Optimizing
Color
BASIC

EY ALLEN C. HUFFMAHN

Optimizing Color BASIC,
© 2025 ALLEN C. HUFFMAN. All Rights Reserved.

Reproduction or use, without express written permission from ALLEN C. HUFFMAN, of any
portion of this manual is prohibited. While reasonable efforts have been taken in the
preparation of this manual to assure its accuracy, ALLEN C. HUFFMAN assumes no liability
resulting from any errors or omissions in this manual, or from the use of the information

contained herein.

TRS-80 Extended Color BASIC System Software; @ 1984 Tandy Corporation and Microsoft.

All Rights Reserved.

The system software in the Color Computer is retained in a read-only memory (ROM) format.
All portions of this system software, whether in the ROM format or other source code form
format, and the ROM circuitry, are copyrighted and are the proprietary and trade secret
information of Tandy Corporation and Microsoft. Use, reproduction, or publication of any
portion of this material without the prior written authorization by Tandy Corporation is strictly

prohibited.

Book Layout & Design by Carlos. A. Camacho

10987654321

Dedicated to the many CoCo users around
the world that have contributed to this

series on Allen’s blog.
https:/ / subethasoftware.com/

Table of Contents

= T o PSR 1
REMOVE @Il SPACES.......iiii it e e et e e e e e e e e e e e 1
Pack/combine lines where POSSIDIE.ooo i 1
Remove all REMS.........cooo 1
Y=Y 018 a1 o Y=Y gl) TR 2
Removing NEXT Variables. ...ttt a e e e e e e e e 2

= T PSR 6
Variable PlaCemeENnt.ot a e e e e e e e e e e e s 6

= T G PR 14
1 1 19
P O E . ..ottt ettt ettt ettt e aaaaaaaans 21

= 0 PR 27
INSTR and GOTO/GOSUB........ooiiiiiieeeeeeee e eees 27
BUt Walt, tNEIE S MOTEL.... .ot e e e e e e e e e eaeens 31

= T TR 39
HEX versus DECImMal NUMDETS...........uuiiiiiiiiiee e e e e e 39

= G PRI 44
Size Matters. Or Space Matters. You decide...........cooooviiiiiiiiiiiie e 44
Elementary, my dear DAT A e 45
Base 10 NUMDEIS......cooeeeeeeeeeeeeee e 47
Hexadecimal Base-16 NUMDEIS.............i i 48
StriNg HEX NUMDEIS.... ..ot 50
= 0] a1 LS B = | = 1P PPPPPPPPPPP 50

= o PR 55
L0 IS] = I o= T (=T 55
Optimizing Color Basic - ON GOTO vs ON GOSUB..........ccooiiiiiiiiiiiiee e 55
A few additional REMAArKS.........coouuii i e e e 60

= 0 SR 62
Arrays and Variable LENGtN..........ee i 62
Variable LENGUN.......o e 64

= R 69

Part1

Remove all spaces

The less bytes to parse, the smaller and faster it will run. It has to be smart enough to know when spaces
are required, such as “FORA=1TOQ STEP1” when a variable needs a space after it before another keyword.

Pack/combine lines where possible

Any line called by a GOTO had to remain at the start, by following lines would be combined up to the max
size of a BASIC line. Only when it had to be broken by logic (ELSE, etc.) would it not be combined. For
example:

10 FOR I=1 TO 100

o0 GO=UE S0

20 MEXT I

40 EMI

20 REM FRIMT E=OMETHIHMG
&0 PRIMT "HELLO MWORLD!
70 RETUEM

...would end up as:

10 FOR I=1 TO 100: GOEUE BO:MERT I: EHMD
&0 FPRIMT"HELLO WORLD!":RETUEH

Remove all REMs

Obvious. I think his program would adjust a GOTO/GOSUB that went to a REM line to go to the next line after
it, and remove the REM:

10 GOEUE 1000

20 EMI

1000 REM PRIMT E=OMETHIMG
1010 PRIMT "HELLO"

1020 REETUREH

...would become like:

10 GOEUEIO10:EMD
1010 PRIMT"HELLO":RETUREN

NOTE: Even without packing, I learned not to GOTO or GOSUB to a REM since it required the interpreter to
parse through the line. I would GO to the first line of code after the REM:

10 GOEUE 1010

1000 EREM MY ROUTINE
1010 PRIMT "HERE I® WHERE IT ETARTE"

Everything you do like that saves a bit of parsing time since it doesn’t have to start parsing 1000 and look
up a token then realize it can ignore the rest of the line.

Not bad so far —but that’s not all!

The BASIC input buffer is some maximum number of bytes (250?). When you type a line to max, it stops
you from typing more. When you hit ENTER, it is tokenized and could be much smaller. For instance,
“PRINT” turns into a one-byte token instead of the five characters. Carl’s program would combine and
pack the tokens up to the max line size. Thus, it created lines that BASIC could run which were
IMPOSSIBLE to enter on the keyboard. If I recall, you could LIST and they would print (?) but if you did
an EDIT you were done.

Renumber by 1

GOSUB2000 would take up one byte for the token, then four bytes for the line number. If you renumber by
1s, it might make that function be GOSUB582 and save a byte. Multiply that by every use of
GOTO/GOSUB/ON GOTO/etc. and you save a bit.

Even without one of these compressors, try a before/after just doing a RENUM 1,1, 1. Irecently posted an
article with a short (27 line) word wrap routine in BASIC. Doing this RENUM saved 7 bytes.

Removing NEXT variables

I am unsure if this is just something I knew, or if his program also did it. If you use FOR/NEXT and it is
used normally, you don’t need the NEXT variables like this:

10 FOR D=0 TO 2 "DRIVEE
ol FOR T=0 TO 24 "TEACKE
20 FOR ==1 TO 18 "ZECTORE
40 DERIF D T 2 E13 525

20 MHEXT =

B0 MEXT T

70 HME=T D

The NEXTs could also be

a0 HEXT Z«T» D

20 HERTiMERT:HEXT

Ignoring spaces, “NEXT : NEXT : NEXT” takes up one less byte than “NEXTS , T, D” (NEXT is turned into a
token, so it is TOKEN COLON TOKEN COLON TOKEN versus TOKEN BYTEVAR COMMA BYTEVAR
COMMA BYTEBAR”.

This takes up less memory, but there is a speed difference:

10 T=TIMER

cl FOR I=1 TO 10000
=20 EEM IO HOTHIHG
40 MHE=®T I

20 FRIMT TIMEE-T

Run this and it shows something in the 1181 range (speed varies based on other things BASIC does; pound
on keys while it runs and it takes more time, for example). Change the “NEXT I” to “NEXT” and it shows
something in the range of 1025. The more FOR variables, the more the savings, too.

10 TM=TIMER

c0 FOR D=0 TO 3

20 FOR T=0 TO 3+

40 FOR ==1 TO 1%

=0 REEM DO EO0METHIMG
E0 MEXT %=

70 ME=T T

20 ME=T D

90 PRIMT TIMER-TH

...shows around 345. Changing it to:

B0 MHEXT Z«T»D

...changes it to around 336 - slightly smaller and faster since it is not parsing three different lines.

B0 MHEXT:MERT:MHEXT

...changes it to around 293! One byte smaller and slightly faster.
AND THERE’S MORE! But this post is already too long.

What I think would be cool is an actual BASIC OPTIMIZER that could do some smart things to programs,
much like we do with the C language optimizers for ASM and C. For example, noticing stupid things:

ﬁ$ B$+ll. II+II. II+|:$

to

AS BEs+".."+C%

And removing NEXT variables, or doing minor restructuring based on what it knows about the interpreter.

I suppose, back in the 80s, processors were so slow and memory so limited that doing such an optimizer
might not be practical. But today, imagine how you could optimize a BASIC on a modern computer (just
like we have 6809 cross-hosted compilers that compile and link in the blink of an eye).

Maybe this has already been done for some other favor of BASIC? Hmmm. I may have to do some
Googling.

B Comment 1

You've pretty well covered the things that are specific to the peculiarities of the BASIC interpreter, though come to think of
it here’s something you could do: read the source and count how many times the variables are used. Give the 26 most-used
ones one-letter names.

Does Color BASIC have DEF FN() = ? If it does, it might be worth looking for expression schemata that appear several
times, generating the appropriate DEF FNXx, and replacing the occurrences of the expression with calls. You’d want to test
to see whether it really saves space.

Past that,. you're talking real live optimization, with real live data and control flow analysis. Things like:
See how many places GOSUB to a particular subroutine. If the answer is “one”, inline it.

Parse expressions and do constant folding (like the “:” + “:”) and other optimizations on them.

Strength reduction could be tricky-you’d have to flatten arrays into one dimension to let you do strength reduction in the
language.

Another tricky part: that code you're optimizing may be some carefully-tweaked delay loop, so you'll have to know when
not to optimize..Probably that means programmer marking;:

100 EEM HOOFPT CODE TO BEE LEFT ALOME
200 REM OFT

Speaking of REM, I presume you’d replace, um, is it PRINT or INPUT with ? and REM with *

Ah yes! Once character variable names. I completely forgot to mention that. I am not sure if Carl England’s program
touched variable names, but that would make sense. One thing I did (after reading about it somewhere) even back in 1983
was declare variables at the start with a “DIM A$,A,B,C” which caused it to per-allocate a spot for them. Perhaps, if BASIC
does not sort them as they are created, doing such a DIM makes them in that order, so the most often used ones could be
declared first so it would not need to search through 50 variables looking for “I”.

DEF FN does exist in Extended Color BASIC. I am going to have to read up on that. I recall it existing, but do not remember
what it is for.

In CoCo BASIC, REM is one token, and * turns in to :REM and takes two tokens, so doing this:

10 REM THIZ I:® A MOTE WEREUE
10 * THIZ I® A MOTE

...it is better to use the first, “REM(SPACE)” being two bytes, and “(COLON)REM(SPACE)” being three. BUT, if you left
out the space:

10 EREM THIZ I% A NOTE
10 EREM *"THIE® IE A MOTE

...they are the same.

B Comment 2
It looks like I have a few more updates to do on this topic — thanks!

Great notes, James! I understand why no one cared or bothered doing this for CoCo BASIC, but it would be a fun
experiment just to see how much of a difference it can make.

Wow, DEFFN looks quite useful! I do not recall ever using it. In a program I am playing with, I turnan X and Y in to a
memory location based on the starting address of screen memory:

10 P=1024+Y¥+32+x:POKE F» 42

I converted that to:

DEF FHFCx Y a=1024+Y+32+5
10 P=FHPC X Y 2:POKE F» 42

That could be a good code space savings if it is used many times. Speed tests with one parameter seemed a tiny bit faster,
but with two, it was slower. Trade-offs.

Excellent.

B Comment 3
Drats. DEFFN in CoCo BASIC claims to handle multiple variables, but it was not implemented. It works with one, but with
multiple, it is just using one parameter and then reading the global variables used at DF() time. That’s a workaround, but
not much different than a GOSUB.

. Comment 4
Oh, yeah... Someone long ago did and wrote up a paper on source-to-source optimizations in FORTRAN. Perhaps it would
give you some ideas.

B Comment 5
Another Color BASIC optimization I recall was to put subroutines you call often at low line numbers because when you
call GOSUB it starts from the first line number and scans up until it finds the line number that matches the target.

B Comment 6
You are correct! Less search time. Though I think it searches forward if it can, so if there were a bunch of subroutines up
front there might be some instances where having one after the call could be found faster. Interesting!

B Comment 7

Oh yeah. If anyone cares to experiment with modifying the BASIC interpreter, it might be fun to make the symbol table
“adaptive”. When you find a variable in the symbol table, if it's not the first one, swap it with its predecessor. The idea is
that the more frequently looked up symbols migrate towards the front and thus are more quickly found. The question is
whether the migration improves things enough to make up for the swapping.

B Comment 8

I will have to do some tests. At the very least, perhaps doing a “DIM” at the top defining all the variables would put them
in that order, so you could put the most used up there first. I'll do some quick timing tests...

Part 2

Variable Placement

Last year, I posted an article dealing with Optimizing Color BASIC. In it, I covered a variety of techniques
that could be done to speed up a BASIC program. While this was specifically written about the Microsoft
Color BASIC on the Radio Shack Color Computers, I expect it may also apply to similar BASICs on other
systems.

James J. left an interesting comment:

Oh yeah. If anyone cares to experiment with modifying the BASIC interpreter, it might be fun to make the
symbol table “adaptive”. When you find a variable in the symbol table, if it’s not the first one, swap it with its
predecessor. The idea is that the more frequently looked up symbols migrate towards the front and thus are
more quickly found. The question is whether the migration improves things enough to make up for the swap-
ping. - James |.

This got me curious as to how much of a difference this would make, so I did a little experiment.

In this Microsoft BASIC, variables get created when you first use them. Early on, I learned a tip that you
could define all your variables at the start of your program and get that out of the way before your actual
code begins. You can do this with the DI statement:

DIM As Bx A% BS

Originally, I thought DIM was only used to define an array, such as DIM A$(10).

I decided to use this to test how much of a difference variable placement makes. Variables defined first
would be found quicker when you access them. Variables defined much later would take more time to find
since the interpreter has to walk through all of them looking for a match.

Using the XRoar CoCo/Dragon emulator, I wrote a simple test program that timed two FOR/NEXT loops
using two different variables. It looks like this:

XRoar

DIM A Z

THM=TIMER

FOE A=1 TO 1000:MHERT A
FEIMT"TIME FOR A:"FiTIMER-TH
THM=TIMER

FOE Z=1 TO 1000:MHERT Z

FEIMT "TIME FOR Z:"SsTIMEE-TH

TIME FOR A: EE
TIME FOR Z: &S
Ok

In BASIC, variables defined earlier are faster.

As you can see, with just two variables, A and Z, there wasn’t much difference between the time it takes to
use them in a small FOR/NEXT loop. I expect if the loop time was much later, you’d see more and more
differences.

But what if there were more variables? I changed line 10 to define 26 different variables (A through Z) then
ran the same test:

XRoar

ODIM FAsBaCoDsEs FaGaHs Is ods KsLasH
Os Fo@s Ea Za Talls Walds Ba s 2
TH=TIMEERE

FOE A=1 TO 1000:HERT A
FEINT"TIWME FOER A:=z"iTIMER-TH
TH=TIMEERE

FOR Z£=1 TO 1000:HERT £

FREIMT "TIME FOE Z:"iTIMEE-TH

TIME FOR A: EE
TIME FOR £: 109
Ok

In BASIC, variables defined last take longer to find, so they are slower.

Now we see quite a bit of difference between using A and using Z. If I knew Z was something I would be
using the most, I might define it at the start of the DIM. I did another test, where I defined Z first, and A
last:

XRoar

ODIM Zs Ba CoDsEs FaGa Ha Is s KsLaH
Os Fo @s Ea Za Talls Walds 5 Y2 A
TH=TIMEERE

FOE A=1 TO 1000:HERT A
FEINT"TIWME FOER A:=z"iTIMER-TH
TH=TIMEERE

FOR Z£=1 TO 1000:HERT £

FREIMT "TIME FOE Z:"iTIMEE-TH

TIME FOR R: 10%
TIME FOR Z: E&~F
Ok

In BASIC, define the most-used variables first to speed things up.
As expected, now the Z variable is faster than A.

