the
program is completely debugged. Nothing is more infuriating than
to program for hours, try the program, and extt via this routine
before the latest version has been saved.

Entry Requirements

None.

Exit Conditions

1. Control is passed back to BASIC after files have been
CLOSEd, drive heads restored to track zero and a cold start
has been executed.

Variables Used

01, 02, 01$.

Sample Call

00010 GOSUB 40500 * call TOBASIC
00020 PRINT •TOBASIC WAS CALLED BUT NOT EXECUTED•

• * more instructions

30000 END

The Ultimate Reference Guide And Toolkit

.Subroutine Listing

40499 REM tobasic
40500 PRINT •ARE YOU SURE YOU WISH TO RETURN TO BASIC

<Y OR N>? •;
40510 PRINT CHR$ (8);

:01$ = INKEY$
:IF 01$ = "N" THEN RETURN
:ELSE IF 01$ < > •y• THEN PRINT CHR$ <128);
:GOTO 40510
:ELSE CLOSE

272

:IF PEEK <&HCOOO> < > 126 THEN 01 = PEEK <&HC006) * 256 +
PEEK <&HC007>

:FOR 02 = 0 TO 3
:POKE 01,0
:POKE 01 + 1,02
:EXEC PEEK <&HC004> * 256 + PEEK <&HC005>
:NEXT

40520 POKE &H71,0
:POKE &HFFOE,O
:EXEC &HA027

I
I
I
I
I
I
I
I
I
I
.I

I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 273

QPEEK <GOSUB 40600)

Purpose

This short •double peek• subroutine will return a value
representing the contents of two successive memory locations.
This is very useful when you are determining addresses or values
for machine language programs. If the address speclfed ls out of
range, a RETURN is done before the PEEK.

Entry Requirements

1. 01 represents the address of the first of the two
memory locations being PEEKed.

Exlt Conditions

1. 02 contains the value of memory locations 01 and
01 + 1.

Variables Used

01, 02.

Sample Call

00010
00020
00030
00040
00050

01 = &cH1234
GOSUB 40600
PRINT •THE TWO BYTE VALUE
PRINT HEX$ (01);
PRINT • = $•; HEX$ <02>

30000 END

Subroutine Listing

40599 REM dpeek

* address to examine * do double PEEK
AT $•; * display results

* more instructions

40600 IF 01 < o· OR 01 > 65534 THEN RETURN
:ELSE 02 = PEEK <01) * 256 + PEEK <Ol + 1)
:RETURN

The Ultimate Reference Guide And Toolkit 274

DPOKE <GOSUB 40700)

Purpose

This •double poke• routine. meant to be used in conjunction
with DPEEK, POKEs the two byte value contained ln 02 into memory
locations 01 and 01 + 1.

Entry Requirements

1. 01 - the memory address at which the two byte data Is
to be stored.

2. 02 - the 2 byte value to be stored at 01.

Exit Conditions

None.

Variables Used

01. 02.

Samole Call

00010
00020
00030
00040
00050

•
•

01 = 8cH0034
02 = &H1234
GOSUB 40700
PRINT HEX$ (01 >
PRINT HEX$ (01 +

30000 END

Subroutine wisting

40699 REM dpoke

* address
* value * go double poke • = $• HEX$ <PEEK (01>>

1> • = $• HEX$ <PEEK <Ol + 1))

* more instructions

40700 IF 01 < 0 OR 01 > 65534 OR 02 < 0 OR 02 > 65535 THEN
RETURN

:ELSE POKE 01, INT <02 I 256>
:POKE 01 + 1, 02 - INT (02 I 256) * i56
:RETURN

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Todlkit 275

SYSTEM <GOSUB 40800)

Purpose

With the profusion of ROMs for the Color Computer and their
Individual peculiarities, it is often desirable to know which
versions of BASIC are present. This subroutine will let the
program determine the version numbers for the ROMs present, as
well as the memory size of the computer <16K or 32K).

Thls routine presumes that EXTENDED COLOR BASIC ls present.

Entry Requirements

None

Exit Conditions

1. 01$ is a 4-byte string that contains the following
information:

Byte 1 - memory size (16K or 32K>
2 - BASIC version number
3 - EXTENDED BASIC version number
4 -DISK BASIC <lf present> version number

Variables Used

01, 01$.

Sample Call

00010
00020
00030
00040
00050
00060
00070

•

GOSUB 40800
PRINT ~SYSTEM CONFIGURATION•
PRINT

* go check system
*display results

PRINT •MEMORY SIZE= • ASC <MID$ (01$,1)) ·x·
PRINT ·coLOR BASIC V t.• MID$ (01$,2,1>
PRINT •EXTENDED BASIC V t.• HID$ (01$,3,1)
IF RIGHT$ (01$,1) <> CHR$ (0) THEN PRINT •DISK BASIC

V t.• RIGHT$ (01,1)

* more instructions

30000 END

The Ultimate Reference Guide And Toolkit

Subroutine Listing

40800 01$ = STRING$ <4,0)
:01 =PEEK <116)
:01 = (01 = 127) * - 32 + (01 = 63) *
:MID$ (01$,1) = CHR$ (01)
:MID$ (01$,2) = CHR$ <PEEK <&HA155))
:MID$ (01$,3) = CHR$ <PEEK <&H80FF>>
:01 = PEEK <&HC005)
:IF 01 = &H6C THEN 01 = 48
:ELSE IF 01 = &H5F THEN 01 = 49
:ELSE 01 = 0

40810 MID$ (01$,4) = CHR$ (01>
:RETURN

- 16

I
276 I

I
I
I
I
I
I
I
I
I
I.
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 277

GETOATE <GOSUB 40900)

Purpose

GETDATE is an input routine that prompts a user to type in
a date in the •oo/MM/YY• format. The non-destructive cursor can
be moved to the left and right with the arrow keys. Only the
numbers ·o• to •9• are allowed to be input. When the <ENTER> key
is pressed, the routine checks the date entered to be sure it is
a valid date. If it is not valid, an error message is shown and,
after a brief delay, the cursor reappears.

The error checking is done in the following manner. First,
the month is checked. If it is not between •ot• and •12·, it is
not valid and the routine goes to the error handler. Next, the
year is determined. If it is evenly divisible by four, it is
considered to be a leap year. This ls required for the next step
which checks the day. If the day 'is ·oo·, or if it is greater
than the number of days in the month specified by the previous
step, the error routine is called. If everything is O.K. at this
point the routine returns to the main program. The day, month
and year values are returned so your main program can do further
checking. This may include checking to make sure the date is
later than a preset •prior date·.

A minor point, in case you decide to use this routine for
some other purpose, is that the leap year calculatalon is only
valid for the years 1901 to 2099. The rule for determ.lning leap
year is:

A leap year is any year evenly divisible by
4, unless it is also evenly divisible by 100,
in which case it must be evenly divisible by
400.

For this reason the routine works for the year 2000, which is a
leap year; but the year 2100, which is not a leap year, would be
incorrectly accepted by the subroutine.

Entry Requirements

None.

Exit Conditions

1. 08$ - contains the date in the format dd/mm/yy.

2. 03 - numeric value of the •onth.

The Ultimate Reference Guide And Toolkit

3. 04 - numeric value of the day.

4. 05 - numeric value of the year.

Variables Used

01, 02, 03, 04, 05, 01$, 08$.

Sample Call

00010
00020

DIM M$(12> * for month-names
FOR T = 1 TO 12 * fill the array

:READ M$<T>
:NEXT .
:DATA JANUARY, FEBRUARY, MARCH, APRIL, MAY, JUNE, JULY,

AUGUST, SEPTEMBER, OCTOBER, NOVEMBER, DECEMBER
00010
00030
00040

GOSUB 40900 * go get a date
PRINT •THE DATE IS •;
PRINT M$(03); 04; •19•; 05

30000 END

Subroutine Listing

40899 REM getdate
40900 PRINT

:PRINT • DATE.AS dd/mm/yy: •;

* more instructions

:01 = PEEK <136) * 256 +PEEK (137> - 1024
:OS$ =.·ootootoo·
:02 = 0

40910 PRINT @01,08$ • •;
:01$ = INKEY$
:IF 01$ = CHR$ (13> THEN 40940

40920 PRINT@ 01 + 02, CHR$ (128);

278

:IF 01$ = CHR$ (8) AND 02 > 0 THEN 02 = 02 - 1 + (02 = 3)
+ (02 = 6)

:ELSE IF 01$ = CHR$ (9) AND 02 < 8 THEN 02 = 02 + 1 - <02
= 1> - (02 = 4)

:ELSE IF 01$ > CHR$ (47> AND 01$ < CHR$ (58> AND 02 < 8
THEN MID$ (08$,02 + 1,1> = 01$

:02 = 02 + 1 - (02 = 1) - (02 = 4>
40930 GOTO 40910

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit

40940 03 = VAL CHID$ C08$,4,2))
:IF 03 > 12 OR 03 = 0 THEN 40950
:ELSE 04 = VAL C08$)
:05 = VAL CHID$ C08$,7))
:IF 04 < 1 OR 04 > VAL CHID$ C •3o• + MID$ CSTR$ C28 -

C05 I 4 = INT C05 I 4>>>,2> + •31303130313130313031•,
<03 - 1) * 2 + 1,2>> THEN 40950

:ELSE RETURN
40950 PRINT @01, •tnvalld date•;

:SOUND 100,1
:FOR 03 = 1 TO 500
:NEXT
:PRINT @01, STRING$ <12,32);
:GOTO 40910

279

The Ultimate Reference Guide And Toolkit 280

CASSNAME (GQSUB 41000)

Purpose

This input subroutine prompts the user ·to input an
eight-character cassette filename. The non-destructive cursor
can be moved left and right with the arrow keys. The input is
ended when the <ENTER> key is pressed. Any name Input via this
routine will be a legal cassette file or program name.

Entry Requirements

None.

Exit Conditions

1. 09$ is an 8 character string containing the filename.

Variables Used

01, 02, 01$, 09$.

Samole Call

00010 GOSUB 41000 * get a casette name
00020 OPEN•t•, #-1, 09$ * do something with it

•
• * more instructions

30000 END

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit

Suproutine Listing

40999 REM cassname
41000 PRINT

:PRINT ·cASSETTE FILENAME:• CHR$ (175>;
:01 =PEEK (136) * 256 +PEEK <137> - 1024
:09$ = STRING$ <8,32)
:02 = 0

41010, PRINT @01,09$ CHR$ <175);
:01$ = INKEY$
:IF 01$ = CHR$ <13) THEN PRINT
:RETURN
:ELSE PRINT @01 + 02, CHR$ <128);
:IF 01$ = CHR$ (8) AND 02 > 0 THEN 02 = 02 - 1
:ELSE IF 01$ = CHR$ (9) AND 02 < 7 THEN 02 = 02 + 1
:ELSE IF 01$ > CHR$ (31) AND 02 (8 THEN HID$ (09$,
02 + 1,1) = 01$

:02 = 02 + 1
41020 GOTO 41010

281

The Ultimate Reference Guide And Toolkit 282

INKEY$ <GOSUB 41100)

Purpose

This
until a
converted
program.

general-purpose subroutine pauses program execution
key is pressed. If the key is a lowercase letter it is
to uppercase. The routine then returns to the main

Entry Requirements

None.

Exit Conditions

1. 01$ is a one letter string containing the key pressed.
If the key was a lowercase letter, lt will have been
changed to the equivalent uppercase letter.

Variables Used

01, 01$.

Sample Call

00010 GOSUB 41100
00020 PRINT 01$ • WAS PRESSED•
results

•

30000 END

Subroutine Listing

41099 REM lnkey$
41100 01$ = INKEY$

:IF 01$ = •• THEN 41100

* walt for a keypress
* display

* more instructions

:ELSE IF 01$ > ·z• THEN 01$ = CHR$ <ASC (01$) AND 95)
41110 RETURN

I
I
I
I
·I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 283

KEYINPT <GOSUB 41200)

Purpose

This subroutine is very useful when a specific single key
input Is desired. The string passed to the routine contains the
allowable Inputs. The routine will flash a cursor until an
acceptable key is pressed, at which time the character will be
displayed at the cursor position. Program execution is now
passed back to the main program. The position of the character
input in the allowable character string is also returned for use
ln an ON GOTO selection.

Entry Requirements

1. 01$ must contain a list of acceptable characters to be
input.

Exit Conditions

1. 02$ contains the key pressed. If it was a lowercase
letter, it will have been changed to uppercase.

2. 01 - the postion of 02$ in 01$.

Variables Used

01, 01$, 02$.

Sample Call

00010
00020
00030
00100

00200

00300

Ol$=·123•
GOSUB 41200
ON 01 GOTO 100, 200,
PRINT •t PRESSED•

:GOTO 20
PRINT •2 PRESSED•

:GOTO 20
PRINT •3 PRESSED•

:GOTO 20

30000 END

300

* allowable inputs
* walt for a keypress
*go to right line

* more instructions

The Ultimate Reference Guide And Toolkit

Subroutine Listing

41199 REM keyinpt
41200 02$ = INKEY$

:IF 02$ = •• THEN 01 = 01 * COl > 0) * COl < 16> + 1
:POKE PEEK C&H88> * 256 + PEEK C&H89>, - 128 * COl > 7>

- 143 * C01 (8)
:GOTO 41200
:ELSE 02$ = CHR$ CASC C02$) + 32 * C02$ > •z•>>
:01 = INSTR C01$,02$)
:IF 01 THEN PRINT 02$;
:RETURN
:ELSE 41200

I

284 I
I
I
I
I
I
I
I
I
I
I

-I
I
I
I
I
I
I

I
I
I
I
I·
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 285

LINEINPT <GOSUB 41300)

Purpose

This subroutine allows keyboard input of a string of a
speclfed maximum length at the specified cursor position. A
solid black cursor is shown. The <LEFT ARROW> key can be used to
backspace one position. Pressing <SHIFT><LEFT ARROW> erases the
entire line and returns the cursor to the beginning. Input is
not allowed past the specified maximum length. Input ls
terminated when the <ENTER> key is pressed.

Entry Requirements

1. 01 - initial cursor position.

2. 02 - maximum allowable length.

Exit Conditions

1. 07$ -contains the input data.

Variables Used

01, 02, 03, 01$, 07$.

Samcle Call

00010
00020
00030

•

01 = 100
02 = 64
GOSUB 41200

* length * position * get some input

* more instructions

I 30000 END

I
I
I
I
I

The Ultimate Reference Guide And Toolkit

Subroutine Listing

41299 REM llneinpt
41300 07$ = STRING$ (02,32)

:03 = 1
41310 PRINT @01#07$ CHR$ C134)
41320 PRINT 003 + 01 - 1# CHR$ (128>;

:01$ = INKEY$
:IF 01$ = •• THEN 41320
:ELSE IF 01$ > CHR$ C31> AND 03 < = 02 THEN MID$ (07$,
03) = 01$

:PRINT @03 + 01 - 1,01$;
:03 = 03 + 1
:GOTO 41320

41330 IF 01$ = CHR$ (13) THEN 07$ = LEFT$ (07$#03 - 1)
:RETURN
:ELSE IF 01$ = CHR$ (21) THEN 41300

286

:ELSE IF 01$ = CHR$ (8) AN~ 03 > 1 AND 03 < = 02 THEN MID$
<07$,03) = ••

:03 = 03 - 1
:ELSE IF 01$ = CHR$ (8) AND 03 > 1 THEN 03 = 03 - 1

41340 GOTO 41310

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 287

READY# CGOSUB 41400)

Purpose

This subroutine will display a message to ready the
printer, cassette player or disk drive 0 to 3. The word ENTER in
·the prompt will flash until the <ENTER> key is pressed. No check
of . the device is made in the routine that is the
responsibility of your main program.

Entry Requirements

1. 01 - must contain the device number to ready:

-2 for the printer
-1 for the cassette

0 to 3 for the dlsk drives.

CThe prompt message Is displayed at the current cursor
position.>

Exit Conditions

None.

Variables Used

01, 02, 03.

Samole Call

00010 01 = -2
00020 GOSUB 41400

•

30000 END

* ready printer
* call READY#

* more instructions

The Ultimate Reference Guide And Toolkit

Subroutine Listing

41399 REM ready#
41400 02 = PEEK (136) * 256 +PEEK <137> - 992

:02 = 02 + (02 = 512) * 32
:PRINT @02 - 28,;
:IF 01 = - 2 THEN PRINT • PREPARE PRINTER •;
:ELSE IF 01 = - 1 THEN PRINT • PREPARE CASSETTE

• • ,
:ELSE PRINT • PREPARE DISK DRIVE #•at;

41410 PRINT @02 + 4, • PRESS enter WHEN READY •;
:FOR 03 = 1 TO 70
:IF INKEY$ = CHR$ <13> THEN 41420
:ELSE NEXT
:PRINT @02 + 4, • PRESS ENTER WHEN READY •;
:FOR 03 = 1 TO 70
:IF INKEY$ = CHR$ (13) THEN 41420
:ELSE NEXT
:GOTO 41410

41420 03 = 100
:NEXT
:RETURN

I

288 I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
.J
I
I
I
I
I
I
I
I
I
I
I
I
I
I
a·
I
I

The Ultimate Reference Guide And Toolkit 289

PRESCONJ CGOSUB 41500)

Purpose

This subroutine wlll display a flashing •PRESS ANY KEY TO
CONTINUE• message across the bottom of the text screen. The
message wlll continue to flash until a key is pressed.

Entry Requirements

None.

Exit Conditions

None.

variables Used

01$, 02$.

Sample Call

00010 GOSUB 41500 * call PRESCON1

30000 END

Subroutine Llsttng

41499 REM prescon1
41500 01$ = INKEY$

:POKE 1535, 128
:02$ = CHR$ (128)
:PRINT @480, STRING$ (31,128>;
:FOR 01 = l TO 99
:IF INKEY$ < > •• THEN 41510
:ELSE NEXT

* more instructions

:PRINT @483, •press•02$ •any•02$ •key•02$ •to•02$ •co
ntlnue•;

:FOR 01 = 1 TO 99
:IF INKEY$ < > •• THEN 41510
:ELSE NEXT
:GOTO 41500

41510 01 = 100
:NEXT
:RETURN

The Ultimate Reference Guide And Toolkit

PRESCON2 CGOSUB 41600)

Purpose

This subroutine# stmiliar to PRESCON1# allows the
screen to be used for text display. When the routine is
a standard cursor will be displayed at the bottom right
of the screen. Program execution will then pause until
is pressed.

Entry Requirements

None.

Exit Conditions

290

entire
called,
corner

any key

1. The text screen is cleared before the routine returns

I
I
I
I
I
I
I
,I

control to the main program. I
Variables Used

None. J
Sample Call

00010 GOSUB 41500
•

30000 END

Subroutine Listing

41599 REM prescon2
41600 POKE &H88,&H05

:POKE &H89,&HFF
:EXEC &HA1B1
:CLS
:RETURN

* call PRESCON2

* more instructions

I
I
I
I
I
I
I ,,
I

I
I
I
I
I
I
I
I:
I
I
I
I
.J
I
I
I
I
~I

I

The Ultimate Reference Guide And Toolkit 291

PRINTON <GOSUB 41700)

Purpose

This subroutine checks to see If the printer is ready. If
it ls not~ the flashing message •tHE PRINTER IS NOT oN· will be
displayed. This message will continue to be displayed until
either one of the following conditions are met: First, the
printer can be turned on. Second, the <ENTER> key can be
pressed. If exit occurs because the user pressed <ENTER>~ 03
will contain a value other than zero that can be used by the
main program to abort the print routine.

Entry Requirements

None.

Exit Conditions

1. 01 -equals zero if the printer was ready.

Variables Used

01, 02, 03~ 01$~ 02$.

Sample Call

00010
00020
00030

GOSUB 41700
IF 01 THEN GOTO 1000
PRINT#-2,.DATA•

30000 END

* check printer
* main aenu? * something to print

* more instructions

The Ultimate Reference Guide And Toolkit

Subroutine Listing

41699 REM printon
41700 01 = PEEK <&H88) * 256 + PEEK <&H89) - 1019

:01$ = CHR$ <128>
:02$ = INKEY$

41710 03 = <PEEK C&HFF22) AND 1>
:IF 03 = 0 OR INKEY$ = CHR$ <13> THEN RETURN
:ELSE PRINT @01, •the.01$ •prlnter·01$ ·is· 01$

$ •on•;
:FOR 02 = 1 TO 300
:NEXT
:PRINT @01, STRING$ C21,32>;
:FOR 02 = 1 TO 200
:NEXT
:GOTO 41710

·not•o1

I
292 I

I
I
I
I
I
11

I
I
I
I ,,
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
:I
I
·I
I
·-'

I
I
I
I

The Ultimate Reference Guide And Toolkit 293

NEATPRNT <GOSUB 41810)

Purcose

Fo~mattlng text for display on the text screen is always a
time-consuming, tedious chore. The NEATPRNT subroutine will
format the text sent to It and display it without any word wrap
<words being split at the edge of the screen>.

