ME80D Q) moToroLA

M6800 Microprocessor
Applications Manual

Benchmark Family
For Microcomputer Systems

,
i -

jenuey suoljedljddy Jossad0idoidipy 0089

i ‘R
] 1
11 ey i)
41 !
1 =
AL ..,_‘_._,_‘___‘__..
‘l-*- -
i

mnn.n by Computer Applications Engineering

MOTOROLA

Semiconductor Products Inc.

M6800
APPLICATION MANUAL

Circuit diagrams external to Motorola products are included as a means of illustrating typical Microprocessor
applications; consequently, complete information sufficient for construction purposes is not necessarily given. The
information in this manual has been carefully checked and is believed to be entirely reliable. However, no
responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the
semiconductor devices described any license under the patent rights of Motorola Inc. or others.

Motorola reserves the right to change specifications without notice.

EXORciser MIKBUG and EXbug are trademarks of Motorola Inc.

First Edition
© MOTOROLA INC., 1975
“‘All Rights Reserved”’

Printed in U.S.A.

it

TABLE OF CONTENTS

CHAPTER 1

1 Introduction to the MC6800 Microprocessoroueeeeininnnnen.... 1-1
1-1 System Organmizationuniiiiiiie e 1-1
1-1.1 MC6800 Family Elementsoouuriiiiitt et 1-3
1-1.1.1 Memory on The BUs oo e 1-3
1-1.1.2 I/Oonthe BUSot 1-5
1-1.2 Typical System Configuration i it .. 1-7
1-1.2.1 Memory Allocationiiiii i 1-7
1-1.2.2 Hardware Requirements i i e -7
1-2 Source Statements and Addressing Modes i 1-10
1-2.1 Source Statementsot 1-11
1-2.2 Labels ... 1-11
1-2.3 Addressing Modest 1-12
1-2.3.1 Inherent (Includes ‘‘Accumulator Addressing”” Mode)ccouvuvn... 1-12
1-2.3.2 Immediate Addressing Mode 1-13
1-2.3.3 Direct and Extended Addressing Modesooiiiinnneiii... 1-13
1-2.3.4 Relative Addressing Mode oo 1-14
1-2.3.5 Indexed Addressing Mode 1-16
1-2.3.6 Mode Selectiont 1-16
1-3 Instruction Set 1-20
1-3.1 Condition Code Register Operationsoouieiiineeiiinnnnnnn... 1-20
1-3.2 Number Systemst 1-21
1-3.3 Accumulator and Memory Operationsouiiiiuneno. .. 1-24
1-3.3.1 Arithmetic Operations i i i 1-24
1-3.3.2 Logic Operationsuuuiuueeeeiii 1-26
1-3.3.3 Data Test Operationsouiiumiiite et 1-26
1-3.3.4 Data Handling Operationsuuuuieiimienaeaannann.. 1-26
1-3.4 Program Control Operations ittt 1-26
1-3.4.1 Index Register/Stack Pointer Operationsc.oouueeenenennnn... 1-26
1-3.4.2 Jump and Branch Operations i it 1-33
CHAPTER 2

2 Programming Techniquest iieiiinnan.. 2-1
2-1 Arithmetic Operation i, . e 2-1
2-1.1 Number Systems 2-1
2-1.2 The Condition Code Register i, 2-2
2-1.3 Overflow 2-2
2-1.4 The Arithmetic Instructions i, 24
2-1.4.1 Use of Arithmetic Instructionso iiinanai.. 2-4
2-1.5 Addition and Subtraction Routines 2-8

ii

TABLE OF CONTENTS (Continued)

2-1.6 Multiplicationttt e 2-12
2-1.7 DAVISION . o\ttt ittt et e e 2-18
2-2 Counting and Delay Measurement/Generationc.cceeeennenneen.. 2-26
2-3 Evaluating Peripheral Control Routines. it 2-30
2-3.1 Service Requests and Programs as Waveforms on a Timing Diagram —

Notation Used oot ittt it it ettt 2-30
232 Development of Equations and Inequalities Used to Test Successful

System OPerationttt 2-32
2-3.3 Floppy Disk Data Transfer Routinet 2-34
2-3.4 Cassette Data Transfer Routine i 2-35
2-3.5 Utilization of MPU Processing Time 2-36
2-3.6 Program Model for Two Prioritized Service Requests 2-38
2-3.7 Requirements That Must Be Satisfied When an MPU Services Multiple SR’s 2-39
2-3.8 Serial Data Transfer and Dynamic Refresh Processing 2-41
2-3.9 Increasing MPU Processing Efficiency with the Flip-Flop Model for Two

“Equal Period SRS™ it e 2-42
24 Use of the Index Registercouiiiuiiiiiimiiiiiiiie i 2-44
CHAPTER 3
3 Input/Output Techniques e e 3-1
3-1 INtrOdUCHON . .\ vt ittt ettt e et e ettt e 3-1
3-2 MC6800 INtErrupt SEQUENCESo veieeiii it iiaaaea e 3-2
3-2.1 Interrupt Request QRO . o oot 3-2
3-2.2 Non Maskable Interrupt (NMI) o.ouorenet ettt anenenens 34
3-2.3 Reset (RES) .. ittt i e e 34
3.24 Software Interrupt (SWI)ottt 3-6
3-3 Interrupt Prioritizingt e 3-7
34 Program Controlled Data Transfers 3-8
34.1 MC6820 Peripheral Interface Adapter, 3-8
3-4.1.1 Input/Output Configurationoueiiuiremireanennnenuenineanann 3-8
34.1.2 Internal Organizationoiuunneeunernnmeennneneenneerneeounns 3-9
34.1.3 Addressing and Initializationol 3-16
34.1.4 System Considerationsttt 3-20
34.2 MC6850 Asynchronous Communications Interface Adapter 3-21
34.2.1 Input/Output Configurationcouiiiiuemnnimiemieinneanieennn, 3-21
3-4.2.2 Internal Organizationouiuninreiiuinnneeenenrennaneeeennns 3-22
3423 Addressing and Initialization o i i 3-25
3-42.4 System Considerationsuuutetttiner et 3-26
3-4.3 MCE860 Low Speed Modem ... vv i 3-28

TABLE OF CONTENTS (Continued)

3-4.3.1 Input/Output Configurationoouuiiaiienirennneainenieeann.s 3-29
3432 Internal Orgamizationooeioiaeanteeeeeeeennneeeeeuannnnens 3-33
3433 Handshake and Controlttt 3-34
3-5 Direct MemOTY ACCESS . . v v veitiiiie et iiiiae e iaane e .3-38
CHAPTER 4

4 M6800 Family Hardware Characteristicscovernneennonnnnnnnn. 4-1
4-1.1 Clock Circuitry for the MC6800 i 4-1
4-1.1.1 Clock Requirements and CirCuitrycoooiiiiiiiiiiiiiiiianaanann, 4-1
4-1.1.2 CloCk MOQUIE . . .o oi ettt ettt et i e 4-6
4-1.2 Halting the MC6800 and Single Instruction Execution 4-13
4-1.3 MC6800 Reset and Interrupt Controlsc.oiuiieiiinnineninnnnn 4-13
4-1.4 Three-State Control Line Operationot iiiiiiiiiiiiiinnnn 4-19
4-1.5 M6800 Family Interface and Enabling Considerations 4-19
4-2 M6800 System Hardware Techniquesty 4-24
4-2.1 Interrupt Priority Circuitryt 4-24
4-2.1.1 8-Level Prioritizingttt 4-24
4-2.1.2 13-Level Prioritizingvunnttenii it ie et 4-27
422 Direct Memory Access (DMA) o e 4-31
4-2.2.1 DMA Transfers by Halting Processoroooiiiiiiieniiiiinnnnnn 4-32
4-2.2.2 DMA Transfers by Cycle Stealing 4-35
4-2.2.3 Multiplexed DMA/MPU Operationouvutinntreniieennneeeaneenns 4-38
4-2.2.4 Summary of DMA TeChniqUesuuoueietemmminneeennnineeeinnnnn. 442
4-2.3 Automatic Reset and Single Cycle Execution Circuitry.......... ..o 4-42
4-2.4 Interval Timer.ottt i ittt e 4-46
4-2.5 Memory System Design.t 4-48
4-2.5.1 Interfacing the MC6800 with Slow and Dynamic Memories 448
4-2.5.2 2KX8 RAM Memory Design Example i 4-62
4-2.5.3 8KX8 Non-Volatile RAM Design Exampleo, 4-69
4-2.54 Design Considerations When Using Non-Family Memories with the MC6800 4-88
CHAPTERS :

5 Peripheral Control Techniquesccooiiiiiininiiiiiiiiiiinnes 5-1
5-1 Data Input Devices ittt 5-1
5-1.1 Keyboards for Manual Entry of Data oo, 5-1
5-1.1.1 Decoded Keyboard for a POS Terminalo, 5-1
5-1.1.2 Non Encoded Keyboardot 5-6
5-1.2 Scanning Wand for Capturing Data From Printed Symbols 5-12
5-1.2.1 Universal Product Code (UPC) Symbolo 5-12
5-1.2.2 Hardware REqQUITEIMENESvtiiiien e 5-16
5-1.2.3 Data Recovery Techniquet 5-18
5-1.2.4 Wand/MPU INterfaceounnueneeetetttiiiie e aaaaiaeneeeeaanns 5-18

5-1.2.5

5-2
5-2.1
5-2.1.1
5-2.1.2
5-2.1.3
5-2.14
5-2.2

5-3
5-3.1
5-3.1.1
5-3.1.2
5-3.1.3
5-3.14
5-3.2
5-3.2.1
5-3.2.2

5-4
5-4.1
5-4.2
543
5-4.4
5-4.5
5-4.5
5-4.6.1
5-4.6.2
5-4.6.3
5-4.6.4
5-4.7
5-4.7.1
5-4.7.2
5-4.7.3
5-4.7.4
5-4.8
5-4.9

5-4.A
5-4.B
5-4.C
5-4.D
54.E

TABLE OF CONTENTS (Continued)

Data Recovery Control Programiiiiiiiiiaiin.. 5-22
Data Output DeVICesouiuuiiiii i 5-34
Printer Control 5-34
SEIKO AN-101F Operating CharaCteristicsouveuureennnneenn. 5-42
Printer Hardware/Software Tradeoffs coiiuiiii.... 5-43
Printer I/O Configuration i, 5-43
Printer Control Program.............. i 5-44
Burroughs Self-Scan Display Controlcoiiiiiuninnenn... 5-57
Data Interchange DeviCesouuuiienn e 5-57
Introduction to Data Communicationsouuuiueennnne... 5-57
TTY to ACIA Hardwareo.uuoueiiiin i, 5-57
TTY t0 ACIA SOftwareoui e 5-63
ACTA to Modem Hardware i, 5-71
ACIA to Modem Software i, 5-71
Tape Cassette SyStemouuutieie it 5-73
Hardware Description i 5-74
Software Description 5-88
Floppy Disk 5-113
Introduction 5-113
Overall Considerationst iiie e, 5-114
System Hardware/Software Interface0ciiuuiiii ... 5-119
Disk Program Routine Linking Controlc.cciuuii ... 5-128
Seek and Restore Operationst 5-129
Read Operation. i 5-143
The Read Operation Interface 0o uiiinii .. 5-144
Data ReCOVEIY 5-147
Read Data Logic ... 5-153
Read Operation Program Routine oo ... 5-156
Write Operation i 5-163
The Write Operation Interface i ... 5-167
Formatter Write Logic 5-171
Formatter Error Detect LOgICoouiintii i, 5-174
Write Operation Program Routineo.... 5-175
Special Operations — UPC LOOKUD oottt 5-181
Integrated Read/Write LOZICovttie it 5-198
SA900/901 Diskette Storage Drivecouiiuiuiini ... 5-203
Orbis Model 74 Diskette Driveo.iiiie e, 5-219
Cal Comp 140 Diskette Drive i i, 5-228
Recording Formats5230
Floppy Disk Program Listingsooiiiuiiii . 5-246

vi

TABLE OF CONTENTS (Continued)

CHAPTER 6

6 System Design Techniqueso 6-1
6-1 INtrOdUCHION . ..o it e 6-1
6-2 Transaction Terminal Definition i i, 6-2
6-3 Hardware/Software Tradeoffs i 6-6
6-3.1 Memory Reference /O vs DMA /O 6-6
6-3.2 Software vs Hardware Peripheral Service Prioritizing 6-7
6-3.3 Software vs Hardware Timer.ottt it 6-7
6-3.4 Display With or Without Memory i 6-8
6-4 Transaction Terminal Hardware and Software 6-10
6-4.1 Hardware Configurationttt 6-10
6-4.2 Transaction Terminal Software Development.ttt 6-21
6-4.2.1 Software Background Preparation i 6-21
6-4.2.2 Development of Macro Flow Diagram oot 6-48
6-4.2.3 Technique of Executive Program Organizationcccoooiiiaioan 6-50
6-4.2.4 Description of Macro Flow Diagram i, 6-57
6-4.3 Interrupt Control. e 6-90
CHAPTER 7

7 System Development Tasksttt i i 7-1
7-1 Assembly of the Control Program i, 7-2
7-1.1 M6800 Cross-Assembler SYNaXo vet ettt ittt 7-2
7-1.1.1 Line NUMDEISottt e e i i i e 7-13
7-1.1.2 Fields of the Source Statementot irnennneeneenen. 7-13
7-1.1.3 LabeIS ..ottt 7-13
7-1.1.4 OPEIandsottt e 7-13
7-1.1.5 (0% 1111113 11 £ 7-14
7-1.2 Accessing a Timeshare Service it 7-14
7-1.3 Entering a Source Program i 7-15
7-1.4 Assembling a Source Programl 7-18
7-1.5 05 31100 213 T PP 7-21
7-1.5.1 Simulator Commandst e 7-21
7-1.5.2 Operating the Simulator 7-29
7-1.5.3 Macro Commandsc.nititn i i e 7-30
7-1.5.4 Sample Simulated Program 7-34
7-1.5.5 Simulation Resultst i 7-39
7-1.6 HEL P ..ot e e 7-40
7-1.7 Build Virtual Machine 7-50
72 The EXORGISEr SRR 7-69
7-2.1 Hardware COMPONENLS oottt iiia e e iia e 7-71

vii

7-2.1.1
7-2.2

7-2.2.1
7-2.2.2
7-2.3

7-2.4

7-2.4.1
7-2.4.2
7-2.4.3
7-2.4.4
7-2.4.5
7-2.4.6
7-2.5

7-2.5.1
7-2.5.2
7-2.5.3
7-2.5.4
7-2.6

7-3

TABLE OF CONTENTS (Continued)

Hardware Specifications iiiiiiiiiiiiin... 7-71
Software COMpPONENtS uuiuuiiiiii i 7-74
EXORCciser Controlc.oouiiiiiii 7-74
M AL .. 7-74
Memory Utilizationc. it 7-75
Hardware Operations and Controls ... 7-78
Combined Hardware/Softwareo it 7-78
ABORT Button CirCuitttt 7-79
RESTART Button CirCuituuuuuneeae et 7-79
VMA Inhibit Decoder 7-79
Asynchronous Communications Interface 7-80
Scope SYNC .o 7-80
IterTUDLS . . L 7-80
NMI 7-80
RESET ...ttt e 7-81
S 7-81
Hardware Interrupt 7-81
Test Signals 7-82
Evaluation Module 7-88

APPENDIX A: Questions and Answers

1.

2.
3.
4

Systems Operation A-1
Control A-5
Interrupt Operationttt A-9
Programming A-15

viii

LIST OF FIGURES

CHAPTER 1

1-1.1 MC6800 Bus and Control Signals

1-1.1.1-1 MCM6810 RAM Functional Block Diagram
1-1.1.1-2 MCM6830 ROM Functional Block Diagram
1-1.1.2-1 MPU Parallel I/O Interface

1-1.1.2-2 MPU/PIA Interface

1-1.1.2-3 PIA Registers

1-1.1.2-4 MPU Serial I/O Interface

1-1.1.2-5 MPU/ACIA Interface

1-1.1.2-6 ACIA Registers

1-1.2-1 MPU Minimum System

1-2.1 Programmable Registers
1-2.3.1-1 Accumulator Addressing
1-2.3.1-2 Inherent Addressing
1-2.3.2-1 Immediate Addressing Mode
1-2.3.3-1 Direct Addressing Mode
1-2.3.4-1 Relative Addressing Mode
1-2.3.4-2 Extended Addressing Mode
1-2.3.5-1 Indexed Addressing Mode
1-2.3.6-1 Addressing Mode Summary

1-3.1 MC6800 Instruction Set
1-3.1-1 Condition Code Register Bit Definition
1-3.1-2 Condition Code Register Instructions

1-3.3.1-1 Arithmetic Instructions

1-3.3.2-1 Logic Instructions

1-3.3.3-1 Data Test Instructions

1-3.3.4-1 Data Handling Instructions

1-3.4.1-1 Index Register and Stack Pointer Instructions
1-3.4.1-2 Stack Operation, Push Instruction

1-3.4.1-3 Stack Operation, Pull Instruction

1-3.4.2-1 Jump and Branch Instructions

1-3.4.2-2 Program Flow for Jump and Branch Instructions
1-3.4.2-3 Program Flow for BSR

1-3.4.2-4 Program Flow for JSR (Extended)

1-3.4.2-5 Program Flow for JSR (Indexed)

1-3.4.2-6 Program Flow for RTS

1-3.4.2-7 Program Flow for Interrupts

1-3.4.2-8 Program Flow for RTI

1-3.4.2-9 Conditional Branch Instructions

iX

LIST OF FIGURES (Continued)

CHAPTER 2

2-1.5-1

Decimal Subtract Assembly Listing

2-1.6-1 Multiplication Using Booth’s Algorithm

2-1.6-2 Flow Chart for Booth’s Algorithm

2-1.6-3 Assembly Listing for Booth’s Algorithm

2-1.6-4 Simulation of Booth’s Algorithm

2-1.6-5 XKMULT Flow Chart

2-1.6-6 XKMULT Assembly Listing

2-1.7-1 XKDIVD Flow Chart

2-1.7-2 XKDIVD Assembly Listing

2.3.1-1 Peripheral Service Request (SR) and Data Transfer Program Waveforms and Notation
2-3.1-2 Flow Chart for a Typical Data Transfer Program for a Single Service Request
2-3.1-3 Data Transfer Program Indicating Method Used to Calculate Program Parameters
2-3.1-4 Relationship of Peripheral Data Stream to Program Timing

2-3.4-1 Flow Chart for Serial Data Transfer

2-3.4-2 Cassette Bit Serial Data Transfer Program

2-3.6-1 Program Model for Two Prioritized Time Dependent Service Requests
2-3.7-1 Timing Constraints for Successful System Operation for Prioritized Multiple Service Requests
2-3.7-2 Timing Diagram Showing Requirements of Equation 14 for Two SR’s
2-3.7-3 Timing Diagram Showing Requirements of Equation 15 for Two Sr’s

2-3.8-1 Serial Data Transfer and Dynamic Display Refresh Routine

2-3.8-2 Serial Data Display SR Parameters and System Requirement Test

2-3.9-1 Flip-Flop Model for Two ‘‘Equal’’ Period SR’s

CHAPTER 3

3-2.1-1 Hardware Interrupt Request Sequence

3-2.1-3 Interrupt Vectors, Permanent Memory Assignments

3-2.2-1 Non-Maskable Interrupt Sequence

3-2.3-1 Reset Interrupt Sequence

3-2.4-1 Software Interrupt Sequence

3-3-1 Hardware Interrupt Prioritizing — Block Diagram

3-4.1.1-1 MC6820 PIA 1/O Diagram

3-4.1.2-1 MC6820 PIA — Block Diagram

3-4.1.2-2 PIA Output Circuit Configurations

3-4.1.2-3 PIA Control Register Format

3-4.1.2-4 Read Timing Characteristics

3-4,1.2-5 Write Timing Characteristics

3-4.1.3-1 PIA Register Addressing

3-4.1.3-2 Family Addressing

3-4.1.3-:3 Typical I/O Configuration

LIST OF FIGURES (Continued)

3-4.2.1-1 MC6850 ACIA 1/0 Diagram

3-4.2.2-1 ACIA Block Diagram

3-4.2.2-2 ACIA Status Register Format

3-4.2.2-3 ACIA Control Register Format

3-4.2.3-1 ACIA Register Addressing

3-4.2.4-1 Asynchronous Data Format

3-4.3.1-1 Typical MC6860 System Configuration
3-4.3.1-2 1/O Configuration for MC6860 Modem'
3-4.3.2-1 MC6860 Modem Block Diagram

3-43.3-1 Answer Mode

3-4.3.3-2 Automatic Disconnect — Long or Short Space
3-4.3.3-3 Originate Mode

3-4.3.3-4 Initiate Disconnect

CHAPTER 4

4-1.1.1-1 MPU Clock Waveform Specifications
4-1.1.1-2 MPQ6842 Clock Buffer

4-1.1.1-3 MPU Clock Circuit

4-1.1.1-4 Clock Circuit Waveforms

4-1.1.1-5 Monostable Clock Generator

4-1.1.1-6 Monostable Clock Circuit Waveforms

4-1.2-1 Halt and Single Cycle Execution

4-1.3-1 RESET Timing

4-1.3-2a Interrupt Timing

4-1.3-2b Wait Instruction Timing

4-1.3-3 Interrupt Signal Format

4-1.34 Interrupt Enabling

4-1.3-5 Interrupt Not Properly Enabled

4-1.3-6 Alternate Enable Generation

4-1.4-1 Three State Control Timing

4-1.5-1 Buffered M6800 System

4-1.5.2 M6800 Bus Expansion Example

4-2.1-1 8-Level Priority Interrupt Configuration Block Diagram
4-2.1.1-1 8-Level Hardware Prioritized Interrupt Logic
4-2.1.1-2.1 Prioritizing Interrupt Circuitry Relative Timing
4-2.1.1-3 Interrupt Vector Memory Allocation
4-2.1.2-1 13-Level Hardware Prioritized Interrupt Logic
4-2.1.2-2 13-Level Priority Circuitry Truth Table
4-2.1.2-3 Interrupt Vector Memory Allocation
4-2.2.1-1 DMA Transfers by Halting Processor

LIST OF FIGURES (Continued)

4-2.2.1-2 Timing of DMA Transfers by Halting the MPU

4-2.2.2-1 Block Diagram of DMA Transfers by Cycle Stealing

4-2.2.2-2 Timing of DMA Transfers by Cycle Stealing

4.2.2.3-1 Multiplexed DMA/MPU Operation

4-2.2.3-2 Timing of Multiplexed DMA/MPU Operation

4-2.2.3-3 Timing of Multiplexed DMA/MPU Operation Using MCM6605 4K RAM
4-2.3-1 Automatic Reset and HALT Synchronization

4-2.3-2 Single Instruction Timing
4-2.3-3 Single Cycle Instruction Execution
4-2.4-1 Interval Timer

4-2.4-2 Timer Software Examples

4-2.5.1-1 MPU Clock Waveform Specifications

4-2.5.1-2 Read Data From Memories or Peripherals
4-2.5.1-3 Write Data to Memories or Peripherals

4-2.5.1-4 Read Cycle with 1.0us Memory

4-2.5.1-5 Write Cycle with 1.0us Memory

4-2.5.1-6 Effect of Memory Ready on Clock Signals
4-2.5.1-7 General MPU to Memory Interface

4-2.5.1-8 Dynamic Memory Interface

4-2.5.1-9 M6800 Clock Circuitry with Interface for Slow and Dynamic Memory
4-2.5.1-10 MPU Clock Circuitry Waveforms

4-2.5.1-11 MPU Clock Circuitry Waveforms

4-2.5.1-12 Monostable Clock Generator with Memory Ready
4-2.5.2-1 2KX8 Memory System Block Diagram

4-2.5.2-2 2KX8 Memory System Schematic Diagram
4-2.5.2-3 MPU/2KX8 Memory Read Cycle

4-2.5.2-4 MPU/2KX8 Memory Write Cycle

4-2.5.2-5 2KX8 Memory System with Memory Ready
4-2.5.3-1 MCM6605 4K RAM Block Diagram

4-2.53-2a Read Cycle Timing (Minimum Cycle)

4-2.5.3-2b Write and Refresh Cycle Timing (Minimum Cycle)
4-2.5.3-2c Read-Modify-Write Timing (Minimum Cycle)
4-2.5.3-3 Non-Volatile Memory System Block Diagram
4-2.5.3-4 EXORciser/4K Memory System Timing Diagram
4-2.5.3-5 Memory Timing in Standby Mode

4-2.5.3-5 Address Buffers and Decoding Logic

4-2.5.3-7 Data Buffers and Memory Array

4-2.5.3-8 Refresh Control Logic

4-2.5.3-9 Refresh Timing

Xii

LIST OF FIGURES (Continued)

4-2.5.3-10 Power Fail Logic and Chip Enable Driver
4-2.5.3-11 Power Up/Down Synchronization
4-2.5.3-12 Memory System Breadboard

4-2.5.3-13 Alternate Read and Write Memory Accesses
4-2.5.3-14 Memory PC Board Array

4-2.5.3-15 Power Line Ripple

CHAPTER 5

5-1.1.1-1 PGS Keyboard Configuration

5-1.1.1-2 Keyboard Coding/PIA Interface

5-1.1.1-3 Keyboard/PIA Hardware Interface

5-1.1.1-4 Flow Chart for Keyboard Service Routine
5-1.1.1-5 Keyboard Service Assembly Listing
5-1.1.2-1 Keyboard/PIA Interface

5-1.1.2-2 Keyboard Control Flow Chart

5-1.1.2-3 Keyboard Control Assembly Listing
5-1.1.2-4 Initial PIA I/O Configuration

5-1.1.2-5 Result of Key Closure

5-1.1.2-6 Contents of Accumulator A

5-1.1.2-7 1/O Conditions Reversed

5-1.1.2-8 Generation of Output Word

5-1.1.2-9 Lookup Table

5-1.2.1-1 UPC Symbol from Box of Kleenex Tissues
5-1.2.1-2 UPC Standard Symbol

5-1.2.1-3 UPC Character Structure

5-1.2.1-4 Nominal Dimensions of Printed UPC Symbol
5-1.2.1-5 Encoding for UPC Characters

5-1.2.2-1 UPC Wand Signal Conditioning Circuitry
5-1.2.3-1 Dimensions for Standard Symbol Characters
5-1.2.3-2 UPC Symbol Printing Tolerances

5-1.2.3-3 Worst Case Printing Tolerances

5-1.2.4-1 Transaction Terminal Flow Diagram
5-1.2.5-1 Flow Chart for XKIWND Initialization Routine
5-1.2.5-2 XKIWND Assembly Listing

5-1.2.5-3 Flow Chart for YKXWAND Routine
5-1.2.5-4 YKWAND Assembly Listing

5-1.2.5-5 Flow Chart for WSORT Routine

5-1.2.5-6 WSORT Assembly Listing

5-1.2.5-7 Flow Chart for WCNVRT UPC to BCD Conversion Routine
5-1.2.5-8 ~ WCNVRT Assembly Listing

Xiii

5-1.2.5-9

5-1.2.5-10
5-1.2.5-11
5-1.2.5-12
5-1.2.5-13

5-2.1.1-1
5-2.1.1-2
5-2.1.1-3
5-2.1.3-1
5-2.1.4-1
5-2.1.4-2
5-2.1.4-3
5-2.1.4-4
5-2.1.4-5
5-2.1.4-6

LIST OF FIGURES (Continued)

XKWAND Table and Buffer Memory Locations
Flow Chart for WERCHK ERROR Check
WERCHK Assembly Listing

Flow Chart for WBCDPK Packing Routine
WBCDPK Assembly Listing

SEIKO AN-101F Printing Mechanism
Timing Signal Generation

Timing Signals

SEIKO Printer Circuit Requirements

Print Cycle Timing: ‘“MICROPROCESSOR"’
Initialization

Printer Enable

Reset Service

Printer/MPU Relative Activity

Print Service

5-2.1.4-7(a) PKSCAN Flow Chart
5-2.1.4-7(b) PKSCAN Assembly Listing

5-2.1.4-8
5-2.1.4-9
5-2.2-1
5-2.2-2
5-3.1-1
5-3.1-2
5.3.1.1-1
5-3.1.2-1
5-3.1.2-2
5-3.1.3-1
5-3.2.1-1
5-3.2.1-2
5-3.2.1-3
5-3.2.14
5-3.2.1-5
5-3.2.1-6
5-3.2.1-7
5-3.2.1-8
5-3.2.1-9
5-3.2.1-10
5-3.2.1-11
5-3.2.1-12
5-3.2.1-13

Roll Left Operation on PIA Registers

Printer Column/Text Buffer Relationship

Burroughs Self-Scan Display Characteristics

PIA/Burroughs Display Interface

Paper Tape Format

TTY/ACIA and Modem/ACIA Systems

MPU to TTY Interface

Flow Chart for Comm. Program

Data Comm. Assembly Listing

MPU to Remote Site

800 BPI Recording Format

PIA, Tape Drive and Read/Write Control Electronics Interface
Read/Write Circuitry

Write Operation Timing and Format Conversion

Read Operation Timing

EOT/BOT Circuitry with Hardware Safety Feature

Phase Locked Loop Data Recovery

Read Data Recovery Timing (After Preamble, with Loop in Lock)
Cassette Serial Read/Write and Control Logic

Read Operation Sequence Timing

Write Operation Sequence Timing

Start, Stop, and Interblock Gaps Derived From the Tape Velocity Profile
Load Point

Xiv

LIST OF FIGURES (Continued)

5-3.2.2-1 System Integration of Rewind to Load Point
5-3.2.2-2 Move to Load Point Flow Chart

5-3.2.2-3 Move to Load Point Assembly Listing
5-3.2.2-4 System Integration of Write Routine
5-3.2.2-5 Flow Chart of Write Routine

5-3.2.2-6 Write Routine Assembly Listing

5-3.2.2-7 Flow Chart of Read Routine

5-3.2.2-8 Read Routine Assembly Listing

5-4.1-1 M6800/Fioppy Disk Subsystem

5-4.1-2 Floppy Disk System

5-4.2-1 Example of a Serial Task System

5-4.2-2 Multiple MPU System

5-4.23 Radial Interface

5-4.24 Daisy Chain Interface

5-4.3-2 Byte Ready/Request Interface

5-4.3-1 Floppy Disk Functional Interface

5-4.5-1 Typical Host/Floppy Disk Program Interaction
5-4.5-2 Seek/Restore Interface

5-4.5-3 ‘FKSKIN’ Flow

5-4.5-4 ‘FKSEEK’ Flow

5-4.6.1-1 Read Operation Interface

5-4.6.1-2 Read Clock Logic

5-4.6.1-3 Error Detect Logic

5-4.6.2-1 Floppy Disk IBM 3740 Format Data and Clock Recovery
5-4.6.2-2 Data and Clock Recovery Timing

5-4.6.2-4 VCM Frequency Faster Than Data Rate
5-4.6.2-5 PLL Response — Worst Case Capture Time
5-4.6.2-6 MC4024 Voltage vs Frequency for Floppy Disk Data Recovery
5-4.6.3-1 Read Data Logic (Read Shift Register, Read Buffer, Bit Counter and CRC Check)
5-4.6.3-2 Start Read Timing

5-4.6.4-2 Read Routine Flow Chart

5-4.6.4-3 System Integration of Floppy Disk Routines
5-4.7.1-1 Write Operation Interface

5-4.7.1-2 Write Control Signal Sequence

5-4.7.2-1 Floppy Disk Write Logic

5-4.7.2-3 Append CRC Timing

5-4.7.3-1 Error Detect Logic

5-4.7.4-2 Write Flow

5-4.8-1 UPC Track Format

5-4.8-2 UPC Lookup Program Integration

XV

LIST OF FIGURES (Continued)

5-4.8-4 UPC Search Program Flow Chart

5-4.9-1 Combined Read/Write Data Logic

5-4.9-2 Combined Read/Write Clock Logic

5-4.9-3 Error Detect Logic

5-4.A-2 Loading SA900/901

5-4.A-3 SA900 Functional Diagram, One Sector Hole
5-4.A-4 SA901 Functional Diagram, 32 Sector Holes
5-4.A-5 Head Load and Carriage Assembly

5-4.A-6A SA100 Diskette and Cartridge Layout
5-4.A-6B SA101 Diskette and Cartridge Layout
5-4.A-7 Standard Interface Lines, SA 900/901
5-4.A-8 Index Timing, SA 900/901

5-4.A-9 Index/Sector Timing, SA 900/901

5-4.A-10 Data Line Driver/Receiver Combination, SA 900/901
5-4.A-11 Control Signal Driver/Receiver, SA 900/901
5-4.A-12 Sector Recording Format, SA 901

5-4.A-13 Track Access Timing, SA 900/901

5-4.A-14 Read Initiate Timing, SA 900/901

5-4.A-15 Read Signal Timing, SA 900/901

5-4.A-15 Write Initiate Timing, SA 900/901

5-4.A-17 File Inop Circuit, SA 900/901

5-4.B-1 Orbis Model 74 Functional Block Diagram
5-4.B-3 Power Up Sequence, Orbis Model 74

5-4.B-4 Read/Write Sequence, Orbis Model 74
5-4.B-5 Interface Drive & Receiver, ORBIS Model 74
5-4.C-1 Floppy Disk Cartridge, Cal Comp 140
5-4.C-8 The CDS 140, Cal Comp 140

5-4.C-9 Driver Mechanism, Cal Comp 140

5-4.C-10 Centering Cone and Driver Hub, Cal Comp 140
5-4.C-11 Positioning Mechanism, Cal Comp 140
5-4.C-12 Model 140 Functional Block Diagram, Cal Comp 140
5-4.C-13 Tunnel Erase, Cal Comp 140

5-4.D-1 Data Pattern

5-4.D-2 Bit Cell

5-4.D-4 Data Bytes

5-4.D-3 Byte

5-4.D-5 Track Format

5-4.D-6 Index Recording Format

5-4.D-7 Sector Recording Format

P,

5-4.D-8 Index Address Maik

Xvi

LIST OF FIGURES (Continued)

5-4.D-9 ID Address Mark
5-4.D-10 Data Address Mark
5-4.D-11 Deleted Data Address Mark

CHAPTER 6

6-1-1 Conventional Design Cycle
6-1-2 MPU-Based Design Cycle
6-2-1 POS Keyboard Configuration

6-4.1-1 Transaction Terminal Block Diagram
6-4.1-2 Control Circuitry Configuration

6-4.1-3 I/O Control Card Schematic Diagram
6-4.1-4 MPU/Control Card Schematic

6-4.1-5 MIKBUG™ PIA and TTY/RS-232 Circuitry
6-4.1-6 Transaction Terminal Memory Map
6-4.1-7 Transaction Terminal Address Decoding Chart
6-4.1-8 Bus Extender Enable/Disable

6-4.1-9 MC8T26, Partial Schematic

6-4.2.1-1 Flow for Key Entry Data

6-4.2.2-1 Transaction Terminal Flow Diagram
6-4.2.3-1 XLABEL Assembly Listing

6-4.2.4-1 System Initialization Assembly Listing
6-4.2.4-2 Software Poll for Service Assembly Listing
6-4.2.4-3 Keyboard PIA Hardware Interface
6-4.2.4-4 Keyboard Coding/PIA Interface

6-4.2.4-5 Keyboard Decode Assembly Listing
6-4.2.4-6 XKSAFE General Flow Diagram

6-4.2.4-7 XKSAFE Initialization Section Flow Chart
6-4.2.4-8 XKSAFE Entry Point Flow Charts
6-4.2.4-9 XKSAFE Main Processing Flow Chart
6-4.2.4-10 XKSAFE Defining Section

6-4.2.4-11 XKSAFE Service Routine Flow Charts
6-4.2.4-12 Flag Reference Summary

6-4.3-1 Interrupt Control Flow Chart

6-4.3-2 Interrupt Poll Assembly Listing

CHAPTER 7

7-1 System Development: Like an Iceberg
7-1.3-1 Entering the Source Program ‘‘AAA”
7-1.3-2 Listing of the Source Program ‘“‘AAA”
7-1.4-1 Fields of Assembly Listing

Xvii

LIST OF FIGURES (Continued)

7-1.4-2 Assembly Listing for Sample Program ‘“AAA”
7-1.5.4-1 Simulation of ‘“‘AAA”’

7-2 Procedure for Designing and Verifying a System Using the M6800 Microcomputer
7-2-1 Motorola EXORciser
7-2-2 Typical EXORciser System Block Diagram

7-2.3-1 Memory Map and Addressing
7-2.6-1 EXORciser Backplane Connections for All Boards

7-3-1 Motorola Evaluation Module
7-3-2 Evaluation Module Block Diagram
7-3-3 Evaluation Module Memory Map

Xviii

LIST OF TABLES

CHAPTER 2

2-1.2-1

Condition Code Register

2-1.3-1 Overflow for Addition

2-1.3-2 Overflow for Subtraction

2-1.4-1 Arithmetic Instructions

2-1.4-2 Effect of DMA instruction

2-1.4.1-1 Truth Table for ‘“‘Add with Carry”’
2-1.4.1-2 Turth Table for ‘‘Subtract with Borrow’’
CHAPTER 4

4-1.1.1-1 Performance of Circuit in Figure 4-1.1.1-3
4-1.1.12 Performance of Circuit in Figure 4-1.1.1-6
4-2.1.1-1 8 Level Priority Circuitry Truth Table
4-2.1.1-2 PROM Code for Priority Encoder
4-2.2.1-1 Address Assignment

4-2.2.4-1 Summary of DMA Techniques

4-2.4-1 Interval Timer Programming Chart
4-2.5.3-1 8KX8 Non-Volatile Memory System Power Requirements
4-2,5.3-2 Standby Mode Current Allocation
4-2.5.3-3 Battery Characteristics

4-2.5-4-1 MPU Family Interface Chart

CHAPTER 5§

5-4.4-1 ‘FUDELT’ RAM Location

5-4.4-2 ‘FVABOR’ RAM Location

5-4.4-3 ‘FVSTAT’ RAM Location

5-4.5-5 Seek/Restore Preparation Routine

5-4.5-6 Interrupt Driven Seek/Restore Routine
5-4.4-7 Seek Examples

5-4.6.4-1 Floppy Disk Read Routine

5-4.7.4-1 Floppy Disk Write Data Routine

5-4.8-3 UPC Search Routine

5-4.C-2 Physical Characteristics, Cal Comp 140
5-4.C-3 Power Requirements, Cal Comp 140
5-4.C4 Operatining Environment, Cal Comp 140
5-4.C-5 Specifications, Cal Comp 140

5-4.C-6 140 Disk Drive Output Signals, Cal Comp 140
5-4.C-7 Interface Logic Levels, Cal Comp 140

Xix

LIST OF TABLES (Continued)

CHAPTER 6

6-4.2.1-1

Transaction Terminal Keyboard/Wand Entry

6-4.2.1-2 Transaction Terminal Keyboard Buffers
6-4.2.1-3 Transaction Terminal Keyboard Flags
CHAPTER 7

7-1-1 Alphabetic Listing of Instruction Mnemonics
7-1.1-1 Assembler Directives

7-1.1-2 ASCII Code

7-1.4-1 Assembler Error Messages

7-1.5.5-1 Typical Simulator Errors

7-1.6-1 HELP Error Messages

7-1.6-2 HELP Listing of Simulator and BVM Commands
7-1.6-3 HELP Messages

7-1.7-1 BVM Machine File and Output Memory Commands
7-2.2.2-1 MAID Control Commands

7-3-1 Evaluation Module Specifications

CHAPTER 1

1. INTRODUCTION TO THE MC6800 MICROPROCESSOR

Motorola has elected to provide a microprocessor family of parts headed by the MC6800
Microprocessing Unit (MPU). The MC6800 MPU is an eight-bit parallel microprocessor with addressing
capability of up to 65,536 words. It is TTL compatible requiring only a single five-volt supply and no external
TTL devices for bus interface in small systems.

In support of the MPU are several memory and I/O interface devices. To date, the family consists of
a 128 X 8 RAM (MCM6810), a 1024 X 8 ROM (MCM6830), a parallel I/O interface (MC6820 PIA), and an
asynchronous serial I/O interface (MC6850 ACIA). In keeping with the family concept, each operates on a
single five-volt power supply and is compatible with the system bus signals. The family of parts is not a chip set
in the sense that the MPU operation is dependent upon other family elements; the MC6800 is a self-contained
microprocessor capable of operating with virtually any MOS or standard TTL device. The significant point is
that the other family members merely add additional capability and/or flexibility. They provide excellent tools
in configuring a full microprocessor operating system.

1-1 SYSTEM ORGANIZATION

Before describing the individual parts in any detail, an explanation of the MPU bus and control
structure will serve to demonstrate how a system is brought together. Figure 1-1-1 is organized to show the
processor’s inputs and outputs in four functional categories; data, address, control, and supervisory.

The width and drive capability of the Data Bus has become a standard means of measuring
microprocessors. The MC6800 has an 8-bit bidirectional bus to facilitate data flow throughout the system. The
MPU Data Bus will drive up to 130 pf and one standard TTL load. As a result of the load characteristics of the
RAM, ROM, ACIA, and PIA, the MPU can drive from 7 to 10 family devices without buffering.

Using the family I/O interface devices allows the 16-bit Address Bus to assume additional
responsibility in the M6800 system. Not only does the Address Bus specify memory, but it becomes a tool to
specify I/O devices. By means of its connections to the Data Bus, Control Bus, and selected address lines, the
I/O interface is allocated an area of memory. As a result, the user may converse with I/O using any of the
memory reference instructions, selecting the desired peripheral with a memory address.

In addition to the Data and Address Bus, a Control Bus is provided for the memory and
interface devices. The Control Bus consists of a heterogeneous mix of signals to regulate system opera-
tion. Following is a brief review of the designated Control Bus signals shown in Figure 1-1-1. $2 is one
phase of the system clock applied to the MPU. It is applied to the enable or chip select inputs of the
family parts to insure that the devices are enabled only when the address bus and VMA are stable. Reset
is used to reset and start the MPU from a power down condition. It is also routed to the Reset inputs

of the PIAs for use during power on initialization. Interrupt Request is generated by the PIA, ACIA, or
user defined hardware to notify the MPU of a request for service.

1-1

Read/Write (R/W) and Valid Memory Address (VMA) are MPU outputs characterizing the Data
Bus and Address Bus, respectively. R/W designates whether the MPU is in a Read or Write mode for each
cycle. VMA indicates to memory and I/O that the MPU is performing a read or write operation in a givencycle.
This signal is applied to the enable or chip select inputs of each family device in order to disable data transfer
when VMA is low.

The last set of signals in Figure 1-1-1, the MPU Supervisory, is used for timing and control of the
MC6800 itself. Note that three of the Supervisory signals are shared with the control bus and affect the memory
and I/O devices as well.

¢1 is one of the two clock phases to the MPU. Non-Maskable Interrupt (NMI) is similar to the
interrupt request input mentioned earlier, except that NMI will always be serviced regardless of the state of a
programmable interrupt mask contained within the processor. Data Bus Enable (DBE) is the three-state control
signal for the MPU data bus. Normally, this signal will be ¢2, derived from the clock. Three-State Control
(TSC) affects the address bus and the R/W line in the same manner that DBE controls the data bus. This signal
can be used, for example, to accomplish a direct memory access by putting the Address Bus and the R/W line in
the high impedance state. The last supervisory input is the Halt signal. When Halt is low, the MPU will stop
processing. In the Halt mode, all three-state si gnals will be in a high impedance state (address, data and R/W),
VMA will be low, and Bus Available will be high.

The Bus Available supervisory output from the MPU is normally in an inactive low state. It is
brought high by the occurrence of the %input low or by execution of a WAIT instruction. In either case, the
MPU stops program execution and sets Bus Available high, indicating that all the three-state buffers are in the
high impedance state. If the MPU has stopped as a result of the Halt signal, Bus Available will remain high until
the minput is again taken high. If the MPU has stopped as a result of the WAIT instruction, it is waiting for an
interrupt and Bus Available will remain active until a non-maskable interrupt or interrupt request occurs. Bus
Available may be used to signal external hardware that the MPU is off the bus for multiprocessor or direct
memory access applications.

+5V GND
| |
r —
BUS AVAILABLE DATA
HALT — BUS
% | THREESTATE CONTROL =
<]
g DATA BUS ENABLE ———~d
T 4 ADDRESS
; NON-MASKABLE INT, ———s MC6800 %) BUS
L —————
> RESET
-9
H
61
VALID MEM.W
62 ™ ADDRESS
\ R ‘
iNT. REQ p———— READ/WRITE
» CONTROL
_ BUS
- |NT. REQ
— 32
: RESET J
B S] ! B e and
TO/FROM : TO/FROM
6800 CONTROL MEMORY AND
CIRCUITS ! PERIPHERALS

FIGURE 1.1.1, MCE800 Bu

1-1.1 M6800 FAMILY ELEMENTS

With the MC6800 as the focal point, a variety of memory and I/O devices may be tied onto the bus
network. The busses will provide TTL compatible voltage levels (Vou = 2.4 volts, VoL = 0.4 volts) while
driving capacitive loads up to 130 picofarads with current loads of up to 1.6 ma sink current and 100 pa source
current.
1-1.1.1 Memory On The Bus

Memory is connected in a straightforward fashion by tieing directly to the MC6800 busses.
Motorola currently provides two word oriented memory devices as part of the microprocessor family: The 128
X 8 RAM (MCM6810) and the 1024 X 8 ROM (MCO06830). Block diagrams of the RAM and ROM are shown
in Figures 1-1.1.1-1 and 1-1.1.1-2, respectively. Notice that the data lines have three-state buffers permitting
the memory data signals to wire-OR directly onto the system data bus. Address decoding is minimized by
providing multiple enable (E) inputs. The enable inputs, when active, select the specified device as defined by
the address inputs. For a small to medium size system, no additional address decoding is necessary. The
memories operate from a single 5V power supply and are TTL compatible. Static operation eliminates the need
for clocks or refresh.

] fs—»
] . ls—
7 7] ¢ -
MEMORY THREESTATE |eg—u»
ADDRESS { ®— ADDRESS | o
MATRIX B8I-DIRECTIONAL (8) DATA BUS
INPUTS | DECODER| o 128 X 8 TTL BUFFERS [a—o
* L4 ja—>
— -—an le—»
900000000000
RIW MEMORY CONTROL

Hng?

m mmi m m

FIGURE 1-1.1.1-1. MCM6810 RAM Functional Block Diagram

*DEFINED BY USER

AND
GATE

THREE-STATE
OUTPUT
BUFFERS

MEMORY
MATRIX

ADDRESS

DECODER > DATA BUS

RN

SERREENY

\

10 ADDRESS INPUTS
EXTETEEER

FIGURE 1-1.1.1-2. MCM6830 ROM Functional Block Diagram

1-3

MPU

4’} PN
—

I

PIA

P Ji— JJ -
DATA | |CONTROL

-

ADDRESS

FIGURE 1-1.1.2-2. MPU/PIA Interface

<Ry

I§—3 Control
t‘s’:D} Peripheral FIGURE 1-1.1.2-1. MPU Parallel 1/0 interface
<= (8) :"_,)
J§——> control
MPU
PN PN

i fy 11 T

DATA)
ADDRESS :‘])

CONTROL

I

PIA
A LI
ADDRESS RESET
CONTROL

- f—— CA1
“A” CONTROL

“A” DATA = CA2

DIRECTION N

A" DATA <:) PAO-PA7

REGISTER

81 FIGURE 1-1.1.2-3. PIA Registers

“B” CONTROL - CB2

“B" DATA

DIRECTION

“B” DATA <#> PBO—

REGISTER B0-PB7

MPU
1 (\F
- R TRANSMIT DATA
— v RECEIVE DATA
. [A le——— " % PERIPHERAL
FIGURE 1-1.1.2-4. MPU Serial 1/0 Interface r_ -y ACIA m OR MODEM
A
-/

1/0 CONTROL

- ...L

DATA ULCONTROL
ADDRESS

14

1-1.1.2 I/O On The Bus

The family I/O devices arealso tied directly to the bus network. In the M6800 architecture, T/O is
configured to respond to MPU instructions in the same fashion as memory. This is accomplished by tapping off
the MPU busses such that /O has a ‘“memory’’ address that the MPU references. Two devices available for
interfacing the microprocessor with the outside world are the MC6820, Peripheral Interface Adapter (PIA), for
parallel interface, and the MC6850, Asynchronous Communication Interface Adapter (ACIA), for serial
interface. Both are designed to tie directly to the MPU busses and transfer signals between peripherals and the
MPU under program control. .

Interfacing the MPU to a variety of I/O devices is straightforward with the Peripheral Interface
Adapter (PIA). It is a programmable general purpose parallel interface device desi gned to interface the MPU to
peripherals through two 8-bit bidirectional peripheral data busses and four control lines as shown in Figure
1-1.1.2-1.

The MPU/PIA interface consists of three elements: 8 data lines, 5 address lines, and 5 control lines
(see Figure 1-1.1.2-2). The data lines are bidirectional common to the MPU data bus. The PIA taps off 5 bits
from the 16-bit MPU address bus. These 5 inputs are utilized to select the PIA (CSO0, CS1, Cﬁ) as well as
registers within the PIA (RSO and RS1).

The PIA uses all of the signals on the MPU Control Bus. The R/W input ties directly to the MPU
R/W output to control direction of data flow. The PIA has two independent Interrupt Request outputs that may
be wire-ORed together and tied to the IRQ line of the Control Bus or applied separately to prioritizing circuitry.
The Reset input may be tied directly to the MPU control bus to initialize the PIA to an all zero condition when
required. Finally, the Enable input is the timing signal to be supplied to the P
A. This input is typically the ¢2 clock.

The PIA is programmable in the sense that the MPU can Read and/or Write into its internal registers.
There are a total of six 8-bit registers in the PIA. They are separated into an A and B side, each side containing a
Control Register, Data Direction Register, and an Output Data Register (Figure 1-1.1.2-3). To define operation
of the PIA control lines, an 8-bit word is loaded into the Control Register. Likewise, to define the
PIA/peripheral data lines to be inputs or outputs, an 8-bit word is loaded into the Data Direction Register.
Finally, data being transferred to peripherals may be saved in the PIA Output Data Register.

Motorola has also made available a serial interface device to accommodate asynchronous data
transfer. The MC6850 Asynchronous Communications Interface Adapter (ACIA) is a general purpose
programmable interface for use between the MPU and asynchronous I/O as shown in Figure 1-1.1.2-4. The
ACIA ties into the MPU Address, Data, and Control Busses enabling the MPU to handle the serial I/O using
memory reference instructions.

1-5

The MPU/ACIA interface consists of three elements (see Figure 1-1.1.2-5): 8 data lines, 4 address
lines, and 3 control lines. The data lines are bidirectional common to the MPU data bus. Four of the sixteen
MPU address signals are used to select a particular ACIA (CS0, CS1, CS2), and to select registers within the
ACIA (RS).

The control signals shown are Read/Write (R/W) and Enable (E). The R/W input is common to the
MPU control bus R/W signal and the E input in a typical application is the ¢2 clock.

The internal structure of the ACIA is centered around four registers (Figure 1-1.1.2-6): Control,
Status, Transmit Data, and Receive Data. The ACIA is programmed by storing an 8-bit word into the write only
Control Register. This register controls the function of the receiver, transmitter, interrupt enables, and the

MPU

1

i h? THEEE

€S0 ACIA
— cs2
RS
AW
{RQ
O E
DATA X
ADDRESS
CONTROL

FIGURE 1-1.1.2-5. MPU/ACIA Interface

DATA :__‘“"> TRANSMIT DATA = TRANSMIT DATA
RECEIVE DATA - RECEIVE DATA
ADDRESS
| CONTROL l e——— CLEAR-TO-SEND
CONTROL ::D STATUS le— DATA CARRIER DETECT
| REQUEST-TO-SEND

FIGURE 1-1.1.2-6. ACIA Registers

modem control signals. ACIA status and error conditions are monitored by reading the 8-bit Satus Register.

The ACIA also has independent transmit and receive data buffers to save data and perform serial/parallel
transformation.

1-1.2 TYPICAL SYSTEM CONFIGURATION

With the preceding material as background, the family devices and bus structure can be combined in
a system configuration. Figure 1-1.2-1 shows a system controlled by the MC6800 containing one each RAM,
ROM, PIA, and ACIA. With the exception of suitable peripherals, this block diagram represents all of the
hardware required for a fully operational MPU system. The family of parts represents 5 devices, clock circuitry
can be designed with 2 devices, and start-up can be accomplished with one device!. Therefore, a functional
system can be configured with as few as eight devices and have both parallel and serial 1/O capability.

The configuration of Figure 1-1.2-1 represents typical interconnections regardless of the size of the
system. The data bus is shared fully between all devices in the system. The control bus is shared by all devices,
with each tapping off signals as required. The I/O devices wire-OR all interrupt request signals to the MPU IRQ
input. The PIA has two interrupts and the ACIA, one. VMA and @2 are both required inputs to the family
devices and are, therefore, applied to the inputs as shown. @2 guarantees that all busses are stable and VMA
designates a valid memory cycle whenever a memory or I/O device is enabled.