Every time BASIC has to access a variable, it makes a linear (I assume) search through all the variables
looking for a match.

Side Note: There is an excellent Super/Disk/Extended/Color Basic Unraveled book set which contains fully
commented disassembles of the ROMs. I could easily stop assuming and actually know if I was willing to
take a few minutes to consult these books.

However, when I first posted these results to the Facebook CoCo group, James responded there:

Didn’t realize it made that much difference-doesn’t the interpreter’s FOR loop stack remember the symbol table entry for
the control variable?

Indeed, this does seem to be a bad test. FOR/NEXT does not need the variable after the NEXT. If you omit
the variable (just using NEXT by itself), it does not need to do this lookup and both get faster:

https://www.facebook.com/groups/2359462640/

XRoar

ODIM FAsBaCoDsEs FaGaHs Is ods KsLasH
Os Fo@s Ea Za Talls Wla We 5a s 2
TH=TIMEERE

FOR A=1 TO 1000:HE=T

FRIMT "TIME FOE A:"iTIMEE-TH
TH=TIMEERE

FOR Z=1 TO 1000:HE=T

FREIMT "TIME FOE Z:"iTIMEE-TH

TIME FOR A= 352
TIME FOR Z: 352
Ok

NEXT without a variable is faster.
I guess I need a better test.

How about using the variable directly, such as simple addition?

XRoar

10 DIM As BaCsDs Es FaGaHs Is Js KsaLsH
s Ms Os Po Gla Ba Z0 Ta Us W W B e 2
TH=TIMEERE
FOR I=1 TO 1000:A=A+1:MEXT I
FRIMT "TIME FOE A:"iTIMEE-TH
TH=TIMEERE
FOR I=1 TO 1000:ZFZ=Z+1:MEXT I
FREIMT "TIME FOE Z:"iTIMEE-TH

TIME FOR R: 240
TIME FOR £: 324
Ok

Variable addition is slower for later variables.

Z, being defined at the end, is slower. And if we reverse that (see line 10, defining Z first), Z becomes faster:

XRoar

ODIM Zs Ba CoDsEs FaGa Ha Is s KsLaH
Os Fo@s Ea Za Talls Wls We 5 Y2 A
TH=TIMEERE

FOR I=1 TO 1000:A=A+1:MEXT I
FRIMT "TIME FOE A:"iTIMEE-TH
TH=TIMEERE

FOR I=1 TO 1000:ZFZ=Z+1:MEXT I
FREIMT "TIME FOE Z:"iTIMEE-TH

TIME FOR R: 321
TIME FOR £: 2329
Ok

Variable addition is faster for earlier variables.
You can speed up programs by defining often-used variables earlier.

James’ suggestion about modifying the interpreter to do this automatically is a very interesting idea. If it
continually did it, the program would adapt based on current usage. If it entered a subroutine that did a
bunch of work, those variables would become faster, then when it exited and went back to other code,
those variables would become faster.

I do not know if the BASIC language lasted long enough to ever evolve to this level, but it sure would be
fun to apply these techniques to the old 8-bit machines and see how much better (er, faster) BASIC could
become.

Thanks for the comment, James!

Comment 1

As a point of information on modifying the interpreter to somehow shuffle more frequently used variables to the front of
the variable table, that is actually harder than it sounds. It would require storing extra information (access count, for
instance). On a system that is already limited in memory, that would probably be intolerable. I could see how you could
then use the access count to swap a variable with its preceding one if its access count is higher without too much of a
performance hit. However, that tiny extra time would have to apply to every single variable access. Also, you would have
to have a periodic sweep that would reset the counters somehow to prevent overflows from creating table churn.

Probably a better solution would be to use an ordered list of variables which would allow using a binary search to find

variable entries. Doing that would give O(log n) for lookup times and, so, would be a lot more predictable with a
substantially better worst case. That would make creating a variable entry slower but that only happens once. It also
wouldn’t require any extra storage space compared to what is currently used. To make things even more fun, as long as the
list is always kept ordered, adding a new variable would be at worst O(n).

What if you simply swapped places with the variable before you? No counts needed, but items accessed more often would
work their way to the top.

B Comment 2

Then you're going to be swapping variable table entries for every variable access that isn’t the first in the table. I haven’t
bench marked it, but I think that’s going to have a fairly substantial net slowdown in the average case where a program
accesses a few variables randomly rather than just the same variable over and over.

Swapping 7 bytes takes CPU cycles and it will add up. It takes 16 instructions to do the swap (two loads and two stores per
swap, maximum two bytes at a time) barring some truly diabolical optimization scheme, and that’s on top of the two
instructions needed to decide if the variable entry should be swapped. That will add up substantially in a non-trivial
program.

(7 bytes comes from two bytes for the variable name and 5 bytes for the value or string descriptor.)

I think the overall best case on average would be an ordered variable list and a binary search. Potentially slow variable
creation but quite fast searches. (7 comparisons on a variable table with 128 entries, for instance.)

Obviously, bubbling variables to the front of the line (your described solution) will be faster in some cases.
Even the existing system is faster in some cases. The ordered list with a binary search is more predictable,
though, and not prone to accidentally creating a worst-case.

Part3

Since I am right in the middle of a multi-part article on interfacing assembly with BASIC, now is a great
time to discuss something completely different.

IMFUT, IMEEYs IN:ETE: AMD POKE

The reason I do this now is because it is going to tie it in with the next part of the assembly article. Since I
have been discussing using assembly to speed things up, it is a good time to address a few more things that
can be done to speed up BASIC before resorting to 6809 code. Since BASIC will be the weakest link, we
should try to make it as strong weak link.

In 1980, Color BASIC offered a simple way to input a string or number:

10 INFUT "MWHAT IE YOUR HAME"iRZF
20 FPRINT "HELLOs "sAs

20 IMPUT "HOW OLD ARE YOU"sA

40 FPRINT mAs"IE PRETTY OLD."

] XRour E=]

File View Hardware Tool

My First Input

The original INPUT command was a very simple way to get data in to a program, but it was quite limited.
It didn’t allow for string input containing commas, for instance, unless you typed it in quotes:

149

] xRoar = =]=]

File View Hardware Tool

INPUT hates commas.

] XRoar e ==]

File View Hardware Tool

INPUT likes quotes.
INPUT also prints the question mark prompt.

LIME IMFUT

15

When Extended Color BASIC was introduced, it brought many new features including the LINE INPUT
command.

This command did not force the question mark prompt, and would accept commas without quoting it:

] XRour E=

File View Hardware Tool

LINE INPUT likes everything.

If you were trying to write a text based program (or a text adventure game), INPUT or LINE INPUT would
be fine.

INKEY =

For times when you just wanted to get one character, without requiring the characters to be echoed as the
user types them, and without requiring the user to press ENTER, there was INKEY$.

INKEY$ returns whatever key is being pressed, or nothing (“”) if no key is ready.

10 PRIMT "PREE=EE ANY KEY TO COMTIMUE..."
20 IF IMKEY=Z="" THEH 20
20 PRIMT "THAME YOU."

It can also be used with a variable:

10 FRIMT "AREE %0OU EEADY?T "
2l AF=IMKEY=:IF As="" THEHN Z0
20 IF Ax="%¥" THEWM FEINT "GOOD!" ELEE FREIMT "EAD."

This is the method we might use for a keyboard-controlled BASIC video game. For instance, if we want to
read the arrow keys (up, down, left and right), each one of those keys generates an ASCII character when
pressed:

16

F - CHE:94» - 1T CHARRCTER
oo - CHE<10» - LIME FEED
LEFT - CHREZC&2 - BACKZ=FPACE
RIGHT - CHREZC92 - TARE

Knowing this, we can detect arrow keys using INKEY$:

10
=]
=20
41
20
B0
<1
20

The above program uses PRINT@ to print an asterisk (“*”) in the middle of the screen. Then, it waits until a
key is pressed (line 30). Once a key is pressed, it looks at which key it was (up, down, left or right) and then

CLE fF=23E+1E

FEIMTaFs "+"5

AF=INKEYS:IF As$="" THEM =20

IF A#=CHRE=C{94> AHMD FP>31 THEHN F=F-32
IF AF=CHE=C102> AMD P<4739 THEM F=F+3Z
IF AF=CHRE=C2» AND P>0 THEHW P=FP-1

IF AF=CHE=C9» AND P<310 THEHN F=F+1
GOTO 20

will move the position of the asterisk (assuming it’s not going off the end of the screen).

Side Note: The CoCo’s text screen is 32x16 (512 characters). PRINT@ can print at 0-511, but if you print to
511 (the bottom right location), the screen will scroll up. I have adjusted this code to disallow moving the
asterisk to that location.

You now have a really crappy text drawing program. To make it less crappy, you could check for other
keys to change the character that is being drawn, or make it use simple color graphics:

10
=]
=20
41
20
B0
-1
20
=11,

CLEQ: ®=32:%=1B:C=0

EETCHE» Y2 L2

AF=INKEYZ:IF As$="" THEM 20

IF AF=CHR=C94> AMD Y>>0 THEM %=%-1

IF AF=CHR=C 102> AMD ¥<31 THEH Y=Y+1
IF AF=CHR=C 2> AND X>0 THEHN x=#x-1

IF AF=CHR=C9» AND X<63 THEM x=x+1

IF A%="C" THEH C=C+1:IF C>23 THEHN C=0
GOTO 20

That program uses the primitive SET command to draw in beautiful 64x32 resolution with eight colors.
The arrow keys move the pixel, and pressing C toggles through the colors. Spiffy!

5| XRoar

File View Hardware Tool

i
[
o

F

L

-

Color graphics from 1980!

Instead of using “C” to just cycle through the colors, you could check the character returned and see if it
was between “0” and “8” and use that value to set the color (0=RESET pixel, 1-8=SET pixel to color).

10 CLED:¥=32:Y¥=1k:C=1

20 IF C=0 THEM REEETC¥sY2 ELEE ZETCHYa2 L2
20 As=IMKEY=:IF As="" THEMN 20

40 IF AF=CHEZC94» AND %>0 THEH Y=¥Y-1

20 IF AZ=CHEZC102» AMD %<31 THEM %=%+1

B0 IF AF=CHEZCZ2> AMD ¥:>0 THEHM H=x-1

70 IF A=CHEZ£C92 AMD X<{E63 THEM H=k+1

20 IF As=:>"0" AMND As="3" THEM C=R:ECCAZF2—-48
90 GOTO 20

Now that we have refreshed our 1980 BASIC programming, let’s look at lines 40-70 which are used to
determine which key has been pressed.

If we are going to be reading the keyboard over and over for an action game, doing so with a bunch of
IF/THEN statements is not very efficient. Lets do some tests to find out how not very efficient it is.

For our example, we would be using INKEY$ to read a keypress, then GOSUBing to four different
subroutines to handle up, down, left and right actions. To see how fast this is, we will once again use the
TIMER command and do our test 1000 times. We'll skip doing the actual INKEY$ for now, and hard code a
keypress. Since we will be checking for keys in the order of up, down, left then right, we will simulate
pressing last key check, right, to get the worst possible condition.

Here is version 1 that does a brute-force check using IF/THEN/ELSE.

0 FEEM KEYED1l. BAE

10 TM=TIMER:FORA=1TO1000

15 AF=CHR={92

2l REM Af=IMKEY=Z:IFAF=""THEHNZO

=20

IFAS=CHRESC 94 2 THEMGOZUEBIOOELEZEIFAS=CHEZC 10 >»THEMGOEUEZ0OELEEIF
AF=CHREZ: 2)THEMGOEUEZIOOELEEIFAS=CHRESC 9 >THENGO=UE40D
20 MExT:PRINT TIMERE-TH

E0 EMI

100 RETURHN

20 RETURH

200 RETURH

400 RETURH

When I run this in the XRoar emulator, I get back 1821. That is now our benchmark to beat.

INSTR

Rather than doing a bunch of IF/THENS, if we are using Extended Color BASIC, there is the INSTR
command. It will take a string and a pattern, and return the position of that pattern in the string. For
example:

FRIMNT IMETRC"CAT DOG RAT"» "DOG" 2

If you run this line, it will print 5. The string “DOG” appears in “CAT DOG RAT” starting at position 5.
You can use INSTR to parse single characters, too:

FEINT IM:ETEC"AECDEFGHIJA"s "F"2

This will print 6, because “F” is found in the search string starting at position 6.

If the search string is not found, it returns 0. Using this, you can parse a string containing all the possible
key press options, and turn them in to a number. You could then use that number in an ON GOTO/GOSUB
statement, like this:

0 EEM KEYEDZ. BAE

10 AF=INKEY=:IF Az="" THEMN 10
2l A=IMNETEC"AEBCD": AF D

20 IF A=0 THEH 10

40 OM A GOEUE 100200300400

20 GOTO 10

100 FEIMT "A WAZ FPREEEED":RETURHN
can FEIMT "B WAZ FPREEEED":RETURHN
200 FEIMT "C WAZ FPREEEED":RETURHN
400 FEIMT "I WAE FPREEEED":RETURHN

A long line of four IF/THEN/ELSE statements is now replaced by INSTR and ON GOTO/GOSUB.

Let’s rewrite our test program slightly, this time using INSTR:

10
15
=]
=20
25
41
20
B0
100
can
200
400

TH=TIMER: FORA=1TO1000
AF=CHREZC32
FEM As=IHKEYS:IFAz=""THEMZO
LH=INETR. CHESC 94 2+ CHESC 10 2>+ CHRESC 2 »+CHRESC9 1 AF D
IF LM=0 THEH 20

OMLH GOEUEI100. 200 300400
MEXT:FRINT TIMER-TH

EMD

RETURH

RETURH

RETURH

RETURH

Running this gives me 1724. We are now slightly faster.

We can do better.

One of the reasons this version is so slow is line 30. Every time that line is processed, BASIC has to
dynamically build a string containing the four target characters — CHR$(94), CHR$(10), CHR$(8) and
CHR$(9). String manipulation in BASIC is slow, and we really don’t need to do it every time. Instead, let’s
try a version 3 where we create a string containing those characters at the start, and just use the string later:

0 EEM KEYED3. BEAZE
2 EBS=CHEZ.(94 3+CHREZC 10 >+ CHRESC S 2+CHRESC 92

10
15
i
30
33
410
20
&0
100
2o
300
400

THM=TIMER:FORR=1TO1000
AS=CHRESC32
FEM Az=INKEYS:IFAF=""THEHNZO
LH=INETRCEESZ AZ 2

IF LH=0 THEM 20

OMLH GO=UE100x200s 200 400
MExT:FRINT TIMEE-TH

EMI

RETURH

RETURH

RETURH

EETURH

Running this gives me 902! It appears to be twice as fast as the original IF/THEN version!