Entry Requirements

1. 01$ - contains the text to be displayed.

2. The display commences at the current cursor position.

Exit Conditions

None.

Variables Used

01, 02, au.
Sample Call

00010 01$ = •THIS IS SAMPLE TEXT TO BE DISPLAYED ON THE TEXT
SCREEN.·

00020 GOSUB 41800 * go display It

•
30000 END

Subroutine Listing

41799
41800
41810

REM neatprnt
01 = 1
02 = INSTR (01,01$, • •> - 01

* more Instructions

:IF 02 = 0 THEN 02 = LEN COl$)
:ELSE IF 02 < 0 THEN 02 = LEN (01$)

41820 IF POS CO) + 02 > 31 THEN PRINT
41830 PRINT MID$ (01$,01,02> • •;

:IF 02 + 01 = > LEN (01$) THEN RETURN
:ELSE 01 = 01 + 02 + 1
:GOTO 41810

The Ultimate Reference Guide And Toolkit 294

SCREENPT CGOSUB 41900)

Purpose

This subroutine prints ·the contents of the text screen on
the printer. Any graphics characters on the screen are replaced
by asterisks.

Entry Requirements

1. Since the routine will cause the computer to lock-up
lf the printer ls not ready, PRINTON should be used before
this routine is called.

Exit Conditions

None.

variables Used

01, 02, 03.

Sample Call

00010 GOSUB 41900 * cal! SCREENPT

30000 END

Subroutine Listing

41899 REM screenpt
41900 PRINT # - 2

:P~INT # - 2, TAB <24);
:FOR 01 = 0 TO 15
:FOR 02 = 0 TO 31

* more instructions

:03 = PEEK <<<01 * 32> + 02> + 1024>
:03 = 03 + (03 > 95 AND 03 < 128) * 64 - <03 > = 0 AND 03 <
32) * 96

:IF 03 > 128 THEN 03 = 42
41910 PRINT # - 2, CHR$ <03)J

:NEXT
:PRINT # - 2
:PRINT # - 2, TAB (24>;
:NEXT
:PRINT # - 2
:RETURN

I
I
I
I
I
I
I
I
I
I
I ,,
I
I
I
'-·

·I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 295

MENUDISP (GQSUB 42000)

Purpose

Neatly
they do make
the desired
header and a

formatted menus are time-consuming to create, but
a program look more professional. MENUDISP displays

menu information neatly centered, complete with a
•selection• message at the bottom of the screen.

This subroutine does not clear the screen. Instead, it uses
PRINT I statements to position the text on screen -- over top of
the existing display. This feature makes MENUDISP a natural
subroutine to use with the background color flasher routine
described in the next section.

Entry Requirements

1. 02$ - must contain the text to be displayed. Lines
must be separated from each other by •1• symbols. If any
line Is longer than 32 characters in length, the routine
will not forMat the display properly.

2. 03$ - may contain the header and footer messages
seperated by •a•s. If either message ls longer than 32
characters, an improper display will result. If 03$ Is
undefined or does not contain an •1• no header or footer
will be displayed. If you wish to display only a header,
just end the definition with an ·a·, lf you wish a footer
only, begin the definition with an ·a·.

3. The screen must be cleared to the desired background
pattern before the routine Is called.

Exit Conditions

1. 02$ may be modified.

Variables Used

01, 02, 03, 04, 05, 06, 02$, 03$.

Sample Call

00010 PRINTIO, STRING$ <160, 191); STRING$ (192, 159); STRING$
<159, 191>; * background display

00020 POKE 1535, 191
00030 02$ = •t. ADD DATAI2. INPUT DATA FROM CASSETTEI3. SAVE

DATA TO CASSETTEI4. END PROGRAM• * menu data
00040 03$ = • MAIN MENU I SELECTION? •

The Ultimate Reference Guide And Toolkit

00050 GOSUB 42000

30000 END

Subroutine Listing

41999 REM menudisp
42000 06 = INSTR (03$, •@•)

:06 = 06 + (06 > 0)
:02$ = 02$ + •g•
:01 = 1
:04 = 0
:05 = 0
:FOR 02 .= 1 TO LEN (02$)
:02 = INSTR (01,02$, •g•)
:03 = 02 - 01

* display the menu

* more instructions

:04 = - 03 * (03 > 04) - 04 * (03 (= 04)
:01 = 02 + l
:05 = 05 + 1
:NEXT
:PRINT @ - 32 * <05 < 12> + 16 - 06 I 2, LEFT$ (03$,06>;

42010 03 = (8 - INT (05 I 2>> * 32 + 16 - 04 I 2
:01 = 1
:FOR 02 = 1 TO LEN (02$)
:02 = INSTR <01,02$, •g•)
:PRINT @03, MID$ (02$,01,02 - 01) STRING$(04 -
(02- 01>, 32);

:03 = 03 + 32
:01 = 02 + 1
:NEXT
:PRINT @496 + 32 * <05 < 11> - <LEN (03$) - 06 - 2> I 2,

MID$ (03$,06 + 2>;
:RETURN

296

I
I
I
\1
I ..
:I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I . . '

I
(I
I
I
I
I
I
I
·I
I
I.

t·
I
·a
I
I

The Ultimate Reference Guide And Toolkit 297

CHKDRIVE <GOSUB 42100)

Purpose

This subroutine checks the specified drlve to see if it bas
a disk ready to be read or written to. If the drive is ready, 01
will be equal to zero on return.

This routine uses the DSKCON ROM routine documented in the
Disk System Owners Manual to read track 17, sector 2 <the file
allocation table>. If the read is successful the drive is
presumed to be ready.

Entry Requirements

1. 09 must be set to the number of the drive to be
checked.

Exit Conditions

1. 01 will be zero if the drive is ready. Any other value
represents a DSKCON error code <see your Disk System
Owner's Manual).

Variables Used

01~ 09.

Sample Call

00010
00020
00030

30000

09 = 0
GOSUB 42100
IF 01 THEN GOTO 100

END

* drive number * see If it's ready
* error message?

* more instructions

The Ultimate Reference Guide And Toolkit

Subroutine Listing

42099 REM chkdrive
42100 01 = PEEK <&HC006> * 256 + PEEK C&HC007>

:POKE 01,2
:POKE 01 + 1,09
:POKE 01 + 2,17
:POKE 01 + 3,2
:POKE 01 + 4,&H06
:POKE 01 + 5,&HOO
:EXEC PEEK <&HC004> * 256 + PEEK C&HC005>
:01 = PEEK COl + 6)
:RETURN

298

I
I
I
I
I
I ,,
I
I
I -·
I
I
I .,
'I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 299

QIR <GOSUB 42200)

.Purpose

Even though the DIR command can be used in a BASIC program,
Its unattractive display which scrolls off the screen should be
avoided. This directory subroutine fills the void by displaying
the directory of the specified drive ln a neat two column
display. The file types and sizes are not displayed. The display
pauses until a key is pressed each time the screen ls filled.
When all the files have been listed, the number of free granules
is displayed. The routine will again wait for a keypress before
returning to the main program.

The operation of this routine is nearly as fast as that of
the DIR statement. This is accomplished by using the DSKCON ROM
routine to read the directory sectors directly into 01$. In
order to do this the string descriptor of 01$ Is first set to
the address of the disk buffer used by DKSCON. Now, when DSKCON
is called the sector data will be stored in 01$, which can now
be manipulated by the rest of the routine which determines and
prints the file names.

Entry Requirements

1. 09 must contain the number of the drive to be read.
Note that drive status is not checked by this routine. For
this reason, CHKDRIVE should be called first.

Exit Conditions

1. 06 equals the number of free granules remaining on the
disk.

Variaples Used

01, 02, 03, 04, 05, 06, 09, 01$.

Sample Call

00010 09 = 0
00020 GOSUB 42200

•

30000 END

* drive number * go display directory

* more instructions

The Ultimate Reference Guide And Toolkit

Subroutine Listing

42199 REM dir
42200 01$ = ..

:01 = VARPTR (01$)
:POKE 01,255
:POKE 01 + 2,&H06
:POKE 01 + 3,0
:01 = PEEK C&HC004> * 256 + PEEK C&HC005)
:02 = PEEK <&HC006) * 256 + PEEK <&HC007> + 3

42210 06 = FREE (09)
:CLS
:03 = 0
:FOR 04 = 3 TO 11
:POKE 02,04
:EXEC 01 .
:FOR 05 = 1 TO 255 STEP 32
:IF HID$ COl$,05,1) = CHR$ <O> THEN 42230
:ELSE IF HID$ <01$,05,1) = CHR$ <255) THEN 04 = 11
:GOTO 42230
:ELSE 03 = 03 + 1
:PRINT • • MID$ (01$,05,8) •.• MID$ (01$,05 + 8,
3);

:IF 03 < 32 THEN PRINT • •;
42220 IF 03 > 31 THEN PRINT • •;

:EXEC &HA1B1
:CLS
:03 = 0

42230 NEXT
:NEXT
:IF 03 = 31 THEN EXEC &HA1B1
:CLS
:ELSE IF POS (0) < > 0 THEN PRINT

42240 PRINT TAB (6)06 •FREE GRANS •;
:EXEC &HA1Bl
:RETURN

I
300 I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I •
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 301

QISKNAME <GOSUB 42300)

Puroose

This routine prompts the user to input a disk filename. The
prompt consists of the text ·orsK FILENAME:• and a defined area
for the non-destructive cursor. The fields for the name,
extension and drive number are also indicated. The default
extension ·oaT• and drive number ·o· are already present in the
filename, but these values may be changed as required by the
user.

The cursor can be moved left and right with the <LEFT
ARROW> and <RIGHT ARROW> keys. It can be moved to the next field
position with the <DOWN ARROW> key. If this key is pressed when
the curs·or ls at the space reserved for the dr 1 ve nulllber, 1 t
will return to the first position of the filename.

The routine prevents the entry
colon <:> during the input of the
numbers 0, 1, 2 and 3 are allowed
number.

of a period (.) slash (/) or
name and extension. Only the

when Inputting the drive

If your program uses different default drive numbers or
filename extensions, edlt the 09$=· .DAT:o• in line 42300
to reflect your program's needs. You can· also limit the
allowable drive numbers by modifying 01$ in the same line.

Entry Requirements

None.

Exit Conditions

1. 09$ is a 14 character string containing the filename.
Its format is •prLENAHE.EXT:D•.

Variables Used

01, 02, 01$, 02$, 09$.

Sample Call

00010 GOSUB 42300
00020 OPEN •r•, 1, 09$

•
•

30000 END

* get.data filename
* do something with it

* more instructions

The Ultimate Reference Guide And Toolkit

Subroutine Llstlng

42299 REM diskname
42300 PRINT

:PRINT •oiSK FILENAME:• CHR$ C175>;
:01 =PEEK C136) * 256 +PEEK C137) - 1024
:09$ = • .DAT:o•
:02 = 0
:02$ = ·o123·

42310 PRINT @01 1 09$ CHR$ (175>;
:01$ = INKEY$
:IF 01$ = CHR$ (13) THEN PRINT
:RETURN
:ELSE PRINT @01 + 02 1 CHR$ <128>;
:IF 01$ = CHR$ (8) AND 02 > 0 THEN 02 = 02 - 1 +
(02 = 9) + <02 = 13>

:ELSE IF 01$ = CHR$ (9) AND 02 < 13 THEN 02 = 02 + 1 -
C02 = 7) - C02 = 11)

42320 IF INSTR c•./:·~01$) THEN 01$ = ••
:ELSE IF 01$ = CHR$ <10) THEN 02 = C02 < 8) *- 9 +

C02 < 12 AND 02 > 8) * - 13
:ELSE IF 02 = 13 AND INSTR (02$ 1 01$) ·= 0 THEN 01$ = ••
:ELSE IF 01$ > CHR$ <31) AND 02 < 14 THEN MID$ C09$ 1

02 + 1# 1> = 01$
:02 = 02 + 1 - (02 = 7> - (02 = 11)

42330 GOTO 42310

302

I
I
I
I
I
I
I
I
I
I
I

'

I
I
I
I
I
I
I
I

I
I
I
I
I
·I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 303

FILEXIST <GOSUB 42400)

Purpose

This subroutine checks the disk in the speci~ied drive to
determine lf the specified filename exists. This routine can be
useful if a new file is to be created, as well as when opening
an existing one.

Note that the filename returned by DISKNAME is completely
compatible with this routine.

This routine uses an undocumented ROM routine contained in
Disk BASIC to check the directory. This routine is located at
$C657 in version 1.0 and $C68C in version 1.1. It may be moved
to another location in· future releases, ln which case the
routine will need to be modified.

Entry Requirements

1. 09$ must contain the disk name in the following
format:

FILENAME/EXT:O

Either a period (.) or slash (/) may be used as a delimiter
between the name and extension. Note that the defaults are
drive 0 and /OAT.

Exit Conditions

1. 09$ ls not affected.

2. 05 = -1 if filename ls illegal,
= 0 lf the file does not exist,
> 0 indicates that the file is present.

Variables Used

01, 05, 02$, 03$, 09$.

Sample Call

00010
00020
00030

09$ = •LETTER/DAT:o• * target filename
GOSUB 42400
IF 05 = -1 THEN

:GOTO 100

* see if it's there
PRINT.ILLEGAL FILENAME•

* main menu?

The Ultimate Reference Guide And Toolkit

00040 IF 05 > 0 THEN PRINT.FILE ALREADY EXISTs·
:INPUT.OK TO WRITE OVER.I$
:IF I$ <> •y• THEN 100

00050 OPEN·o·~ #1~ 09$

30000 END

Subroutine Listing

42399 REM fllexlst
42400 02$ = 09$ + ·:o·

:01 = INSTR C02$, •:•>
:05 = VAL <MID$ <02$, 01 + 1))

* more instructions

:POKE &HEB, - 05 * (05 < 4 AND 05 > = 0)
:02$ = LEFT$ (02$~ 01 - 1>
:01 = INSTR (02$, •1•>
:IF 01 = 0 THEN 01 = INSTR <02$~ •.•>
:IF 01 = 0 THEN 01 = LEN (02$) + 1
:02$ = 02$ + ·.oAT•

42410 IF 01 > 9 OR LEN (02$) - 01 > 3 OR LEN (02$) > 12
THEN 05 = - 1

:RETURN
:ELSE 03$ = STRING$ <11, 32>
:MID$ (03$, 1> = LEFT$ <02$, 01 - 1)
:HID$ <03$, 9) = HID$ <02$, 01 + 1>
:FORT = 1 TO 11
:POKE T + &H94B, ASC <MID$ <03$~ T, 1>>
:NEXT
:EXEC &HC65F - 45 * <PEEK <&HC142> < > 48)
:05 = PEEK <&H973)
:RETURN

I
304 I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
\I

I
\

I
I
I
I

The Ultimate Reference Guide And Toolkit 305

HRINPUT CGOSUB 42500)

Puroose

This subroutine, designed to be used in conjunction wlth
HRCHRSET, allows the input of text from the keyboard on the high
resolution graphics screen. The text entered can be edited by
positioning a non-destructive cursor <controlled by the left and
right arrow keys) over the letter to be changed. The screen is
divided Into 19 lines and 32 columns for the pupose of start
point positioning.

This input routine will only allow text to be entered on
the line specified by the calling routine. Line wraparound is
not implemented.

The routine uses the powerful graphics commands GET, PUT
and DRAW. In normal operation, you need to slow down your typing
speed slightly to avoid letters being missed, but, if your
computer accepts the speed-up POKE <POKE 65495,0), the routine
will even keep up with touch typists.

If you do not need to have a string returned (e.g.
are using this routine to label a graph>, an increase
can be achieved by deleting the •:MID$ (01$,08,04) =
line 42540.

Entry Requirements

if you
in speed
02$• ln

1. 01 must specify the screen line (1 to 19> at which the
Input is to start.

2. 02 must specify the column position (0 to 31) at which
the input is to start.

3. 03 must contain the maximum allowable length of the
input. 03 can not exceed 32 - 02.

4. The array variables 09() and OBC>, used for GET/PUT
must have been DIMensioned to 1 and the string array 00$()
containing the DRAW information for the graphics character
set must have been initialized.

Note: A fractional number may be used for 01 or 02 if you
wish to start the input at a •nonstandard point•.

The Ultimate Reference Guide And Toolkit

Exit Conditions

1. 01$ contains the text entered.

2. 01 and 02 are altered.

Variables Used

01, 02, 03, 04, 05, 06, 07, 08, 09, 01$, 02$, 03$, 04$,
05$, 06$, OS<>, 09<>, 00$().

Sample Call

00010
00020
00030
00040
00050
00060
00070
00080
00090
00100
00110
00120

•

PCLEAR 4
PMODE 4
SCREEN 1, 0
COLOR O, 1
DIM 00 Cxx>
GOSUB 42700
DIM 09 (1), 08
01 = 10
02 = 5
03 = 12
GOSUB 42500
PRINT 01$

30000 END

Subroutine Llstlng

42499 REM hrlnput
42500 03$ = CHR$ (8)

:04$ = CHR$ (9)
:05$ = • •
:06$ = CHR$ (13)
:04 = 1
:05 = 2
:06 = 6
:07 = 7
:09 = 8

(1)

:02 = 02 * 09 + 04
:01 = 01 * 10 - 05
:08 = 04
:01$ = STRING$ (03,32)

* set up graphics

* for character set
* get character set
* dim for GET/PUT
* line 10
* column 6
* 12 characters * get some input
*.display results

* more instructions

306

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Gulde And Toolkit

42510 GET C02 - 04, 01 + 05) - C02 + 06, 01 - 07), 08, G
:LINE (02 - 04, 01 + 05> - C02 + 06, 01 - 07>, PRESET ,

BF
:GET (02 - 04, 01 + 05) - C02 + 06, 01 - 07>, 09, G
:PUT C02 - 04, 01 + 05> - (02 + 06, 01 - 07>,08, PSET

42520 GET C02 ~ 04, 01 + 05) - C02 + 06, 01 - 07>, 08
:PUT C02 - 04, 01 + 05) - (02 + 06, 01 - 07>, 08, NOT

42530 02$ = INKEY$
:IF 02$ = •• THEN 42530
:ELSE PUT (02 - 04, 01 + 05) - C02 + 06, 01 - 07), 08
:IF 02$ = 06$ THEN RETURN
:ELSE IF 02$ = 03$ AND 08) 04 THEN 08 = 08 - 04
:02 = 02 - 09
:POKE &H157, &HFF
:GOTO 42520
:ELSE IF 02$ = 04$ AND 08 < 03 THEN 08 = 08 + 04
:02 = 02 + 09
:POKE &H158, &HFF
:GOTO 42520
:ELSE IF 02$ < 05$ THEN 42520

42540 PUT (02 - 04, 01 + 05) - C02 + 06, 01 - 07>, 09, PSET
:DRAW ·aM=02;,=01;• + 00$CASC (02$) - &H20>
:MID$ COl$, 08, 04) = 02$
:02 = 02 - ((08 < 03) * 09)
:08 = 08 - (08 (03)
:GOTO 42520

307

The Ultimate Reference Guide And Toolkit 308

HRPRINT <GOSUB 42600)

Purpose

This subroutine, designed to be used in conjunction with
HRCHRSET, allows text to be displayed on the high resolution
graphics screen. For the purpose of this routine, the screen has
been divided into 19 rows with 32 columns each. When the routine
is called, the starting row/column must be specified, but, if
the line to be printed is longer than the screen width allows~
printing will continue at the start of the next screen line.

Entry Requirements

1. 01 contains the line number <1 - 19>.

2. 02 contains the column position <O- 31>.

3. 01$ contains the text to be printed.

4. The string array 00$() containing the DRAW information
for the graphic character set must have been initialized in
advance.

Exit Conditions

01 and 02 are modified.

Variables Used

01~ 02, 03, 01$, 00$().

Sample Call

00010
00020
00030
00040
00050
00060
00070
00080
00090
00100
00110

PCLEAR 4
PMODE 4
SCREEN 1, 0
COLOR O, 1
DIM 00 <xx>
GOSUB 42700
01$ = •Text on a high resolution
01 = 8
02 = 0
GOSUB 42600
GOTO 110

30000 END

* set up graphics

* for character set * get character set
screen•
* 1 ine # * column # * go display it * endless loop

* more instructions

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I.