1-1.2.1 Memory Allocation

The Address Bus lends itself to very flexible memory allocation. Different combinations of signals

may be tapped off the Address Bus to define where in ¢ ‘memory’’ each device is located. The chip select signals
(CS0, CS1, CS2) of the PIA/ACIA and the enable inputs of the RAM/ROM are used to select specific

devices. In Figure 1-1.2-1, for example, A2, Al4, and A15, are used to enable the PIA for MPU data
transfer. The least significant address bits (AO, A1) are then utilized to select a memory word or [/O
register within the selected device. Therefore, a given address will specify the device, and a location

within the device.
Table 1-1.2.1-1 shows the **memory map’’ of the example system. This map represents the area in

memory where each device is located, including I/O. For example, address bits A14 and A15 are both tied to
the E inputs of the RAM. Therefore, whenever both of these address signals are low, the RAM will be
conversing with the MPU on the data bus. It should be noted that without address decoding, the devices will be
allocated a block of memory because the “‘don’t care’’ address bits may be either logical ““0’” or ““1”’, thereby
widening the devices apparent address band. Having defined the memory map, the user may then determine the
address of registers in a specific I/O device. Table 1-1.2.1-2 shows the corresponding register addresses for
each ACIA and PIA register. Notice that bit 2 of the control re gisters (CRAb2 and CRBb2) and R/W are used to
assist the address signals to select PIA and ACIA registers, respectively.

1-1.2.2 Hardware Requirements

The final point to consider is that the example configuration represents a minimum system. To
expand the system, the user need only make further use of the bus network. If , for example, an additional PIA is
required, A4, Al4, and A15 may be tied to CSO, CS1, and CS2, respectively. This procedure could be
continued to add multiple memory and 1/O devices without address decoding.

!See Chapter 4 for typical clock and start-up circuits.

1.7

e
"o g
START- :
uP RESET g
BA g
DBE DBO-DB7 g
I g
o2 =] 52 g
A
crock & o MPU s
VMA « ¢2 I TSC LA
S = A
+5 V—E HALT 11
+ N RIW ¢
VMA \;
AO- A15 VMA A
‘ \/
»
”
/ : AD-A9 | AO- A9 DBO—DB7 A
ROM MA . 32 A
N\ e 1 vma- 92
Ald A
/ E L
z
A
[
/ AO— A6 Y AO-AG DB0O-DB7 <r "
.
4\ g
_ 2
A5 5 RAM e 2
/ E E /W 1
2R = rw [
w E &
4 E b=
& 2
< 3
Al
N ks /
N A1 Ra DB0-DB7 4
/ VMA « Al PlA 2 N
N__AI15 ot R
/ cs2z RES M
R/W <
/ 1ROA 1
cA2 1ROB d
/ CA1___PA__ PB CB1CB2 g
g
”
A
4 g
—_— g
/ PARALLEL 1/0 (DATA AND CONTROL) A
L1
?__A_o_, ks / 1
23 | oso DBO-DB7 \ g)
/ A\VMA s A3 os1 ACIA 52
cs1 5
/\ AlS lee E ¢
/ [(T0] D —— g
iRQ LA
/ Tx Rx CTSDCORTS | 'HC ;
g i 4

5

\
TN ONONONONNNNNANN

<
DA

NN

SERIAL 1/0 {DATA AND CONTROL)

FIGURE 1-1.2-1. MPU Minimum System

ANNNONONOINNNANN NN

The MC6800 microprocessor complemented by its family of parts was designed with ease of use in
mind. Interfacing peripherals to the microprocessor with PIAs and ACIAs eases the burden of hardware design
and minimizes software requirements by distributing intelligence to these interfaces. Power supply
requirements are uncomplicated: one five-volt supply throughout the family. Neither decode nor buffering
circuitry is required in systems containing less than 7 to 10 family devices. As the system grows, the design may
require buffers to prevent overloading or address decoders to more precisely define memory blocks. Be that as
it may, the rules don’t change and bussing continues to be straightforward.

ADDRESS DEVICE MEMORY MAP
IS 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
o 0 - . . - - - X X X X X XX RAM 0000-007F HEX
1 1 : . XXX XX X X X XX ROM C000-C3FF HEX
0 1 1 X X PIA 4004-4007 HEX
0 1 1 X ACIA 4008-4009 HEX
X = Variable address 0 =Logical zero
- =Don’t care 1 =Logical one
TABLE 1-1.2.1-1
ADDRESS(HEX) I/O REGISTER
(4004-4007) RS1 RSO (PI1A)
4004 0 0 Data direction register A (CRAb2 =0)
4004 0 0 Peripheral interface register A (CRAb2 = 1)
4005 0 1 Control register A
4006 1 0 Data direction register B (CRBb2 = 0)
4006 1 0 Peripheral interface register B (CRBb2 = 1)
4007 1 1 Control register B
(4008-4009) RS (ACIA)
4008 0 Control register (write only)
4008 0 Status register (read only)
4009 1 Transmit data register (write only)
4009 1 Receiver data register (read only)

TABLE 1-1.2.1-2

1-2 SOURCE STATEMENTS AND ADDRESSING MODES

A hardware configuration similar to that described in the preceding Section provides the nucleus for
a system based on the M6800 Microprocessor Family. Three additional elements are required to complete a
typical system design: (1) the actual peripheral equipment that is dictated by the system specification; (2) any
auxiliary electronics required to control the peripherals; (3) the ‘‘intelligence’’ that enables the MPU to perform
the required control and data processing functions.

In an MPU based design, *‘intelligence’’ refers to the control program, a sequence of instructions
that will guide the MPU through the various operations it must perform. During development, the designer uses
the MC6800’s predefined instruction set to prepare a control program that will satisfy the system requirements.
The program, usually called ‘software’” at this point, is then stored in ROM memory that can be accessed by
the MPU during operation, thus becoming the system’s intelligence. Once in ROM, the program is often called
“firmware’’, however, it is common to find the terms software and firmware used interchangeably in this
context.

Definition of suitable peripheral interfaces is discussed in detail in Chapter 5. The remainder of this
Chapter provides the background information necessary for generation of the control program. Source
statement format and the MPU’s addressing modes are introduced in this section. The instruction set is
described in Section 1-3.

The MPU operates on 8-bit binary numbers presented to it via the Data Bus. A given number (byte)
may represent either data or an instruction to be executed, depending on where it is encountered in the control
program. The M6800 has 72 unique instructions, however, it recognizes and takes action on 197 of the 256
possibilities that can occur using an 8-bit word length. This larger number of instructions results from the fact
that many of the executive instructions have more than one addressing mode.

These addressing modes refer to the manner in which the program causes the MPU to obtain its
instructions and data. The programmer must have a method for addressing the MPU’s internal registers and all
of the external memory locations. The complete executive instruction set and the applicable addressing modes
are summarized in Figure 1-3-1, however, the addressing modes will be described in greater detail prior to
introducing the instruction set later in this chapter. A programming model of the MC6800 is shown in Figure
1-2-1. The programmable registers consist of: two 8-bit Accumulators; a 6-bit Condition Code Register; a
Program Counter, a Stack Pointer, and an Index Register, each 16 bits long.

7 0
ACCA ACCUMULATOR A
7 0
ACCB ACCUMULATOR B
15 0
1X INDEX REGISTER
15 0
PC PROGRAM COUNTER
15 0
sp STACK POINTER

5

0
[H] 1 Infz]v|c] conpiTion copes rRecisTER

FIGURE 1-2-1. Programming Model of MCG6800

1-2.1 SOURCE STATEMENTS

While programs can be written in the MPU’s language, that is, binary numbers, there is no easy way
for the programmer to remember the particular word that corresponds to a given operation. For this reason,
instructions are assigned a three letter mnemonic symbol that suggests the definition of the instruction. The
program is written as a series of source statements using this symbolic language and then translated into
machine language. The translation can be done manually using an alphabetic listing of the symbolic instruction
set such as that shown in Appendix Al. More often, the translation is accomplished by means of a special
computer program referred to as a cross-assembler. The cross-assembler and other ‘‘software’” design aids
available to the user are described in Chapter 7.

During assembly, each source statement or executive instruction is converted to from one to three
bytes of operating code (opcode), depending on the addressing mode used. The term “‘executive instruction’” is
used here to distinguish between statements that generate machine code and “‘assembly directives’’ that are
useful in controlling and documenting the source program but generate no code. The Assembly Directives are
described in Section 7-1.1.

Each statement in the source program prepared by the user may have from one to four fields: a label,
a mnemonic operator (instruction), an operand, and a comment. The four fields are illustrated in the following
typical source statement:

Label Operator Operand Comment
BEGIN1 TST DATA1B TEST CONTENTS OF DATAIB

(This instruction causes the MPU to test the contents of the memory location labeled DATA1B and set the
Condition Code Register bits accordingly.)

Each source statement must have at least the mnemonic operator field. An operand may or may not
be required, depending on the nature of the instruction. The comment field is optional, at the programmer’s
convenience, for describing and documenting the program.

1-2.2 LABELS

Labels and their use are described in greater detail in Chapter 7. In general, they may correspond to
either a numerical value or a memory location. This use of symbolic references to memory permits
programming without using specific numerical memory addresses. For instance, the operand label ¢‘DAA1B”’
in the example may be anywhere in memory. Labels are required for source statements that are the destination
of jump and branch instructions. In the example, ‘‘BEGIN1"’ identifies the statement as the destination of a
branch or jump instruction located elsewhere in the control program. That instruction will, in turn, have
“BEGIN1”’ as its operand.

Labels may be up to six characters long and use any alphanumeric combination of the character set
shown in Appendix A2 with the restriction that the first character be alphabetic. Three single character labels,
A, B, and X, are reserved for referring to accumulator A, accumulator B, and the Index Register, respectively.

1-2.3 ADDRESSING MODES

1-2.3.1 Inherent (Includes ‘‘Accumulator Addressing’’ Mode)

The successive fields in a statement are normally separated by one or more spaces. An exception to
this rule occurs for instructions that use dual addressing in the operand field and for instructions that must
distinguish between the two accumulators. In these cases, A and B are ‘‘operands”” but the space between them
and the operator may be omitted. This is commonly done, resulting in apparent four character mnemonics for
those instructions.

The addition instruction, ADD, provides an example of dual addressing in the operand field:

Operator Operand Comment
ADDA MEM12 ADD CONTENTS OF MEM12 TO ACCA
or ADDB MEM12 ADD CONTENTS OF MEM12 TO ACCB

The example used earlier for the test instruction, TST, also applies to the accumulators and uses the
““accumulator addressing mode’’ to designate which of the two accumulators is being tested:

Operator Comment
TSTB TEST CONTENTS OF ACCB
or TSTA TEST CONTENTS OF ACCA

A number of the instructions either alone or together with an accumulator operand contain all of the
address information that is required, that is, the address is ‘‘inherent’” in the instruction itself. For instance, the
instruction ABA causes the MPU to add the contents of accumulators A and B together and place the result in
accumulator A. The instruction INCB, another example of ‘‘accumulator addressing’’, causes the contents of
accumulator B to be increased by one. Similarly, INX, increment the Index Register, causes the contents of the
Index Register to be increased by one.

Program flow for instructions of this type is illustrated in Figures 1-2.3.1-1 and 1-2.3.1-2. In these
figures, the general case is shown on the left and a specific example is shown on the right. Numerical examples
are in decimal notation. Instructions of this type require only one byte of opcode.

MPU MPU
MPU MPU
INDEX
199 200 AcCcB
-
M
RAM RA RAM RAM
PROGRAM
PROGRAM PROGRAM PROGRAM
/\’V‘:MORY MEMORY MEMORY MEMORY
pc| insTR K PC = 5000 INX
pc| insTR K Pc=5001 INCB
GENERAL FLOW EXAMPLE

GENERAL FLOW EXAMPLE

FIGURE 1-2.3.1-1. Inherent Addressing FIGURE 1-2.3.1-2. Accumulator Addressing

1-12

MPU MPU MPU MPU

ACCA ACCA
- < =1
RAM RAM

[~ —

< ADDR DATA K ADDR = 100 35

f)

RAM

—<| =

PROGRAM PROGRAM PROGRAM PROGRAM
MEMORY MEMORY MEMORY MEMORY

PC INSTR PC = 5002 LDA A PC INSTR PC = 5004 LDA A
DATA K 25 PC+1 ADDR K 5005 100

ADDR = 0 X 255
GENERAL FLOW EXAMPLE

GENERAL FLOW EXAMPLE

FIGURE 1-2.3.2-1. Immediate Addressing Mode FIGURE 1-2.3.3-1. Direct Addressing Mode

1-2.3.2 Immediate Addressing Mode

In the Immediate addressing mode, the operand is the value that is to be operated on. For instance,
the instruction

Operator Operand Comment
LDAA #25 LOAD 25 INTO ACCA

causes the MPU to ‘‘immediately load accumulator A with the value 25; no further address reference is
required. The Immediate mode is selected by preceding the operand value with the “#”’ symbol. Program flow
for this addressing mode is illustrated in Figure 1-2.3.2-1.

The operand format allows either properly defined symbols or numerical values. Except for the instructions
CPX, LDX, and LDS, the operand may be any value in the range 0 to 255. Since Compare Index Register
(CPX), Load Index Register (LDX), and Load Stack Pointer (LDS), require 16-bit values, the immediate mode
for these three instructions require two-byte operands. In the Immediate addressing mode, the ‘‘address’’ of the
operand is effectively the memory location immediately following the instruction itself.

1-2.3.3 Direct and Extended Addressing Modes

In the Direct and Extended modes of addressing, the operand field of the source statement is the
address of the value that is to be operated on. The Direct and Extended modes differ only in the range of
memory locations to which they can direct the MPU. Direct addressing generates a single 8-bit operand and,
hence, can address only memory locations 0 through 255; a two byte operand is generated for Extended
addressing, enabling the MPU to reach the remaining memory locations, 256 through 65535. An example of
Direct addressing and its effect on program flow is illustrated in Figure 1-2.3.3-1.

The MPU, after encountering the opcode for the instruction LDAA (Direct) at memory location
5004 (Program Counter = 5004), looks in the next location, 5005, for the address of the operand. It then sets

1-13

the program counter equal to the value found there (100 in the example) and fetches the operand, in this case a
value to be loaded into accumulator A, from that location. For instructions requiring a two-byte operand such as
LDX (load the Index Register), the operand bytes would be retrieved from locations 100 and 101.

Extended addressing, Figure 1-2.3.3-2, is similar except that a two-byte address is obtained from
locations 5007 and 5008 after the LDAB (Extended) opcode shows up in location 5006. Extended addressing
can be thought of as the *‘standard”” addressing mode, that is, it is a method of reaching anyplace in memory.
Direct addressing, since only one address byte is required, provides a faster method of processing data and
generates fewer bytes of control code. In most applications, the direct addressing range, memory locations
0-255, are reserved for RAM. They are used for data buffering and temporary storage of system variables, the
area in which faster addressing is of most value.

MPU MPU
ACCB
- | .
RAM RAM
apbR | pata K ADDR = 300 45 K
L~ ~—— FIGURE 1-2.3-3-2. Extended Addressing Mode
PROGRAM PROGRAM
MEMORY MEMORY
INSTR PC=5006 | LDAB
pc [AoorR K <—_-
300
ADDR
TN 2008 N
ADDR > 256
GENERAL FLOW EXAMPLE

1-2.3.4 Relative Addressing Mode

In both the Direct and Extended modes, the address obtained by the MPU is an absolute numerical
address. The Relative addressing mode, implemented for the MPU’s branch instructions, specifies a memory
location relative to the Program Counter’s current location. Branch instructions generate two bytes of machine
code, one for the instruction opcode and one for the ‘‘relative’’ address (see Figure 1-2.3.4-1). Since it is
desirable to be able to branch in either direction, the 8-bit address byte is interpreted as a signed 7-bit value; the
8thbit of the operand is treated as a sign bit, *‘0’> = plus and ‘1’ = minus. The remaining seven bits represent
the numerical value. This results in a relative addressing range of =127 with respect to the location of the
branch instruction itself. However, the branch range is computed with respect to the next instruction that would
be executed if the branch conditions are not satisfied. Since two bytes are generated, the next instruction is
located at PC + 2. If D is defined as the address of the branch destination, the range is then:

PC+2)—127T<sD=<(PC+2 + 127
or PC—125<D <PC + 129

that is, the destination of the branch instruction must be within — 125 to + 129 memory locations of the branch
instruction itself. For transferring control beyond this range, the unconditional jump (JMP), jump to subroutine
(JSR), and return from subroutine (RTS) are used.

1-14

In Figure 1-2.3.4-1, when the MPU encounters the opcode for BEQ (Branch if result of last
instruction was zero), it tests the Zero bit in the Condition Code Register. If that bit is <“0”’, indicating a
non-zero result, the MPU continues execution with the next instruction (in location 5010 in Figure 1-2.3.4-1).
If the previous result was zero, the branch condition is satisfied and the MPU adds the offset, 15 in this case, to
PC + 2 and branches to location 5025 for the next instruction.

The branch instructions allow the programmer to efficiently direct the MPU to one point or another
in the control program depending on the outcome of test results. Since the control program is normally in
read-only memory and cannot be changed, the relative address used in execution of branch instructions is a
constant numerical value.

MPU MPU

]

RAM

/

/

Program Program
Memory Memory
PC Instr.
Offset PC 5008 BEQ
(PC + 2) Next Instr. 15
PC 5010 Next Instr.
(PC + 2) + (Offset) Next | nstr. PC 5025 Next Instr.

FIGURE 1-2.3.4-1. Relative Addressing Mode

1-2.3.5 Indexed Addressing Mode

With Indexed addressing, the numerical address is variable and depends on the current contents of

the Index Register. A source statement such as

Operator Operand Comment
STAA X PUT A IN INDEXED LOCATION

causes the MPU to store the contents of accumulator A in the memory location specified by the contents of the
Index Register (recall that the label ‘X’ is reserved to designate the Index Register). Since there are
instructions for manipulating X during program execution (LDX, INX, DEX, etc.), the Indexed addressing
mode provides a dynamic ‘‘on the fly”> way to modify program activity.

The operand field can also contain a numerical value that will be automatically added to X during

execution. This format is illustrated in Figure 1-2.3.5-1.

When the MPU encounters the LDAB (Indexed) opcode in location 5006, it looks in the next
memory location for the value to be added to X (5 in the example) and calculates the required address by adding
5 to the present Index Register value of 400. In the operand format, the offset may be represented by a
label or a numerical value in the range 0-255 as in the example. In the earlier example, STAA X, the operand is
equivalent to 0,X, that is, the 0 may be omitted when the desired address is equal to X.

1-2.3.6 Mode Selection

Selection of the desired addressing mode is made by the user as the source statements are written.
Translation into appropriate opcode then depends on the method used. If manual translation is used, the
addressing mode is inherent in the opcode. For example, the Immediate, Direct, Indexed, and Extended modes
may all be used with the ADD instruction. The proper mode is determined by selecting (hexidecimal notation)
8B, 9B, AB, or BB, respectively (see Figure 1-3-1).

The source statement format includes adequate information for the selection if an assembler
program is used to generate the opcode. For instance, the Immediate mode is selected by the Assembler
whenever it encounters the *‘#’’ symbol in the operand field. Similarly, an ‘X"’ in the operand field causes the
Indexed mode to be selected. Only the Relative mode applies to the branch instructions, therefore, the
mnemonic instruction itself is enough for the Assembler to determine addressing mode.

MPU MPU
RAM
ADDR = INDX ADDR <
+ OFFSET jDATA R =405 59
PROGRAM PROGRAM
MEMORY MEMORY
pc| INSTR PC=5006 | LDAB
oFFSET K) 5

OFFSET < 255
GENERAL FLOW EXAMPLE

FIGURE 1-2.3.5-1. Indexed Addressing Mode

i-16

For the instructions that use both Direct and Extended modes, the Assembler selects the Direct mode
if the operand value is in the range 0-255 and Extended otherwise. There are a number of instructions for which
the Extended mode is valid but the Direct is not. For these instructions, the Assembler automatically selects the
Extended mode even if the operand is in the 0-255 range. The addressing modes are summarized in Figure

1-2.3.6-1.

Direct: n DO Instruction Immediate: n Instruction
Example: SUBB Z :
Addr. Range = 0—255 n+1 Z = Oprnd Address ?Ié(imgrixee-BLtheAépfrlfd) n+1 K = Operand
& n+2 Next Instr. n+2 Next inst.
[] OR
(K = Two-Byte Oprnd) n o
¢ (CPX, LDX, and LDS) tnstruction
. n+1 Ky = Operand
(K = One-Byte Oprnd) z K = Operand n+2 K| = Operand
OR n+3 Next Instr.
(K = Two-Byte Oprnd) z K = Operand
Z+1 K| = Operand
Relative: n Instruction
A\ 12 <255, Assembler Select Direct Mode Example: BNE K n+1 £K = Brnch Offset
If 2 >255, Extended Mode is selected
(K = Signed 7-Bit Value) n+2 Next Instr. /2\
Addr. Range: []
—125 to +129
Relative to n.
[]
[J
Extended: n FO Instruction
(n+2) K Next Instr. @
Example: CMPA 2 n+1 Zp = Oprnd Address
Addr. Range: é 1f Brnch Tst False & If Brnch Tst True.
n+2 2 = O A .
25665535 L prnd Address
n+3 Next instr.
° Indexed: n Instruction
° Example: ADDA Z, X n+1 Z = Offset
[] Addr. Range: n+2 Next Instr.
0—255 Relative to
(K = One-Byte Oprnd) z K = Operand Index Register, X °
OR [}
(K = Two-Byte Oprnd) z K = Operand ®
= (Z = 8-Bit Unsigned X+ 2 K = Operand
Z+1 K| = Operand Value) P!

FIGURE 1-2.3.6-1. Addressing Mode Summary

ADDRESSING MODES

BOOLEAN/ARITHMETIC OPERATION

COND. CODE REG.

ACCUMULATOR AND MEMORY IMMED DIRECT INDEX EXTND INHER (Al register labels s|a]3|2{1]0
OPERATIONS MNEmonic o | ~ [#jop |~ #joP |~ #|oP]~]#]|oOP|~|# refer to contents) Hli]w|z]v]cC
Add apoA (88|l 2 |2||3]2(|aB|5]2|BB]| A4 A+M-A tlef |ttt

AoD8 |cB|2|2|pBi3 |2 |eBfs5|2|FB|4 |3 B+M-B IEAEIEE R

Add Acmitrs ABA B|2]1}]Aa+8-A tlej syttt
Add with Carry ADCA |89 | 2| 2|99 {3 |2]Aa 5] 2|83 |43 A+M+L—>A tlel | tjt]e
apce |ca| 2| 2|o9|3|2fes |5 2|Fa|4al3 B+M+C—8 tlef sttt

And ANDA |88 | 2 | 2|98 |3 (2]|Aa |5 2{B4| 4|3 AeM—A ele|tltlR]|e
ANDB [c4 [2 | 2 |{pa |3 |2 |E4 |5 |2 |F4a |4 |3 BeM-B ele|t|t|R]|e

Bit Test BITA g5 | 2| 2[95 3|2 |as|5]|2]B5]4]3 AeM ejeft|tir]e
BITB cs| 2|2 f{osf{3|2|es|5|2|Fs]4 3 BeM efoft|{t|R]|e

Clear CLR 6F |7 | 2|6 |3 00 >M olelR|S|R|R
CLRA 4F [2] 1]|00-A ele|R|S|R|R

CLRB 5F | 2| 1]00-8 ool R|S|R|R

Compare cpa |81 | 2|21 {3 24Aar |5 | 2]|B1]4[3 A-M ofoft]tjt]t
CMPB cilz2)2iom|3t2|en|s|2}F|a]3 B-M eloftltltlt

Compare Acmitrs CBA 1|2} 1]A-8 elol | t]E]?
Complement, 1's COM 63 7 2173 6 3 MM e|lo| LI LIRS
COMA 3|2} 1]|A=A o|o|t|t|R|S

coMB 32| 1]|8B-8 eleof P LIRS

Complement, 2's NEG 60 |7 | 2|70 |6 }3 00 -M-M o|eft]| OO
(Negate) NEGA 02| 1]|00-A-A oleft]| D@
NEGB 50 | 2| 1}00-B~B oo i} OIG

Decimal Adjust, A DAA 921 &22";3;‘?:‘;’23:“"' of BCD Characters | ol o ¢ ¢] ¢ |®
Decrement DEC 6A |7 | 2]|7a)6 |3 M-1-M efe|lt|t|@e
DECA Al 2| 1]A-1-A eleltlt|@]|e

DECB 5A1 2| 1]|B-1-8B elelt|t|@|e

Exclusive OR EORA |88 | 2| 2198 |3 | 2|Aa8|5|2|B3]|4]3 AoM—A ole|t|t|R]|e
EORB |c8| 2 |2 |D8 |3 | 2|es |5 | 2}F8| 4 |3 BoM—-B oleltit|R|e

Increment INC sc[712]1]6 3 M+1->M oloft|t|®]e
INCA ac | 2| 1] A+1-A ele| it} e

INCB s¢| 2] 1]|B+1~8 elelt|tI®]e

Load Acmitr oAA |8 |2]2{9 3|2 {A6f5|2]86[4]3 M—A ejelt|t|R]e
was |cs | 2l2|o6|3 |26 |5)2]|F |4 3 M-B ofeft|tiR|e

Or, Inclusive ORAA ga|l 2 | 21]sa|3 |2 |AA|5|2|BA]4 L3 A+M—A elejf t|i|R]|e®
oRAB |ca| 2 |2 (pal3]2|EA|ls5 |2|FA} 4 3 B4+M-—B ejeoftitln|e

Push Data PSHA 3% | 4 11 A->Mgp, SP-1-SP AR RIS
PSHE 37 | 4| 1] B->Msp,SP-1-SP oje|ojolo]|e

Pull Data PULA 32 | 4| 1| SP+1->SP, Mgp—>A e|le(e|ole|e
PULB 33 {4 1] SP+1->SP, Mgp—>B ejeje|ojo]e

Rotate Left ROL 69 [7]2|71}16 (3 M ool t|2|®|?
ROLA 49 | 2 1AEE<—D:[IIIEDH ele| | tI®|!

c b; « bg

ROLB s9 | 2|18 ele|t|t|®]?

Rotate Right ROR 66 |7]2|1]|6]3] elo|tltI®]?
RORA B |2]1}|A Ecp—:gﬁﬁ—] ele|t| @[t

RORB 56 12|18 efe|t|t @]t

Shift Left, Arithmetic ASL 68 | 7|21 |6]3 M - elejt|ti®¢
ASLA l2|1]A D«b@v@-j-@@@;o«o oleft|t|®|?

ASLE 582118 ole|titi®|?

Shift Right, Arithmetic ASR g7 |72l |3 M o ele|titi®]t
ASRA a1 | 2 1A]L—»C‘DIEEED->D ofleft|t|®|t

b7 b c

ASRB 572118 ejs|t]|t|®F

shift Right, Logic. LSR 64 |7]| 2]74 {863 M N eioir|t®]?
LSRA 44 | 2 |1 A] o—»gIIU:DEJD-»g oleflR| Bt

LSRB sa l2|1]|B o|e|RrR|t|®]?

Store Acmitr. STAA 97 | 4 2 |A7 | 6 218715 3 A-M oje]ltltIR|e®
STAB pr|4|2]E7|6}|2|F1 |83 B->M efe|t|tiR|e

Subtract suA |80 | 2|2 je0 |3 }21jA0]s5|2({B0f 43 A-M-A oloft|dit|t
SUBB cof 2 |2{oo{3|2fe0|5)2]|F0|4]3 8-M-B olef[t|tlt]

Subract Acmlts. SBA 0|2 1]{A-B=>A ejlejt|t|t|t
Subtr. with Carry SBCA 82| 2|29z 3|2 |a|s5]2|B2|4]3 A-M-C~A olei sttt
SBCB c2| 212|023 |2 |E2]|S5 F2{4]3 B-M-C-B elojtit(t|t

Transfer Acmltrs TAB 16 | 2 1} A8 eje|tit|Rje®
TBA 17 12 118~A ele|lt|tiR]e®

Test, Zero or Minus TST 6D {7 |2|m|6 |3 M-00 ejoft|tIR|R
TSTA 4D | 2| 1] A-00 efe|t|t{R|R

TSTB 502} 1]8-00 o[oitid|R[R

FIGURE 1-3-1 MC6800 Instruction Set

1-18

INDEX REGISTER AND STACK IMMED DIRECT INDEX EXTND INHER 5{4]3|2|1]0
POINTER OPERATIONS MNEMONIC | 0P| ~ [#|op |~ | # |op |~ | # |op |~ | #|0p |~ | # | soOLEAN/ARITHMETIC OPERATION | H |1 |N |z |V]C
Compare Index Reg cPX 8C| 3 |3f{sc|s AC| 6 |2 |BC|S (Xp/XQ) - (MM + 1) oo |®t .
Decrement Index Reg DEX 09 |4 1 X-1->X ojo|o|lfeje
Decrement Stack Pntr BES 4 | 4 1 SP—-1-8P elelelelele
Increment index Reg INX 08 | 4 1 X+1-2X o|le|e|[s]|e]e
Increment Stack Patr INS 3t |4 |1 SP+1->SP e|oe(efojoje
Load Index Reg LDX CE|3 }3|DEf4}| 2 |EE|6 |2 |FE|5]3 M= Xy, (M+1) > X e|e[®|t|R|e
Load Stack Pntr LOS 8E | 3 9E | 4 | 2 |AE| 6 | 2 IBE|5 |3 M-—>SPy, (M+1) >8P o|e|®@ft|R]e
Store Index Reg STX DF| 5|2 {EF |7 |2 {FF |6 |3 Xy=M X =>M+1) o(e|@®lt|R|e®
Store Stack Pntr STS oF | 5 | 2 |AF|{ 7 |2 |BF |6 |3 SPy =M, SPL > (M +1) oo |(®@lt|R}e
Indx Reg — Stack Pntr TXS 3 | 4 1 X-1->SP o|lo|ejo|ele
Stack Pntr — Indx Reg TSX 30 14 1 SP+1->X ejlejojo(oje
JUMP AND BRANCH RELATIVE INDEX EXTND INHER 514|3|2|1]0
QPERATIONS MMEMONIC ROP 1 ~ | =loPl ~ L ZloPl ~ | #10oPl ~ 1| = BRANCH TEST HiLIN]ZIVIC
Branch Always BRA 20 4 2 None eio|o|ofe|e
Branch If Carry Clear BCC 24| 4 2 C=0 e|jejo|oje]e
Branch If Carry Set BCS 251 4 2 c=1 ojle|o|oje]|e
Branch If = Zero BEQ 21| 4] 2 Z=1 e|jojeloje|e
Branch If > Zero BGE 201414 2 NeV=0 e|lejejo|e |0
Branch if > Zera BGT 26| 4 2 Z+(NaV)=0 $|® 9|80, 0
Branch If Higher BHI 24| 2 c+2z=10 ojej|ojoje o
Branch If < Zero BLE 2F | 4 2 Z+(NeVi=1 ejo|oje|jeie
Branch If Lower Or Same BLS 23 4 2 C+2=1 AR REREIK BN]
Branch If < Zero BLT 20} 4 2 NeV=1 ele|e|olo|e
Branch If Minus BMI 28| 4 2 N=1 e|lelo|efo|0o
Branch If Not Equal Zero BNE 26|44 2 Z=0 ojlejejoje}|e
Branch If Overfiow Ciear BVC 285442 /=0 elelelolele
Branch If Overflow Set BVS 29 | 4 2 V=1 ejejejoje e
Branch If Plus BPL A 4| 2 N=0 e|loej|ej|o|oe
Branch To Subroutine BSR 80| 81! 2 eloje|o|o]e
Jump JMP 6E | 4§ 2 t7E |3 |3 See Special Operations oiojo |00l
Jump To Subroutine ISR AD| 82 |BD| S |3 ejolejofo e
No QOperation NOP 014 2 1 Advances Prog. Cntr. Only ejo|ejeje]e
Return From Interrupt RTI 3B |10 1
Return From Subroutine RTS 15 |1 . . s|le|ojeje|e
Software Interrupt SWI 3F [12 |1 See special Operations ej|S|e .
Wait for Interrupt WAL 3B} 9 1 o|l@)|e|efe
CONDITIONS CODE REGISTER INHER BOOLEAN 5 1413 2|1 |0 |.0nDITION CODE REGISTER NOTES:
OPERATIONS MNEMONIC | OP | ~ = [OPERATION | H |1 [N |Z]|V |C (Bit set if test is true and cleared otherwise)
Clear Carry cLC oc 2 1 0~C o |leleoe|e]e | R @ (BitV) Test: Result = 100000007
Clear Interrupt Mask cLl 0E | 2 1 0-1 e|[R|e|e|e|e]| @ BitC) Test: Result= 000000007
Clear Overflow cLV 0A 2] 0>V elo|eoe|lelRrR|e| @ (BitC) Test: Decimal value of most significant BCD Character greater than nine?
Set Carry SEC o 2 1 1-C eleloele|le]s {Not cleared if previously set.)
Set Interrupt Mask SEl 0F 2 1 11 els|e|e|o]e (@ (BitV) Test: Operand = 10000000 prior to execution?
Set Overflow SEV 08 2 1 1>V o |o|oe]oe]|s |e (® (BitV) Test: Operand = 01111111 prior to execution?
Acmitr A — CCR TAP 06 2 1 A-CCR (® (BitV) Test: Set equal to result of N & C after shift has occurred.
CCR - Acmltr A TPA 07 2 1 CCR—A ° | . I ° l ° | ° I o | @ (BitN) Test: Sign bit of most significant (MS) byte of result = 1?
(Bit V) Test: 2’s complement overflow from subtraction of LS bytes?
(® (BitN} Test: Result less than zero? (Bit 15= 1)

LEGEND: 00 Byte= Zero; @ (A} Load Condition Code Register fram Stack. (See Special Operations)

OP Operation Code (Hexadecimal); H Half-carry from bit 3; @ (Bit1) Set when interrupt occurs. If previously set, a Non-Maskable Interrupt is

~ Number of MPU Cycles; | Interrupt mask required to exit the wait state.

= Number of Program Bytes; N Negative (sign bit) @ (ALL) Setaccording to the contents of Accumulator A.

+ Arithmetic Plus; z Zero {byte)

- Arithmetic Minus; Vv Qverflow, 2's complement

. Boolean AND; c Carry from bit 7
Mgp Contents of memory location R Reset Always
pointed to be Stack Pointer; s Set Always

+ Boolean Inciusive OR; T Test and set if true, cleared otherwise

&) Boolean Exclusive OR; [Not Affected

M Complement of M; CCR Condition Code Register

- Transfer Into; LS Least Significant

0 Bit = Zerg; MS Most Significant

FIGURE 1-3-1 (continued)

1-19

1-3 INSTRUCTION SET

The MC6800 instructions are described in detail in the M6800 Programming Manual. This Section
will provide a brief introduction and discuss their use in developing MC6800 control programs.

The instruction set is shown in summary form in Figure 1-3-1. Microprocessor instructions are often
divided into three general classifications: (1) memory reference, so called because they operate on specific
memory locations; (2) operating instructions that function without needing a memory reference; (3) I/O
instructions for transferring data between the microprocessor and peripheral devices.

In many instances, the MC6800 performs the same operation on both its internal accumulators and
the external memory locations. In addition, the M6800 interfaces adapters (PIA and ACIA) allow the MPU to
treat peripheral devices exactly like other memory locations, hence, no I/O instructions as such are required.
Because of these features, other classifications are more suitable for introducing the MC6800’s instruction set:
(1) Accumulator and memory operations; (2) Program control operations; (3) Condition Code Register
operations.

1-3.1 CONDITION CODE REGISTER OPERATIONS

The Condition Code Register (CCR), also called the Program Status Byte, will be described first
since it is affected by many of the other instructions as well as the specific operations shown in Figure 1-3.1-2.
The CCR is a 6-bit register within the MPU that is useful in controlling program flow during system operation.
The bits are defined in Figure 1-3.1-1.

The instructions shown in Figure 1-3.1-2 are available to the user for direct manipulation of the
CCR. In addition, the MPU automatically sets or clears the appropriate status bits as many of the other
instructions are executed. The effect of those instructions on the condition code register will be indicated as
they are introduced and is also included in the Instruction Set Summary of Figure 1-3-1.

bs bg b3z by by bp
il w]z]v]e]

H = Half-carry; set whenever a carry from b3 to by of the result is generated
by ADD, ABA, ADC; cleared if no b3 to by carry; not affected by other
instructions.

I = Interrupt Mask; set by hardware or software interrupt or SEI instruction;
cleared by CLI instruction. (Normally not used in arithmetic operations.}
Restored to a zero as a result of an RT1 instruction if I stored on the
stacked is low.

N = Negative; set if high order bit (by) of result is set; cleared otherwise.
Z = Zero; set if result = 0; cleared otherwise.

V = Overlow; set if there was arithmetic overflow as a result of the operation;
cleared otherwise.

C = Carry; set if there was a carry from the most significant bit (b7) of the
result; cleared otherwise.

FIGURE 1-3.1-1. Condition Code Register Bit Definition

1-20

CONDITIONS CODE REGISTER 5 1413]2]|1 0
BOOLEAN

OPERATIONS MNEMONIC OPERATION | H | I [N Z |V |C

Clear Carry CLC 0—~>C ® | | o |0 |0 |R

Clear Interrupt Mask CLI 01 ® | R o |leo e |o

Clear Overflow CLV 0>V e | | o e R |e

Set Carry SEC 1->C e |o|je |e]e |S

Set Interrupt Mask SEI 11 e |S|[ejlejle |e@

Set Overflow SEV 1>V o | |e[e|S |e

Acmitr A > CCR TAP A—CCR ®

CCR —Acmltr A TPA CCR—A . |o | . | . | ° | °

R = Reset

S = Set

o = Not affected

(D (ALL) Setaccording to the contents of Accumulator A.

FIGURE 1-3.1-2. Condition Code Register Instructions

1-3.2 NUMBER SYSTEMS

Effective use of many of the instructions depends on the interpretation given to numerical data, that
is, what number system is being used? For example, the ALU always performs standard binary addition of two
eight bit numbers using the 2’s complement number system to represent both positive and negative numbers.

However, the MPU instruction set and hardware flags permit arithmetic operation using any of four different

representations for the numbers:

(1) Each byte can be interpreted as a signed 2’s complement number in the range — 128 to +127:

260 25 2¢ 23 922 91
bz be bs bs bz bz b

O O O = =
O O = O
-0 O = O
-0 O = O
—_ O O = O
— O O = O
—_O O = O

20
bo

ek ek (D = O

1-21

(—128 in 2’s complement)
(—1in 2’s complement)
(0 in 2°s complement)
(+1 in 2’s complement)
(+127 in 2’s complement)

(2) Each byte can be interpreted as a signed binary number in the range —127 to +127:
260 25 24 23 22 2t 20
b be bs bs bs bz b:r bo
(=127 in signed binary)
(—1 in signed binary)
(0 in signed binary)
(+1 in signed binary)
(+127 in signed binary)

S O O = =
—_0 O O =
-0 O O =
—-_—0 O O =
—_—0 O O =
—_ O O O =
-0 O O =
—_ = O =

(3) Each byte can be interpreted as an unsigned binary number in the range 0 to 255:
27 26 25 ¢ 23 22 QU Q0
br bs bs bs bs bz bi bo
0o 0o o O o O o0 o (0 in unsigned binary)
1 1 1 1 1 1 1 1 (255 in unsigned binary)

(4) Eachbyte canbe thought of as containing two 4-bit binary coded decimal (BCD) numbers. With
this interpretation, each byte can represent numbers in the range 0 to 99:
28 22 2t 20 23 22 21 Q0
bz bs bs bs bz bz b1 be
o 0 0 O O o0 o0 o (BCD 0)
o 0 1 0 0 1 1 (BCD 27)
1 0 0 1 1 0 O (BCD 99)

ek

The two’s complement representation for positive numbers is obtained simply by adding a zero (sign
bit) as the next higher significant bit position:
27 28 25 24 23 22 QU Q0

a7 as as a4 as az ai ao

11 1 1 1 1 1 (binary 127)

0 1 1 1 1 1 | 1 (+127 in 2’s complement representation)
0 0 0 0O o0 0 1 (binary 1)

0O 0 0 0 0o o0 0 1 (+1 in 2’s complement representation)

1-22

When the negative of a number is required for an arithmetic operation, it is formed by first
complementing each bit position of the positive representation and then adding one.

64 32 16 8 4 2 1
ar as as a4 as az ai ao
o 1 1 1 1 1 1 1 (+127 in 2’s complement representation)
1 0 0 o0 O 0O o0 o (1’s complement)
1 (add one)
1 0 0 O 0O 0 0 1 (—127 in 2’s complement representation)

o
o
o
(e
o
o
=)
o

(0 in 2’s complement representation)

i1 1 1 1 1 1 1 1 (1’s complement)
1 (add one)
0o 0 0 0 o o0 0 o0 (*“0”’ is same in either notation)
O 0o o0 0 0o 0 0 1 (+1 in 2’s complement representation)
1 1 1 1 1 1 1 0 (1’s complement)
1 (add one)
1 1 1 1 1 1 1 1 (—1 in 2’s complement representation)

Note that while +127 is the largest positive two’s complement number that can be formed with 8
digits, the largest negative two’s complement number is 10000000 or — 128. Hence, with this number system,
an eight bit byte can represent integers on the real numl;er line between — 128 and + 127 and a7 can be regarded
as a sign bit; if a7 is zero the number is positive, if a7 is one the number is negative:

10000000 . 11111111 00000000 00000001 o 01111111
! i 1 |

L
—128 4 —1 0 +1 ~ +127

Since much of the literature on arithmetic operations presents the information in terms of signed
binary numbers, the difference between 2’s complement and signed binary notation is of interest. Signed binary
number notation also uses the most significant digit as a sign bit (O for positive, 1 for negative). The remaining
bits represent the magnitude as a binary number.

+ 64 32 16 8 4 2 1

a7 as as a4 as az ai ao

(—127 in signed binary)
(—1 in signed binary)
(0 in signed binary)
(+1 in signed binary)

OO O =
_0 O O o~
_ 0 O O -
=0 O O =
_0 O O =
—_ 0 O O M-
—_ O O O e
= T -

(+127 in signed binary)

An 8-bit byte in this notation represents integers on the real number line between —127 and +127:

11111111 W 10000001 00000000 00000001 W 01111111

127 4 ~1 0 +1 24 +127

1-23

Comparing this to the 2’s complement representation, the positive numbers are identical and the negative
numbers are reversed, i.e., —127 in 2’s complement is —1 in signed binary and vice versa. In normal
programming of the MPU, the difference causes no particular problem since numerical data is automatically
converted to the correct format during assembly of the program source statements. However, if during system
operation, incoming data is in signed binary format, the program should provide for conversion. This is easily
done by first complementing each bit of the signed binary number except the sign bit and then adding one:

+ 64 32 16 8 4 2 1

a7 as as a4 as az ai ao

(—127 in signed binary)

(1’s complement except for sign bit)
(add 1)

(—127 in 2’s complement)

—_— O = =
S O O -
O OO
OO O -
©C O O -
O OO ==
I N =

The MPU instruction set provides for a simple conversion routine. For example, the following
program steps can be used:

10 CONVRT TSTA Test sign bit, a7, and set Nifar = 1
20 BPL NEXT Go to NEXTif N = 0

30 NEGA Form 2’s complement of A

40 ORAA %10000000 Restore sign bit

50 NEXT STAA DATAL Store data in DATA1

This routine assumes that the signed binary data is stored in accumulator A (ACCA). The program tests the sign
bit and if the number is negative (N=1) performs the required conversion. The contents of ACCA and the N bit
of the Condition Code Register would be as follows after each step of a typical conversion:

Instr N a a a5 a+s as a2 a1 ao

TSTA 1 1 1 1 1 0 0 0 1 (—113 in signed binary)
BPL NEXT 1 1 1 1 1 O O O 1

NEGA 0 0 0 0 0 1 1 1 1 (2’s complement of ACCA)
ORAA #9%10000000 1 0 o o o0 1 1 1 1 (—113 in 2’s complement)

Note that the sign bit status, N, is updated as the NEG and ORA instructions are executed. This is typical for
many of the instructions; the Condition Code Register is automatically updated as the instruction is executed.

1-3.3 ACCUMULATOR AND MEMORY OPERATIONS

For familiarization purposes, the Accumulator and Memory operations can be further subdivided
into four categories: (1) Arithmetic Operations; (2) Logic Operations; (3) Data Testing; and (4) Data Handling.

1-3.3.1 Arithmetic Operations

The Arithmetic Instructions and their effect on the CCR are shown in Figure 1-3.3.1-1. The use of
these instructions in performing arithmetic operations is discussed in Section 2-1.

1-24

BOOLEAN/ARITHMETIC OPERATION

COND. CODE REG.

ACCUMULATOR AND MEMORY {All register labels 514131211180
OPERATIONS MNEMONIC refer to contents) HII|N|Z|V]|C
Add ADDA A+M—>A O I3 O B O

ADDB B+M~—B N I B B R

Add Acmltrs ABA A+B—>A ettt
Add with Carry ADCA A+M+C—>A B R O B
ADCB B+M+C—B O B B B R

Complement, 2's NEG 00 —M->M oot 2 |O|I®
(Negate) NEGA | 00 —A—A ole|1]|0®|®
NEGB 00 —B—>B ofle| ¢ 2|OD|I®

Decimal Adjust, A DAA ﬁ](iszeEtsDBégz:zagdd. of BCD Characters ole| st @
Subtract SUBA A-M—>A ele| (21!
SuBB B-M->B elel 1ttt

Subract Acmltrs. SBA A-B—>A e|le| |22
Subtr. with Carry SBCA A-M-C—>A e e (2|22
SBCB B-—M-C—B ele|titltls

*Used after ABA, ADC, and ADD in BCD arithmetic operation; each 8-bit byte regarded as containing two 4-bit
BCD numbers. DAA adds 0110 to lower half-byte if least significant number >1001 or if preceding instruction
caused a Half-carry. Adds 0110 to upper half-byte if most significant number >1001 or if preceding instruction
caused a Carry. Also adds 0110 to upper half-byte if least significant number >>1001 and most significant num-

ber = 9.

(Bit set if test is true and cleared otherwise)

@ (BitV) Test: Result = 100000007

®@ (Bitc)

Test: Result = 000000007
(® (BitC) Test: Decimal value of most significant BCD Character greater than nine?

{(Not cleared if previously set.)

FIGURE 1-3.3.1-1. Arithmetic Instructions

1-25

1-3.3.2 Logic Operations

The Logic Instructions and their effect on the CCR are shown in Figure 1-3.3.2-1. Note that the
Complement (COM) instruction applies to memory locations as well as both accumulators.

1-3.3.3 Data Test Operations

The Data Test instructions are shown in Figure 1-3.3.3-1. Bit Test (BIT) is useful for updating the
CCR as if the AND function was executed but does not change the contents of the accumulator. The Test (TST)
instruction also operates directly on memory and updates the CCR as if a comparison (CMP) to zero had been
executed.

1-3.3.4 Data Handling Operations

The Data Handling instructions are summarized in Figure 1-3.3.4-1. Note that the Clear (CLR),
Decrement (DEC), Increment (INC), and Shift/Rotate instructions all operate directly on memory and update
the CCR accordingly.

1-3.4 PROGRAM CONTROL OPERATIONS

Program Control operation can be subdivided into two categories: (1) Index Register/Stack Pointer
instructions; (2) Jump and Branch operations.

1-3.4.1 Index Register/Stack Pointer Operations

The instructions for direct operation on the MPU’s Index Register and Stack Pointer are summarized
in Figure 1-3.4.1-1 Decrement (DEX, DES), increment (INX, INS), load (LDX, LDS), and store (STX, STS)
instructions are provided for both. The Compare instruction, CPX, can be used to compare the Index Register
to a 16-bit value and update the Condition Code Register accordingly.

The TSX instruction causes the Index Register to be loaded with the address of the last data byte put
onto the ‘‘stack’’. The TXS instruction loads the Stack Pointer with a value equal to one less than the current
contents of the Index Register. This causes the next byte to be pulled from the ‘stack’ to come from the
location indicated by the Index Register. The utility of these two instructions can be clarified by describing the
“‘stack’” concept relative to the M6800 system.

The ““stack’’ can be thought of as a sequential list of data stored in the MPU’s read/write memory.
The Stack Pointer contains a 16-bit memory address that is used to access the list from one end on a
last-in-first-out (LIFO) basis in contrast to the random access mode used by the MPU’s other addressing modes.

The M6800 instruction set and interrupt structure allow extensive use of the stack concept for
efficient handling of data movement, subroutines and interrupts. The instructions can be used to establish one
or more ‘‘stacks’’ anywhere in read/write memory. Stack length is limited only by the amount of memory that is
made available.

1-26

COND. CODE REG.

BOOLEAN/ARITHMETIC OPERATION

ACCUMULATOR AND MEMORY (All register labels 514|13[2{1]¢0
OPERATIONS MNEMONIC refer to contents) H{l[N|Z]|VIC
And ANDA AeM—>A o|leo| 3| LT|R|e®

ANDB BeM~—B e(o| | t|R|e
Complement, 1's coMm M->M efeo| 3| ¢|R|S
COMA | A~A ojo t|¢|R|S
COMB | B8 ool LI FIR|S
Exclusive OR EORA AeM—>A e o/ L|LIR|e®
EORB BoM—>B elo| I tIR|e®
Or, Inclusive ORA A+M-—A ole|t{t|R]|e
ORB B+M—~>B o|lo| LI t|R]|®

FIGURE 1-3.3.2-1. Logic Instructions

COND. CODE REG.
BOOLEAN/ARITHMETIC OPERATION -

ACCUMULATOR AND MEMORY (Al register labels 514(3|2]1]0
OPERATIONS MNEMONIC refer to contents) H{I|N|Z|V|C
Bit Test BITA AeM o|lef | t|R|eO

BITB BeM ole| | ¢|R|e
Compare CMPA A-M o|lef 3¢
cmPB B-M LI I O B B
Compare Acmltrs CBA A-B e|lof $ |41t ¢
Test, Zero or Minus TST M - 00 e(e| | T|RIR
TSTA A-00 o ol JITIRIR
TSTB B—-00 e|e| | tIR|[R

FIGURE 1-3.3.3-1. Data Test Instructions

1-27

COND. CODE REG.
BOOLEAN/ARITHMETIC OPERATION

ACCUMULATOR AND MEMORY (All register labels 4132
OPERATIONS MNEMONIC refer to contents) I
Clear CLR 00 >M

CLRA 00 A
CLRB 00 —B
Decrement DEC M-1->M
DECA A-1-A
DECB B-1—B

5 1
H N|Z|V
eo|® R|S|R
eo(®]RIS|R
o|®|R{S|R
ele|t|2|®
IR ENO)
ele| 3| ¢|®

Increment INC M+1->M ele| [3|(®

INCA A+1>A el t|3|®
INCB B+1->B ele[t||®
Load Acmitr LDAA | M—A e o P LIR
LDAB M—B oo t|¢|R
Push Data PSHA A —>Mgp, SP—1—>SP o(o|jo 0 0
PSHB B - Mgp, SP—1—SP ejo|ele|e
Pull Data PULA SP+1—SP, Mgp~>A ejejofe|e
PULB SP+1->SP, Mgp—>B ojlejeofe]e
Rotate Left ROL M ele| 3| 3|®
ROLA A}EQ«EEIEEEDJ oot |2|®
ROLB | B 7R ole|t|t|@®
Rotate Right ROR Ml sle| | 2|®
rora | ! Lo & oo olelt|t|®
[by - bo
RORB B | t|t|®
Shift Left, Arithmetic ASL M - el tt|®
ASLA A [g “« IEIZD:D:EEO«O ele| !B
ASLB B ele|t|¢|®
Shift Right, Arithmetic ASR M N ele|t!lt|®
ASRA A [:é]ZD]Ib% > 0 o|le tit|®
ASRB B ele| 3 t|®
Shift Right, Logic. LSR M N eleiR|t|®
LSRA | A 0~ JOITT > O o|o|R|$|®
LSRB B ele|R||®
Store Acmitr. STAA A—>M ele| s |¢|R
STAB B—>M e|e| 3I3IR
Transfer Acmltrs TAB A—B ele| ¢ |t|R
TBA B—A efe|t|t|R

@ (Bit V) Test: Operand = 10000000 prior to execution?
@ (BitV) Test: Operand = 01111111 prior to execution?
® (BitV) Test: Set equal to result of N @ C after shift has occurred.

FIGURE 1-3.3.4-1. Data Handling Instructions

1-28

B 0 O O O > O OO OO OO 00 00 0 00 00 & 0 0D D DO |

INDEX REGISTER AND STACK 514|3]2]1]0
POINTER OPERATIONS MNEMONIC BOOLEAN/ARITHMETIC OPERATION | H| 1 [N |Z |V]C
Compare Index Reg CPX (XR/XL) — (M/M+1) ele[D|1|@]e
Decrement Index Reg DEX X-1->X eojoe|e|l]|e|e
Decrement Stack Pntr DES SP-1->8P e|lo o oo e
Increment Index Reg INX X+1->X o|jojo|l|e|e
Increment Stack Pntr INS SP+1—>SP o|lo|jojole|e
Load Index Reg LDX M =Xy, (M+1) > X ele 3 t|R|e
Load Stack Pntr LDS M—>SPy, (M+1) >8P o[e|B®|t|R |
Store Index Reg STX Xy=M X > M+1) e|le|®|t|r|e
Store Stack Pntr STS SPy > M, SP > (M+1) e|le|B®|1([R]|e
Indx Reg — Stack Pntr TXS X—-1->SP ejlo|o oo e
Stack Pntr = Indx Reg TSX SP+1->X ejlo|o|o|e e

(D (BitN) Test: Sign bit of most significant (MS) byte of result = 1?
@ (Bit V) Test: 2's complement overflow from subtraction of LS bytes?
® (BitN) Test: Result less than zero? (Bit 15= 1)

FIGURE 1-3.4.1-1. Index Register and Stack Pointer Instructions

1-29

Operation of the Stack Pointer with the Push and Pull instructions is illustrated in Figures 1-3.4.1-2
& 1-3.4.1-3. The Push instruction (PSHA) causes the contents of the indicated accumulator (A in this example)
to be stored in memory at the location indicated by the Stack Pointer. The Stack Pointer is automatically
decremented by one following the storage operation and is ‘‘pointing’” to the next empty stack location. The

MPU MPU

Aacca [F3] ACCA

oy

] _—

m—2 m—2
m—1 SP ———i- m — 1
w 3
SP ——> m '_.z New Data m F3
© < L;
S
m+1 7F 3 m+1 7F
Previously Previously
Stacked m+2 63 Stacked m+2 63
Data Data
m+3 FD m+3 FD

PC—> PSHA < ' PSHA

Next Instr. / PC — Next Instr.
’\\—_ /—\
(a) Before PSHA (b) After PSHA

FIGURE 1-3.4.1-2, Stack Operation, Push Instruction

130

MPU

ACCA

1A

m+1
Previously
Stacked m+ 2
Data
m+ 3
PC —»

3C

D5

EC

/——

PULA

Next Instr.