] XRoar [E=8 e (=)

File View Hardware Tool

Speed comparisons...

Now we have a much faster way to handle the arrow keys. Let’s go back to the original program and
update it:

0 FEEM IMKEY3. BAE

2 KBEZ=CHE=C 94 2+CHEZC 10 2+CHRESC 2 2+CHRESC9 2
10 CLE:P=25E+1E

20 PRIMTaFs "#+"3

20 As=IMKEY=Z:IF As="" THEHN 30
40 LM=IMETRCKES: AZ2

20 OMLM GOEUEL100s. 200s 300. 400

B0 GOTO 20

100 IF P*31 THEM P=P-32

110 RETURHN

c0o0 IF FP<47°9 THEM F=F+32:REETURH
210 RETURH

200 IF FP>0 THEHM P=P-1

210 RETURH

400 IF P<510 THEHM P=P+1

410 RETURH

Side Note: Using GOSUB/RETURN may be slower than using GOTO, but that will be the subject of another
installment.

Now that we have a faster keyboard input routine, let's do one more thing to try to speed it up.

POKE

21

We are currently using PRINT@ to print a character on the screen in positions 0-510 (remember, we can’t
print to the bottom right position because that will make the screen scroll). Instead of using PRINT, we can
also use POKE to put a byte directly into screen memory:

FOKE LOCATIONs WYALUE

Location is an address in the up-to-64K memory space (0-65535) and value is an 8-bit value (0-255).
Let’s see if it’s faster.

First, PRINT@ wants positions 0-511, and POKE wants an actual memory address. The 32-column screen is
located from 1024-1535 in memory, so PRINT@O is like POKE 1024. PRINT@511 is like POKE 1535. Let’s
make some changes:

0 REM IMHKEY+4. BAZ

S KBEs=CHRES{94 2»+CHE=C 10 »+CHRS(2 »+CHRSC 92
10 CLEsP=1024+25E+1E

20 POKE F: 108

30 As=IHKEYS:IF As="" THEH 230

40 LH=IHETR{KEZ: AF 2

S0 OMLH GOZUEL100.200. 300 400

B0 GOTO 20

100 IF P>1024+31 THEH FP=F-32

110 RETUREH

00 IF P<L1024+479 THEH FP=F+32:RETUEHN
il RETURHN

200 IF FP>1024+0 THEH P=P-1

310 RETURH

400 IF P<£1024+511 THEM P=F+1

410 RETURHN

WARNING: While PRINT@ is safe (a bad value just generates an error), POKE is dangerous! If you POKE
the wrong value, you could crash the computer. Instead of POKEing a character on the screen, you could
accidentally POKE to memory that could crash the system.

This program will behave identically to the original, BUT since we are using POKE, we can now go all the
way to the bottom right of the screen. That is just one of the reasons we might use POKE over PRINT@.

But is it faster, or slower? Let’s find out...

10 TM=TIMER:FORA=1TO1000
20 PRIMTaOs "+";
20 MExT:PRINT TIMERE-TH

...versus...

10 TH=TIMER:FORA=1TO1000
20 FPOKE1DZ24: 10E
30 MHExT:FPREINT TIMEE-TH

The PRINT@ version shows 259, and the POKE version shows 655. POKE appears to be significantly slower.
Some reasons could be:

1) POKE has to translate four digits (1024) instead of just one (0) so that’s longer to parse.

2) POKE has to also translate the value (106) where PRINT can probably just jump to the string that is
in the quotes.

Let’s try to test this... By giving PRINT@ a three-digit number, 510, it slows down from 259 to 424. Parsing
that number is definitely part of the problem. Let’s eliminate the number parsing completely by using
variables:

2 F=n

10 TM=TIMER:FORA=1TO1000
20 FPRIMTaFs "+"3

20 MHExT:PRINT TIMEE-TH

This gives us 229, so it’s a bit faster than the original. Now let’s try the POKE version:

2 FP=1024:

10 TM=TIMER:FORA=1TO1000
20 FOKEFs 10E

20 MHExT:PRINT TIMEE-TH

This gives us 400, so it’s faster than the original 655, but still nearly twice as slow as using PRINT@. But
wait, there’s still that 106 value. Let’s replace that with a variable, too.

2 P=1024:Y=10E&

10 TM=TIMER:FORA=1TO1000
20 POKEFs ¥

20 MEXT:PRINT TIMER-TH

This slows it down from 229 to 234! We are now almost as fast as PRINT@! But now the POKE version has to
look up two variables, while the PRINT@ version only looks up one, so that might give PRINT@ an
advantage. Let’s test this by making the PRINT@ version also use a variable for the character:

5 P:D:Illll$=ll,._ll

10 TM=TIMER:FORA=1TO1000
20 PRIMTaPs WZ3

20 MEXT:PRINT TIMER-TH

That slows it down to 231. This seems to indicate the speed difference is really not between PRINT@ and
POKE, but between how much number conversion of variable lookup each needs to do. You can use
PRINT@ without having to look up the string to print (“*”), but POKE always has to either convert a
numeric value (106) or do a variable lookup (L).

So why bother with POKE if the only advantage, so far, is that you can POKE to the bottom right character
on the screen?

Because of PEEK.

PEEK lets us see what byte is at a specified memory location. If I were writing a game and wanted to tell if
the player’s character ran in to an enemy, I'd have to compare the player position (X/Y address, or PRINT@
location) with the locations of all the other objects. The more objects you have, the more compares you
have to do and the slower your program becomes.

For example, here’s a simple game where the player (“*”) has to avoid four different enemies (“X”):

0 FEEM GAME. BAE

2 KEZ=CHRE=C94 2+CHREZC 10 2+CHRESC 2 2+CHESC 92
10 CLE:P=23E+1E

15 El1=32:E2=63:E3=442:E4=479

=]

FEIMTaF: "+"i iFRINTQELy "®" s iPRIMNTQEZ "R " sPRIMTAEZ "H" 3 :PRINT
adE4s "x"

20 AF=IMKEY=Z:IF As="" THEHN 30

40 LM=IMETRCKEZF:» A2 IF LM=0 THEMN 30
45 PRIMTaPs " "i

20 OMLHM GOEUEL1O0O0s. 200s 300x 400

E0 IF FP=El1 OFR FP=E2 ORFR P=E3 OFR P=E4 THEM 90
20 GOTO 20

90 PRIMTaZ2ES» "GAME OWER!":END

100 IF P*31 THEM P=FP-32

110 RETURHN

con IF F<479 THEM P=P+32:REETUREHN

210 RETURH

200 IF F>0 THEM P=P-1

210 RETURH

400 IF FP<510 THEHM P=FP+1

410 RETURH

In this example, the four enemies (“X”) remain static in the corners, but if you move your player (“*”) into
one, the game will end.

It's not much of a game, but with a few more lines you could make the enemies move around randomly or
chase the player.

Take a look at line 60. Every move we have to compare the position of the player with four different
enemies. This is a rather brute-force check. We could also use an array for the enemies. Not only would this
simplify our code, but it would make the number of enemies dynamic.

Here is a version that lets you have as many enemies as you want. Just set the value of EN in line number 1
to the number of enemies-1.

Side Note: Arrays are base-0, so if you DIM A(10) you get 11 elements — A(0) through A(10). Thus, if you
want ten elements in an array, you would do DIM A(9), and cycle through them using base-0 like FOR
I=0 TO 9:PRINT A(I):NEXT I

FEM GAMEZ. EAE

EM=10-1 "EMEMIEZ=

DIM ECEN2

KEF=CHR=C 94 2+CHRESC 10 2+CHRESC 8 2+CHRESC 9 2
10 CLE:P=23E+1E

15 FOR A=0 TO EN:ECAX=REMHDCS10 2:MEXKT
20 PRIMTZFs "#+"3

23 FOR A=0 TO EM:PRIMTAECA X "w"3 iNERT
20 AF=IMKEY=Z:IF As="" THEHN 30

40 LM=IMETRCKEZ:» A2 IF LM=0 THEHN 30
45 PRIMTaPs " "5

20 OMLHM GOEUEL1O0O0s. 200s 300x 400

E0 FOR A=0 TO EM:IF P=EchA>» THEM 90 ELEE HEXT
20 GOTO 20

90 PRIMTaZ2ES» "GAME OWER!":END

100 IF P*31 THEM P=FP-32

110 RETURHN

con IF F<479 THEM P=P+32:REETUREHN

210 RETURHN

200 IF F>0 THEM P=P-1

210 RETURH

400 IF FP<510 THEHM P=FP+1

410 RETURHN

Ll O e

1] XRoar (=N o =)

File View Hardware Tool

In 1980, this was a game.

Now the program is more flexible, but it has gotten slower. After every move, the code must now compare
the locations of every enemy. This limits BASIC from being able to do a fast game with a ton of objects.

25

Which brings me back to PEEK... Instead of comparing the player against every enemy, all we really need
to know is if the location of the player is where an enemy is. If we are using POKE to put the player on the
screen, we know the location the player is, and can just PEEK that location to see if anything is there.

Let’s change the program to use POKE and PEEK:

0 EEM GAMEZ. EAE

1 EM=10-1 “"EHMEMIE=

¢ DIM ECEM2

2 EBS=CHEZ.(94 3+CHREZC 10 >+ CHRESC S 2+CHRESC 92
10 CLE:FP=1024+2536+16:V=10k:YE=9:YE=22
15 FOR A=0 TO EM:ECAX=1024+REHDCS11 22 HERT

20 FOEEFs Y
3 FOR A=0 TO EM:FOKEECA X WYEZMERT
30 As=IMKEY=:IF Az="" THEMN 30

40 LH=IHETRCKEBES: A5 22 IF LH=0 THEH 320
43 POEKEF: WE

20 OMLH GO=UE100.200s 200 400

&0 IF FEEK.CF»=ME THEM 390

50 GOTO =20

90 PRIMTazess "GAME OWER!":EMD

100 IF P>1024+31 THEHM FP=F-232Z

110 EETURH

co0 IF P<1024+479 THEM FP=F+32:REETUEH
10 RETURH

200 IF P>1024+0 THEHW P=P-1

310 RETURH

400 IF P<1024+510 THEH P=F+1

410 RETUREH

Now, instead of looping through an array containing the locations of all the enemies, we simply PEEK to
our new player location and if the byte there is our enemy value (VE, character 88), game over.

It should be a bit faster now.

We should also change the “1024+XX” things to the actual values to avoid doing math each time, but I was
being lazy.

Now we know a way to improve the speed of reading key presses, and ways to use POKE/PEEK to avoid
having to do manual comparisons of object locations. Maybe this will come in handy someday when you
need to write a game where an asterisk is being chased by a bunch of Xs.

Until next time...

Comment 1

I think INSTRS is fairly the best solution, but coming from dialects which do not have such a beast I tend to use an array
mapping the INKEY$ character code to a value (for ON...GOTO or mapping back with another arrays to calculate the next
state in position, compare to a limit, ...). Sometimes a good trade-off in spite the waste of array space (if you can afford
this). It would be interesting how competitive such a method is ...

Part4

INSTR and GOTO/GOSUB
Here’s a quickie that discusses making INSTR faster, and GOTO versus GOSUB.

Side Note: In the code examples, I am using spaces for readability. Spaces slow things down, so instead of
“FOR A=1 TO 1000” you would write “FORA=1T01000”. If you remove the unnecessary spaces from
these examples, they get faster.

In the previous installment, I discussed ways to speed up doing things based on INPUT by using the INSTR
command. INSTR will return the position of where a string is inside another string:

FEINT IM:ETEC"AEC"s "EB" 2 2

Above, INSTR returns 2, indicating the string “B” was found starting at position 2 in the search string
“ABC”. If the string is not found, it returns zero:

FEINT IMETRC"AREBC"s "w" 2 0

You could use this in weird ways. For instance, if you wanted to match only certain animals, you could do
something like this:

10 IMFUT "ENTERE AM AMIMAL"iAz

2l A=INETEC"CATDOGCOWMCHICKEN"s AS2

20 IF A*0 THEM FPRIMT "I KHOW THAT AMIMAL!" ELEE FRINT
"WHAT"E THAT?®"

40 GOTO 10

[xRoar SIE=]

File View Hardware Tool

INSTR can help you identify animals!

...but why would you want to do that? And, it just matches strings, so any combination that appears in the
search string will be matched:

7 | XRoar [=] = =

File View Hardware Tool

...0r not.

28

Above, searching for “A” was a match, since there is an “A” in that weird animal string, as well as a “C”.
There was no “B”, so...

Okay, never mind. Forget I mentioned it.

I am sure there are many good uses for INSTR, but I mostly use it to match single-letter commands (as
mentioned previously) like this:

10 AF=INHKEY=:IF Rs="" THEMN 10
2l LH=IMETREC"AECD"s RAz2:IF LMH=0 THEM 10
=20 OM LA GOTO 100200300400

Since INSTR returns 0 when there is no match, it’s an easy way to validate that the character entered is
valid.

According to the documentation in the CoCo 3 BASIC manual, the full syntax is this:
INSTR(start-position, search-string, target-string)

You can use the optional start position to begin scanning later in the string. For instance:

FEINT INM:ZTECZs "ABCDEF". "A"2

That would print 0 since we are searching for “A” in the string “ABCDEF” starting at the third character
(so, searching “CDEF”).

The manual also notes conditions where a 0 can be returned:

o The start position is greater than the number of characters in the search-string: INSTR(4, “ABC”,
«An)

o The search-string is null: INSTR(“”, “A”)
e It cannot find the target: INSTR(“ABC”, “Z”)

I was surprised today to (re)discover that INSTR considers a null (empty) string to be a match, sorta:

FRIMNT IMETRC"AEC"s ""2 1

If the search string is empty, it returns with the current search position (which starts at 1, for the first
character). This seems like a bug to me, but indeed, this behavior is the same in later, more advanced
Microsoft BASICs.

I bring this up now because I was almost going to show you something really clever. Normally, I use
INSTR with a string I get back from INKEY$. But, you can also use INKEY$ directly. And, since ON
GOTO/GOSUB won’t go anywhere if the value is 0, I thought it might be clever to use it like this:

10 OF INETEC"ARECD": INKEYS> GOTO 100 200s 200s 400

...and this is smaller and much faster and works great ... if there is a key waiting! If no key is waiting,
INKEY$ returns a null (“”) and ... INSTR returns a 1, and then ON GOTO goes to 100 even though that was
not the intent.

Darnit. I thought I had a great way to speed things up. Consider the speed of this version.

] XRoar = =E=]

File View Hardware Tool

INSTR example ... workaround for not using a variable.

I thought by replacing line 30 with...

O IMETEC"REC": INKEYF 2GOZUES0x 230 90

"

...Iwould be set. But, since an empty INKEY$ is returning “”, it's always GOSUBing to line 70.