The Ultimate Reference Guide And Toolkit 309

I Subroutine Listing

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

42599 REM hrprlnt
42600 01 = 01 * 10 - 1

:02 = 02 * 8 + 1
:FOR 03 = 1 TO LEN COl$)
:DRAW •BM=02;,=01;• + OO$CASC CMID$ (018, OS, 1>> - &H20>
:02 = 02 + &H8
:IF 02 > &HFF THEN 02 = &Hl
:01 = 01 + &HA
:NEXT
:RETURN
:ELSE NEXT
:RETURN

The Ultimate Reference Guide And Toolkit 310

HRCHRSET <GOSUB 42700)

Purpose

Often it is desirable to display text on a high resolution
graphics screen. The character set used here is contained in 95
strings which can be displayed with the DRAW statement. The size
of the letters can be altered by using the scale argument in
DRAW and the direction of printing can be changed with the ANGLE
argument (both these options are illustrated in the sample call
below>. If you use the SCALE option be sure to use only
multiples of 4, otherwise uneven lettering will result.

This character set contains all 95 printable ASCII
characters. If you do not need all.of them for your routine,
delete the unneeded lines. The string array numbers correspond
to the ASCII representation of the letter minus 32. For example,
the data to DRAW the letter •A• (CHR$(65) > is contained in
string 65 - 32, or 33. The ASCII characters 123 to 127 are not
available from the keyboard. They have been configured as
follows:

ASCII VALUE

123
124
125
126
127

CHARACTER

left brace
vertical bar
right brace
tilde
right arrow

The sample program below displays all 95 characters in each
of the five graphic modes. You will note that the normal size
letters are only readable in PMODE 4. The readability of
double-size letters depends on the color set selected in the
lower resolution modes. By using a scale factor of 16 an even
larger and more readable letter will be displayed. This could be
very useful in a program designed for young children just
learning to recognize letters and numbers, or for visually
handicapped adults.

Entry Requirements

1. The array 00$() must have been DIMensioned to the
number of characters in character set.

Exit Conditions

None.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit

Sample

00010
00020
00030
00040
00050

00060
00070
00080

Call

REM **************************
REM demonstration program to
REM show various combinations
REM of hrchrset
REM **************************
DIM 00$(95)
GOSUB 42700
DIM GRC11)

00090 REM select graphics mode

00100
00110
00120

00130

00140
00150
00160
00170
00180

00190

00200

00210
00220

FOR PM = 4 TO 0 STEP - 1
RESTORE
PMODE PM

:SCREEN 1~0
:COLOR 1~0
:PCLS 1

REM clack border

LINE <10~10) - (245~10>~ PRESET
LINE- <245,181>~ PRESET
LINE- (10~181)~ PRESET
LINE- C10~10)~ PRESET
PAINT <O~O>~O

REM print top line

DRAW •s4•
:X = 20
:Y = 8
:BL$ = •sR6•
:READ TX$
:GOSUB 340

REM shift top of line right and bottom
REM left to achieve italics effect

00230 GET C20~2) - C245~3>~GR~G
:PUT <21~2> - C246~3>~GR~ PSET

00240 GET C20~7> - C245~8>~GR~G
:PUT (19~7> - C244~8>~GR~ PSET

311

The Ultimate Reference Guide And Toolkit

00250 REM right side message going down
00260 DRAW •At•

:X = 247
:Y = 4
:BL$ = ·sR3•
:READ TX$
:GOSUB 340

00270 REM bottom message upside-down

00280 DRAW •A2•
:X = 230
:Y = 183
:BL$ = ·sR5•
:READ TX$
:GOSUB 340

00290 REM left side message going up

00300 DRAW •A3•
:X = 9
:Y = 186
:BL$ = ·sR3•
:READ TX$
:GOSUB 340

00310 DRAW •Ao·
:COLOR 0,1

00320 GOTO 360

00330 REM subroutine to display TX$ one letter at a time

00340 DRAW •sM=X;,=Y;•
:FOR T = 1 TO LEN CTX$)
:DRAW 00$(ASC <MID$ <TX$,T,l>> - 32) + BL$
:NEXT T
:RETURN

00350 REM display entire character set, normal size

00360 y = 24
:X = 20
:FOR T = 0 TO 95
:DRAW ·sM=X;,=Y;XOO$(T);•
:X = X + 10
:IF X > 232 THEN X = 20
:Y = Y + 9

00370 NEXT T

312

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit

00380 REM display entire character set ln double size

00390 DRAW ·sa•
:X = 19
:Y = Y + 18
:FOR T = 0 TO 95
:DRAW '"BM=X;,=Y;X00$(T>;'"
:X = X + 16
:IF X > 232 THEN X = 19
:Y = Y + 16

00400 NEXT T

00410 REM do next color set and pmode

00420 FOR T = 1 TO 1000
:NEXT T

00430 SCREEN 1,1
:FOR T = 1 TO 2000
:NEXT T

00440 NEXT PM
00450 RUN

00460 REM data for messages

00470 DATA GRAPHICS CHARACTER SET,TEXT CAN RUN DOWN THE
SIDE,* THIS IS UPSIDE DOWN *,TEXT CAN RUN UP THE
SCREEN

30000 END

Subroutine Listing

42698 REM hrchrset

42699 REM SPACE - '"/'"
42700 00$~0) = '"BR4'"

:00$(1) = '"BR2UBU2U3BR2BD6'"
:00$(2) = '"BRBU4U2BR2D2BRBD4'"
:00$(3) = '"BRBUUNLNR3U2NLNUR2NUNRD3BDBR'"
:00$(4) = '"BUR2DUREHL2HERUDR2BD5'"
:00$(5) = '"BUE4BL3LURDBR3BD4NDLDR'"
:00$(6) = '"BR4BU2G2LHE3UHLGDF4'"
:00$(7) = •BR2BU4U2BR2BD6'"

313

I

The Ultimate Reference Guide And Toolkit 314 I
I

42710 00$(8) = •au6BR2NRGD4FRBR• I :00$(9) = "REU4HNLBR3BD6•
:00$(10) = ·aUE2NL2NH2NU2NE2N02NF2R2BD3•
:00$ (11> = "BU3R2NU2ND2R2B03•

I :00$(12) = •aR3BULURD2GBR2BU•
:00$(13) = "BRBU3R2BRBD3"
:00$(14) = "BR2LURDBR2•
:00$(15) = "UE4UBD6" I

42719 REM •o• - "9"
42720 00$(16) = •aUNE4U4ER2FD4GL2HBR4BD" I :00$(17) = "BRBU5ED6LR2BR"

:00$(18) = "BU5ER2FDG4R4"
:00$ (19) = "BU5ER2FDGLRFDGL2HBR4BD" I. :00$(20) = "BR3U6G3R4BD3"

42730 00$(21) = •auFR2EUHL3U3R4BD6"
:00$(22) = "BUNFU4ER2FBD2BLNL3FDGNLBR"
:00$(23) = "BU6R4G303BR3" I :00$(24) = "BR4BU2DGL2HUER2L2HUER2FDGFBD2"
:00$(25) = "BUFR2EU4HL2GDFR2BRBD3"

42739 REM •:• - ·?· I
42740 00$(26) = "BRBURULOBU3RULDBR3BD4"

:00$(27) = "BR2BULURD2GBRBU5LURDBR2BD4"
I :00$(28) = "BR4BU6G3F3"

:00$(29) = "BU4BRR2BD2NL2BRBD2"
:00$(30) = "E3H3BR4BD6"
:00$(31) = "BU5ER2FDGLDBDDBR2" I :00$(32) = "BUNFU4ER2FDL2GFR2NU2BD2NL2"

42749 REM "A" - ·z· I 42750 00$(33) = "U4E2F202NL402"
:00$(34) = "RU6LR3FDGNL2FDGL3BR4"
:00$(35) = "BUNFU4ER2FDBD2DGNL2BR• I :00$(36) = "RU6LR3FD4GL2BR3"
:00$(37) = "U3NR3U3R4BD6NL4"
:00$(38) = "U3NR3U3R4BD6"
:00$(39) = "BR2BU3R202GL2HU4ER2FBD5" I :00$(40) = "U603R4U306"

42760 00$(41) = "BRR2LU6LR2BRBD6"
:00$(42) = "BU2DFR2EU5BD6" I :00$(43) = ·u6BR4G3F3"
:00$(44) =."NR4U6BR4BD6"
:00$(45) = "U6F2E2D6• I :00$(46) = "U6DF4U506"
:00$(47) = "R4L4U6R406"
:00$(48) = "U6R3FDGL3BR4BD3"
:00$(49) = "BUU4ER2FD4GL2HBR2BU1F2" I

I

I
I The Ultimate Reference Guide And Toolkit 315

I
I

42770 00$(50) = ·u6R3FDGL3RF3•
:00$(51) = ·suFR2EUHL2HUER2FBD5•
:00$(52) = ·su6R4L206BR2•
:00$(53) = ·u6D6R4U6D6•

I :00$(54) = ·su6D4F2E2U4BD6•
:00$(55) = ·u6D6E2F2U606•
:00$(56) = •UE2H2UDF2E2UDG2F2D•

I :00$(57) = ·su6DF2E2UDG203BR2•
:00$(58) = •NR4UE4UNL4BD6•

I
42779 REM •[• - ·o·
42780. 00$(59) = ·sRU6NR2D6R2BR•

:00$(60) = ·su6DF4o·
:00$ (61) = ·sRR2U6NL2D6BR•

I :00$(62) = •sU4E2ND6F2B04•
:00$(63) = ·su3NF2NE2R4BD3•
:00$(64) = •su2F2NU6E2B02•

I 42789 REM •a• - •z•
42790 00$(65) = •sUNFNEBU3R3FDNL302NL3•

I :00$(66) = ·u6D2R3FD2GNL2BR•
:00$(67) = •sRNR2HU2ER2FBD2GBR•
:00$(68) = •sRNR3HU2ER3U2D6•

I
:00$(69) = ·sRNR3HU2ER2FDNL3B02•
:00$(70) = ·aR2U3NRNLU2EFBD5•
:00$(71) = •sRNR2HU2ER305GNL3EU•
:00$(72) = •U4NU2R3FD3•

I 42800 00$(73) = •sRRNRU3NLBU2UBR2B06•
:00$(74) = •acFR2EU4BU3DBD203•
:00$(75) = ·sRU2NU4E3BD5NH3•

I :00$(76) = •aRRNRU6NLBR2B06•
:00$(77) = ·u4F2NDE204•
:00$(78) = ·u4R3F03•

I
:00$(79) = ·sRNR2HU2ER2F02GBR•
:00$(80) = •o2U6R3FD2GNL3BR•
:00$(81) = •sRNR3HU2ER306U2•

42810 00$(82) = ·u4DER2FBD3•

I :00$(83) = ·sU4BR4L3GFR2FGNL3BR•
:00$(84) = •aRNR2U4NRNLU2BR3BD6•
:00$(85) = •sRHU3BR3D4NL2R•

I
:00$(86) = ·su4DF2NOE2NUBD3•
:00$(87) = •NU4E2F2NU4•
:00$(88) = •e:2NH2NE2F2•
:00$(89) = •sU3NUF2DGNOE3NU2BD2•

I :00$(90) = ·sU4R4G4R4•

I
I

The Ultimate Reference Guide And Toolkit

42819 REM CHR$(123) - CHR$(127>
42820 00$(91) = •BR2NRHU2NLU2ERBRBD6•

:00$(92) = •sR2U2BU2U2BR2BD6•
:00$(93) = •sRREU2NRU2HNLBR2BD6•
:00$(94) = ·sU4EUF2ENUBU5•
:00$(95) = ·su3R4NH2NG2BD3•

42830 RETURN

316

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 317

PCLEARO <GOSUB 63900)

Purcose

This subroutine compensates for the lack of a PLCEAR 0
command ln Extended COLOR BASIC. You can now free up that last
1536 bytes of graphics memory for your BASIC program. If you
have a disk system and need to use the FILES command, do so
before using this subroutine.

When this routine is called it first checks to see if the
beginning of the BASIC program area is the same as the beginning
of the graphics area. If lt is, a RETURN ls done; lf not, the
following machine language routine is poked into memory at
&HOlDD.

CLRB
INCB
LOA
TFR
JMP

$BC
D,Y
$96A3

clear carry and
set lsb of new start
D = start of graphics + 1
copy 0 into Y
jump to PCLEAR ROM routine

Try to keep this routine near the end of your program; otherwise
?SN ERRORS may occur in the same manner they occur with other
PCLEAR statements. To assist in placement we have departed from
our normal numbering system and used line 63900 for PCLEARO.

Entry Requirements

1. The call to PCLEARO should be in the first line of the
BASIC program.

Exit Conditions

1. No graphics memory is reserved for high resolution
graphics.

CAUTIONARY NOTE: DO NOT USE ANY EXTENDED COLOR BASIC
GRAPHICS COMMANDS AFTER THIS ROUTINE HAS BEEN EXECUTED. If
you do, a part, or all, of the BASIC program in memory will
be destroyed. Extended Color BASIC still presumes that the
first grahlcs page ls available for grahlcs use. Since part
of your program Is now residing in this area, graphics
commands will affect the program code.

Variables Used

01, 02, 01$.

The Ultimate Reference Guide And Toolkit

Sample Call

00010 GOSUB 63900 * call PCLEARO
•
• * more instructions

30000 END

Subroutine Listing

63899 REM pclearO
63900 IF PEEK C25> * 256 +PEEK C26) =PEEK C188> * 256 +

PEEK (189) + 1 THEN RETURN
:ELSE 01 = &H01DD
:01$ = •5F5C96BC1F027E96A3•
:FOR 02 = 1 TO 18 STEP 2
:POKE 01, VAL c•&H• + MID$ COl$, 02, 2>>
:01 = 01 + 1
:NEXT
:EXEC &H01DD
:RUN

318

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

**
* * * Section fOur *
* * * HACHINE LANGUAGE SQBRQUTlNES *
* *
**

The Ultimate Reference Guide And Toolkit 320

MACHINE LANGUAGE SUBROUTINES

This section of the text contains several machine language
subroutines which can be used by a BASIC program for special
screen effects, for speeding up keyboard input, or for a variety
of other purposes.

Each of the routines has been written in position
independent code, which means that your BASIC program can place
the required routines anywhere in RAM memory and they will still
operate correctly. As you will see when you browse through this
section, each machine language routine has been converted into
at least two BASIC routines, a primary lnltlalizatlon routine
and one or more secondary routines which call the different
entry points of the machine language program to invoke its
different functions.

INIT> contains a
not the machine
desired memory
strings of the

The primary BASIC routine <e.g. INPUT
short segment which determines whether or
language data has already been POKEd into the
locations. If not, then one or more data
following· type,

01$ = •s634B6FF23 •••• ·,

where each pair of characters represents a hexadecimal number
between 0 and 255, is parsed by another short segment in the
lnltiallzlng routine, and the data is stored in memory. The
final segment then sets up a definition far the required USR
call.

The secondary BASIC routineCs> <e.g. INPUT MAIN> make the
actual call to the proper machine language entry point, ensuring
that any necessary parameters are passed ln the correct format.
In most cases, the call is made vla BASIC's USB statement, but
occasionally Cas in the CLOCK and TIMER routines>, a simple EXEc·
ls enough to obtain the desired results.

This approach to incorporating machine language subroutines
ln a BASIC program simplifies the requirements for you if you
wish to include them in your program. In all cases, all you have
to do is make a GOSUB call to the correct program line, and our
BASIC subroutine will take care of everything. In some cases, of
course, you will have to ensure that a variable has been
properly defined before you actually make the call.

For the sake of uniformity, we have set up all of the
examples in this section so that the machine language code is
POKEd into memory starting at address &HOlDD <the cassette I/0
buffer>. When you decide to use these ~outlnes, please realize

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 321

that you are NOT required to store the routines ln the same
area. In fact, lf you decide to use more than one routine ln
your program <which could cause the total size of all the
routines to exceed the size of the buffer>, you may have to find
a different unused block of RAM to store the code. In addition,
because cassette input/output causes data to be written Into the
I/0 buffer, you cannot use this buffer for both purposes
simultaneously.

You should also bear in mind that most of the routines make
use of the QSR function In order to pass parameters back and
forth; all of the examples <that uniformity again) define USR 0
through USR 2. Obviously, if you decide to include more than one
routine in your program, you may have to change the USR
definitions <i.e. USR 3 through USR 9) for one or more of them
so that Independent USR calls will still be possible.

A special subroutine, MLSEI, allows you to qu-ickly POKE
several other routines into a contiguous block of memory~ Once
the routines have been initialized, the USR function called by
MLSET can be re-defined for use by any other routine.

As in the BASIC subroutines in the preceding section, we
have restricted ourselves here to variable names which begin
with the letter ·o·, simply because such variables don't seem to
find their way into BASIC programs too often. This will not pose
any problems to existing programs unless you are using such
variable names to represent constant values. If this is the
case, we suggest that such variable names be changed to avoid
any conflict. In any event, the variables that we use need only
be defined while our subroutines are actually active. Following
the RETURN, you are free to use these variables for any other
purpose, lf you wish.

The Ultimate Reference Guide And Toolkit 322

Purpose

INPUT INIT CGOSUB 50000)
INPUT MAIN CGOSUB 50100)

This subroutine allows you to obtain data from the
keyboard. It works ln exactly the same way as BASIC 6 s INPUT
statement, except that the BREAK key does not have any effect on
program execution. Instead, the BREAK key is treated exactly
like the ENTER key and causes keyboard input to be terminated.
All of BASIC's standard editing keys are still active <left
arrow, shift left arrow, and CLEAR> and will produce exactly the
same response that you are used to.

The routine uses a very neat trick for passing up to 255
characters of string data to the BASIC program: lt creates a
temporary string descriptor which points to BASIC's normal input
buffer at memory location &H02DD. On return from the subroutine,
the string is forced into the string pool ln upper memory by the
simple concatenation of a null string.

Assembly Language Listing

OEOO
0100
0100 BOB3EO
OlEO 1F02
01E2 DE88
OtE4 BDA390
01E7 5A
01E8 E7A4
OlEA 2602
OtEC OF88
01EE
OlEE CC0200
01F1 ED22
01F3 39

01F4

NO ERRORS FOUND

******************************** * SIMPLE INPUT ROUTINE *

ORG $0100
INPUT EQU *

JSR $83EO
TFR D,Y
LOU $88
JSR $A390
DECB
STB ,Y
BNE IN02
STU $88

IN02 EQU *
LCD #$0200
SID 2,Y
RTS

END INPUT

ln the cassette buffer

get descriptor addr
need A & B, so use Y
get cursor address
go get some input
adjust to true length
save len in descriptor
not zero length, skip
reset cursor address

get buffer address
save In strg descriptor
all done; return

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Gulde And Toolkit

Entry Requirements--INPUT INIT

1. The· address in memory where you want the machine
language code to be POKEd must be passed ln variable 00.

2. The INIT subroutine must be called at least once
before the MAIN subroutine can be called.

Exit Conditions--INPUT INIT

1. INIT defines USR 0 for use by the MAIN subroutine.

2. All variables are released for re-use.

Entry Requirements--INPUT MAIN

None.

Exit Conditions--INPUT MAIN

323

1. The resulting input is returned in variable 01$. Your
main program must transfer the data to another string of
your own choice in order to protect the original data from
being over-written during subsequent calls. This can be
accomplished by a simple statement like

Variables Used

Samcle Call

00010. CLEAR 1000
:CO = &HOtDD
:GOSUB 50000
:CLS

A$ = 01$.

:PRINT •ENTER SOME DATA? •;
00020 GOSUB 50100

:A$ = 01$
00030 CLS

:PRINT •ENTER SOME MORE DATA? •;
00040 GOSUB 50100

:B$ = 01$

* lots of string space * set start address * go inlt subroutine

* go get some input * transfer the data

The Ultimate Reference Guide And Toolkit

00050 PRINT A$
:PRINT B$
:PRINT OU

30000 END

Subroutine Listings

49999 REM input inlt

* more instructions

50000 IF PEEK <OO> = &HBD AND PEEK <OO + 22> = &H39 THEN
RETURN

:ELSE 01$ = •sDB3ED1F02DE88BDA3905AE7A42602DF88CC02DD
ED2239•

:FOR 01 = 0 TO 22
:02$ = •&H• + MID$ <01$, 2 * 01 + 1, 2)
:POKE 00 + 01, VAL (02$)
:NEXT
:DEF USB 0 = 00
:RETURN

50099 REM input main
50100 01$ = ••

:01 = USR 0 <VARPTR (01$))
:01$ = 01$ + ••
:RETURN

I
324 I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
·I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit

Purpose

FLASH INIT <GOSUB 50200)
FLASH MAIN (GOSUB 50300)

325

This subroutine performs two functions simultaneously: lt
causes all graphic characters on the screen to change color, and
it provides a flashing cursor while it waits for a single
keystroke. It ls ideally suited for use as a menu selection
input routine, since exlt does not occur until the key pressed
matches one of a predefined set of allowed characters.