(a) Before PULA

FIGURE 1-3.4.1-3. Stack Operation, Pull Instruction

/

MPU

ACCA

m—2
m—1
m

m+ 2
Previously
Stacked m+3
Data

PC —>|

1A

3C

D5

EC

/
__/

PULA

Next Instr.

f ‘

(b) After PULA

JUMP AND BRANCH 514 13(2]1]0
OPERATIONS MNEMONIC BRANCH TEST H{1|N|Z]V]C
Branch Always BRA None o|loe|ojo|o]e
Branch If Carry Clear BCC c=0 olo|oje]|e]e
Branch If Carry Set BCS c=1 ojlefo/olo|e
Branch If = Zero BEQ Z=1 ojo|/o|/ojo]e
Branch If > Zero BGE NeV=0 o|loeje|o|e]e
Branch If > Zero BGT Z+(NoV)=0 ojlejo|elo|e
Branch If Higher BHI C+z2 =0 e|jojoje|o]e
Branch If < Zero BLE Z+({NeV)=1 e|jojo|eflo]e
Branch If Lower Or Same BLS C+z=1 e|oojefo}e
Branch If < Zero BLT NeV=1 o|loe|ojoejoe|e
Branch If Minus BMI N=1 ojo|ojojo e
Branch If Not Equal Zero BNE Z=0 olojo|ojee
Branch If Overflow Clear BVC V=0 ojo o000
Branch If Overflow Set BVS V=1 ojelojeojo|e
Branch If Plus BPL N=0 o|loejoejejo|e
Branch To Subroutine BSR olojejoje e
Jump JMP See Special Operations oo 000 0
Jump To Subroutine JSR oleje|oje e
No Operation NOP Advances Prog. Cntr. Only ojojeoj|eje]e
Return From Interrupt RTI @

Return From Subroutine RTS . . ofle

Software Interrupt Swi See special Operations e|S|e]e

Wait for Interrupt WAI ° @ o] e

@ (Al) Load Condition Code Register from Stack. (See Special Operations)

@ (Bit 1) Set when interrupt occurs. If previously set, a Non-Maskable Interrupt is
required to exit the wait state.

FIGURE 1-3.4.2-1. Jump and Branch Instructions

132

Pull instruction (PULA or PULB) causes the last byte stacked to be loaded into the appropriate accumulator.
The Stack Pointer is automatically incremented by one just prior to the data transfer so that it will point to the
last byte stacked rather than the next empty location. Note that the PULL instruction does not ‘‘remove’’ the
data from memory; in the example, 1A is still in location (m+ 1) following execution of PULA. A subsequent
PUSH instruction would overwrite that location with the new *‘pushed’’ data.

Execution of the Branch to Subroutine (BSR) and Jump to Subroutine (JSR) instructions cause a
return address to be saved on the stack as shown in Figures 1-3.4.2-3 through 1-3.4.2-5. The stack is
decremented after each byte of the return address is pushed onto the stack. For both of these instructions, the
return address is the memory location following the bytes of code that correspond to the BSR and JSR
instruction. The code required for BSR or JSR may be either two or three bytes, depending on whether the JSR
is in the indexed (two bytes) or the extended (three bytes) addressing mode. Before it is stacked, the Program
Counter is automatically incremented the correct number of times to be pointing at the location of the next
instruction. The Return from Subroutine instruction, RTS, causes the return address to be retrieved and loaded
into the Program Counter as shown in Figure 1-3.4.2-6.

There are several operations that cause the status of the MPU to be saved on the stack. The Software
Interrupt (SWI) and Wait for Interrupt (WAI) instructions as well as the maskable (IRQ) and non-maskable
(NMI) hardware interrupts all cause the MPU’s internal registers (except for the Stack Pointer itself) to be
stacked as shown in Figure 1-3.4.2-7. MPU status is restored by the Return from Interrupt, RTI, as shown in
Figure 1-3.4.2-8.

1-3.4.2 Jump and Branch Operations

The Jump and Branch instructions are summarized in Figure 1-3.4.2-1. These instructions are used
to control the transfer of operation from one point to another in the control program.

The No Operation instruction, NOP, while included here, is a jump operation in a very limited sense.
Its only effect is to increment the Program Counter by one. It is useful during program development as a
““stand-in’” for some other instruction that is to be determined during debug. It is also used for equalizing the
execution time through alternate paths in a control program.

Execution of the Jump Instruction, JMP, and Branch Always, BRA, effects program flow as shown
in Figure 1-3.4.2-2. When the MPU encounters the Jump (Indexed) instruction, it adds the offset to the value
in the Index Register and uses the result as the address of the next instruction to be executed. In the extended
addressing mode, the address of the next instruction to be executed is fetched from the two locations
immediately following the JMP instruction. The Branch Always (BRA) instruction is similar to the JMP
(extended) instruction except that the relative addressing mode applies and the branch is limited to the range
within —125 or +127 bytes of the branch instruction itself (see Section 1-2.3.4 for a description of the
addressing modes). The opcode for the BRA instruction requires one less byte than JMP (extended) but takes
one more cycle to execute.

The effect on program flow for the Jump to Subroutine (JSR) and Branch to Subroutine (BSR) is
shown in Figures 1-3.4.2-3 through 1-3.4.2-5. Note that the Program Counter is properly incremented to be
pointing at the correct return address before it is stacked. Operation of the Branch to Subroutine and Jump to
Subroutine (extended) instruction is similar except for the range. The BSR instruction requires less opcode than
JSR (2 bytes versus 3 bytes) and also executes one cycle faster than JSR. The Return from Subroutine, RTS, is
used at the end of a subroutine to return to the main program as indicated in Figure 1-3.4.2-6.

The effect of executing the Software Interrupt, SWI, and the Wait for Interrupt, WAI, and their

1-33

INDXD

PC Main Program

n+1
n+2

PC Main Program

n | 7E=JMP
Ky = Next Address
K| = Next Address

K I Next Instruction I

n

n+1

(n+2) K

Main Program
2¢0=BRA
K = Offset*

[Next Ins'tructionJ

*K = Signed 7-bit value
(b) Branch

n | 6E=JMP
n+1 K=0ff§et EXTND
(a) Jump

FIGURE 1-3.4.2-2. Program Flow for Jump and Branch Instructions

f
m—2
m—1
SP=——3 m
m+ 1 7E
7A ‘
L
PC— n BSR
n+1 +K = Offset*
n+2 Next Main Instr.
/—

*K = Signed 7-Bit Value

(a) Before Execution

PC = (n + 2) K

FIGURE 1-3.4.2-3. Program Flow for BSR

1-34

/

(n + 2)H

(n+2)L

7€

~/

BSR

TK = Offset

Next Main Instr.

— —

1st Subr. Instr.

L//*

{b) After Execution

SP—>m

m+1 7€
m+2 7A
=
pc— n JSR = BD

n+1 S = Subr. Addr.
n+2 S| = Subr. Addr.

n+3 Next Main Instr.

SP—» m

m+1

PC——» n

n+1

n+2

_/-—-

{a) Before Execution

m+1

m+ 2

PC—>S

(S formed from
Spand S)

(n+3)H

(n+3)L

7E

T7A

7C

- _
—

JSR

S = Subr. Addr.

S|_ = Subr. Addr.

Next Main Instr.

——

1st Subr. Instr.

\/__

(b) After Execution

FIGURE 1-3.4.24. Program Flow for JSR (Extended)

7E

7A

L__—

JSR = AD

K = Offset*

Next Main Instr.

/

*K = 8-Bit Unsigned Value

(a) Before Execution

PC—»X* +K

/

(n+2)H

(n+2)L

7E

7A
—J

JSR = AD

K = Offset

Next Main Instr.

—

1st Subr. Instr.

*Contents of Index Register

(b) After Execution

FIGURE 1-3.4.2-5. Program Flow for JSR (Indexed)

PC —Sn

—)

(n+3)H

(n+3)L

7E

7A

-
]

JSR = BD

SH = Subr. Addr.

S|_ = Subr. Addr.

Next Main Instr.

——
———/

Last Subr. Instr.

RTS

f-

(a) Before Execution

SP—» m

m+1

n+1

n+2

PC—>»n+3

FIGURE 1-3.4.2-6. Program Flow for RTS

7E

r___‘__/_‘\

JSR =BD

Sp = Subr. Addr.

S|_ = Subr. Addr.

Next Main Instr.

—

Last Subr. Instr.

RTS

f

(b) After Execution

Wait For Hardware Interrupt or

Software Interrupt Interrupt Non-Maskable Interrupt (NMI)
Main Program Main Program Main Program
n | 3F=swi n | 3E=WAI
n+1 Next Main Instr. n+1 Next Main Instr. n Last Prog. Byte

— —

Mask S.et?
(CCR 4)

Continue Main Prog.

n+1 Next Main Instr -

Stack

SP—> m—7

m — 6 | Condition Code
Stack MPU @

Register Contents m —5| Acmltr. B
m —4]| Acmltr. A
m — 3| Index Register (Xp)
m — 2| Index Register (X)
m—1 PC(n + 1)H

m| PC(n+ 1)L

Swi HDWR
INT

WAI NMI < Restart)

Wait Loop

Int.
Mask Set?
{CCR 4)

FFFA FFF8 FFFC & FFFE
FFFB FFF9 Frro Y FEre Y

R

Assi t!

Interrupt Memory Assignmen Set Interrapt
FFF8 | Constant, Hdware | M$S Mask (CCR 4)
FFF9 Constant, Hdware LS *
FFFA | Software ms First Instr.

FFFB | Software LS Addr. Formed Load Interrupt
s By Fetching Vector Into

FFFC | Non-Maskable Int. 2-Bytes From Program Counter

FFFD Non-Maskable Int. | LS Per. Mem.

EFFE | Restart MS Assign.

FFFF Restart LS

r Interrupt Program N

NOTE: MS = Most Significant Address Byte; I | 1st Interrupt Instr.
LS = Least Significant Address Byte;

FIGURE 1-3.4.2-7. Program Flow for Interrupts

1-37

relationship to the hardware interrupts is shown in Figure 1-3.4.2-7. SWI causes the MPU contents to be
stacked and then fetches the starting address of the interrupt routine from the memory locations that respond to
the addresses FFFA and FFFB. Note that as in the case of the subroutine instructions, the Program Counter is
incremented to point at the correct return address before being stacked. The Return from Interrupt instruction,
RTI, (Figure 1-3.4.2-8) is used at the end of an interrupt routine to restore control to the main program. The
SWI instruction is useful for inserting break points in the control program, that is, it can be used to stop
operation and put the MPU registers in memory where they can be examined. The WAI instruction is used to
decrease the time required to service a hardware interrupt; it stacks the MPU contents and then waits for the
interrupt to occur, effectively removing the stacking time from a hardware interrupt sequence.

/

SP—m=m — 7 m—7

m—6 CCR m—6 CCR

m-—5 ACCB m-—5 ACCB

m—4 ACCA m—4 ACCA

m-—3 Xp (Index Reg) m—-3 XH

m—2 X (Index Reg) m-—2 XL

m—1 PC(n+1)H m -1 PCH
m PC{n+1)L SP—— m PCL

7E 7E

PC ——=

—

Next Main Instr.

| —
/

Last Inter. Instr.

RTI

{a) Before Execution

—

PC—==

n+1

FIGURE 1-3.4.2-8. Program Flow for RTI

1-38

Next Main Instr.

Last Subr. instr,

RTI

/

(b) After Execution

BMI : N=1; BEQ : Z=1 ;
BPL : N=¢ ; BNE : Z=9¢
BVC : V=¢ ; BCC : C=¢ ;
BVS : V=1 ; BCS : c=1;
BHI : C+Z2=¢ ; BLT : N®eV=1 ;
BLS : C+Z=1 ; BGE : N&V=¢ ;
BLE : Z+(N®dV)=1 ;
BGT : Z+(N®V)=¢ ;

FIGURE 1-3.4.2-9. Conditional Branch Instructions

The conditional branch instructions, Figure 1-3.4.2-9, consist of seven pairs of complementary
instructions. They are used to test the results of the preceding operation and either continue with the next

instruction in sequence (test fails) or cause a branch to another point in the program (test succeeds).
Four of the pairs are used for simple tests of status bits N, Z, V, and C:

ey

@

©))

4

Branch On Minus (BMI) and Branch On Plus (BPL) tests the sign bit, N, to determine if the
previous result was negative or positive, respectively.

Branch On Equal (BEQ) and Branch On Not Equal (BNE) are used to test the zero status bit, Z,
to determine whether or not the result of the previous operation was equal to zero. These two
instructions are useful following a Compare (CMP) instruction to test for equality between an
accumulator and the operand. They are also used following the Bit Test (BIT) to determine
whether or not the same bit positions are set in an accumulator and the operand.

Branch On Overflow Clear (BVC) and Branch On Overflow Set (BVS) tests the state of the V
bit to determine if the previous operation caused an arithmetic overflow.

Branch On Carry Clear (BCC) and Branch On Carry Set (BCS) tests the state of the C bit to
determine if the previous operation caused a carry to occur. BCC and BCS are useful for testing
relative magnitude when the values being tested are regarded as unsigned binary numbers, that
is, the values are in the range 00 (lowest) to FF (highest). BCC following a comparison (CMP)
will cause a branch if the (unsigned) value in the accumulator is higher than or the same as the
value of the operand. Conversely, BCS will cause a branch if the accumulator value is lower
than the operand.

The fifth complementary pair, Branch On Higher (BHI) and Branch On Lower or Same (BLS) are in
a sense complements to BCC and BCS. BHI tests for both C and Z = 0; if used following a CMP, it will cause a
branch if the value in the accumulator is higher than the operand. Conversely, BLS will cause a branch if the
unsigned binary value in the accumulator is lower than or the same as the operand.

The remaining two pairs are useful in testing results of operations in which the values are regarded as
signed two’s complement numbers. This differs from the unsigned binary case in the following sense: In

unsigned, the orientation is higher or lower; in signed two’s complement, the comparison is between larger or
smaller where the range of values is between —128 and +127 (see Section 1-3.2 for a review of number

systems).

Branch On Less Than Zero (BLT) and Branch On Greater Than Or Equal Zero (BGE) test the status
bits for NP V = 1and N@ V = 0, respectively. BLT will always cause a branch following an operation in

1-39

which two negative numbers were added. In addition, it will cause a branch following a CMP in which the value
in the accumulator was negative and the operand was positive. BLT will never cause a branch following a CMP
in which the accumulator value was positive and the operand negative. BGE, the complement to BLT, will
cause a branch following operations in which two positive values were added or in which the result was zero.

The last pair, Branch On Less Than Or Equal Zero (BLE) and Branch On Greater Than Zero (BGT)
test the status bits forZ + (N@® V) = 1and Z + (N@ V) = 0, respectively. The action of BLE is identical to
that for BLT except that a branch will also occur if the result of the previous result was zero. Conversely, BGT is
similar to BGE except that no branch will occur following a zero result.

1-40

CHAPTER 2

2. PROGRAMMING TECHNIQUES

The objective of this Chapter is to present examples of programs and techniques that have been
found useful in developing control programs for the MC6800 MPU. Much of the material in subsequent
Chapters also covers programming methods. I/O techniques are discussed in Chapter 3. Chapter 5 is devoted to
peripheral programming; Chapter 6 discusses system integration programming techniques. In this Chapter, the
empbhasis is on three programming areas: (1) arithmetic processing; (2) counter and delay operations; (3) use of
the indexed addressing mode. In addition, Section 2-3 presents techniques for determining if a given program is
usable and/or efficient for a particular application.

2-1 ARITHMETIC OPERATION
2-1.1 NUMBER SYSTEMS

The ALU always performs standard binary adition of two eight bit numbers with the numbers
represented in 2’s complement format. However, the MPU instruction set and hardware flags permit arithmetic
operation using any of four different representations for the numbers:

(1) Eachbyte can be interpreted as a signed 2’s complement number in the range —127 to +127:
+ 26 25 2¢ 23 22 21 20
bz bs bs ba bz bz b1 bo
(—127 in 2’s complement representation)
(—1in 2’s complement representation)
(0 in 2’s complement representation)
(+1 in 2’s complement representation)

_0 O = O
e e T == T = Gy

(+127 in 2’s complement representation)

(2) Each byte can be interpreted as an unsigned binary number in the range 0 to 255:
27 26 25 2¢ 23 22 21 Q0
bz be bs bs bz bz b1 bo

06 0 0 0 O O 0 O (0inunsigned binary)
1 1 1 1 1 1 1 1 (255 in unsigned binary)

(3) Each byte contains one 4-bit BCD number in the 4 LSBITS, the 4 MS bits are zeros. This is
referred to as unpacked BCD and can represent numbers in the range of 0-9:
27 26 25 24 23 22 2t Q0
bz be bs bs bz bz b1 bo
0 0 0 0 O O 0 0O (BCDO
0 0 0 o0 o0 1 o0 (BCD 5)
O o0 o o 1 0 o0 (BCD 9)
Always must be 0

—

2-1

(4) Eachbyte can be thought of as containing two 4-bit binary coded decimal (BCD) numbers. With
this interpretation, each byte can represent numbers in the range 0 to 99:
28 22 2t 20 23 22 21 20
bz bs bs bs bz bz b1 bo
o 0 0O O O O 0O 0 (BCDOO
o 0o 1 0 0 1 1 1 (BCD 27)
1 0 0 1 1 0 0 1 (BCD 99)

Each of these number systems will be illustrated with programming examples after the condition
code flags and instruction set have been introduced in more detail.

2-1.2 THE CONDITION CODE REGISTER

During operation, the MPU sets (or clears) flags in a Condition Code Register as indicated in Table

bs bs bs bz b1 be
H|{I |N|Z |V |C/| Condition Code Register

H = Half-carry; set whenever a carry from bs to bs of the result is generated; cleared otherwise.
I = Interrupt Mask; set by hardware interrupt or SEI instruction; cleared by CLI instruction. (Normally not
used in arithmetic operations).
N = Negative; set if high order bit (br) of result is set; cleared otherwise.
Z. = Zero; set if result = 0; cleared otherwise.
= oVerflow; set if there was arithmetic overflow as a result of the operation; cleared otherwise.
= Carry; set if there was a carry from the most significant bit (bz) of the result; cleared otherwise.

TABLE 2-1.2-1: Condition Code Register

2-1.3 OVERFLOW

The description of most of the condition code bits is straight forward. However, overflow requires
clarification. Arithmetic overflow is an indication that the last operation resulted in a number beyond the =127
range of an 8-bit byte. Overflow can be determined by examining the sign bits of the operands and the result as
indicated in Table 2 where the results for addition of A + B is shown.

Row az bz |V
1 0O 0 010
2 0O 0 1]1
3 0O 1 0]O0
4 0 1 1 0
5 1 0 0|0 A+B=R
6 1 0 1(0
7 1 1 0 1
8 1 1 110

TABLE 2-1.3-1: Overflow for Addition

2-2

If the sign bits of the operands, a7 and bz, are different (rows 3 through 6 of the Table) no overflow can occur

and the V flag is clear after the operation. If the operand sign bits are alike and the result exceeds the byte

capacity, the sign bit of the result (r7) will change and the overflow bit will be set. This is illustrated in the

following example. The example follows actual ALU operation in that the starting number A is initially in the

accumulator but is replaced by the result of the current operation.

v
0

7 6 5 4 3 2 1 0
0 0 1 1 0 1 1 O
I 0 0 0 0 1 1 1
I 0 1 1 1 I 0 1
1 0 1 1 1 1 0 1
1 1 0 1 1 1 1 1
1 0 0 1 1 1 0 O
7 6 S5 4 3 2 1 0
1 0 0 1 1 1 0 0
1 1 1 0 0 0 0 0
0 1 1 1 1 1 0 O

A=
B =

Ro=

Ro=
B =
Ri=

Ri=

Re=

+54;

—121; (negative numbers are in 2’s complement
notation)

A+B = —67; (signs of A & B different; no
overflow)

—67;

—-33;

Ro + B = —100; (Signs alike but byte capacity
not exceeded; no overflow)

—100;

= -32;

+124 (Signs of R1 & B alike and sign of result
occurred)

Here the capacity of the register has been exceeded and the result is + 124 rather than — 132. Overflow is said to

have occurred.

In subtraction operations, the possibility of overflow exists whenever the operands differ in sign.
Overflow conditions For A — B are illustrated in Table 3.

Row

R~ NN PN -

ar br 1 |V
0O 0 O0]O0
0 0 1 1
0 1 010
0 1 1] 0
1 0 0] 0
1 0 110
1 1 0|1
1 1 10

(A-—B)=R

TABLE 2-1.3-2: Overflow for Subtraction

Note that Table 3 is identical to the addition table except that bz has been replaced by b. Thisis explained by the
fact that the ALU performs subtraction by adding the negative of the subtrahend B to the minuend A. Hence, the
ALU first forms the 2’s complement of B and then adds. The subtraction table with bz negated then reflects the

2-3

sign bits of two numbers that are to be added. If a7 and by are alike, overflow will occur if the byte capacity is
exceeded.

2-1.4 THE ARITHMETIC INSTRUCTIONS

Table 2-1.4-1 summarizes the instructions used primarily for arithmetic operations. The effect of
each operation on memory and the MPU’s Accumulators is shown along with how the result of each operation
effects the Condition Code Register.

The carry bit is used as a carry for addition and as a borrow for subtraction and is added to the
Accumulators with the Add With Carry Instructions and subtracted from the Accumulators in the Subtract With
Carry instructions.

The Decimal Adjust instruction, DAA, is used in BCD addition to adjust the binary results of the
ALU. Used following the operations, ABA, ADD, and ADC on BCD operands, DAA will adjust the contents
of the accumulator and the C bit to represent the correct BCD Sum.

Table 2-1.4-2 shows the details of the DAA instruction and how it affects and is effected by the
Condition Code Register bits.

2-1.4.1 Use of Arithmetic Instructions

Typical use of the arithmetic instructions is illustrated in the following examples:

The ABA instruction adds the contents of ACCB to the contents of ACCA:

ACCA 10101010 (SAA)

ACCB 11001100 ($CC)

ACCA 01110110 ($76) with a carry.
CARRY 1

The ADCA instruction adds the operand data and the carry bit to ACCA:

bz bs bs bs Dbs bz b1 be

ACCA 1 0 1 0 1 0 1 0 $AA
OPERAND DATA 1 1 0 0 1 1 0 O CC
CARRY 1
ACCA 0 1 1 1 0 1 1 1 $77 with carry
CARRY 1

In both of these examples, the 2’s complement overflow bit, V, will be set as shown in Table
2.1.4.1-1.

24

ADDRESSING MODES COND. CODE REG.
BOOLEAN/ARITHMETIC OPERATION
ACCUMULATOR AND MEMORY IMMED DIRECT INDEX EXTND INHER (All register labels 514(3|2(1(0
OPERATIONS MNEMONIC|OP [~ [# |OP |~ | # [OP |~ | #|OP| ~ | #|OP| ~ | # refer to contents) H{I[N]ZiV]|C
Add ADDA |8B.{ 2 |2 (9B |3 |2 |{AB|S5 BB|4 |3 A+M—>A tlef ¢t
ADDB cB | 2 2 (DB |3 2 |EB |5 2 |FB | 4 3 B+M—8B tlelt| |t ¢
Add Acmitrs ABA 1B | 2 1{A+B—-A tiel ¢8|
Add with Carry ADCA 83 | 2 2199 |3 2 |A3 | 5 2|89| 4 3 A+M+C—>A tiejtlt|t]e
ADCB 9| 2 2 |DS |3 2 1ES | 5 F9 | 4 B+M+C—B tle|ldjtit|e
Complement, 1's coM 637|211]s6]|3 M-mM o|el t|t|R]S
COMA B2 1]A=A eielt|t|R|S
coms 53 |2|1]|8B-8 olel t|t|R]S
Complement, 2's NEG 60 |7 (2|70 |6 |3 00 -M->M ool 11 1OI®
(Negate NEGA 40| 2] 1{00-a-A DIEIEIo)6)
NEGB 5 [2| 1]00~B—8 oo 1] 1QDI®
Decimal Adjust, A DAA 19 [2 | 1| ConvertsBinary Add. of BCD Characters | o | o) ¢ | 4| 4 |@®
Rotate Left ROL 69 |7 | 2(79 |6 |3 M elelt 1@
ROLA 4921AG<—EEEEEIID:] ele|t|t|®?
c b, <« bp
ROLB 58 |2]1/8 oot 2@
Rotate Right ROR 66 |7 217 |6 |3 M elef 3 @ $
RORA %2 |1]A m e|le|titi@®]t
c b7 - bp
RORB 8121118 elel 1 LI® S
Shift Left, Arithmetic ASL 68 |7 {2]718]|6 |3 M - ele titi®|?
ASLA g2 |1]A O « [IITII10« 0 el I tI®|?
ASLB 5812 1][8 77 %0 elel t|t|®|?
Shift Right, Arithmetic ASR 67 | 7 27716 3 M . o|le| 1|t @ $
ASRA 4721A‘:EEIZEEEED—>D eleft||®|?
by bg c
ASRB 572|118 ele t1t|®|
Shift Right, Logic. LSR 64 |7 2|74 |86 |3 M N elolR|®]?
LSRA “ul21]|A G»EIDjIEO—»D e|elR||®]?
LSRB 4 (2718 e|e(R||®?
Subtract SUBA 80 | 2 2 (9% |3 2 |AD |5 21804 3 A-M-A ele| |21t
SuBeB co 2 |D0| 3 2 |EO | 5 2 FO| 4 3 B-M—B eje| i tit |
Subract Acmltrs. SBA 10 2 1] A-B—>A ejeof Pttt
Subtr. with Carry S8CA 82| 2 2192 |3 2 JAZ |5 218214 3 A-M-C—A L IRl NN B
SBCB C2 | 2 2 |D2 |3 2 |E2 |5 21F2| 4 3 B-M-C-8 ejeo T 3|t
LEGEND: 00 Byte= Zero; CONDITION CODE REGISTER NOTES:
OP Operation Code (Hexadecimal); H Half-carry from bit 3; {Bit set if test is true and cleared otherwise)
~ Number of MPU Cycles; 1 Interrupt mask @ BitV) Test: Result= 10000000?
e Number of Program Bytes; N Negative (sign bit) @ (Bit C) Test: Result = 000000007
+ Arithmetic Plus; 2 Zero (byte) (@ (BitC) Test: Decimal value of most significant BCD Character greater than nine?
- Arithmetic Minus; v Overflow, 2s complement . (Not cleared if previcusly set.}
+ Boolean AND; € Carry from bit 7 (® (BitV} Test: Set equal to result of N @ C after shift has occurred.
Mgp Contents of memory location R Reset Always
pointed to be Stack Painter; S Set Always
+ Boolean lnclusive OR; ¢ Test and set if true, cleared otherwise
® Boolean Exclusive OR; L4 Not Affected
M Complement of M; CCR Condition Code Register
- Transfer Into; LS Least Significant
a Bit = Zero; MS Most Significant

TABLE 2-1.4-1. Arithmetic Instructions

Operation: Adds hexadecimal numbers 00, 06, 60, or 66 to ACCA, and may also set the carry

bit, as indicated in the following table:

State of Upper Initial Lower Number Added State of
C-Bit Half-Byte Half-Carry Half-Byte to ACCA C-Bit
Before DAA (Bits 4—7) H-Bit (Bits 0—3) by DAA After DAA
(Col. 1) (Col. 2) {Col. 3) (Col. 4) (Col. 5) {Col. 6)
0 0-9 0 0-9 00 0]

0 0-8 0 A—F 06 0
0 0-9 1 0-3 06 0
0 A—F 0 0-9 60 1
0] 9—F 0 A—F 66 1
0 A—F 1 0-3 66 1
1 0-2 0 0-9 60 1
1 0-2 0 A—F 66 1
1 0-3 1 0-3 66 1

NOTE: Columns (1) to (4) of the above table represent all possible cases which can result from

any of the operations ABA, ADD, or ADC, with initial carry either set or ciear, applied
to two binary-coded-decimal operands. The table shows hexadecimal values.

Effect on Condition Code Register:

H

O < N 2 —

Not affected.

Not affected.

Set if most significant bit of the result is set; cleared otherwise.
Set if all bits of the result are cleared; cleared otherwise.

Not defined.

Set or reset according to the same rule as if the DAA and an immediately preceding ABA,
ADD, or ADC were replaced by a hypothetical binary-coded-decimal addition.

TABLE 2-1.4-2, Effect of DAA Instruction

2:6

2’s complement bz bz bz

overflow carry ACC ACC OPERAND (OR ACCB)
after after after before before

0 0 0 0 0

0 1 0 0
0 0 1 0 1
0 1 0 0 1
0 0 1 1 0
0 1 0 1 0
1 1 0 1 1
0 1 1 1 1

TABLE 2-1.4.1-1 Truth Table for ‘‘Add with Carry”’

The SUBA instruction subtracts the operand data from ACCA:

br bs bs bs bs bz b1 bo

ACCA o 1 1 0 0 1 0 1 $65
OPERAND DATA 1 0 0 o O 1 1 1 $87
ACCA 1 1 0 1 1 1 1 0 $DE with a borrow
BORROW 1

The SBCA instruction subtracts the operand and the borrow (carry) it from ACCA.

bz be bs bs bs b2 b1 bo
ACCA 1 0 1 1 1 1 0 O $BC
OPERAND DATA 0 1 1 1 1 0 1 1 $7B
BORROW (carry) 1 C=1
0 1 0 0 O 0O o0 o $40 no borrow
0

BORROW

The 2’s complement overflow and carry bits are set in accordance with Table 2-1.4.1-2 as a result of
a subtraction operation.

2-7

2’s b7 b7 b7

complement carry ACCA ACCA OPERAND
overflow after after before before
0 0 0 0 0
1 1 0 0
0 1 0 0 1
1 1 1 0 1
1 0 0 1 0
0 0 1 1 0
0 0 0 1 1
0 1 1 1 1
TABLE 2-1.4.1-2: Truth Table for ‘‘Subtract with Borrow”’

2-1.5 ADDITION AND SUBTRACTION ROUTINES

Most MPU based systems will require that the arithmetic instruction set be combined into more
complex routines that operate on numbers larger than one byte. If more than one number system is used,
routines must be written for each, or conversion routines to some common base must be used. In many cases,
however, it is more efficient to write a specialized routine for each system requirement, i.e., hexadecimal
(HEX) versus unpacked BCD multiplication, etc. In this section, several algorithms will be discussed with
specific examples showing their implementation with the MC6800 instruction set.

The basic arithmetic operations are binary addition and subtraction:

ALPHA + BETA =GAMMA ALPHA — BETA =GAMMA
LDAA ALPHA LDAA ALPHA
ADDA BETA SUBA BETA
STAA GAMMA STAA GAMMA

These operations are so short that they are usually programmed in line with the main flow. Addition
of single packed BCD bytes requires only one more instruction. The DAA instruction is used immediately after
the ADD, ADC, or ABA instructions to adjust the binary generated in accumulator A (ACCA) to the correct
BCD value:

LDAA ALPHA
ADDA BETA
DAA
STAA GAMMA
Carry ACCA

X 67 0110 0111 =ACCA

X +79 carry 0111 1001 =MEMORY

(0] 146 0 1110 0000 = ACCA binary result

46 1 0100 0110 = ACCA after DAA; the carry bit will also be set

because of the BCD carry.

2-8

Since no similar instruction is available for BCD subtraction, 10’s complement arithmetic may be
used to generate the difference. The follow routine performs a BCD subtraction of two digit BCD numbers:

LDAA #8$99
SUBA BETA (99-BETA) = ACCA

SEC carry = 1

ADCA ALPHA ACCA + ALPHA + C = ACCA
DAA DECIMAL ADJUST (—100)

STAA GAMMA ALPHA-BETA = GAMMA

The routine implements the algorithm defined by the following equations.

ALPHA — BETA = GAMMA
ALPHA + (99-BETA) —99 = GAMMA 9’s COMPLEMENT OF BETA
ALPHA + (99-BETA+1) —100 = GAMMA 10’s COMPLEMENT OF BETA

One is added to the 9’s complement of the subtrahend by setting the carry bit to find the 10’s complement of
BETA which is then added to the minuend ALPHA and saved in ACCA. The DAA instruction adjusts the result
in ACCA to the proper BCD values before storing the difference in GAMMA. Since 100 has been added (99 +
1) to the subtrahend by finding the 10’s complement, 100 must also be subtracted. This is accomplished by the
DAA instruction since the resulting carry is discarded.

Multiple precision operations mean that the data and results require more than one byte of memory.
The simplest multiple precision routines are addition and subtraction of 16 bit binary or 2’s éomplement
numbers. This is often called double precision since 2 consecutive bytes are required to store 16 binary bits of
information. The following routines illustrate these functions:

LDAA ALPHA +1

LDAB ALPHA

ADDA BETA +1 ADD LS BYTES

ADCB BETA ADD MS BYTES WITH CARRY FROM LS BYTES
STAA GAMMA +1

STAB GAMMA

LDAA ALPHA +1

LDAB ALPHA

SUBA BETA +1 SUBTRACT LS BYTES

SBCB BETA SUBTRACT MS BYTES WITH BORROW FROM LS BYTES
STAA GAMMA +1

STAB GAMMA

Four digit BCD addition can be accomplished in a similar fashion with the use of the DAA
instruction. The following routine has been expanded to a 2N digit addition where N is the max number of
packed BCD bytes used:

29

START CLC

LDX #N

LOOP LDAA ALPHA X
ADCA BETA,X
DAA
STAA GAMMA X
DEX
BNE LOOP

NOTE: ALPHA, BETA, and GAMMA must be in the direct addressing range and adjusted for
offset for this example (See indexed addressing for further details).

This routine uses indexed address to select the bytes to be added, starting with the least significant.
The carry is cleared at the start and is affected only by the DAA and ADCA instructions. This allows the carry to
be included in the next byte addition.

Expanding subtraction to multiple precision is accomplished in a manner similar to the single byte
case; 10’s complement arithmetic is used. A suitable routine is shown in the Assembly Listing of Figure
2-1.5-1.

This routine first finds the 9’s complement of the subtrahend and stores it in the result buffer. The
carry is then set to add. 1 to 9’s complement, making it the 10’s complement which is then added to the minuend
and stored in the result buffer. Note that this routine has 2 loops, the first to calculate the 9’s complement, the
second to add anddecimal adjust the result. The decimal add and subtract routines operate on 10’s complement
numbers as well as packed BCD numbers. A number is known to be negative in 10’s complement form when
the most significant digit in the most significant byte is a 9. When in the 10’s complement form, this digit is
reserved for the sign and the actual number of magnitude digits is one less than 2 times the number of bytes. A
routine similar to the above subtract program will convert the 10’s complement number to decimal magnitude

with sign for display or output purposes:

DCONV CLR SINFLG CLEAR SIGN FLAG
LDAA RESULT+1 GET MSBYTE
BPL END POSITIVE:END
LDX #8 NEGATIVE:
LDAA #$99
DCONV1 A RSLT X SUBTRACT RESULT FROM
STAA RSLT,X ALL 9’s INCLUDING
DEX SIGN DIGIT
BNE DCONV1
LDX #
CLRA
SEC
DCONV2 ADCA RSLT,X ADD 1 TO RESULT
DAA
STAA RSLT,X
DEX
BNE DCONV2
DEC SINFLG SET SIGN FLAG
END RTS RETURN

The sign flag would be used to indicate plus when clear and minus when not clear.

2-10

aoo1a
oonzn

gooss

aonsg

goian
no1in

ez
130
noign
aoisn
aolei
nn1va
anian
RS 1]

onE=a

nn=40

nn251
no=se

n_x
n
ey

ZYMEOL TRELE

TELIE

BT

a100 CE

0103
105
107
(AR RIS
o168
ninc
1 0F
niia
11
114
G115
a11v
111:
niiA

o100 DEUE]
JETREH G000

T

(e Yl s ¥ n]

ey

o

Mo

)
L I O e I B 2

LY I RN |

AT oo Do 0D

oD

MAM DZUEB1A

OoFT ZYME s MEM=MEMEZUE
ZUETRH EQL I
MIMUEN EnRil
FELT EQil

OrG
+ DECIMARL ZUET

T = 0
Do
D N £

T ZUBROUTIME FOR 1& DECIMAL DIGIT

Al

+ THIZ ROUTIME ZUEBTREACTE THE ZUBTRAHEMND ¢ "IZURTRH™
* FROM THE MIMUEMD CUMIMUEMN"* AND FLRACEZ THE
+ DIFFEREMCE IM "RELT."

+ THE MEMORY ARLLOCATION IE AT FOLLOWE:

+* ROOFEEZE RAMSE L
* EUETHEAHEND 1-52
+
*
+

sl

MIMUJEMD G115
LIFFEREMNCE 17-249
ALDLREZE “ALUEST ARE DECIMAL

[R e]

o

LEUE LI #*E ZET EYTE COUMTER

DZUEL LIA TR e

ZUE ZUERTREH » = FIMD 2% COMFLEMENT

=TH BRLT LUZE "RILT" A= TEMF =ZTORE
DE DECEEMEMT EYTE COUNTER
EMNE TZIEL LOOF UWMTIL LAST EYTE

LI tEP] REZTORE EYTE COUMTER

=EC ZET CAR&RY TO RODD 1 TO COMFL
LIIR MIMUEM & LORT MIMUEND

ADC REZLT ¥ ALDD COMFLEMEMT ZUETRRHEMD
TIHA DECIMAL ALDJUET

=TH EZLT v4 ZTORE DIFFERENCE

DEX DECREMENMT EBYTE COUNTER
EHE n=UEs LO0OF UNTIL LAET EYTE

ET= FETUEM TO HOZT FPROGSFAM

i i i

b

LiZLE:

I

T I

I

+ THE EXECUTIOM TIME OF THI:Z SUEBROUTINE IZ
+ 24 MR CYOLET EXCLUDIMG THE RTE.

EHD

10z DRSS 0110 MIAHUEM OO00s RELT onlo

FIGURE 2-1.5-1. Decimal Subtract Assembly Listing

2-11

2-1.6 MULTIPLICATION

Multiplication increases programming complexity. In addition to the addition and subtraction
instructions, the use of the shift and rotate instructions is required. The general algorithm for binary
multiplication can be illustrated by a short example:

(1) Test the least significant multiplier bit for 1 or O.
(a) If it is 1, add the multiplicand to the result, then 2.
(b) If it is O, then 2.

(2) Shift the multiplicand left one bit.

(3) Test the next more significant multiplier bit; then 1a or 1b.

DECIMAL BINARY
13 1101 MULTIPLICAND
1 1011 MULTIPLIER LSB=1; ADD MULTIPLICAND TO RESULT (A)
o 1101 (A)
13 1101 (B) SHIFT MULTIPLICAND LEFT ONE BIT (B)
100111 (C) LSB+1 = 1; ADD MULTIPLICAND TO RESULT (C)
13 1101 (D) SHIFT MULTIPLICAND LEFT ONE BIT (D)
T 1101 (E) LSB+2 = 0; SHIFT MULTIPLICAND LEFT 1 (E)
143 10001111 (F) LSB+3 = 1; ADD MULTIPLICAND TO RESULT (F)
128 + 15 =143

Signed binary numbers in 2’s complement form cannot be multiplied without correcting for the cross
product terms which are introduced by the 2’s complement representation of negative numbers. There is an
algorithm which generates the correct 2’s complement product. Since positive binary numbers are correct 2’s
complement notations, they also may be multiplied using this procedure. It is called Booth’s Algorithm.
Simply stated the algorithm says:

(1) Test the transition of the multiplier bits from right to left assuming an imaginary O bit to the
immediate right of the multiplier.

(2) If the bits in question are equal, then 5.
(3) If there is a O to 1 transition, the multiplicand is subtracted from the product, then 5.
(4) If there is a 1 to O transition, the multiplicand is added to the product, then 5.

(5) Shift the product right one bit with the MSBit remaining the same. (This has the same effect as
shifting the multiplicand left in the previous example).

(6) Go to 1 to test the next transition of the multiplier.

2-12

The following example (Figure 2-1.6-1) shows the typical steps involved in an actual calculation.

A Flowchart and Assembly Listing for a program using the MC6800 instruction set is shown in
Figures 2-1.6-2 and 2-1.6-3, respectively. The results of simulating this program, Figure 2-1.6-4, shows worst
case processing time to be approximately 1.662 msec. The worst case condition results when alternate
additions and subtraction are required in each of the 16 loops required to have the result in the proper location.

Sign Bits 5 Bits
1117101 = -3
111011 = -6
00\0000001111J—+15
e
10 Bits
1171101 Multiplicand
11101 1((’0) Multiplier
000000O 0 to 1; subtract by adding the 2’s
+ 000011 complement of the multiplicand
000011 PRODUCT
0000011 Shift PRODUCT
00000011 1 to 1 shift PRODUCT
+111101 1 to 0 add
11110111 PRODUCT
111110111 Shift PRODUCT
+ 000011 0 to 1 subtract
000001111 PRODUCT
0000001111 Shift PRODUCT
00000001111 1 to 1 shift
&3\0000001111/ 1 to 1 shift
Sign 15

FIGURE 2-1.6-1. Multiplication Using Booth’s Algorithm

2-13

‘ MULT 16 ’

Clear the Working Registers
This Includes the Previous LS Bit
of the Multiplier Test Byte
Initialize the Shift Count to 16

Does the

LS Bit of the

Mutltiplier = the

Previous LS Bit
?

Does

YES the LS Bit

of the Multiplier
= 0?

Add the Multiplicand
to the Product with
the MS Bytes Lines Up

Subtract the Multiplicand
from the Product with
the MS Bytes Lined Up

Return
from
Subroutine

\'g

Clear the Previous
LS Bit of the Multiplier Test Byte

Shift the Muitiplier Right One
Bit with the LS Bit Going into
the LS Bit of the
Multiplier Test Byte

Shift the Product Right One Bit,
the MS Bit Remaining the Same

Decrement the
Shift Counter

Does
the Shift
Counter
=0?

FIGURE 2-1.6-2. Flow Chart for Rooth’s Algorithm

2-14

FR5E 1 MULTIA

FE MUOLT1E
a=T MER

onodo
noasn

THIT ROUTIME MULTIFLIES Tul 16
COMPLIMENT MUMEERE USTrE BOATH S

THE MULTIFLIER =
THE MILTIFLICAMD
THE SRODUCT = u

. F.‘l‘+1!l.+;nli+
THE TE=T EYTE FOR

L SE-13 = FF

Uulug
0a1in
ooLza
noizo
noig4n
oni1sa
Oo1sn
aniyn
Oai=sn
o120

T *

Oriz
oonz) Sre
oons BME
Gandg =ME
(g

EH
[xN]
Lol

(A NA]

n
i
&
b
— T

4 TER AMD THE PU&T‘“‘Iﬁf“

AMD e RETFEC

GEHEQQTE fH& j"?
Ir ik,

O3 I T

_
- &
ﬁULTIFLIEﬁ Wil EE

% o o ¥ T

gozs0 pgnn] P RERERE

FIGURE 2-1.6-3: Assembly Listing for Booth’s Algorithm (Sheet 1 of 2)

0330
aag0n
angdia
ands0
angdzn
anddan
DO4sn
angdA0
nugra
YIE I
o423
oasan
ansio

GOs40

0ESn

n0s7 0
ons2n
O0=4an

nosd 0

od 0o
O40=
nd g
AT
ogar
a3
e
HESS

n42E

144E
HEE I

MULTIE

e

-~ Tm

o

aaia
=1
1

3 e O D T 0 e T e T
Y W I R R 3

0
[oom IR N)

=

= T

For o da i) 1T

im0 o = T

X M X

lJ‘v

=
E
I
S
Ii
E
n
=
=
it
E

U S TR I S A I R I I o B

B B Bt B Y B B B e BV]

[N 2 A B RS |
DY W RN SIS w0 N Y

MULTLS

L=

a

-

ST

T IHIFT

L
CiR
STH
DEs
EHE
LI
LR
HHD
THE
EOF
BEQ
T=T
BEQ
LOA
LOA
B
BT
=TH
ETH
BRA
LDH
LA
STn
SRR
=TH
TH
CLF
ROR
ROF
ROL
HER
=0OFR
~Or
FOF
DE=
EMHE
ETE
EMD

I I

I I

b

td oot I

Dot Dt

i1+1
i+

LF2

CLERR THE WOREIMS =REGIEZTERE

INIT L SHIFT COUNTER TO 14
SET YiLIZEITY

FEVE OYOLERITY IN ACCE

DOEZ YOLEEITs = YiOULTERE-12 ¥
YEZ: 50 TO THIFT rROUTIME
Mid: DOET YOLIEIT: = 007
YET: 50 T ALDU ROUTIME

HO: =SURBTRRCT MULTIRLICAND
PRODUCT WITH THE MIBYTEZR
LIMED UFP

THEM &0 TO ZHIFT ROUTIME
BOD THE MULTIFLICAMD TO THE
FRODUCT WITH THE MIEYTEE
LIMED UR

CLERR THE TEZET EYTE

HIFT THE MULTIFLIER RIGHT
OME EIT WITH THE LEEIT

IriTO THE LEEBIT OF FF

ZHIFT THE FRODUCT FIGHT OME
EIT» THE M=E FEMRIMIMG THE
SAME

DECREMENT THE EZHIFT COUNT
IF MOT G COMTIHUE

FIGURE 2-1.8-3: Assembly Listing for Booth’s Algorithm (Sheet 2 of 2)

2-16

=

il

(R]

3l

T 0
[U

e e s e,
1
an au aw e

DY I B B

s —e S e g
: TS S5 OHH s OHE
e e
25T s OEE s s

anoi

Q000

1.

L&,
FPardaraBaT.
0,
FAaaTO,

B0 TF 2 OFS «7F 2 OFF

‘Mw MM mw cEw csw

FafiF=.

. . B T

oaan TE GO0 2SS
g dte e

gand

-4
i

Ti

T
L
T
1

T]
i
e

FIGURE 2-1.6-4: Simulation of Booth’s Algorithm

2-17

In the transaction terminal design described in Chapter 6, it is necessary to multiply price by
quantity, price by weight, and total price by tax. All these operations, as defined, require a 5 by 3 digit
unpacked BCD multiply, where unpacked means one BCD digit per byte. Decimal point poisition is
determined by the executive program’s use of the subroutine buffers. The main multiply loop XKMPLY (refer
to the flow chart of Figure 2-1.6-5 and the Assembly Listing of Figure 2-1.6-6) is similar to the basic multiply
algorithm shown in the first example of this Section except that it has been modified to test the shifted multiplier
byte for zero. This minimizes the number of shifts required to generate the correct result. This result or partial
product is generated in ACCA and then decimal adjusted to determine the number of tens and the number of
ones it contains. The number of ones results is in ACCA and the number of tens is in ACCB. ACCA is then
added to the result buffer for the present partial product, ACCB is added to the result buffer for the next more
significant partial product. The maximum number stored in any result buffer before it is added to the new partial
product is 18 (9 max from its previous decimal adjustment plus 9 max from number of tens from the adjustment
of the next least significant partial product.) This value, when added to the maximum partial product of 81, is
less than 255, the maximum value in one byte so no carry or overflow will occur. This combined with the fact
that the multiplication progresses from the least to the most significant byte says that the last partial product to
be adjusted will be for the most significant result and that it and all previous result bytes will be in the proper
decimal format.

The simulation for XKMULT gave the following results:

99999
X 999
99899001 in 4.651 ms

00009
X 007

63 in 1.108ms

00079
X 700

55300 in 1.426 ms

00005
X 100
500 in 974 ms
From this, the worst case multiplication is approximately 4.7 milliseconds, most of which is used up
in determining the number of 10’s and 1’s in each partial product. The program is general in nature, i.e., it can

easily be expanded (or shortened) to any number of unpacked BCD digits by increasing or decreasing the
maximum value of the various address pointers and their corresponding memory buffers.

2-1.7 DIVISION

Another arithmetic routine developed for the transaction terminal demonstrator divides a timing

2-18

MULTCND
MULTPLR
RESULT

Ty T2T3TaTs > Tn
X S1S3S3>Sm
Rq Ry R3 Ry Rs Rg Ry Rg > Ry

XKMULT

initialize Multiplier Address

Initialize Resuit Address Pointer: P = 8
Clear Result Buffer R}‘-) Rg
ointer: M =3

If Multiplier Digit=0

Skip Partial Product Loops

XKMSTR

Initialize Multiplicand Pointer: N =5]

If Multiplicand Digit = 0

Skip this Partial Product Loop

Right Shift
BCD Multiplier
One Bit

N

N

[

Left Shift
Ty One Bit

Left Shift
BCD Multiplicand
One Bit

Set Multiplicand
Pointer for Next
Muitiplicand Digit

Add Partial
Product to
Accumulator A

Decimal Adjust
Partial Product
in ACCA

ACCA = # of Units
ACCB = # of Tens

Update Result Buffer Rp = By + ACCA
Set Result Pointer for Rp-1 = Rp.q + ACCB
Next Multiplicand Digit P=P—1

NO:

Get Next Multiplicand

Digit

r

ACCA = ACCA + Ty

—

Has the Last

Significant P
Multiplier Bit N
Been Used?
{AccB = 0]
N=N-1
ACCA = ACCA + Rp
YES

NO

ACCA = ACCA — 10
ACCB =ACCB + 1

YES:

Reset Resuit Pointer
for Next Multipiier

Digit

Set Result and
Muitiplier Pointers P=P—-1
for Next M=M-1
Multiplier Digit

Has the Last Multiplicand

NO Digit Been Used?

Set Resuit and
Multiplicand Pointers

g for Next

Multiplicand Digit

Has the Last Multipiier

NO:

Get Next
Multiplier Digit

Digit Been Used?

YES:
Return to Main Program

2-19

FIGURE 2-1.6-5. XKMULT Flow Chart

ooilon aFT L

o100 AM SEMULT

nolia arT MEM

ooisn » FEN 1.0

aoizo 52810 OrG ES2E0

oaisn ++ THIZ ZUBROUTIME MULTIFLIEEZ THE 5 DIGIT DECIMAL

aoien ++ [MiIMBER ZTORED IM THE S EYTEZ ZTRARTIMG AT

o170 ++ HEMT CES» BY THE 2 DIGIT DECIMAL HMUMEBER ZTORED

0120 #+ IM THE =2 EYTELZ ETARTIHG AT =EME CEZX AMD

0120 s+ STORET THE RESULT IM THE =2 EYTEZ ZTARTIM:E AT

onznon *e SEMRE O CERM. THE MULTIFLICHAMD [T1s THE

auzin ++ MITIFLIER [2] AND THE REZULT [RJ1 AFRE LUHMPACEED

aozzn ¢ RIGHT JUETIFIED ECD MUOMEBERE

aozg4 4 SEMTHM = M IMDE-EL ADDREZZING FOIMTER FOR %

nozsn e MAX & OF DECIMAL DIGITE IN =

gozen s HEMTMM IMDEXED RODREZZIMS FOIMTER ~OR T

nozrn . MAx s+ OF DECIMAL DIGITE: IM T
] ++ HEFTHF IHDESED AULDREZZIMG FOIMTER FOR

9 MA= 3 OF DECIMAL DIGITE IM R

*% <EHMECR = MIH TIFLICAMD TISIT ZCRATCH FRO

[4)]
]
[
]

H

F!

Ax

[| [TR T

ooz10 #+ BY CHAMGIMNS THE FOIMTER IMIT L #++ ANHD THE

nazzo ++ MEMORY BUFFER ZIZEEZ LARGER MNUMEBERE MAY EE
oozzn ++ PMULTIFLIED WITH THIZ ZUEROUTINE.