I tried a hacky workaround, by adding a bogus character to the start of the string, and making that GOSUB
to a RETURN located real close to that code (so it didn’t have to search as far to find it):

30

] xRoar = =]=]

File View Hardware Tool

INSTR example.

...but, the overhead of that extra GOSUB/RETURN that happens EVERY TIME there is no key waiting was
enough to make it slightly slower. If it wasn’t for that, we could do this maybe 30% faster and use less
variables.

So, unfortunately, I guess I have no optimization to show you... Just a failed attempt at one.

But wait, there’s more!

I posted about this on the CoCo mailing list and in the CoCo Facebook group to figure out if this behavior
was a bug. There were several responses confirming this behavior in other versions of BASIC and
languages.

On the list, Robert Hermanek responded with a great solution:

Issue is just getting a return of 1 when searching for empty string? Then why not:

10 OF INETREC" ABC"s INKEYS2 GOTO 10 100200 300...

notice the space before A.

His brilliant suggestion works by adding a bogus character to the search string, and making any match of
that string (or “”) GOTO the same line. Thus, problem solved!

This won’t work with ON GOSUB since every GOSUB expects a RETURN. Each time you use GOSUB, it takes
up seven bytes (?) of memory to remember where to RETURN to in the program. If you did something like
this, you'll see the issue:

31

https://pairlist5.pair.net/mailman/listinfo/coco

10 PREIMT MEM:GOEUE 10

I make a quick change to my program to use GOTO instead:

10 TIMER=0:THM=TIMER

cl0 FOR A=1 TO 1000

20 O IMETREC" ABC"s IMNKEYS > GOTO 40x 70 20. 90
40 MHEXT

20 PRIMT TIMEE-TH:EMD

70 PRIMT"A FREEEED":GOTO 40

20 PRIMT"E FREEZEZED":GOTO 40

90 FPRIMT"C FREEEED":GOTO 40

For my timing test inside the FOR/NEXT loop, I made the first GOTO point to the NEXT in line 40, but if I
wanted to wait “forever” until a valid key was pressed, I would make that 30.

This version shows a time of 412, so let’s compare that to doing it with A$:

10 TIMER=0:TH=TIMER

20 FORA=1 TO 1000

30 As=IMKEY=Z:IFA$="" THEM 40 ELZE OM IMETREC"AEBC":pAx> GOTO
S0 20,190

40 MEXT

=20 PRIMT TIMEE-THM:EMD

70 PRIMT"A PREEEED":GOTO 40

20 PRINT"E FREZZED":GOTO 40

90 PRIMT"C PREEEED":GOTO 40

This produces 486. We now have a way to avoid using A$ and speed up code just a bit.
This made me wonder ... what is faster? Using GOTO, or doing a GOSUB/RETURN? Let’s try to predict...

Both GOTO and GOSUB will have to take time to scan through the program to find the destination line, but

GOSUB will also have to take time to store the “where are we” return location so RETURN can get back there.

This makes me think GOSUB will be slower.

BUT, we need a GOTO to return from a GOTO, and a RETURN to return from a GOSUB. GOTO always has to
scan through the program line by line to find the destination, while RETURN just jumps back to a location
that was saved by GOSUB. So, if we have to scan through many lines, the return GOTO is probably slower
than a RETURN.

Let’s try.

10 TIMER=0:THM=TIMER
20 FOR A=1 TO 1000

20 GO=UE 1000

40 MHEXT

20 PRIMT TIMEE-TH:EMD
1000 RETUREH

That prints 140.

10 TIMER=0:THM=TIMER
20 FOR A=1 TO 1000

20 GOTO 1000

40 MHEXT

20 PRIMT TIMEE-TH:EMD
1000 GOTO 40

That prints 150.

I expect it is because line 1000 says “GOTO 40” and since 40 is lower than 1000, BASIC has to start at the
top and go line by line looking for 40. If you GOTO to a higher number, it starts from the current line and
moves forward. The speed of GOTO (and GOSUB) varies based on where the lines are:

GOTO should be quick when going to a line right after it:

10 TIMER=0:THM=TIMER
20 FOR A=1 TO 1000

20 GOTO =1

21 GOTO 32

32 GOTO 33

40 MEXT

=20 PRIMT TIMEE-THM:EMD

That prints 170.

Line 30 has to scan one line down to find 31, then 31 scans one line down to find 32, and 32 scans one line
down to find 40.

But if you change the order of the GOTOs:

10 TIMER=0:THM=TIMER
20 FOR A=1 TO 1000

20 GOTO =2

21 GOTO 40

a2 GOTO =1

40 MHEXT

20 PRIMT TIMERE-TH:EHMD

...that prints 175.

It is the same number of GOTOs, but line 30 scans two lines ahead to find 32, then 32 has to start at the top
and scan four lines in to find line 31, then line 31 has to scan two lines ahead to find 40.

If we add more lines (even REMs), more things have to be scanned:

FEM
FEM
FEM
FEM
FEM
FEM
FEM
FEM
FEM
FEM
10 TIMER=0:THM=TIMER
20 FOR A=1 TO 1000

[R R) Y N

20 GOTO 32
21 GOTO 40
32 GOTO =1
40 MHEXT

20 PRINT TIMERE-TM:EMD
We are now up to 192 and the one with the lines in order is still 170.

The more lines GOTO (or GOSUB) has to search, the slower it gets. So while MAYBE there might be a case
where a GOTO could be quicker than a RETURN, it seems that even with a tiny program, GOSUB wins.

So ... the question is, is the time we save doing the INKEY like this:

20 O IMETRC"™ AEBC": INKEY=2 GOTO 40x 70 S0 30

...going to offset the time we lose because those functions all have to GOTO back, rather than using a
RETURN?

If this was a normal “wait for a keypress” then it probably wouldn’t matter much. We are just waiting, so
there is no time to save by making that faster.

If we were reading keys for an action game, the actual “is there a keypress?” code would be faster, giving
more time for the actual program. But, every time a key was pressed, the time taken to get in and out of
that code would be slower. I guess it depends on how often the key is pressed.

A game like Frogger, where a key would be pressed every time the frog jumps to the next spot, might be
worse than a game like Pac-Man where you press a direction and then don’t press anything again until the
character is at the next intersection to turn down.

I am not sure how I would benchmark that, yet, but let’s try this... We’ll modify the code so “” actually is
honored as an action:

10
=]
=20
41
20
100
110
can
cln
200
210
400
410
200
aln0

TIMER=0:THM=TIMER
FOR A=1 TO 1000

O IMETRC"

MEXT

UOLE": INKEY=2 GOTO 100s 200s 300 400 300

FEIMT TIMER-THM:EMD

FEM IDLE
GOTO 40
FEM MOWYE
GOTO 40
FEM MOWYE
GOTO 40
FEM MOWYE
GOTO 40
FEM MOWYE
GOTO 40

Logr

F

DOMH

LEFT

RIGHT

Now if no key is waiting (“”), INSTR will return a 1 causing the code to GOTO 100 where the background
(keep objects moving, animate stars, etc.) action would happen. Any other value would go to the handler
for up, down, left or right.

This prints 457. Doing the same thing with GOSUB:

TIMER=0:THM=TIMER
FOR A=1 TO 1000

10
=1
=20
40
=0
100
110
con
2l
200
210
400
410
=00
=10

O IMETRC"

MEXT

UOLE": INKEYS2 GOZUE 100200 300 400 500

FEIMT TIMER-TM:EMI

FEM IDLE
RETURH
FEM MOWYE
RETURH
FEM MOWYE
RETURH
FEM MOWYE
RETURH
FEM MOWYE
RETURH

Logr

UF

DOKWH

LEFT

RIGHT

...prints 487. It appears GOSUB/RETURN is slower for us than GOTO here. But why? GOSUB seemed faster in
the first example. Is ON GOSUB slower than ON GOTO?

Quick side test:

TIMER=0:THM=TIMER
FOR A=1 TO 1000
OM 1 GOEUE 1000

10
1
=0
41
20
100

MEXT

FEINT TIMER-THM:EMD

0 REETURH

That prints 249. GOSUB by itself was 140, so ON GOSUB is much slower.

10 TIMER=0:THM=TIMER
20 FOR A=1 TO 1000

20 OM 1 GOTO 1000

40 MHEXT

20 PRIMT TIMEE-TH:EMD
1000 GOTO 40

...also prints 249, and GOTO by itself was 150. I am a bit surprised by this. I will have to look in to this
further for an explanation.

But I digress...
We can still slow down GOTO. If we had a bunch of extra lines for GOTO to have to scan through:

FEM
FEM
FEM
FEM
FEM
FEM
FEM
FEM
FEM
FEM

w0 b WS

...that will slow down every GOTO to an earlier number. With those REMs added, we have:
e GOTO/GOTO version with REMs: 473 (up from 457 without REMs)
e GOSUB/RETURN version with REMs: 487 (it never passes through the REMs)

It appears that, while GOSUB/RETURN may be faster on it's own, when I put it in this test program,
GOTO/GOTO is slightly faster, but that can change depending on how big the program is. More research is
needed...

So I guess, for now, I'm going to avoid using a variable for INKEY$ and use GOTO/GOTO for my BASIC
game...

Until next time...

Comment 1

I suspect the reason the ON...GOSUB and ON...GOTO variants are substantially slower is due to the expression
evaluation that has to be run. That’s a fairly slow process, especially given that in the case of “ON 17, there’s an ASCII to
floating point conversion. I suspect that the expression evaluation swamps both line number searches and the
GOSUB/RETURN stack handling overhead which probably explains why there’s no apparent difference between ON...
GOTO and ON...GOSUB in the specific case tested. I would expect larger programs should pan out in favor of ON...
GOSUB, though, at least if the extra program code is before the INKEY loop.

I did some experiments with similar benchmarks and got the same result you did. See http:/ /lost.1-
w.ca/0x05/ optimizing-color-basic-on-goto-vs-on-gosub/ for my analysis. Basically, I also got no measurable difference
between ON...GOTO and ON...GOSUB.

I think your ON...GOSUB variant that tested as slower than the ON...GOTO one has to do with the GOSUB/RETURN

http://lost.l-w.ca/0x05/optimizing-color-basic-on-goto-vs-on-gosub/

happening for every idle loop instead of just bailing directly to the “NEXT” instruction in the idle case. After all, the idle
case is what is going to execute more often than not. In a non-trivial program, that difference probably disappears in the
noise but that in itself may be a good reason to use the GOTO variant. Key presses will be the exception rather than the
norm so optimizing for the idle case probably gives you a better speedup overall. Of course, one should benchmark the real
program to see which variant is better in a given circumstance.

B Comment 2

Awesome, William! I am reading your write-up right now. I will post questions over there.

I Comment 3

For Optimal speed try this:

0 GOTO10

1 HEXT:GOTOSO

10 TIMER=0:THM=TIMER
c0 FORA=1TO1000

20 OM1GOTO1

40 MEXT

=20 PRIMT TIMEE-THM:EMD

B Comment 4
Hey James! I was hoping you were out here somewhere. I've been meaning to e-mail you some questions.

Doesn’t that just bypass the NEXT in 40? And the idea is that GOTO to the second line of the program is about as fast as
you can get unless it’s the first line or the next line after GOTO.

I have an updated benchmark test that averages out multiple runs, and when I get caught up (posting one a day until I am),
it would be neat to see what else you would do with some of the things presented.

B Comment 5
> Doesn’t that just bypass the NEXT in 40?

Just in this special case line 40 is never reached. Generally NEXT may appear multiple times matching the last FOR in run-
time ... needed in situations where ON..GOTO might fall through.

I Comment 6

My suggestion has a number of techniques which I believe might help with speed, First put all common subroutines at the
top of the program (to shorten the search interpreted Basic must do to find a line number). Second, if you going to GOTO
or ON/GOTO to subroutines from within a tight FOR/NEXT loop, then why not use additional NEXT commands to
return you to that loop. This way you save the interpreter having to deal with an entire additional GOTO command and
line number for each visit to the subroutine (at least until the last element of the FOR/NEXT loop). This is possible because
basic doesn’t care how many NEXT commands you put in a program for any FOR loop, so why not use NEXTs to perform
the double functions of returning you from subroutines and also iterating the loop, if you can structure a program that
way.

B Comment 7

Could you show me an example of using NEXT to get back from the ON/GOTO from within a loop? Also, I gather that,
since GOTO/GOSUB stops scanning forward as soon as it finds a line number greater than what you ask for, it makes
sense to put all the “run once” at the end of the program.

Comment 8

I think something like that was in mind:

(=1
=20
25
40
a0
100
110
con
21l
200
210
400
410
200
=10

FOR A=.

TO 1:
O IMETRC"

A=. ¢ REM FOREYER
UOLE", IMKEYS2 GOTO 100s 200s 200 400. 500

FREM FALL THEOUGH ACTION

HEXT

EHD

FEM IDLE
ME®T

FEM MOWYE
ME®T

FEM MOWYE
ME®T

FEM MOWYE
ME®T

FEM MOWYE
ME®T

Logr

UF

DOWH

LEFT

RIGHT

Compared to the ON GOSUB this is some kind of “redo” or “loop retry” not reaching the fall through action in 35.

Comment 9

How about using a single GOSUB to the inkey and then return from each option:

TIMER=0:THM=TIMER
FOR A=1 TO 1000

10
20
=20
40
=0
=11,
95
100
110
con
21l
200
210
400
410
200
210

GOEUE 30
MEXT

FEIMT TIMER-TM:EMD
FEM ALTERMATIVE ELEMDED =TREUCTURE

O IMETRC"

FEM IDLE
RETURHM
FEM MOWYE
RETURHM
FEM MOWYE
RETURHM
FEM MOWYE
RETURHM
FEM MOWYE
RETURH

Comment 10

UOLE": INKEY=2 GOTO 100s 200s 300 400. 300
Logr

UF

DOMH

LEFT

RIGHT

“Just when I thought I was out...they pull me back in.” I am intrigued. Forward searching has to happen for GOTO or
GOSUEB, so that part shouldn’t be too different. But the return pops back, preventing the need to start at the top and search
forward each time. I will try to find some time to experiment with this.

Part 5

HEX versus DECimal Numbers

As Barbie once said*...
Math is hard!

While Mattel’s Math-Is-Hard Barbie never quite made the splash the marketing team had hoped for, her
sentiment lives on.

Side Note: This is in reference to a the Teen Talk Barbie doll released in 1992, and out of the 270 phrases
the doll could say, that was not one of them. The real quote was “Math class is tough!”

Earlier in this series, I touched on the fact that dealing with numbers is time-consuming for BASIC.
Something as simple as B=65535 takes time to process as the interpreter translates that base-10 decimal
number into an internal floating point value. The more digits, the more work. For instance:

0 EEM HUMEEREZE. EAZE
10 TIMERE=0:THM=TIMER
cl FOR A=1 TO 1000
=0 E=1

40 HMHE=T

20 FRIMT TIMEE-TH

That prints a value of 183. If you change line 3 to read “B=12345" the number jumps to 485. You can see the
increase:

E=1-183
E=12-262
E=123-337
E=1234-408

E=12343-483

Obviously, the more numbers to parse and convert, the more time it will take. It also seems to matter if the
value has a decimal point in it:

E=1.0-403
E=1.1-476

Even though that is only three characters to process, it takes longer than B=123. Clearly, more work is
being done on floating point values. Even though all Color BASIC numbers are represented internally as
floating point, it still makes sense to avoid using them unless you really need them.