Assembly Language Listing

OEOO

0100
0100 BDB3ED
OlEO 1F02
OlE2 E6A4
01E4 2740
01E6 10AE22
01E9 3424
OlEB OE88

OlEO
OlEO OA94
OlEF 2612
01F1 8E0400

01F4
01F4 A684
01F6 2A04
01F8 8810
OlFA 8A80

OlFC
OlFC A780
OlFE 8C0600
0201 ·25F1
0203
0203 9694
0205 857F
0207 2606
0209 A6C4

************************************ * FLASHING SCREEN/SINGLE KEY INPUT *

ORG $0100 in cassette buffer

FLASH EQU *
JSR $83ED get descriptor addr
TFR D,Y need A & B, so use Y
LOB ,Y get string length
BEQ FLOB invalid string, leave
LOY 2,Y get actual string addr
PSHS B,Y save both
LOU $88 get cursor address

FLO I EQU *
DEC $94 time to flash colors?
BNE FL04 no, skip
LOX #$400 get screen start addr

FL02 EQU *
LOA ,X get screen byte
BPL FL03 not graphic, skip
AODA #$10 next color
ORA #$80 force graphic

FL03 EQU *
STA ,X+ byte to screen & bump
CMPX #$600 end of screen yet?
BLO FL02 loop til done

FL04 EQU *
LOA $94 get cursor delay count
BITA #$7F time to flash cursor?
BNE FL05 no, skip
LOA ,U get cursor byte

The Ultimate Reference Guide And Toolkit

0208 8840
0200 A7C4

020F
020F BOAICI
0212 2709
0214 EGE4
021G lOAEGl

0219
0219 AlAO
021B 2705
0210 5A
021E 2GF9
0220 20CB

0222
0222 3524
0224 1F89

022G
0226 4F
0227 7EB4F4

022A

NO ERRORS FOUND

FL05

FLOG

FL07

FLOS

EORA #$40
STA ,U

EQU *
JSR $A1Cl
BEQ FLOl
LOB ,S
LOY l,S

EQU *
CMPA ,Y+
BEQ FL07
DECB
BNE FLOG
BRA FLOI

EQU *
PULS B,Y
TFR A,B

EQU *
CLRA
JMP $B4F4

END FLASH

Entry Requirements--FLASH INIT

invert
and put it back

go get a keypress
no key, loop back
get string length
get address

acceptable key?
yes, leave
tested entire string?
1 oop til done
invalid key, restart

cleanup stack
get LSB of key value

set MSB to 0
to user and return

1. The address ln memory where you want the machine
language code to be POKEd must be passed in variable 00.

2. The INIT subroutine must be called at least once
before the MAIN subroutine can be called.

Exit Conditions--FLASH INIT

1. INIT defines USR 0 for use by the MAIN subroutine.

2. All variables are released for re-use.

Entry Requirements--FLASH MAIN

32G

1. Variable 01$ must be pre-defined to contain the list
of allowable characters. The routine uses this list as a
comparison base when a key is pressed. Exit does not occur
until a match is found.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit

Exit Conditions--PLASH MAIN

1. The ASCII value of the key that was actually pressed
is returned ln variable 01.

2. The list that was passed in variable 01$ Is retained
in Its original form.

variables Used

00, 01, 01$, 02$.

Sample Call

00010 CLS 0
:V = &H85
:FOR I = 0 TO 31 STEP 2
:POKE 1024 + I, V
:POKE 1025 + I, V
:POKE 1534 - I, V
:POKE 1535 - I, V
:V = V + &HlO
:IF V > &HF5 THEN V = &H85

00020 NEXT
:V = &H86
:FOR I = 1 TO 14
:POKE 1024 + 32 * (15 - I>, V + 3
:POKE 1025 + 32 * (15 - I>, V
:POKE 1054 + 32 * I, V
:POKE 1055 + 32 * I, V + 3
:V = V + &HlO
:IF V > &HE6 THEN V = &H86

00030 NEXT
00040 PRINT @232, •THIS IS A TEST • +

:SCREEN 0,1
:00 = &H01DD
:GOSUB 50200
:01$ = CHR$ <13>
:GOSUB 50300

00050 CLS

•
30000 END

* fancy screen

CHR$ (8);

* set start address * go lnlt subroutine * wait for <ENTER>
* go do it

* more instructions

327

The Ultimate Reference Guide And Toolkit

Subroutlne Listings

50199 REM flash inlt
50200 IF PEEK <OO> = &HBD AND PEEK (00 + 76) = &HF4 THEN

RETURN
:ELSE 01$ = ·aoB3ED1F02E6A4274010AE223424DE880A942612
8E0400A6842A048B108A80A7808C060025F19694857F2606A6C4
8840A7C4BDA1C12709E6E410AE61A1A027055A26F920CB3524
1F894F7EB4F4•

50210 FOR 01 = 0 TO 76
:02$ = •&H• + MID$ (01$, 2 * 01 + 1, 2>
:POKE 00 + 01, VAL (02$)
:NEXT
:DEF USR 0 = 00
:RETURN

50299 REM flash main
50300 01$ = 01$ + ••

:01 = USR 0 <VARPTR <01$))
:POKE &H94., l
:RETURN

I

328 I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I·
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit

Purpose

SCROLL INIT CGOSUB 50400)
SCROLL MAIN CGOSUB 50500)

329

This subroutine allows you to cause scrolling of the text
screen ln one of four possible directions--up, down, left, or
right. When upward scrolling is selected, the data on the screen
moves upward one line and the bottom line is cleared in
preparation for new data to be printed. Similarly, downward
scrolling causes the topmost line to be cleared to allow for
immediate printing. Horizontal scrolling is a little different,
however, since no data ls actually removed from the screen.
Instead the leftmost or rightmost column of data is moved to the
opposite end of the screen, depending on which direction is
selected.

Assembly Language Listing

OEOO

0100
0100 BDB3ED
OlEO 1F02
01E2 E6A4
01E4 5A
01E5 267B
01E7 A6B802
OlEA 8144
OlEC 2719
OlEE 814C
OlFO 2731
OlF2 8152
01F4 2740
01F6 CE0400
01F9 30C820

OlFC
OlFC EC81
01FE EDCl
0200 8C0600
0203 25F7
0205 2011
0207
0207 CE0600

******************************** * SCREEN SCROLLING *

ORG $0100

SCROLL EQU *

UP

DOWN

JSR $B3ED
TFR D.Y
LOB ,Y
DECB
BNE SCRDUN
LOA £2.Yl
CMPA #"D
BEQ DOWN
CMPA #'L
BEQ LEFT
CMPA #"R
BEQ RIGHT
LOU #$0400
LEAX $20,U

EQU *
LOD ,X++
SID ,U++
CMPX #$0600
BLO UP
BRA LASTLN
EQU *
LOU #$0600

in cassette buffer

get descriptor addr
need A & B, use Y
get length
length = 1?
no, leave
get the character
down scroll?
yes, skip
left scroll?

right scroll?

dest addr =top line
source = 1 line below

2 bytes at a time
move up a line
end of screen?
loop til done
clear top or bottom

dest address

The Ultimate Reference Guide And Toolkit

020A 30C8EO

0200
0200 EC83
020F EDC3
0211 8C0400
0214 22F7
0216 1F13

0218
0218 OF88
021A CC6020

0210
0210 A7CO
021F 5A
0220 26FB
0222 39

0223
0223 CE0400
0226 3041

0228
0228 E6C4
022A 3404
022C C61F

022E A680
0230 A7CO
0232 5A
0233 26F9
0235 3001 -
0237 3341
0239 3504
023B E75F
0230 8C0600
0240 25E6
0242 39

0243
0243 CE0600
0246 305F
0248
0248 E65F
024A 3404
024C C61F

DN01

LEAX -$20,U

EQU *
LOO ,--X
SID ,--U
CMPX #$0400
BHI DN01
TFR X,U

LASTLN EQU *
STU $88
LDO #$6020

LST01 EQU *
STA ,U+
OECB
BNE LSTOt
RTS

LEFT EQU *
LOU #$400
LEAX 1 ,U

LFOl EQU *
LOB ,U
PSHS B
LOB #$1F

LF02 LOA ,X+
STA ,U+
OECB
BNE LF02
LEAX 1 ,X
LEAU 1 ,U
PULS B
STB -1 ,U
CMPX #$600
BLO LFOt
RTS

RIGHT EQU *
LOU #$600
LEAX -1 ,U

RTOl EQU *
LOB -1 ,U
PSHS B
LOB #$1F

source address

2 bytes at a time
move down a line
top of screen yet?
loop til done
addr for last line

new cursor address
A = blank; B = count

clear last line

loop ttl done
all done; leave

start of screen
one position to right

get 1st char on line
save til end of line
31 bytes to move

get a source byte
move left
done all bytes?
loop for whole line
adjust addresses

get 1st byte
put at end of line
end of screen yet?
loop for whole screen
done, leave

end of screen
previous position

last byte on line
save til beginning
31 chars to move

330

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I'
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit

024E
024E A682
0250 A7C2
0252 5A
0253 26F9
0255 301F
0257 335F
0259 3504
0258 E7C4
0250 8C0400
0260 22E6

0262
0262 39

0263

NO ERRORS FOUND

RT02 EQU *
LOA ,-X
STA ,-U
DECB
BNE RT02
LEAX -l,X
LEAU -1 ,U
PULS B
STB ,U
CMPX #$400
BHI RTOl

SCRDUN EQU *
RTS

END SCROLL

Entry Requirements--SCROLL !NIT

get a byte
move lt right
done all bytes?
loop for whole line
adjust addresses

get last char
put it at beginning
top of screen yet?
loop for whole screen

1. The address In memory where you want the machine
language code to be POKEd must be passed in variable 00.

2. The INIT subroutine must be called at least once
before the MAIN subroutine can be called.

Exit Conditions--SCROLL INIT

1. INIT defines USR 0 for use by the MAIN subroutine.

2. All variables are released for re-use.

Entry Requirements--SCROLL MAIN

1. Variable 01$ must be defined as a single character
string which tells the routine which direction to scroll.
The string must contain one of the following upper case
letters:

a. U
b. D
c. L
d. R

up
down
left
right

331

The Ultimate Reference Guide And Toolkit

Exit Conditions--SCROLL MAIN

1. The data on the screen will be moved once in the
d l rect 1 on spec l fled by 01$. ·

332

2. The contents of 01$ are preserved; this allows for
repeated scrolling in one direction without re-defining the
string.

Variables Used

00, 01, 01$, 02$, 03$, 04$.

Samcle Call

00010 CLS 0 * fancy screen
:V = &H85
:FOR I = 0 TO 31 STEP 2
:POKE 1024 + I, V
:POKE 1025 + 1, V
:POKE 1534 - I, V
:POKE 1535 - I, V
:V = V + &HlO
:IF V > &HF5 THEN V = &H85

00020 NEXT
:V = &H86
:FOR I = 1 TO 14
:POKE 1024 + 32 * <15 - I>, V + 3
:POKE 1025 + 32 * (15 -I>, V
:POKE 1054 + 32 * I, V
:POKE 1055 + 32 * I, V + 3
:V = V + &H10
:IF V > &HE6 THEN V = &H86

00030 NEXT
00040 PRINT 8233, •THIS IS A TEST•;

:00 = &H01DD * set start address
:GOSUB 50400 * go init subroutine

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
'I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit

00050 FOR J = 1 TO 16
:01$ = ·L·
:FOR I = 1 TO 32
:GOSUB 50500
:NEXT I
:01$ = ·D·
:GOSUB 50500
:NEXT J
:CLS
•

30000 END

Subroutine Listings

50399 REM scroll lnlt

* multiple loops * for special * scrolling effects

* more instructions

50400 IF PEEK (00) = &HBO AND PEEK <OO + 133) = &H39 THEN
RETURN .

:ELSE 01$ = ·soB3E01F02E6A45A267BA6B80281442719814C
273l8152274DCE040030C820EC81EDC18C060025F720l1CE0600
30C8EOEC83EDC38C040022F71F13DF88CC6020A7C05A•

50410 02$ = •26FB39~E04003041E6C43404C61FA680A7C05A26F9
300133413504E75F8C060025E639CE0600305FE65F3404C61F
A682A7C25A26F~301F335F3504E7C48C040022E639•

50420 FOR 01 = 0 TO 66
:03$ = •&H• + MID$ <01$, 2 * 01 + 1, 2>
:04$ = •&H• +MID$ <02$, 2 * 01 + 1, 2>
:POKE 00 + 01, VAL (03$)
:POKE 00 + 01 + 67, VAL (04$)
:NEXT
:OEF USR 0 = 00
:RETURN

50499 REM scroll main
50500 01$ = 01$ + ••

:01 = USR 0 <VARPTR <01$))
:RETURN

333

The Ultimate Reference Guide And Toolkit 334

TIMER INIT <GOSUB 50600)
ENABLE TIMER (GQSUB 50700)
SET START TIME <GOSUB 50800?
GEI TIME REMAINING <GOSUB 50900)
DISABLE TIMER <·GOSUB 5 1 000 >

Purpose

This is actually one routine with four separate entry
points. The routine sets up a timer which can be used within
your program to fix a time-limit on a specific operation, which
could be . useful ln an application such as a game or an
educational program. It makes use of the 6809's ability to
generate a regular interrupt 60 times per second.

Two of the entry points allow you to turn the timer on or
off. When the timer is not in use, it should be turned off
because, due to the increased length of the interrupt service
routine, the processor will be spending quite a bit more time
away from your BASIC program; this wilL result in a marginally
slower program.

The SET START TIME entry point allows you to set the clock
to any value from 0 to 3600 seconds, which means that your time
limit can be any value from one second to one hour. The GET TIME
REMAINING entry point does exactly that--returns a value which
represents the number of seconds remaining. When the clock
reaches zero, the count-down stops; that is, the time remaining
will never drop below zero.

Although yqu may have both the TIMER and the CLOCK <see
next chapter) in memory simultaneously, do NOT enable them both
simultaneously. This could have disastrous results •••

Assembly Language Listing

OEOO

0100
0100 3401
OlDF 1A50
01E1 30BC28
01E4 BC010D

******************************** * TIMING CLOCK *

ORG $0100 in cassette buffer

* Entry point #1--routlne setup

SETUP EQU *
PSHS CC
ORCC #$50
LEAX <TIMER,PCR
CMPX $100

save interrupt status
disable IRQ & FIRQ
get our interrupt addr
already setup?

I
I
I
I
I
I
I
I
I
I
I
I
I
I
·I
I
I
I
I

I
I
I
I
I
I
I
I
I
·a
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 335

01E7 2709
01E9 FE0100
OlEC EF8C34
01EF BF0100

01F2
01F2 3581

01F4
01F4 BOB3EO
01F7 10830E10
OlFB 2302
OlFO 4F
01FE 5F

OlFF
OlFF E08C07
0202 39

0203
0203 EC8C03
0206 7EB4F4

0209 0000
0208 00

020C
020C 308CFA
020F 6C02
0211 A602
0213 813C
0215 2508
0217 6F02
0219 EC84
021B 2705
0210 830001
0220 E084

0222
0222 7E

0223 0000

SU01

BEQ SUOl
LOU $100
STU <PATCH,PCR
STX $100

EQU *
PULS CC,PC

yes, leave
get BASIC's vector
save lt for jump
save our.vector

restore & return

* Entry point #2--set initial count value

SETTIM EQU *

ST01

JSR 883EO
CMPO #3600
BLS ST01
CLRA
CLRB

EQU *
STO <SECS,PCR
RTS

get user's start count
allowable?
ok, sklp
too big, use zero

save count
and return

* Entry point #3--get time remaining for user

GETTIM EQU *
LOO <SECS,PCR . get # of seconds
JMP $84F4 give to user & return

* Interrupt Servicing Routine

SECS FOB $0000
CYCLES FCB $00

TIMER EQU *
LEAX SECS,PCR
INC 2,X
LOA 2,X
CMPA #60
BLO THOl
CLR 2,X
LOO ,X
BEQ TH01
SUBO #1
STO ,X

THOl EQU *
FCB $7E

PATCH FOB $0000

point to parameter list
bump times through loop

1 second yet?
no, skip
reset cycle count
get seconds
already zero, skip
countdown
replace value

where to go when done

The Ultimate Reference Guide And Toolkit

* Entry point #4--restore BASIC's vector

0225 RSTBAS EQU *
0225 3401 PSHS CC save interrupt status
0227 1A50 ORCC #$50 disable IRQ & FIRQ
0229 EC8CF7 LDD PATCH,PCR get BASIC's vector
022C 2703 BEQ RB01 undefined, skip
022E FD010D SID $100 restore for BASIC

0231 RB01 EQU *
0231 3581 PULS CC,PC restore & return

0233 END SETUP

NO ERRORS FOUND

Entry Requirements--TIMER !NIT

1. The address in memory where you want the machine
language code to be POKEd must be passed in variable .
OT--this variable MUST remain properly defined as long as
the timer routine is in memory.

2. The INIT subroutine must be called at least once
before any of the other subroutines can be called.

336

3. Note that the INIT routine automatically falls through
to the ENABLE TIMER routine, so you don't have to
explicitly call the ENABLE routine following the INIT call.

Exit Conditions--TIMER !NIT

1. !NIT defines USR 0 and USR 1 for use by the other
subroutines.

2. All variables except OT are released for re-use.

Entry Requirements--ENABLE TIMER

None.

Exit Conditions--ENABLE TIMER

None.

Entry Requirements--SET START TIME

1. Variable 01 must contain a numeric value between 0 and
3600.

I
I
I
I
I
I
I
I
I,
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
·I
I
I
I
I
I
I
I
~I

I

The Ultimate Reference Guide And Toolkit 337

Exit Conditions--SET START TIME

1. The value in 01 is retained by the routine as the new
count-down starting value.

Entry Requirements--GET TIME REMAINING

None.

Exit Conditions--GET TIME REMAINING .

1. The time remaining Cln seconds> is returned in
variable 01.

Entry Requirements--DISABLE TIMER

None.

Exit Conditions--DISABLE TIMER

1. The timer is physically removed from the interrupt
service routine. If. later on in your program. you wish to
re-use the timer, you can do so by making a call to the
ENABLE TIMER routine, which will put the routine back. into
the interrupt handler.

Variables Used

Sample Call

00010 OT = &H01DD
:GOSUB 50600

00020 CLS
:A$ = •####.
:B$ = ·v31T255L25501C03C05C•
:01 = 60
:GOSUB 50800

00030 GOSUB 50900
:IF 01 = 0 THEN 40
:ELSE PRINT @224, USING A$;01;
:IF A = 01 THEN 30
:ELSE A = 01
:PLAY B$
:GOTO 30

* set start address
* go INIT & ENABLE

* set start time to 60
* get time remaining

The Ultimate Reference Guide And Toolkit

00040 GOSUB 51000 * disable timer * more instructions

30000 END

Subroutine Listings

50599 REM timer init
50600 IF PEEK COT> = &H34 AND PEEK COT + 69) = &H7E THEN

RETURN
:ELSE 01$ = •34011A50308C28BC010D2709FE010DEF8C34

BF010D3581BDB3ED10830E1023024F5FED8C0739EC8C037EB4F4
000000308CFA6C02A602813C250B6F02EC842705830001ED84
7E000034011A50EC8CF72703FD010D3581•

50610 FOR 01 = 0 TO 85
:02$ = •&H• + MID$ COl$, 2 * 01 + 1, 2>
:POKE OT + 01, VAL C02$)
:NEXT
:DEF USR 0 = OT + 23
:DEF USR 1 = OT + 38

50699 REM enable timer
50700 EXEC OT

:RETURN

50799 REM set start time
50800 01 = USR 0 C01>

:RETURN

50899 REM get time remaining
50900 01 = USR 1 CO>

:RETURN

50999 REM disable timer
51000 EXEC OT + 72

:RETURN

I·
338 I

I
I
I
I
I
I
I
I·
I
I
I
I
I
I
I
I.
I

I
I
I·
I
I
I
I
I
I
I·
I
I
I
I
I
·I
I
I
I

The Ultimate Reference Guide And Toolkit 339

CLOCK INIT CGOSUB 51100)
ENABLE CLOCK CGOSUB 51200)
DISABLE CLOCK CGOSUB 51300)
DISPLAY ON/OFF CGOSUB 51400)
SET TIME CGOSUB 51500)
SET DISPLAY POSITION CGOSUB 51600)

PurPose

This is actually one routine with five separate entry
points. The routine sets up a 24-hour clock which can be used in
any BASIC program to display the time. The various entry points
allow you to enable or disable the clock, turn the display on or
off <while leaving the clock running>, determine where the time
will appear on the screen, and to set the time. Although It is
quite safe to have both CLOCK and TIMER in memory at the same
time, lt is definitely a no-no to have both routines enabled
simultaneously.