FIGURE 2-1.6-6: XKMULT Assembly Listing (Sheet 1 of 2)

2-20

OO0 SEMULT LI #5 . IMIT L P=S=sH+M e
- HEMTMF INIT L F FPOIMTER

T I

EZ =EMLFL OETH SEMR=1 23X CLERR RESULT EUFFER

G400
00410
0420
ongsn
HIET R
eSS
no4an
oog 0
aogdsn
G040

FE BMHE HEMLF1

[T

#¢ IMITL M=32 +»
E=%
T ; THVE M FOIMTER
ZE EED =EMOCF IF B=0 THEHM GO TO MEXT "=2¢
ooas (IR 5 *e [NITL M=5 ++
£4 SEMETT LIR SEMT—1 a5
e HEMTOR TAVE T IM HEMICR
ZE EED HEMTZO i) TO HeEXT T
FoH : EYOOM OETRCKE

El “EMIZTR LDA E

L0 E0 GO0 0 0

W) g T T 2 T T ol =g T M
] -
) Lo
] i~
._4 t:j
I L
oD

Ty e o P Mmoo I 3

m
1

]
7

DO Sy N I VA

I =Y 4F LR R
s 54 AEMPLY LR B =IGHT THIFT HCCE IMTZ CAREY
anszo =4 Oz BECC ARPIEHF I C=0 30 74 =HIFT T
naszn 3B FE2 H00 A HEMECR Mds S=A+T
ons4a SD WEMIHF TET B ZHIST T: LOET SCCE=0
qassn 27 05 BER Cd YETs FIMITHED WITH THIT T.
00550 7o O0Fa HEL SEMECR Mids LZFT ZHIFT T ONE EIT
ansyan =0 F3 E=5 HEPMELY
oo3sn 03 WHhpiCd OEY M=ri-]

o+ Fd =T FEMTHM

e Fe e AR PTHME

E

HEPRE—1 2 SO0 & TO B/CCAH
H : w10 DECIMAL ROVLVIET A
15 ELT HEMTE A = #JF 173

H f HENH

LT

=

T

!
15 I
=
oo
N

anegn
nossn

R v I s B s
B

Py

A

-

[
-
o
tet T

nn o_{'] e |:i] (LY LT I B B TN & O T Y R O 1 B B I I) B

e

HETLF 3
HEMR=2
=1 e

SR 4

minmmn

ot ™f ~f b

OnvFon
aoyin

00 L 00 =
i
-._'
2 I 1
ey i tm

Ty o

SEMTMFP
FTHN
SEMETT

oor=n
007940
norso
oouven
aOorvson

ch ARPMCE BHE

m oo
o
i]

EEMTMP+]
#f #+ IMIT L S=M s+
e pITHME+ PP HHl IHIT L

Lo

= ot e G g (M)
=
I
o]
I

I,
—
I
L e U]

FEMTRME41 F=f—q
A T rM

0= M

P=r=1
SKMETR IF M AT 030 TO HEHT “@°

e g T oy

1y
d bl
+

1

[anl

i

o
"

HEMTHP+L 2 = F -]

P emoe = el Ty £ =g st S 00 s G TO e o e T T g o P e
K K] 7
5
=
b |
'J
[
Ti
=1

WL LT L L) L T

Lot
I

BE T

FIGURE 2-1.6-6: XKMULT Assembly Listing (Sheet 2 of 2)

2-21

XKDIVD

DVDEND

Initialize Shift Count to 8 (S = 8)
Clear Quotient Buffers

Subtract 9 from Saved Shift Count

~

Increment Shift Count (S)
S=8+1

DVDERR

Divisor = 0

Left Shift Divisor

LSB Goes into Carry

NO

YES

Save Shift Count for Determining
the Offset of the Remainder
Shift Divisor Back Right One Bit

Divisor is Now Left
Justified and the Shift
Count is in ACCB

Result

NO
Less than 4
?

Subtract 4
from Result

YES

Store Result in Remainder
Displacement Buffer

DVDERR

Store $FF in Quotient

DVDEND

J

Is
Dividend
Less than

NO

YES

N\

Shift Quotient Left One Bit
with LSB =1
Subtract: Dividend (MS Byte) =
Dividend (MS Byte) — Divisor

l

Divisor
?

Shift Quotient Left One Bit
with LSB =0

Y

Decrement Shift Count
S=5-1

DVDEND

Shift Dividend Left One Bit with:
LSB = 0 and MSB into Carry

YES Does

NO

Carry =
1

FIGURE 2-1.7-1. XKDIVD Flow Chart

222

count accumulated in the index register (up to 4 HEX digits) by the constant 7. This routine is used to determine
an average module width during a portion of the UPC label scan routine. (See the description of the UPC label
scanner in Chapter 5 for further details.) The routine permits division by a 2-digit Hex number as shown in
Figures 2-1.7-1 and 2-1.7-2; it calculates the displacement of the remainder left in the dividend and sets the
quotient to FFFF if division by zero is attempted.

The algorithm used for this straight forward binary division is as follows:

(1) Left justify the divisor byte.

(2) If the MS byte of the dividend is less than the divisor byte, shift quotient left one bit with the LS
bit = 0; then 4.

(3) If the MS byte of the dividend is greater than or equal to the divisor, (2) shift the quotient left one
bit with the LS Bit = 1; (b) subtract the divisor from the MS byte of the dividend, the result
being stored in the MS byte of the dividend; then 4.

(4) Shift the dividend left one bit with the LS Bit = 0, and the MS Bit going into the carry.
(5) If the carry is set, go to 3a.
(6) If the carry is not set, go to 2a.

The process continues until the number of quotient shifts equals 8 + the number of shifts required to
left justify the divisor. A simulation (Figure 2-1.7-3) shows a typical divide takes approximately 1 millisecond.

This section is, by no means, comprehensive. It is intended to provide some examples that can be
used as is or that will suggest the direction for modifying them for other specialized applications.

THEM A J3F TO =EDIV.

Goion arT i
goong RESTE: HELDING
noGin OFT MEM
gOosn s9ng AR FEI0OG
O=s Lg SJUTIME TO LDIVIDE An UNTIGHED 4 DISIT
aongn + MUMEER T 16 EBIT EBIMARY I BY &M UNIZIGHED
Goosa * 2IT HEX HUMEER £33 EIT EBIMARY].
O +
OooFo # THE DIVIZGOR = ¥ = ¥ = CF33]
Gonzo * THE DIVILEADR = fiP ;
GO0 3 = ‘DHHEq alveHbO+1
ERENIRY * = EFH_!—B.
wailn « THE 2UATIEMT = FaT
aoizo * = ST s <RG0 T+1
oo1=n * = TFCNF03
aaigi ¢ THE SHIFT COUMTER = % = S570CE
aniso * THE “£FT DIZRLACEMEMT 7 THE REMAIMDER = XED-
anien L = [FE
aoivo *
ani=o + THE DINVIZgR ArD THE DIVIDIMD miST BE _OARDED
ool * IMTO = C AMND He DD DN+ REZFECTIVELY
-
*
Gozz0 # THAS 2EMAIMDER WILL BE IM vom: DHKDWHD I
Oozzo * IHIFTED LEFT THE « OfF EBITT IMDICATEDR IM «vDTPRL
Ohzdd # THz LOIVIZOR WIle BE EBIMARILY LEFT JUSTIFIEL
[3

FIGURE 2-1.7-2: XKDIVD Assembly Listing (Sheet 1 of 2)
223

s SDIWD LDR B o THIT
QOFEC TLr sy
aosn LR

DDLPG I B

Ty L

a
[axBNAN]
3

-..'

DIVIDE ZRECR

LEFT THIFT DIVIZOR
LaaF

EEY = THIFT CONT
HE DIWVIEOR EBRC

COUMT S0 I AC
CEFT JUGTT. I M

[N
D)
1
g 32
: T
[a]
T

Ac.
T
W

1T
anl
N
i

S IEPL

= ATV TR

v T i

M
i1
—
T v
2 sl

U =ef o (T e 0T

B B e B W T NI | B By SRR

T
1
Ct
1

Lo BT I e B R I
w4 J0I0 M T

T

[BN RN

~0AR A SEDVHD
OehiiFl TMfF IR I
BiCE owrsilde I

[WILFE FEC

THZ LIVIDEMD © DIVIEOR
TARTRACT

GIVIDEMD »3%= DIVIZT
oeeErT 1 EIT

i3

R]

0odan

)
=
S
Gog4io S
5

n

O 5 BTSN X B B
R B e B N B SN W B e BV B N Y

oL L L0

1] b e A e

x
X
o

[
1
1

0420
Ond=n
HIECYH
ndsn
Oudes

Gag7n

jon
Al
o
=

T
o e KRN A
IR B TR
AN
T om
o

b

-

desigl TLC THAISET 2 EFT WITH

I i
OGd4si FEonoEn =il ARl T LB =0
INEETE SERNEY eiatl WEOUDT
aosnn 55 TWEHFT DEC E To= T
oosin o 1z BE DWW IEND IF = = 0§ =TOF
oS0 4 0C sLC £ % = 0 EHIFT DIWIDEND
nE TR OOOFE S S LWHOE _EST OHE BITS LIB=G
S I R S ST s LMD TR IMTO CRERY
E 3z FA bA o =ELAHD
Onsen oz TE BT LWL ez I & =1 G530 TO LO0OFZ
ansvn IF 20 onE EER VhiFl 0T LOdr 1
ansan 11 CE FFFF DYDESR LD= wEFFFF
030 44 LF F T MEUIT
Ooend 16 DYDEMD DS AR DERL THIFT COUNT IMTO /ICE

J
]

E
HE TUE B3
4 °ME B4 .
iz ECz J e S0 TO =ETURH
nd SUE B 4 ACDEPL=XEDEZRL -3
DwlnFz 5789 B =eLEZFL I ZPUACEMENT OF REMRIMDER
IRLL-LA * STORED IM =EDEZFL

£

= HEDEFL-9

R I |

(R A B I o |
e
n
m

-.|‘:r|o-~.,
]

[B
Ry

i
m

T T T

DoEF0 5352 =9 =Tz

== M

FIGURE 2-1.7-2: XKDIVD Assembly Listing (Sheet 2 of 2}

2-24

ITRTE =3,

ITRT; IE.

ITRT: DE 16.

ITRT: SR PS260.37FF.TO.
STRTS =D FABXCT.

ITRTS HE S.

FFFF
53 = 5555

M OF 3. 03 0FFs OFF .

R 100

MEM FAULT
+1DC1 OGO00+00e02 000000 OOO01O020.=1ms

T DM OFC.2

Ol OFCs 2

OOFC 55 55 00

|

FIGURE 2-1.7-3: Simulation Results, Division

2-25

2-2 COUNTING DELAY MEASUREMENT/GENERATION

When microprocessor systems are initially considered as replacements for conventional logic
designs there is a natural tendency to formulate such questions as: What is the program that replaces a flip-flop?
A counter? A shift register? A one-shot? Etc.? Such questions are better posed as: What is the function that must
be performed? The answer to the question then often falls in one of two categories: (1) The number of times
something occurs must be determined (counted); (2) A particular time interval must be measured or generated
prior to taking some action.

These functions are also commonly used for controlling internal program flow; the MC6800
provides a variety of ways for performing them. Short (up to 8-bits or decimal 255) counter requirement can be
implemented using either of the two accumulators or any RAM location. The increment (INC) and decrement
(DEC) instructions apply to random access memory locations outside the MPU as well as the accumulators.
(The instruction set for the MC6800 is discussed in Section 1-3) The data test instructions BITA, BITB, CMPA,
CMPS, CBA, TST (memory), TSTA, and TSTB that are available for updating the Condition Code Register
combined with the branch instructions permit complete control of counter operations.

For applications requiring long counters (up to 16-bits or decimal 65,535) the Index Register and its
full complement of instructions are available. When more than one long counter is required simultaneously, a
short program can be written that permits two adjacent RAM locations to be used as a 16-bit counter:

INC N+1 Increment mem. log. (N+1)

BNE CNTNUE if result not = O continue
INC N
CNTNUE XXX XXXXXX Next program instruction

This sequence effectively increments a 16-bit word located in memory locations N and N+1. A similar
procedure is available for decrementing a 16-bit word:

TST N+1 Mem. loc. N+1 = 0?

BNE NEXT No, go decr. N+1
DEC N Yes, first decr. N
NEXT DEC N+1 Decr. N=1

2-26

In addition to their use for long counters, these instruction sequences can be used for modifying return
addresses. During execution of subroutines and interrupt service routines the program counter containing the
return address is stored on the stack, a designated area in RAM. The increment or decrement sequences can be
used to change the program counter value on the stack and thus cause the return from subroutine or interrupt to
be to a different location in the main program.

It is possible in some cases to use the index Register and Accumulators for two functions
simultaneously when one is a counting function. As an example, assume that data from a peripheral device is to
be entered into the MPU’s memory via an MC6820 PIA!. The peripheral is to indicate the presence of data by
setting a flag, bit 7 of the PIA’s Control Register. Each time the flag is set the MPU is to retrieve the data from
the PIA Data Register and store it in an internal memory location until a total of 8 bytes have been accumulated.
Since the PIA’s Data Register and Control Register look like memory to the MPU, a program is required that
will cause the MPU to monitor one memory location for a change in a flag bit and then fetch the data from
another location. This operation is to be repeated the specified number (8) of times.

The following sequence of instructions uses a single register, Accumulator B, for both the
monitoring and counting functions:

LDAB #08 Put 2°s Compl. of byte count in ACCB.
LOOP1 BITB PIACRA Byte Available flag set?

BPL LOOP1 Not yet; loop back, chk. again.

LDAA PIADRA Yes; Fetch byte.

PSHA Put byte on stack.

INCB Eight bytes yet?

BNE LOOP1 No, go wait for next bype.
XXX XXXXXX Yes, continue with program.

This program takes advantage of the fact that incrementin ¢ an accumulator containing FF cause it to “‘roll
over’ to 00. The two’s complement of the required count is entered as the byte count. Since this will cause the
sign bit (bit 7) of ACCB to be positive and since the BIT test does not affect ACCB but does update the
Condition Code Register, the Bit test followed by the Branch on Plus instruction can be used to monitor the flag
bit. As soon as bit 7 of the Control Register is set to one, the BPL test fails and the MPU fetches the current data
byte by reading the Data Register (PIADRA) and then pushes the byte onto a stack location in RAM. The desi gn
of the PIA is such that the flag is automatically cleared by the LDAA PIADRA operation. The byte count is then
“‘reduced’” by incrementing ACCB and tested by the Branch on Not Equal Zero instruction. Unless the eighth
byte has just been transferred the program loops back to wait on the next data byte. 1f the current byte was the
eighth, the INC B instruction cause the count to roll over to zero, the branch test fails, and program flow falls
through to the next instruction. The other test instructions (TST, CMP, and CBA) can also be used in a similar

'Operation of the PIA is described in detail in Section 3-4.

2-27

fashion since they too update the condition Code bits but do not affect register contents. Note also that it was not
necessary to bring the contents of the Control Register into the MPU in order to examine the flag.

Delays can be generated in a variety of ways. A typiéal procedure is shown in the following

sequence:
LDAA #32 Takes 4 cycles to execute.
LOOP1 DECA (2 cycles)
BNE (4 cycles)

In this example, the MPU will go through LOOP1 32 times so that the total delay introduced by these
instructions is, for a 1.0 usec cycle time:

4 + 32 (2+4) = 196 usec

The number of times through the loop is calculated as the program is developed. If, for instance, the required
delay is 200 usec, the value to be loaded into ACCA is determined from:

(200 — 4)/6 = 32.6 = 32

Note that since the nearest smaller integer is selected, the actual delay generated in only 196 psec. If greater
accuracy is required, the sequence above could be followed by two NOP instructions, since each NOP advances
the program counter and takes up two cycles. Delays beyond the capacity of an 8-bit Register and a single loop
can be generated by using the Index Register and/or multiple loops. It is also sometimes desirable to write the
delay sequence as a callable subroutine that can be used to generate variable delays. This is illustrated by the
following routine. This sequence assumes that the amount of delay, in milliseconds, is loaded into a RAM
location identified as ‘‘DLYBFR’’ prior to calling the routine.

DELGEN LDAA DLYBFR (a) 4 cycles

LOOP1 LDAB #165 (b) 4 cycles
LOOP2 DECB (c) 2 cycles
BNE LOOP2 (d) 4 cycles
DECA (e) 42cycles
BNE LOOP1 (f) 4 cycles
RTS (2) 5 cycles

2-28

The MPU will go through LOOP2 165 times each time it is entered: 165 (c+d) = (165)(6) + 990 cycles. For
every time through LOOP1 there will be a total LOOP2 time plus the b, e, and f cycle times, or the total time,
including the RTS cycle time, is:

Total delay = DLYBFR (990+4+2+4) + 5
= DLYBER(1000) + 5

If, for example, DLYBFR had been loaded with 17, indicating that a 17 msec delay was required, then fora 1.0
psec cycle time. The total delay is 17,005 usec = 17 msec with small error. The value 165 that is loaded into
ACCB was of course selected to provide the desired scale factor, i.e., so that the delay could be entered as an
integral number of milliseconds. Variation on these procedures can be used to generate virtually any amount of
delay. Note that if for some reason it is undesirable to disturb the contents of the Accumulators or Index Register
while generating a delay, RAM memory registers may be used. The INC and DEC instructions also operate
directly on memory.

2-29

2-3 EVALUATING PERIPHERAL CONTROL ROUTINES

Data handling often involves the transfer of data between a microprocessor’s memory and a time
dependent peripheral. It is necessary to synchronize the data transfer program to the peripheral because the
peripheral data clock is asynchronous with respect to the program clock. The I/O controller which handles the
data transfer consists of both hardware and software. An implicit assumption is that the best trade-off occurs by
minimizing the hardware in the controller.

In a microprocessor based I/O controller, it is necessary to determine:

(1) How fast can the microcomputer transfer program move data (as contrasted with a direct
memory access scheme)?

(2) Will a given data transfer program work successfully in the system?

(3) Is there any processing time remaining after handling the data movement?

{4) Can any additional time dependent functions be performed?

(5) What is the maximum length routine that can be performed in addition to the data transfer?

An analysis is required that will provide a technique for testing the operation of a proposed program. In
addition, if there is unused processing time in the system, it may be possible to eliminate additional hardware
(e.g., buffer registers). If a given program does not work in the system, the analysis should enable the user to
modify the program or add additional hardware to allow the system to work.

Specific examples of the word transfer problem for a floppy disk and the bit transfer problem for a
cassette system will be used to illustrate the typical problems. The cassette data transfer example also illustrates
the technique for increasing the amount of usable spare time by borrowing it from adjacent data cells. In this
case, the spare time is used to refresh a display.

When a peripheral signals the MPU requesting processing time, it will be referred to as a Service
Request, (SR). When the service request is periodic, as in the above mentioned examples, it is called a time
dependent service request. Read or Write Data Transfers are both examples of such service requests and where
the examples show programs or terms referring to a Read Data Transfer, they are meant to be illustrative of both
Read and Write Data Transfers.

2-3.1 NOTATION USED SERVICE REQUESTS AND PROGRAMS AS WAVEFORMS ON A
TIMING DIAGRAM

The process of synchronizing a data transfer program to a peripheral can be visualized more easily
when the SR’s and the program are both represented as waveforms on a timing diagram. The peripheral SR
waveform is developed from the specifications of the peripheral which identify the maximum time, Tim it takes
to load the data buffer (the period during which data is invalid), and the minimum period, Tom between service
requests. The subscript m refers to the parameters of the mth peripheral.

The data transfer waveform is developed by writing the actual data transfer program and then
calculating the time it takes to:

(1) Capture the data (Tam)

2-30

(2) Process the data (Tem — includes period T4m)

(3) Loop in a synchronization delay loop until a SR is active. (nTs — where T3 is the single loop
time and n is the number of times the program loops).

These values are calculated by counting the number of processor clock cycles required to execute
each function, and multiplying the numbers by the MPU clock rate. The waveforms and notation for a typical
situation are illustrated in Figure 2-3.1-1. Figure 2-3.1-2 shows a flow chart for a data transfer program for a
single peripheral. Figure 2-3.1-3 details the technique for calculating the program parameters and Figure
2-3.1-4 illustrates the relation between the peripheral word ready service request and the program timing. The
values of the SR parameters are for a floppy disk data transfer.

The period To: is the worst case (fastest) peripheral data word rate, and it is calculated taking into
consideration floppy disk motor speed variations. The SR update time T11, is the time during which a new word
is being loaded into the data buffer, and at the end of which there exists an active SR.

The timing diagram of Figure 2-3.1-4 shows a processor clock running at a 1 usec cycle time and
shows how the word capture time is developed from a knowledge of the point in the instruction cycle when the
word capture begins and ends. In this case, the program begins the word transfer at the positive edge of the
fourth processor clock cycle during the LDAA RDCTL instruction and completes it at the negative edge of the
fourth clock cycle during the LDAA RDDATA instruction which moves the data. Therefore, Ta1 is equal to the
number of clock periods between initiation and the end of transfer, 8.5 cycles = 8.5us. The first two
instructions form the sync loop (Ts) and the total program represents the program processing time (Tz1).

TOm
T
PERIPHERAL SRm | “'] 7 1m

(word ready)
_ﬁ Tam lg__

PROGRAM DATA

TRANSFER
{(word fetch)
Im—Y & Tom —he-"T3-pie Tom J
Tom = Period of service request of mth peripheral (word ready period).
Tim = Service request update time (Data Invalid) for mth peripheral.
Tom = Program Processing Time of the mt SR. Includes

time to capture data.

T3 = Synchronization Loop time when the program has checked
and found no active service requests.

Tgm = Data Capture Time of the mth SR.

= Initial offset between the SR and Program Data

Transfer Waveforms.

n = number of times the program goes through the

synchronization delay loop.

FIGURE 2-3.1-1. Peripheral Service Request (SR) and Data
Transfer Program Waveforms and Notation

2-31

2-3.2 DEVELOPMENT OF EQUATIONS AND INEQUALITIES USED TO TEST SUCCESSFUL
SYSTEM OPERATION

A successful data transfer means that each time the peripheral indicates, via an SR, that a data word
is available, the program is able to capture the data before it is replaced by the next data word. It is implied that
the program is able to proces the data between data word transfers. (In the floppy disk data transfer program,
processing involves storing the data in Random Access Memory (RAM) and checking whether it was the last
word that needed to be transferred.) Similarly for data transfers to the peripheral, the program must make the
data word requested available before the succeeding request arrives. In other words, a successful data transfer
consists of avoiding an overrun (during READ) and underflow (during WRITE).

If the SR is not ative at the time that the program checks for a SR, (i.e., the data word is not ready),
then the program goes into a synchronization (sync) loop, which causes a delay (Ts). At the end of a sync loop,
the program again checks for an active SR.

In the following analysis, it is assumed that the values of the parameters detailed in Figure 2-3.1-1
are at their worst case limits and are constant for simplicity, the single SR model (where m = 1) will be used
initially.

For the system to transfer data successfully the average word processing time TAVG must be
approximately equal to the peripheral data word SR period To:.

TAVG = Tox (1)

More precisely stated, in the limit as the number of words transferred, p, approaches infinity, the
average word processing time, TAVG, is exactly equal to the byte cell period Toa.

‘ BEGIN '

WORD
READY?

!
H

)

STORE
WORD

DECREMENT

WORD COUNTER

FIGURE 2-3.1-2. Flow Chart for a Typical Data Transfer Program
for a Single Service Request

2-32

LABEL MNEMONIC OPERAND COMMENT PROCESSOR CYCLES
RDLOOP LDAA RDCTL LOAD CONTROL WORD SYNC 4
BPL RDLOOP LOOP IF SR iS INACTIVE LOOP 4
LDAA RDDATA LOAD READ DATA DATA
PSHA STORE ON STACK CéPT)URE PROGRAM
41 | PROCESSING ,
TIME
DEX DECREMENT WORD COUNT (T21) 4
BNE RDLOOP IF WORD COUNT IS NOT
ZERO RETURN FOR NEXT WORD
— 4
EXIT 4
TOTAL 24 CYCLES
IF THE MPU CLOCK PERIOD IS 1us THEN SYNC LOOP TIME T3 = 8,
PROGRAM PROCESSING TIME Tpq = 24,
DATA CAPTURE TIME T4q = 8.5us (See Text)
FIGURE 2-3.1-3. Data Transfer Program Indicating Method Used to
Calculate Program Parameters
PERIPHERAL . To1 To1

WORD READY SR

WORD IN READ

—le— T,
I N

BUFFER
PROCESSOR A AR AR AR RARARAR AT
1
cLocK roup le— | —ple—os.a
a ! o < o o o
INSTRUCTION S |af!| S lek! 8| <k ARAPH g
L3 18] 8 legils 1 131281 81881 80s5ls |« 1.5
EXECUTION g2 Szi B2 S@1 ¢ B8 32 S &2 S 32 38 7 '8 22
PROGRAM RECOGNIZES 'lll' | | il
]
WORD Los 3
1O —fe— n__
PROGRAM TRANSFERS - !
T 05ps I
WORD T, j — T ?tl
PROGRAM T ple— 7,
WORD FETCH Tor = 287 us.fg = 336K WORDS/SEC (FLOPPY DISK FASTEST DATA RATE)
Typ = 0754 {BUFFER PROPAGATION DELAY)
T21 = 24[.&5
T3 - 8 us
T4-’ = 8.5[—(5

FIGURE 2-3.1-4. Relationship of Peripheral Data Stream to

Program Timing

2-33

Lim
TAVG = Tox 2
p

The time TAVG consists of the program word processing time Tz: and a time nTz while the program
loops until the next word is ready. Stated mathematically,

1 o0
TAVG = T21 + —P- (anT:s) 3)

p=1

Where np is the number of sync loops taken while waiting for the pth SR, and whose value may vary
from O to n (n = np maximum).

The program byte processing time, Tz21, must be equal to or less than the SR period Toz, or else the
program could not keep up with the word rate of the peripheral. Therefore,

Te1 < Toz “4)

If the program loops n times in the sync delay loop before the next data word is ready, then equation
(4) can be modified to read:

T21 + (n—1) Ts < Tox ®)]

Also, the time T21 + nTs must be greater than To1 so that the program may begin the transfer of the
next word even if the offset T11 is equal to zero. This is true simply because the program loops until the next
word SR is active. Hence,

To1 < T21 + nTs (6)

Therefore, the peripheral word ready period is bounded by Tz21 + (n—1) Ts and T21 + nTs for
successful operation:

T21 + (n—1) Ts < Tor < To1 =Ts)

If Tor = Te1 then the program and peripheral are said to be synchronous. If To1 > T21 (equation 4),
then the offset T11 gets smaller and smaller until it is negative or zero, which means that after the program has
processed one word, the next word will not be ready. At this time, the program goes into the synchronization
loop, and samles the peripheral Word Ready line until the SR is again active.

The maximum value of the synchronization loop for which the system will work may be determined
from the following argument. Since the peripheral SR and the program are independent, it is entirely possible
that the SR occurs immediately after the program has initiated a sync loop. Since the data capture time is T41
and the data is invalid for a period T11 out of every Toi, it is necessary that:

Ts < Tor — T11 - Tax ®)

This is the inequality used to calculate the maximum permissible value of Ts.

233 Floppy Disk Data Transfer Routine

The parameters of the Floppy Disk Data transfer routine are listed in Figure 2-3.1-4. The parameters

234

can now be tested with equations (7) and (8):

From Equation (7)
Te1 < To < Ta1 + Ts n=1 ©)
24 < 29.7 < 32us

and from Equation (8)
Ts <To1 — T11 — Tax @®
8=<29.7-0.75 -85

Both requirements are met and the program will transfer data successfully, (at a maximum rate when Te1 =
T21).

1 1
Max Data Rate = — = = 41.6K Bytes/sec.
Tz1 24us

Note that in this example, the time left over in each data byte after processing is:
Tor — Te1 = 29.7 — 24 = 5.7us (10)

This time is too small to be usable for other tasks by the M6800.

2-3.4 CASSETTE DATA TRANSFER ROUTINE

The data transfer routine of Figure 2-3.1-3 is equally valid for the case of word data transfer between
the cassette and an MPU . The significant difference is the slower datarate, i.e. , the SR period for word transfer
is much longer. For the cassette with a worst case data transfer rate of 1.85 KBytes/sec (15KBits/sec):

1
Toi = ——= 540.5
o 1850 e

All other parameters remain essentially the same.

T = lus
Ta1 = 24us
Ts = 8us
Ta1 = 8.5us

It may be verified that both Equation 7 and 8 are satisfied by the above parameters for n=65. The time available
after processing the word is:

Tor — Te1 = 540.5 — 24 = 516.5us

This time is normally used up in synchronization delay loops. Since so much additional time is
available, it may be possible to transfer cassette data in serial form (bit transfer), and eliminate the hardware

2-35

associated with the serial to parallel conversion. The Serial Data Transfer Flow Chart and Program are shown in
Figures 2-3.4-1 and 2-3.4-2 respectively. Equation 7 and 8 are both satisfied for n=4. The unused processing
time per bit cell is:

To1 — Tz1 = 66.6 — 40 = 26.6us (11)

2-3.5 UTILIZATION OF MPU PROCESSING TIME

Assume that it is required that a program must service a cassette for serial data transfers, as described
earlier, and simultaneously refresh a dynamic display (display without memory). Let the subscripts 1 and 2 be
used to refer to parameters of the cassette and displays respectively. Assume that the program processing time
T2z, to refresh the display, is longer than the available processing time in a single bit cell, i.e.

T22 > 26.6 s (From Equation 11)

However, if the period of the display SR is longer than that of the Cassette (Toz > To1) an interesting question
arises. Is it possible to borrow time from adjacent data cells and process SR2 without losing SR1 data? The
following analysis shows that it is, if the parameters meet certain requirements.

To maximize the utilization of an MPU’s processing time the extra time spent in synchronization
delay loops can be used for doing other routines. This is similar to adding a time equal to the additional delay
loops to the program processing time T11. The condition that must now be satisfied by the program and the
peripheral SR period may be stated as:

T21 < To1 <T21 + T3 (11)
where
T’21 = Te1 + (n—1) T3 (12)

and (n—) Ts is the additional time now used for processing. The length of the program processing time has been
extended; however, there is still only one independent service request being serviced as illustrated in the ﬂO\(’V
chart in Figure 2A.

It is often required that the unused processing time be used to process SR’s from another time
dependent peripheral. Assume that it is required that the unused processing time be used to process SR’s from a
display, i.e., to refresh the display. Will the system be able to successfully handle the two SR’s? This question
leads to considering the program model for handling multiple SR’s, and the conditions that must be satisfied for
successful operation.

2-36

ENTER

BIT READY?

STORE BIT

v

INCREMENT
BIT COUNT

WORD
ASSEMBLED ?,

STORE
WORD

v

RESET BIT
COUNTER

v

DECREMENT
WORD
COUNT

WORD
TRANSFER
DONE?

FIGURE 2-3.4-1. Flow Chart for Serial Data Transfer

LABEL MNEMONIC OPERAND COMMENT PROCESSOR CYCLES
LOOPC LDAA CLKDAT LOAD CLOCK & DATA WORD 4
(CLOCK IN BIT 7, DATA IN
BIT 1)
BPL LOOPC LOOP IF SR IS INACTIVE 4
RORA TRANSFER DATA BIT TO CARRY 6
ROLB ASSEMBLE WORD IN
ACCUMULATOR B 6
BCC LOOPC IF WORD IS NOT ASSEMBLED 4
RETURN FOR NEXT BIT
PSH B STORE ASSEMBLED WORD ON
STACK 4
LDA B =01 RESET BIT COUNTER 2
DEC COUNT DECREMENT WORD COUNT 6
BNE LOOPC IF WORD COUNT NOT ZERO 4
RETURN FOR NEXT WORD
EXIT
TOTAL 40 CYCLES

At MPU clock rate of 1 MHZ

T3 = 8us
T21 = 40us
Ta1 =0.5us
and To1 = 1 = 66.6 us
15000

FIGURE 2-3.4-2. Casette Bit Serial Data Transfer Program

2-37

2-3.6 PROGRAM MODEL FOR TWO PRIORITIZED SERVICE REQUESTS

When two independent periodic SR’s are allowed, the program model for servicing them may be
prioritized. The prioritizing is done such that the SR with the shorter period (hgher frequency) has the higher
priority. Figure 2-3.6-1 indicates the programming model for two SR’s where SR #1 (SR1) has higher priority.
Notice that SR1 is tested first, regardless of which SR was last processed.

The parameters of the SR1, SR2 waveforms are derived as before, from specifications of the two
peripherals. The parameters for the program are derived in conjunction with the prioritized model. For
example, the synchronization loop time Ts, is now the time it takes the program to test for an active SR1, and

t]
T3
T2 T22
h 4
PROCESS PROCESS
SR1 SR2
NO Y
\ NO

EXIT #1 EXIT #2

FIGURE 2-3.6-1. Program Model for Two Prioritized Time Dependent
Service Requests

2-38

then test for an active SR2, and find them both inactive. Similarly, T2z, the program processing time for SR2,
includes the time to test for SR1, (which is inactive) and then test for SR2 (active), process SR2, and test if it is
the end of SR2 processing.

2-3.7 REQUIREMENTS THAT MUST BE SATISFIED WHEN AN MPU SERVICES MULTIPLE
SR’s

The following requirements were developed by studying the failure mechanisms using the program
model for two prioritized time-dependent service requests. A failure was defined as an overflow or underflow,
and the program was run to process a very large number of consecutive SR’s (up to 100,000 service requests).
Each time there was a failure, the timing relationships between the two SR waveforms and the program
processing waveform was studied to give a clue to the failure mechanism. The results are listed in Figure
2-3.7-1. Of the requirements listed in Figure 2-3.7-1, Equations 7 and 8 have already been discussed. Equation
12 is really implied by the program flowchart model for a single SR where the data capture time is included in
the SR processing time.

Equation 13 states that the sum of the processing times expressed as a fraction of the SR frequency is
no greater than unity. This is true because of the periodic nature of each SR and the fact that each SR uses
T2m/Tom of the MPU’s processing time. As an example, if the cassette serial data transfer routine uses 40us
every 66.6us then it uses 40/66.6 = 60% (approx.) of the MPU’s capability. Hence, 40% of the remaining
MPU capability may be used by another SR. This result is used shortly to test the cassette-display service
program.

For each SR it is required that:

A. Tom < Tom < Tom + nTy (7)
B. T3 < Tom = Tim - T4m (8
€ Tgm < T2m {12)
For the system it is required that:
T
z 2m > 0
D. 1 - (To—m) (13)

The equality is the synchronous case where no synchronization loops are taken.
E. For each peripheral when compared to the fastest peripheral k,
Tok — Tik — Tag > Ty, forallntk (14)

Where k is the peripheral with the highest frequency of operation, and the
SR's are prioritized by frequency with the highest frequency SR being first.

FooTom ~Tim ~Tgm = T + T3 (15)

FIGURE 2-3.7-1. Timing Constraints for Successful System Operation
for Prioritized Multiple Service Requests

2-39

Equation 14 is best illustrated by the timing diagram in Figure 2-3.7-2 where SR2 and SR1 occur
almost simultaneously, but SR2 is active first. This implies that just prior to this occurrence, the last SR from
both SR1 and SR2 has already been processed and SR1 has been tested first, according to the prioritized model,
and found to be inactive. SR2 must be processed in a time Ta2; then data from SR1 must be captured in time T41,
before it becomes invalid. The data becomes invalid a time T11 prior to the next SR1. Therefore, the condition

that must be satisfied is:
To1 — Ti1 — Ta1 = T2z (m=2) (14)

Equation 15 implies that the program should be able to synchronize, then process SR1, and capture
data from SR2 before it becomes invalid. This situation occurs after the last SR1 has just been processed, and
then neither SR1 nor SR2 are active (see Figure 2-3.7-3). After the sync loop, SR1 is processed, and SR2 data
must be captured:

Toz — T12 — T4z = Ta1 + T3 (m=2) (15)
Equations 14 and 15 are stated in a general form for m SR’s in Figure 2-3.7-1 but they have been verified only

for the case of two SR’s. Equations 7, 8 and 13 of that Figure, however, must be satisfied by any set of m SR’s.

SR1

5| U

SR2 L]

Ty starts just '

before SR2 is E
|
)

— e Ti2
H
!
1

active
'
|

PROGRAM - T _
PROCESSING — T21 —dlt— T3 —pi¢———T21—»| '42 V

Toz = Tig + Tgp + Ty + T3

Toz = Tz — Tag = Ty + T3 (m=2) (15)

FIGURE 2-3.7-2. Timing Diagram Showing Requirements of
Equation 15 for Two SR’s

'4—— To1 .
SR1 —»l L~ "
SR2 is active U
before SR1 by a
| nominal time |
y I
SR2 :
U !
1
|
|
i
|

j To1 ——)
Taz f&— —¥ Ta :‘—

Program I | I I | :
Processing —.: I"—T" !
L—‘ T22 —DL—TZI-*-.;

Tor = T2 + Tg1 + Tpy

U

or Toy — Ty — T4 = Ty (m=2) {14)

FIGURE 2-3.7-3. Timing Diagram Showing Requirements of
Equation 15 for Two SR's

240

2-3.8 SERIAL DATA TRANSFER AND DYNAMIC DISPLAY REFRESH PROCESSING

The cassette serial data transfer program is now modified and extended to service both the cassette
data SR and the Display Refresh SR. The combined program, listed in Figure 2-3.8-1 follows the model of two
prioritized SR’s of Figure 2-3.6-1. SR2 is generated by a 16 character dynamic display, and the characters are
refreshed cyclically. Figure 2-3.8-2 lists the parameters of the two SR’s and verifies that all requirements are
met for the two SR’s to be successfully serviced. Note that use of Equation 13 provides a measure of the
efficiency of usage of the MPU processing time. In this case:

1 (—40—+50—1 0.985 = 0.015
66.6 130/ ~~ T T

which implies that 98.5% of the total processing time is being used.
The amount of spare time remaining is calculated by multiplying the left-hand side of Equation 13 by
the period of the highest frequency SR. Thus,

Unused processing time = 0.015 x 66.6 = 1.00us every SR1 period.

LABEL MNEMONIC OPERAND COMMENT PROCESSOR CYCLES
LOOPC LDAA CLKDAT LOAD CLOCK & DATA WORD>»-T41
BPL LOOPD BRANCH TO DISPLAY IF SR1 Tp
IS INACTIVE _'
]
RORA R -
t
ROLB I 6
To 1
BCC Loorc > SEE FIG. 3B Y
1
PSH B P4
LDA B #01 i 2
DEC COUNT -
]
BNE Loorc C g
-
EXIT e TOTAL | 40
LOOPD LDAA DSPCTL LOAD DISPLAY CONTROL WORD " 4
8PL LoOPC BRANCH TO CASSETTE IF SR2 P
IS INACTIVE
BSR DSP2 BRANCH TO DISPLAY -
: SUBROUTINE IF SR2 IS ACTIVE
DSP2 LDAA DATA,X LOAD DISPLAY CHARACTER Taz|
(INDEXED ADDRESSING)
STAA DISPLY REFRESH DISPLAY] 5
4
DEX DECREMENT INDEX REG 2 ,
BNE DSPEND 16 CHARACTERS REFRESHED? 4
LDX #16 LOAD THE NUMBER 16 IN INDEX 3
REGISTER
DSPEND RTS RETURN FROM SUBROUTINE J
EXIT2 ... TOTAL 4.8

FIGURE 2-3.8-1. Serial Data Transfer and Dynamic Display Refresh Routine

241

PARAMETERS OF SR1 (SERIAL DATA)

T01 = 66.6[18 T21 < T01 < T21

T = us 40 < 666 <40 + 2x16

AND T3 < Tgq

T21 = 40us 16 < 666 - 1

T41 = 0.5[.18
To1 < To2

PARAMETERS OF SR2 (DISPLAY REFRESH)

Tgo = 130us Tao < To2 < Ty +nT3
T2 = M 50 < 130 < 50 + 5x16
Tyy = 42 + 8 = BOus AND

Tgp = 26us T3 < Top - Ty - Ty

16 < 130 - 1

T3 = 16us

FROM EQU. 13

T2m >0

1 - LI
mTOm

1 -(40 +§o_) = 0015 > 0
666 130

FROM EQU. 14

Tor = T11 - T4 = Ty

666 - 1-05 > 50

FROM EQU. 15

Tog = T2 — T4 2Ty + T3

130 - 1 - 26 > 40 + 16

FIGURE 2-3.8-2. Serial Data Display SR Parameters and
System Requirement Test

INCREASING MPU PROCESSING EFFICIENCY WITH THE FLIP-FLOP MODEL FOR

TWO “EQUAL” PERIOD SR’S

When the SR’s have approximately equal SR periods, as in Read/Write, or bi-directional data flow,

the processing time for SR2 may be reduced if a flip-flop model is used in place of the prioritized model. Figure
2-3.9-1 shows the Flip-Flop model in which, after completion of SR1 processing, the program checks SR2 first

and vice versa.

242

1 ENTER ’

BOCESS PROCESS
SR2

NO NO
b
YES

EXIT #1 ‘ EXIT =2)

FIGURE 2-3.9-1. Flip-Flop Model for Two ““Equal” Period SR’s

The advantage gained in processing efficiency is reflected in the fastest data rate that the program
can successfully transfer for both SR’s. This can be illustrated using the example of cassette serial data transfer.
Let SR1 and SR2 programs be identical in form such that:

T41 = Ta2 = 0.5us
Ti1 = Tiz2 = lus
Ts = 16us

MAX To1 =Toz = ?

If the prioritized model is used, then:
T21 = 40us and T2z = 50us

because it takes 8us to test if SR1 is active and this is always tested first.
In this case, the maximum data transfer rate for the two SR’s may be calculated by using the equality
in Equation 13.

40 50
+ =1
Tor (Toz = To1)

1
To1 :96;5— = 11.1Kbits/sec.

If the flip-flop model is used then.

T21 = T2z = 40us

2-43

and the maximum data transfer rate for the two SR’s may be calculated from Equation 13 as:

40 40
Tor (Toz = Tow)

1
Tor = 20 = 12.5 Kbits/sec.

us
This provides approximately a ten percent increase in maximum data rate.

Note, however, that when the flip-flop model is used there is an additional condition that now must
be satisfied. This is required because both SR1 and SR2 may occur simultaneously. Therefore,

To1 = Toz = Ta1 + Tae (16)

The techniques described in this section enable the user to determine if a given data transfer program
will work in the microprocessor system. If it is found that the program does not work, the user may modify the
program/hardware to allow the system to work. The techniques also provide a measure of the utilization of the
microprocessor’s capability. This provides the opportunity to add functions to or delete hardware from the
system until the microprocessor is being used to its full capability. The techniques may be extended to cover
operation of systems where interrupts are the periodic service requests.

24 USE OF INDEX REGISTER

Effective programming of the MPU makes extensive use of the Indexed Addressing mode. For this
mode, the address is variable and depends on the current contents of the Index Register. A source statement
such as

Operator Operand Comment

LDAA X Load ACCA from M=X

will cause the contents of the memory location specified by the contents of the Index Register to be loaded into
accumulator A, that is, the effective address is determined by X. Since there are instructions for manipulating
the contents of the Index Register during program execution (LDX, INX, DEX, etc.), the Indexed Addressing
mode provides a dynamic ‘‘on the fly’’ way to modify program activity.

The Index Register can be loaded either with ‘‘constants’” such as the starting address of a file in
ROM or with a variable located in RAM that changes as the program runs. The Indexed Addressing mode also
allows the address to be modified by an offset. The operand field can include a value that will be automatically
added to X during execution. The format for this technique is:

Operator Operand Comment
STAA K, X Store ACCA in M=(X+K)

When the MPU encounters the opcode for LDAA (Indexed), it looks in the next memory location for the value
to be added to X and calculates the required address, X + K in this example. (See Section 1-2.3.5 for additional
information on the Indexed Addressing Mode.) The control program is normally in ROM, hence, the offsetis a

244

constant that was established during program development and cannot be changed during program execution.

There are numerous examples of indexed addressing techniques in the sample programs throughout
this Manual, however, it is of interest to summarize some of the methods in this Section. A common usage is
shown in the following sequence of instructions for setting a series of RAM locations to zero (perhaps part of an
initialization routine):

Label Operator Operand Comment

LDX #FIRST Get starting Address
LOOP1 CLR X Clear current location.

INX Move to next location.

CPX LAST+1 Finished yet?

BNE LOOP1 No, continue clearing.
NEXT xxx XXXXXX Yes, continue with program.

This sequence causes the consecutive memory locations FIRST through LAST to be cleared. The labels
FIRST, LAST, NEXT, etc., will have been assigned specific values during assembly of the program. Note that
only every other memory location would be operated on if a second INX had been included in the program:

LDX

LOOP1 CLR X
INX
INX
CPX LAST +2
BNE LOOP1
NEXT xxx XXXXXX

This technique is commonly used to establish the ‘size’” of the increment that will be stepped through. If the
size of the step is large (many INXs) or if it is desirable to have a variable step size, another procedure can be
used to advantage. The following sequence of instructions can be used to effectively add a variable offset to X:

245

Label Operator Operand Comment

LDAB VALUE Get variable into ACCB.

LDX #FIRST Get Starting Address.
LOOP1 INX Advance address pointer.
DECB Is ACCB zero yet?
BNE LOOP1 No, continue advancing pointer.
NEXT xxx XXXXXX Yes, proceed with program.

This sequence has the effect of adding the contents of accumulator B to the Index Register, that is, a variable
offset is generated. If, for example, the value in ACCB is one, the INX instruction increases X by one and the
DECB instruction reduces ACCB to zero. The program flow falls through to NEXT since the BNE test fails but
the Index Register is now loaded with X+ 1 rather than X. A different value for B would cause the program to
pass through the loop until B is reduced to zero. Since X is increased by one during each pass, the net effect is to
add the variable *“VALUE” to X.

This technique is illustrated in the following example: A program is required that will check for a
zero result in every 8th location in a block of memory extending from FIRST to LAST. The first zero result
encountered is to cause the program to branch to location ZROTST. If no zero results are encountered,
processing is to continue:

BEGIN LDX #FIRST Get starting address.

START LDAB #$08 Load step size.
LOOP1 INX Advance address pointer.
DECB Next location yet?
BNE LOOP1 No, continue advancing pointer.
TST X Yes, test for zero result.
BEQ ZROTST Branch to zero test if zero.
CPX LAST+1 Finished?
BNE START No, move to next location.
NEXT xxx XXXXXX Yes, continue with program.

In this case, the program will pass through LOOP1 eight times prior to each test, effectively adding eight to the
value in the Index Register. Note also that the INX instruction could be replaced by the decrement X
instruction, DEX, thus providing a means of ‘‘negative’’ or backward indexing if desired.

There is another ‘‘variable indexing technique’’ that combines the Indexed Addressing mode with
suitable memory allocation to obtain dynamic indexed addressing. Assume that a program is required that will

246

select a mask pattern that is determined by the current contents of a counter. The counter content is variable and
depends on the results of previous program operation. Such sequences are useful for establishing particular bit
patterns required by the program.

As an example, assume that one of the bit patterns shown below is required, depending on the
current value of BITCNT, a value that has been previously computed and stored in RAM:

Bit Count Bit Pattern
br bs bs ba bz bz b1 bo
0 1 0 0 0 O 0 o0 O
1 o 1 0 O O O o0 O
2 0o o0 1 0 O o0 o0 O
3 6 0 o0 1 0 0 0 O
4 6o 0 o0 o 1 0 0 O
5 6o o 0 O O 1 O0 O
6 o o0 o0 o o0 o0 1 O
7 0o 0 o0 O 0 0 o0 1
The following memory allocation can be used to permit indexed addressing of the desired pattern:
COLBIT START! (XH) | n } RAM
BITCNT (XL) [n+1
STARTI 0 10000000 |m)
1 01000000 | m+1
2 00100000 | .
3 00010000 . r ROM
BIT COUNTXY 4 00001000
5 00000100
6 00000010
L7 00000001]

By putting the upper byte of the starting address of the table (upper byte of m = START1) in the RAM location
immediately preceding BITCNT, the LDX instruction can be used to load the Index Register with the address of
the desired bit pattern. This method has the limitation that the lookup table must begin (START1 above) at an
address whose least two significant Hex digits are zero, that is, of the form XX00. Such tables can be at the
beginning of any multiple of 256 ROM locations.

This technique is illustrated in the following sample program for updating a bit pattern stored in two
PIA Output Registers, PIAORA and PIAORB. The registers contain a pattern for driving an external display
array that must be updated to include the results of each new calculation of a word count, WRDCNT, and a bit
count, BITCNT. The current update goes to PIAORA if the word count is odd and to PIAORB if even. The
steps involved in the update are:

(1) Test WRDCNT for odd or even and set a flag.

(2) Get PIAORA (odd WRDCNT) or PIAORB (even WRDCNT) into accumulator A.

247

(3) Determine the bit pattern that corresponds to the current BITCNT.
(4) Combine with the contents of accumulator A, preserving any previously set bits.
(5) Write updated pattern back into appropriate PIA register.

The following program can be used if the memory allocation recommended above is used:

ROR WRDCNT Sets Carry if odd.

ROR COLFLG Set sign bit on odd WRDCNT.
BMI TAG1 Get appropriate register.
LDAA PIAORB * into
BRA TAG2 * ACCA

TAGI1 LDAA PIAORA * for update

TAG2 LDX COLBIT Point to bit pattern.
ORAA X Combine with previous pattern.
TST COLFLG Put updated pattern.
BMI TAG3 * back.
STAA PIAORB * out
BRA TAG4 * to

TAG3 STAA PIAORA * display

TAG4 XXX XXXXXX

Note that the single instruction LDX COLBIT is all that is required to locate a ROM location that depends on a
dynamic program result.

2-48

CHAPTER 3

3. INPUT/OUTPUT TECHNIQUES

3-1 INTRODUCTION

Due to the type of applications in which they are used, the capability to efficiently handle
Input/Output (I/O) information is perhaps the most important characteristic of microprocessor systems. The
M6800 architecture incorporates supervisory controls and interface devices that permit a wide variety of /O
techniques to be used. This Chapter describes the I/O characteristics of the M6800 system and their use in
typical applications.

Most I/O information can be placed in one of two general categories: (1) control and status signals;
(2) data that is to be processed by the MPU. Much of the MC6800’s flexibility in handling control and status
information depends on three system features:

(1) Many of the routine peripheral control tasks can be delegated to the interface adapters.

(2) Because the design of the interface adapters allows the MPU to treat peripherals exactly like
other memory locations, the memory reference instructions that operate directly on memory are
also used to control peripherals.

(3) While all MPU’s must be able to continuously control simple peripherals under program
control, in many typical applications, the peripheral information to the MPU is often
asynchronous in nature and is best handled on an interrupt basis. The interrupt structure of the
MC6800 allows such applications to be processed in an orderly manner, that is, interrupts are
handled without disrupting other system tasks in progress.

The currently available interface devices are described in detail in Section 3-4. The various interrupt
control techniques are discussed in Sections 3-2 and 3-3.

In the M6800 system, all data movement between family elements (memory and/or peripheral
interface adapters) is normally done through the MPU via the Data Bus. This means that the transfers are
program controlled, that is, the movement is accomplished by execution of instructions such as Load, Store,
Push, Pull, etc. Numerous examples of programmed controlled data transfers are shown throughout this
manual. For example, a program for moving 8-bit bytes from a peripheral to memory (at the rate of 43,000
bytes per second) is described in conjunction with the floppy disk application discussed in Section 5-4.

In most system designs, it is possible to ‘‘speed up’’ data movement by surrendering program
control and transferring data directly between the other system elements. This bypassing of the MPU, usually
called Direct Memory Access (DMA), requires that the MPU be provided with supervisory signals. In addition,
external hardware for generating addresses and controlling the transfer must be provided. The MC6800’s
supervisory control features allow DMA to be accomplished in a variety of ways. The details of implementation
depend on the particular system configuration and timing requirements. Several methods and their relative
merits are discussed in Section 3-5 of this Chapter.

3-2 MC6800 INTERRUPT SEQUENCES

In a typical application, the peripheral devices may be continuously generating asychronous signals
(interrupts) that must be acted on by the MPU. The interrupts may be either requests for service or
acknowledgements of services performed earlier by the MPU. The MC6800 MPU provides several methods for
automatically responding to such interrupts in an orderly manner.

In the control of interrupts, three general problems must be considered: (1) It is characteristic of most
applications that interrupts must be handled without permanently disrupting the task in process when the
interrupt occurs. The MC6800 handles this by saving the results of its current activity so that processing can be
resumed after the interrupt has been serviced. (2) There must be a method of handling multiple interrupts since
several peripherals may be requesting service simultaneously. (3) If some signals are more important to system
operation or if certain peripherals require faster servicing than others, there must be a method of prioritizing the
interrupts. Techniques for handling each of these problems with the MC6800 will be described in the following
paragraphs.

The MPU has three hardware interrupt inputs, Reset (ES)1 , Non-Maskable Interrupt (NMI), and
Interrupt Request (ﬁ_(j). An interrupt sequence can be initiated by applying a suitable control signal to any of
these three inputs or by using the software SWI instruction. The resulting sequence is different for each case.

3-2.1 INTERRUPT REQUEST (IRQ)

The IRQ input is the mainstay of system interrupt control. Inputs to IR_Qare normally generated in
PIAs and ACIAs but may also come from other user-defined hardware. In either case, the various interrupts
may be wire-ORed and applied to the MPU’s RQ input. This input is level sensitive; a logic zero causes the
MPU to initiate the interrupt sequence®. A flow chart of the IRQ sequence is shown in Figure 3-2.1-1.

After finishing its current instruction and testing the Interrupt Mask in the Condition Code
Register, the MPU stores the contents of its programmable registers in memory locations specified by
the Stack Pointer. (Operation of the Stack Pointer is discussed in Section 1-3.4.1.) This stacking process
takes seven memory cycles: two each for the Index Register and Program Counter, and one each for
Accumulator A, Accumulator B, and the Condition Code Register. The Stack Pointer will have been
decremented seven locations and is pointing to the next empty memory location.

The MPU’s next step of setting the Interrupt Mask to a logic one is an important aspect of system
interrupt control. Setting the mask allows the control program to determine the order in which multiple
interrupts will be handled. If it is desirable to recognize another interrupt (of higher priority, for example)
before service of the first is complete, the Interrupt Mask can be cleared by a CLI instruction at the beginning of
the current service routine. If each interrupt is to be completely serviced before another is recognized, the CLI
instruction is omitted and a Return from Interrupt instruction, RTI, placed at the end of the service routine
restores the Interrupt Mask status from the stack, thus enabling recognition of subsequent interrupts.