You can also represent a base-16 number in hexadecimal. For the value of 1, it feels like parsing “&H1”
should take longer than parsing “1”. Let’s try:

E=%H1-180
E=%&H12-175
E=&H12Z-200
E=LH12Z24-203

It seems that parsing a hexadecimal value is much faster than dealing with base-10 values. Using this, you
could speed up a program just by switching to hex, provided that your numbers are between 0 and 65535
(the values that can be represented in hex). I was surprised to see that negative values also work:

E=4HFFFF-201
E=-%HFFFF-230

It seems dealing with the negative takes a bit of more time, though, so it makes sense to avoid using them
unless you really need them.

With this in mind, let’s test a FOR/NEXT loop:

10 TIMER=0:THM=TIMER
20 FOR A=%H1 TO %HZES=
20 EB=%&H1

40 MEXT

20 PRIMT TIMER-TH

This prints 182, which is basically the same speed as the original that used © TO 1000.I guess
hexadecimals don’t really help out FOR/NEXT.

Why? Because the FOR/NEXT statement is only parsed once, then the loop counters are set up and done. It
is probably a tad faster to use hex, but that savings only happens once in the “do it 1000 times” test.

But, as you see, USING the variables gets faster. Any place we use a number, it seems using a hex version
of that number may speed it up:

10 TIMER=0:TM=TIMER
20 FOR A=1 TO 1000

20 IF A*%HFF THEM REM
40 MEXT

20 PRIMT TIMER-TH

This prints 278. Doing it with A>255 prints 427! Imagine if you could speed up every time you used a
number in your code:

10 TIMER=0:THM=TIMER
cl FOR A=1 TO 1000
20 PRIMTa%Hz20. "HELLO"
40 HME=T

20 FPRIMT TIMEE-TH

That prints 391, but changing it to PRINT@32 prints 469! If you use a bunch of PRINT@s in your code, you
can speed them up just by switching to hex!

Math could be accelerated, too, simply due to the number conversion being faster. The more digits, the
better advantage hex has:

E=A+&H2-0F-285
E=A+39993-483

And the more numbers, the more time you can save by using hex. A common PRINT thing is to use the
length of a string to figure out how to center it on the screen:

0 FEEM MUMEBERE. BEAE

10 TIMER=0:THM=TIMER

15 CLE:A$="HELLO:» WORLD!":LM=LEMCAZ:>
20 FOR A=1 TO 1000

23 PRIMTaZZ2#+2+16-LMHA2» AF

40 MHEXT

20 PRIMT TIMER-TH

That prints 1284. Converting line 24 to HEX:

c2 FRIMTaikHZ0#+&:HE+:H1I-LHA%HZ» AF

And now it prints 1097.

In a game where you might be PRINTing things on the screen constantly, those savings could really add
up.
Pity that math is hard, else we could just use hex in our programs and get a free speed boost.

Until next time...

Comment 1

One place where a decimal point will give an improvement is when using the value 0 in an expression.
Basic will accept a stand-alone decimal point as the number 0, but it will process it faster than the ‘0’
character.

Try comparing the speed of:

IF M < 0 THEM ...

with that of:

IF M < . THEM ...

Comment 2

Mind blown.

Comment 3
You want something to really blow your mind? You can put spaces in the middle of numbers. You can also put spaces in
the middle of variable names.

Comment 4

There is absolutely no way that is true. ;)

Comment 5

A E = 110

http://lost.l-w.ca/

FEINT A E

10

A =123 4 3
FEIMNT R

123245

That’s awesome. Why the heck does that work?

B Comment 6

The CHRGET subroutine for Microsoft-based interpreters parsing the program text skips every space character. The one
that are needed to prevent the tokenizer to misinterpret keywords or variable names aren’t necessary at all after a line is
tokenized. These blanks are usually kept for ease of editing. Spaces in string constants are directly handled by the
expression evaluation without using CHRGET. It’s just a side-effect due to the lack of a strong lexical analysis.

B Comment 7

Thanks, Johann! I don’t know your name. How did you come to know the internals of the interpreter?

B Comment 8

Did a lot on Commodore-based systems, digging into the interpreter to merge Basic and machine code stuff, to accomplish
parameter passing and return values, extending the interpreter, improved string garbage collection and so on. Later I got a
Dragon32 which fascinates my (my preferred CPU) I stumbled into the Extended Color BASIC and saw all the similarities
... I could do the same interfacing, nearly the same data structures, just other addresses (and of course the endianess ...).
I Comment 9
I started on a VIC-20, and preferred the Extended BASIC on the CoCo. It wasn’t until recent years that I found out
Commodore BASIC was Microsoft. Any idea why it used GET$ instead of INKEY$?
B Comment 10

The GET command is typical for the 6502 branch of the early MS Basic. I think GET was simply part of the unified I/O
commands (based on logical file numbers on top of static device numbers) which allowed to read a single character from
the standard input device (the keyboard). Output redirection with CMD can easily achieved. As opposed INKEY$ is a
string function, not a command which has to be invented to the read the keyboard because the above mentioned file
number layer is missing. The basic I/O command are reduced to PRINT and INPUT. Single byte input was not a necessary.
But Commodore computers (mainly business oriented) with their IEEE interface needed the single-byte-read-ability to
communicate with devices in a very distinct and controlled manner (later on at home computer times this device was only
the floppy which demanded this kind of operation).

I hope this meets the point.

I Comment 11
So in my VIC days, GET A$ was kind of an implied GET #stdin,A$ read?

B Comment 12
> So in my VIC days, GET A$ was kind of an implied GET #stdin,A$ read?
Exactly, if you open the keyboard device (number 0) you can do this
10 OFEM 1.0

2l GETaxlsfAs:IF As="" GOTOZ0
20 FRIMT A%

Alas, there no concept of STDIN as opposed to STDOUT which is controlled by the command CMD. So
GET A$ (without hash argument) is always bound to the keyboard. But this is just a limitation of Basic
itself, the underlying Kernel on Commodores actually do keep a “current input device”.

B Comment 13

I understand. I only had the Datasette and a cheesy thermal printer in my VIC days, so I never learned much about I/O. It
all makes much more sense to me today than it did back then :)

B Comment 14

How did you figure this out???

B Comment 15

Thanks for commenting! I am learning much.

B Comment 16
Son of a gun. A quick test in my benchmark program using “Z=0" showed 178, and “Z=." showed 141.
It looks like you can do PRINT@.,”HELLO” too. Wild.

B Comment 17

I read about it someplace, but don’t remember where. It was probably part of a discussion on the CoCo mailing list.

B Comment 18

The reason -&HFFFF is slower is actually pretty straight forward yet also counter-intuitive. It actually evaluates the minus
as unary negation and the &HFFFF is converted independently. Now negation is practically instant in the floating point
representation used. However, it does require an extra trip through the expression evaluator.

Also, as a side note, on the Coco3, &H (and &O) can be used for 24 bit values. They expanded it so that LPOKE and LPEEK
could be used with hex addresses across the whole address space.

Part6

Size Matters. Or Space Matters. You decide.

Sometimes we want to optimize for code space, and other times for variable and string space. For example,
if you want to create a 32 character string like this:

LR

...you could either declare it as a static string:

As = "¢

Or build it programatically like this:

AS="<"+STRINGSC 300 "= 24" 3"

The second version takes about 16 bytes less of program space because the string is generated dynamically
in string memory rather than being stored in the tokenized BASIC program.

Doing it the second way seems like a good idea, but keep in mind when you make this string, somewhere
in string memory will be those 32 characters, PLUS you still have the BASIC statements that created it. It’s
actually larger, overall, to do it this way.

BUT, any temporary strings like that might make sense to create on-the-fly as you need them since that
memory can be reused by other strings.

10 As="<
20 PRIMT A£:PRINT "MAIHM MEMU":PRIMT Af
20 IMPUT "COMMAMD": -C=

In the above example, A$ points to that sequence of characters INSIDE the BASIC program itself. It is
always there. But, if you generated the string only when needed, the memory used by A$ could be used for
other purposes:

10 A$="<"+STRINGEC 30, " =" 24" 30
20 PRINT A$:PRINT "MAIM MEMU":PRINT A%
30 INPUT "COMMAND"s -A$

Above, A$ is allocated and turned into the long 32-character string, printed, and then the memory used by
A$ can be reused by INPUT. I suppose just setting it to A$="" might give it back, too.

This would come with a speed penalty since the creation and destruction of strings takes more CPU time
than just using a static string.

I think I may have also mentioned that, even if a string is part of the BASIC program, if you do anything to
it, it has to duplicate it in string memory which creates a second copy of it:

10 AF="<
2l AF=Rz+"HELLO"

Above, A$ initially starts out pointing inside the program itself, taking up none of that string memory. At
line 20, the entire A$ gets copied in to string memory and then the extra characters are added to it. At that
point, that string is now using over twice the memory (program space plus string space).

Let’s try to prove that. The CLEAR command is used to reserve memory for strings. By default, 200 bytes
are reserved. We can change that by doing CLEAR 0. Here is a program that has no string memory, yet it
works because the string is inside the program space:

i0 CLE&R 0
20 pE="d--

If you run this, you can PRINT A$ and prove it exists, but the moment you try to declare a second string
like B§="HELLO” or even manipulate A$ like A$=A$+"” you will get an Out of String Space errors (?0S
ERROR):

XRoar

10 CLERARE 0

Ex="MHO REOOM FOR ETRINGE"
*0% ERREOR
Ok

Proving strings can live inside program space.

Sometimes you choose speed over size, and sometimes you choose size over speed. Thus, you can optimize
for speed (which we have been doing so far), or optimize for size.

But I digress.

Elementary, my dear DATA.

Today I want to discuss DATA statements. In my assembly language series, I showed how the Iwasm
assembler can generate a small BASIC program that has the assembly code in DATA statements, and a small

loader which will READ them and POKE them in to memory:

10 READ As B

20 IF A=-1 THEH A0

20 FOR C = A TO B

40 READ D:FOKE CsD S0 HEST C

B0 GOTO 10

<0 EMD

20 DATA

16128 16167 142s B3y 143 1662 128 393 6x 1732 159y 160 22 322 2462 572 8
4 1042 1052 115 222 105 115 38297 322 115 10199 1145 101a 116s 22
109, 1012115 115297 1032 101 46 0s =15 -1

DATA statements can contain base-10 numbers, base-16 hexadecimal numbers, or strings (and I guess base-8
octal numbers too, but who would do that?). This means you could have the data stored as numbers:

100 DATA Os ls 2 34 Sa B A B39 1021151251314 15

100 DATA
BHO» 2HZy BHZy 2 H4 &HD &HE &HA» &HE &H9 &HAs &HEs &HCs 2:HD» %:H

E» &HF

...or as strings like “FE” or “1F” that you could READ and convert to hex numbers in the loader:

100 DATA
99 4Fy 35 20 4Dx 552 532 54 202 422 45 202 422 4F 2 522 45 44

When it comes to a size, hexadecimal numbers without the “&H” in front are always smaller than their
base-10 equivalent. Single-digit decimal values 0-9 are single-digit 0-9 in hex. Double-digit decimal values
10-15 are represented by single-digit hexadecimal values A-F. Every time a value from 10-15 appears,
representing it in decimal takes up twice as much space. And for three-digit decimal values 100-255, those
are two-digit hex values 64-FF.

If you store the data as strings, like this:

100 DATA O ls2s St Do b Aa B 9o A BEx Co InEs F

101 DATA
1011212213214 152 162172122192 1A 1E» 1C» 10 1E» 1F

...you can read each string in, and convert it to a number by adding “&H” to the start and using the VAL ()
function:

EFEAD Ezx:E=YALC"&2H"+Es
For the decimal and hexadecimal versions, you just read it as a number:

READ E

The smallest version would be the string approach, since three-digit numbers can be represented with two
digits. But, doing the string conversion with VAL () makes it slower.

The fastest version would be using hexadecimal numbers since BASIC can parse hex values faster than
base-10 numbers. But, this is the largest version since 255 in decimal (3 characters) or FF as a hex string (2
characters) would be represented as &HFF as a hex number (4 characters). Those numbers would take up
twice as much space as the string version!

In the middle is base-10 numbers. It's not the largest, or the smallest, or the fastest or the slowest. It makes
an ideal compromise.

Let’s do a test. I have DATA statements representing values from 0 to 255. I have three versions: the first will
use base-10 numbers, the second will use hexadecimal numbers, and the third will use strings that are just
the hex part of the “&H” number.