Assembly Language Listing

OEOO

01DD
0100 BDB3ED
OlEO lFOl
01E2 A684
OlE4 4A
01E5 260B
OlE7 A69802
OlEA 814F
01EC 2701
OlEE 4F

OlEF
OlEF A78C01

01F2
. 01F2 39

01F3 00

******************************** * STANDARD CLOCK *

ORG $01DD in cassette buffer

* Entry point #1--turn clock display on/off

ONOFF EQU *
JSR $B3ED
TFR D,X
LOA ,X
DECA
BNE 0002
LOA £2,X1
CMPA #'0
BEQ 0001
CLRA

0001 EQU *
STA <FLAG,PCR

0002 EQU *
RTS

FLAG FCB $00

get descriptor addr
need A & B, so use X
get string length
length = 1?
no, leave
get the character
<O>n flag?
yes, skip
no, reset flag

save for intrpt routine

return

The Ultimate Reference Guide And Toolkit 340

01F4
01F4 BDB3ED
01F7 1F02
01F9 A6A4
OlFB 8106
OlFD 2620
01FF 10AE22
0202 308C46
0205 C603
0207 3404

0209
0209 ECA1
020B 8013
0200 A780
020F 6AE4
0211 26F6
0213 3504
0215 6F84
0217 A61D
0219 8118
021B 2502
0210 6F1D

021F
021F 39

0220
0220 8030
0222 C030
0224 3404
0226 C60A
0228 30
0229 1F98
022B E6EO

0220
0220 27FO
022F 4C
0230 5A
0231 20FA

0233
0233 813C
0235 2501
0237 4F

* Entry point #2--set the time

SETCLK EQU *
JSR $B3ED
TFR D,Y
LOA ,Y
CMPA #6
BNE SC02
LOY 2,Y
LEAX <HOURS,PCR
LOB #3
PSHS B

SCOt EQU *
LDD ,Y++
BSR DECBIN
STA ,X+
DEC ,S
BNE SC01
PULS B
CLR ,X
LOA -3,X
CMPA #24
BLO SC02
CLR -3,X

SC02 EQU *
RTS

DECBIN EQU *
SUBA #$30
SUBB #$30
PSHS B
LOB #10
HUL
TFR B,A
LOB ,S+

DBOl EQU *
BEQ SC02
INCA
DECB
BRA DB01

DB02 EQU *
CHPA #60
BLO DB03
CLRA

get descriptor addr
need A & B, so use Y
get length
valid length?
no, skip
get string address
point to parameter list
there are 3 variables
save count

get 2 characters
convert to binary
save variable
done all 3?
loop til done
cleanup stack
reset cycle count
get hours
valid?
ok, skip
use 0 instead

return

strip off ASCII
for both digits
save LSDlglt

MSDlgit times 10
initialize number
get LSD, set flags

LSD = 0, done
bump the number
countdown LSD
1 oop t 11 done

valid number?
yes, skip
no, use 0

I
I
!I
I
I
I
I
I
I
·I
I
I
I
I
I
I
.I
I
'I

I,
I
I~

I
I

~....-:.""

I
I
I
I

-~I'
I
t,
I
I
I
I
I

' ell

The Ultimate Reference Guide And Toolkit 341

0238
0238 39

0239 0400

023B
023B BOB3EO
023E 108301F8
0242 2206
0244 C30400
0247 E08CEF

024A
024A 39

024B 00
024C 00
0240 00
024E 00

024F
024F 308CF9
0252 EE8CE4
0255 6C03
0257 A603
0259 813C
025B 2520
0250 6F03
025F 6C02
0261 A602
0263 813C
0265 2516
0267 6F02
0269 6C01
026B A601
0260 813C
026F 250C
0271 6F01
0273 6C84
0275 A684
0277 8118
0279 2502
027B 6F84

OB03 EQU *
RTS return to caller

* Entry point #3--set screen display position

SCRPOS FOB $0400

OSPPOS EQU *

OPOl

JSR $B3EO
CMPO #504
BHI OP01
AOOO #$400
STO SCRPOS,PCR

EQU *
RTS

* Interrupt Servicing

HOURS FCB $00
MINS FCB $00
SECS FCB $00
CYCLES FCB $00

CLOCK EQU *
LEAX HOURS,PCR
LOU SCRPOS,PCR
INC 3,X
LOA 3,X
CMPA #60
BLO CLKOl
CLR 3,X
INC 2,.X
LOA 2,X
CMPA #60
BLO CLK01
CLR 2,X
INC 1 ,X
LOA 1 ,X
CHPA #60
BLO CLKOl
CLR 1 ,X
INC ,X
LOA ,.X
CHPA #24
BLO CLKOl
CLR ,X

u.l. corner default

get •PRINT @• value
bottom of screen?
yes, forget it
adjust to true address
and save the result

return

Routine

point to parameter list
get print position
bump cycles

1 second yet?
no, leave
reset cycles
bump seconds

1 minute yet?
no, leave
reset seconds
bump minutes

1 hour yet?
no, leave
reset minutes
bump hours

1 day yet?

reset hours

The Ultimate Reference Guide And Toolkit

0270
0270 608DFF72
0281 271A
0283 6003
0285 2616
0287 C603
0289 3404
028B 2004

0280
0280 863A
028F A7CO

0291
0291 E680
0293 BOOB
0295 EDC1
0297 6AE4
0299 26F2
0298 3504

0290
0290 7E

029E 0000

02AO
02AO 4F

02A1
02A1 COOA
02A3 2B03
02A5 4C
02A6 20F9

02A8
02A8 8830
02AA C83A
02AC 39

CLKOt EQU *
TST FLAG,PCR
BEQ CLKDUN
TST 3,X
BNE CLKDUN
LOB #3
PSHS B
BRA CLK03

CLK02 EQU *
LOA #':
STA ,U+

CLK03 EQU *
LOB ,X+
BSR BINDEC
STD ,U++
DEC ,S
BNE CLK02
POLS 8

CLKDUN EQU *
FCB $7E

PATCH FOB $0000

BINDEC EQU *
CLRA

8001 EQU *
SUBB #10
BMI BD02
INCA
BRA BDOl

BD02. EQU *
ADDA #$30
ADD8 #$3A
RTS

display mode on?
no, leave
cycles = 0?
not yet, leave
display 3 variables
save count
skip the colon

get a colon
on screen

get current variable
convert to decimal
both chars on screen
count down
loop til done
cleanup stack

"JMP• opcode

where to go when done

set HSD to 0

342

subtract 10 from number
too far, leave
bump HSD .
loop til done

make ASCII
make ASCII; fix LSD
return to caller

* Entry polnt #4--enable clock

02AD
02AD 3401
02AF 1A50
0281 308C98
0284 BC010D
02B7 2709
02B9 FEOlOD

ENABLE EQU *
PSHS CC
ORCC #$50
LEAX CLOCK,PCR
CHPX $100
8EQ ENOl
LOU $100

save BASIC's lntrpt status
disable IRQ & FIRQ for now
get our interrupt addr
already setup?
yes, leave
get BASIC's vector

tl
I
I
I
I
I
I
I
I
II
I
I
I
a·
I
I
I
I
I

I, .,
I

' I
I
I
I ,,
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit

02BC EFBCDF
02BF BF0100

02C2
02C2 3581

ENOl

STU PATCH,PCR
SIX $10D

EQU *
PULS CC,PC

save it for jump
save our vector

restore Sc return

* Entry point #5--disable clock

02C4
02C4 3401
02C6 1A50
02C8 ECBCD3
02CB·2703
02CD FD0100

02DO
02DO 3581

02D2

NO ERRORS FOUND

DISABL EQU *

DA01

PSHS CC
ORCC #$50
LDD PATCH,PCR
BEQ DAOl
STD $100

EQU *
PULS CC,PC

END ONOFF

Entry Requirements--CLOCK INIT

save interrupt status
disable IRQ Sc FIRQ
get vector
undefined, leave
restore for BASIC

restore Sc return

1. The address in memory where you want the machine
language code to be POKEd must be passed in variable
oc--this variable MUST remain properly defined as long as
the clock routine is in memory.

2. The INIT subroutine must be called at least once
before any of the other subroutines can be called.

343

3. Note that the INIT routine automatically falls through
to the ENABLE CLOCK routine, so you don't have to
explicitly call the ENABLE routine following the INIT call.

Exit Conditions--CLOCK INIT

1. INIT defines USR O, USR 1, and USR 2 for use by
the other subroutines.

2. All variables except OC are released for re-use.

Entry Requirements--ENABLE CLOCK

None.

The Ultimate Reference Guide And Toolkit 344

Exit Conditions--ENABLE CLOCK

None.

Entry Requirements--DISABLE CLOCK

None.

Exit Conditions--DISABLE CLOCK

1. The clock is physically removed from the interrupt
service routine. If, later on in your program, you wish to
re-use the clock, you can do so by making a call to the
ENABLE CLOCK routine, which will put the routine back into
the Interrupt handler.

Entry Requirements--DISPLAY ON/OFF

1. To allow the time to be displayed, simply define
variable 01$ = ·o· <that's an upper case 'oh', not a zero.>
This will cause the time to be displayed ln the last
defined display position. The time is displayed in inverse
video ln the format •HH:MM:ss·.

2. To disable the display, define the variable 01$ to be
any single character except the letter ·o·.

Exit Conditions--DISPLAY ON/OFF

t. The display is affected according to the contents of
variable 01$.

2. If 01$ is not exactly one character long, nothing will
happen; that ls, the display will remain in its current
state.

Entry Requirements--SET TIME

1. Variable 01$ must be defined as a six-character string
of digits in the format •HHMMss· Csee the sample call>.

Exit Conditions--SET TIME

None.

Entry RequirementS--SET QISPLAY POSITION

1. Variable 01 must contain a value between 0 and 504,
corresponding to a valid PRINT I position on the screen.

I
I
I

' I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

••• ._

I;
a·
I
I
I
I.
I
I
I
I:
I
I
II
I
I
,J·

;;;

I
I

The Ultimate Reference Guide And Toolkit 345

The upper limit of 504 is necessary because of the length
of the string that ls actually printed on the screen. If
you do not explicitly define the print position, the
default value of zero will be used, causing the time to be
displayed in the upper left corner of the screen.

Exit Conditions--SET DISPLAY POSITION

None.

Variables Used

oc, 01, 01$, 02$, 03$, 04$.

Sample Call

00010 OC = &HOIDD
:GOSUB 51100
:01 = 24
:GOSUB 51600
:Ot$ = •t541oo·
:GOSUB 51500
:01$ = ·o·
:GOSUB 51400

30000 END

Subroutine Listings

51099 REM clock inlt

* start address
*go initialize
* top right corner
* set display pos'n
* dummy time
* go set the clock
* <O>n flag
* turn on display

* more instructions

51100 IF PEEK <OC) = &HBD AND PEEK <OC + 122) = &HA6 THEN
RETURN

51110 01$ = ·soB3ED1F01A6844A260BA69802814F27014FA78C0139
OOBDB3ED1F02A6A48106262010AE22308C46C6033404ECA18D13
A7806AE426F635046F84A610811825026F10398030C0303404
C60A3D1F98E6E027FO

51120 02$ = •4C5A20FA813C25014F390400BDB3ED108301F82206
C30400ED8CEF3900000000308CF9EE8CE46C03A603813C2520
6F036C02A602813C25166F026C01A601813C250C6F016C84A684
811825026F84608DFF72

51130 03$ = •271A60032616C60334042004863AA7COE6808DOBEDC16
AE426F235047E00004FCOOA2B034C20F98B30CB3A3934011A50
308C9BBC010D2709FE010DEF8CDFBF010D358134011A50EC8CD3
2703FD0100358100

The Ultimate Reference Guide And Toolkit

51140 FOR 01 = 0 TO 81
:04$ = •&H• + MID$ (01$, 2 * 01 + 1,
:05$ = •&H• + MID$ (02$, 2 * 01 + 1,
:06$ = •&H• + HID$ (03$, 2 * 01 + 1,
:POKE OC + 01, VAL (04$)
:POKE OC + 01 + 82, VAL C05$)
:POKE OC + 01 + 164, VAL C06$)
:NEXT
:DEF USR 0 = oc
:DEF USR 1 = oc + 23
:DEF USR 2 = oc + 94

51199 REM enable clock
51200 EXEC OC + 208

:RETURN

51299 REM disable clock
51300 EXEC OC + 231

:RETURN

51399 REM display on/off
51400 01$ = 01$ + ••

:01 = USR 0 CVARPTR (01$))
:RETURN

51499 REM set time
51500 01$ = 01$ + ••

:01 = USR 1 CVARPTR (01$))
:RETURN

51599 REM set display position
51600 01 = USR 2 (01>

:RETURN

346

2)
2)
2)

I
I
I
I
I·
I
I
I
I
I
~I

I
I
.. J
·I
I
·I·
"

I
I

I
I,
I
I
I

' I
I
I
I
~

I
~

' I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit

Purpose

INVERT INIT <GOSUB 51700)
INVERT MAIN <GOSUB 51800)

347

Sometimes. a BASIC program requires a short routine to
cause certain characters to be displayed on the screen ln
inverse video. When the characters to be displayed are letters
of the alphabet, the process ls accomplished by a normal PRINT
statement, but when you want to display a non-letter character
ln Inverse video, you must resort to the POKE statement. The
POKE command is fine if you are only displaying one or two
characters on the screen, but any more than that, and you begin
to notice how slow the command really is; not only that. but for
each POKE that you execute, you must determine the proper
address on the screen.

The INVERT routine eliminates the headaches that can arise
from the mundane task of calculating <by trial and error>
numerous screen addresses. It takes a normal string as input and
displays each character in inverse video, starting at the
current print position. The only restriction is that the string
must contain characters whose ASCII values are in the range &H20
to &H5F (32 to 95>. Characters outside this range will be
printed, but the results will not be what you expect.

The string itself is retained, and can be re-used for other
purposes lf desired; only the display ls affected. INVERT does
not do any scrolling; instead, it simply stops printing if the
length of the passed string will cause characters to be
displayed beyond the lower right corner of the screen.

As an example, suppose you wanted to display the message
•<<< ANY KEY TO CONTINUE >>>• ln inverse video at the bottom of
the screen. All you have to do ls execute a dummy PRINT @
statement to position the cursor and then pass the string to the
subroutine. As you'll quickly discover, INVERT will do the job
much faster than you could do it with POKE commands.

Assembly Language Listing

OEOO

0100
0100 BDBSED

******************************** * INVERSE VIDEO GENERATION *

ORG $0100 ln cassette buffer

INVERT EQU *
JSR $B3ED get descriptor addr

The Ultimate Reference Guide And Toolkit

OlEO 1F02
01E2 9E88
01E4 E6A4
01E6 2719
01E8 10AE22

OlEB
OtEB 8C05FF
01EE 2211
01FO A6AO
01F2 817F
01F4 2206
01F6 8140
01F8 2502
01FA 8040

OtFC
01FC A780
01FE 5A
01FF 26EA

0201
0201 39

0202

NO ERRORS FOUND

IN01

IN02

IN03

TFR D,Y
LOX $88
LOB ,Y
BEQ IN03
LOY 2,Y

EQU *
CHPX #$05FF
BHI IN03
LOA ,Y+
CMPA #$7F
BHI IN02
CMPA #$40
BLO IN02
SUBA #$40

EQU *
STA ,X+
DECB
BNE INOl

EQU *
RTS

END INVERT

Entry Requirements--INVERT INJT

need A & B, use Y
get screen address
get length
null string, leave
point to actual string

end of screen?
yes, leave
get a char
graphic?
yes, skip
normal char?
already inverted, skip
invert char

on screen
countdown length
1 cop til done

done, leave

1. The address in memory where you want the mach(ne
language code to be POKEd must be passed in variable 00.

2. The !NIT subroutine must be called at least once
before the MAIN subroutine can be called.

Exit Conditions--INVERT INJT

1. INIT defines USR 0 for use by the MAIN subroutine.

2. All variables are released for re-use.

Entry Requirements--INVERT MAIN

1. The string to be displayed in inverse video must be
passed in variable 01$.

I
348

,I
I
I
I
I
I
I
.I
I
I
I
i• :J

.I
·I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
·I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 349

Exit Conditions--INVERT MAIN

1. The string is displayed starting at the current cursor
location.

2. BASIC's cursor pointer is unchanged; that ls,
subsequent unlocated PRINTs will overwrite the data just
displayed.

3. Variable 01$ ls unchanged and may be re-used.

Variables Used

00, 01, 01$, 02$

·Sample Call

00010 CLS
:00 = &H01DD * where to put it

· :GOSUB 51700 *go initialize
:01$ = • t• + CHR$ (34) + •#$%&'<>*+,-./0123456789:;<=>?
@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\J• + CHR$ <&H5F)

00020 PRINT 01$ * display original
:PRINT @224,; * set print pos#n
:GOSUB 51800 * go display inverse
:PRINT @416,; *another dummy print
:FOR I = 1 TO 1000
:NEXT

00030 CLS
:01$ = •GREETINGS!!!•

00040 PRINT @234,01$ * flash a message
:PRINT @234,;
:FOR I = l TO 50
:NEXT
:GOSUB 51800
:FOR I = 1 TO 50
:NEXT
:GOTO 40 * until BREAK pressed

Subroutine Listings

51699 REM invert lnlt
51700 IF PEEK <OO> = &HBD AND PEEK (00 + 36) = &H39 THEN

RETURN
:ELSE 01$ = •BDB3ED1F029E88E6A4271910AE228C05FF2211
A6A0817F2206814025028040A7805A26EA39•

The Ultimate Reference Guide And Toolkit

51710 FOR 01 = 0 TO 36
:02$ = •&H• + MID$ (01$, 2 * 01 + 1, 2>
:POKE 00 + 01, VAL C02$)
:NEXT
:DEF USR 0 = 00
:RETURN

51799 REM invert main
51800 01$ = 01$ + ••

:01 = USR 0 CVARPTR COl$))
:RETURN

350

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I,

I
I
I
·I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit

Puroose

SCRAMS INIT <GOSUB 51900)
SCRAMS MAIN (GOSUS 52000)

351

If you have ever wanted to hide sensitive data from that
person who just dropped in, without shutting down the computer,
then you probably have a need for a subroutine such as SCRAMS.
This ls a very short and simple routine that does nothing more
than scramble the video screen. A second call to the same
routine causes the screen to be restored to its original
contents.

Suppose, for example, that you are writing a data-base
management program which you ultimately hope to sell. You could
incorporate SCRAMS· · into your program in such a way that,
whenever the user wanted to hide the screen data (during data
entry or editing>, all he would have to do is press a single
pre-defined key. Then your program would go into a special
subroutine which. would immediately call SCRAMS, and then walt
for a selection of keystrokes <a password, if you will> that the
user might have defined during a configuration phase.

The logic that is used in the routine could easily be
applied to a larger, high-resolution display. We'll leave this
modification to you ••••

Assembly Language Listing

OEOO

0100
0100 8E0400

OlEO
OlEO 6080
01E2 8C0600
01E5 25F9
OlE? 39

01E8

NO ERRORS FOUND

******************************** * SCREEN SCRAMBLE *

ORG $0100

SCRAMS EQU *
LOX #$0400

SCROl EQU *
NEG ,X+
CMPX #$0600
BLO SCROl
RTS

END SCRAMB

in cassette buffer

get screen start addr

one byte at a time
end of screen?
loop tll done
done, leave

The Ultimate Reference Guide And Toolkit

Entry Reguirements--SCRAHB INIT

1. The address in memory where you want the machine
language code to be POKEd must be passed in variable OS,
which must remain defined as long as the routine is in
memory.

2. The INIT subroutine must be called at least once
before the MAIN subroutine can be called.

Exit Conditions--SCRAHB JNIT

1. All variables, except OS, are released for re-use.

Entry Requirements--SCRAMS MAIN

None.

Exit Conditions--SCRAMS MAIN

352

1. The contents of each screen location are negated. The
screen can be completely restored by simply making a second
call to the same routine.