Note that if the former method is selected (immediate enable of further interrupts), the original
interrupt service will still eventually be completed. This is due to the fact that the later interrupt also causes the
current status to be put on the stack for later completion. This process is general and means that interrupts can be

!The bar convention over the symbols is used to indicate an active low signal condition.
*IRQ is a maskable input. If the Interrupt Mask Bit within the MPU is set, low levels on the IRQ line will not be recognized; the MPU

PRI SRS JOL NN I NI S S & PRSPt NP SISNEE PSRN Y) 20 SN

will continue current prograni execution uiiil the inask bii is cleared by encountering ihe Ciear Interrupt (CLI) insiruciion in the controi
program, or an RTI is encountered.

32

Instruction
Finished?

Yes Continue Executing

Current Program

[~—————
— SP-7

Stack MPU —_> SP-6 CCR
Contents SP-5 ACCB
* SP-4 ACCA

SP-3 INXH

Set Iy, SP-2 INX |

SP-1 PCH

* SP PC|

Load Program Counter

With Contents of Memory
Locaticns: FFF8 —#» PCy \
FFF9 —® PC(

!

Jump to Interrupt
Service Routine as
Determined by PC

FIGURE 3-2.1-1: Hardware Interrupt Request Sequence

CONTENTS ADDRESS
RES (Low Byte) FFFF
RES (High Byte) FFFE
NMI (Low Byte) FFFD
NMI (High Byte) FFFC
SWI (Low Byte) FFFB
SW1 (High Byte) FFFA
IRQ (Low Byte) FFF9
IRQ (High Byte) FFF8

FIGURE 3-2. 1-2: interrupt Vector, Permanent Memory Assignments

3-3

““nested”” to any depth required by the system limited only by memory size. The status of the interrupted
routines is returned on a Last-In-First-Out (LIFO) basis. That is, the last result to be stacked is the first to be
returned to the MPU.

After setting the Interrupt Mask, the MPU next obtains the address of the first interrupt service
routine instruction from memory locations permanently assigned to the I—@ interrupt input. This is
accomplished by loading the Program Counter’s high and low bytes from memory locations responding to
addresses, FFF8 and FFF9, respectively. The MPU then fetches the first instruction from the location now
designated by the Program Counter.

This technique of indirect addressing (also called vectoring) is also used by the other interrupt
sequences. The ‘‘vectors’” are placed in the memory locations corresponding to addresses FFF8 through FFFF
as shown in Figure 3-2.1-2 during program development.

The MPU places two of the address bytes in the range FFF8 — FFFF on the Address Bus during
interrupt sequences. It should be noted that the vector data is fetched from the memory locations that respond to
these addresses even though they may not actually be FFF8 — FFFF. For example, in the memory allocation
that was illustrated in Section 1-1.2.1 of Chapter 1, the ROM was assigned the 1024 memory locations between
C000 and C3FF (decimal 49152 to 50175) by tying Address Lines Ais and A4 to the ROM’s chip enables:

Address

Lines A1s A1s A1z A1z A1r Ao As As A7 As As A« Az Az A1 Ao

ROM

Connections E E X X X X As As A7 As As As Az Az A1 Ao
N ——

Not Connected

Notice that if the MPU outputs the address FFFF (all ones) while fetching the vector data for a Reset,
it is actually addressing memory location C3FF in the system memory.

The significant point is that the eight locations that respond to FFF8 — FFFF must be reserved for
the interrupt vectors.

3-2.2 NON-MASKABLE INTERRUPT (NMI)

As implied by its name, the Non-Maskable Interrupt (NMI) must be recognized by the MPU as soon
as the NMI line goes to logic zero. This interrupt is often used as a power-failure sensor or to provide interrupt
service to a ‘‘hot’’ peripheral that must be allowed to interrupt.

Except for the fact that it cannot be masked, the NMI interrupt sequence is similar to IRQ (See
Figure 3-2.2-1). After completing its current instruction, the MPU stacks its registers, sets the Interrupt mask
and fetches the starting address of the NMI interrupt service routine by vectoring to FFFC and FFFD. (See
Figure 3-2.1-2).

3.2.3 RESET (RES)

The Reset interrupt sequence differs from NMI and IRQ in two respects. When RES is low, the
MPU places FFFE (the high order byte of the RES vector location) on the Address Bus in preparation for
executing the RES interrupt sequence. It is normally used following power on to reach an initializing program
that sets up system starting conditions such as initial value of the Program Counter, Stack Pointer, PIA Modes,

34

etc. It is also available as a restart method in the event of system lockup or runaway. Because of its use for
starting the MPU from a power down state, the RES sequence is initiated by a positive going edge. Also, since it
is normally used only in a start-up mode, there is no reason to save the MPU contents on the stack. The flow is
shown in Figure 3-2.3-1. After setting the Interrupt mask, the MPU loads the Program Counter from the
memory locations responding to FFFE and FFFF and then proceeds with the initialization program.

NMI

Instruction
Finished?

[———
—p» SP-7
Stack MPU —> SP-6 CCR
Contents SP.5 ACCE
+ sP-4 ACCA
SP-3 INX
Set I, sP-2 INX [
SP-1 PCh
* sP PCL
Load Program Counter
With Contents of Memory
Locations: FFFC —#=PCh -
FFFD—»PC|_
Jump to Interrupt
Service Routine as
Determined by PC

FIGURE 3-2.2.1: Non-Maskable Interrupt Sequence

Set I

Y

Load Program Counter
With Contents of Memory
Locations: FFFE—» PCh
FFFF~9=PC\

1

Jump to Interrupt
Service Routine as
Determined by PC

FIGURE 3-2.3-1: Reset Interrupt Sequence

3-5

3-24 SOFTWARE INTERRUPT (SWI)

The MPU also has a program initiated interrupt mode. Execution of the Software Interrupt (SWI)
instruction by the MPU initiates the sequence shown in Figure 3-2.4-1. The sequence is similar to the hardware
interrupts except that it is initiated by *‘software’’” and the vector is obtained from memory locations responding
to FFFA and FFFB.

The Software Interrupt is useful for inserting break-points in the program as an aid in debugging and
troubleshooting. In effect, SWI stops the process in place and puts the MPU register contents into memory
where they can be examined or displayed.

sSwi
_———\
— SP-7
Stack MPU ,:j> SP-6 CCR
Contents SP-5 ACCE
* sp-a ACCA
SP-3 INX
Set Iy, sp.2 INX |
SP-1 PCH
+ spP PCL
Load Program Counter
With Contents of Memory < |
Locations: FFFA PCy
FFFB PCg
Jump to Interrupt
Service Routine as
Determined by PC

FIGURE 3-2.4-1: Software Interrupt Sequence

33 INTERRUPT PRIORITIZING

In the previous section, the various methods available for finding the ‘‘beginning’” of an interrupt
control program were described. If there is only one peripheral capable of requesting service, the source of the
interrupt is known and the control program can immediately begin the service routine. More often, several
devices are allowed to originate interrupt requests and the first task of the interrupt routine is to identify the
source of the interrupt.

There is also the possibility that several peripherals are simultaneously requesting service. In this
case, the control program must also decide which interrupt to service first. The IRQ interrupt service routine in
particular may be complex since most of the I/O interrupts are wire-ORed on this line.

The most common method of handling the multiple and/or simultaneous IRQ interrupts is to begin
the service routine by ‘‘polling’’ the peripherals to see which one generated the request. If the interrupts are
generated by peripheral signals coming in through a PIA or an ACIA, the polling procedure is very simple. In
addition to causing IRQ to go low, the interrupting signal also sets a flag bit in the PIA’s or ACIA’s internal
registers. Since these registers represent memory locations to the MPU, the polling consists of nothing more
than stepping through the locations and testing the flag bits®.

Establishing the priority of simultaneous interrupts can be handled in either of two ways. The
simplest is to establish priority by the order in which the PIAs and ACIAs are polled. That is, the first I/O flag
encountered gets the service, so higher priority devices are polled first. The second method first finds all the
interrupt flags and then uses a special program to select the one having highest priority. This method permits a
more sophisticated approach in that the priority can be modified by the control program. For example, it might
be desirable to select the lower priority of two simultaneous requests if the lower priority has not been serviced
for some specified period of time.

Software techniques can, in theory, handle any number of devices to any sophistication level of
prioritizing. In practice, if there are many sources of interrupt requests, the time required to find the appropriate
interrupt can exceed the time available to do so. In this situation, external prioritizing hardware can be used to
speed up the operation.

One method for implementing hardware prioritized interrupts is shown in block diagram form in
Figure 3-3-1. With this technique, each interrupting device is assigned its own address vector which is stored in

ROM memory similarly to the RES, SWI, IRQ, and NMI vectors. An external hardware priority encoder
selects the interrupt to be recognized and directs the MPU to the proper locations in memory for obtaining the
vectors.

Operation of the MPU itself is unchanged; after recognizing an IRQ, the MPU still outputs addresses
FFF8 and FFF9 as before. However, some of the address lines are no longer tied directly to memory but go
instead to a 1-of-2 Data Selector. The other set of inputs to the Data Selector are generated by a Priority Encoder
that outputs a binary number corresponding to the highest priority interrupt signal present at the time the
interrupt was recognized by the MPU.

Detection of the FFF8 and FFF9 addresses by the Address Bus monitoring circuitry then causes the
outputs of the priority encoder to be substituted for part of the normal address. Hence, even though the MPU
outputs FFF8 and FFF9, other locations in ROM are read by the MPU. Suitable vectors for sending the MPU
directly to the appropriate service routine are stored in these locations. Specific circuits for implementing this
prioritizing method are described in Section 4-2.1.

3See Section 5-4 for a specific example of software polling.

37

Interrupt

Address
Decode Address Bus 2

11 >

12 >—

13 >— MPU
L]

1-of-2

Priority Memory
e | Encoder :'> . ?atf :> (MCM6830
e r
>._ Interrupt ecto ROM) Data

Partial Address B
TERTE arti us
In >—

FIGURE 3-3-1: Hardware Interrupt Prioritizing Block Diagram

3-4 PROGRAM CONTROLLED DATA TRANSFERS
3-4.1 MC6820 PERIPHERAL INTERFACE ADAPTER

3-4.1.1 Input/Output Configuration:

The MC6820 Peripheral Interface Adapter (PIA) provides a flexible method of connecting
byte-oriented peripherals to the MPU. The PIA, while relatively complex itself, permits the MPU to handle a
wide variety of equipment types with minimum additional logic and simple programming. An Input/Output
Diagram of the MC6820 is shown in Figure 3-4.1.1-1.

Data flows between the MPU and the PIA on the System Data Bus via eight bi-directional data lines,
DO through D7. The direction of data flow is controlled by the MPU via the Read/Write input to the PIA.

The ‘““MPU side’’ of the PIA also includes three chip select lines, CS0, CS1, and CS2, for selecting a
particular PIA. Two addressing inputs, RS0, and RS1, are used in conjunction with a control bit within the PIA
for selecting specific registers in the PIA. The MPU can read or write into the PIA’s internal registers by
addressing the PIA via the system Address Bus using these five input lines and the R/W signal. From the MPU’s
point of view, each PIA is simply four memory locations that are treated in the same manner as any other
read/write memory.

The MPU also provides a timing signal to the PIA via the Enable input. The Enable (E) pulse is used
to condition the PIA’s internal interrupt control circuitry and for the timing of peripheral control signals. Since
all data transfers take place during the ¢2 portion of the clock cycle, the Enable pulse is normally ¢2*.

The ‘‘Peripheral side’’ of the PIA includes two 8-bit bi-directional data buses (PAO-PA7 and
PBO0-PB7), and four interrupt/control lines, CA1, CA2, CB1, and CB2. All of the lines on the ‘‘Peripheral
Side’’ of the PIA are compatible with standard TTL logic. In addition, all lines serving as outputs on the ‘‘B”’
side of each PIA (PBO-PB7, CB1, CB2) will supply up to one milliamp of drive current at 1.5 volts.

#See Section 4-1.3 for exceptions required in some applications.

3-8

\S
",
_ CA1 |@———
e TRQA
—_ CA2 (ag————
Nt TROB
" 1 N pBe- DBY ; <’:_>
K— H PAG - PA7
N
= RSO MC6820
= 8= RS1? Peripherai
N | CSO Interface
e s
N~ B CS2
PB¢ - PB7 (::>
N R/W
- N—8 Enable CB2 [¢————
a| | 3] Ml Res CB1 fg——
@ a1t | =
HIBRE
o] -
ol 3|3
2 0
PN,
Ve

FIGURE 3-4.1.1-1: MC6820 PIA 1/0 Diagram

3-4.1.2 Internal Organization:

An expanded Block Diagram of the PIA is shown in Figure 3-4.1.2-1. Internally, the PIA is divided
into two symmetrical independent register configurations. Each half has three main features: an Output
Register, a Control Register, and a Data Direction Register. It is these registers that the MPU treats as memory
locations, i.e., they can be either read from or written into. The Output and Data Direction Registers on each
side represent a single memory location to the MPU. Selection between them is internal to the PIA and is
determined by a bit in their Control Register.

The Data Direction Registers (DDR) are used to establish each individual peripheral bus line as
either an input or an output. This is accomplished by having the MPU write ‘‘ones’’ or ‘‘zeros’’ into the eight
bit positions of the DDR. Zeros or ones cause the corresponding peripheral data lines to function as inputs or
outputs, respectively.

The Output Registers, ORA and ORB, when addressed, store the data present on the MPU Data Bus
during an MPU write operation®. This data will also appear on those peripheral lines that have been

®As used here, an ““MPU Write”” operation refers to the execution of the *‘Store’” instruction, i.e., writing into Output Register A is
equivalent to execution of STAA PIAORA by the MPU. Similarly, an *“MPU Read’’ operation is equivalent to execution of the
“‘Load’’ instruction: LDAA PIAORA.

39

Interrupt Status

l—— 40 CAI1

IRQA 38 .=
DO 33
D1 32 a—p
D2 31 -a—
D3 30 -«—{ Data Bus
Buffers
D4 29 a—p] (DBB)
D5 28 -a—b~|
D6 27 =—»
D7 26 a—>»
Bus Input
Register
(BIR)
VCC = Pin 20
Vss =Pin 1
CS0 22 —»
CS1 24 —»~
CS2 23 ——m Chip
RSO 36 Select
and
RS1 35 — R/W
R/W 21 » Control
Enable 25 ———
Reset 34 —p~
IRQB 37 -

¥ ™ -
Control A | 39 CA2
Control
Register A
(CRA)
i '\ Data Direction
V] Register A
[T A
Qutput Bus v
= 2 PAO
Output tt— 3 PA1
:> Register A)
(ORA) <> 4 PA2
Peripheral l«—» 5 PA3
Inte;:ace — 6 PA4
g g— 7 PAS
@ l«—» 8 PAG
3
_g- 9 PA7
|—>» 10 PBO
Output ,\ lt—= 11 PB1
p Register B
(ORB) I/ r—> 12 PB2
Peripheral le— 13 PB3
Interface
B t— 14 PB4
l¢— 15 PB5
l¢— 16 PB6
l— 17 PB7
l > Data Direction
Control Register B
_—\'> Register B (DDRB)
(CRB8)

Interrupt Status
Control B

¢—— 18 CB1

+— 19 CB2

FIGURE 3-4.1.2-1: MC6820 PIA — Block Diagram

3-10

programmed as outputs. If a peripheral line has been programmed as an input, the corresponding bit
position of the Output Register can still be written into by the MPU, however, the data will be
influenced by the external signal applied on that peripheral data line.

During an MPU Read operation, the data present on peripheral lines programmed as inputs is
transferred directly to the system 'Data Bus. Due to differing circuitry, the results of reading positions
programmed as outputs differ slightly between sides A and B of the PIA. On the B side, there is three-state
buffering between Output Register B and the peripheral lines such that the MPU will read the current contents
of ORB for those bit positions programmed as outputs. (See Figure 3-4.1.2-2.) During an MPU Read of the A
side, the data present on the Peripheral lines will effect the MPU Data Bus regardless of whether the lines are
programmed as outputs or inputs. The bit positions in ORA designated as outputs will be read correctly only if
the external loading on the Peripheral lines is within the specification for one TTL load. That is, a logic one
level could be read as a logic zero if excessive loading reduced the voltage below 2.0 volts.

The two Control Registers, CRA and CRB, allow the MPU to establish and control the operating
modes of the peripheral control lines, CA1, CA2, CB1, and CB2. It is by means of these four lines that control
information is passed back and forth between the MPU and peripheral devices. The control word format and a
summary of its features is shown in Figure 3-4.1.2-3.

The Data Direction Register access bit (b2 = DDR Access) is used in conjunction with the register
select lines to select between internal registers. For a given register select combination, the status of the DDR
bit determines whether the Data Direction Register (bz of DDR = 0) or the Output Register (bz of DDR = 1) is
addressed by the MPU.

+5

To Data
Bus & ﬂ/]r PAX
From ORA D> =
0 = True Data
A) A — Side —
From DDR
+5
>
2

g B 4
To DataBus Q—L’_ ‘—)—:_1 E

o} l—< & Pox
From ORB > I 13"—*—! [:

1 = True Data

B) B — Side

FIGURE 3-4.1.2-2: P1A Output Circuit Configurations

3-11

Determine Active CA1 (CB1) Transition for Setting

Interrupt Flag IRQA(B)1 — (bit b7)

b1=0: 1RQA(B)1 set by high-to-low transition
CA1(CB1).

b1=1: IRQA(B)1 set by low-to-high transition
CA1 (CB1).

on

on

IRQA(B) 1 Interrupt Flag (bit b7)

Goes high on active transition of CA1 (CB1); Automatically
cleared by MPU Read of Output Register A(B). May also be

CA1 (CB1) Interrupt Request Enable/Disable

b0 = 0 : Disables IRQA(B) MPU Interrupt by CA1 (CB1)
active transition.1

Enable | RQA(B) MPU interrupt by CA1 (CB1)
active transition.

bO=1:

IRQA(B) will occur on next (MPU generated) positive
transition of b0 if CA1 (CB1) active transition occurred
while interrupt was disabled.

1.

|

1 I

cleared by hardware Reset.
b7

b6 bs | ba [b3 b2 b1 | bo
IRQA(B)1 | IRQA(B)2 CA2(CB2) DDR CA1(CB1)
Flag Flag Control Access Control

—

IRQA(B)2 Interrupt Flag (bit b6)

CA2 (CB2) Established as Input (b5 = 0): Goes high on active
transition of CA2 (CB2); Automatically cleared by MPU Read
of Output Register A(B). May also be cleared by hardware
Reset.

CA2 (CB2) Established as Output (b5 = 1): IRQA(B)2 = 0,
not affected by CA2 (CB2) transitions.

Determines Whether Data Direction Register Or Output
Register is Addressed

b2 = 0 : Data Direction Register selected.

b2 = 1 : Output Register selected.

l

1

CA2 (CB2) Established as Output by b5 =1
b4 b3

b5 (Note that operation of CA2 and CB2
output functions are not identical)

1 0
—® CA2
b3 =

0: Read Strobe With CA1 Restore

CA2 goes low on first high-to-
low E transition following an
MPU Read of Output Register
A; returned high by next
active CA1 transition.

b3 =1: Read Strobe with E Restore

CAZ2 goes low on first high-to-
low E transition following an
MPU Read of Output Register
A returned high by next
high-to-low E transition.

—» CB2

b3 = Write Strobe With CB1 Restore

CB2 goes on low on first low-
to high E transition following
an MPU Write into Output
Register B; returned high by
the next active CB1 transition.

b3 =1: Write Strobe With E Restore

CB2 goes low on first low-to-
high E transition following an

b3 MPU Write into Output

1 1 next low-to-high E transition.

Set/Reset CA2 (CB2)

CA2 (CB2) goes low as MPU writes

b3 = 0 into Control Register

CA2 (CB2) goes high as MPU writes
b3 = 1 into Control Register.

Register B; returned high by the

CA2 (CB2) Established as Input by b5 =0

b5 b4 b3
o | Le
0 CA2 (CB2) Interrupt Request Enable/
Disable
b3 =0: Disables IRQA(B) MPU
Interrupt by CA2 (CB2)
active transition.
b3 =1: Enables I RQA(B) MPU

Interrupt by CA2 (CB2)
active transition.

1. IRQA(B) will occur on next (MPU
generated) positive transition of b3
if CA2 (CB2) active transition
occurred while interrupt was
disabled.

L = Determines Active CA2 (CB2) Transition
for Setting Interrupt Flag IRQA(B)2 —

(bit b6)

b4 =0: IRQA(B)2 set by high-to-iow
transition on CA2 (CB2).

b4 =1: IRQA(B)2 set by low-to-high

transition on CA2 (CB2).

FIGURE 3-4.1.2-3: PIA Control Register Format

Each Control Register has two interrupt request flags, bz = IRQA(B)1 and be = IRQA(B)2; they are
set by transitions on the CA1(CB1) and CA2(CB2) control lines and can be read by an MPU read Control
Register operation. The status of the interrupt flags cannot be altered by an MPU write instruction, that is,
IRQA(B)1 and IRQA(B)2 are Read Only with respect to the MPU. They are indirectly reset to zero each time
the MPU reads the corresponding Output Register or can be cleared with the hardware Reset.

Bits bo and bi of the Control Registers determine the CA1(CB1) operating mode. A “‘one’” written
into b1 by the MPU will cause subsequent positive-going transitions of the CA1(CB1) input to set IRQA(B)1; if
b1 = 0, negative-going transitions on CA1(CB1) cause IRQA(B)1 to set. If bo = 1 when the IRQA(B)1 flag
goes high, the PIA’s external interrupt request line, IRQA(B), immediately goes low, providing a hardware
interrupt signal to the MPU. The external interrupt is disabled if bo = O when the internal interrupt is set by
CA1(CB1). If bo is later set by an MPU Write Control Register operation, the disable is immediately released
and a pending external interrupt request will occur.

When bs = 0, bs and b of the Control Register perform similarly to bo and b1, controlling the
IRQA(B)2 interrupt via the CA2(CB2) input. The IRQA(B) interrupt terminal, when enabled, responds to
either IRQA(B)1 or IRQA(B)2.

Ifbs = 1, CA2(CB2) acts as an output and will function in one of three modes. If b is also equal to
one, CA2(CB2) serves as a program-controlled set/reset output to the peripheral and follows bs as it is changed
by MPU Write Control Register operations. If bs = 0 when bs = 1, CA2(CB2) can be used in either a
pulse-strobed or handshake mode. Operation of the two sections differ slightly for these two operating modes.
In the handshake mode (bs = 0) CA2 is taken low by the negative transition of the MPU Enable Pulse following
an MPU Read Output Register operation and returns high when IRQA1 is next set by CA1. This, in effect, tells
the peripheral it has been read and allows it to acknowledge via CA1. The *‘B”’ Side operation is similar except
that CB2 is taken low following an MPU Write Output Register operation and returned high by the next CB1
transition; this tells the peripheral it has been written into and allows it to respond via CBI.

In the pulse-strobed mode (bs = 1), CA2 is again set low by a Read Output Register command, but is
now returned high by the negative transition of the next MPU originated Enable Pulse. CB2 operation is similar
except that an MPU Write Operation initiates the pulse. Relative timing waveforms for the strobe control
modes are shown in Figures 3-4.1.2-4 and 3-4.1.2-5. The use of A side for Read and B side for Write in those
figures is not meant to imply that the A and B sides must be used only for peripheral data in and out,
respectively. However, the strobe modes are implemented only as shown, i.e., a strobe is not generated by an A
side Write or a B side Read. Strobes can be generated for these cases by including ‘‘dummy’’ instructions in the
program. For example, an A side Write instruction can be followed immediately by an A side dummy Read to
generate the strobe. Similarly, a B side Read can be followed by a dummy Write.

3-13

TaAEW —-I fa—
Vgg + 2.4V
Enable Ss
tre 0.4V
e e t.
fE
—=TEDR—
24v
Address 20V
08 Vv
T 04V
PDSU_ |
Peripheral 20V 24v
Data . 0-8V
04V
24V
Data Bus
04V
™ TRS1
CA2 24V
(CRA-5=CRA-3=1,CRA-4=0) o8V 2oV
04V
AV
cA1 2.0V 2
08 v
0.4V
tr, tf TRrs2
CA2 20V 24V
(CRA-5=1,CRA-3=CRA-4=0)
04V
Loading = 30 pF and one TTL load for PAO-PA7, PBO-PB7, CA2, CB2
= 130 pF and one TTL load for DO-D7, IRQA, IRQB)
Characteristic Symbol Min Typ Max Unit

Delay Time, Address valid to Enable positive transition TAEW 180 - - ns

Delay Time, Enable positive transition to Data valid on bus TEDR - - 395 ns

Peripheral Data Setup Time TpDsSU 300 = = ns

Data Bus Hold Time THR 10 — - ns

Delay Time, Enable negative transition to CA2 negative transition Tca2 — - 1.0 us

Delay Time, Enable negative transition to CA2 positive transition TRs1 - - 1.0 us

Rise and Fall Time for CA1 and CA2 input signals tr, tf - - 1.0 us

Delay Time from CA1 active transition to CA2 positive transition TRs2 - - 2.0 us

Rise and Fall Time for Enable input trE, HE - - 25 ns

FIGURE 3-4.1.2-4: Read Timing Characteristics

3-14

Vgg + 2.4 V;
Enable / 0.4V /
TAEw—>i l— o l«— tDSU
24V
Address x 20V X
' .8 04V
Twe f*—
24V
Read/Write /
I 0.8 V 04V
— T
24V
2.0V
Data Bus x 08 v K Tcmos
= — Vo ~30%
T ,—"’F' -_—_————— - - —— — — cC — %
— 20V 24V
Peripheral Data 0'8 v
~ 04V
——l —Tcgz — TRS1
24V
cB2 \ 20V
-6 = CRB-3 = RB-4=0
(CRB CRB-3=1,CRB) Toc 0.4V
tr, tf le——
>0V 24V
cel o8 v N 0.4V
Trs2—»
24V
cB2 20V 20V
(CRB-5=1,CRB-3=CRB-4=0) 0.4V
Characteristic Symbol Min Typ Max Unit
Enable Pulse Width Te 0.470 - 25 us
Delay Time, Address valid to Enable positive transition TAEW 180 - - ns
Delay Time, Data valid to Enable negative transition Tpsu 300 — — ns
Delay Time, Read/Write negative transition to Enable positive transition Twe 130 - - ns
Data Bus Hold Time THW 10 = = ns
Delay Time, Enable negative transition to Peripheral Data valid Tppw - - 1.0 us
Delay Time, Enable negative transition to Peripheral Data Valid, CMOS TcMmos - - 20 us
(Ve — 30%) PAO-PA7, CA2
Delay Time, Enable positive transition to CB2 negative transition Tce2 - — 1.0 us
Delay Time, Peripheral Data valid to CB2 negative transition Tpc 0 - 15 us
Delay Time, Enable positive transition to CB2 positive transition TRS1 - - 10 us
Rise and Fall Time for CB1 and CB2 input signals tr, tf - - 1.0 us
Delay Time, CB1 active transition to CB2 positive transition TRS2 - - 20 us

FIGURE 3-4.1.2-5: Write Timing Characteristics

3-15

3-4.1.3 Addressing and Initialization:

Chapters 6 and 7 of this manual include numerous examples of PIA addressing and initialization,
however, some basic considerations are discussed in the following paragraphs. As indicatedin Section3-4.1.1,
the MPU addresses the PIA via the five chip select and register select inputs and bit 2 of the Control Registers.
The correspondence between internal registers and the address inputs is shown in Figure 3-4.1.3-1.

|

)
7]

2

(9]
(7]
=

CSp RSt RS¢ b2

Data Direction Register A (PIADRA)
Output Register A (PIAORA]}
Control Register A (PIACRA)

Data Direction Register B (PIADRB)
Output Register B (PIAORB)
Control Register B (PIACRB)

PIA Not Selected

PIA Not Selected

PIA Not Selected

XXX == =SSO
XX X=SOO =60
XXXX=2S X6

K XD = o= oo m

AXXOOOBOE
KD K= ==

X = Doesn’t Matter

FIGURE 3-4.1.3-1: PI A Register Addressing

Addressing a PIA can be illustrated in conjunction with the simple system configuration shown in
Figure 3-4.1.3-2¢. The method shown is typical for assigning mutually exclusive memory addresses to the
family devices without using additional address decode logic. The connections shown in Figure 3-4.1.3-2
assign memory addresses as follows:

RAM 0000 — O07F
PIA 4004 - 4007
ACIA 4008 - 4009
ROM C000- C3FF

(Hexadecimal notation)

In most cases, the desired I/O configuration and Control Register modes are established as part of an
initialization sequence. The steps involved depend on the particular application but can be clarified by means of
a specific example.

Assume that a PIA is to be used as the interface between two peripherals. When interrupted by a
positive transition on a control line, the MPU is to fetch 8 bits of data from Peripheral #1 and then send an
acknowledgement pulse. The MPU must be able to transfer a byte of data to Peripheral #2 and receive
acknowledgement that it was accepted. Peripheral #2 must be provided with a control signal indicating that
there is data ready for it.

A suitable hardware configuration is shown in Figure 3-4.1.3-3. Peripheral Lines PAO-PA7 are
assigned to ‘‘read’’ Peripheral #1 and, hence, must be established as inputs. CA1 provides the interrupt input
and must be conditioned to recognize incoming positive transitions. CA2 will be used to signal that data has
been read, hence, it must be established as an output using the pulse strobe mode, i.e., reading PTAORA" will
automatically transmit a pulse to the peripheral.

Peripheral Lines PBO-PB7 are assigned for transmitting data to Peripheral #2 and, hence, must be

established as outputs. CB2 will be used as an output for signalling that there is data ready. CB1 will be
®Figure 3-4.1.3-2 is identical to Figure 1-1.2-1 and is discussed in Section 1-1.2 of Chapter 1.

"In order to use symbolic labels instead of absolute addresses in the initialization program, the labels introduced in Figure 3-4.1.3-1 will
be used to refer to PIA registers.

3-16

START-
up

A

CLOCK

02

o1

VMA

VMA « 02 /

\

+

5V

AONNNNNNNN NN

J N

’

\

VMA « 62

L\

VMA « 62

R/W

AAMNANN NN NIRRT NN NN N NS ANSN NSNS SSZNSNNNYY

CA1

(hﬁ
=t RESET
BA
-DB7
DBE DBO-DB
2
o1 MPU
L Tse
——t: HALT
NMI R/W
: AOD- A1S VMA
/ A0-A3 JAO-A9 DBO-DB7
: ROM
/ _ A5 £ c
/ A14 £ €
? : AO— AB > AO—A6 DBO-DB?
A15 E RAM E
/\ e E
/A A 3 R/W
8 E
&/
8
</_ A0
|/ AT RSO
/\——-— RS1 DBO-DB?
N__A2
cso
/\ VMA;A‘M cs1 PIA £
Al cs2 RES |
R/W
iRQA
1RQB

CONTROL

N\

JT FET

m
m
—

{

PB CB1 CB2

\

jiti

PARALLEL 1/0 (DATA AND CONTROL)

J
v

02

W]

IRQ

N—A0] s
DBO-DB7?
Q, CcSo
A_VMA- Ald ACIA
N__AlS es1
cs2 E
RIW
IRQ
Tx Rx CTS DCD RTS

FIGURE 3-4.1.3-2: Family Addressing

AMMAANIN N SANTININT NSNS TN NNYNNIYN

DATA

AONNONONONUNNNNONNNNNN N

ANNNNNNNNANNNN

\

CA1

CA2

PAO
PA1

PA2
PA3
PA4
PAS
PAG6
PA7

PBO
PB1
PB2
PIA PB3

PB4 |

PBS
PB6
PB7

cB2

cB1

Data Ready

Data Accepted

.—-——-—
L——————————— Peripheral
#1
————
-—_—’.
___—___—’
—’
— .
Peripheral
P
#2
—
—__...
Data Ready
EEEEEE——
f———————

Data Accepted

FIGURE 3-4.1.3-3: Typical I/O Configuration

3-18

conditioned to accept a negative transition acknowledgement signal from Peripheral #2. CB2 is to be restored
by that transition.

If it is known that a hardware system Reset is to be applied prior to initializing, all PIA register bits
will be zero initially and the following sequence can be used:

10 LDAA #S$2F SELECT ORA; SET MODE CONTROL
20 STAA PIACRA FOR ““A’’ SIDE

30 COM PIADRB ESTABLISH PBO-PB7 AS OUTPUTS
40 LDAA #$24 SELECT ORB; SET MODE CONTROL
50 STAA PIACRB FOR “‘B”’ SIDE

The constant® $2F = 00101111 loaded into the A Control Register by Instruction 20 has the following effect: b0
= 1 enables a CA1 interrupt; bl = 1 selects positive transition for interrupt recognition; b2 = 1 selects ORA
(the initial zeros in DDRA establish PAO-PA7 as inputs); b3 = 1, b4 = 0 selects read strobe with E restore; b5 =
1 establishes CA2 as an output; b6 and b7 are don’t cares since MPU cannot write into those two positions:

b7 b6 b5 b4 b3 b2 bl n0
6 o0 1 o0 1 1 1 1 = 2F (Hex)

Instruction 30 writes ‘‘ones’” into the B Data Direction Register, thus establishing PBO-PB7 as outputs. The
constant loaded into the B Control Register by instruction 50 has the following effect: b0 = 0 disables IRQB
interrupt by CB1 transition (it is assumed that the MPU will read flag bit b7 to check for acknowledgement
rather than allowing an interrupt); bl = 0 selects recognition of negative transition on CB1 for setting flag bit 7;
b2 = 1 selects ORB; b3 = 0, b4 = 1 selects Write strobe with CB1 restore; b5 = 1 establishes CB2 as an output;
b6 and b7 are don’t cares:

b7 b6 b5 b4 b3 b2 bl b0
0 0 I 0 0 1 0 0 =24(Hex

If there is no assurance that the PIA internal register bit positions are initially zero prior to
initialization, the following sequence can be used:

10 CLRA SELECT
20 STAA PIACRA DATA DIRECTION REGISTER A
30 STAA PIACRB AND DATA DIRECTION REGISTER B.

40 STAA PIADRA ESTABLISH PAO-PA7 AS INPUTS.
50 LDAA #$2F SELECT ORA; SET MODE

60 STAA PIACRA CONTROL FOR ““A”’ SIDE.
70 LDAA #$FF ESTABLISH

80 STAA PIADRB PB0-PB7 AS OUTPUTS.

90 LDAA #$24 SELECT ORB; SET MODE

100 STAA PIACRB CONTROL FOR “‘B”’ SIDE.

Note that if the initialization sequence is started from a known hardware clear only half as many instructions are
required.

8Refer to Figure 3-4.1.2-3 for derivation of the Control Register words.

3-19

3-4.1.4 System Considerations:

The information provided in the preceding paragraphs has been limited to only the more obvious
characteristics of the PIA. The features described greatly simplify I/O processing, as will be seen in the
examples of later chapters. There are several general techniques worth considering as a system is configured.

The fact that the PIA registers are treated as memory combined with the fact that many of the MPU’s
instructions (CLR, ASL, COM, TST, etc) operate directly on memory makes possible a variety of I/O
techniques. This characteristic should be given careful attention when hardware/software tradeoffs are being
considered.

The flexibility inherent in being able to change the I/O direction of individual peripheral lines under
program control was not adequately stressed in the initialization discussion. A detailed example making use of
this feature to decode a switch matrix is included in Section 5-1.1.1.

Only a simple case of address assignment was considered. Other approaches may lead to a more
efficient system. As an example, consider the memory allocation that results from applying AO, and A1 of the
address bus to RSO and RS1, respectively:

RS1 RSO

(Al) (AO)
0 0 PIAORA
0 1 PIACRA
1 0 PIAORB
1 1 PIACRB

Here the registers alternate between output and Control® Registers. If A0 is connected to RS1 and A1 to RSO,
the following result is obtained:

RS1 RSO

(A)) (A) T~
0 0 PIAORA
1 0 PIAORB
0 1 PIACRA
1 1 PIACRB

Notice that the output registers are now in adjacent memory locations. This configuration can be used to
advantage in applications where 16 bits must be brought into memory. With both the A and B sides established
as input ports, the LDX and STX instructions can be used to efficiently transfer two bytes at a time. A specific
example of this technique is described in Section 5-4. If this allocation is selected, initialization routines such as
the first example of Section 3-4.1.3 can also be simplified:

10 LDX #$2F24 ESTABLISH CONTROL MODES
20 STX PIACRA FOR BOTH SIDES.

In this sequence, the single instruction STX causes the appropriate constant to be loaded into both Control
Registers.

9This assumes that b2 of the Control Registers has been set to select the Output Registers.

3-20

3-4.2 MC6850 ASYNCHRONOUS COMMUNICATIONS INTERFACE ADAPTER
3-4.2.1 Input/Output Configuration

The MC6850 Asynchronous Communications Interface Adapter (ACIA) provides a means of
efficiently interfacing the MPU to devices requiring an asynchronous serial data format. The ACIA includes
features for formatting and controlling such peripherals as Modems, CRT Terminals, and teletype
printer/readers. An Input/Output Diagram of the MC6850 is shown in Figure 3-4.2.1-1.

Data flow between the MPU and the ACIA is via 8 bi-directional lines, DBO through DB7, that
interface with the MPU Data Bus. The direction of data flow is controlled by the MPU via the Read/Write input
to the ACIA.

The ““MPU side’’ of the ACIA also includes (see Figure 3-4.1.3-2) three chip select lines, CSO0,
CS1, and CS2, for addressing a particular ACIA. An additional addressing input, Register Select (RS), is used
to select specific registers within the ACIA. The MPU can read or write into the internal registers by addressing
the ACIA via the system Address Bus using these four input lines. From the MPU’s addressing point of view,
each ACIA is simply two memory locations that are treated in the same manner as any other read/write memory.

The MPU also provides a timing signal to the ACIA via the Enable input. The Enable (E) pulse is
used to condition the ACIA’s internal interrupt control circuitry and for the timing of status/control changes.
Since all data transfers take place during the ¢2 portion of the clock cycle, ¢2 is applied as the E signal.

The “‘Peripheral side’’ of the ACIA includes two serial data lines and three control lines. Data is
transmitted and received via the Tx Data output and Rx Data inputs, respectively. Control signals
Clear-To-Send (—Cﬁ), Data Carrier Detect (ﬁ), and Request-To-Send (R—TS) are provided for interfacing
with Modems such as the MC6860. Two clock inputs are available for supplying individual data clock rates to
the receiver and transmitter porﬁons of the ACIA.

A
M
Clk Tx
N TRO —® Tx Data
<:j]) DBO - DB7 CTS (—
N e RS RTS |—#»
| o MC6850
cso Asynchronous DCD |eg—
N cs1 Communications
N = T57 interface
Adapter
(ACIA)
N R/W
N{ E
2 —— Rx Data
o [%]
S
" a Clk Rx
8115 *
s|| 2|8
o < jo
g © J
o
2 N
s

FIGURE 3-4.2.1-1: MC6850 ACIA |/O Diagram

3-21

Clk Tx 4 — | Transmit Parity
. Clk. Gen. Generation

DO 22 -a—~ _E Transmit Transmit
D1 21 <a—P» Data Reg. J‘> Shift Reg. » 6 Tx Data
D2 20 -a—p \
D3 19 <a—p»] Data Bus
Multiplexor/
D4 18 Buffers - 4
D5 17 «t—p — - Transmit -— 24 CTS
D6 16 <t—= <: — — & Control o
-—P
D7 15 Sta.tus :
Register \
TRO 7 -] interrupt N Clock
Control ?4— Select
- »5 ATS
N [
> Control <423 DCD
‘_. Register
. - . .
Receive Parity
CS0 8 —» N - Control Check
CS1 10—
CS2 9——pu Chip Select . ‘
RS 11— and -
R/W Control
R/W 13 ——] Receive A Receive 2 b
£ 14— Data Reg. [Shift Reg. Rx Data
—®» Receive Sync.
Clk Rx 3 -»— Clk. Gen. Logic

FIGURE 3-4.2.2-1: ACIA Block Diagram
3-4.2.2 Internal Organization

An expanded Block Diagram of the ACIA is shown in Figure 3-4.2.2-1. While the ACIA appears to
the MPU as two addressable memory locations, internally there are four registers, two that are Write Only and
two that are Read Only. The Read Only registers are for status and received data and the Write Only registers
are for ACIA control and transmit data.

The Status Register format and a summary of the status bits is shown in Figure 3-4.2.2-2. The first
two bits b0 and b1 indicate whether the Receiver Data Register is full (RDRF) or if the Transmit Data Register is
empty (TDRE). b0 will go high when Rx data has been transferred to the Receiver Data Register (RDR). b0 will
go low on the trailing edge of the Read Data command (reading the Receiver Data Buffer) or by a master reset
command from bits b0 and b1 of the Control Register.

Status bit b1 (Tx Data Register Empty) will go high when a transmitter data transfer has taken place
indicating that the Transmit Data Register (TDR) is available for new data entry from the MPU Bus. Bitbl will
return low on the trailing edge of a write data command. bl will be held low if Clear-To-Send is not received
from a peripheral device (C_T§ = “17)

Status bits b2 (Data Carrier Detect) and b3 (Clear-To-Send) are flag indicators from an external
modem. Bitb2 (D_Cﬁ) will be high when the received carrier at the modem has been lost (ACIA’ sDCD input is
high). Bit b2 will remain high until the interrupt is cleared by reading the Status Register and the Receiver Data
Register. Bitb3 (CTS) is iow during reception of a Ciear-To-Send command fom a modem or other peripheral
device.

3-22

Data Carrier Detect

b2 =0: Indicates carrier is present.

b2 =1: Indicates the loss of carrier.

1. The low-to-high transition of the DCD in-
put causes b2=1 and generates an interrupt
(b7=1), (IRQ=0)

2. Reading the Status Register and Rx Data
Register or master resetting the ACIA
causes b2=0 and b7=0.

Interrupt Request

The interrupt request bit is the complement of
the TRQ output. Any interrupt that is set and
enabled will be available in the status register
in addition to the normal IRQ output.

L

|

Receiver Data Register Full

b0 = 0: Indicates that the Receiver Data
Register is empty.

b0 = 1: Indicates that data has been trans-
ferred to the Receiver Data Register
and status bits states are set (PE,
OVRN, FE).

1. The Read Data Command on the high-to-
low E transition or a master reset causes
b0 =0,

2. A "high’’ on the DCD input causes b0=0
and the receiver to be reset.

L

b7 b6 "bb b4
IRQ PE OVRN FE

b3 b2
CTS DCD

TxDRE | RxDRF

b1 b0

Framing Error

b4 = 1: Indicates the absence of the first stop
bit resulting from character synchro-
nization error, faulty transmission, or
a Break condition.

1. The internal Rx data transfer signal causes
b4=1 due to the above conditions and causes
b4=0 on the next Rx data transfer signal if
conditions have been rectified.

Overrun Error

b5 = 1: Indicates that a character or a num-
ber of characters were received but
not read from the Rx data register
prior to subsequent characters being
received.

1. The Read Data Command on the high-to-
low E transition causes b5=1 and b0=1 if an
overrun condition exists. The next Read
Data Command on the high-to-low E transi-
tion causes b5=0 and b0=0.

Parity Error
b6 = 1: Indicates that a parity error exists.
— The parity error bit is inhibited if no

parity is seiected.

1. The parity error status is updated during
the internal receiver data transfer signal.

Transmitter Data Register Empty

b1 =1: Indicates that the transmitter data
Register is empty.
b1 =0: Indicates that the transmitter data

Register is full.
1. The internal Tx transfer signal forces b1=1,

2. The Write Data Command on the high-to-
low E transition causes b1=0.

3. A “’high’’ on the CTS input causes b1=0.

Clear to Send
The CTS bit reflects the CTS input status for
use by the MPU for interfacing to a modem.

NOTE: The CTS input does not reset the
transmitter.

FIGURE 3-4.2.2-3: ACIA Status Register Format

3-23

Bit b4 (Framing Error) will be high whenever a data character is received with an improper start/stop
bit character frame. The framing error flag b4 is cleared by the next data transfer signal if the condition causing
the framing error has been rectified. Bit b5 (Receiver Overrun) being high indicates that the Receiver Data
Register has not been read prior to a new character being received by the ACIA. This bit is cleared by reading
the Receiver Data Register. Status Register bit b6 (Parity Error) is set whenever the number of high (*‘1’s’”) in
the received character does not agree with the preselected odd or even parity. Bit b7 (Interrupt Request) when
high indicates the ACIA is requesting interrupt to the MPU via the ACIA TIRQ output and may be caused by b0
or bl or b2 being set. All of the Status Register bits (except b3) will be cleared by an ACIA Master Reset.

The Control Register is an eight bit write only buffer which controls operation of the ACIA receiver,
transmitter, interrupt enables, and the modem Request-To-Send control line. The Control Register formatanda
summary of its features is shown in Figure 3-4.2.2-3.

Control bits b0 and b1 select a Master Reset function for the ACIA when both bits are high and
selects different clock divide ratios for the transmitter and receiver sections for the other combinations:

bl b0
(CDS2) (CDS1) Clock Division
0 0 + 1
0 1 +16
1 0 +~64
1 1 Master Reset

The next 3 control bits, b2, b3, and b4, are provided for character length, parity, and stop bit
selection. The encoding format is as follows:

b4 b3 b2

(WS3) (WS2) (WS1) Character Frame
0 0 0 7 Bit + Even Parity + 2 Stop Bits
0 1 7 Bit + Odd Parity + 2 Stop Bits
0 1 0 7 Bit + Even Parity + 1 Stop Bit
0 1 | 7 Bit + Odd Parity + 1 Stop Bit
1 0 0 8 Bit + No Parity + 2 Stop Bits
1 0 1 8 Bit + No Parity + 1 Stop Bit
1 1 0 8 Bit + Even Parity + 1 Stop Bit
1 1 1 8 Bit + Odd Parity + 1 Stop Bit

The ACIA transmitter section is controlled by control bits bS5 (TC1) and b6 (TC2). The four
combinations of these two inputs provide transmission of a break command, Modem Request-To-Send (RTS)
command, and a transmitter inhibit/enable for the ACIA Interrupt Request output. When both b5 and b6 are
low, the Request-To-Send (RTS) output will be active low and the transmitter data register empty flag is
enabled to the ACIA’s Interrupt Request (IRQ) output. If bSis high and b6 is low the RTS output remains active
low but the transmit IRQ input is inhibited. To turn off the RTS output b6 should be high and b5 low. This
selection also enables the transmitter interrupt input to the IRQ output. When both b5 and b6 of the control

register are high, Request-To-Send is on (RTS) = 0 TRQ ig enabled for the transmitter, and a hreak is

Ve 1AW 12 2 L

transmitted (a space).

3-24

Enable for Receiver Interrupt Counter ratio and Master reset select used
in both transmitters and receiver sections
b7=1: Enables Interrupt Outputin

Receiving Mode b1 b0 Function (Tx, Rx)
b7 = 0: Disables interrupt Qutput in o 0 1
Receiving Mode o] 1 +16
1 o] +64
1 1 MASTER RESET

b7 b6 b5 b4 b3 b2 b1 b0

RIE TC2 | TC1 | wS3 | wS2 | WS1 |CDS2| CDS1

—

Word Length, Parity, and Stop Bit Select

Transmitter Control Bits: Controls the Interrupt Output* and RTS b4 b3 b2 Word Length + Parity + Stop Bits
Output, and provides for Transmission of a Break 00 0O 7 Even 2
b6 b5 Function 0 0 1 7 Odd 2
(o] o] Sets RTS = 0 and inhibits Tx interrupt (TIE) 010 7 Even 1
o] 1 Sets RTS = 0 and enables Tx interrupt (TIE) o 1 1 7 Odd 1
1 o] Sets RTS = 1 and inhibits Tx interrupt (TIE) 100 8 None 2
1 1 Sets RTS = 0, Transmits Break and inhibits Tx 1.0 1 8 None 1
interrupt (TIE) 10 8 Even 1
*TIE is the enable for the interrupt output in transmit mode. 101 1 s odd 1

FIGURE 3-4.2.3-4: ACIA Control Register Format

Bits b7 controls the Receiver Interrupt Enable to the IRQ output. When b7 is high IRQ will indicate
an interrupt request of the Receiver Data Register is Full (RDRF).

3-4.2.3 Addressing and Initialization

A specific example of ACIA usage is shown by the application described in Section 5-3, however,
some basic considerations are discussed in the following paragraphs. As indicated in Section 3-4.1.2, the MPU
addresses the ACIA via the chip select and register select inputs from the Address Bus. The correspondence
between internal registers and the address inputs is shown in Figure 3-4.2.3-1.

With the chip selects properly enabled and RS = 0, either the Status or Control Register will be
selected, depending on the current state of the Read/Write line: R/W = 0 = Write, Control Register is selected;

3-25

CS2 Cs1 Cs¢ RS R/W

0] 1 1 (] 0] Contro! Register

[} 1 1 [} 1 Status Register

o] 1 1 1 ® Transmit Data Register
] 1 1 1 1 Receive Data Register
X X ¢ X X ACIA Not Selected

X ® X X X AC'A Not Selected

1 X X X X ACIA Not Selected

X = Don’t Care

FIGURE 3-4.2.3-1: ACIA Register Addressing

R/W = 1 = Read, Status Register is selected. Similarly, when RS = 1, either the Receive Data Register (R/'W
= 1 = Read) or the Transmit Data Register (R/W = 0 = Write) is selected.

Addressing the ACIA can be illustrated in conjunction with the simple system configuration shown
in Figure 3-4.1.3-21°. The method shown is typical for assigning mutually exclusive memory addresses to the

family devices without the use of additional decode logic. The connections shown assign memory addresses as
follows:

RAM 0000 — 007F
PIA 4004 — 4007
ACIA 4008 — 4009
ROM C000- C3FF

(Hexadecimal notation)

As voltage is applied to the ACIA during the power-on sequence, its internal registers are cleared to
zero!!by circuitry within the ACIA to prevent spurious outputs. This initial condition means that interrupts are
disabled, IRQ to the MPU is high (no interrupt request), and the Ready-To—Send,ﬁ_S , output is high. The first
step in preparation for using the ACIA must be a master reset via bits b0 and b1 of the Control Register, that is,
the MPU must write ones into those positions. Once reset, the ACIA operating mode is established by writing
the appropriate data into the Control Register.

3-4.2.4 System Considerations

The ACIA is used primarily to transfer serial data between the microprocessor and real time
peripheral devices such as teletypes, CRT terminals, etc. The most common data format used for the transfer of
real-time data is the asynchronous data format. Use of this format is generally limited to low transmission rates
— below 1200 bps or 120 char/sec. For example, the maximum transmission rate of a teletype is 10 char/sec.
Here, the transmission of data to the MPU depends on the operator’s dexterity of depressing a key on the
keyboards. Since the transmission of data is dependent on the operator, gaps (non transmission of data)
between data characters occur as a general rule.

In the transmission of asynchronous data, there is no pre-synchronized clock provided along with
the data. Also, the gaps between data characters in this transmission mode requires that synchronization be
re-established for each character. Therefore, the receiving device must be capable of establishing bit and

1°Figure 3-4.1.3-1 is identical to Figure 1-1.2-1 and is discussed in Section 1-1.2 of Chapter 1.

*1f external high signals are present on the DCD and CTS inputs, their respective bits, b2 and b3, in the Status Register will also be

high.

3-26

character synchronization from the characteristics of the asynchronous format. Each character consists of a
specified number of data bits preceded by a start bit and followed by one or more stop bits as shown in Figure
3-4.2.4-1.

These start and stop elements do not contain any information and they actually slow down the
effective transmission rate. Since the asynchronous format is used in real time systems, the effect of the start
and stop bits on the transmission rate is negligible. The purpose of the start bit is to enable a receiving system to
synchronize its clock to this bit for sampling purposes and thereby establish character synchronization. The
stop bit is used as a final check on the character synchronization.

Since the MPU processes eight bit parallel bytes that do not include start and stop elements,
received serial data in an asynchronous format must be converted to parallel form with the start and
stop elements stripped from the character. Likewise, in order to transmit serial data the parallel data
byte from the MPU must be converted to serial form with the start and stop elements added to the
character. This serial-to-serial/parallel-to-parallel conversion is the primary function of the ACIA.

Desired options such as variable clock divider ratios, variable word length, one or two stop bits, odd
or even parity, etc. are established by writing an appropriate constant into the ACIA’s Control Register. The
combination of options selected depends on the desired format for a particular application. The general
characteristics of data flow through the ACIA are described in the following paragraphs.

A typical transmitting sequence consists of reading the ACIA status register either as a result of an
interrupt or in the ACIA’s turn in a polling sequence. A character may be written into the Transmit Data
Register if the status read operation has indicated that the Transmit Data Register is empty. This character is
transferred to a shift register where it is serialized and transmitted from the Tx Data output preceded by a start
bit and followed by one or two stop bits. Internal parity (odd or even) can be optionally added to the character
and will occur between the last data bit and the first stop bit. After the first character is written in the data
register, the Status Register can be read again to check for a Transmit Data Register Empty condition and
current peripheral status. If the register is empty, another character can be loaded for transmission even though
the first character is in the process of being transmitted. This second character will be automatically transferred
into the shift register when the first character transmission is completed. The above sequence may be continued
until all the characters have been transmitted.