Base 10 Numbers

0 FEEM DATADEC. EAE
10 TIMER=0:THM=TIMER
2l FOR A=0 TO 2353

20 EERD E
40 MHEXT

20 PRIMT TIMER-TH

E0 EMI

100 DATA D ls 2 34 Saba As B9 105 110122135 14215

101 DATA 16: 17 18x 19 202 21 222 23 24 25 263 273 282 29 30 31
102 DATA 32 33 34 353 362 372 38 39 40 41s 425 432 442 45 461 47
1032 DATA 48: 49 50x51s 522 531 54 535 56 SA» S8 3 B0 Els B2 B3
104 DATA B4 BESs BEs B BB B9 Fls Al P2 A3 A4 Ao FEa PP 788 79
105 DATA S0: 81 8283 842 85 86 87 88, 89,90, 91 922 93 94 95

106 DATA

96 972 98y 99,
107 DATA
11221135114
127

102 DATA
128s 129 130
143

109 DATA
144s 145 1456
1549

110 DATA
160 161 162
175

111 DATA
1762 1772 178
191

112 DATA
192 193 194,
207

112 DATA

100

115

131

147

163

179

195

101x 102

1162117

132x 133

142: 149

1E4s 165

180: 181,

196x 197

103

115

134,

150

1EE

122,

195,

104> 105, 106» 107> 1032 1091102111

119: 120 1212 1222 1232 1242 125 126

1353 136 1372 1382 139 140 141 142

151» 152> 1532 1542 1552 15362 1537 155,

167 162 19 1702 1710 1720 1730 174

183, 184> 185> 186> 187> 188 189 190

199, 200 201202 203 204 205 206

08209 210211212213 2142215 21622172 2182 219 220 221 222

o3
114 DATA

Cod: 2202 226 227 228 229 2302 231y 2322 2332 234 2350 236 237 238

£39
1153 DATA

240 241 242 243 244 245 2462 247 2482 249 2502 2512 2532 235330 2354

233

Hexadecimal Base-16 Numbers

0 FEEM DATAHEX. BEAE

10 TIMER=0:THM=TIMER

2l FOR A=0 TO 2353

20 EERD E

40 MHEXT

20 PRIMT TIMER-TH

E0 EMI

100 DATA

BHO» 2:H1» BH2» BHZy RH4y &HDy &HE &HA» &HZ» &H9y &HA» &HE» &HCs &HID» &HE»
&HF

101 DATA

B2H10s &H11» 2:H1Zs &H13y B H1 4 &H15 &H1E 2H1 7 &H1S 2H19s &H1A» 2H1Es
BH1Cs &H1D» %:H1Es &H1F

102 DATA

BHE20s &H21» RH22 &H23 &H2 4 &H25 &H2E &HZ2F» &HE2S 2H29s &H2A» 2HZE»
BLHZ2Cs &H2D» &:H2Es &HZ2F

102 DATA

BH30s &H3 1 BH3Z &H33 BH3 4 &H35 &H3IE &H3F &H2S 2H39 &H3A 2HZEs
BH3ICs &H3Dy &H3IEs &H3F

104 DATA

BH40s &H41s BRH42s &H43 BH4 42 2H45 &H4E &H4 7 &H45 2H49 &H4A» 2H4E»
2H4Cs &H4Dy :H4Es &H4F

1053 DATA

BH30s &HS 1 B:H32 &HS3 B&HS3 4 &HS5 &HSE &HSF &HSS 2H39 &HSA 2H3Es
BH3Cs &HSDy &:HSEs &HSF

106 DATA

BHEODs &HE 1 RHES &HEZy RHE 4 &HESy RHEE &HEFy &HES 2HESs LHEA» BHEES
LHECs &HEDy &:HEEs &HEF

107 DATA

BHAOs &HA 1 BHF 2y &HA 3 BHA 42 &HA 5y BHAE &HA 7 BHAS 2HA 9 &HAA 2 HF B
BHACs &HADy & HFEs &HAF

102 DATA

BHE0s &HS 1, RHEZ &HE3 &HE 4 &HE5 RHEE &HEF» EHES 2HE9 AHEA RHEE
BHECs &H3Dy &HIEs &HEF

109 DATA

2H30s &HI1» 2:H3Zs &HI3y B:H3 4 &HI5 &H9E &HI7» &H9S 2:H99s &H3A» 2HIE
2H3Cs &HIDy % H3IEs &H3IF

110 DATA

LHADs &HAL: RHAZY 2HAZ RHA4 2HAS &HAE: &HAS» &HAS 2HAY &HAA 2HAE
&HACs &HAD» 2HAEs &HAF

111 DATA

&HEOs &HE1» 2HEZs &HEZ» &HE4» &4HES» %HEE» &HES» &HES» 2HESs %HEA» 2HEE»
&HECs &HED» % HEE» &HEF

112 DATA

BHCOs &HC1» BRHCZs &HCZy &HC 4 &HCSy &HCE &HC Ay &HC S 2HC 9y &HCA» 2HCEs
BHCCs &HCDy %:HCEs &HCF

112 DATA

2HDOs &HD1» 2HDZs &HDZy &HD 4 &HDSy &HDE &HD» &HDS» 2HDSs &HDA» 2HDEs
&HDCs &HDD» %:HDEs &HDF

114 DATA

&HEOs &HE1» 2HEZ» &HEZ» &HE4» &HES» %HEE» &HEF» &HES» 2HES9» &HEA» %HEE»
&HECs &HED» %:HEE» &HEF

1153 DATA

LHFOs &HF 1 2:HF2» &HF 3y &HF 42 &HF 5y &HF B &HF 7y &HF S22 2HF 92 &HFA» 2 HF E»
&HFC» &HFD» %:HFEs &HFF

String HEX Numbers

0 REM DATAETE. BEAE

10 TIMER=0:TM=TIMER

20 FOR Aa=0 TO 2355

20 READ Es:E=VALC"&H"+Az2

40 HEXT

30 PRIWT TIMER-TH

E0 EHD

100 DATA D ls2s 23 4s S Bs FaBa9s As Ba Ca In Es F

101 DATA 101112132142 1551651721819 1Ax 1Bs 1Cs 10 1Es 1IF
102 DATA 2021 228 232 24 251 263 272 28 29y 2As 2B 2Cs 208 2Es 2F
103 DATA 30s 31x 328x 332 34 35 363 37 38y 39y 3Ar 3Bs 3Cs 308 2Es 3F
104 DATA 40 41 42 432 442 45 463 473 48y 49y 48 4EBs 4Cs 40s 4Es 4F
105 DATA S0: 515253 542 551 563 57 58y 59 5As 3B SCs 508 SEs SF
106 DATA EO0:EBlsEE2s B3 BE4s ESs EEs 673 68y 69y EAs BEBs BCs EDs EEs EF
107 DATA Al Al A A A4 Foa FEs A7 78 79 PR ZBs P FLs FEs 7F
102 DATA S0: 81 82 383: 34 85 26 87 88, 89y 84 3B» 3Cs S0 2Es 8F
109 DATA 90s:91x92x 93 942 95 965 97 98, 99 9A4» 9B 9Cs 90 9Es 9F
110 DATA Al Al A2 A3 A4 ASs ABs A7 A8 A9 AA ABs AC: ADs AEs AF
111 DATA EOs BEls EZ2sx E3s BE4s ESs EEs EFs ESs B9y EAs BEEs BECs ELDs EEs EF
112 DATA COsClsCEsC3sC4s CSa CEs A3 C8s C9s CAs CEBs CCa Cos CEs CF
112 DATA DOs D1s D2x D3s D4s 0Ss DEs DA I8s D9 DA DEs DICs I'Ds DEs DF
114 DATA EOsElsEZ:E3s E4s ESs EEs EFAs ESs E9s EAs EEs ECs ELs EEs EF
115 DATA FOsFlsF2sF3sF4s FSs FEs F7s F8: F9s FAs FEs FCa FIs FEs FF

If we look at the size JUST the DATA statement lines take up (lines 100-115), here is the size breakdown:

DATADEC. BA=® - EZFEED A8 =IZE 1010
DATAHEX. BAE - EPEED 49, E=IZE 13E0
DATA=TRE. BRE - EZFEED 109, Z=IZE 548

As you can see, using hex values is over twice as fast as using string versions and converting them to hex.
For size, using strings is about 15% smaller in my test program than using decimal values.

If load time is important, use hex. If program space is important, use strings. Otherwise, normal decimal
values are a good compromise between speed and size.

Bonus Data

One more thing... If we are going to use strings anyway, we could save more space by making the hex
strings long, and parsing through them to pull out the individual hex values. Every number has to be two
characters

(00, 01, 02 ... OE, OF) and this additional string parsing makes it even slower, but if code size is most
important, try this:

0 REM DATAETREZ. BAE

10 TIMER=0:TM=TIMER

20 FOR A=0 TO 15

20 READ Ex:iFOR I=1 TO 32 =TEP 2:BE=VALC"&H"+MID=S
CEBS: Ia 220 HEKT

40 MHEXT

20 PRIMT TIMER-TH

&0 EMI

100 DATA 00010203040506002090A0EB0COT0NEDNF
101 DATA 101112131415161712191A1EB1C1ID1ELF
102 DATA 202lz223c4eseee 28292AcBE2C2I2ERF
102 DATA 203132333435363738393A3B3CED3ERF
104 DATA 4041424344454647°42494A4B4C404E4F
105 DATA S05152535455565758595A5BSCSDSESF
106 DATA EBOBIEZEIE4ESERE/EEE9EAREBECETIEERF
107 DATA AO0°1727 3747576728797 AFBFCFIFERF
102 DATA B02182838485868°88898A8BECENSERF
109 DATA 909192939495969792999A9B3CANEIF
110 DATA ADALAZAZA4ASAEASASAYAAABACATIAEAF
111 DATA EBOEBIEBZ2EZEB4EBESEEESESESEAEBEBEECEDNEEEF
112 DATA COCIC2C3C4CSCECACECICACEBCCCICECF
112 DATA DODID2DID4D5DEDAD2D9DADEDCDODEDF
114 DATA EOEIEZEZE4ESEREFESESEAEBECEDEEEF
115 DATA FOFIF2F3F4FSFEFAFE2F9FAFEFCFOFEFF

DATASTR2.BAS - speed 172, size 624

By removing all those commas, it’s the smallest data size yet. And, since the longest line you can type in
BASIC is 249 characters...

XRoar

0 FEEMIZZ45367 890123245367 8901 23245367
1234536728901 23456728901 23456789012
1234536728901 23456728901 23456789012
1234536728901 23456728901 23456789012
1234536728901 23456728901 23456789012
1234536728901 23456728901 23456789012
1234536728901 23456728901 23456789012
1234353672901 2345672901 2345

Ok

BASIC allows for typing up to 249 characters on a line.
...you could really back some data in to it.

Side Note: The BASIC editor allows for 249 characters, but when you press ENTER, the line is tokenized.
Keywords like PRINT get reduced to smaller tokens. You may have typed a five-character keyword (taking
up part of that 249 byte buffer), but when you press ENTER, that five characters may be converted to a
one-byte token. This means it’s possible for a BASIC line to contain more valid code than you could
actually type. There have been utilities for BASIC (such as Carl England’s CRUNCH) that do this, packing
program lines as big as they can be, and making them un-editable since the moment you try, they get
detokenized and you lose anything past 249 characters. We’ll have to discuss this in a later installment.

With that in mind, we could pack any type of DATA in to fewer lines and save a bit. Each line number takes
up 6 bytes, so every line we can eliminate makes our program smaller.

Through some trial-and-error experimentation, I got this:

0 FEEM DATAETRE3. BAE

10 TIMER=0:THM=TIMER

ol FOR A=0 TO 15

20 READ Ex:IF Ez="+" THEM 350

25 FOR I=1 TO LEMCE=>» ETEFP 2:B=MALC"&H"+MIDSCESs Ia 2221 NERT
40 MHEXT

20 PRIMT TIMER-TH

E0 EMI

100
DATADODI0Z030405060 708090 A0EB0OCOD0OEDOFINO1I112131415161712191A1E
ICIDIEIF2021222324252e2-/ 2829

AZBZ2C2D2E2F 3031 323334353637 38393A3E3C3D3E3F4041 4242444546474
2494A4E4C4D4E4FS0515253545556

208595 ASEACADSESFENEIEEE3E4E0EEE/EEBEIEAERECEDRERF A1 27374
=T =y

107
DATAFEFIFAFEFCFDFEFFE0E1 3283384830888 °838898A8BECEDEEEF90919293
9495963989999 B3CADIEIFANALA
CAZA4YASAEBASABAYAAAEBACADAEAFEOEI B2 EZE4ESEEEAESE9EREERCEDRERFC
OC1CE2CEC4CaCECFCECACACECCCICE
CFOOD1IDZ2D3D4DSDED"DED9DADEDCDDDEDFEOEIECZEZE4ESERE-ESESEAEREL
EDEEEF

102 DATAFOF1F2F3F4FSFEF-FEFIFAFEFCFIOFEFF +

DATASTR2.BAS - speed 167, size 532

As you can see, this is slightly faster than the previous combined hex string version because it does less
READ:s. It is also slightly smaller because it has less line numbers. And, I think, it could even be packed a
bit more, but because I am loading these test programs as ASCII files in to XRoar, the lines cannot exceed
249 characters (the same as typing them in) so this was as much as I could fit on them (even though using
EDIT on these lines shows I could still type about 6 more characters, but it only seemed to show me 5 more
after I re-listed it).

Fun with DATA, eh?
Until next time, I leave you with this:

A virtual cookie goes to the first person that finds them.

Comment 1

There’s more to it than space-there’s time. Depending on how strings are represented internally, concatenation may
require repeated scanning of the string as it’s built up. It’s true for NULL-terminated strings in C, and for the Haskell String
type, which is a list of characters. “Can you say O(nff2)? Sure, I knew you could.”

The way around it in C is printf (or sprintf if you really need to store it rather than print it. in BASIC, if I'm just going to
print it, I'll just PRINT “” (OK, &HI1E if you want :). I know printf() will keep track of where it is and not repeatedly scan,
and I'd bet BASIC PRINT does as well.

Comment 2

Oops... The blog software made most of the PRINT statement go away. It should have had what you were assigning to A$
in the example, but with ; instead of the +.

B Comment 3

Actually, that probably isn"t O(nff2), because you re-scan once for each string, not each character in each
string a la bubble sort-but at the very least it ups the constant factor, which, while it’s not considered
significant for bigO calculations, still can be a significant performance hit. (That’s why, for example, a
typical sort implementation switches from quick-sort to a simpler sort once the hunks being sorted are
sufficiently small.)

B Comment 4

Color Basic stores strings with an 8 bit length and a pointer to the data. They’re actually binary clean as a result and there’s
no need to scan the string to find the end. String concatenation is actually O(n) where n is the combined length of the two
strings. (It has to copy both strings to a newly allocated string space.) String space allocation is O(1) unless garbage
collection is triggered in which case it's O(nff2) where n is the number of extant string descriptors (which may be larger
than the number of string variables due to anonymous strings being on the “string stack” during expression evaluation.
The string stack overflowing is what causes “string formula too complex”.).

Skipping the concatenation step and just joining with “;” (or nothing) in PRINT is faster simply because it doesn’t have to
bother allocating new string space and doing the concatenation. Instead, PRINT just has to look up the various strings.
Both concatenation and PRINT use an incrementing pointer to traverse strings since they both process entire strings. So, in
actual fact PRINT with concatenation is O(2n) and PRINT with “;” is O(n) if you keep the constant factors since the total
string length is scanned twice with the concatenation option and only once with the PRINT and “;” option.

Part 7

GOSUB Revisited

In response to part 4, William Astle wrote a very nice expansion to my musings about INKEY and GOTO
versus GOSUB. If you have been following my ramblings, I highly recommend you check out his posting.
Unlike me, he actually understands what is going on behind the scenes:

Optimizing Color Basic - ON GOTO vs ON GOSUB

Allen Huffman has been posting a series of articles on optimizing Color Basic as found on the TRS80 Color Computer. This
is a response to his most recent (as of this writing) entry. Note that I'm not criticizing his article or the conclusions he
reaches in it. Instead, this is intended to provide some more. One of the things he pointed out, then explained further in a
comment after I didn’t understand, was how the GOSUB processing works. After the GOSUB keyword is found, BASIC
acquires the line number and then scans to the end of the line or the next colon. That is where RETURN will RETURN to.
This sounds as one might expect, but there was a bit of weirdness I didn’t “get” at first.

William demonstrated that anything after the line number is ignored, thus:

GOEUE 1a00 I CAM TYFE ETUFF HERE WITHOUT EREOR

...is valid. This surprised me. If you do this:

GO=UE 1000 I CAM TYPE ETUFF HERE WITHOUT EREOR:FREIMT
"BACK FEOM GOZUE"

...when the RETURN returns, you will see the “BACK FROM GOSUB” message printed as expected.
Anything between the line number and the colon (or start of next line, whichever is found first) is ignored.
William explains what is going on in his article.