Variables Used

OS, 01, 01$, 02$

Sample Call

00010 OS = &HOlDD
:GOSUB 51900

00020 A$ = INKEY$
:IF A$ = •• THEN 20
:ELSE GOSUB 52000
:GOTO 20

Subroutine Listings

51899 REM scramb init

* where to put it
*go initialize
* infinite loop

* scramble/restore

51900 IF PEEK COS> = &HSE AND PEEK COS + 10) = &H39 THEN
RETURN

:ELSE 01$ = ·aE040060808C060025F939•
:FOR 01 = 0 TO 10
:02$ = •&H• + MID$ COl$, 2 * 01 + 1, 2>
:POKE OS + 01, VAL C02$)
:NEXT
:RETURN

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit

51999 REM scramb main
52000 EXEC OS

:RETURN

353

The Ultimate Reference Guide And Toolkit

Purcose

BORDER INIT CGOSUB 52100?
BORDER MAIN CGOSUB 52200>

354

This routine allows you to enhance any screen display cy
placing a corder around the screen~s perimeter. The corder
consists of repeated copies of a single ASCII value between &HOO
and &HFF CO to 255). In the sample call, all possible values are
sent to the routine. Note the speed of execution.

Assemply Language Listing

OEOO

OlDD
OlDD BOBBED
OlEO 1F98
01E2 8E0400

01E5
01E5 EDS901EO
01E9 ED81
OlEB 8C0420
OlEE 26F5
01FO C60E

01F2
01F2 A784
01F4 A7881F
01F7 308820
OlFA 5A
01FB 26F5
01FD 39

OlFE

NO ERRORS FOUND

******************************** * BORDER GENERATOR *

ORG $01DD

BORDER EQU *

BDOl

BD02

JSR $83ED
TFR B,A
LOX #$0400

EQU *
STD $1EO,X
STD ,X++
CMPX #$420
BNE BDOl
LOB #14

EQU *
STA ~X
STA 31,X
LEAX 32,X
DECB
BNE BD02
RTS

END BORDER

In cassette buffer

get border character
make a double copy
u.l. corner

do bottom line
and top line
at 2nd line yet?
1 oop til done
14 lines to go

left side
and right side
next line
done all lines?
loop til don
and return

Entry Requirements--BORDER INIT

1. The address in memory where you want the machine
language code to be POKEd must be passed ln variable 00.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit

2. The INIT subroutine must be called at least once
before the MAIN subroutine can be called.

Exit Conditions--BORDER INIT

1. INIT defines USR 0 for use by the MAIN subroutine.

2. All variables are released for re-use.

Entry Requirements--BORDER MAIN

1. The border value must be passed ln variable 01.

Exit Conditions--BORDER MAIN

None.

Variables Used

00, 01, 01$, 02$

Sample Call

00010 CLS
:00 = &H010D * where to put it
:GOSUB 52100 * go lnltlalize
:FOR I = 0 TO 255 * all possible borders
:01 = I
:GOSUB 52200 * draw border
:NEXT
•
• * more instructions
•

30000 END

Subroutine Listings

52099 REM border lnlt
52100 IF PEEK (QQ) = &HBD AND PEEK <OO + 32> = &H39 THEN

RETURN
:ELSE 01$ = ·sDB3ED1F988E0400ED8901EOED818C042026F5
C60EA784A7881F3088205A26F539•

:FOR 01 = 0 TO 32
:02$ = ·~cH• +MID$ (Ql$, 2 * 01 + 1, 2)
:POKE 00 + 01, VAL (02$)
:NEXT
:OEF USR 0 = 00
:RETURN

355

The Ultimate Reference Guide And Toolkit

52199 REM border main
52200 01 = USR 0 (01>

:RETURN

356

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit

Purpose

MLSET INIT <GOSUB 52300>
MLSET MAIN <GOSUB 53400)

357

This routine ls specifically designed to speed up the
process of entering machine language code Cor graphic screen
data) into memory and is particularly useful when your program
contains a large amount of data which would normally take a
fairly long time to POKE.

Suppose, for example, that you want to include CLOCK,
BORDER, FLASH, and INVERT in your program. Obviously, these
routines involve a fair amount of data to POKE into memory. The
solution ls to POKE just the MLSET routine into some unused area
of memory. Then you must modify the four routines so they call
MLSET instead of doing the POKElng themselves. These
modifications should include ensuring that each routine has a
different USR function nuaber. Now, when you RUN the program,
you will notice a drastic Increase ln speed. Note that once the
last block of data ls POKEd Into memory, the memory occupied by
MLSET may be freed for use by some other part of your program.

HLSET accepts a character string of hexadecimal digits as
input, converts the data to binary, and stores the results in a
contiguous block of memory, whose starting address may be
specified within the string. If no address ls specified, MLSET
uses a default starting address of &H0400 <1024>, which Is the
upper left corner of the screen. <Hopefully, this address will
prevent the potentially fatal POKElng of data into the wrong
place!> When you make multiple calls to MLSET without specifying
addresses ln the second and subsequent calls, MLSET will store
data immediately following the last byte of the previous block.
Thus, in the example above, If you specified a start address
only for CLOCK, the other routines would immediately follow
CLOCK In memory.

The format for the input string is pretty restrictive: it
must contain an even number of hexadecimal digits <upper case
letters from A to F and/or numeric digits from 0 to 9>, and it
may contain any number of individual •@• symbols, each of which
must precede a 4-dlgit memory address, as in the following
example:

01$ = •@0400FFFFFFFF@041CFFFFFFFF•

This example would cause four orange graphic blocks to appear in
the upper left corner and upper right corner of the screen.

The Ultimate Reference Guide And Toolkit 358

MLSET does not perform any error checking on the input
string except to verify that it is not a null string. If you
place invalid characters in the string, the routine will
continue to function correctly, but obviously the results will
be completely unpredictable and definitely untrustworthy.

Assembly Language Listing

OEOO

0100
0100 BOB3EO
OlEO lFOl
01E2 EE8C20
01E5 E684
01E7 3404
01E9 2722
01EB AE02

OlEO
OlEO A680
01EF 8140
OtFl 2621
01F3 EC81
01F5 8020
01F7 3402
01F9 EC81
OlFB 8027
01FD 1F89
01FF 3502
0201 1F03
0203 E6E4
0205 C005
0207 E7E4
0209 2502
020B 26EO

0200
0200 EF8C02
0210 3584

0212 0400

******************************** * M.L. SETUP ROUTINE *

ORG $0100

MLSET EQU *
JSR $B3EO
TFR O,X
LOU <AOOR,PCR
LOB ,X
PSHS B
BEQ MLOUN
LOX 2,X

ML01 EQU *
LOA ,X+
CMPA #'@
BNE ML02
LOO ,X++
BSR HEXBIN
PSHS A
LOO ,X++
BSR HEXBIN
TFR A,B
PULS A
TFR O,U
LOB ,S
SUBB #5
STB ,S
BCS MLOUN
BNE MLOl

HLOUN EQU *
STU <AOOR,PCR
PULS B,PC

AOOR FOB $0400

in cassette buffer

get descriptor addr
need A & B, so use X
get destination addr
get string length
save length
length = 0, leave
get string address

get next char
flag for new address?
no, sklp
get 2 hex nybbles
go convert to binary
save MSB
get 2 more
convert
get LSB
get MSB
update address pointer
get length
have used up 5 chars
replace length
overflow, leave
1 oop t 11 done

save new destination
cleanup & leave

default destination

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit

0214
0214 6AE4
0216 27F5
0218 E680
021A 8008
021C A7CO
021E 6AE4
0220 27EB
0222 20C9

0224
0224 8030
0226 coso
0228 8109
022A 2302
022C 8007

022E
022E C109
0230 2302
0232 COO?

0234
0234 48
0235 48
0236 48
0237 48
0238 C40F
023A 3404
023C AAEO
023E 39

02SF

NO ERRORS FOUND

ML02 EQU *
DEC ,S
BEQ MLDUN
LOB ,X+
BSR HEXBIN
STA ,U+
DEC ,S
BEQ MLDUN
BRA MLOl

.HEXBIN EQU *
SUBA #$30
SUBB #$30
CMPA #9
BLS HB01
SUBA #7

HBOl . EQU *
CMPB #9
BLS HB02
SUBB #7

HB02 EQU *
ASLA

· ASLA
.ASLA
ASLA
ANDB #$OF
PSHS B
ORA ,S+
RTS

END MLSET

Entry Regulrements--MLSET INIT

count down length
done, leave ·
get LS nybble of byte
convert to binary
store binary in memory
count down length
done, leave
loop til done

remove ASCII
from both nybbles
numeric digit?
ok, sklp
adjust for A to F

repeat for LS nybble

MS nybble to far left

keep bits 0-3
temp save
assemble one byte
return to caller

1. The address ln memory where you want the machine
language code to be POKEd must be passed ln variable 00.

2. The INIT subroutine must be called at least once
before the MAIN subroutine can be called.

Exit Condltlons--MLSET INIT

1. INIT defines USR 0 for use by the MAIN subroutine.

2. All variables are released for re-use.

359

The Ultimate Reference Guide And Toolkit

Entry Regulrements--MLSET MAIN

1. The string containing the data to be POKEd must be
passed in variable 01$.

Exit Condittons--HLSET MAIN

360

1. The data is stored in'memory starting at the specified
address. If no address ls specified, the data is stored
immediately following the last byte of the previously sent
string. The lnltlal default address ls &H0400.

2. Variable 01$ is unchanged and may be re-used.

Variables Used

00, 01, 01$, 02$

Samcle Call

00010 CLS
:01 = &H01DD * where to put it
:GOSUB 52300 *go lnltlaltze
:01$ = •go520FFFFFEFEFDFDFCFCFBFBFAFA•
:GOSUB 52400 * display screen data
•

* more instructions

30000 END

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit

Subroutine Listings

52299 REM mlset !nit
52300 IF PEEK COO) = &HBD AND PEEK COO + 97 = &H39 THEN

RETURN
52310 01$ = •BDB3ED1F01EE8C2DE68434042722AE02A68081402621

EC818D2D3402EC8180271F8935021F03E6E4C005E7E4250226EO
EFBC02358404006AE427F5E6808DOBA7C06AE427EB20C98030
C030810923028007C1092302C00748484848C40F3404AAE039•

52320 FOR 01 = 0 TO 97
:02$ = •&H• + MID$ (01$ 1 01 * 2 + l, 2)
:POKE COO + 01>, VAL (02$)
:NEXT
:DEF USR 0 = 00
:RETURN

52399 REM mlset main
52400 01$ = 01$ + ••

:01 = USR 0 <VARPTR (01$))
:RETURN

361

The Ultimate Reference Guide And Toolkit

Purpose

RESTORE INIT (GOSUB 52500)
RESTORE MAIN <GOSUB 52600)

362

If you have ever written a BASIC program containing
numerous DATA statements, you will undoubtedly have noticed that
it is extremely inconvenient to try to position the data pointer
to a specific set of values somewhere in the middle of a data
list. The operation requires that you RESTORE to the beginning
of your program and perform enough dummy READs to point to the
desired data item. This procedure is both cumbersome and
time-consuming.

The RESTORE routine included here is designed to alleviate
this problem by allowing you to position the data pointer to the
beginning of any BASIC program line. All you have to do is
preset a variable to the desired line number and call the
routine. If you pass a line number which does not exist, RESTORE
will move the data pointer to the beginning of the program.

One thing you should
your program, you will
lines containing calls to
will move the pointer
your program will produce

be aware of is that when you re-number
have to manually make changes to those
the routine. If you don't, RESTORE
to the wrong place, and, consequently,
unexpected results.

Assembly Language Listing

OEOO

0100
0100 BDB3ED
OlEO 9E19

01E2
01E2 10A302
01E5 2708
01E7 AE84
01E9 911B
OlEB 25F5
OlEO 9E19

******************************** * RESTORE TO SPECIFIC LINE *

ORG $0100

RESTOR EQU *
JSR $B3ED
LOX $19

RSTOI EQU *
CMPD 2,X
BEQ RST02
LOX ,X
CMPA $1B
BLO RST01
LOX $19

ln cassette buffer

get the line number
get BASIC start addr

line number found?
yes, leave
get link to next line
end of BASIC program?
loop til end
use 1st line Instead

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit

OlEF
01EF 301F
OtFl 9F33
01F3 39

01F4

NO ERRORS FOUND

RST02 EQU *
LEAX -1 ,X
STX $33
RTS

END RESTOR

Entry Regulrements••RESTORE INIT

1 byte ahead of line
update data pointer
back to BASIC

1. The address in memory where you want the machine
language code to be POKEd must be passed in variable 00.

2. The INIT subroutine must be called at least once
before the MAIN subroutine can be called.

Exit Conditions--RESTORE INIT

1. INIT defines USR 0 for use by the MAIN subroutine.

2. All variables are released for re-use.

Entry Regylrements--RESTORE MAIN

363

1. The desired line number you wish to RESTORE to must be
passed. in variable 01. The line number must be in the range
0 to 63999. If the line number is outside this range, or if
it does not exist, RESTORE will move the pointer to the
beginning of the program.

Exit Conditions--RESTORE MAIN

1. If the line number is outside the allowable range, or
if the line number does not exist, RESTORE will move the
pointer to the beginhing of the program; otherwise It will
be moved to the specified line.

Variables Used

Sample Call

00010 00 = &HOIDD
:GOSUB 52500
:DATA 10,20,30

00020 DATA 11,22,33

* where to put it
*go lnltlallze
* some dummy dat~
* data to read

The Ultimate Reference Guide And Toolkit

00030 01 = 20
:GOSUB 52600

00040 READ A
:PRINT A
•
•

30000 END

Subroutine Listings

52499 REM restore init

*RESTORE to line 20
* go do it
*and prove it!

* more instructions

52500 IF PEEK <OO> = &HBD AND PEEK <OO + 22) = &H39 THEN
RETURN

:ELSE 01$ = •BDB3ED9E1910A3022708AE849C1B25F59E19
301F9F3339•

:FOR 01 = 0 TO 22
:02$·= •&H• +MID$ <01$, 01 * 2 + 1, 2)
:POKE <OO + 01>, VAL C02$)
:NEXT
:DEF USR 0 = 00
:RETURN

52599 REM restore main
52600 IF 01 < 0 OR 01 > 65399 THEN RESTORE

:RETURN
:ELSE 01 = USR 0 <01 + <01 > 32767) * 65536)
:RETURN

364

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit

Purpose

PACK INIT CGOSUB 52700)
PACK MAIN CGOSUB 52800>

365

This unique subroutine allows you to take an a-character
date string of the form •oo/MM/YY• and compress it into two
bytes. The same routine will also convert the packed 2-byte
string back into its original unpacked format.

The routine is particularly useful ln a BASIC program which
involves external files that wlll contain a lot .of date
information <e.g. a check register program or a stock management
program>. Obviously, lf the dates are packed before being
inserted into the file, this can result in a significant saving
in space over a large file.

Assembly Language Listing

OEOO

0100
0100 BOB3ED
OlEO 1F02
01E2 E6A4
01E4 C102
01E6 2744
01E8 C108
OlEA 2625
OlEC EE22
OlEE ECC4
01FO 8020
OlF2 58
01F3 58
OlF4 58
OlF5 3404
01F7 EC43
01F9 8017
01FB 3404
OlFD EC46
OlFF 8011
0201 58
0202 66E4
0204 56
0205 3502

******************************** * PACK/UNPACK DATE STRING *

PACK

ORG $0100

EQU *
JSR $B3ED
TFR D,Y
LOB ,Y
CMPB #2
BEQ UNPACK
CMPB #8
BNE PKOl
LOU 2,Y
LOD ,U
BSR DECBIN
ASLB
ASLB
ASLB
PSHS B
LDD 3,U
BSR DECBIN
PSHS B
LDD 6,U
BSR OECBIN
ASLB
ROR ,S
RORB
PULS A

in cassette buffer

get descriptor. addr
need A & B, so use Y
get length
compressed string?
yes, go de-compress
valid unpacked string?
no, do nothing, leave
get string address
get 1st 2 bytes <day)
convert to binary
move bits into position

save day mask
next 2 bytes (month>
convert to binary
just save lt for now
next 2 bytes Cyear>
convert to binary
remove MS blt
LS month bit to carry
and into year byte
get month

The Ultimate Reference Guide And Toolkit

0207 8407
0209 AAEO
0208 EDC4
020D C602
020F E7A4

0211
0211 39

0212
0212 8030
0214 2BOC
0216 C030
0218 2B08
021A 3404
021C C60A
021E 30
021F EBEO
0221 21

0222
0222 5F
0223 39

0224

022C
022C 338CF5
022F ECB802
0232 EF22
0234 A7C4
0236 1F98
0238 847F
023A 3402
023C C480
023E 3404
0240 A6C4
0242 1F89
0244 44
0245 44
0246 44
0247 C40F
0249 69EO
0248 59
024C 3404
024E 8018
0250 EDC4
0252 3502
0254 8012

ANDA #7
ORA ,S+
STD ,U
LOB #2
STB ,Y

PKOl EQU *
RTS

DECBIN EQU *
SUBA #$30
BMI DCERR
SUBB #$30
BMI DCERR
PSHS B
LOB #10
MUL
ADDB ,S+
FCB $21

DCERR EQU *
CLRB
RTS

STRG RMB 8

UNPACK EQU *
LEAU STRG,PCR
LDD [2,Yl
STU 2 1 Y
STA ,U
TFR B,A
ANDA #$7F
PSHS A
ANDB #$80
PSHS B
LOA ,U
TFR A,B
LSRA
LSRA
LSRA
ANDB #$OF
ROL ,S+
ROLB
PSHS B
BSR BINDEC
STD ,U
PULS A
BSR BINDEC

clear unneeded bits
mask with day byte
put data in strg area
new length = 2
save new length

back to BASIC

strip ASCII from MSD
invalid char, leave
and LSD

save LSD
multiply MSD by 10

add in LSD
·sRN·--sklp 1 byte

error; force zero

area for unpacked strg

get new string address
get compressed data
update string address
temp save
get year data in A & B
now have proper year
save year
remove unneeded bits
save bit for month
get day/month data
two copies
reposition bits-
puts day in A

remove unneeded bits
year bit into carry
and into month
save month
convert day to decimal
save day in string
get month
convert to decimal

I
366 I

I
I
I
I
I
I
I
I
I
I

·I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit

STD 3,U
PULS A

save month in string
get year
convert to decimal
save year in string

367

0256 ED43
0258 3502
025A 8DOC
025C ED46
025E CC2F08
0261 A742
0263 A745
0265 E7A4
0267 39

BSR BINDEC
STD 6,U
LDD #$2F08
STA 2,U
STA 5,U
STB ,Y

A = •t•; B = new length
save 2 slashes

0268
0268 5F

0269
0269 800A
0268 2503
0260 5C
026E 20F9

0270
0270 8B3A
0272 CB30
0274 1E89
0276 39

0277

NO ERRORS FOUND

RTS

BINDEC EQU *
CLRB

BOOt

8002

EQU *
SUBA #10
BCS BD02
INCB
BRA BOOt

EQU *
ADDA #$3A
ADDB #$30
EXG A.,B
RTS

END PACK

Entry Requirements--PACK INIT

save length
return to BASIC

MSD = 0

subtract to find MSD
too m~ny subs, leave
bump MSD
loop for whole number

adjust & make ASCII
make ASCII
digits ln proper order

1. The address in memory where you want the machine
language code to be POKEd must be passed in variable 00.

2. The INIT subroutine must be called at least once
before the MAIN subroutine can be called.

Exit Conditions--PACK INIT

1. INIT defines USR 0 for use by the MAIN subroutine.

2. All variables are released for re-use.

Entry Requirements--PACK MAIN

1. The string to be packed/unpacked must be passed in
variable 01$.

The Ultimate Reference Guide And Toolkit·

Exit Conditions--PACK MAIN

1. The string will be packed if lt is exactly eight
characters in length and unpacked if it is exactly two
characters in length. The string will be unaffected if it
is any other length.

368

2. The routine does not perform any error checking on the
contents of the string. It is up to you to ensure that the
string has the proper format.

Variables Used

00, 01, 01$, 02$, 03$, 04$.