StartI 1 2 ' 3 I 4 5 | 6 7 8 Stop IStop
! i I | ! I |

Start Bit — ““Space’” — Logic Zero
Start Bits — ““Mark’ — Logic One
Idling Bits — ““Mark’’

FIGURE 3-4.2.4-1: Asynchronous Data Format

3-27

Data is received from a peripheral by means of the Rx Data input. A divide by one clock ratio is
provided for an external clock that is synchronized to its data; the divide by 16 and 64 ratios may be used for
internal synchronization. Bit synchronization in the divide by 16 and 64 modes is obtained by detecting the
leading mark-to-space transition of the start bit. False start bit detection capability insures that a full half bitof a
start bit has been received before the internal clock is synchronized to the bit time. As a character is being
received, parity (odd or even) will be checked and the possible error indication will be available in the status
register along with framing error, overrun error, and receiver data register full. In a typical receiving sequence,
the Status Register is read to determine if a character has been received from a peripheral. If the receiver data
register is full, the character is placed on the Data Bus when the MPU reads the ACIA Receive Data Register.
The status register can be read again to determine if another character is available in the receiver data register.
The receiver is also double buffered so that a character can be read from the data register as another character is
being received in the shift register. The above sequence may be continued until all characters have been
received.

Data Fiow Telephone
MC6860
[P — Network
i — D
Modulator Duplexer :
Receive
Filter
ReDC:tl:e D Limiter
e-
- modulator [**
Asynchronous
Communications
Interface Auto)
Adapater u
P Control Term. Answer/ —
(ACIA) - Contro! (g s piscon hreshold | _
i . Detector
Logic Logic
, Control Signals
Clock &
Timing

FIGURE 3-4.3.1-1: Typical MC6860 System Configuration

3-4.3 MC6860 LOW SPEED MODEM

3-4.3.1 Input/Output Configuration

The MC6860 Modem provides a very effective method of interfacing a MPU based system, via a
MC6850 ACIA, to a telephone network as shown in Figure 3-4.3.1-1. The modem provides full automatic
answer/originate and initiate disconnect capability under MPU program control thru the ACIA. Data may be
asynchronously sent and received over the telephone network at data rates up to 600 bits per second.

3-28

Data Bus

The Input/Output configuration of the MC6860 when used with the MC6850 ACIA and the MC6800
MPU family is shown in Figure 3-4.3.1-2. Data flow from the terminal side of the modem enters in serial digital
format via the transmit data line of the modem. It is then digitally processed by the modulator section and exits
the telephone network side of the modem via the transmit carrier line. This digitized sinewave FSK signal is
post filtered by an output buffer/low pass filter. The filtered analog sinewave passes through a line duplexer to
the telephone line via a data coupler.

The returning analog signal from the remote modem at the other end of the telephone line passes
through the data coupler and duplexer and is applied to a bandpass filter/amplifier. The receive bandpass filter
bandlimits the incoming signal to remove noise and adjacent transmit channel interference. After being band-
limited the analog signal is full limited to a 50% duty cycle TTL level signal by the input limiter. This digital
signal is the receive carrier that is applied to the modem. The output signal from the bandpass filter is also
routed to a threshold detector to determine if the input signal to the limiter is above the minimum detectable sig-
nal level presented to the modem. When the signal input level exceeds the bias point of the threshold detector,
the detector’s output goes low at the threshold input pin to the MC6860 modem indicating that carrier is present.

A complete listing and functional description of all I/O pins for the MC6860 (Figure3-4.3.2-1)is
provided in the following:

Data Terminal Ready (DTR)
The Data Terminal Ready signal must be low before the modem function will be enabled. To initiate
a disconnect, DTR is held high for 34 msec minimum. A disconnect will occur 3 seconds later.

IRE a
MC
14411 B::':‘:::;ss
1
BRG
Amplifier
¥_—‘ |—‘El | I Limiter |
DB¢ - DB7 =
N N Mode
\ » Txc Rxc xTal TD gx -
RIS ™1 OTR ar
] A0 > Bs Tx
N A3 Car Low Pass
| CSQ Tx Data —— | Tx Data Filter
N— _&. CS1 MC Rx Dat. Rx Dat C
— — x Data jegp—-r ata
| A3 s G850 * 6860
— —_ Modem
VMAQ2 ACIA CTS TS
3 5 R/W :
b o N R/W L
« —
% g A IRQ s T=Te} DCD
c
2 9 RI SH
2 S ™ AnPh R SH v v
DT
J U SH CBT Data
~ Rl Coupler
OH Telephone
Line
DA
= DR _Gnd

FIGURE 34.3.1-2: 1/0 Configuration For MC6860 Modem

3

-29

Data Terminal 20 & I——a=0O 4 Answer Phone
Ready -
Clear-to-Send 23 Ow— Auto l«——O 19 Ring Indicator
Terminal Answer/ T p—
Break Release 9 O—{ Control Disconnect lf4——O 21 Switch Hook
Logic Logic
Receive Break 3 Owg—| 0O 15 Mode
Transmit Break 8 O——#= 7 Threshold Detect
) L 3 4
Vpp = Pin 12
Digital Carrier 11 O—— Vgg = Pin 1
Transmit Data 2 O——® Modulator
Transmit Carrier 10 O-t— -
Receive Data 24 O-a— ay
Receive De- .
Data Rate b modulator
NOTE 1.
Receive Carrier 17 O—»{ -t JE—
ESD = Enable Space Disconnect
ELS = Enable Long Space Disconnect
ESS = Enable Short Space Disconnect
Crystal 13 O— Osc
/
Test Clock 18 O— Timing
o] o} O O
Self Test 16 22 5 6 ESS (Note 1)
ESD ELS

FIGURE 3-4.3-2-1: MC6860 Modem Block Diagram

Clear-To-Send (CTS)
Alow on the CTS output indicates the Transmit Data input has been unclamped from a steady Mark,
thus allowing data transmission.

Ring Indicator (ﬁ)

The modem function will recognize a receipt of a call from the CBT if at least 20 cycles of the 20-47
Hz ringing signal are present. The CBS RI signal must be level-converted from EIA RS-232 levels before
interfacing it with the modem function. The receipt of a call from the CBS is recognized if the RI signal is
present for at least 51 msec. This input is held high except during ringing. A RI signal automatically places the
modem function in the Answer Mode.

Switch Hook (-S_-H)

SH interfaces directly with the CBT and via a EIA RS-232 level conversion for the CBS. An SH
signal automatically places the modem function in the Originate Mode.

‘SH is low during origination of a call. The modem will automatically hang up 17 seconds after the
release of SH if the handshaking routine between the local and remote modem has not been accomplished.

3-30

Threshold Detect (TD)

This input is derived from an external threshold detector. If the signal level is sufficient, the TD
input must be low for 20us at least once every 32 msec to maintain normal operation. An insufficient signal
level indicates the absence of the Receive Carrier; an absence for greater than 32 msec will not cause channel
establishment to be lost; however, data during this interval will be invalid.

Answer Phone (An Ph)

Upon receipt of Ring Indicator or Switch Hook signal and Data Terminal Ready, the Answer Phone
output goes high [(SH + RI) @ DTR]. This signal drives the base of a transistor which activates the Off Hook
(OH) and Data Transmission (DA) control lines in the data coupler. Upon call completion, the Answer Phone
signal returns to a low level.

Mode
The Mode output indicates the Answer (low) or Originate (high) status of the modem. This output
changes state when a Self Test command is applied.

Transmit Break (m)

The Break command is used to signal the remote modem to stop sending data.

A Transmit Break (low) greater than 34 msec forces the modem to send a continuous space signal for
233 msec. Transmit Break must be initiated only after CTS has been established. This is a negative edge sense
input. Prior to initiating Tx Brk, this input must be held high for a minimum of 34 msec.

Receive Break (Rx Brk)
Upon receipt of a continuous 150 msec space, the modem automatically clamps the Receive Break
output high. This output is also clamped high until Clear-To-Send is established.

Break Release (Brk R)
Afterreceiving a 150 msec space signal, the clamped high condition of the Receive Break output can
be removed by holding Break Release low for at least 20 us.

Transmit Data (Tx Data)

Transmit Data is the binary information presented to the modem function for modulation with FSK
techniques. A high level represents a Mark.

Receive Data (Rx Data)

The Receive Data output is the data resulting from demodulating the Receive Carrier. A Mark is a
high level.

Receive Data Rate (Rx Rate)
The demodulator has been optimized for signal-to-noise performance at 300 bps and 600 bps. The
Receive Data Rate input should be low for 0-600 bps and should be high for 0-300 bps.

Digital Carrier (FO)
A test signal output is provided to decrease the chip test time. The signal is a square wave at the
transmit frequency.

3-31

Transmit Carrier (Tx Car)

The Transmit Carrier is a digitally-synthesized sinewave derived from the 1.0 MHz crystal
reference. The frequency characteristics are as follows:

Transmit
Mode Data Frequency Accuracy*
Originate Mark 1270 Hz —0.15 HZ
Originate Space 1070 Hz +0.09 Hz
Answer Mark 2225 Hz —0.31 Hz
Answer Space 2025 Hz —0.71 Hz

*The reference frequency tolerance is not included.

The proper output frequency is transmitted within the 3.0 us following a data bit change with no

more than 2.0 us phase discontinuity. The typical output level is 0.35 V (RMS) into a 200 k-ohm load
impedance.

The second harmonic is typically 32 dB below the fundamental.

Receive Carrier (Rx Car)

The Receive Carrier is the FSK input to the demodulator. The local Transmit Carrier must be
balanced or filtered out prior to this input, leaving only the Receive Carrier in the signal. The Receive Carrier
must also be hard limited. Any half-cycle period greater than or equal to 429 + 1.0 us for the low band or 235 +
1.0 us for the high band is detected as a space.

Enabled Space Disconnect (ESD)

When ESD is strapped low and DTR is pulsed to initiate a disconnect, the modem transmits a space
for either 3 seconds or until a loss of threshold is detected, whichever occurs first. If ESD is strapped high, data
instead of a space is transmitted. A disconnect occurs at the end of 3 seconds.

Enable Short Space Disconnect (ESS)

ESS is a strapping option which, when low, will automatically hang up the phone upon receipt of a
continuous space for 0.3 seconds. ESS and ELS must not be simultaneously strapped low.

Enable Long Space Disconnect (ELS)

ELS is a strapping option which, when low, will automatically hang up the phone upon receipt of a
continuous space for 1.5 seconds.
Crystal (Xtal)

A 1.0-MHz crystal with the following parameters is required to utilize the on-chip oscillator. A
1.0-MHz square wave can also be fed into this input to satisfy the clock requirement.

Mode: Parallel
Frequency: 1.0 MHz +0.1%
Series Resistance: 750 ohms max
Shunt Capacitance: 7.0 pF max
Temperature: 0-70°C

Test Level: 1.0 mW

Load Capacitance: 13 pF

3-32

When utilizing the 1.0-MHz crystal, external parasitic capacitance, including crystal shunt
capacitance, must be <9 pF at the crystal input.

Test Clock (TST)
A test signal input is provided to decrease the test time of the chip. In normal operation this input
must be strapped low.

Self Test (S—T)

When a low voltage level is placed on this input, the demodulator is switched to the modulator
frequency and demodulates the transmitted FSK signal. Channel establishment, which occurred during the
initial handshake, is not lost during self test. The Mode Control output changes state during Self Test,
permitting the receive filters to pass the local Transmit Carrier.

INPUTS OUTPUT
ST SH RI Mode
H L H H
H H L L
L L H L
L H L H

MODE CONTROL TRUTH TABLE

3-4.3.2 Internal Organization

The MC6860 Modem may be broken down into internal functional sections as shown in Figure
3-4.3.2-1. The terminal control logic and auto answer/disconnect logic sections are referred to as the
supervisory control section. This section contains digital counters which provide the required time out intervals
and necessary control gating logic. This provides logic outputs Clear-To-Send and Answer Phone from inputs
Ring Indicator, Switch Hook, and Data Terminal Ready. Also the control section has some local strapping
options available on pins 5, 6, and 22. These options provide time outs for line hang-up or termination of the
data communication channel.

The oscillator/timing blocks accept a 1.0 MHz clock into pin 13 either from an external clock source
or by connecting a 1.0 MHz crystal between pin 13 and ground. A test clock input is provided to allow more
rapid testing of the MC6860 timing chains used for various timeouts. This input must be strapped low during
normal operation.

The modulator section takes the input digital data and converts it to one of two FSK tones for
transmission over the telephone network. There are two tones for transmission and two tones used for reception
during full depulx operation. During data transmission from the call origination modem the transmit tones are:
1270 Hz for a Mark and 1070 Hz for a Space. This originating modem will receive two frequencies in the high
band which are: 2225 Hz for a Mark and 2025 Hz for a space. If the local modem answers the data call it will
transmit in the high band 2225/2025 Hz and receive in the low band 1270/1070 Hz. The modulator section
generates these frequencies digitally by synthesizing a sinewave with an 8 step D to A available on pin 10 and a
digital square wave output at the above frequencies available on pin 11.

The demodulator accepts a 50% duty cycle TTL level square wave derived from amplifying,
filtering, and limiting the incoming line FSK analog signal. The binary data is recovered from the FSK signal
by detecting when the signal has a zero crossing and digitally using post detection techniques to discriminate

3-33

between the two incoming mark/space tones. A receive data rate input (pin 14) is used to optimize the post
detection filter at either 300 or 600 bits per second.

3-4.3.3 Handshaking and Control

The supervisory control section of the modem can function in four different modes. Two are
associated with data communication channel initialization (Answer Mode and Originate Mode) and two are for
channel termination or hang-up (Automatic Disconnect and Initiate Disconnect).

Answer Mode

Automatic answering is first initiated by a receipt of a Ring Indicator (RI) signal. This can be either a
low level for at least 51 msec as would come from a CBS data coupler, or at least 20 cycles of a 20-47 Hzringing
signal as would come from a CBT data coupler. The presence of the Ring Indicator signal places the modem in
the Answer Mode; if the Data Terminal Ready line is low, indicating the communication terminal is ready to
send or receive data, the Answer Phone output goes high. This output is designed to drive a transistor switch
which will activate the Off Hook (OH) and Data Transmission (DA) relays in the data coupler. Upon answering
the phone the 2225-Hz transmit carrier is turned on.

The originate modem at the other end detects this 2225-Hz signal and after a 450 msec delay (used to
disable any echo suppressors in the telephone network) transmits a 1270-Hz signal which the local answering
modem detects provided the amplitude and frequency requirements are met. The amplitude threshold is set
external to the modem chip. If the signal level is sufficient the TD input should be low for 20 us at least once
every 32 msec. The absence of a threshold indication for a period greater than 51 msec denotes the loss of
Receive Carrier and the modem begins hang-up procedures. Hang-up will occur 17 seconds after RI has been
released provided the handshaking routine is not re-established. The frequency tolerance during handshaking is
+100 Hz from the Mark frequency.

After the 1270-Hz signal has been received for 150 msec, the Receive Data is unclamped from a
Mark condition and data can be received. The Clear-To-Send output goes low 450 msec after the receipt of
carrier and data presented to the answer modem is transmitted.

Automatic Disconnect

Upon receipt of a space of 150 msec or greater duration, the modem clamps the Receive Break high.
This condition exists until a Break Release command is issued at the receiving station. Upon receipt of a 0.3
second space, with Enable Short Space Disconnect at the most negative voltage (low), the modem
automatically hangs up. If Enable Long Space Disconnect is low, the modem requires 1.5 seconds of
continuous space to hang up.

Originate Mode

Upon receipt of a Switch Hook (§ﬁ) command the modem function is placed in the Originate Mode.
If the Data Terminal Ready input is enabled (low) the modem will provide a logic high output at Answer Phone.
The modem is now ready to receive the 2225-Hz signal from the remote answering modem. It will continue to
look for this signal until 17 seconds after SH has been released. Disconnect occurs if the handshaking routine is
not established.

Upon receiving 2225 +100 Hz for 150 msec at an acceptable amplitude, the Receive Data output is
unclamped from a Mark conditior and data reception can be accomplished. 450 msec after receiving a 2225-Hz

3-34

signal, a 1270-Hz signal is transmitted to the remote modem. 750 msec after receiving the 2225-Hz signal, the
Clear-To-Send output is taken low and data can now be transmitted as well as received.

Initiate Disconnect

In order to command the remote modem to automatically hang up, a disconnect signal is sent by the
local modem. This is accomplished by pulsing the normally low Data Terminal Ready into a high state for
greater than 34 msec. The local modem then sends a 3 second continuous space and hangs up provided the
Enable Space Disconnect is low. If the remote modem hangs up before 3 seconds, loss of Threshold Detect will
cause loss of Clear-To-Send, which marks the line in Answer Mode and turns the carrier off in the Originate
Mode.

If ESD is high the modem will transmit data until hang-up occurs 3 seconds later. Transmit Break is
clamped 150 msec following the Data Terminal Ready interrupt.

Each of the four above operational modes are shown in Figures 3-4.3.3-1 through 3-4.3.3-4.

Call Received

S

CBS

Ring Indicator
I

Ring Indicator W‘lﬂ_ﬂu

Originate] Answer (Low)
Mode {Answer V

Data Terminal On (Low)

Ready
Answer Phone 2225 Hz, 900 ms Tzozs Hz or 2225 Hz
Transmit Carrier ——f\/\/\/\/\/\/\/v\/\/\/\/\/\/\/\/\/\/\/\/\f\/\/vV\/lWVVV\N\J
450 ms 1270 Hz, 300 ms—= 1070 Hz or 1270 Hz
Receive Carrier f\/\/\/\/\/
— (High)
Threshold Detect T T T T T T I 1 T T T I
—_ Off (High I
Clear-to-Send (High)] On (Low)
450 ms | ni-ow
Transmit (Mark
Unclamped
Data Space Clamped at Mark IW - ﬁ
Receive [Mark ‘ 2
Data Space ~ 150 ms + 150 ms
Clamped } Unclamped

at Mark

FIGURE 3-4.3.3-1: Answer Mode

3-35

Ring Indicator
Ring !ndicator

Mode

Data Terminal

Ready

Answer Phone

Transmit Carrier

Receive Carrier

Threshold Detect

Clear-to-Send

Mark

Transmit { Space

Receive { Mark
Data Space

Switch Hook

Data Terminal
Ready
Originate
Mode Answer
Answer Phone

Receive Carrier
Threshold Detect

High

CBS

High

Answer (Low)

cB7T

On (Low)

~————————————— 2025 Hz or 2225 Hz

VAV,

Continuous Space — 1070 Hz
—=-1070 Hz or 1270 “Z’lﬁos sESSor 1.5s ELS

On (Low)

% .

/ //fl Clamped at Mark

Unclamped _!

%

l_.__. Unclamped

| clamped at Mark

FIGURE 3-4.3.3-2: Automatic Disconnect - Long or Short Space

H Can Be Released

Receive Data

Transmit Carrier
Clear-to-Send

Transmit Data

Enable Space
Disconnect

L7 A
On (Low)
Originate (High)
Answer (High)
l 2025 Hz
}4———Establish Call 2225 Hz, 450 ms 2225 He, 450 ms 22;:; Hz
17T V171717 r17Trrrr 71T TT |
=150 ms 300 ms
Clamped at Mark
a 1070 Hz or
50 ms 1270 Hz 1270 Hz™
750 ms On (Low)

Clamped at Mark
On (Low)

)

Unclamped

FIGURE 34.3.3-3: Originate Mode

3-36

Switch Hook

Data Terminal

On (Low)

r‘— 34 ms Pulse Initiates Space Disconnect

Ready
Mode

Answer Phone

Receive Carrier

Threshold Detect

Receive Data

Clear-to-Send

Transmit Data

Enable Space

Disconnect

Originate (High)

Off Hook

~-— 2025 Hz or 2225 Hz

~ | On Hook

Unclamped

50 ms Internal Threshold Detect Delay

-— 1070 Hz or 1270 Hz ‘-—{—‘1070 Hz

NS AVAVAVAVAVIAVAVAVAVAVA

On (Low)

Clamped at Mark

3s

Y

Unclamped

2

Clamped at Space

Off (High)

On (Low)

Clamped at Mark

FIGURE 34.3.34: Initiate Disconnect

3-37

3-5 DIRECT MEMORY ACCESS

The term Direct Memory Access (DMA) is applied to a variety of techniques for speeding up overall
system operation by loading and unloading memory faster than can be done using an MPU control program.
DMA is often described as a means of allowing fast peripherals (perhaps another Microprocessor), to access the
system memory without ‘‘bothering’’ the MPU. However, most DMA procedures do interfere with normal
operation to some extent. The capability for handling the various techniques is an often used figure of merit for
evaluating Microprocessors.

The MC6800’s supervisory control features permit any of three commonly used DMA techniques to
be used; (1) Transfer data with MPU halted; (2) Transfer data on burst basis (cycle stealing) with MPU running;
(3) Transfer data synchronously with MPU running. Methods for implementing each of these techniques are
described in Section 4-2.2 therefore, only qualitative descriptions are included here.

The simplest procedure for DMA merely uses the Halt control to shut the MPU down while the
DMA takes place. In the Halt state, the MC6800 effectively removes itself from the Address and Data Buses by
putting all buffers in the high impedence off state. This method has the disadvantage that it can take a relatively
long time for the MPU to ‘‘vacate’’ the buses. The MC6800 is designed to finish executing its current
instruction before entering the Halt or Wait state; the resulting delay depends on which instruction is being
executed and may be as much as 13 machine (clock) cycles. However, due to its simplicity this is the preferred
method if the delay can be tolerated and long transfers are required.

In contrast to this, the Three-State Control (TSC) may be used to obtain DMA control within 500
nanoseconds of initiation but must be used only for short transfers. Activation of TSC puts the MPU’s buffers in
the high impedence off state. This technique has the disadvantage that activation of TSC should be
synchronized with the ¢1 clock and both clocks must be ‘“frozen’” (¢1 high, ¢2 low) for the duration of the
DMA. Due to the MPU’s address and R/W refresh requirements, the clocks can only be frozen for a maximum
of 5 microseconds, thus limiting the duration of the transfer.

A third method can be used that is completely transparent to the MPU. This technique takes
advantage of the fact that MPU data transfers take place only during ¢2 of the clock cycle. If the DMA control
signals are properly synchronized and the memory is fast enough, DMA can be accomplished during ¢ 1 of each
clock cycle.

Each of these three methods is described in greater detail in Section 4-2.2. It should be noted that the
faster methods impose additional external hardware requirements on the system.

The techniques described above of course do not exhaust all methods for performing DMA. As an
additional example, DMA can be program controlled in the sense that a control program and hence the MPU
can be used to establish the memory area to be used and to grant permission for the DMA.. In this case the DMA
circuitry is treated as another peripheral from which status and control signals can be passed through a PIA.
This technique is also outlined in Section 4-2.2.

3-38

CHAPTER 4

4-1 M6800 FAMILY HARDWARE CHARACTERISTICS

There are four classes of control signals which control the execution of the MC6800 MPU. The first
pair of control signals is the two phase clock ¢1 and ¢2 which time the entire MPU system. The second pair of
signals, HALT and Bus Available (BA), are used to stop program execution and free up the Address and Data
Bus for other uses such as a DMA channel. The interrupt signals make the MPU responsive to outside control
and are listed in decreasing order of priority: RESET, Non-Maskable Interrupt (NMI) and Maskable Interrupt
m. The Three-State Control (TSC) and Data Bus Enable (DBE) control lines provide a way to momentarily
remove the MPU from the busses and can be used for implementing a burst type DMA channel.

4-1.1 CLOCK CIRCUITRY FOR THE MC6800 MPU
4-1.1.1 Clock Requirements and Circuitry

Figure 4-1.1.1-1 is a summary of the MC6800 Microprocessor clock waveform requirements. The
¢1 and ¢2 clock inputs require complementary 5 volt non-overlapping clocks. The clock inputs of the MPU
appear primarily capacitive being 110 pf typical and 160 pf maximum plus 100 pa of leakage. Provision is
made in the specification for the undershoot and overshoot that will result from the generation of a high speed
transistion into a capacitive load.

The clock specifications which constrain the clock driver the most are the rise and fall times required
to meet the pulse widths at the maximum operating frequency of 1 MHz, the non-overlapping requirement, and
the logic level requirements of Vss + 0.3 volts and Vcc —0.3 volts. The clock buffer circuit that drives the
MPU clock inputs must be designed to meet the rise and fall time requirements as well as the logic level
requirements. The non-overlapping requirement of the clock signals can be met by the design of the control
logic which drives the buffers. A clock buffer, the MPQ6842*, will guarantee the clock designer the speed and
saturation voltages necessary to design the clock circuit to meet the MPU clock requirements. Relevant
specifications of the MPQ6842 for this design are detailed in Figure 4-1.1.1-2. Note that the VCE (SAT)’s, rise
and fall times are specified to meet this clock driver requirement.

Figure 4-1.1.1-3 is a circuit designed with TTL logic devices and the MPQ6842 buffer to meet the
MPU clock requirements while operating from a single +5 volt supply. The oscillator can be any source with a
maximum frequency of 1 MHz, TTL logic levels and 50% duty cycle. This oscillator signal source could vary
from a commercial oscillator such as a K1100A available from Motorola’s Component Product Department,*
to a signal derived from a higher frequency signal already available in the system. The TTL gates shown are
standard MC3000 and MC3001 (74H00 and 74HO08) which were chosen for their speed and drive characteris-
tics. The discrete buffers require good *“1°* level pullup and drive capability which is provided by the MC3001.
The circuit was constructed on a wire wrap board and tested on an EXORciser.?2 Good power and ground
distribution practice was followed but no special care was taken in parts layout.

12553 N. Edgington, Franklin Park, Illinois 60131, 312-451-1000
%A system prototyping tool for the M6800 Microprocessor family.

*To be introduced first quarter 1975.

4-1

e tcLK

tuT

o1

— — —Vos

—V{Hc MIN
— —Vos

- td OVERSHOOT
Tos
¢2 J - —_— — __Vos
= T ViLc MIN
L rp—— PWOH — ¢
— — —Vos
UNDERSHOOT
CHARACTERISTIC SYMBOL MIN TYP MAX UNITS
Input High Voltage ¢1, ¢2 VIHC Vce-0.3 — Vce + 0.1 Ve
Input Low Voltage ¢1, ¢2 ViLc Vss-0.1 — Vss + 0.3 Vde
Clock Overshoot/Undershoot Vos Ve
Input High Voltage Vce-0.5 Vee = 0.5 Ve
Input Low Voltage Vss-0.5 Vss + 0.5
Input Leakage Current ¢1, ¢2
(VIN = 0to0 5.25 V, Vcc = MAX) N —_— — 100 ua
Capacitance
(Vin = 0, Ta = 25°C, f = 1.0MHz) CIN 80 120 160 pf
Frequency of Operation f 0.1 — 1.0 MHz
Clock Timing
Cycle Time teye 1.0 — 1.0 us
Clock Pulse Width
(Measured at Vcc-0.3 V) ¢1 PWon 430 — 4500 ns
2 450 — 4500 ns
Rise and Fall Times ¢1, ¢2 tr, tf 5 — 50 ns
(Measured between
Vss + 0.3 V and Vcc-0.3 V)
Delay Time or Clock Overlap td 0 — 9050 ns
(Measured at Vov = Vss + 0.5 V)
Overshoot/Undershoot Duration tos 0 —_ 40 ns
Clock High Times tuT 940 — — ns

4-1.1.1-1. MPU Clock Waveform Specifications

42

CONNECTION DIAGRAM

MPQ6842
1 14
DEVICE CHARACTERISTICS: T = 25°C, Vee =5.00 vDC
Characteristic Symbol Measurement Levels Min | Typ | Max Units

Propagation Delay Tpp 50% Points TP1 to TP3 -~ 5 15 nsec

50% Points TP2 to TP4’ — 5 15 nsec
Rise Time t 0.3Vto4.7V 5 20 25 nsec

TP3 and TP4
Fall Time ts 47Vt 03V 5 15 | 25 nsec] B

TP3 and TP4

Collector-Emitter VCE(sat) lc=0.5ma, lg=0.05ma - 0.10 | 0.15 vDC
Saturation Voltage T = 0°C to 70°C Aﬁ }
7 8

TEST CIRCUIT

33 pf

.1 uf Ceramic

1/4 MC3001 (74H08)

TP3
TP1
NOTES:
1. Unless otherwise noted, all resistors
carbon compaosition %4 W £5%, all
Pulse capacitors dipped mica £2%.
Generator puny 2. Use short interconnect wiring with
S ut) 5<V2 51 Vee ~ good power and ground busses.
PRI'V L\zoons 3. TP1—>TP4 are coaxial connectors to
; o ns accept scope probe tip and provide a
Period ~ 1000 ns good ground.
=3 A 4. Device under test is MPQ6842.
-1 Ceramic 5. 200 pf load includes strays plus
scope probe capacitance.
1/4 MC3000
(74H00)
TP4
TP2

FIGURE 4-1.1.1-2. MPQ6842 Clock Buffer

4.3

Oscillator

K1100A

Bl

(74H00)

1 MHz 50 + 2% Duty Cycle

vt

4]

% MC3000 % MC3000 % MC3001

(74H08)

SPARE

_

Ya

NOTES:

1. Unless otherwise noted

-

MC3001

All resistors are carbon composition %W, = 5%
Al capacitors are dipped mica * 2%

2. * MPQ6842

% MC3001

+5Vv

.1uf Ceramic

T
I

]

% MC3000 7% MC3001

+5V

.1uf Ceramic

% Mc3000 —

£ r

FIGURE 4-1.1.1-3 MPU Clock Circuit

MPU 01

MPU ¢2 and
DBE

Waveforms typical of the circuit in Figure 4-1.1.1-3 at T = 25°C and VcC= 5.00 volts are shown in
Figure4-1.1.1-4. Figures 4a and 4b depict the logic levels and pulse widths achieved by this circuitry with Vcc
and GND as reference levels. Figure 4c superimposes the two clock waveforms so that their phase relationship
can be seen. Figure 4d shows the phase relationship of BUS ¢2 and MPU 2. Figures 4e and 4f examine the
non-overlap regions as well as rise and fall times typical of this clock driver circuit. Table 4-1.1.1-1 presents
test data taken over a voltage range of 4.75 volts to 5.25 volts and over a temperature range of 0°C to 70°C. Note
the stability of these measured parameters and that the logic levels achieved will provide noise margin on the
system clocks. Both ¢1 and ¢2 clock high times were designed to be about 20 ns wider than the minimum
required by the MPU (¢1 — 430 ns, ¢2 — 450 ns) to provide system margin. Rise and fall times were
minimized to provide maximum clock high times consistent with non-critical circuit layout considerations. The
overlap margin shown easily meets the MPU requirement of 0 ns at 0.5 volts but will decrease as the capacitive
loading increases. The MPU tested for this data had a clock input capacitance on the order of the 110 pf typical

value.
MPU ¢1 MPU ¢2 Non-Overlap Region

Test Conditions PW RT | FT |“1”LL*|"“0” LL*| PW RT | FT 17 LL* [“0” LL*| 91 to 92T | ¢2) to 911
T =20°C
Vee =475V 460ns | 15ns|10ns|4.75V | 0.1V [465ns| 15ns|105ns | 475V ov 10.5 ns 12ns
Veg =5.00 vV 460 16 1 5.00 0.1 465 16 |10 5.00 10 1
Ve =5.25 V 460 16 1 5.25 0.1 465 16 |11 5.25 95 10.5
Vee =5.00V,C =210pf | 450 21 165 | 5.00 0.1 460 22 |15 5.00 2 55
T=70°
Vee =475V 460 15 112 4.75 0.1 465 16 |12 475 0 9 10.5
Vee =5.00 vV 460 16 |12 5.00 0.1 465 16 (12 4.75 0 85 10
Vee =525V 455 17 [125 | 5.25 0.1 465 17 |13 5.25 0 8 9
T=0°
Ve =4.75V 460 14 (10 | 475 0.1 465 15 |10.5 475 0 1 12
Vee =5.00 vV 460 15 |10 5.00 0.1 465 15 (10 5.00 0 105 15
Ve =5.25 V 460 15 |105 | 525 0.1 465 15 |10 5.25 0 10 105

*Resolution of this measurement &~ +50 mv

LEGEND:

PW: Pulse width measured at Vgc — 0.3 V
RT: Rise time measured from 0.3 V to Vg — 0.3V
FT: Fall time measured from Voc — 0.3V t0 0.3V

"“0"” LL: Zero logic lewel

“1” LL: One logic level

Non-Owerlap: Measured from 0.5 volt levels

TABLE 4-1.1.1-1. Performance of Circuit in Figure 4-1.1.1-3

In many systems, especially in the breadboard and evaluation stage, it may be desirable to have the

flexibility to vary the system clock to test the effects on data throughput, real time operation with interrupts or to
help diagnose a system timing problem. In these applications, or in those not requiring crystal oscillator
stability, an even simpler clock circuit can be used. A pair of cross coupled monostable multivibrators with
individual pulse width adjustments can be used as the clock oscillator with the previously described clock
driver. This approach is shown in Figure 4-1.1.1-5. The non-overlapping clock is generated by the propagation
delays through the monostable multivibrators. Figure 4-1.1.1-6 shows waveforms resulting from this circuit.
Table 4-1.1.1-2 shows test data taken of this circuit over the voltage and temperature range driving a typical
MPU (CL = 110 pf). Note the small variations in the pulse widths.

4-5

MPU ¢1 MPU ¢2 Non-Overlap Region
Test Conditions PW RT | FT [“1” LL* 0" LL*| PW RT | FT “1 LL* 0" LL* |[¢1d to 02T |02 t0 017
T=20°C
Vee =475V 470ns | 11 ns|11.5ns|4.75V 01V 1450ns | 12ns {12 ns 475V ov 12ns 11 ns
Vee =5.00V 470 125 (13 5.00 0.1 460 13 125 5.00 4] 11 9.5
Vee =5.26 Vv 470 13 12 5.25 0.1 460 135 [125 5.25 0 10 9
T=70°
Ve =475V 455 125 {135 |4.75 0.1 450 13 13 4.75 0 11 10
Vge =5.00 vV 455 13 14 5.00 0.1 450 14 14 5.00 0 10 9
Ve =525V 455 13 145 |5.25 0.1 450 14 14 5.25 0 85 7
T=0°
Ve =475V 473 12 12 4.75 0.1 470 12 12 4.75 1 11
Vee =500V 475 12 12 5.00 0.1 470 125 (12 5.00 9 11
Vee =525V 475 125 (125 |5.25 0.05 473 125 (12 5.25 9 8

*Resolution of this measurement & 50 mv

LEGEND:

PW: Pulse width measured at Voo — 0.3 V
RT: Rise time measured from 0.3V to Vgc — 0.3V
FT: Fall time measured from Vo — 0.3V t0 0.3V

“Q" LL: Zero logic level TABLE 4-1.1.1-2. Performance of Circuit in Figure 4-1.1.1-56

“1" LL: One logic level

Non-Overlap: Measured from 0.5 volt points

The fast rise and fall times produced by this circuitry and the highly capacitive loads require some
care in layout to avoid excessive ringing and/or pulse distortion. While no particular care was taken in the
construction of the wirewrap test boards other than placing all of the discretes into one header board, the
following construction guidelines are recommended. Wide power and ground lines (50-100 mils) should be
used to provide low impedance voltage and ground sources. The clock driver should be physically located as
near the MPU as possible to avoid ringing down long lines. Close proximity of the clock circuitry to the MPU
allows common power and ground connections so that any noise appears common mode rather than differential
to the MPU and clock driver. Finally, it is recommended that the MPU ¢2 clock signal not be used to clock any
device other than the MPU so that it is not distributed all over the system with the possibility of picking up noise
and causing reflections. The circuits shown in this section provide an additional buffer for the other ¢2 loads in
the system to isolate MPU ¢2 from all the other ¢2 loads.

For further discussion on clock generators for the MC6800 including interface with dynamic and
slow memories, the reader is referred to Section 4-2.5.1.

4-1.1.2 Clock Module

A hybrid clock module is being developed by the Communications Division of Motorola® for the
M6800 Microprocessor family. This module is composed of a crystal oscillator and associated buffering
circuitry to provide either 1 MHz or user specified frequency operation of the M6800 family. Provision is made

within this module for cycle stealing in order to interface with dynamic memory (see Section 4-2.5.1) or
implement a DMA channel (see Section 4-2.2.2). The module is designed to provide a MEMORY READY

! Component Products, 2553 N. Edgington St., Franklin Park, Illinois 60131, 312-625-0020

4-6

4-65

15 13 18 13 13 [la 18
- 1o 8 8 3 ¥ k4 a
s L I _—— |-mmq
| I
I ! - *
Lo o 8 ! »
=
.z 2 =k z-L> i =
] = a kd [
o B b 5
EIS ~ M 3 o= =]- = -] =
4 5 o & £l it it et it]
® IS ° o B I H
5 ~ S F®
| |- ~
e, .
~
~3 e ra b o-
o ¢ o o
o
P =)= [PV S . 1
1 P ot !
- a - « o “
L o
PO & 4 I
4 8 o o 8 1 I
- S & e
2 ~ =3 17 _
- = = 5 i
«3 w”ﬂ © ey | £
= e a -
s < —— e | = e = - ©
— o =)
5]
o 8
14 [a]
0 —
2z 214 aok £ o
g B = a 2
o & - °re I}
o 8
.h i L o m
-2 5 « 5 2He]
5 = = 5 G
° ° ~
o3 2 H 3w
S) &
2 | E
.) - m
of e >
_z TS ank zo n
S a o
“ - z
5 -
W PO s °re
° o= ~He @ <}
w o
e S S elte m
[N = -
5 ° -
&3 I i 3 2
a . ‘ a ©
x
o
A= &
2 ot
~a B N
©) »
¢~ © o 2 N
-] L IN] y
o S « 8 2FTe m
I ° © L)
o3 2 7]~ <
o < k1 w
o =]
e [a [T]
_z 2 ant] z . -—
N = 1. o,..: ™
M o« o
o o o O
o = S =
o S o« 8 2Hte
N = = .
= o o =R
s CrE N e-
o " < a
2) K
o o
=d
Lz ot aap
o
-
- m m
- 2 © 3
o = = e
pi{c S -] o o]
- = = =
&3 B 7" 32
o L3 « o
N 1=
a J
oY P {.
2 214 ank .
“o < Sd o " _
4o o o m
g a e He 8 L
g o = 2 ol |
2 5 « « 5 2
? W5 e J. 5
™
-0 - - o~
a < < o
2 B
MWy ZH
MY Ly
P]
8 A
"
o-
3 « . o 1t
o g O o o LAY
< Sk o a
5 85 5 > -
50 El w pd
ar * on
) © 5 L pa
S AN
@ oz
> Fq
= T TTFEFITIT 5@ 2.
< I 72
L * 8
hd H LAY
©
Q-
~ {
- 1€
8 i
- N N]]) Jd e 8~
Ll 1] oo
0 6 oo [o o o
53 2 2
89 b 4 5=
[+ 000Q 0000 Q0 00 Q0000000 i
BEEERKEEE REEE EEEENEEE emz‘_. "
e 8=
1¢
o 1€
g
H 8~
|
T
AN
I
1C
w| ® bide
- 9 " o -
® ~) I ~ b e ® of of 2| o 2| ¢ of o] & @ = o of w (=
“-m o N - r-—f---f------Fa r==F=l-F-[=|-=F - r——k -4 r=F=-=-=---1 N
19 [l ! ! | ! I
e " 1 ! . | 1/
| \ 1, { 1C
1 N | ' >
PR \ | 0]
Nt 1 \ oge
Sl | P] 1t
A Y 2 - & & 1 I
> > o ® *
[[P Ry IR SRy P] ——— ————]-d | RS SR PR PR J J
~ « @ o ~ « o P B
3 5 To [2 3) s Iz 3 te AL %389
s 33
S n
2 B 2 2 % 2 2 2 b 2 b z 2 iy ¥ H H 2
< < < a4 < < 60 = © 3 5
N o o
s ' g

+5.00 V

1V/em

Gnd

200 ns/cm

FIGURE 4-1.1.1-4a. MPU 1 Clock

+5.00 V

1V/em

Gnd

200 ns/cm

FIGURE 4-1.1.14b. MPU ¢2 Clock

4.7

+5.00 v

1 V/em

Gnd

100 ns/cm

FIGURE 4-1.1.1-4c. MPU ¢1 and $2 Clocks

Bus ¢2: 4V Pulse MPU ¢2: 5 V Pulse

+5.00 V

1 V/em

100 ns/cm

FIGURE 4-1.1.1-4d. MPU ¢2 Clock and Bus ¢2

48

5.00 v

1 V/em
Gnd
5 ns/cm
FIGURE 4-1.1.1-4e. MPU Clock Non-Overlap Region
5.00 V
1 V/em
Gnd

5 ns/cm

FIGURE 4-1.1.1-4f. MPU Clock Non-Overlap Region

4-9

+5 V +5 V +5 V

01 02
11K 1% 11K 1%
100 pf 100 pf
T1 T2 T1 T2
MC8602 Q —{ >0——{ p o & Bus ¢2
1/3 MC7404 +5 V
— 33 pf i
i > c _ c a P .1 uf Ceramic
[Qt—e I
b Cp
Py L]
+5 V
MPU 01
470)

NOTE:

1) Unless otherwise noted S 1 ufC .
All resistors are carbon composition %W, 5% 470 I H¥ Ceramic
All capacitors are dipped mica 2% < p—

2) *MPQ 6842 -

MPU ¢2 and
DBE
*MPQ6842

FIGURE 4-1.1.1-5. Monostable Clock Generator

5.00 v

1 V/cm
GND - — FW———————
200nS uS 10x
200 ns/cm
FIGURE 4-1.1.1-6a. MPU Clock Waveforms
5.00 V
1 V/em
GND

5 ns/cm

FIGURE 4-1.1.1-6b. MPU Clock Non-Overiap Region

4-11

5.00 vV

1 V/cm

GND

5 ns/cm

FIGURE 4-1.1.1-6¢c. MPU Clock Non-Overlap Region

Bus ¢2

2 V/em

MPU ¢2 . . \ " [FON—

200 ns/cm

FIGURE 4-1.1.1-6d. MPU ¢2 Clock and Buss ¢2

4-12

function in order to interface with slow memories (see Section 4-2.5.1). Those interested in this device should
contact their Motorola salesman for further details.

4-1.2 HALTING THE MC6800 AND SINGLE INSTRUCTION EXECUTION

The HALT line provides an input to the MPU to allow control of program execution by an outside
source. [f HALT is high, the MPU will execute; if it is low, the MPU will gotoahalted or idle mode. A response
signal, Bus Available (BA) provides an indication of the MPU’s current status. When BA is low, the MPU is in
the process of executing the control program; if BA is high, the MPU has halted and all internal activity has
stopped. When BA is high, the Address Bus, Data Bus, and R/W line will be in a high impedance state,
effectively removing the MPU from the system bus. VMA is forced low so that the floating system bus will not
activate any device on the bus that is enabled by VMA.

While the MPU is halted, all program activity is stopped and, if either a NMI or IRQ interrupt
occurs, it will be latched into the MPU and acted on as soon as the MPU is taken out of the halted mode. If a
RESET command occurs while the MPU is halted, the following states occur: VMA-low, BA-low (while
RESET is low), Data Bus-high impedance, R/W-Read state (while RESET is low), and the Address Bus will
contain the reset address FFFE (while RESET is low). As soon as the HALT line goes high, the MPU will go
to locations FFFE and FFFF for the address of the reset routine.

Figure 4-1.2-1 shows the timing relationships involved when halting the MPU and executing a
single instruction. Both of the instructions illustrated are single byte, 2 cycles, such as CLRA and CLRB. The
MPU always halts after completing execution of an instruction when HALT is low. If HALT is low within 100
nsec after the leading edge of ¢1 in the last cycle of an instruction (point A in the figure) then the MPU will halt
at the end of the current instruction. The fetch of the OP code by the MPU is the first cycle of an instruction. If
HALT had not been low at point A but went low during ¢2 of that cycle, the MPU would have halted after
completion of the next instruction after instruction X. BA will go high within 470 nsec of the leading edge of the
next ¢2 clock after the last instruction cycle executed. At this point in time, VMA is low and the R/W line,
Address Bus, and the Data Bus are in the high impedance state.

To single cycle the MPU, HALT must be brought high for one MPU cycle and then returned low as
shown at (B). Again, the transitions of HALT must occur within 100 nsec of the leading edge of 1. BA will go
low within 300 nsec of the leading edge of the next ¢1 indicating that the Address Bus Data Bus, VMA and
R/W lines are back on the bus. A single byte, 2 cycle instruction, such as CLRB is used for this example also.
During the first cycle, the instruction Y is fetched from address M+ 1. BA returns high 470 nsec after ¢2 on the
last cycle indicating the MPU is off the bus. If instruction Y had more than two cycles, the width of the BA’s
low time would have been increased proportionally.

4-1.3 MC6800 RESET AND INTERRUPT CONTROLS

The RESET input is used to reset and start the MPU from a power down condition resulting from a
power failure or initial start-up of the processor. This input can also be used to reinitialize the machine at any
time after start up. If a positive edge is detected on this input, this will signal the MPU to begin the restart
sequence. During the reset sequence, all of the higher order address lines will be forced high. The contents of
the last two locations (FFFE, FFFF) in memory will be loaded into the program counter to point to the reset
program. During the reset routine, the interrupt mask bit is set and must be reset by an Instruction in the
initializing program before the MPU can be interrupted by IRQ. While RESET is low (assuming 8 clock cycles

4-13

1454

Last Cycle
of Current

LT 1]
J Sy Yy S NS P L] |

——h-ll.—mOnsMax 4.‘ 100 ns Max.{ [.47
Halt A\ / B \

) e i s e or—e] o
/

o BT — T\

w I Y T S

e B OO ’ < T

E le: M«= 1000 X = CLRA (OP = 4F
xamete 16 () M+ 1=10011g, Y = CLRB (OP = 5F)
NOTE 1: Crosshatch indicates data not valid
intervals.
NOTE 2: Midrange waveform indicates high . i
impedance state. FIGURE 4-1.2-1. Halt and Single Instruction Execution

have occurred) the MPU output signals will be in the following states: VMA-low, BA-low, Data Bus- high
1mpedance R/W (Read State) and the Address Bus will contain the reset address FEFE.

Figure4-1.3-1 illustrates a power up sequence using the RESET control line. After the power supply
reaches 4.75 volts, eight clock cycles are required for the processor to stabilize in preparation for restarting.
During these eight cycles, VMA will be in the high impedance state so any devices that are enabled by VMA
which could accept a false write during this time (such as a battery backed RAM) must be disabled until VMA is
forced low after 8 cycles. RESET can go high asynchronously with the system clock, however, its rise time
must be less than 500 nsec. If RESET is high at least 200 nsec before the leading edge of ¢ 1 in any given cycle,
then the restart sequence will begin in that cycle as shown in Figure 4-1.3-1. The RESET control line may also
used to reinitialize the MPU system at any time during its operation. This is accomplished by pulsing RESET
low for the duration of at least three complete ¢2 pulses. The RESET pulse can be completely asynchronous
with the MPU system clock.

The MC6800 is capable of handling two types of interrupts, maskable (IRQ) and non-maskable
m. The handling of these interrupts by the MPU is the same with the exception that each has its own vector
address. The behavior of the MPU when interrupted by these two types of interrupts falls into two categories as
shown in Figure 4-1.3-2. Figure 4-1.3-2a details the MPU response to an interrupt while the MPU is executing
the control program. The interrupt shown could be either an IRQ or NMI and can be asynchronous with respect
to ¢1. The Interrupt is shown going low 200 nsec before the leading edge of ¢1 in cycle #2 which is the first
cycle of an instruction (OP code fetch). This instruction is not executed but instead the Program Counter, Index
Register, Accumulators, and the Condition Code Register are pushed onto the stack. The Interrupt Mask is then
set to prevent further IRQ interrupts. The address of the interrupt service routine is then fetched from FFEC,
FFFD, for a NMI interrupt and from FFF8, FFF9 for an IRQ interrupt. Upon completion of the interrupt service
routine, the execution of RTI will pull the PC, X, ACCU MULATORS, and CCR off of the stack.

Figure 4-1.3-2b is a similar interrupt sequence except, in this case, a WAIT instruction has been
executed in preparation for the interrupt. This technique speeds up the MPU’s response to the interrupt because
the stacking of the PC, X, ACCUMULATORS, and the CCR is already done. While the MPU is waiting for the
Interrupt, Bus Available will go high indicating the following state of the control lines: VMA-low, Address
Bus-R/W-Data Bus all in the high impedance state. After the interrupt occurs, it is serviced as previously
described.

4-15

91

| 1 I 2 | X I 5 | 6 I 7 8 9 I n n+1 n+2 I n+3 I n+4 n+5
4 J N M L
Power on — — -4 §
Switch _[
5.25 V
4.75 V — -4 § §
Power
Supply
—..-| la@—— 200 ns min.
Reset Y] A ¢ £ ¢
He 7 e —H 500 ns max
$ f
I, I rsusaa8ElsssSN,s e e X X X XX
FFFE ,, FFFE FFFE FFFE FFFF New PC
A :@m I, i i y
Note 1
VMA Reset Routine
Address Bits 0-7
Data
Bus Nmm X&\. M W O, a_a aE e esm
Reset Routine Instruction of
Address Bits 8-15 Reset Routine
NOTE 1: Midrange waveform indicates high FIGURE 4-1.3-1. RESET Timing

impedance state.

Li-v

®1

Address
PLS

VMA

Address
Bus

R/W

VMA

M

1RO
NMi
Data
Bus

BA

Cycle Cycle Cycle
3 it

Cycle
#Ha

Cycle Cycle Cycle Cycle Cycle Cycle Cycie Cycle Cycle Cycle ‘Cycle
#5 #6 #7 #8 79 #10 #11 #12 #13 #14 #15

X X

X

XX X X X XTIX—X XX X

Next Inst, SP(n) SP(n-1) SP(n-2) SP(n-8) SP(n-4) SP(n-5) SP(n-6) FFF8 FFF9 New PC
—\ Fetch Address Address Address
| ja@— 200 ns
New PCO-7
Address
tnst (X) PCO-7 PC8-15 X0-7 X8-15 ACCA ACCB CCR New PCB8-15 First Inst. of
Address Interrupt Routine

Cycle
#1 2

FIGURE 4-1.3-2a Interrupt Timing

5

X XX XX

Note 1
Cycle
/ n+1 n+2 n+3 n+4 #n+5

6 7 8 9 n
X X X X

Ve
Instruction —/\ SP(n) SP{n-1) SP(n-2) SP(n-3) SP(n-4) SP(n-5) SP(n-6) 4 FFF8 FFFQ t
‘:>———/ New PC
K4

Address

~\, /

y /

I

"—'—’BQ k- 200 ns

X A X X

{
7

A X XX X —1——C X XXX

Wait
Inst

PCO-7 PC8-15 IX-0-7 1X8-15 ACCA ACCP CCR' New PC8-15 New PG-0-7

$2 of Cycle - Address Address
#10 "W \

NOTE 1: Midrange waveform indicates high

impedance state.

. N T
First Inst.

t
FIGURE 4-1.3-2b Wait Instruction Timing ofﬁl:&:{;:p

Interrupt ! {
Signals

Into PIA
CA(B)1/CA(B)2 r

FIGURE 4-1.3-3. Interrupt signal Format

INTERRUPT ENABLING DURING HALT AND/OR WAI

While there are nominally no restrictions on the format of interrupt signals into CA1, CA2, CBI,
and CB2 of the PIA, there are certain combinations of system situations that require special consideration.
Assume that the interrupt signal format follows one of the cases shown in Figure 4-1.3-3 and that the PIA has
been conditioned by the MPU to recognize the transition polarity represented by the “‘trailing edge’ of the
interrupt pulse.

The design of the PIA is such that at least one E pulse must occur between the inactive and active
edges of the input signal if the interrupt is to be recognized. Relative timing requirements are shown in Figure
4-1.3-4. Note that an internal enable signal that is initiated by the first positive transition of E following the
inactive edge of the input signals is included.

cewnee [\ /N /S S S

PiA Internal Enable

Enables
Int. to CA(B) Inputs %!)9

IRQ (Int. req. to MPU) q

FIGURE 4-1.3-4: Interrupt Enabling

When the MPU has been halted either by hardware control or execution of the Wait For Interrupt
(WAI) instruction, its VMA output goes low. Since VMA is normally used to generate the Enable signal (E =
VMA e ¢2) either of these two conditions temporarily eliminates the E signal. The effect of this on the trailing
edge interrupt format is shown in Figure 4-1.3-5 where it is assumed that VMA went low and eliminated the
Enable pulses before the PIA’s interrupt circuitry was properly conditioned to recognize the active transition. It

should be noted that this condition occurs only when an active transition is preceded by an inactive transition
and there are no intervening E pulses.

VMA]‘,, After Halt or WAI
r = A 2y r = r-
F = VMA-$2 _/_\ [\ I\ SN FARE SN ;
i I\ i \ 1 \ [Y ¥l
PIA Internal Enable /’,— __________________________
Interrupt to CA(B) Inputs [}
—_— .
IRQ (Int. req. to MPU) Missed

FIGURE 4-1.3-5. Interrupt not properly enabled

4-18

If this combination occurs during system operation, valid interrupts will be ignored. Either of two
simple precautions can be adopted. If the format of the interrupt signals is up to the designer, the potential
problem can be avoided by not using the pulse-with-trailing-edge-interrupt format.

If this format is compulsory, the Chip Select signal can be generated by ANDing VMA and one of
the PIA’s chip select inputs as shown in Figure 4-1.3.6, while the ¢2 clock is used to enable the PIA.