This, of course, made me do some more stupid testing. First, I modified my benchmark program to run
multiple tests and then average out the results. It looks like this:

0 FEEM EBEMCH. EAZE

2 DIM TEsTH: Ea A TT

10 FORA=0TO4:TIMER=0:THM=TIMER
20 FORE=0TO1000

20 EEM

40 EEM FUT CODE TO BENCHMARE
20 EEM HERE.

E0 REEM

70 MExT:TE=TIMER-TH

20 TT=TT+TE:FEIMTA: TE

90 MHEXT:FPRIMTTTAA:EMND

Then I reran my GOSUB test:

0 FEEM GOEUEZ. BAE

2 DIM TEsTH: Ex A TT

10 FORA=0TO4:TIMER=0:THM=TIMER
o0 FORE=0TO1000

20 GO=EUE10O0

70 MEXT:TE=TIMER-TH

20 TT=TT+TE:FPREIMTAs TE

90 MHE®T:PRIMTTTAA:END

100 RETURHN

When I run this, it prints the time taken for each run, and then the average:

XRoar

FORE=0TO1000
GO=UE1IO0
HMEART:TE=TIMER-TH
TT=TT+TE:FREINTAs TE
HEART:FRINTTTAR:END

100 RETURHM

Ok

RLUM

GOSUB benchmarks.
Now for the stupid test, I added some junk after “GOSUB 100" and filled it up to the end of the line.
Side Note: I am loading BASIC programs in ASCII, so the program lines load in as if they were being
typed in. Thus, it counts the characters “100 GOSUB ” as part of it. But, as soon as you press ENTER, that
line is tokenized and GOSUB becomes a 1-byte token (is it 1-byte?). Then you can EDIT the line and Xtend it

and type in a few more characters. So what I show here isn’t the max line size, but it is the max line size I
could load in from an ASCII BASIC file. But I digress.

My line looks like this:

20 GO=EUE10O0

ABCOEFGHI JKLMAHOFREETUVMEY 20123456739 BCDEFGHI JELMMNOPRREETUN LA
YZ0123456°29ABCOEFGHI JKLMHOR R

RETUMMRYZ012324536789AECDEFGHI JELMHOPREETUYNEY 201224567 239AEBCTIE
FGHI JELMHOPRRETUNMMNEYZ01 234567

S9ABCIOEFGHI JKLMHOPREETUVMEY 201234567 29RBCOEFGHT JELMHOPGRET +

Now when I run this, the extra “scan to the end” time causes the benchmark to show 1507!

But who would do that? If anything, you would have a colon and real stuff after the GOSUB. So I tried this
by changing the space after “GOSUB 100” to a colon and “REM”:

=20
GOZUEB100:REMABCOEFGHI JKLMHOPRRETUV MY Z0 1234567 89RBCOEFGHT JEL
MHOPRREETUYHAYZ0123456"29ABCIDE

FGHI JELMHOPGRRETUNMMEYZ01 234567 89ABCDEFGHI JELMHOPRRETUYRHEY Z012
24567 89ABCDEFGHI JELMHOPGRETUY

WeYZ0123456239ABCOEFGHI JKLMHOPRRETUYMRY 201234567 89RBCOEFGHT J
ELMHOFR +

Now that’s a completely legitimate line. (Pretend the ABC/123 gibberish is a really long comment.)

This benchmark shows 1508, so no real difference. When GOSUB is encountered, BASIC has to scan to the
end of line or a colon, whichever comes first, so it should find the colon instantly, BUT, after the RETURN it
still has to scan through that REM to find the next line. Thus, it’s the same amount of scanning.

This is a meaning]less test.

With real code, you might be doing something like this:

20 GO=UE 100:FRINT "BRCK FREOM REOUTIMHE"

Or you could have written it out as two lines:

=0 GOEUE 1040
40 FPRIMT "EACEK FEOM EOUTINE"

I thought the first one should be faster, since it has one less line.

And combining lines is good.

Right?

Well, in my silly example #2 above, what if I moved the REM to the next line, like this:

20 GO=EUE100

40

FREMABCDEFGHI JELMHOPRRETUMNEYZ01 234567 89ABCDEFGHI JELMHORPREETU
VIR Z01234536F789ABCDEFGHT JELMH
OFREETUYHEYZ0123456"239ABCDEFGHT JKLMHNOPRRETUY MEYZ0 12345367 29AE
COEFGHI JELMHOFREETUNVMEY Z0 1234

SEFS9AEBCDEFGHI JELMHOPRRETUYNEY Z01 234567 89ABCDEFGHI JELMHORPRES
T+

That’s basically the same, just with an extra line number.

When I run this, I get a benchmark value of ... 860!

Look how much faster it is by moving code to a separate line! I guess we should use separate lines after all,
then...

What's going on here? The key seems to be the “REM” keyword. When BASIC encounters a REV, it can just
skip to the next line. That makes it faster. But, it seems to be doing something different when a REM is in the
middle of a line.

It appears it is faster to NOT put REMarks after a GOSUB.

20 GO=UE 100:REM MOWE FLAYER UF

...shows 266. This is slower than...

20 GO=UE 100
40 EEM MOWE PLARYER UF

...which shows 220. And I've certainly seen programmers make use of the apostrophe REMark shortcut.
The apostrophe represents “ : REM” (colon REM) so these two are the same:
=0 GO%UE 100:REM MOME FPLAYER UF

and

=0 GO=UE 100* MOVE FLAYER UP

XRoar

Ok

10 EEM
FEIMT HMEM
ceglrs
Ok

19 °*
FEIMT HMEM
o221k

Ok

10 :REM

FEIMT HMEM
o221k

Ok

REM versus * for comments.

Thus, using the one character apostrophe may look like it saves code space versus “ : REM” but it does not.
It does save printer paper, though.

But I digress...

It looks like I'm going to need another test. In the meantime, don’t put things after a GOSUB om the same
line. It appears to be faster to put them on the next line:

=20 EEM MOWE PLRYER UF
40 GO=UE100

That is 219.
=0 GOzUEl100:REM MOWYWE FPLRYER UF

That is 266!

20 GO=UE100
40 EEM MOWE FPLAYER UF

That is backwards. But it produces 220, so it doesn’t penalize you for being backwards.

Oh, and as Steve Bjork pointed out in the Facebook group, a faster solution is not to use REls at all. I think I
need smarter examples. There are too many real programmers watching. For you folks:

0 EEM THIE TRAEEE 371

2 DIM ZxTEsTH2 Ex A TT

10 FORA=0TO4:TIMER=0:THM=TIMER
o0 FORE=0TO1000

20 GOEUEBI00:Z=Z+1

70 MEXT:TE=TIMER-TH

20 TT=TT+TE:FEIMTA: TE

90 MEXT:FPRIMTTTAA:EMND

100 RETURHN

0 FEEM THI= TAEEE 337

2 DIM ZxTEsTH2 Ex A TT

10 FORA=0TO4:TIMER=0:THM=TIMER
o0 FORE=0TO1000

20 GO=EUE10O0

40 Z=2+1

70 MEXT:TE=TIMER-TH

20 TT=TT+TE:FEIMTA: TE

90 MEXT:FPRIMTTTAA:EMND

100 RETURHN

Easy peasy.

A few additional REMarks

Above, I mentioned that the apostrophe represented “ : REM”. Thus, doing something like this:
100 *MOVE UP

Is slower than doing;:
100 EEM MOWE UFP

It may look smaller, but the first example is like scanning “ :REM MOVE UP” and the second is just “REM
MOVE UP” so it has less work to do.

And yes, I tested it inside the benchmark program:

=0 EEM
...is 82.

=0 "
...is 90.

20 *REM

...1s also 90.

I guess it’s just treating the apostrophe as “ : REM” internally, or maybe it’s a 2-byte token for “ : REM” versus
a different 1-byte token just for “REM” or something. Dunno.

But interesting.

Until next time...

B Comment 1

GOSUB and GOTO are both “two byte” tokens. Actually, “GO” is one token and then TO/SUB are separate tokens. I think
this is a throwback to the original Basic which actually specified GOTO as “GO TO” (two words). By separating it into two
tokens, it allows the two word variant for free due to the “skipping spaces” effect of the “next character” routine.

On the REM vs * business: * does have its own distinct single byte token. The tokenization process adds a : before it during
tokenization behind the scenes which is why you don’t need a : before * but you do before REM. Otherwise it is treated
exactly the same as REM during interpretation so :REM and “ execute at the same speed. You can see this detail by
examining the tokenized basic program. Thus, if your comment is at the start of the line, you're better off using REM and if
it's at the end of the line, it makes no difference.

As a bit of trivia, the tokenizer also adds a colon before ELSE which is almost certainly done as an optimization so the
execution process doesn’t have to look for “ELSE” as yet another “end of statement” indicator.

Even more trivial: you can replace “THEN" with “GOTO” or “GOSUB” directly. There’s no benefit to doing that for
GOTO, but it saves a byte with GOSUB.

B Comment 2

So in the token, a : is stored before the * token? Does this mean the detokenizer that is used for LIST has code to not print
the :’s it finds before ELSE and ‘?

B Comment 3

THEN GOTO can be replaced by either GOTO or THEN saving either 1 or two bytes. THEN GOSUB can only be replaced
by GOSUB resulting in a 1 byte saving. The CRUNCH program replaces THEN GOTO with THEN, and THEN GOSUB
with GOSUB. (It doesn’t replace either if there is a space between THEN and either GOTO or GOSUB.) *Note* GOTO can
be expressed as GO TO and GOSUB can be expressed as GO SUB.

B Comment 4

Why do you not do it if there is a space? You mean like:

IFA>*1THEHM GOZUE 100

Part8

Arrays and Variable Length

In part 3, I demonstrated a simple “game” where you could move a character around the screen and try to
avoid running into enemies. The original version hard coded four enemies, each with their own variable. It
looked like this:

0 REM GAME. BAS
S5 KE$=CHR$(94)+CHRSC 10 2+CHR$C 8 2+CHRS(90
10 CLS:P=256+16

15 E1=32:E2=63:E3=448:E4=479

20
PRINT@P: "+"i :PRINTIELy "®"5 :PRINTAES: "%"§ : PRINTAESs "X"5 : PRINT
AE4s "K'

30 A$=IHKEY$:IF A$="" THEM 30

40 LH=IMETRECKEF» A2 IF LM=0 THEMN 30
45 PRIMTaFs " "i

20 OMLH GOEUELIO0Os. 200s 300x 400

E0 IF FP=El1 OF F=E2 OF F=E3 OFR F=E4 THEM 90
20 GOTO 20

90 PRIMTaZES» "GAME OWER!":END

100 IF FP*>31 THEM FP=FP-32

110 RETUREHN

con IF F<479 THEHM FP=F+32:EETUREH

210 RETURH

200 IF F>0 THEHM FP=P-1

210 RETURH

400 IF F<510 THEHM FP=F+1

410 RETURH

I then modified it to use an array for the enemy variables, so less code was needed to cycle through them,
while also allowing easy changing of the amount of enemies. It looked like this:

FEM GAMEZ. EAE

EM=10-1 "EMEMIEZ=

DIM ECEN2

KEF=CHR=C 94 2+CHRESC 10 2+CHRESC 8 2+CHRESC 9 2
10 CLE:P=23E+1E

15 FOR A=0 TO EN:ECAX=REMHDCS10 2:MEXKT
20 PRIMTaFs "+"3

23 FOR A=0 TO EM:PRIMTAECA X "w"3 iNERT
20 AF=IMKEY=Z:IF As="" THEHN 30

40 LM=IMETRCKEZF:» A2 IF LM=0 THEMN 30
45 PRIMTaPs " "i

20 OMLHM GOEUEL1O0O0s. 200s 300x 400

E0 FOR A=0 TO EM:IF P=EcA> THEM 90 ELEE HMEXT
20 GOTO 20

90 PRIMTaZ2ES» "GAME OWER!":END

100 IF P*31 THEM P=FP-32

110 RETURHN

con IF F<479 THEM P=P+32:REETUREHN

210 RETURH

200 IF F>0 THEM P=P-1

210 RETURH

400 IF FP<510 THEHM P=FP+1

410 RETURH

Loy I

Arrays are an easy way to reduce code. What I did not realize is how slow they are! Consider this example:

4 DIM ElsEE2xESs E4

2 DIM TEsTH: Ea A TT

10 FORA=0TO4:TIMER=0:THM=TIMER
cl FORE=0TO1000

30 El=1:E2=1:E3Z=1:E4=1

70 MExT:TE=TIMEE-TH

80 TT=TT+TE:FEIMTA: TE

90 MHE=T:FREIMTTTAA:EMD

In the test loop we simply set four different variables. Notice that the ones we use most often (inside the
test loop) I have declared first in line 4. This makes them faster, since they are found earlier when BASIC
looks up the variables.

This results in 576.
Instead of using four separate variables, we could use an array of four elements:

4 DIM EC32

o DIM TEs THM2 B2 A TT

10 FORA=0TO4:TIMER=0:TH=TIMER
c0 FORE=0TO1000

30 FORC=0TO3I:ECC»=1:MHEXT

70 MEXT:TE=TIMER-TH

20 TT=TT+TE:FPEIMTA: TE

90 MEXT:PRIMTTTAA:END

Although this simplifies the code, and allows us to easily change it from 3 to more variables, it adds
another FOR/NEXT loop.

The speed drops to 1408! And that’s using a one-character variable name. It might be a tad slower if I had
chosen “EN” for the array or something two-characters to match the original.

It seems that, if you can get away with it, manually handling separate variables is much faster.

Arrays will win for code size, but lose for speed. I probably won’t want to use arrays to track the enemies
in my BASIC arcade action games.

Can we make arrays faster? Let’s remove the FOR/NEXT loop and access them manually, so it’s as direct a
compare to non-arrays as we can get:

4 DIM EcC32

2 DIM TEs THM: B2 A TT

10 FORA=0TO4:TIMER=0:THM=TIMER
20 FORE=0TO1000

30 EcOx=1:Ecla=1iEC22=1:EC3 =1
70 MEXT:TE=TIMER-TH

20 TT=TT+TE:FEIMTA: TE

90 MEXT:FPRIMTTTAA:END

Now we are doing “E(0)=1" versus “E1=1". Arrays should still be slower because there are more
characters to parse, and an array lookup as to be done.

This produces 1021. It appears that setting the variable takes about a third of the time, looking up the array
another third, and the FOR/NEXT loop a third third. Or something.

As brute-force as it looks, it appears that is the faster way for handling variables even though it produces
more code.

And speaking of more code...

Variable Length

One-character variable names can get confusing real quick, but the two-character limit in Color BASIC isn't
much better. Well, you can specify longer variable names, but only the first two characters are honored:

U=ERMUM=1
...turns in to...
Hz=1

If you could ensure the first two characters were unique, you could make your program more readable, but
you would be wasting speed and code size.