Sample Call

00010 00 = &H01DD * where to put it
:GOSUB 52700 * go inltlallze
:ot• = •totto/83. * test string
:GOSUB 52800 * go pack
:PRINT 01$ * display result

00020 GOSUB 52800 * go unpack
:PRINT 01$ * display result

• * more instructions

30000 END

Subroutine Listings

52699 REM pack init
52700 IF PEEK (00) = &HBD AND PEEK COO + 153> = &H39 THEN

RETURN
52710 01$ = ·aDB3ED1F02E6A4C1022744C1082625EE22ECC48D20

5858583404EC438D173404EC468Dl15866E45635028407AAEO
EDC4C602E7A43980302BOCC0302B083404C60A3DEBE0215F39
oooooooooooo·

52720 02$ = ·oo00338CF5ECB802EF22A7C41F98847F3402C4803404
A6C41F89444444C40769E05934048D18EDC435028D12ED433502
8DOCED46CC2F08A742A745E7A4395F800A25035C20F98B3A
CB301E8939•

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit

52730 FOR 01 = 0 TO 76
:03$ = •&H• + MID$ (01$, 01 * 2 + 1, 2>
:04$ = ~&H• + MID$ C02$, 01 * 2 + 1, 2>.
:POKE COO + 01>, VAL (03$)
:POKE COO + 01 + 77>, VAL <04$)
:NEXT
:DEF USB 0 = 00
:RETURN

52799 REM pack maln
52800 01$ = 01$ + ••

:Ot.= USB 0 CVARPTR COl$))
:01$ = 01$ + ••
:RETURN

369

The Ultimate Reference Guide And Toolkit

Purpose

EPLIN INIT <GOSUB 52900)
EPLIN MAIN (GQSUB 530002

370

This rather lengthy subroutine allows you to input and/or
edit a fixed-length string. It ls a little unusual in that it
uses the video screen as a buffer. For this reason, the string
must be displayed on the screen and the cursor re-positioned to
the start of the string before the routine is called.

EDLIN allows the use of the left and right arrow keys for
positioning the cursor over a specific character in the string.
The <BREAK> key causes the character under the cursor to be
deleted; <CLEAR> inserts a blank at the current cursor position;
and <ENTER> signifies that editing is complete and causes a
return to the calling program. All other keys are treated as
ordinary keystrokes, which are placed· on the screen at the·
cursor position. Of course, the cursor automatically advances
forward each time a non-control key is pressed. All keys are
auto-repeating.

When making the call to EDLIN, ensure that a fixed-length
string is defined and displayed on the screen at the desired
location. For input purposes, the string may consist of a fixed
number of spaces; for editing purposes, the string may contain
any combination of characters. On return, the string may have
been altered with respect to its contents, but its length will
remain the same as it was on entry.

Assemply Language Listing

OEOO

0000
0002
0004
0004
0005

******************************** * EDITED LINE INPUT *

*·The following variables are all referenced
* relative to the hardware stack

ORG $00

BEGLIN RMB 2 ·start of line
ENDLIN RMB 2 end of line
LENGTH RMB 1 length of line
DATA EQU LENGTH screen data
CURPOS RMB 2 temporary value

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I The Ultimate Reference Guide And Toolkit 371

I
I

0007 STRING RMB 2 address of string
0009 REPEAT RMB 1 key repeat flag
OOOA BLINK RMB 1 cursor blink rate

I
OOOB NUMVAR EQU * total number of variables

* Constants

I OOlF EM ARK EQU $lF end of line marker
0400 DELAYl EQU $0400 pre-repeat delay
0040 DELAY2 EQU $0040 repeat delay

I * Main routine

I
OOOB ORG $0100 in cassette buffer

0100 EDLIN EQU * 0100 BDB3ED JSR $B3ED get string descriptor addr

I OlEO 1F03 TFR D,U need A & B, use U
01E2 E6C4 LOB ,u get length of string
01E4 2601 BNE ELOl ok, skip

I 01E6 39 RTS back to BASIC

01E7 ELOl EQU *

I
01E7 3275 LEAS -NUMVAR,S reserve variable space
01E9 6F69 CLR REPEAT,S initialize for use
OlEB E764 STB LENGTH,S save string length
OlEO EC42 LDD 2,U get actual string address

I OlEF ED67 STD STRING,S save for later·,

OlFl EL02 EQU *
I OlFl DC88 LDD $88 get cursor address

01F3 EDE4 STD BEGLIN,S save start point
01F5 EB64 ADDB LENGTH,S find end of string

I
01F7 8900 ADCA #0
01F9 ED62 STD ENDLIN,S save end address
OlFB 830600 SUBD #$0600 off screen?
OlFE 2504 BLO EL03 no, continue

I 0200 6A64 DEC LENGTH,S reduce string length
0202 20ED BRA EL02

I 0204 EL03
0204 861F LOA #EMARK get end marker
0206 A7F802 STA CENDLIN,Sl mark end of line

I
0209 AEE4 LOX BEGLIN,S get screen start

I
I

The Ultimate Reference Guide And Toolkit 372

020B
020B 10BE0400
020F 6069
0211 2704
0213 108E0040

0217
0217 E684
0219 E764

021B
021B 6A6A
0210 2606
021F E684
0221 C840
0223 E784

0225
0225 313F
0227 2600
0229 CCFFOB
022C CE0152

022F
022F A7CO
0231 5A
0232 26FB
0234 A769

0236
0236 BDA1Cl
0239 2604
023B 6F69
0230 20DC

023F
023F C601
0241 E76A
0243 E664
0245 E784
0247 AF65

0249
. 0249 8100

024B 261F

* Flash cursor and walt for keypress

CURSOR EQU *
LOY #DELAY!
TST REPEAT,S
BEQ CUR01
LOY #DELAY2

CUROl EQU *
LOB ,X
STB DATA,S

CUR02 EQU *
DEC BLINK,S
BNE CUR03
LOB ,X
EORB #$40
STB ,X

CUR03 EQU *
LEAY -l,Y
BNE CUR05
LDD #$FF08
LOU #$152

CUR04 EQU *
STA ,U+
DECB
BNE CUR04
STA REPEAT,S

CUR05 EQU *
JSR $A1C1
BNE CUR06
CLR REPEAT,S
BRA CUR02

CUR06 EQU *
LOB #1
STB BLINK,S
LOB DATA,S
STB ,X
STX CURPOS,S

repeat delay value
ls key being pressed?
no, skip
yes, use this value

get value at cursor
save value at cursor

time to flash?

yes, Invert character

decrement repeat counter
if o, reset rollover table
A=not-pressed flag;B=count
start of rollover table

loop for whole table
set repeat flag

keypress?
yes, sk lp
reset repeat flag
and loop

force cursor blink

get original value
replace it
save cursor position

* lf ENTER, restore string & return to BASIC

KEYS EQU *
CMPA #$00
BNE KEYOl

<ENTER>--user finished?
no, skip

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
:I

I
I
I
I
I
I
I
I , ..

The Ultimate Reference Guide And Toolkit

0240 AEE4
024F EE67

0251
0251 A680
0253 2BOE
0255 8160
0257 2504
0259 8040
025B 2006

0250
0250 8140
025F 2402
0261 8B60

0263
0263 A7CO
0265 AC62
0267 26E8
0269 326B.
026B 39

LOX BEGLIN,S
LOU STRING,S

RETURN EQU *
LOA ,X+
BMI RET02
CMPA #$60
BLO RET01
SUBA #$40
BRA RET02

RET01 EQU *
CMPA #$40
BHS RET02
ADDA #$60

RET02 EQU *
STA ,U+
CMPX ENDLIN,S
BNE RETURN
LEAS NUMVAR,S
RTS

start of screen buffer
start of string

get character
store if graphics
check for lowercase
yes, continue
no, fix it
and go store it

check for uppercase
yes, go store
no, f 1 x l t

change the string
done?
no, loop

373

restore stack for BASIC
back to BASIC

* Determine which function key

026C
026C 8109
026E 2604
0270 3001
0272 2006

0274
0274 8108
0276 260E
0278 301F

027A
027A ACE4
027C 2504
027E AC62
0280 2502

0282
0282 AE65

0284
0284 2085

KEYOl EQU *
CMPA #9
BNE KEY02
LEAX 1 ,X
BRA CHECK

KEY02 EQU *
CMPA #$8
BNE KEY03
LEAX -1 ,X

CHECK EQU *
CMPX BEGLIN,S
BLO CHKOl
CMPX ENDLIN,S
BLO CHK02

CHKOl EQU *
LOX CURPOS,S

CHK02 EQU *
BRA CURSOR

right arrow?
no, skip
bump cursor address
go check location

left arrow?
no, skip
previous cursor address

before start position
yes
past end?
no, continue

old cursor pos

go get another keypress

The Ultimate Reference Guide And Toolkit

0286
0286 8103
0288 2610
028A 3001

028C

KEY03 EQU *
CHPA #$03
BNE KEY05
LEAX 1 ,X

KEY04 EQU *
LOA ,X+
STA -2,X
CHPX ENDLIN,S
BLS KEY04

<BREAK>--delete char?
no, skip
point to next position

get character
move everything left
finished deleting?
loop til done

374

028C A680
028E A71E
0290 AC62
0292 23F8
0294 8660
0296 A71E
0298 20E8

LOA #$60 put blank at end of line

029A
029A 810C
029C 2612
029E AE62
02AO 301F

02A2
02A2 A682
02A4 A701
02A6 AC65
02A8 24F8
02AA 8660
02AC A701
02AE 2002

02BO
02BO 8120
02B2 2500
02B4 AC62
02B6 24CC
02B8 9F88
02BA BDA30A
02BD 3001
02BF 20C3

02C1

NO ERRORS FOUND ·

STA -2,X
BRA CHKOl

KEY05 EQU *
CHPA #$0C
BNE KEY07
LOX ENDLIN,S
LEAX -l,X

KEY06 EQU *
LOA ,-X
STA 1 ,X
CHPX CURPOS,S
BHS KEY06
LOA #$60
STA 1 ,X
BRA CHK01

KEY07 EQU *
CHPA #$20
BLO CHK02
CHPX ENDLIN,S
BHS CHK02
STX $88
JSR $A30A
LEAX 1 ,X
BRA CHK02

END EDLIN

Entry Reguirements--EDLIN !NIT

loop for more

<CLEAR>--insert char?
no, skip
get end address
second last char

get character
move it to the right
done?
no, loop
insert a blaak

loop for more

printable?
no, leave
on screen?
no, leave
save cursor pointer
and go print
new cursor
loop for more

1. The address in memory where you want the machine
language code to be POKEd must be passed in variable 00.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit

2. The INIT subroutine must be called at least once
before the MAIN subroutine can be called.

Exit Conditions--EDLIN !NIT

1. !NIT defines USR 0 for use by the MAIN subroutine.

2. All variables are released for re-use.

Entry Reguirements--EDLIN MAIN

1. The fixed-length string must be displayed on the
screen at the desired location; the cursor must be
positioned at the start of the string; and the string
itself must be passed to the routine in variable 01$.

Exit Conditions--EDLIN MAIN

None.

Variables Used

00~ 01~ 01$~ 02$~ 03$~ 04$.

Sample Call

00010 00 = &H01DD * where to put it
:GOSUB 52900 *go initialize
:CLS
:PRINT @224~ ·usE LEFT AND RIGHT ARROWS TO MOVE THE

CURSOR USE <CLEAR> TO INSERT A BLANK
USE <BREAK> TO DELETE ONE CHARACTER

00020 01$ = •THIS IS A TEST STRING•
:PRINT @0~01$ * display string
:PRINT @0~; *reposition cursor
:GOSUB 53000 * go do editing

00030 CLS
:PRINT 01$ * re-display string

* more instructions

30000 END

375

The Ultimate Reference Guide And Toolkit

Subroutine Listings

52899 REM edlin lnit
52900 IF PEEK (00) = &HBD AND PEEK (00 + 227) = &HC3 THEN

RETURN
52910 01$ = •BDB3ED1F03E6C426013932756F69E764EC42ED67DC88

EDE4EB648900ED6283060025046A6420ED861FA7F802AEE4
108E04006D692704108E0040E684E7646A6A2606E684C840E784
313F260DCCFF08CE0152A7C05A26FBA769BDA1C126046F6920DC
C601E76AE664E784AF65810D261FAEE4

52920 02$ = •EE67A6802BOE8160250480402006814024028B60A7CO
AC6226E8326B3981092604300120068108260E301FACE42504
AC622502AE652085810326103001A680A71EAC6223F88660A71E
20E8810C2612AE62301FA682A701AC6524F88660A70120D28120
25DOAC6224CC9F88BDA30A300120C3

52930 FOR 01 = 0 TO 113
. :03$ = •&H• + MID$ (01$, 01 * 2 + 1, 2>

:04$ = •&H• + MID$ (02$, 01 * 2 + 1, 2>
:POKE (00 + 01>, VAL (03$)
:POKE (00 + 01 + 114>, VAL (04$)
:NEXT
:DEF USR 0 = 00
:RETURN

52999 REM edlln main
53000 01$ = 01$ + ••

:01 = USR 0 <VARPTR (01$))
:01$ = 01$ + ••
:RETURN

I
376 I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
.I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit

Purpose

SEARCH !NIT CGOSUB 60000)
SEARCH MAIN CGOSUB 60100)

377

This is a special~purpose subroutine that will be most
useful during the design phase of writing your BASIC program. It
allows you at any time to perform a search through your program
for a specific combination of characters. The routine quickly
displays on the screen the number of occurrences of the target
string and the line number<s> in which the string was found.

As a specific example, suppose you want to delete a REMark
line from your program but you aren't sure if you've made any
explicit references to that line (possibly a GOTO or GOSUB>.
Simply define 01$ to be equal to the target line number <as a
series of ASCII characters, e.g. •too·> and call the routine.
SEARCH will quickly let you Know if it is safe to delete the
line.

Perhaps you want to LIST a specific range of lines for
possible editing but you can't re~ember exactly which line to
start at. Rather than LISTing the whole program, set 01$ to
something you Know is contained in the desired range of lines
and call the routine. SEARCH takes care of the rest •..•

Assembly Language Listing

OEOO

0100
0100 BOB3EO
OlEO 1F02
01E2 E6A4
01E4 10AE22
01E7 3424
01E9 50
OlEA 2743
OlEC 9E19

01EE
OlEE 608C4A
OlFl 271F
01F3 EC42

******************************** * STRING SEARCH *

ORG $0100 in cassette buffer

SEARCH EQU *
JSR $B3EO get descriptor addr
TFR O,Y need A & B, use Y
LOB ,Y get length
LOY 2,Y point to actual string
PSHS B,Y save both
TSTB length = 0?
BEQ SR05 yes, undefined, leave
LOX $19 get start of program

SROl EQU * TST <COUNTR,PCR any occurrences?
BEQ SR02 no, skip
LOO 2,U get line number

The Ultimate Reference Guide And Toolkit 378

01F5 3440
01F7 BDBDCC
01FA 8620
01FC BDA282
01FF E68C39
0202 4F
0203 BDBDCC
0206 8620
0208 BDA282
020B 6F8C2D
020E 3540
0210 AEC4

0212
0212 1F13
0214 EC84
0216 2717
0218 3004

021A
021A E6E4
021C 10AE61

021F
021F
02~H

0223
0225
0227
0228
022A
0220

022F
022F
0231
0234
0236
0237
0238

A680
27CB
A1AO
26F3
5A
26F5
6C8COE
20EB

8600
BDA282
3524
4F
5F
7EB4F4

SR02

SR03

SR04

SR05

PSHS U
JSR $BDCC
LOA #'
JSR $A282
LOB <COUNTR,PCR
CLRA
JSR $BDCC
LOA #$20
JSR $A282
CLR <COUNTR,PCR
PULS U
LOX ,U

EQU *
TFR X,U
LOO ,X
BEQ SR05
LEAX 4,X

EQU *
LOB ,S
LOY 1,5

EQU *
LOA ,X+
BEQ SROl
CMPA ,Y+
BNE SR03
DECB
BNE SR04
INC <COUNTR,PCR
BRA SR03

EQU *
LOA #$00
JSR $A282
PULS B,Y
CLRA
CLRB
JMP $B4F4

023B 00 COUNTR FCB $00

023C END SEARCH

NO ERRORS FOUND

save pointer
go display it

followed by a hyphen
get count

display count

followed by a space
reset new line
restore pointer
get addr of next line

copy of search addr
link to next line
end of program, leave
point past link, line #

get search length
get address of string

get next BASIC byte
end of line, try next
same as search string?
keep looking
checked whole string?
1 oop t i1 done
bump occurences
loop for whole program

get a carriage return
display it
cleanup stack
return a zero to caller

number of occurrences

I
I
I
I
I
I
I
I
I
I
I
I
I ,.
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit

Entry Requirements--SEARCH INIT

1. The address in memory where you want the machine
language code to be POKEd must be passed in variable 00.

2. The INIT subroutine must be called at least once
before the MAIN subroutine can be called.

Exit Conditions--SEARCH INIT

1. INIT defines USR 0 for use by the MAIN subroutine.

2. All variables are released for re-use.

Entry Requirements--SEARCH MAIN

379

1. The data to search for must be passed in variable 01$.
It may be a string of any length from 1 to 255 characters,
containing any combination of ASCII, control, or graphic
characters. ·

Exit Conditions--SEARCH MAIN

1. If the string was found in the body of the program,
the line number(s) and the number of occurrences within
each line will be displayed on the screen; otherwise,
nothing will be displayed.

Variables Used

00, 01, 01$, 02$

Sample Call

00010 00 = &HOlDD
:GOSUB 60000
:01$ = •sEARCH•
:GOSUB 60100

30000 END

* where to put it
*go initialize
* target string
* go search

* more Instructions

The Ultimate Reference Guide And Toolkit

Subroutine Listings

59999 REM search init
60000 IF PEEK COO> = &HBD AND PEEK COO + 93> = &HF4 THEN

RETURN
60010 01$ = •BDB3ED1F02E6A410AE2234245D27439E196D8C4A271F

EC423440BDBDCC862DBDA282E68C394FBDBDCC8620BDA282
6F8C2D3540AEC41F13EC8427173004E6E410AE61A68027CB
A1A026F35A26F56C8COE20EB860DBDA28235244F5F7EB4F400•

60020 FOR 01 = 0 TO 94
:02$ = •&H• + MID$ <01$, 2 * 01 + 1, 2>
:POKE COO + 01>, VAL C02$)
:NEXT
:DEF USR 0 = 00
:RETURN

60099 REM search main
60100 01$ = 01$ + ••

:01 = USR 0 CVARPTR COl$))
:RETURN

I
380 I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~·

-----:----·

**
* * * Section Five *
* * * REFERENCE TABLES *
* * **

The Ultimate Reference Guide And Toolkit 382

BASIC KEYWORDS

The following tables show the various commands available in
each level of BASIC. Note that Extended BASIC may modify the
operation of BASIC commands and that Disk BASIC may modify bo~h
BASIC and Extended BASIC.

Color BASIC Keywords

* CLS LEN PRINT@
+ CONT LIST READ

CSAVE LLIST REM
I DATA HEM RESTORE
I DIM MID$ RETURN
< END MOTOR RIGHT$
= EOF NEW RND
> EXEC NOT RUN
ABS FOR-NEXT-STEP ON-GOSUB SET
AND GOSUB ON-GOTO SGN
ASC GOTO OPEN SIN
AUDIO IF-THEN-ELSE OR SKIPF
CHR$ INKEY$ PEEK SOUND
CLEAR INPUT POINT STOP
CLOAD !NT POKE STR$
CLOADM JOYSTK PRINT USR
CLOSE LEFT$ PRINT TAB VAL

E:xtended Color BASIC Keywords

ATN EXP PCLS SQR
CIRCLE FIX PCOPY STRING$
COLOR GET PLAY TAN
cos HEX$ PMODE TIMER
CSAVEM INSTR POS TROFF
DEF FN LET PPOINT TRON
DEF USR LINE PRESET USRn
DEL LINE INPUT PRINT USING VARPTR
DLOAD LOG PSET ...

I

DLOADM MID$= PUT
DRAW PAINT RENUM
E:DIT PCLEAR SCREEN

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
lj

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit

Disk Color BASIC Keywords

BACKUP DSKIO$ LOC
COPY FIELD# LOF
CVN FILES LSET
DIR FREE MERGE
Dos• GET# MKN$
DRIVE KILL PUT#
DSKINI LOAD RENAME
DSKI$ LOADM RSET

• The DOS command is available only in Disk

383

SAVE
SAVEM
UNLOAD
VERIFY
WRITE

BASIC 1.1.

The Ultimate Reference Guide And Toolkit 384

BASIC KEYWORPS BY FUNCTION

The following tables show the various commands available in
all BASICs grouped according to function. Note that some
keywords may appear in more that one section.