From
Address A3

Bus
A13 .—l
Al14 o1
E
VMA @——i |
62 AND Gate

FIGURE 4-1.3-6. Alternate Enable Generation

4-1.4 THREE-STATE CONTROL LINE OPERATION

When the Three-State Control (TSC) line is a logic one, the Address Bus and the R/W line are placed
in a high impedance state. VMA and BA are forced low whenever TSC = *“1”’ to prevent false reads or writes
on any device enabled by VMA. BA is low to indicate that the bus is not available for long term use. While TSC
isheld high, the ¢1 and ¢2 clocks must be held high and low, respectively, in order to delay program execution
(this is required because of the bus lines being in the high impedance state). Since the MPU is a dynamic device,
the clocks can be stopped for no more than 4.5 usec without destroying data within the MPU.

Figure 4-1.4-1 shows the effect of TSC on the MPU. TSC must have its transitions within 50 nsec of
the leading edge of ¢1 while holding ¢1 high and ¢2 low as shown. Within 500 nsec of TSC going high, the
Address Bus, and R/W line will reach the high impedance state with VMA being forced low. In this example,
the Data Bus is also in the high impedance state while ¢2 is being held low because DBE is controlled by ¢2. At
this point in time, a DMA transfer could occur as explained in Section 4-2.2.2.

When TSC is returned low, the MPU’s Address and R/W lines return to the bus within 500 nsec.
Because it is too late in cycle number 5 to access memory, this cycle is a dead cycle used for synchronization
and program execution resumes in cycle 6.

4.1.5 M6800 FAMILY INTERFACE AND ENABLING CONSIDERATIONS

The specifications of the M6800 family allow easy interfacing with other family members and with
TTL systems. Alllogic levels (with the exception of the clocks) are TTL compatible with the outputs having a
fanout of 17400 TTL load and 130 pf shunt capacitance at a 1.0 MHz clock rate. TTL logic level compatibility
allows the system designer access to a whole realm of standard interface and memory devices to complement
the M6800 family.

The limiting factor on size in building a M6800 system without buffering will usually be the loading
on the data bus. Data bus loading by family devices in the high impedance state is 10 pa of leakage current with
10 pf of capacitance each for the PIA and ACIA and 15 pf of capacitance each for the MPU, RAM, and ROM.

4-19

Cycle

#2121 s | a] s |1 e | 72 | & | 9 | | |
System
o1
"————_—4.5usMax—'—-.-|
MPU ¢1
» 500 ns 500 ns -I
Address . ‘—Max Max
Bus w
rw Y€
VMA
1
Dat
) MM I
¢2 = DBE e e I e A |
Tsc . _
_— 50 ns 50 ns N Data Not Valid
] ., Max —S l—

FIGURE 4-1.4-1. Three-State Control Timing

Each family device can source 100 pa and drive a 130 pf load at rated speed (refer to the family data sheets for
more detail), thus, the data bus fanout varies from 7 to 10 family parts when assuming 25-30 pf of stray
capacitance. Once the system becomes larger than the 7 to 10 family parts of a minimum system, Bus Extenders
(BEX) are necessary in order to increase the fanout.

Figure 4-1.5-1 shows a generalized block diagram of a buffered M6800 system. The different
modules shown could be composed of family members (PIA, ACIA, 128 X 8 RAM, and 1K X 8 ROM) or other
devices such as 4K RAMS (for large memory arrays) or bipolar PROMs (for bootstrap loaders). Bus drivers and
receivers are available which provide a fanout on the order of 50 receivers for each driver, providing almost
unlimited system expansion.

The buffers shown are used on the unidirectional lines, i.e., Address, R/W, VMA and ¢2 clock.
Devices used for this function can vary from MC7404 hex buffers for a fanout of 10 to Bus Interface devices
such as the MC8T97* which can provide fanout on the order of 50 MC8T97 receivers from one MC8T97
driver. These buffer devices may have three state capability but unless the bus is needed for something like a
DMA channel, the buffers can remain enabled all the time. Devices that can be used for the bidirectional data
transceivers are the MCST26* and the MC8833 *. The data transceiver at the MPU should be controlled by the
following signals, ¢2, VMA, and R/W. ¢2 and VMA can be used to enable the data transceivers only during
the data transfer portion of the cycle and only on memory reference cycles. The R/W line is used to control the
direction of the data transfer. The data transceivers for each module are enabled by these same signals plus an
additional signal which selects one module from the others. This additional signal can be derived from a full
decode of the Address Bus or it could be as simple as one of the high order address lines in an abbreviated
address decoding method as described in Section 1-1.2.

Figure 4-1.5-2 is an example of a buffered system using MC8T97 buffers and MC8T26 data
transceivers. In this example, all MC8T97s are enabled permanently because they are used with unidirectional
lines and no DMA channel is included. The drivers from the MPU could be disabled to allow control of the bus
by a DMA channel. The MC8T26 is used as the data bus transceiver in Figure 4-1.5-2. The enabling logic

*To be introduced third quarter, 1975.

4-20

shown places the transceiver in the mode of normally driving the bus except during ¢2 of a valid read cycle in
which case the driver is disabled and the receiver enabled. The logic of the data transceivers for the module
enables the receiver and disables the driver except during ¢2 of a valid read cycle for that module (For a valid
read cycle, the receiver is disabled and the driver enabled). The ADDR input to this logic is used to enable only
one driver of the modules on the bus at any one time and is dependent on the address decoding method used.

Address and Data
Control Bus A ‘ Bus

A0-A15, R/W
VMA, ¢2
19
1
MC6800 Buffer
MPU (Driver)
w r—e——_—_——— e ——— —
—— l Module #1 -
i 8
o ek | |
l : Buffer AC-A15
DO-D7 (Receiver) [R/W, 2

VMA

Data
y > Transceiver [T

I

|
|
62, VMA, R/W :

|
I
|
|
l
L———'-— Data L DoD7

Transceiver

L P2 YMA RW, Addr J
—— e e e
l Module #N 1
l AO0-A15
N Buffer
————————— R - R/W, $2
(Receiver) VMA

A\ Data
Transceiver <@ D0-D7

1
]
|
|

l
I
I
I
I
[
|

L %2, VMA RMW, Addr J

FIGURE 4-1.5-1. Buffered M6800 System

4-21

OTHER MODULES

MC8T97 4
A0 N
T
[]
L]
L]
L]
A5 N
—t \
b
RW N
LL Y
b
VMA |
‘L‘ \
N C T T T T T T Nesiew T T T T T T
MC6800 ™ I
cos |/[q | MC8T97
q N [_
mMceT26 = I L[. > AO
I (]
L]
9 - f : > A15
| LL
DO | 1
"% | o — [N - R/W
. ' I/L’
L]
. = S = VMA
']
|) RAM
L]
> 2 ROM
o7 | : I C, .
~ I . PIA
i? | MC8T26 = .
T } DE RE -/ I ACIA
o1 ¢2 o
1/3 MC7410 I *
¢2 l k 1 p——— Dop
VMA —| 2 I .
I b
R/W | .
I L]
|
I 4
|
N oj } > D7
|)
| 1/2 MC7420
| RE DE ®2
| VMA
f g=
| L
| Addr
L o o o o e e e e

v
OTHER MODULES

FIGURE 4-1.5.2. M6800 Bus Expansion Example

4-22

Enabling Considerations of Module Devices

VMA, R/W, and ¢2 are all available to enable RAMs, ROMs, and PIA/ACIAs. In some cases, it
may be desirable to eliminate one of these enabling signals so that the enable input is available for address
decoding. The following discussion indicates which control signals could be deleted for a given device and the
effects on the system operation:

ROM

R/W and ¢2 can be used to enable the ROMs without using the VMA signal. Not using
the VMA signal means that the ROM may be enabled during a non-memory reference read cycle
(VMA would be low but since it is not used, the ROM may be enabled). A false read of the ROM
will have no effect on the system and if the non-memory reference cycle had been a write, then the
R/W signal would have disabled the ROM.

RAM

VMA can be left off as an enable to a RAM if the MPU will not be halted by the WAI
instruction or if the TSC will not be used. Either of these conditions cause the Address lines and the
R/W lines to float which could produce a false write into RAM if not prevented by VMA. During
normal operation of the MPU, only one instruction, TST, causes a false write to memory (i.e., the
R/W line going low without VMA going high). This instruction does not pose a problem because it
first reads the memory and then rewrites the same data. If VMA was used to enable the RAM, this
false write would not occur, however, since the memory is rewritten with the same data, no problem
occurs by not using VMA as an enable.

PIA/ACIA

All three signals must be used to enable or select a PIA or ACIA. Both of these devices
automatically clear the Interrupt Flags when the MPU reads the PIA or ACIA data registers so that a
false read of a PIA or ACIA may cause an interrupt on CA1, CB1, CA2, or CB2 to be missed. In
addition, it is suggested that VMAe¢2 not be used as an Enable signal for a PIA because, if the
machine is halted, VMA is forced low removing the clocks from the PIA. Without the Enable input
to the PIA, an external interrupt may not be recognized.! ¢2 should be used for the PIA Enable
signal so that the PIA Enable clock always occurs whether or not the MPU is halted. VMA may then
be taken directly to Chip Select inputs or be gated with address signals to the Chip Select inputs.

Refer to Section 4-1.3 for a complete explanation.

423

4-2 M6800 SYSTEM HARDWARE TECHNIQUES

4-2.1 INTERRUPT PRIORITY CIRCUITRY

The interrupt control features of the MC6800 are described in Sections 3-2 & 3-3. The software
polling and prioritizing methods discussed there are adequate for most applications. However, in systems
having several interrupts that must be handled quickly on a priority basis, hardware prioritizing circuitry can be
used to advantage.

The prioritizing method recommended in Chapter 3 is shown in more detail in the block diagram of
Figure 4-2.1-1. With this technique, each interrupting device is assigned a separate ROM location which is
used to store the starting address of a service routine. After the MPU recognizes an interrupt, external circuitry
selects the interrupt that is to be serviced and directs the MPU to the proper location in memory.

The MPU responds to an IRQ by trying to fetch the IRQ vector address from locations FFF8 and
FFF9. However, some of the address lines are no longer tied directly to memory but go instead to a 1-of-2 Data
Selector. The other set of inputs to the Data Selector is generated by a Priority Encoder that outputs a binary
number corresponding to the highest priority interrupt signal present at the time the interrupt is recognized by
the MPU.

Detection of addresses FFF8 and FFF9 by the INTERRUPT ADDRESS DECODE circuitry then
causes the outputs of the Priority Encoder to be substituted for part of the normal address. Hence, even though
the MPU outputs FFF8 and FFF9, other locations are read by the MPU.

4-2.1.1 8-Level Prioritizing

Specific circuitry for prioritizing eight interrupts is shown in Figure 4-2.1.1-1. The interrupting

Systemn Interrupt

Clock » Address
Decode Address Bus /
& 1T 7T 1717
Control
| L >
IRQ To MPU l 9
A
Cik - A8
Read
A7
1 o — Only
) 1 A6 Memory Data Bus

2> Interrupt L Ouad & A5
Interrupt 3 — Register L 4
lnput: 4 — (latgches Priority 1of-2 =
In Order < or Encoder Data = A3
5 . —— Selector A2

of flip-flops)
Priority 6 ~I —— » & A1l
7 — - - A

L g —

FIGURE 4-2.1-1. 8-level Priority Interrupt Configuration Block Diagram

4.24

ST

—<C
A2
—————{ A3
MC7430 A4
(2 Places)
<C
A6
l—————J A7 Interrupt Vector Location
I— I RES FFFF - FFFE
NMI FFFD - FFFC
Interrupt A9 SWI FFFB-FFFA
Address Decode #8 FFF9 - FFF8
#7 FFF7 - FFF6
———————J Al0 #6 FFF5-FFF4
#5 FFF3 - FFF2
y AN #4 FFF1-FFFO
5 A12 #3 FFEF - FFEE
#2 FFED - FFEC
.t A13 #1 FFEB - FFEA
1/2MC7479
¢ A14
A15
———O0 VMA
T Latch
Clock —0 +5
Disable A1 A2 A3 A4 A9 A8 A7 A6 A5 A4 Address
> — 4 7 ([[Bus
2 —
@2 E Ef———@ VMA ® $2
E j——
1/4MC7402 Latch . R/W
(4 Places) Clock —_— IRQ to MPQ A9 Et———e@ +5
A8
MTCH B YO Y1.Y2 Y3 A7 1024 D7 pr—
- 10 Al X
1 &—— DO Qo A0 Do X0 A6 8 D6
2 @&——— D1 Q1 L' as) A5 ROM D5 —
R A
3 &—D2 az}—21{a2 Priority p1 X1 zo A4 (MCM6830) pal—-
Interrupt | nterrupt . 13 Encoder Data
Inputs < 4@ D3 Re ist:r Q3 14 A3 256 x 4 A3 Selector z1 A3 D3
Inorder | 5 @&—— D4 (Mé’ssm o4 A4 HPROM- D2 X2 (MC8266) Z2 A2 D2
iori 15
of priority 6 @&——— D5 LRCC/Data Q5 6 Ab5 1024 Ad z3 A1l D1 Data
76— D6 Register) Q6 A6 D3 X3 — A0 Do Bus
| 8&—— D7 a7 14 a7 g
D8 Qs e E E A
Mode l I I
Reset - - -

FIGURE 4-2.1.1-1. 8 Leve! Hardware Prioritized Interrupt Logic

signals are tied to the D inputs of an MC8502." In the absence of interrupts, all the inputs are low and the IRQ
line to the MPU is high. One or more interrupts going high causes IRQ to go low (following the next positive
transition of ¢2), thus initiating an IRQ.

After setting the Interrupt Mask and stacking its contents, the MPU responds in the normal manner
by outputting FFF8 and FFF9 onto the Address Bus where it is decoded by the INTERRUPT ADDRESS
DECODE circuitry. The resulting decode pulses are shown in the relative timing diagram of Figure 4-2.1.1-2.

The INTERRUPT DECODE signal causes the MC8266 Data Selector to select the Priority Encoder
outputs for addressing inputs Al through A4 of the ROM. If any address other than FFF8 or FFF9 is on the
Address Bus, INTERRUPT ADDRESS DECODE is low and the normal A1-A4 address lines are routed to the
ROM.

The INTERRUPT ADDRESS DECODE signal is also used in generating the LATCH CLOCK
DISABLE signal. When the INTERRUPT DECODE pulses are not present, the contents of the D flip-flops in
the Interrupt Register are updated by each negative transition of ¢2. During retrieval of the current interrupt
vector, further changes on the interrupt inputs are shut out by disabling the LATCH CLOCK. The clock is
disabled by the presence of the INTERRUPT DECODE signal on the D input of the LATCH CLOCK Disable
flip-flop which causes the disable signal to go high on the next negative transition of ¢1.

On the negative transition of ¢1 following the FFF9 decode pulse the D input to the disable flip-flop
will again be low, the disable signal will go low, and sampling of the interrupts will be resumed.

When no interrupts are present, all inputs to the Interrupt Register/Priority Encoder are low and IRQ
is high. With one or more of the interrupt inputs high, the Priority Encoder translates the highest priority input
into a corresponding 4-bit output. The priority is an indicated in Table 4-2.1.1-1; 10 is the highest, 11 is second
highest, etc. The response of the Priority Encoder to various combinations of interrupts is shown in Table
4-2.1.1-1.

The A1-A4 outputs corresponding to each priority are obtained by encoding a 256 X 4 PROM with
the desired results.? The code is determined by where the vectors are to be located in memory. In this case, the

Int. Addr.
Decode

Latch Clk.
Disable

Latch
Clock

FIGURE 4-2.1.1-2. Prioritizing Interrupt Circuitry Relative Timing

'The MC8502 Longitudinal Redundancy Check/Data Register is a dual-mode circuit developed for use in 9-channel magnetic tape
systems. It contains nine flip-flops and logic to detect an all zeros condition. All nine flip-flops have common reset, clock, and mode
control inputs. Each flip-flop may operate either as a Toggle (mode controi high) or D (mode control low) flip-flop. The flio-flops are
edge-triggered and are updated on the negative edge of the clock input. An all zero condition in the register is indicated by a low state at
the Match output.

2A complete code listing is shown in Table 4-2.1.1-2.

4-26

TRQ vectors are contiguous with the RES, NMI, and SWI vectors as shown in Figure 4-2.1.1-3. The code that
must be generated by the Priority Encoder to accomplish this is enclosed by dashed lines in the Figure.

If a conventional 8-input priority encoder such as the MC9318 (see next section) was used only five
interrupts could be implemented without additional address decoding. This is due to the fact that three of its
inputs would, if active, cause the addresses for RES, NMI, and SWI to be accessed by an IRQ. Use of the
PROM allows any desired code and, hence, any memory locations to be selected.

In this example, addressing is shown for an MCM6830 1024 X 8 ROM assigned memory locations
FF00 to FFFF with the interrupt vectors located at the top of memory. If no interrupts are being processed, lines
A0 through A9 of the Address Bus select individual ROM locations in the usual manner. A suitable chip enable
for locating the ROM at FFXX is developed by decoding A10-A15 and tying it to an E on the ROM. The chip
enable requires no additional logic since A10-A15 must be decoded for the interrupt circuitry anyway.

Interrupt .
Priority DO D1 D2 D3 D4 D5 D6 D7 A4 A3 A2 A1 IRQ Vector Location
1 (Highest) 1 X X X X X X X 1 1 o o] 0 FFF8 -FFF9
0 1 X X X X X X 1 4] 1 1 o} FFF6 - FFF7
3 o] 8] 1 X X X X X 1 [o] 1 0 0 FFF4 -FFF5
4] o] (o] 1 X X X X 1 o] o] 1 0 FFF2 - FFF3
5 4] (o] 8] o] 1 X X X 1 o] 0 0 o] FFFO- FFF1
6 [¢] 4] 0 o] 0 1 X X 0 1 1 1 0 FFEE - FFEF
7 0 o] 0 8] o] o] 1 X o] 1 1 o] 0 FFEC - FFED
8 (Lowest) o] o] o] o] 8] 0 o] 1 o] 1 o] 1 1] FFEA-FFEB
o] o] [s] o] o] [¢] o] 0 o] o] o] 0 1

X = Doesn’t matter

TABLE 4-2.1.1-1. 8-Level Priority Circuitry Truth Table

4-2.1.2 13-level Prioritizing

For the 8-level prioritizing circuitry described in the preceding section, the vector addresses were
located near the top of a block of memory assigned locations FF0O to FFFF. This required decoding address
lines A10-A15; in addition, for purposes of illustration, the Interrupt Address Decode signal was generated by

doing a complete decode of the Address Bus.

In a typical application, the block memory assignments may be different and the decoding can be
simplified. This is illustrated in Figure 4-2.1.2-1 where the specific circuitry for prioritizing 13 levels of
interrupt is shown. The addressing follows the example of Section 1-1.2.1 and assigns the ROM to memory
locations CO00 through C3FF by tying address lines A14 and A15 to chip enables on the ROM.

The requirements for decoding the IRQ Interrupt Address Decode signal are determined by the

following considerations:

(1) When the MPU places addresses on the Address Bus during interrupt sequences the vector data
is fetched from the memory locations that respond to those addresses even though they are not
actually locations FFF8 through FFFF. For example, if the MPU outputs the address FFFF (all
ones) while fetching the vector data for a Reset, in this case it is actually addressing memory
locations C3FF in the ROM since the A15 and A14 “‘ones’’ on the chip enable selects the
particular ROM and the X3FF portion of the address is determined by the ones on A0-A9.

4-27

1871615141312 T1 A4A3A2A1

ADDR
172

00

101011

1

010

173

1
1

0
0
0

174

175
176

1t 000

0000
000 1
001t
001

0

1
1

1
1
1
1

177

0

0

1

0

178

0

179

1
1

0
0

1

180

181

1

1

01

182

(o}
0
0

1
1

183
184

1001

1000

1
1

o]

100 1 1

1

185

187

188

1100

1

190
191

0
1
1

10000O0CO0O0

1

192
193
194
195
196
197
198
199
200
201
202
203
204

205

0

1

0

0 0O0O0OGCOC1

1

1 000O0CT1T0O0
10000

1

0
010

1

t 000100

1

1

01

0001

0

1000 11

1
1
1
1

1

[N
001
001
0 0 1

000 1001
001
01

0

0 10

1

o]

t 00101
1

1

(4]

0 01

1

100 1 1

206

207

1000

10000
0001
001

0

0

1
1

0

1

0

210

21

1

0

0

212
213
214
215

1

10101

0

101

0

1t 001

1

000
1001

216
217
218
219

0

1

1

0

0

220
221

222
223
224
225
226
227

0

000O0CO 0

1

0

1
1

000
000

1
1

[0}

1

60100
001
0 01

228
229
230
231
232

1

0

1

1

000 100 1

1

233
234
235
236
237
238
239

1100

1

o}

G 00

1

1
1
1
1

240
241

0000
000
001
001

1

0

1

242
243
244
245
246
247
248
249

0

1

101

o}

00O 1001
001 1

1
1

250
251

1010

0

252
253

254

255

A4A3AZA1

181716 15T4 312 I1

ADDR

1

01010

86
87

1

o]

1000 100

1

0

88
89

1

1

1

1
o 101
0 101

0
0
0
0

90
91

0

1

1

1010

00

92
93

1

1
100000
10000
1000 1
10001

94

95

1

0
1
1

1
1
1
1

0
0
0
0

00

1

97

0

0

00100 10
10010

1

1
01000

1

1

0

101
102
103

104

0 01
1001
1
1

1
1

0
1001

1

o
0
v
0

o 01 0
010

1
1

0

1

0

1

106
107
108

109

0

110
111
112
13
114
115
116
17
118

0
000

0000 1

1

o}

00 1t 1 0

1

0

1

01
1

1
1

0
0

119

00
1

1
1

000
001

1
1

1

120

121

o

122
123
124
125
126
127
128
129
130
131

00

0000O0O0CO
000O0O0O0
000O00O
00O0O0CO
00600
0 000

1

1

1

1

0

0

1
1

132
133
134
135
136
137

1

00001

[¢]

0 0001

1
1
1
1
1
1

00

1

000
00
0

1
1

6 00
oco0oo0
G 00
000
00O
1000

1

138
139

1

o]

140

141

1

1
1

cC 00O
1000

1

142

143

00O

0000 1

1
1

G0
(]

144
145

1

000

146
147

00

00

0010100

1

148

149

150

151

00 1t1ton

1

00
0

1

000

[Ce) 1

152

163

1

100

164

155

0

1

1
1

001
10 01

1

166

0

167

1
1

0 01
1001
00000

1

158
159

0

1

1
1010001
1010001

0

160

161

1

0

1

0000

1

162
163
164
165

166
167
168
169
170
171

0100

1

000 100 1
o0

1

o

A4A3A2A1

ADDR I8 B I MIBI2T1

0 00O

000O0O0OOCO

000O0OGOO1
0 00O0O0O0O"1
000O0OCO1
000001

1

[}

1

oo 1
01

0

0 00O0OO0 1
000O00O0

1

000001

100 1

000O0T1TO0OOTJO
00001
00001
00001
00001
00001
0000

00
01

0

1

0

1

10

11

01

1

¢}
0

13
14
15
16
17
18
19
20

1

0 00O

000
1

0

1

0000
0001
001
00
01

0 001

0001

1

1

0

0001

1

000
000 1

0

00
0

1

o1 1

000 1

01
0
1
1
1

0001

22

1

000
001
010

00 01

23
24
25

00 1

1

0001
1
00 01

000

0

1

26
27

1

s}

0001

1
1
1

000 1

28
29
30
31

0

1

000 1

00 01

0001

0

00000
0000
000 1

0
0
0
0
0
0
0

32

0
0
0
0
0
0
0

33
34

0

1

0001
00 1
001

35
36
37

g0
a1

0

1

1

0
001

o011

1

0

39
40
41

1

00O

1

001

42
43
44
45

1.0 1

e}

1
1

0
0

0

01

00101

1

46
47

00O
1

0

1

0 00O
00 01

1
1
1

1

o]
0
0
0
Q

48

0

49

50 1 0010

51
52

1

100

0

1000 1001
001

1

1
1

0

57

58
59
60
61

62

63
64
65
66
67

0

0000O00O0
000O0O01
00001
00001
000

1
1

0
(o}

1

0o

0
0

1

1
1
1
1
1
1

0
0

68
69

000 1

0001
000
001
0 01

70
71

1

001
1

1
1

00O
0 01

72
73
74
75
76
77

0

78 10011
79

80
81

4]

1000

0000
000

1

82

1

]

83

10100 1

0

85

TABLE 4-2.1.1-2 PROM Coding for Priority Encoder

4-28

(2) During system operation, the unused lines A11 and A12 will be high only when the MPU is
processing an interrupt; otherwise the address generated would be outside (below) the highest
system assignment.

(3) If one of the lines A11-A13 is included in the decode, the MPU’s response to an IRQ can be
decoded by distinguishing between XXX8 and XXX9 and the other fourteen possibilities that
can be generated by Al through A4.

The resulting decode requirement is simply A1-A2:A3+A13, as shown in Figure4-2.1.2-1. INTER-
RUPT ADDRESS DECODE will be high only when the MPU has put FFF8 or FFF9 on the Address Bus.

Operation of the clock disable and data selection control for the 13-level circuitry is identical to that
described in the preceeding section for the 8-level case. However, a different priority encoding method that
uses two cascaded MC9318 8-input Priority Encoders is shown (this technique can be extended to any required

ADDRESS BUS A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0
(VMA.A15.A14.A13.A120A11.A‘lg)

Y
ROM Connection E A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

0 1 1 1 1 1 1 1 1 1 1 FFFF}R__S
0 1 1 1 1 1 1 1 1 1 0o FFFE

o 1 1 1 1 1 1 1 1 o] 1 FFFD}N__.I
0 1 1 1 1 1 1 1 1 o] o FFFC

[o} 1 1 1 1 1 1 1 o] 1 1 FFFB}SWI
o 1 1 1 1 1 1 1 0 1 o FFFA

0 1 1 1 1 7 f_i——?—_o_—o—} 4 FFFS} ;

0o 1 1 1 1 1] 1 o 0| o FFF8

o 1 1 1 1 1] 1 0 1 1 1 1 FFF7})
) 1 1 1 1 1] 1) 1 1 | o FFFe

o] 1 1 1 1 1] 0 1 o} I 1 FFF5} 3
o] 1 1 1 1 1] 1 o 1 0 I 0 FFFa4

o] 1 1 1 1 101 0 0 1 : 1 FFF3} 4

o] 1 1 1 1 11 0 o 1 | O FFF2

[o] 1 1 1 1 1] 0 0 o] | 1 FFF1} 5

o] 1 1 1 1 101 o] o) 0 | 0 FFFO

¢} 1 1 1 1 1170 1 1 L FFEF} 6

o] 1 1 1 1 1] 0 1 1 1 | 0 FFEE

o] 1 1 1 1 1] 0 1 1 011 FFED} ;

0 1 1 1 1 1] 0 1 1 0 | 0 FFEC

o] 1 1 1 1 110 1 0 T FFEB} s

0 1 1 1 1 Lo 1o _Cl __1_| 0 FFEA

FIGURE 4-2.1.1-3. Interrupt Vector Memory Allocation

number of priority levels). The five additional interrupt register stages are obtained by using the ninth flip-flop
in the MC8502 and an MC4015 Quad D Flip-Flop.

The characteristics of the MC9318 Priority Encoder introduce several other minor differences
between the 13-level and 8-level circuits. Their operation requires active low input signals, hence the interrupts
must be active low. The OUT of the lowest priority MC9318 stage can be used to generate IRQ. EOUT of the
highest priority stage (E’OUT in Figure 4-2.1.2-1) is used for the fourth bit, A4.

The resulting truth table for this configuration is shown in Figure 4-2.1.2-2. The *‘substitute partial

4-29

1/2 7479

Interrupt Address Decode:

A1 eA2e A3 e A13

. i 1/6 MC7404
2
] +£~, T i3 (2 Places)
QSD A3 At A2 A13 Address Bus L
1/3 7427 _J \—'\ 7?1 [c 7 (7
(3 Places) _ga C % MC3001
R (4 Places) VMA*
I it E 1024 02
+5 fale 5 /W
A9l no ROM
s (MCM6830)
A8
A7 aq DO ™
FEE b Al|A2]|A3| Ad] P D1
tck MTCH I A& B YOYI1vY2Y3 A8l A6 b2
[Ein < xo0 ASf A5 R
INT 13— DO Q0}—-=o DO - A 03 ||
INT 124 D1 Q1}——o|D1 Qo zo[22 Al D4
s X1 Data Y
INT 11—4-{D2 Q2 pa Priority | z1[23 A3
mces02 <[P2 encoder v FAAsA e PS5
iNT 10— D3 LRCC/ Q30 D3 a1 2 (MC8266) , A2 D6 |
INTS —dp4a P2 o4l Jpa (Mco318) — a 232l Al D7
Register A1"
INT 8 —D5 Q5 f— D5 Q2 55 A0
X3 —
INT 7 —1{D6 Q6 D6 A Data
BUS
INT6 ——D7 Q7 —9D7 Eout € ._._l__
INT5 -8 Qs - Interrupt Vector Location
| | Mode ‘[o RES C3FE-C3FF
]_ IRQ to MPU NMT C3FC-C3FD
1 Reset ﬁ>—> Swi C3FA-C3FB
= 1 C3F8-C3F9
Y _TE——l 2 C3FG-C3F7
£ = 3 C3F4-C3F5
Clk por M a C3F2-C3F3
. 5 C3F0-C3F1
INT 4—D1 Q1l—q D1 . 6 C3EE-C3EF
MC4015 g2 , Priority 7 C3EC-C3ED
INT3——D2" S —o Dz, Encoder 8 C3EA-C3EB
NT2—p3 - @3 D3 orp 9 C3ES-C3E9
INT1——D4 F.F Q4}—o D4’ (MC9318) 10 C3E6-C3E7
, , 11 C3E4-C3E5
D5 Q2 12 C3E2-C3E3
+5 e—o| Reset De’ 13 C3EO0-C3E1
D7 rou O
M I
FIGURE 4-2.1.2-1. 13—Level Hardware Prioritized Interrupt Logic
iINT D7 D6 D5 D4 D3 D2 DI’ DO D7 D6 DS D4 D3 D2 D1 DO G'S Eout
(A4 A3 A2 A1 TRQ A4 A3 A2 A1l
11 1 0 X X X X X X X X X X X X 0 o0 1 1 0 1 1 0 D0 C3F8C3F9
2 11 1 1 0 X X X X X X X X X X X o0 1 © 0 0 1t 0 1 1 C3F6C3F7
3 1 1 1 1 1 0 X X X X X X X X X X 4] 1 0 1 0 1 o 1 4] C3F4-C3F5
4 1 1 1 1 1 1 4] X X X X X X X X X [+] 1 1 0 0 1] V] 1 C3F2-C3F3
5 1 1 1 1 1 1 1 4] X X X X X X X X 1] 1 1 1 1] 1 [0 1] C3FOC3F1
6 1 1 1 1 1 1 1 1 o] X X X X X X X 1 1] 0 0 o 0 1 1 1 C3EE-C3EF
7 1 1 1 1 1 1 1 1 1 o] X X X X X X 1 0 1] 1 o 0 1 1 0 C3EC-C3ED
8 1 1 1 1 1 1 1 1 1 1 0 X X X X X 1 0 1 0 0 0 1 0 1 C3EA-C3EB
9 1 1 1 1 1 1 1 1 1 1 1 0 X X X X 1 0 1 1 4] 0 1 0 o] C3E8-C3E9
10 1 1 1 1 1 1 1 1 1 1 1 1 0 X X X 1 1 4] 0 V] o] 0 1 1 C3E6-C3E7
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1] X X 1 1 0 1 0 0 (4] 1 o C3E4-C3E5S
12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 X 1 1 1 o] 4] o] 0 0 1 C3E2-C3E3
13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 (4] 1] (1] C3EO-C3E1
1 0 0 0 0

X = Doesn’t Matter

FIGURE 4-2.1.2-2. Truth Table, 13-Level Priority Circuitry

"The MC4015 contains 4 type D flip-flops. All four flip-flops have common resets and common positive edge triggered clocks.

4-30

addresses’” that are selected during processing of an IRQ are shown in the memory map of Figure 4-2.1.2-3.
Note that low signals on inputs D5°, D6” and D7’ of the high priority encoder stage would generate addresses in
the range C3FA- C3FF. As mentioned in the preceeding section, this would cause accessing of the locations
reserved for R—ES, NMI, and SWI vectors so those encoder inputs are not used.

This method can be expanded as required. For example, 21 levels could be obtained by adding one
additional MC8502 register stage, one more MC9318 Priority Encoder, and one more bit of data selection.
Three-input AND gates would be required for combining the encoder outputs.

A15 A14 A13 A12 A1l A10 A9 A8 A7 A6 A5 A4 A3 A2 Al AO
ROM Connection E E A9 A8 A7 AB A5 Al A3 A2 A1 AQ
1 1 1 C3FF]}RES
— - - - 1 1 1 C3FE)
— — - - 1 1 1 C3F D}N
— - - — 1 1 1 C3FC
- - - - 1 1 0 C3FB }sw
- - - - 1 1 0 C3FA

-

1 1 1 1 1 1 1 1

i i 1 1 1 i 1 1 o

1 1 1 1 1 1 1 0 1

1 1 1 1 1 1 1 o o

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 0

1 1 - - - -4 1 1 1 1 j 1 o0 o1l 1 c3Fo
1 1 — — — - 1 1 1 1 1] 1 1 0 ol o cst}
1 1 — — - — 1 1 1 1 1 I 1 0 1 1] 1 C3F7}
1 1 - - - — 1 1 1 1 1 1 [0} 1 1] 0 C3Fs
1 1 - — — - 1 1 1 1 11 0 1 ol 1 cst}
1 1 - - - - 1 1 1 1 1] o 1 0 0 C3Fa
1 1 - — - - 1 1 1 1 T o 0 1 : 1 c3F3}
1 1 - - - — 1 1 1 1 1 1 o 0 1 0 C3F2
1 1 — - - — 1 1 1 1 1 | 1 0 0 oI 1 C3F1
1 1 - - - - 1 1 1 1 L o i} ol o CSFO}
1 1 - - - - 1 1 1 1] o 1 1 1 b CSEF}
1 1 - - - - 1 1 1 1 1] 0 1 1 1] o c3€E
1 1 - - - - 1 1 1 1 1] 1 1 o] 1 c3ED
1 1 - - - — 1 1 1 1 1 l o 1 1 o o C3EC}
1 1 - - - - 1 1 1 1 11 o 1 o 1 | 1 cses}
1 1 - - - - 1 1 1 1 1 | 0 1 1] 1 0 C3EA
1 1 - - — — 1 1 1 1 1 | 0 1 0 ol 1 0359}
1 1 - — - — 1 1 1 1 1 0 1 o o| 0O C3ES
1 1 - — — — 1 1 1 1 1 I 0 0 1 1] 1 c357}
1 1 - - - - 1 1 1 1 1] o) 1 1] o C3Es
1 1 - - - - 1 1 1 1 1] 0 o 1 ol 1 cses}
1 1 — - - — 1 1 1 1 1 | o o 1 0I 0 C3E4
1 1 - - — - 1 1 1 1 1 0 o i} 1 1 C3E3
1 1 - - - - 1 1 1 1 1 ! o 0 0 1l o cssz}
1 1 - - - - 1 1 1 1 1} o 0 o ol 1 cae1
1 1 - - - - 1 1 1 1 1 Lo__g__o__o_] 0 cseo}

FIGURE 4-2.1.2-3. Interrupt Vector Memory Allocation.

4-2.2 DIRECT MEMORY ACCESS (DMA)

In this section, three methods of implementing DMA using the MC6800 microprocessor are
discussed along with the advantages and disadvantages of each method. The methods range from completely
halting the processor in order to do the DMA transfer, to “*sandwiching’’ in the DMA transfer during an MPU
cycle without reducing throughput or increasing execution time appreciably.

4-31

4-2.2.1 DMA Transfers by Halting Processor

A block diagram of a minimum system configured for a DMA channel is shown in Figure 4-2.2.1-1.
This system is shown with only four family parts for simplicity in demonstrating the DMA concept and can be
expanded to a larger system without affecting the DMA methods discussed here. The DMA interface consists
of a 16-bit address bus, an 8-bit bi-directional data bus, and the following control signals ¢2, BA or DMA
GRANT, VMA, HALT or DMA REQUEST, and R/W. The ¢2 clock occurs whether the MPU is halted or not
and is used to synchronize the DMA data.

The Bus Available (BA) signal from the MPU goes to alogic ““1’’ when the MPU has halted and all
three-state lines are in the high impedance state. The VMA signal is from an open collector gate and is high
when the MPU is halted. This signal can be wire-ORed with an external signal from the DMA circuitry to
enable the RAM during a DMA transfer. The HALT (DMA REQUEST) signal from the DMA circuitry
commands the MPU to halt and place all three-state lines in the high impedance state. The R/W line is a
command signal from the DMA channel to control the direction of transfer through the DMA interface. For this
system to operate correctly, the DMA circuitry connected to the MPU’s Address Bus, Data Bus, and R/W line
must have three-state outputs which are in the high impedance state when BA is low and the MPU is controlling
the Address, Data, and Control Busses. Tie address assignment of this system is given in Table 4-2.2.1-1.

A timing diagram of the DMA/MPU interface using this technique is presented in Figure 4-2.2.1-2.
A DMA transfer is initiated by the DMA channel pulling the HALT (DMA REQUEST) low. HALT must golow
synchronously with ¢1. The negative transition of HALT must not occur during the last 250 nsec of ¢1 for
proper MPU operation to occur. It is suggested that HALT be brought low coincident with the rising edge of ¢ 1.
The MPU always completes the current instruction before halting. If the HALT line is low within 100 nsec after
the leading edge of the ¢ 1 in the last cycle of an instruction, the MPU will halt at the end of that instruction (this
case is shown in Figure 4-2.2.1-2). If the HALT line goes low after this 100 nsec region from the leading edge of
¢1 in the last cycle of an instruction, then the MPU will not halt at the end of the current instruction but will halt
at the end of the next instruction.

SELECTION ADDRESS AMOUNT OF
BITS DEVICE ADDRESS MEMORY

A15 A14

1 1 ROM CO00-C3FF 1024 Bytes

0 0 RAM 0000-007F 128 Bytes

0 1 PIA 4000-4003 4 Bytes

TABLE 4-2.2.1-1. Address Assignment

What this means to the DMA channel is that the time from the HALT line going low to the MPU
halting and producing a BA (DMA GRANT) will be variable depending on what instruction is being executed
at the time HALT goes low and in which cycle of that instruction HALT goes low. Since the HALT (DMA
REQUEST) signal will probably be asynchronous with respect to the instruction currently being executed, this
will result in a variable time delay from HALT going low to BA (DMA GRANT) responding by going high. The
minimum time delay between HALT and BA is shown in Figure 4-2.2.1-2 as being two cycles which would be

Tn ean + £ 1 A

o IFY Annde o = iz Alaals wnba ~ - ThA - 3 AAl 1 Ftha TTATTI
2 fA8ECOnas at thic Mmaximuin CIOoCK rate of 1 MIiZ. 14c Mmaximum {imce ac doccurif the HALT line goe

NTr TErAYY ~ tha Q
\Aa_y WUULIU UVLVUL 1) UV LRI 0L 13V 5\}\/0

low on the first cycle of a long instruction such as Software Interrupt (SWI), which is 12 cycles long. Added to

4-32

Control

o e
VMA —_
IRQ
Soe RESET
DBO-DB7
DBE
2
b1
lock @ MPU
HALT
J R/W
VMA
AO0-A15 VMA
MPU MC6800
AO-A9 DBO-DB7
ROM
E
MCM6830 E
AO-AB DBO-DB7
E E
- RAM
E E
E R/W
E
MCM6E810
@
o
T
he
<
MC6820 VMA
Ccs¢
DBO-DB7
PIA
cs1
cs2 IRQA
IRQ
IRQB
CA1 CA2 PA PB CB1 CB2
o v
Paratlel 1/0
(Data & Control)
—_— - — s
Address
Bus
AQ-A15

FIGURE 4-2.2.1-1. DMA Transfers by Halting Processor

4-33

_ DmMA
Interface

124

Last Cycle
of Current
instruction

e E——

430 ns ’!
MPU ¢1 |

470 ns

MPU ¢2 I ' |

100 ns —m] |at— —>| f— 100 ns

HALT or \ /
DMA REQUEST ([
R
470 ns Max "— ——D' |¢—300 ns Max
{(
BA or 1]
DMA GRANT
1 300 ns Max
e EC OO W /
N {L

1}

R/W N @l W(DMA)—-”—(
Address Addr
Bus =M-1 NN
Data lnst N {c
VMA from
DMA Channel

}\\\\\\\\\\x Data Not Valid

NN
~

PN
=
>
%

B LL

FIGURE 4-2.2.1-2. Timing of DMA Transfers by Halting the Microprocessor

the twelve cycles required to complete SWI is the one cycle required for the MPU’s address, data and R/W
signals to go into the high impedance state. In summary then, the delay time for the BA signal to go high often
HALT goes low (assuming it occurs within 100 nsec of the leading edge of ¢1) will vary from two to thirteen
machine cycles. This delay must be taken into account in the design of the DMA channel, however, it should
not present a significant problem in most systems.

The other signals shown in Figure 4-2.2.1-2 indicate the response of the MPU to the HALT
command. The VMA signal is forced low within 300 nsec of the leading edge of the ¢1 signal that occurs after
the last instruction cycle has been completed. This signal going low will prevent false reads or writes to memory
or peripherals on the MPU bus as the address and R/W lines go into the high impedance state. VMA from the
MPU will remain low as long as the MPU is halted. The address, R/W, and data lines will be in the high
impedance state when BA reaches the logic ‘‘1”’ state, indicating that DMA transfers can begin. Addresses,
R/W commands, and Data to or from the DMA interface are shown in the timing diagram synchronized with ¢2
to indicate the DMA transfers. The MPU can remain in the halted mode indefinitely placing no constraints on
the length of the DMA transfer.

Note that the RAM is enabled by VMA which is the output of an open collector inverting gate with
VMA (from the MPU) as its input. This VMaA si gnal is provided to the DMA interface so that the RAM can be
enabled during the DMA transfer. During the transition into the DMA mode, the VMA signal from the MPU
was forced low (forcing VMA high) to disable the RAM in order to protect it from false writes or reads as the
address and R/W lines went into a high impedance condition. During DMA transfers, the VMA signal is
wire-ORed with a DMA controller signal to enable the RAM. In order to exit the DMA mode, the HALT line is
switched high (synchronously with the leading edge of ¢1), the BA signal returns low and the MPU resumes
control. When BA returns low, it is required that the DMA channel’s address, R/W and data lines be in the high
impedance state and that VMA from the DMA channel be high so as not to affect MPU operation.

4-2.2.2 DMA Transfers by Cycle Stealing

The previous section discussed the transfer of DMA information by completly halting the MPU
which stops program execution. This section discusses a technique of DMA transfer which slows down
program execution during DMA transfer but does not completely stop execution. The basic technique is to
““steal”” MPU clock cycles for a DMA transfer; this results in a apparently lower clock rate and, therefore,
slower program execution during the DMA transfer.

The block diagram of Figure 4-2.2.2-1 uses the same minimum system concept as was used in
Section 4-2.2.1 to illustrate this DMA technique. The DMA Interface using this technique is composed of the
following signals: a 16-bit Address Bus, an 8-bit Data Bus, CLOCK, VMA, Three-State Control (TSC), and
Read/Write (R/W). The CLOCK signal is an uninterrupted system clock that is used to synchronize DMA data
transfers with the execution of the MPU. The VMA signal frrom the DMA interface is wire-ORed with the
VMA signal generated in the clock circuitry to enable the RAM for either MPU access or a DMA transfer. The
Three-State Control (TSC) or DMA ENABLE signal causes the address bus and the R/W signal to go into the
high impedance state and forces the VMA signal low. This signal can also ‘‘stretch’’ the ¢1 and ¢2 clock
signals. The Read/Write (R/W) line controls the direction of the data in or out of the DMA Interface. The
Address Bus, Data Bus, and R/W signals at the DMA Interface must have three-state outputs so that when TSC
is low, the DMA signals will not interfere with normal MPU execution.

A timing diagram of the DMA/Microprocessor interface using this technique is shown in Figure
4-2.2.2-2. Assume that the clock rate is initially adjusted to 1usec and that the MPU is executing the control

4-35

Address

Bus

AO0-A15

TSsC

m
5
2
o
©

FIGURE 4-2.2.2-1. Block Diagram of DMA Transfers by Cycle Stealing

4-36

YING

R/W

r ([30
IRQ
Start- o RESET
Up / -
Siock pe BA DBO-DB7 \r)
& DBE : ;
¢2 L
- $2
Clock 1 L o~
Generator > 01 MPU Bl
— TSc
J t VMA HALT &
q) NMI R/W [——a—
VMA TSC ; '
‘| Ao-a15 VMA |
MPU MC6800
e AD-A9 A0-A9 DBO-DB7 9 s
A15 ROM . 02
Al4 R/W ;
— > — A
: MCM6830 E
AO-AB AO0-A6 DBO-DB7 y
A15 - Clock
N~ I E E
A4 — RAM
E E
! - R/W
E R/W j—————
— > E
VMA MCM6810
w -—
1 o]
o — s 2
kel c @
3 S a)
MC6820 VMA
CS¢ |g————
A0
N RSO Wy,
DBO-DB7
A1 M
N————————» RS1
PIA £la—%2__
A4 — | RESET
N " m] CsSi AEs laESET 4
R/W
R/W (———
A15 — —
N] CS2 IRQA
RaB |12
CA1 CA2 PA PB CB1 CB2
AN I N J
Paraliel 1/O
{Data & Controt)
| _ DMA
. Interface

Data
Bus

DO-D7

LEY

lhag— 1 4s Min

Clock
- 4.5 us .I
1
o L[] |
jog)—————— 3 us Max —;.J
e T
500 ns Max
ADDRESS
BUS MPU DMA DMA MPU DMA DMA MPU MPU MPU MPU
R/W
— |<— 500 ns Max
VMA MPU N MPU MPU MPU MPU MPU
VMA MPU N . \DMA \ DMA MPU ~ DMA \ DMA MPU
MPU DMA DMA MPU DMA DMA
Data
Bus Q % MPU
DBE |

FIGURE 4-2.2.2-2 Timing of DMA Transfers by Cycle Stealing

program. In order to initiate a DMA transfer, the DMA controller takes the DMA ENABLE (TSC) line to a
logic *“1°” within 50 nsec of the leading edge of the ¢1 clock. This signal goes to the TSC input of the MPU to
command the Address Bus and the R/W line into the high impedance state. This will occur within 500 nsec of
the rising edge of the TSC signal. The DMA ENABLE signal also goes to the clock generating circuitry to
control the ¢1 and ¢2 clocks to the MPU as shown in Figure 4-2.2.2-2. ¢1 must be held in the high state while
DMA ENABLE is high and for one CLOCK cycle after DMA ENABLE goes low. ¢2 is held in the low state
while DMA ENABLE is high and for one CLOCK cycle after DMA ENABLE goes low. Neither ¢1 nor ¢2 to
the MPU can be held high for longer than 4.5 psec because of the need to refresh dynamic registers within the
MPU. This constraint places a maximum time limit on DMA ENABLE being high of 3 usec using this
technique, so that the ¢1 high time will not be greater than 4.5 usec. DMA ENABLE may occur on the leading
edge of any ¢1 signal and MPU execution will be stopped regardless of the instruction currently being
executed. This feature provides a fast and constant response of the MPU to the DMA ENABLE line.

The DMA address, R/W, and data signals can be placed on the MPU bus 500 nsec after DMA
ENABLE (TSC) goes high (this is the time required for the MPU outputs to go to the high impedance state). In
order to maintain a fully synchronous system, the DMA data is shown transferred during the CLOCK high time
in Figure 4-2.2.2-2. The signal labeled VMA is from the MPU and is forced low when TSCis high. VMA is the
output of a three-state or open collector inverter which normally follows ‘VMA but can be pulled low by the
DMA controller to enable the RAMs during the DMA transfer. DBE of the MPU is driven by the ¢2 clock and
enables the MPU data buffers only during the MPU cycles.

In the timing diagram, only two DMA transfers (of two bytes each) are shown before the full
execution rate of the MPU is resumed for sirhplicity in drawing the figure. There is no limit to the number of
DMA transfers that can be made using this technique, which can range from one byte transfers (by shortening
the DMA ENABLE high time to 2 usec and only pulsing it once) to a continuous DMA transfer of one byte
every 2.5 usec (by pulsing DMA ENABLE high for 2 usec at a periodic rate of 4.5 us). By using the continu-
ous DMA transfer mode, one can handle a DMA channel with a maximum data rate of one byte every 2.5 us
and still execute the control program at a minimum rate of one cycle every 4.5 us.

4-2.2.3 Multiplexed DMA/MPU Operation

This method of implementing DMA results in the highest DMA transfer rate and, at the same time,
allows the highest MPU execution rate when compared to the previous DMA techniques discussed, but requires
higher speed memories.

A block diagram of this technique is shown in Figure 4-2.2.3-1. The three-state buffers and
transceivers shown are enabled when the control signals are high and provide the high speed multiplexing
required to transfer DMA data to the memory during ¢1 and to allow MPU access during ¢2. The signals at the
DMA INTERFACE are the following: 16 bit Address bus, 8-bit bidirectional Data Bus, Read/Write (R/W),
Valid Memory Address (VMA), DMA SYNCH and the DMA CLOCK.

Figure 4-2.2.3-2 is a timing diagram of a multiplexed DMA/MPU operation. C1 and C2 are positive
enables for the three-state buffers and transceivers and bracket the ¢p1 and ¢2 signals so that the buffers are out
of the high impedance state before either ¢1 or ¢2 goes high. The MPU operation has been slowed down toa 1.2
s clock rate in order to show the timing requirements for a specific memory, the MCM6605; in general, the
MPU clock rate will have to be adjusted for the speed of the memory devices dused. This timing diagram
assumes that the memory cycle is equal to or less than 560 nsec. During ¢1, the buffers associated with C1 are

4-38

6

PIA, ACIA, ROM

(oX]

3-State Transceiver

RAM
Memory

AN

Addresses, R/W, VMA, Clock

Cc2
e
@
>
©
2
[
DATA R
Q
(=]
S
@
[v]
c1 c2
?1
b
MC6800
Clock 02 Microprocessor
F——————
c1 c2 HALT ="1"
TSC = 0"
DBE = ¢2
NMI = 17"
S
Q
b
3
]
2
©
S
@
™
c2

N

PIA, ACIA, ROM

3-State Buffer

Cc1

DMA

INTERFACE

FIGURE 4-2.2.3-1. Multiplexed DMA/MPU Operation

DMA
DATA

DMA ADDR
R/W, VM1
DMA Clock

DMA Synch

'< 600 ns *‘-|

C1

fe 600 ns >

Cc2

= 560 ns !

1

e 560 ns >
v | L

Address V
R/W, VMA X DMA x MPU x
Data Bus NN
Data Bus N DM
Memory Read & N A MPU 3

FIGURE 4-2.2.3-2. Timing of Multiplexed DMA/MPU Operation

enabled and the buffers associated with C2 are strobed into the high impedance state. The DMA SYNCH signal
(C1) causes the DMA channel to place valid addresses, R/W, VMA and Data signals on the DMA INTER-
FACE. When C2 goes high, the buffers from the DMA Interface are switched to the high impedance state and
the MPU buffers are strobed on, applying the MPU’s address, R/W, and VMA signals (which become valid
during ¢1) to the memory. The Data Bus signals from the MPU are applied to the memory at the leading edge of
C2, however, the Data Bus signals do not become valid until 200 nsec after the leading edge of ¢2.

By multiplexing in this manner, the MPU will have one ¢2 cycle every 1.2 us and the DMA channel
can have access to the memory every 1.2 us during ¢ 1. This concept is not limited to DMA channels alone. For
example, a multiprocessing system with two MPU’s accessing ons memory system could be implemented by
connecting another MPU to the DMA INTERFACE. The second MPU will execute during the high portion of
¢1 in place of the areas marked DMA on Figure 4-2.2.3-2.

Figure 4-2.2.3-3 details the timing interface with a memory device that is capable of meeting the
speed requirements dictated by a 560 nsec memory system cycle time. This memory device is the MCM6605, a
4K X 1 dynamic RAM, which has an access time of 210 nsec and a Write Cycle Time of 490 nsec. Only the
timing for the MPU data transfer is shown, however, the same timing would apply during ¢1 for a DMA
transfer. The address bus becomes valid 30 nsec (the delay of the bus buffers and transceivers in responding to
the C2 signal) after the leading edge of C2. Addresses will remain valid until after ¢2’s negative edge, however,
they are only required for 60 nsec after the leading edge of CE to the memory as they are latched on the memory
device. 100 nsec is allocated for delays in the memory system to receive the address, drive the memory array,
and decode and drive the R/W and CS inputs of the memory array.

The CE signal is created from ¢2 when the memory system has been selected by the Address Bus,
and is delayed 180 nsec from the leading edge of ¢2. The CE signal remains high until the trailing edge of ¢2,
creating a 380 nsec CE pulse which is 50 nsec longer than the 330 nsec minimum specification of the

MCM6605.