Consider this benchmark example, which uses a 10-character variable:

0 FEEM “ARLEHM. BAE "211
4 DIM UEERCOUNT
2 DIM TEsTH: Ex A TT

10
=]
=20
-1
20
=11,

FORA=0TO4: TIMER=0:THM=TIMER
FORE=0TO1000

UEERCOUMT=1

MEXT: TE=TIMER-TH
TT=TT+TE:FRIMTA: TE
MEXT:FRIMTTT/A:EMD

This produces 211. It's wasteful, since BASIC is only honoring the first two characters. Let’s try this:

0 REEM MARELEH. EAE * 182
4 DIM U=
2 DIM TEsTH: Ea A TT

10
i
=0
Fl
20
31

FORA=0TO4:TIMEE=0:TH=TIMER
FORE=0TO1000

UE=1

HEXT: TE=TIMER-TH
TT=TT+TE:FREINTA: TE
HEXT:FRINTTT/A:EMD

This produces 182. All those extra useless characters did nothing but slow things down a tad.

But using a one-character variable is the fastest we can get:

0 FEEM “ARLEH. BAE "17°7
4 DIM U
2 DIM TEs TH: B2 A TT

10
20
=20
-0
20
=11,

FORA=0TO4: TIMER=0:TM=TIMER
FORE=0TO1000

=1

MEXT: TE=TIMER-TH
TT=TT+TE:FPRIMTA: TE
MEXT:FPRIMTTT/A:EMD

This produces 177.

For the most-used variables, use a one-character variable name for the best speed.

And remember, every time a variable is references, BASIC has to start with the first variable it knows about
and walk through all of them until it finds a match. That is the purpose of the DIM statements in lines 4 and
4. They are declaring variables in the priority of most-used to least, sorta. The variable used in the inner
FOR/NEXT loop is U, so I declare it first.

If I had done U last:

0 FEEM MARELEH. BAE "17°7

E DIM TEsTH:ExATT

7 DIm u

10 FORA=0TO4:TIMER=0:THM=TIMER
o0 FORE=0TO1000

20 U=1

70 MEXT:TE=TIMER-TH

20 TT=TT+TE:FEIMTA: TE

90 MHEXT:FPRIMTTTAA:EMND

This slows it down to 188.

Putting it all together: Avoid arrays, use one-character variable names, and variables you want to be the
fastest should be declared earlier.

Just an FYI.

B Comment 1

It actually follows that array accesses would be slower. Unsurprisingly, it has to look up the array itself, though that isn’t
particularly slow since arrays have their own table that lives just after the regular variable table. Of course, if you have
multiple arrays, the first array defined will be found more quickly than the tenth since it’s still a linear scan of the array
table.

Incidentally, it’s better to allocate all your regular variables and then dimension any arrays for just that reason - the arrays
have to be relocated any time a new scalar variable is allocated. That can substantially slow down variable allocation. Thus,
you should have your array defining DIM appear after the scalar defining DIM.

Anyway, in addition to just looking up the array, the subscript has to be calculated which involves a trip through the
expression evaluator which could lead to any number of things like variable look-ups, etc, but which will at a minimum be
either a variable lookup or a constant conversion. Then the subscript is converted to an integer and then bounds checked.

Once the subscript is determined, it is a simple calculation to get the offset into the array data to find the actual value, but it
is a calculation that is not required for scalars.

Note that for multidimensional arrays, you get to repeat the subscript lookup multiple times so they will be cor-
respondingly slower. Theoretically you could have up to 255 dimensions though you would be hard pressed to actually do
anything useful with that.

If you think about it, array type accesses are slower compared to a direct variable access even in low level languages like
assembly language. It's unavoidable since additional work is required to do the offsetting into the data.

B Comment 2

Just as side note, a story about array usage on a BASIC dialect with same ancestry, Commodore BASIC V2 on a C64. For a
program doing Hires graphics only in plain BASIC we tried to accelerate the pixel access by using a integer array (16 bit
value, alas, not implemented in Color BASIC). Some would expect, the clumsy address calculation into the bitmap could be
boosted using array access, but this failed. It was slower! It seemed elegant, but the index calculation (expression
evaluation as mentioned above) took its toll, beside the fact that the adjustment calculation to signed 16-bit value to pixel
location was clumsy, too.

B Comment 3

I actually plan to use VICE and try to do similar benchmarks on a C64 (it has TIME) and see how similar they are. Is there a
TIME on the VIC-20?

B Comment 4

Yes, it’s the same BASIC version.

B Comment 5

They appear to use the 60Hz screen refresh like the CoCo. I assume there were 50Hz PAL versions, too?

B Comment 6
No, the BASIC timer is alway 60Hz even on PAL machines. It is based on the hardware timer which starting value is set
accordingly to the base frequency of the system. It's not derived from the raster interrupt.

B Comment 7

+1 for Commodore! I think the CoCo’s timing is based on the screen refresh, so programs that relied on it would have to
ask the user if they were playing on a 50Hz or 60Hz machine :)

Do you know of an online C= emulator? I think I found a C64 JavaScript one, and I'd like to find a VIC-20 one as well.

B Comment 8

> +1 for Commodore! I think the CoCo’s timing is based on the screen refresh, so programs that relied on it would have to
ask the user if they were playing on a 50Hz or 60Hz machine :)

Hmm, just partially +1, let’s say better +0.5, because on a C128 with BASIC 7.0 additional sound(!) and graphic commands
which are timing related are based on the raster interrupt timing. Not a bad idea for graphics, but sound!? Therefore,
BASIC 7.0 programs has to ported or carefully coded to support NTSC and/or PAL ... (

> Do you know of an online Commodore emulator? I think I found a C64 JavaScript one, and I'd like to find a VIC-20 one
as well.

Just know of one in Java, see http:/ /www.z64k.com

I Comment 9

Very interesting! I understand why sound would be (duration of notes), but what did graphics have to do with it?

B Comment 10

Raster interrupt timing hits graphics in multiple ways. First, the mixed modes (graphic and text-mode on the same screen)
depends on raster timing. Second, controlling sprites with command MOVSPR allows you to let automatically move a
sprite over the screen with a certain direction (angle) and speed. The latter is based on raster interrupt’s screen refresh rate.
Beside this, the official commodore manuals are horrible, containing many more or less severe errors or just missing
information regarding this issue (at least in the German translation).

B Comment 11

I was unaware of Sprites through BASIC, and split modes. Very nice. A friend of mine had a C128, and I recall playing with
the basic graphics commands (seeing what it had compared to the CoCo’s EXTENDED BASIC commands). I had a
Commodore friend who introduced me to GEOS, and we went to another C128 user’s house to use the 128 GEOS and some
really NICE desktop publishing program to make tickets and fliers for a rock and roll band thing I was helping with. There
was some impressive non-game stuff for the 128.

Was the TI$ different, then?

B Comment 12

67

Nice use-case of a C128 ... another kind of “band aid”.
I appreciate any non-game stuff.

TI$ is always 60Hz. It's coming from the depth of the Kernel which provides the timer function. BASIC only maps it into
pseudo variables.

All Commodores do it the same way, with one exception: the B-series (AKA Commodore-II, PET successor) has no pseudo
variable TI, only TI$, but with 7 digits instead of 6, carrying an additional 1/10th second digit. But this Commodore model
branch didn’t play a role, so compatibility to them wasn’t an issue.

B Comment 13

> Putting it all together: Avoid arrays, use one-character variable names, and variables you want to be the fastest should be
declared earlier.

In addition to that (I think this fits well here), I would also suggest to prevent constants in preference of using variables.
Even the variable name space is quite limited (26+26*36), a value already in floating-point representation store in a variable
-assuming it is defined “early” as visualized above- could be faster than the parsing and conversion of constants (involving
a trimmed by 10 float multiplication for each additional digit). Caveat: Variables don’t make it for all constants, there is a
break-even point between number of digits and the position in the variable table. If I correctly remember, for a 6502-based
MS BASIC one digit constant is faster then a single-char variable if its table position is greater than 11, which may probably
vary for Color BASIC. But this might be a subject for further investigation and another posting in this interesting article
series Allen will bring to us eventually ...

B Comment 14

There’s always READ/DATA, but the global nature of Color BASIC, along with not having RESTORE like BASIC09, would
make it obnoxious. (Not to mention that I was kind of bummed that neither BASIC would let you READ and read the
individual elements for you. Drat.)

B Comment 15
I should know better than to type BNF-ish things here. Pretend I typed “RESTORE [line number]” and “READ [array
name]”. No RESTORE??? Ugh.

B Comment 16

RESTORE is there. You just can’t have it reset the pointer to a particular line number - only to the start of the program. The
kicker is that it wouldn’t be terribly difficult to implement.

I can see that READ [arrayname] could be useful. However, that is something of quite limited use but would require some
special (read as duplicating existing variable parsing and lookup code) coding in the interpreter. Given that there is a
straight forward alternative for the relatively few cases where it would be useful, it’s not surprising it isn’t there. It's better
to use the code space for other more useful things.

Now, if anyone can explain to me how the ROM code for READ and INPUT (it’s the same routine, believe it or not)
actually works from studying it, I'll be seriously impressed. That’s probably the most obscure code in the entire interpreter
save for the floating point code. Adding a “fill array” option for READ would be seriously hard given the code that’s
already there.

B Comment 17

Color BASIC has RESTORE; it doesn’t have the option of a line number following RESTORE to let you set it someplace
other than the beginning.

68

Part9

Have no fear! Today’s installment is a short one. It will address a few miscellaneous things I have been told
about.

“n

.” versus “0”

In a comment posted to Part 5, Darren Atkinson (designer of the fabulous CoCoSDC interface) pointed out
a place where a decimal point makes things faster!

One place where a decimal point will give an improvement is when using the value 0 in an expression. Basic will accept a
stand-alone decimal point as the number 0, but it will process it faster than the ‘0" character.

Try comparing the speed of:

IF H < 0 THEHM ...

with that of:

IF H < . THEM ...

I, of course, had to test this. Using the benchmark program:

o oM 2

o DIM TEs THM: B2 A>TT

10 FORA=0TO4:TIMER=0:THM=TIMER
c0 FORE=0TO1000

20 Z=0

70 MEXT:TE=TIMER-TH

20 TT=TT+TE:FREIMTA: TE

90 MEXT:PRIMTTTAA:END

Setting Z=0 1000 times produced the value of 178.
20 Z=&H0

Using a hexadecimal zero produced 164.
20 £=.

And using just a period to represent zero produces ... 141!

Okay, no more zeros.

Fake FOR
George Phillips chimed in about GOTO and GOSUB with a sneaky way to jump around faster:

However, because BASIC stores lines as a singly linked list the fastest places to GOTO and GOSUB are either the top of the
program or anywhere after you do the GOTO/GOSUB. BASIC is clever enough to look forward if the line # is after the
current one, otherwise it must search from the top.

Using a “fake” FOR/NEXT loop instead of GOTO could well be faster in such cases since it doesn’t have to search for the
start of the FOR. If you have:

... whole bunch of code

1000 PREINT"HERE HWE GO."

... do some stuff

c00d oOTO1000

It is likely faster to do this:

1000 FORX=0TO1ZTEFO:FRIMT"HEREE MWE GO."
2000 HE=RT

Possibly tricky to use in practice, but you can have a lot of FOR/NEXT loops on the stack and skip over interior ones.
Fairly unpleasant, but optimizing BASIC is not a pretty undertaking.

Wow. James Gerrie and Johann Klasek also mentioned this in response to Part 4. Johann gave an example:
I think something like that was in mind:

10 FOR A=. TO 1: A=. : EEM FOREVYER
20 O IMETREC" UDLE": INKEY=2 GOTO 100s200s 300 400 300
20 REEM FALL THROUWGH ACTION

40 MHEXT

20 EMI

100 REM IDLE LOOP

110 HEXKT

200 REM mOWE UP

210 MEXT

=200 REEM MOWE DOWH

210 MEXKT

400 REM MOWE LEFT

410 HMEXKT

200 REM MOWE RIGHT

210 MEKT

Compared to the ON GOSUB this is some kind of “redo” or “loop retry” not reaching the fall through action in 35.

Anytime the overhead of scanning through lines (from first line to destination) is more than the overhead
of a RETURN, this would be faster (and only use a bit of extra memory for remembering where to RETURN
to).

I don’t have any benchmarks for this one, but there is probably a threshold where the number of lines
before the GOTO has to be more than X before this is always faster. Thanks, Darren, James and Johann (and
any others I might have missed).

71

......

1Y

VWV hether v ’
- e

* discover invaluable i

ay routines {

ssembly and rethinking

ﬂ.*_g*l X

W1th step—by— \xam les, "h
Color BASIC is an n esse tial resou “'“r
"‘ the Color Co Compuf‘er C'a abilities.
and experience Color BA{ - liken e&l‘)efore‘!

- L
- = . . 2 £

" Radio fhaek 3
TRS-80 Extended Color BASIC System Software;

@ 1984 Tandy Corporation and Microsoft.
All Rights Reserved.

.‘f'-»_'

"/‘\-

‘n- v

	Part 1
	Remove all spaces
	Pack/combine lines where possible
	Remove all REMs
	Renumber by 1
	Removing NEXT variables
	Comment 1
	Comment 2
	Comment 3
	Comment 4
	Comment 5
	Comment 6
	Comment 7
	Comment 8

	Part 2
	Variable Placement
	Comment 1
	Comment 2

	Part 3
	INSTR
	POKE
	Comment 1

	Part 4
	INSTR and GOTO/GOSUB
	But wait, there’s more!
	Comment 1
	Comment 2
	Comment 3
	Comment 4
	Comment 5
	Comment 6
	Comment 7
	Comment 8
	Comment 9
	Comment 10

	Part 5
	HEX versus DECimal Numbers
	Comment 1
	Comment 2
	Comment 3
	Comment 4
	Comment 5
	Comment 6
	Comment 7
	Comment 8
	Comment 9
	Comment 10
	Comment 11
	Comment 12
	Comment 13
	Comment 14
	Comment 15
	Comment 16
	Comment 17
	Comment 18

	Part 6
	Size Matters. Or Space Matters. You decide.
	Elementary, my dear DATA.
	Base 10 Numbers
	Hexadecimal Base-16 Numbers
	String HEX Numbers
	Bonus Data
	Comment 1
	Comment 2
	Comment 3
	Comment 4

	Part 7
	GOSUB Revisited
	Optimizing Color Basic - ON GOTO vs ON GOSUB
	A few additional REMarks
	Comment 1
	Comment 2
	Comment 3
	Comment 4

	Part 8
	Arrays and Variable Length
	Variable Length
	Comment 1
	Comment 2
	Comment 3
	Comment 4
	Comment 5
	Comment 6
	Comment 7
	Comment 8
	Comment 9
	Comment 10
	Comment 11
	Comment 12
	Comment 13
	Comment 14
	Comment 15
	Comment 16
	Comment 17

	Part 9
	“.” versus “0”
	Fake FOR