Arithmetic and Logic Operators

+ I = OR
< .. NOT •

*) AND

Mathematical and Numeric Operators

ABS CVN INT SIN
ASC EXP LOG SQR
ATN FIX RND TAN
cos FN SGN

String Functions

CHR$ HEX$ LEN RIGHT$
DSKI$ INSTR HID$ STR$
DSKO$ LEFT$ HKN$ STRING$

Input/Output Statements and Functions

CLOAD EOF LOADH PRINT!
CLOADH FIELD# LOC PUT#
CLOSE FREE LOF RENAME
COPY GET# LSET RSET
CSAVE INKEY$ MERGE RUN
CSAVEM INPUT OPEN SAVE
DIR JOYSTK POS SAVEH
DRIVE KILL PRINT UNLOAD
DSKI$ LINE INPUT PRINT TAB WRITE
DSKO$ LOAD PRINT USING VERIFY

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit

Graphics Commands and Functions

CIRCLE
CLS
COLOR
DRAW
GET

LINE
PAINT
PCLS
PCOPY
PM ODE

Memory Commands and Functions

CLEAR
EXEC
FILES

MEM
PCLEAR
PEEK

Program Control Statements

CONI
END
FOR-NEXT-STEP

System Commands

BACKUP
CLOAD
CLOADM
COPY
CSAVE
CSAVEM
DEL
DIR

GOSUB
GOTO
IF-THEN-ELSE

DLOAD
DLOADM
Dos•
DRIVE
DSKINI
EDIT
FREE
KILL

POINT
PPOINT
PRESET
PSET
PUT

POKE
TIMER
USR

ON-GOSUB
ON-GOTO
RETURN

LIST
LLIST

LOAD
LOADM
MERGE
NEW
RENAME
RENUM

• The DOS command is available only in Disk BASIC 1.1.

Music and Sound Commands

AUDIO MOTOR

Miscellaneous Functions and Commands

DATA
DEF

DIM
LET

PLAY

READ
REM

RESET
SCREEN
SET

VARPTR

STOP

RUN
SA.VE

SAVEM
SKIPF
TROFF
TRON
UNLOAD
VERIFY

SOUND

RESTORE

385

The Ultimate Reference Guide And Toolkit

BASIC ERROR CODES

386

I
I
I

This table lists the error messages generated and the I(
internal code used by BASIC in its error routine. When an error
is encoutered in interpreting a BASIC statement the error code
value is. loaded into the B register and program execution is I
tranfered to the error handling routine at $AC46. The values $00
to $30 are generated by COLOR BASIC~ $32 and $34 by EXTENDED
COLOR BASIC and $36 to $4A by DISK COLOR BASIC. I
10 $14

AE $42

AO $24

BR $36

BS $10

CN $20

DO $12

OF $38

ON $26

OS $30

DIVISION by ZERO. Division by zero is not possible.

File ALREADY EXISTS. An attempt has been made to
RENAME or COPY a file using a filename already
used on the disk.

ALREADY OPEN. An attempt was made to OPEN a file Cor
file buffer) which had already been OPENed.

BAD RECORD number. A record number of 0 or a record
number which would make your file greater than
156~672 bytes long was used with a GET# or PUT#.

BAD SUBSCRIPT. The subscript used in an array
variable is out of range <greater than that
specified by a DIMen~ion command>.

CAN~T CONTINUE. A CONT command was used after the
end of the program was encountered or after an error~
CLEAR~ NEW or EDIT.

DUPLICATE DEFINITION. An attempt has been made to
redimension an array. If you need to reuse an array
variable with a different dimension you will need to
use a CLEAR first.

DISK FULL. There is no more room on the disk being
written to.

DEVICE NUMBER error. An illegal device number has
been used with an OPEN~ CLOSE~ PRINT~ WRITE or INPUT
statement.

DIRECT STATEMENT. Usually caused when loading a BASIC
program <stored in ASCII> with a missing line number.

I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I

' I
I
I
I
I
I

' I
I
I

The Ultimate Reference Guide And Toolkit

ER $4A Write or input past END of RECORD. An attempt to
INPUT, WRITE or PRINT data to a direct access file
without updating the buffer pointer with GET# or
PUT#.

387

FC $08 Illegal FUNCTION CALL. An illegal parameter has been
used with a BASIC command; or a USR call has been
attempted before the USR has been defined.

FD $22 Bad FILE DATA. An attempt was made to read string
.data from a file while assigning it to a numeric
variable.

FM $2A FILE MODE error. An attempt has been made to input
data from a file opened for output, or output data to
a file opened for input.

FN $3E Bad FILE NAME. The format used for a disk filename
was illegal.

FO $44 FIELD OVERFLOW error. The length of the string
variables used in a FIELD statement exceed the record
size specified when opening the file.

FS $40 FILE STRUCTURE error. The information in the file
allocation table and· the disk directory do not match.

ID $16 ILLEGAL DIRECT statement. INPUT or LINEINPUT was used
in a direct command line -- they can only be used in
a program.

IE $2E INPUT past END of file. There is no more data in the
file you are reading data from. Avoid this error with
EOF.

IO $28 INPUT/OUTPUT error. The computer cannot read data
stored on a peripheral device <tape or disk>; usually
due to incorrect disk/tape speeds or volume settings
or bad media.

LS $1C LONG STRING. An attempt has been made to create a
string longer than 255 characters.

NE $34 File does NOT EXIST. The requested disk file doesn't
exist or, when using DLOAD or DLOADM, the file
doesn't exist in the host computer's memory.

The

NF

NO

OB

OD

OM

OS

ov

RG

SE

SN

ST

TM

Ultimate Reference Guide And Toolkit 388

$00 NEXT without FOR. A NEXT has been used without a
matching FOR statement. This error will also occur if

.the variables used with the NEXT and the FOR are not
identical.

$2C NOT OPEN. An attempt has been made to input or
output data to a file not yet OPENed.

$3A OUT of BUFFER. The buffer memory reserved with FILES
is not sufficient for an OPEN statement.

$06 OUT of DATA. A DATA entry was not found when a READ
statement was interpreted.

$0C OUT of MEMORY. All the memory accessible to BASIC has
been used or allocated.

$1A OUT of STRING space. There is not enough memory to
store the string data or to do a string
manipulation.

$0A OVERFLOW error. The number is outside the range
which BASIC can handle.

$04 RETURN without GOSUB. A RETURN has been encountered
without a matching GOSUB. Either the GOSUB was not
encountered or the stack was reset with an error,
CLEAR or PCLEAR.

$46 SET to unfielded string. The variable used in a LSET
or RSET statement has not been FIELDed.

$02 SYNTAX error. The BASIC interpreter cannot interpret
the statement. Commands may be mis-spelled, required
delimiters may be missing or parenthesises may not be
matched.

$1E STRING formula too complex. The level of nesting of
string operations was to complex. In our experiments
we were unable to generate this error: let us know if
you can!

$18 TYPE MISMATCH. An attempt has been made to assign
numeric data to a string variable or string data to a
numeric variable; or a string expression was used in
an argument requiring a numeric expression or a
numeric expression was used in an argument requiring
a string expression.

I
I
I
I
I
I
I
I

' I
I
I
I
I
I

' I
I
I

I'
I
I
I
I'
I
I
I

-I
I
1\
I
II

I
I ',-
11

I'
I
I

The Ultimate Reference Guide And Toolkit 389

UF $32

UL $0E

VF $48

WP $3C

UNDEFINED FUNCTION. A function has been called with
a FN before it has been defined.

UNDEFINED LINE. A GOTO, GOSUB, THEN or ELSE is
followed by a ;ine number which does not exist in
your program.

VERIFY error. If VERIFY is ON and a disk write
command encounters an error in reading back
the sector just written Cverifing> this error will
occur.

WRITE PROTECT error. A command to write data to the
disk has been attempted with a ·write protect tao• on
the disk.

The Ultimate Reference Guide And Toolkit

NAME

ALPHABETICAL LISTING OF SUBROUTINES

DESCRIPTION

BAUDRATE

BORDER INIT
BORDER MAIN

BREAKDIS

CASSNAME

CHKDRIVE

RS232 baud rate initialize

Text screen border routines

Break key disable

Input a cassette filename

Check a disk drive

CLOCK INIT Real time clock routines
ENABLE CLOCK
DISABLE CLOCK
DISPLAY ON/OFF
SET TIME
SET DISPLAY POSITION

DIR

DISKNAME

DPEEK

DPOKE

EDLIN INIT
EDLIN MAIN

FILEXIST

FLASH INIT
FLASH MAIN

Read/display a disk directory

Input a disk filename

Double PEEK

Double POKE

Text input routine with editing

See if ? disk file exists

Moving graphics wait routine

Input a date as DD/MM/YY

390

FIRST LINE #

40200

52100
52200

40100

41000

42100

51100
51200
51300
51400
51500
51600

42200

42300

40600

40700

52900
53000

42400

50200
50300

40900 GETDATE

GRNUMBER INIT high res graphics number display 40000
40020 GRNUMBER MAIN

HRCHRSET

HRINPUT

HRPRINT

High res text character set

High res text input routine

High res text display routine

42700

42500

42600

I .,
I
I

'~
I
I
I
I
I
II
I
I
I
I
I'
I
I
I

I
I
I
I
I
I
I
I
I
I·
I
I
I
I
I
I
I .,
I

The Ultimate Reference Guide And Toolkit 391

NAME

INKEY$

INPUT INIT
INPUT MAIN

INVERT INIT
INVERT MAIN

JOYORKEY

JOYSTICK

KEYINPT

LINEINPT

MENUDISP

MLSET !NIT
MLSET MAIN

NEATPRNT

PACK INIT
PACK MAIN

PCLEARO

PRESCON1
PRESCON2

PRINTON

READY#

RESTORE INIT
RESTORE MAIN

SCRAMB INIT
SCRAMB MAIN

SCREENPT

SCROLL INIT
SCROLL MAIN

DESCRIPTION FIRST LINE #

Wait for a single key input

Text input routine without editing

Flip text screen values

Select joystick or keyboard

Read joystick values

Single key input routine

Line input routine

Display a menu

High speed ML initialization

Display text without wordwrap

Store a date in two bytes

Clear all graphic pages

Press any key to continue pause

Check to see printer ready

Ready an I/0 device

Data line restore

Scramble the text $Creen

Dump text screen to printer

Scroll the screen in any direction

41100

50000
50100

51700
51800

40400

40300

41200

41300

42000

52300
53400

41810

52700
52800

63900

41500
41600

41700

41400

52500
52600

51900
52000

41900

50400
50500

The Ultimate Reference Guide And Toolkit

NAME DESCRIPTION

SEARCH INIT Find an occurance in a program
SEARCH MAIN

SYSTEM Get system types/status

TIMER INIT Interval timer routines
ENABLE TIMER
SET START TIME
GET TIME REMAINING
DISABLE TIMER

TOBASIC Exit to BASIC

392

FIRST LINE #

60000
60100

40800

50600
50700
50800
50900
51000

40500

I
I
I
I
I ,,
-I
I
I
·I
I
I
I
I
I
I
I
I
I

I
I
I
·I
J
li
I
I
I
I
I
I
I
I
·I·

I
I
I
I

The Ultimate Reference Guide And Toolkit 393

PRINTABLE ASCII CHARACTERS

This table shows all the characters which can be printed on
the text screen. The first column shows the decimal value, the
second the hexadecimal value and the third the character
printed. Characters 8 and 13 <BACKSPACE and CARRIAGE RETURN> do
not display a character on the screen, but they are included
since they do effect the screen display.

8 $08 BS 55 $37 7 80 $50 p 105 $69 i
13 $00 CR 56 $38 8 81 $51 Q 106 $6A j
32 $20 space 57 $39 9 82 $52 R 107 $68 k
33 $21 ! 58 $3A . 83 $53 s 108 $6C 1 .
34 $22 .. 59 $38 . 84 $54 T 109 $60 m ,
35 $23 # 60 $3C (85 $55 u 110 $6E n
36 $24 $ 61 $30 = 86 $56 v 1 1 1 $6F 0
37 $25 " 62 $3E) 87 $57 w 112 $70 p
38 $26 Sc 63 $3F ? 88 $58 X 113 $71 q
39 $27 , 64 $40 @ 89 $59 y 114 $72 r
40 $28 (65 $41 A 90 $5A z 115 $73 s
41 $29) 66 $42 B 91 $5B [116 $74 t
42 $2A * 67 $43 c 92 $5C \ 117 $75 u
43 $2B + 68 $44 0 93 $50] 118 $76 v
44 $2C , 69 $45 E 94 $5E (@I] 119 $77 w
45 $20 - 70 $46 F 95 $5F ... 120 $78 X I

46 $2E • 71 $47 G 96 $60 <E 121 $79 y
47 $2F I 72 $48 H 97 $61 a 122 $7A z
48 $30 0 73 $49 I 98 $62 b 123 $7B ([]
49 $31 1 74 $4A J 99 $63 c 124 $7C [/]
50 $32 2 75 $4B K 100 $64 d 125 $70 [l l
51 $33 3 76 $4C L 101 $65 e 126 $7E [~ 1
52' $34 4 77 $40 M 102 $66 f 127 S7F [~]

53 $35 5 78 $4E N 103 $67 g
54 $36 6 79 $4F 0 104 $68 h

NOTES: 1. The ASCII values 128 to 255 ($80 to $FF> produce
various graphics characters.

2. Characters enclosed in square brackets £1 and
lowercase letters are printed in reverse video.

3. ASCII values 0 to 7 C$00 to $07), 9 to 12 ($09 to
$OC> and 14 to 31 ($0E to $1F> have no effect when
printed on the screen.

The Ultimate Reference Guide And Toolkit 394

CHARACTERS PRODUCED WHEN VALUES ARE POKED ONTO TEXT SCREEN

This table shows the results of POKEing a value directly
onto the text screen -- memory locations 1024 to 1535 ($0400 to
$05FF>. Fo·r example, the statement POKE 1024,2 would display an
inverse video •B• in the_ top left corner of the screen.

0 $00 [@] 32 $20 [space] 64 $40 @ 96 $60 space
1 $01 £A1 33 $21 (!] 65 $41 A 97 $61 !
2 $02 [Bl 34 $22 [.] 66 $42 B 98 $62 .
3 $03 CCl 35 $23 (#] 67 $43 c 99 $63 #
4 $04 [Dl 36 $24 [$] 68 $44 D 100 $64 $
5 $05 CEl 37 $25 [% 1 69 $45 E 101 $65 %
6 $06 £Fl 38 $26 [Sc] 70 $46 F 102 $66 Sc

7 $07 [G 1 39 $27 [..] 71 $47 G 103 $67 ..
8 $08 £Hl 40 $28 [(] 72 $48 H 104 $68 (

9 $09 [I l 41 $29 [)] 73 $49 I 105 $69)

10 $0A [J] 42 $2A [*] 74 $4A J 106 $6A *
1 1 $0B £Kl 43 $2B [+] 75 $4B K 107 $6B +
12 $0C £Ll 44 $2C [..] 76 $4C L 108 $6C ..
13 $0D [Ml 45 $2D [-] 77 $4D M 109 $6D -
14 $0E [Nl 46 $2E [.] 78 $4E N 110 $6E .
15 $OF (0] 47 $2F [/] 79 $4F 0 1 1 1 $6F I
16 $10 [p] 48 $30 [0] 80 $50 p 112 $70 0
17 $11 [Q] 49 $31 [1] 81 $51 Q 113 $71 1
18 $12 [Rl 50 $32 [2] 82 $52 R 114 $72 2
19 $13 [Sl 51 $33 [3) 83 $53 s 115 $73 3
20 $14 £Tl 52 $34 [4] 84 $54 T 116 $74 4
21 $15 £Ul 53 $35 [51 85 $55 u 117 $75 5
22 $16 £Vl 54 $36 [6] 86 $56 v 118 $76 6
23 $17 (w) 55 $37 [7) 87 $57 w 119 $77 7
24 $18 £Xl 56 $38 [8] 88 $58 X 120 $78 8
25 $19 £Yl 57 $39 [9] 89 $59 y 121 $79 9
26 $1A [Zl 58 $3A [:] 90 $5A z 122 $7A . .
27 $1B [[] 59 $3B [;] 91 $5B [123 $7B ;
28· $1C [\] 60 $3C [<] 92 $5C \ 124 $7C <
29 $10 []) 61 $30 [=) 93 $50] 125 $70 =

30 $1E £tl 62 $3E [>] 94 $5E .. 126 $7E > I

31 $1F [~] 63 $3F [?] 95 $5F ~ 127 $7F ?

NOTES: 1. All characters in square brackets [] will appear on
the screen in inverse video.

2. The values 128 to 255 ($80 to $FF> will produce the
same graphics characters as the corresponding PRINT
statement.

I
I
I
I

• II
I
t·
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
·I
I
I
I
I
I
I
I
I

The Ultimate Reference Guide And Toolkit 395

HEXADECIMAL-PECIMAL CONVERSION CHART

This chart will allow you to convert any 16-bit value from
hex to decimal or vice versa.

Hex to Decimal

Obtain the decimal value for each nybble, starting with the
most significant nybble. Once all values have been obtained,
simply add the values together. For example, to convert the hex
number $AOFO, get the value for •A• from the leftmost column,
then the ·o· from the next column, and so on. The result will
be: 40960 + 0 + 240 + 0 = 41200.

Decimal to Hex

Find the largest decimal number in the table which is less
than the number being converted. Obtain the hex digit for that
value and subtract the value from the number. Treat the
remainder as if it were another number to be converted and
proceed in exactly the same way. For example, to convert the
decimal number 14399, look in the first column to find the
largest number less than 14399, which is 12288. This will give
you the most significant nybble of what will be a 4-digit hex
number, namely •3•. Subtracting 12288 leaves a remainder of
2111, which must be converted in the same way. The final hex
number will be $383F.

HEX DEC HEX DEC HEX DEC HEX DEC

0 0 0 0 0 0 0 0
1 4096 1 256 1 16 1 1
2 8192 2 512 2 32 2 2
3 12288 3 768 3 48 3 3
4 16384 4 1024 4 64 4 4
5 20480 5 1280 5 80 5 5
6 24576 6 1536 6 96 6 6
7 28672 7 1792 7 112 7 7
8 32768 8 2048 8 128 8 8
9 36864 9 2304 9 144· 9 9
A 40960 A 2560 A 160 A 10
B 45056 B 2816 B 176 B 1 1
c 49152 c 3072 c 192 c 12
D 53248 D 3328 D 208 D 13
E 57344 E 3584 E 224 E 14
F 61440 F 3840 F 240 F 15

J

I
I

The Ultlaate Color Computer Reference Guide and Toolkit
Order Fora- Subroutines and Utilities

This package includes all the subroutines

I
Computer Reference Guide and Toolkit plus
with detailed documentation:

listed in The
the following

Ultimate Color
eight utilities

I
I
II

I
I
I
I
I
I
I
I
I
I
I
I
I

NEATLIST <ML>

VARXREF <ML>

VARCOUNT <ML>

LINEXREF <ML>

MLAPPEND <ML>

BASMUNCH <ML>

BASPROT CML>

DISKMAN (BAS>

Produces neat listings of programs to make them
extremely readable by inserting spaces and llnefeeds.
Output can be directed to screen, printer or
a file.
Lists all occurences of all variables alphabetically
by line number.
Gives a listing of the variables used by frequency
of usage.
Lists all line numbers referenced in GOSUB's, GOTO's,
ELSE's, and THEN's
Appends machine language programs to the end
of BASIC programs.
Compresses a BASIC program removing all spaces and
remarks. It concatenates lines to their maximum
possible length, some in excess of 255 bytes long.
Converts a BASIC program into a pseudo machine
language program which you can CLOADM and EXEC.
Includes error trapping plus break and reset
protection.
Disk file maintenance utility written in structured
BASIC to demonstrate the use of subroutines presented
in the book.

Name •••••••••••••••••••••••••••••••• · ••••••••••••••••••••••••••••••••••••.••

Address • •••••••••••••••••••••••••••••••.•••••••••••••••••••••..•••••.•...•.

C 1 t y • ••••.••••••••••••••••••.••• Prov /State•.... Code . .•.....•.•.......
Quantity Description Total

------- Subroutines on Tape $12.95 u.s. or $14.95 CON $ --------
------- Subroutines on Disk $14.95 u.s. or $17.95 CON $--------Shipping +$1. 50

Grand Total $,... ________
Payment by: __ VISA __ Mastercard __ Money Order __ certified Cheque

Card #--
Signature:_~~~-------------------~Date<s> on card~--------------------
Note: Additional copies of the book The Ultimate Color Computer
Reference Guide and Toolkit may be ordered at $27.95 U.S. or
$34.95 CON plus $3.50 shipping.

CMD Mlcro
10447-124 St.

Edmonton, Alta. Canada T5N 1R7
Phone (403> 488-7109

r. - I
I
I-
I;
I
I
·J
I
I
I
I
I
I;
J,
II
I
1:
I
I
'~