4-40

lap———————— 600 ns —————————P
Cc1
|‘——-——— 600 ns ————————]
c2
.
Id— 560 ns —D'
1
ja———— 560 ns —Di
@2
-.‘ jes@—— 30 ns
MPU Address
Bus, VMA, R/W \
— l‘—- 100 ns
MCM6605 Address,
R/W, CS Inputs
&‘* * 380 —"
180 ns ns
MCM6605 CE
Input
190 ns 190 ns
MCM6605 \\ \
Data Bus
o
S 40 ns—.l Fﬁﬁ
2 | mpu \
s Data Bus j
@ 200 ns
o 360 ns
2 e »’4 —
S (MPU
] Data Bus
h=4
s 40 ns—| lq— 320 ns —
MCM6605
Data Bus
N .
N Not Valid

FIGURE 4-2.2.3-3. Timing of Multiplexed DMA/MPU Operation Using MCM6605 4k RAM

During a Read cycle, data is specified to be valid 190 nsec after the leading edge of the CE signal,
assuming that the addresses are valid 20 nsec before the CE signal (which is the case here). Assuming a 40 nsec
delay between the data lines of the memory array and the MPU data bus results in 150 nsec of valid data before
the trailing edge of ¢2. This exceeds the MPU requirement of 10U nsec by 50 nsec. In a Write cycle, the data is
valid on the MPU Data Bus within 200 nsec of the leading edge of ¢2. Again, assuming a 40 nsec delay
between the MPU data bus and the data lines of the memory array results in 320 nsec of valid data before the
trailing edge of CE. This exceeds the minimum Djn stable requirement of the 4K RAM (160 nsec) by a factor of
2.

This timing has been based on the MCM6605, which is one of the faster MOS memories available.
Even with this memory, the processor is required to run slightly slower to avoid exceeding the memory’s speed.
Many other timing diagrams could be drawn for the variety of memory devices available but the exact system
implemention depends on the following considerations: DMA channel speed requirement, MPU execution rate
requirement, and the speed of memory devices available.

441

4-2.2.4 Summary of DMA Techniques

Table 4-2.2.4-1 summarizes the DMA techniques previously discussed plus a comparison with a
technique of bringing the data in through a PIA under software control, which is described in Section 5-4 on the
Floppy Disk Controller design.

MPU PROGRAM HARDWARE
TECHNIQUE MAX DMA CHANNEL RATE EXECUTION RATE COMPLEXITY
Halt Processor 1 byte/1us 0 Lowest
Cycle Steal 1 byte/2.5us 1 cycle/bus Medium
Multiplexed DMA 1 byte/1.2us 1 cycle/1.2us Highest
Software/PIA 1 byte/14 us Dedicated to service Lowest
DMA Channel

1Limited only by memory speed.

TABLE 4-2.2-4.-1: Summary of DMA Techniques

The first DMA technique is to halt the processor and transfer the DMA data at the maximum rate the
memories can handle. This technique has the advantage of requiring the least amount of hardware of the
techniques discussed, but has the disadvantage of stopping program execution. The second technique of cycle
stealing is a compromise between DMA transfer rate, MPU execution rate, and hardware complexity. The
MPU execution time and the DMA transfer rate can be maximized using the third technique with an increase of
system hardware complexity and memory speed by using a multiplexing technique for DMA. The Software/
PIA technique is based on the data being brought into memory through a PIA or ACIA interface under MPU
software control. Using this technique, the MPU can be used at full capacity to service a data channel with a
data rate of approximately 1 byte every 30 us.

This brief description of DMA techniques is intended to provide a basic understanding of how the
various control signals of the MPU can be used to implement a DMA channel. Each system design will involve
different tradeoffs in order to satisfy the specific system requirements.

4-2.3 AUTOMATIC RESET AND SINGLE CYCLE EXECUTION CIRCUITRY

In an MPU based system where a manual reset is not desirable (manual reset can be accomplished
with a switch and a debounce circuit), such as a remote peripheral controller, an automatic RESET signal must
be provided. A circuit designed to accomplish this must satisfy the two start up criteria:

(1) It must insure that the power supply to the MPU has reached the minimum required operating
voltage of 4.75 Vdc.

(2) The RESET line must then be held low for a minimum of 8 complete clock periods.

Of the many ways in which these criteria can be met, the circuit shown in Figure 4-2.3-1 is among the cheapest
and simplest.

The MC1455 TIMER MODULE provides the delay necessary to complete a minimum of 8 clock
cycles with the R2Cs time constant after the R1C1 time constant input has triggered the device insuring that VCC

442

v

All resistors are 10% % W carbon
all capacitors are ceramic

Vce

4 .
[4 8
RESET Inputs <} R2 A1
Vee RST VCC 2
6 Trig
3.3k 3.3k Thres
3.3K - DSCRG. -~ C1
— 40
1 {1 Vggs O Reset [mmme——— 5 Oout
2 Halt TSC 2 MC1455
38
N.C. 1/6 MC7405
a s g Gnd CV
Maskable Interrupts —jge—t——@-] IRQ ¢2 [37 _L 1
5 CJVMA DBE[36 ﬁ\cz | 5
Non-Maskable Interrupts o—e 6] Nt N.C. 35
C3
7 C BA R/W[34 ®
8
1] Vce Do 3 33
RESET Circuit for Automatic
9 & A0 ° D1 33 32 Power on RESET or
10] A1 & p2i3 31 Power Failure Restart
@
11] A2 § D3 |3 30
12] A3 D4 [29
o 13 . A4 D5 [28 R1 =1 Meg 2
&1 Flip-Flop C1=.1 uf }
12 as) 27 =M E{e[ay for a
5 Cik D6 R2 =1 Meg Minimum of
15] A6 D7 | 26 €2 = .4 uf (4 x .1 pf) 8 Clock
Output —{m C3=.1uf Periods
b 16 L] A7 A15 [25
] Input 17 & A8 A14 3 24
Halt Inputs 18 . Ao A13 [23 Note: A RESET switch may be used where
automatic operation is not required
19] A10 A12 [22
21
20 4 A1 Vgs (F——¢ Vce
4§
*HALT may be tied high similarly to IRQ — 5% 5%
and NME as long as the HALT circuitry p—
will not allow the HALT transition to e
occur during the last 250 ns of ¢1 -
(L
4 ¥
f | t 1
™9 i m t
5 ms 400 ms
TiMe ————-

FIGURE 4-2.3-1. Automatic Reset and HALT Synchronization

has reached the minimum level. The particular RC values shown were chosen to be used with a crystal oscillator
clock circuit which has a start-up time of approximately 100 ms. A 400 ms time out was used to cover the
tolerances of the components used with room to spare. In an application requiring minimum reset delay, a
counter could be used to determine when the 8 clock cycles were complete.

The interrupt inputs, IRQ and NMI, need not be tied high if they are not used due to internal pull up
resistors, but greater noise immunity will be had if they are tied high with a 5.1K() resistor. In wired-or
interrupt applications, a pull up resistor of 3.3K() will provide optimum device operation.

The HALT input must not make a transition during the last 250 ns of ¢1. If this input is to be used in
applications requiring the MPU status be saved (most applications), it must be synchronized with the leading
edge of ¢1 or the trailing edge of ¢2. A flip-flop will accomplish this synchronization, or the circuitry
generating the HALT request may use the system clock and not require extra hardware. This input also may be
wire-ORed using an external 3.3K() pull up resistor.

Single instruction operation, which is useful during debug, is accomplished by holding the HALT
high for one ¢1 clock cycle (Figure 4-2.3-2).

" ——z}l—
Non Overlapping Clock
Is Exaggerated
] 2 _L
¢2 L €

HALT

3 2) For Single Instruction

Operation ONLY
«}— No MPU Activity —a}———————— Execute One Instruction —>‘

FIGURE 4-2.3-2. Single Instruction Timing

The circuit and timing diagrams of Figure 4-2.3-3 show how the single instruction execution can be
accomplished in conjunction with the HALT input restrictions.

When the GOHALT switch (S2) is in the GO position, A will be low after the first &1 clock
causing the ﬁA_LTinput to be high. When the GO/HALT switch (S2) is in the HALT position, A will be high
after the first ¢1 clock. Since S1°s normal position causes C tobe low, signal B will be high. A and B
high cause the HALT to go low halting MPU activity.

When S1 is pushed, C goes high allowing the next positive ¢1 transition to clock F1. Since the J
and K inputs of F1 are 1 and O respectively, this clock will cause D togohighand B to golow. TheJandK
inputs of F1 are now both 1. The next positive ¢i transition will cause D to go low and B to go high
clocking F2. J of F1 now goes low. With both J and K of F1 low, any further clock transitions will cause no

change in the outputs until C isagainmadetogolow. A and B are NANDed to produce the HALT input
signal.

4.44

Vee

10 k

S1 is a Momentary
Contact Push Button
Switch

<
C 2
5
Step One Instruction CLR CLR
When S2 in HALT 14 J o 12 D u 3)
1
11— L———OICLK CLK
7473
* F1 F2
3 - —
7400 K Q 13 —B- K Q 8
E
Vce
+5
1K
10 13 B
9 7400 TO HALT
Q Of MC6800
A
11
S2 Toggle CLK
Switch
s2 Go 12 D L8 Timing for GO to HALT/one instruction
__! Halt 10k 17479 1 I fﬁ-l [| I I | (t [| l I
Vee (L _{(
7)7
S2
Timing for HALT to GO
iming for p 4{(
&1 I I l I ’ A J)
{f
s2 | ¢ ,,,J |
f i
HALT D Y] I (L
3)
HALT GO
{L
£ 11 "I l
S
1
=R S i
1
Execute One
GO HALT Instruction e HALT
FIGURE 4-2.3-3. Single Cycle Instruction Execution

4-45

4-2.4 INTERVAL TIMER

A hardware interval timer circuit can be used to provide the MPU system with timing interrupts that
are under program control. This allows the system to perform other functions while long critical timing
functions, e.g., disk head step time during seek, printer line feed solenoid hold period, cassette gap and record
length, etc., are performed by the interval timer. An interval timer using an MC6820 PIA to interface to TTL

timing circuitry shown in Figure 4-2.4-1.

Table 4-2.4-1 shows how the interval timer of Figure 4-2.4-1 is programmed. An 8 bit binary count
(COUNT) is preset into the MC74455 up/down counter from Output Register B of the controlling PIA (If a
MC74454 counter was used, a 2-digit BCD value may be used). The counter then counts this value down to
zero using the clock rate provided by the programmable divider circuits. When the counter reaches 0, the SEO’

output triggers the CB1 input of the PIA generating an interrupt to the operating system.

I

PRESET(Load)

L

r

-

cB1 p§

PB®

Do

D1

D2

MC6820

D3

D4

o O hr 0N =

D5

1]

D7

© |o |vwjo jo|d Jw N |-

—))
L1

—= ve

PRST
SET

13
I_ u/D
14

PA ¢

12

13
10

MC6820

m O w >

MC9312

X5 Xg X3 X2 X1 XgXg X7

5 —

Clock

MC74455

15

SEO

¢t

4 13 12

MC74452

1 2 14 15

1 Latl 1

M

1

4
MC74452

2 14 15

13 12

l

L—l———{h

FIGURE 4-2.4-1. Interval Timer

4-46

PAO-PA3 CLOCK INTERVAL

b3 | b2 | b1 [bo FREQ TIMER DELAY

0|J]0|0]O0 0 —

00|01 100 Hz COUNT X 10 ms

0| 0|1 0 1 KHz COUNT X 1 ms

0] 0|1 1 10 KHz COUNT X 100us

0] 1 0|0 100 KHz | COUNT X 10us

0] 1 0] 1 1 MHz COUNT X 1us

o|l1|1]0 0 -

011 1 1 0 -

1 ojo| o 0 -

Count = Binary Value of PBO — PB7

01800 ® Interval Timer 8-Bit Prescale Constants
01800 0005 01UsS EQU 5 1 Microsecond Clock
01800 0004 010US EQU 4 10 Microsecond Clock
01800 0003 0100US EQU 3 100 Microsecond Clock
01800 0002 01MSs EQU 2 1 Millisecond Clock
01800 0001 010MS EQU 1 10 Millisecond Clock
01801 ® Interval Timer 16-Bit Prescale Constants
01801 0500 S1US EQU 1280 1 Microsecond Clock
01801 0400 S10US EQU 1024 10 Microsecond Ciock
01801 0300 S10PUS EQU 768 100 Microsecond Clock
01801 0200 S1MS EQU 512 1 Millisecond Clock
01801 0100 S10MS EQU 256 10 Millisecond Clock
01900 5000 ORG 15000 10 Millisecond Clock

TABLE 4-2.4-1. Interval Timer Programming Chart

The programmable divider uses the PAO-PA2 lines of the PIA to control the MC9312 8-channel data
selector which acts as a single pole 8 position switch. A 4 decade divider chain is provided by the 2-MC74452
dual decade counters. The input clock (¢1, nominally 1 MHz) and all 4 decade outputs (100 KHz, 10KHz, 1
KHz, 100 Hz) are provided as inputs to the data selector. Table 4-2.4-1 shows the various data selector output
frequencies and the resulting delay generated. The binary value of COUNT is preset into the MC74454 counter
as the starting point of the count down. The counter counts down at the rate determined by the code in PAO-PA3
until the zero state is reached at which time SEO goes low causing a MPU interrupt. A one written in bs of
Peripheral Register A causes PA3 to go high, disabling the clocks to the MC74455 and the interval timer. The
timer may also be disabled by selecting a grounded input code on the 9312 as noted by “‘0”’ clock frequency in
Table 4-2.4-1.

Figure 4-2.4-2 shows examples of software control of the interval timer hardware in Figure 4-2.4-1.
In these examples, it is assumed that the PIA’s are already intialized to provide PBO-PB7 and PAO-PA3 as data
output lines (ones in the Data Direction Registers). In the first example, the control registers for the A and B
sides of the PIA are initialized to provide access to Peripheral Register B, to provide a negative pulse on CB2
when the B Data Register is written into, and to cause an interrupt on the IRQ line when CB1 sees a negative
transition. Control Register A is set up to provide access to Peripheral Register A. The clock rate of 1
millisecond is binary 0010 or decimal 2 from Table 4-2.4-1 and is stored in XP2DRA (Peripheral Data Register
A) which outputs 0010 on PAO-PA3 selecting the clock rate. The counter value of decimal 236 is stored into
XP2DRB (Peripheral Data Register B) causing binary 1110 1100 to appear on PBO-PB7 and CB2 to pulse low,

4-47

** 236 MS TIME OL'JT USING 8 BIT PRESCALE

LDAA #%00101101 PRB ACCESS, CB2 PULSE LOW, CB1 |

STA XP2CRB STORE IN CONTROL REGISTER B

LDAA #%00000100 PRA ACCESS

STA XP2CRA STORE IN CONTROL REGISTER A

LDAA #CIMS CLOCK RATE

LDAB #236 COUNTER VALUE

STAA XP2DRA OUTPUT RATE TO PAO-PB3

STAB XP2DRB OUTPUT COUNTER VALUE TO PBO-PB7
CiMS EQU 2 1 MILLISECOND CLOCK RATE

** 236 MS TIME OUT USING 16 BIT PRESCALE

LDAA #$0010101 PRB ACCESS, CB2 PULSE LOW, CB1 ‘

STA XP2CRB STORE IN CONTROL REGISTER B

LDX #S1MS+236 LOAD INDEX REGISTER WITH S1MS+236

STX SP2DRA RATE TO PAO-PA3, VALUE TO PBO-PB7
S1MS EQU 512 1 MILLISECOND CLOCK RATE

FIGURE 4-2.4-2. Timer Software Examples

thereby, presetting the MC74455 counter. CB1 is monitoring the SEO output of the counter waiting for a low
transition indicating that the counter has reached the zero state, resulting in the required 236 msec delay.

The second example uses different software code to arrive at the same result. The initialization of the
PIA’s is the same as discussed previously. In this case, the index register is used to form a 16-bit word which is
then loaded into PRA and PRB. Address line AO is connected to RS1 and A1 is connected to RSO of the PIA so
that PRA and PRB are consecutive memory locations. The 16-bit word is formed by loading the sum of S2MS
and decimal 236 into the index register. Note that SIMS always will occupy XH and the offset (which has to be
less than 255) will always occupy XL of the index register. By storing this value to XP2DRA (Peripheral
Register A), SIMS will be loaded into PRA and 236 will be loaded into PRB (the next memory location). This
technique of connecting the PIA for adjacent Peripheral Reg. locations and using the Index instructions to store
two bytes at a time produces the same result as the previous example with less code.

4-2.5 MEMORY SYSTEM DESIGN
4-2.5.1 Interfacing the MC6800 with Slow and Dynamic Memories

There are many different system configurations utilizing the MC6800 microprocessor (MPU) with
memories that are not a part of the M6800 family. In many applications, the most cost effective system will use

memories that are § gslower than the 575 ns access time reqguired b l'\v the MCARQ) running at rnmnmnm gsneed or

~ 1S A Uoliiiav ivye AVASAATOUNS Adiiiiig 222222k Spe S

will be of the dynamic type so that the refresh requirement of the memory will have to be handled by the system.

4-48

The purpose of this section is to discuss methods of operating the MC6800 with these two classes of memories
and to describe the operation of the MC6800 in relationship to memory usage in enough detail so that the user
can develop system configurations using slow and/or dynamic memories.

The MC6800 microprocessor uses two non-overlapping clocks to time the execution of the program
by the MPU. Figure 4-2.5.1-1 details the specification of the clock requirements for the M6800 family. The use
of dynamic registers inside of the MC6800 places the following timing restriction on the clock waveforms. The
clocks can be held in one state for a maximum of 5 us without loss of the information contained in the dynamic
registers.

In Figures 4-2.5.1-2 and 4-2.5.1-3 are the timing diagrams of a M6800 Read and Write cycle. As
can be seen from these timing diagrams, during ¢1 control lines (address, R/W and VMA) are placed valid on
the MPU bus and during ¢2, data is transferred between the MPU and memories or peripherals.

The minimum cycle time is 1.0 usec and the following control signals are valid 300 nsec after the
leading edge of ¢1: R/W (TASR), address lines (TASC), and VMA (TVSC). During a read cycle, the data must be
valid on the data bus 100 nsec (TDSU) before the trailing edge of ¢2, allowing 575 nsec for memory or
peripheral access time (TACC) assuming a rise time on the clock waveform of 25 nsec. During a write cycle, the
timing is the same for the control signals; the MPU places data to be written on the data bus within 200 nsec
(TASD) after the leading edge of ¢2 and will hold the data valid for a minimum of 10 nsec (TH) after the trailing
edge of ¢2. This produces a minimum of 280 nsec (470 + 10 —200) of valid data (TPATA VALID) available to be
written into the memory or peripheral. Many memory or peripheral devices including the M6800 family
devices can meet this timing requirement and their use poses no problems.

SLOW MEMORY INTERFACE

The following discussion will describe some techniques that can be used to interface the MC6800
with memories or peripherals that have an access time slower than 575 nsec and/or require data valid during a
write operation for longer than 280 nsec. The basic technique of using the MC6800 with slower memories is to
lengthen or stretch ¢2, the data transfer portion of the MPU cycle. ¢2 can be stretched to a maximum of 5.0
msec, allowing use of memories with an access time of 5,105 nsec (575 + 5000 —470) and a write data valid
time of 4,810 nsec (280 + 5000 — 470). Operation of the MPU at these speeds is slow enough for the vast
majority of memory or peripheral devices on the market today. Operation with a slower device than can be
accomplished by stretching ¢2 to 5 usec is possible by using the interrupt feature of the MC6820 Peripheral
Interface Adapter and treating the extremely slow memory as one would a slow peripheral.

There are two ways to implement the stretching of ¢2 to accommodate slower memories. The first
and the simplest method is to stretch ¢2 every cycle regardless of whether the current cycle is an access to slow
memory or not. ¢2 should be lengthened by the amount the access time of the slowest peripheral or memory
exceeds 575 nsec (TACC of 6800). Examples are shown in Figures 4-2.5.1-4 and 4-2.5.1-5 for a slow memory
with access time of 1000 nsec with ¢2 increased by 425 nsec (1000-575). The cycle time of the MPU has now
become 1.425 usec, resulting in slower program execution by about 30% due to the slow memory. The
advantage of this approach is that it is the simplest to implement in hardware (only a change in the clock
waveforms is required). The disadvantage is the reduction of execution time and corresponding reduction in
data throughout.

If the MPU is servicing several slow peripherals, the reduction in MPU speed may not affect system
operation. However, in many systems such as real time control, the MPU speed is critical to system operation
and a 30% reduction would be undesirable. The second method of operation with slow memories that has a

4-49

g tcLk

- tyuT - — — —Vos
Y
—V|HC MIN
o1 Ve
= Tos
td
OVERSHOOT
Tos
¢2 - — — — —Vos
— =—V|_Lc MIN
li

— — —Vos
UNDERSHOOT
CHARACTERISTIC SYMBOL MIN TYP MAX UNITS
Input High Voltage ¢1, ¢2 VIHC Vce-0.3 — Vce + 0.1 Vdc
Input Low Voltage ¢1, ¢2 ViLc Vss-0.1 — Vss + 0.3 Ve
Clock Overshoot/Undershoot Vos ' Vde
Input High Voltage Vcce-0.5 Vcec = 0.5 Vde
Input Low Voltage Vss-0.5 Vss + 0.5
Input Leakage Current ¢1, ¢2
(VIN = 0to 5.25 V, Vcec = MAX) N — — 100 ua
Capacitance
(VIN = 0, Ta = 25°C, f = 1.0MHz) CIN 80 120 160 pf
Frequency of Operation f 0.1 — 1.0 MHz
Clock Timing
Cycle Time . teye 1.0 — 1.0 1
Clock Pulse Width
(Measured at Vcc-0.3 V) ¢l PWon 430 — 4500 ns
¢2 450 — 4500 ns
Rise and Fall Times ¢1, ¢2 tr, tf 5 — 50 ns

(Measured between
Vss + 0.3 V and Vcc-0.3 V)

Delay Time or Clock Overlap td 0 — 9050 ns
(Measured at Vov = Vss + 0.5 V)

Overshoot/Undershoot Duration tos 0 — 40 ns

Clock High Times tuT 940 — — ns

FIGURE 4-2.5.1-1. MPU Clock Waveform Specifications

4-50

/— Start of Cycle

Teye
1 Z Vee -0.3V \ f
— 03V
—» -t
¢2 —\ /
0.3 Vs:
e TASR—
20V 2.4V
R/W
Address 2 gy NN 24V
From MPU g g v 0.4V
a—— T ASC— ’
20V 24V
VMA
«—Tysc Tacc Tpsy—sf [«—TH
Data 20V 24V
From Memory
or Peripherals o8 Vv 0.4V

.
/
é

Data Not Valid

FIGURE 4-2.5.1-2. Read Data From Memories or Peripherals

/— Start of Cycle

teye

e—Tasp—™|

1 Z Ve -03V
0.3V
— -1
\% -0.3V
02 cC /
lg—— T —
ASR L 20v
R/W \
o8V
S —— e
Address 20V
From MPU 0.8 V__[\
la— T —
20V ASC
VMA
08v
'_'TVSC—",
Data
From MPU
DBE = ¢2

TH-——

o8 v

2A44V/

m Data Not Vatid

FIGURE 4-2.5.1-3. Write Data to Memories or Peripherals

4-51

TEH

0.4V

0.4v
24V

0.4V
24V

24V

E 0.4V

’/—— Start of Cycle

Teye

1

®1 [Vee -0.3 Vv \
0.3V

—
—>| 1,

* —\ / 0.3 V\L__

re——TASR—™
20V 24V
AW m
—— e, 24V
Address 20V
From MPU g g v \
Tasc 0.4V
20V 24V
VMA
le—Tvsc Tacc —>1e—TpSy— [e—Ty
Data 20V 24v
From Memory
or Peripherals 08V 04 v
m Data Not Valid
teye = 1.425 us ¢1 PW@gy = 430 ns Min
Tasa = Tasc = Tyvsc = 300 ns Min ®1 PWo = 895 ns Min

TACC= 1.0 us Max
Tpsy = 100 ns Min

FIGURE 4-2.5.1-4. Read Cycle With 1.0 us Memory

4-52

/— Start of Cycle

- teye

Vee -0.3 Vv \
1 v /
$1 o3v Z

Vee - 03V
2 / \
e—TASR—™ 20V
R/W
o8V 0.4V
—_— 24V
Address 20V
From MPU 0.8 V__\ ~ 0.4V
20Vt ASC—H 2.4V
VMA
o8 v
le— TyygC— re—TAgp— TH— -
24V
From MPU o8v ~_ 0.4V
\ 24V
DBE = ¢2 \ 0.4V
s
TeEH
RN Data Not Valid
teye = 1.425 gs $1 PWgo y = 430 ns Min
TASR:TASC=TVSC:300ns Max »2 PWOH= TEH=895 ns Min

TaspD = 200 ns Max

FIGURE 4-2.5.1-5. Write Cycie With 1.0 us Memory

smaller reduction in MPU execution time involves the use of a Memory Ready concept. In this configuration, a
MEMORY READY signal is used between the slow memory and the MPU clock circuitry to indicate that a
slow memory has been accessed. This signal goes low long enough for data to become valid out of the slow
memory. While MEMORY READY is low, ¢2, is stretched or lengthened as shown in Figure 4-2.5.1-6. This
technique only slows execution of the processor when the slow memory is being accessed. The amount by
which the throughput of the MPU is reduced due to the slow memory is directly proportional to the number of
slow memory accesses and can be evaluated for each system configuration. Memory devices do not inherently
provide a MEMORY READY type signal; this signal must be generated by the interface circuitry associated
with the slow memory system.

MPU 91 oL L] L 1
MPU 62 | N A L
Memary Ready l__—|_—

FIGURE 4-2,5.1-6. Effect of MEMORY READY on Clock Signals

4-53

A block diagram of a generalized MPU to memory interface is shown in Figure 4-2.5.1-7. The
address and control signals are shown buffered from the MPU bus to increase fanout (in a small system, this
may not be required). The low order address lines (AO to A9 for a 1K memory) and the R/W signal are routed to
the memory devices directly. The high order address lines, VMA, and ¢2 are decoded to select this memory
system using the Chip Select input of the memory devices. All high order address lines may be decoded,
however, in many small systems, this decoding logic may be eliminated by selecting the memory devices with
only one or two of the high order address bits. By not decoding all address lines, multiple areas of the 65K
address map are selected at the same time requiring careful assignment of addresses for memory and peripherals
(see the minimum system discussion in Chapter 1 for further explanation). The data buffers may be required for

AP —m
N Low Order
. Address Lines Memory Arra
(A0 — A9 For y Y
. Address 1K of Memory)
° Buffers
hd High Order
. Li
A5 Address Lines
*

R/W—@= Control '

VMA — g Signal _\L&A" Memory
Buffers ¢2 Decode
D2 — - —

Logic

* ok x

MPU Bus

D) ——m - Ge:::':etor - Memory Ready
: * %
° Data
. Buffers Input and Output Data Lines
[]
.

D7 —

*Optional Depending on Size of MPU System
**Required For Memory Ready Feature
***Can Be Replaced by Multiple Chip Select Inputs on Memory Devices

FIGURE 4-2.5.1-7. General MPU to MEMORY INTERFACE

system fanout considerations or may be required to combine the separate data input and data output lines found
on many memory devices into bidirectional data lines as required by the MPU. If the memory devices chosen
are not fast enough to meet the MPU timing requirements at maximum operating frequency of 1 MHz, pulse
generating circuitry can be added to provide the MEMORY READY signal. This signal can be triggered by the
Chip Select decoding logic to stretch ¢2 of the current cycle long enough to allow proper operation of the slow
memory devices.

4.54

DYNAMIC MEMORY INTERFACE

All dynamic memories have the basic characteristic that they require periodic refreshing of their data
storage elements (usually capacitors). Most dynamic memory devices handle this refresh requirement by
performing 32 or 64 refresh cycles every 2 msec. During these refresh cycles, the memory is not available for a
Read or Write cycle from the system bus (by MPU or DMA). The ‘‘memory busy’’ period for most dynamic
memory devices is of short duration, normally 1-5% of the total time.

The simplest method for handling this refresh requirement is to steal MPU cycles in order to refresh
the memory. The effect of the stolen processor cycles on system operation is to slow program execution or data
throughput. Figure 4-2.5.1-8 shows the dynamic memory interface and the clock waveforms associated with a
cycle steal configuration. During ¢1, address control signals are set valid by the MPU in preparation for the

®1 Address and
EE—— Control Bus
®2 MC6800
PAN
—¢1 4
Clock ® Dynamic
Circuitry 8 Memory
—o¢2 &

V

Refresh Request

Refresh Grant

Memory Clock

e
woswsr [[T (I

wosse | [[] 11

Occurs Every 62.5 us

Refresh Grant I]
wemovooe | [| [1 [LT 1 [1
Don’tCare

)

FIGURE 4-2.5.1-8. Dynamic Memory Interface

4-55

data transfer during ¢2. By stretching or lengthening the ¢ 1 portion of the cycle, program execution is delayed,
allowing memory refresh to take place. Circuitry in the memory system controller multiplexes in the refresh
addresses and controls the memory R/W and CS lines to provide proper signals for the refresh cycle. For a
dynamic memory that requires 32 cycles of refresh every 2 msec and with the MPU running at the maximum
clock rate of 1 usec, the reduction in MPU speed due to clock stealing would be 32 x 1 usec (100) = 1.6%.

2 msec
In most systems, this reduction in program execution time would not affect system performance.

In some systems, the design constraints may be such that a reduction in program execution time due
to memory refresh requirements cannot be tolerated. For these types of systems, a ‘‘hidden’’ refresh
configuration may be used. The place to hide or perform the memory refresh independent of MPU program
execution time is during ¢1 as no data is being transferred between the MPU and memory or peripherals. This
technique places the additional constraint on the dynamic memory system of being able to perform a complete
refresh cycle during ¢1 (430 ns minimum) and a complete Read or Write cycle during ¢2 (470 ns minimum) if
the MPU is to operate at full speed. Using this concept only 32 of the ¢1 periods every 2 msec are used for
refreshing (for the dynamic memory discussed earlier) leaving the other ¢1 time periods open for other uses.
One use would be for a DMA transfer from some external source. In this mode, DMA and memory refresh
would share the ¢1 portion of the cycle while the MPU would have access to the memory during ¢2 portion of
the cycle. See Section 4-2.2 for a further discussion of DMA techniques.

4-56

CLOCK CIRCUITRY FOR SLOW AND DYNAMIC MEMORIES

The circuitry to modify the clock signals to interface the M6800 with dynamic and slow memories as
described above can be evolved from the clock circuitry described in Section 4-1.1.1. Figure 4-2.5.1-9
illustrates a previous clock circuit (Figure 4-1.1.1-3) with a crystal stabilized source which has been extended
to include interface signals for dynamic (REFRESH REQUEST and REFRESH GRANT) and slow memories
(MEMORY READY). Note that the only extra parts required are a MC7479 dual latch, MC7404 hex inverter,
and a pair of 10K ohm pull-up resistors. The state of REFRESH REQUEST is sampled during the leading edge
of ¢1 and, if it is low, the ¢1 and ¢2 clocks to the MPU are held in the high and low states respectively for at
least one full clock cycle. A high REFRESH GRANT signal is issued to indicate to the dynamic memory
system that this cycle is a refresh cycle. Upon receipt of the REFRESH GRANT signal, the memory system
controller sets REFRESH REQUEST back high which is clocked through on the next leading edge of ¢1,
thereby restoring the system back to normal operation. The MEMORY READY line is sampled on the leading
edge of ¢2 and, if low, the MPU ¢1 and ¢2 clocks are held in the low and high states, respectively. The clocks
will be held in these states until the MEMORY READY line is brought high by the slow memory controller,
allowing the slow memory controller to determine the amount by which ¢2 is stretched. Figures 4-2.5.1-10a, b
show the effect of REFRESH REQUEST and MEMORY READY signals on the MPU clocks. Note that the
REFRESH REQUEST signal is asynchronous with the MPU clocks as it is generated by the refresh oscillator in
the dynamic memory controller. Figures 4-2.5.11a, b shows the phase relationship between MPU ¢2, BUS
¢2, and DYNAMIC MEMORY CLOCK. Note that BUS ¢2 and MPU ¢2 are in phase and that DYNAMIC
MEMORY CLOCK leads MPU ¢2 to help offset delays added by the memory system controller in decoding
the level shifting this signal onto the memory array.

4-57

8S-p

1/6 MC7404

—>—1D

Y% MC3001

Dynamic
Memory

Clock

L

+5V

.tuf Ceramic %

By

% MC3001

Oscillator
K1100A Y MC3000 % MC3000 % MC3001 % MC3001 % MC3000
1 MHz 50 2% Duty Cycle -/ 2H00) (74+108)
+5v
10K % MC7479 % MC7479
Refresh > D a — D o o
Request
Do c ey _.Do_._ c
1/6 Mc7404| RS 1/6 R _S
? ? MC7404 ? T
+5V +5V
Refresh
Grant
+5V
10K
Memory
Ready ~
NOTES:

1. Unless otherwise noted

All resistors are carbon composition %W, = 5%
All capacitors are dipped MICA + 2%

2. *MPQ 6842

+5V

.1uf Ceramic ‘I‘I

% Mc3000

MPU ¢1

MPU ¢2
DBE

D,

Slow and Dynamic Memory

FIGURE 4-2.5.1-9. MPU Clock Circuitry with Interface for

MPU @1

MPU ¢2

REFRESH REQUEST

5V/cm

REFRESH GRANT

500mv 500nS uS 10x

500 ns/cm
(a)
MPU Clocks, REFRESH REQUEST, REFRESH GRANT

MPU ¢1

MPU ¢2

MEMORY READY

500 ns/cm

(b}
MPU Clocks, MEMORY READY

FIGURE 4-2.5.1-10: MPU Clock Circuitry

4-59

Mem Clk: 4 V Pulse MPU ¢2: 6 V Pulse

1 V/em

100 ns/cm
(a)
Dynamic Memory Clock and MPU 02

Bus$2: 4 V Pulse MPU ¢2: 5 V Pulse

1 V/ecm

100 ns/cm
{b)
Bus ¢2 and MPU ¢2

FIGURE 4-2.5.1-11: MPU Clock Circuitry

4-60

The circuit in Figure 4-2.5.1-12 shows how the MEMORY READY concept can be added to the
cross coupled monostable clock generator of Figure 4-1.1.1-5. The MEMORY READY feature is incorporated
into this circuit by switching an additional timing resistor in or out of the ¢2 pulse width generator. By selection
of the timing resistors for ¢1 and ¢2, all combinations of ¢1, ¢2, and stretched ¢2 pulse width can be

generated.
+5 V +5V +5 V +5 V
01 02
11 K 1% 22 K 1% 22K 1%
100 pf 100 pf 4
. Memory
| p |‘ b Ready
|] 1N4148
Tt T2 T1 T2
MC8602 Q -—-l >O—{ >0 — Bus 2
1/3 MC7404 +5 V
i > A ufcC i
c _ pf Ceramic
L Q+—e
Cp
e .
MPU ¢1
+5 Vv +5 V
NOTE:
1) Unless otherwise noted .1 uf Ceramic
All resistors are carbon composition %W, £5%
All capacitors are dipped mica *2%
2) *MPQ6842
MPU ¢2
DBE
*MPQ6842

FIGURE 4-2.5.1-12. Monostable Clock Generator with Memory Ready

4-61

4-2.5.2 2K X 8 RAM Memory Design Example

This section will describe the design of a memory system for the MC6800 microprocessor using
memory devices that are not a part of the MPU family but that are cost-effective choices in many MPU based
system designs. The intent is to demonstrate the ease with which memory systems can be designed around the
MC6800 because of its straightforward architecture. The MPU signals to be considered in the memory system
design are the clock signals (¢1 and ¢2), the 16 bit Address Bus, the 8-bit bidirectional Data Bus and the control
signals: Valid Memory Address (VMA), Read/Write (R/W), and clock control signals such as MEMORY
READY, REFRESH REQUEST or REFRESH GRANT if they are required.

The MCM6602, 1K X 1 static RAM, can be a cost-effective hoice for MPU memory systems in the
size range of 1K bytes up to about 8K bytes. Below 1K bytes, memory systems composed of the MCM6810

will probably be the cost effective choice. Memory systems larger than 8K bytes will probably use a 4K RAM
such as the MCM6605 in order to be cost effective. In this section, the detailed design of a 2K X 8 memory
system is described for the MC6800 MPU using sixteen MCM6602 L-1 N-channel static MOS RAMs. This
memory system is available from Motorola as a component module of the EXORciser.

The 2K Static Memory System (illustrated in Figure 4-2.5.2-1) receives the 16 address bits AO
through A15, the ¢2 timing signal, the 8 bit bidirectional data bus, VMA (Valid Memory Address) signal, and
a R/W (Read/Write) command during each MPU memory operation. The system address lines connect to the
address bus interface and the ¢2, VMA, and R/W inputs from the MPU connect to the control bus interface.
Data lines connect to the Data Bus Interface.

CE1
Ram1
Memory |=&
Array
3
8 DO-D7
AQ0-A9 F
£ 7 Bus a7
Interface
10
Address A10-A15 CE2 A
_ Lo Bus k
AQ-A15 Interface
16 RAM1 RAM2
Select —@ Memory
Circuit Array
I
//6
/6 » RAM2
7 Select A
A10-A15 Circuit
[
2
$2 | Control VMA
VMA —p Bus —
Interface | R/W & R/W 2
R/W i // Tan
R/W
Control
— Logic
9 R2 R/W
DOE

FIGURE 4-2.5.2-1. 2k X 8 Memory System Block Diagram

4-62

The address bus interface, after buffering the inputs, applies the ten address bits A0 through A9 to
the RAM 1 and RAM 2 memory blocks. (Refer to Figure 4-2.5.2-2, the Schematic Diagram) The address bus
interface, at the same time, applies the six address bits A10 through A15 with their complements to the RAM 1
and RAM 2 select circuits. The control bus interface applies the VMA signal to the RAM 1 and RAM 2 select
circuits and ¢2 with the R/W signal and its complement to the control logic. The two RAM select circuits
decode the address bits and determine whether the MPU is addressing their respective RAM memory block.
Since the two RAM select circuits and the RAM memory blocks are identical, only the RAM 1 select circuit and
the RAM 1 memory block will be discussed in detail.

The RAM 1 select circuit consists of two base memory address switches and a decoding circuit. The
address switches allow the 2K X 8 of memory to be allocated as two independent 1K X 8 blocks any where in
the system’s 65K memory field. The base address switches select the base memory address for the RAM 1
memory block and the decoding circuit determines when its memory is being addressed. The RAM 1 select
circuit, on determining that its memory is being addressed, couples a CE1 (m) signal to the RAM 1
memory block and to the control logic. The RAM 1 memory block, consisting of eight 1K X 1 bit MOS static
RAM chips, is then enabled to perform a merﬁory read or memory write operation.

During a memory read operation, the control bus interface receives a high level R/W signal and
applies this signal with its complement to the control logic. The control logic now transfers a hi ghlevel R1R/W
(Read Memory 1 Read/Write) pulse to the RAM 1 memory block and couples a DOE (Data Output Enable)
signal to the data bus interface. The high level R1 R/W pulse instructs the RAM 1 memory block to perform a
memory read operation (providing the address select signal, CEl, is low) and the DOE signal instructs the data
bus interface to transfer the memory’s output to the MPU via the system bus.

During a memory write operation, the control bus interface receives a low level R/W si gnal and the
data bus interface receives the eight data bits DO through D7. The control bus interface applies the low level
R/W signal and its complement to the control logic and the data bus interface applies the data bits to the RAM
memory blocks. The control logic now reads the position of the RAM 1 RAM/ROM switch and determines
whether the RAM 1 memory block is protected or may be written into. When this RAM/ROM switch is in the
ROM position, the switch inhibits the control logic from initiating a memory write operation. When the switch
is in the RAM position, however, it enables the control logic to generate a 470 nsec low level R1 R/W pulse.
This low level pulse instructs the RAM 1 memory block to perform a memory write operation and to store the
data it receives from the data bus interface. (If the address select signal (CE1) is low).

The following paragraphs discuss the operation of the various circuits contained on the 2K Static
RAM Module. Refer to the module’s block diagram in Figure 4-2.5.2-1 and schematic diagram in Figure
4-2.5.2-2 as required.

The address bus interface, consisting of U1 through U4, receives and buffers the 16 MPU address
bits Al through A15. Address bits A0 through A9 are applied to the RAM 1 and RAM 2 memory blocks. The
address bus interface applies the six address bits A10 through A15 and their complements to the RAM 1 and
RAM 2 select circuits. The control bus interface, U5, receives and buffers the ¢p2, the VMA, and the R/W
signals. The control bus interface couples the ¢2 and VMA signals to the RAM 1 and RAM 2 select circuits and
applies the R/W signal and its complement to the control logic circuit. Ul through U5 are MC8T26 bus
receivers which provide very light loading on the MPU bus so that the fanout is not reduced appreciably. The
loading of these devices is —200 ua for a logic 0 and +20 pa for a logic 1.

The RAM 1 and RAM 2 select circuits decode the address bits and determine whether the MPU is
addressing their respective RAM memory blocks. Since the two RAM select circuits are identical, only the
*To be introduced third quarter, 1975.

4-63

RAM 1 select circuit is discussed in detail with the RAM 2 select circuit components identified parenthetically
after the RAM 1 select circuit components.

The RAM 1 select circuit consists of the two switches S1 and S2 (S3 and S4) along with gate U8
(U9). Switches S1 and S2 (S3 and S4) are set during use and, through their switching of bits A10 through A15,
select the base memory address for their respective memory block. The position of each switch determines
whether the switch is coupling the address bit or its complement to gate U8 (U9). Gate U8 (U9), on receiving a
VMA signal, decodes the switches outputs and determines whether the MPU is addressing its memory block. If
its memory block is being addressed, U8 (U9) couples a CE1 (CE2) signal to the RAM 1 memory block (RAM
2 memory block) and to gate U10A of the control logic circuit.

The control logic circuit decodes the CE1 (CTZ) signal, the R/W, the ¢2 clock signal, and the
position of the RAM/ROM switches to determine whether to read data from, to write data into, or to inhibit the
write function of the selected RAM memory block. Each time one of the RAM select circuits determines that
the MPU is addressing its RAM memory block, this circuit causes gate U10A to couple a high level to gates
U6A and U6B. During a memory read operation, the control bus interface applies a high level R/W pulse to gate
U6A and R/W to gate U6B. Gate U6A is enabled by U10A when either memory is selected and with gate U6D
applies the DOE Data Out Enable signal to the data bus interface. The low level R/W pulse to U6B inhibits this
gate. The output of gate U6B remains low and forces gates U10B and U10C to continue holding the R1 R/W
and R2 R/W signals high. The high level R1 R/W and R2 R/W signals instruct the enabled RAM memory block
to perform a memory read operation.

During a memory write operation, the control bus interface applies a low level R/W pulse to gate
U6A and R/W to gate U6B. Gate U6A is now inhibited from generating a DOE signal. The high level RIW
pulse to U6B enables this gate and gates U10B and 10C. Gates U10B and U10C decode their RAM/ROM
switches and determine whether the selected RAM memory block is to perform a memory write operation. If
the RAM/ROM switch to the selected RAM memory block (switch S5 for the RAM 1 memory block and switch
S6 for the RAM 2 memory block) is in the ROM position, the low level from this switch inhibits its respective
gate from going low. If, on the other hand, the RAM/ROM switch is in the RAM position, the ¢2 pulse is
coupled to U10B and U10C to generate a low going write pulse. This low level pulse instructs the enabled RAM
memory block to perform a write operation.

The RAM 1 and RAM 2 memory blocks consist of eight 1024 X 1 bit memory chips. The ten address
bits A0 through A9 and the output of its RAM select circuit determine when the MPU is addressing this memory
block. The control logic determines whether data is to be written into or read from the selected RAM memory
block.

The data bus interface, consisting of U27 and U28, provides a two-way data transfer of data bits DO
through D7 between the MPU and the 2K Static RAM Memory. These integrated circuits provide TTL
compatible inputs and three-state outputs. When the MPU has selected one of the module’s RAM memory
blocks during a memory read operation, the data bus interface receives a high level DOE signal and is enabled
to transfer data from the 2K Static RAM. At all other times, these outputs are in the high impedance state.

The timing diagram of Figure 4-2.5.2-3 shows a Read operation of the memory system design in
Figure 4-2.5.2-2 operating with the MPU’s control lines and busses driving the memory board directly. The
waveforms assume a delay of 20 nsec through the driver portion and 18 nsec through the receiver portion of the
MC8T26. The control lines R/W, Address, and VMA are specified to be valid within 300 nsec after the leading
edge of $1 (TASR, TASC, and TVSC). The delay from the address bus of the MPU to the address inputs of the

MCM6602 is composed of a receiver and a driver portion of a MC8T26 in series. This time totals 20 + 18 = 38

4-64

Start of Cycle

Teye
o1 41 Vcc-03v
03v
—t, '
2\ / _
03v
—TASR —]
0.2V : 24v
R/W
MPU 2.0 Ve 2.4V
Address Bus 2.9 v
24v
<—T ASC —»
2.0V 2.0V
VMA \
—TvsCc—
38 ns] \‘_

Memory 20V N

Addresses W\

— — — 60 ns —
CE1 or CE2 F60 ns

- Tacc —
Memory 20v
Output 0.8V
. ———————————
20 ns —po{ |eg— — l—TH
l— Tpsy —
MPU Data 20V
Bus 0.8 v

m Data Not Valid

MPU/2k X 8 Memory Read Cycle

FIGURE 4-25.2-3

nsec. At this point in time, the addresses on the memory devices are valid and the access time can begin. The
access time of the MCM6602L-1 is 500 nsec maximum, that is, data out of the RAMs during a read cycle is
valid 500 nsec after the addresses are valid. The data encounters an MC8T26 driver delay of 20 nsec before
reaching the MPU data bus. The data set up requirement of the MPU is 100 nsec before the falling edge of ¢2.
By using the above data, the margin in this system when operating at the maximum MPU clock period of 1000
nsec can be calculated as follows (refer to Figure 4-2.5.2-3):

tr 25 nsec

TASR 300 nsec
MCS8T26 38 nsec
TAccC 500 nsec
MC8T26 20 nsec
TDSU 100 nsec
TCYCLE 983 nsec

4-67

Since this is 17 nsec less than the minimum MPU clock period of 1000 nsec, this MPU/memory
system configuration has a margin of 17 nsec during a read cycle. The CE signals are enabled by decoding the
upper address lines, A10-A15, in gates U8 and U9. Since the addresses are valid during ¢1, the ‘CE signals
become the inversion of VMA when the correct addresses are decoded. The CE signals will be held low past the
falling edge of ¢2 due to the holding effect of bus capacitance and the delay into the next ¢1 for the MPU to set
new addresses.

The write cycle of this system may be analyzed in the same manner using the timing diagram shown
in Figure 4-2.5.2-4. The control signals from the MPU (Addresses, VMA, and R/W) become valid within 300
nsec after the leading edge of ¢1. The CE signals are delayed from the address and VMA valid points by a
receiver and driver section of the MC8T26 and the delay of the MC7430 Nand gate. This delay is 18 +20 + 22
= 60 nsec. Assuming that the RAM/ROM switch is in the RAM position, the R/W pulse on the memory devices
is $2 delayed by a receiver and driver of the MC8T26 plus the delay of U10 (MC7400). This time is (18 + 20 +
22) also 60 nsec producing a write pulse skewed from ¢2 as shown. The data hold requirement of 100 nsec for
the MC6602 is met by extending Data Bus Enable (DBE) beyond the trailing edge of ¢2 to hold the data on the

teye
o1 —Vce-03V
- 0.3 Vv
g—1r
o2 \ Vee - 0.3 V](: _\(
lat— T ASR —]
TR 2.0 V
R/W SRR
8V
0 0.4V
E— I 2.4V
Address 2.0 VTR
From MPU 0.8 V SN —
2.0V N
X
VMA X
08V

60 ns — ~ 150 ns
CE1 or CE2
{750 ns)
R/W 60 ns —p ‘v— — 60 ns
TASD—= h— 100 ns Min
2.0V =] 2.4
MPU Data Output
0.8V [04

e

18 ns—g —> |[«4—18ns
2.4
Memory Data !nput 20V
0.8V 0.4

Teh ’l Ty

DBE 2-2/_7? k__
&\\\\\‘ Data Not Valid

FIGURE 4-2.5.2-4. MPU/2 k x 8 Memory Write Cycle

4-68

bus valid. Memories of this type vary in their data setup requirement (tpy) from 150 ns to 330 ns depending on
manufacturer. The MCM6602L-1 as well as the 2102 types have the 330 ns requirement. In order to meet this
requirement the ¢2 pulse width required can be calculated as follows (see Figure 4-2.5.2-4):

¢2 PW =TASD + 18 ns + tpy — 60 ns.
¢2 PW = 200 + 18 + 330 — 60 = 488 ns.

In many system designs, it may be cost effective to design this memory system with the MCM6602L
which has an access time of 1 us. This slower memory can be handled using one of the two methods discussed
in Section 4-2.5.1. The first method is to stretch ¢p2 every processor cycle to accommodate the slow memory as
detailed in Figures 4-2.5.1-4 and 4-2.5.1-5. The other method is to use the Memory Ready concept. This can be
accomplished as simply as the following: Assume that the clock circuitry used for the MPU is as shown in
Figure 4-2.5.1-9. Alow level on the MEMORY READY line will stretch ¢2 for that cycle. The time constants
of the U1-B monostable can be adjusted to provide the correct ¢2 width during normal operation (470 nsec) and
to provide the correct width (895 nsec for TACC = 1 usec) when the MEMORY READY line is low indicating a
slow memory access. The additional circuitry required in the 2K memory system of Figure 4-2.5.2-2 to
implement MEMORY READY consists of one inverter. The output of U10A goes high 360 nsec after the
leading edge of ¢1 if this memory is addressed. The inverse of this signal, called MEMORY READY, controls
the clock circuit of Figure 4-2.5.1-9. These signals are shown in Figure 4-2.5.2-3.

Normal Slow Memory
Cycle Access
1 us 1.425 us
Lﬂ -

MPU ¢2

1 |

o] feasom

U10A Output
Fig. 4-2.5.2-2

Memory Ready

FIGURE 4-2.5.2-5. 2 k X 8 Memory System with Memory Ready

4-2.5.3 8K X 8 Non-Volatile RAM Deisgn Example

Many system designs can be optimized by using the high bit density and low cost/bit offered by
dynamic memories (i.e., those that store information on a capacitor which must periodically be recharged or
refreshed). At this time, the 4K X 1 dynamic RAM is the most cost effective choice for large memory systems
(=4K bytes). Because these memories are dynamic and require refreshing, the system designer must handle the

4-69

dynamic memory slightly differently than static memories. Refer to Section 4-2.5.1 for a discussion of
techniques and clock circuitry used for interfacing the MPU with dynamic memories.

This section describes the design of a 8192 byte Non-Volatile memory system for an MPU based
system using dynamic 4K RAMs and CMOS control logic. This system was designed to be an add-on memory
for the EXORGciser,* a System Development Tool in the M6800 Microprocessor family.

MEMORY DEVICE DESCRIPTION

The memory device used in this system is the MCM6605L-1, 24096 word X 1 bit, dynamic Random
Access Memory (RAM). The dynamic characteristic of this memory device requires that refreshing of the
memory cells be performed at periodic intervals in order to retain the stored data. This device was chosen for the
following features: high bit density per chip and correspondingly low price per bit, standby mode with low
power dissipation, TTL compatability of inputs and outputs, and speed characteristics compatible with
microprocessors and the EXORciser.

Figure 4-2.5.3-1 is a functional block diagram of the MCM6605L-1. The single external Chip

A10A9A8 A7A6 AS AOA2A4
o1 20 1918 17 16 15 1310 9
— °9 979 99
Enable 6 = 02
—a~ ©3 _‘] [_‘
T Bit Bit L o _J Bit Bit [_
4095 4064 2047 2016
H 3
£ £
4 _ 4
@
23 28
Q '
%] (%]
st R
o @
Bit Bit 8it Bit
'—] 3103 3072 [—‘ - —] 1055 1024r
Row
T 21 Decode {
A o——— And
—d
Column Decode Bit Column Decode
A3 20 Sense
¥ Y e ¥ ¥
Select
.] Bit Bit L{ o __] Bit Bit [_
3071 3040 - > 1023 992
@ @
£ £
4 -4 _
@
29)
] Q
(4} (%]
bt £
o o
Bit Bit Bit Bit
”‘l 2079 2048 l_ "‘] 31 0 l'—
Preset 3 O—m—— Data Control Cells T
Datain 4 ®3 _
7 Data Qut
Chip s o
Select
VDD = Pin 22
14 05 Vgg = Pin 12
Read/Write A11 Vgg = Pin 1
Vcc = Pin 11

FIGURE 4-2.5.3-1. MCM6605 4 k RAM Block Diagram

*Trademark of Motorola, Inc.

4.70

Enable clock starts an internal three phase clock generator which controls data handling and routing on the
memory chip. The lower 5 address lines (A0 to A4) control the decoding of the 32 columns and the upper 7
address lines control the decoding of the 128 rows within the memory chip. TheiTip Select (CS) input is used
for memory expansion and controls the I/O buffers: when CS is low the data input and output are connected to
the memory data cells and when CS is high, the data input is disconnected and the data output is in the high
impedance state. Refreshing is required every 2 ms and is accomplished by performing a write cycle with CS
high on all 32 columns selected by Ao through A4. The read/write line controls the generation of the internal ¢3
signal which transfers data from the bit sense lines into storage.

All inputs and outputs with the exception of the high level Chip Enable signal are TTL compatible
and the outputs feature 3-state operation to facilitate wired-or operation. The Chip Enable signal has GND and
+12V as logic levels. Power requirements are typically 330 mw per device in the active mode from +12V,
+5V, and —5 volt power supplies and 2.6 mw in standby with refresh from the +12V and —5 volt power
supplies (the +5V supply powers the output buffers and is not required during standby operation).

Memory timing is outlined in Figure 4-2.5.3-2 and operates as follows for a read cycle (2a). The
Chip Enable line is brought high after the correct addresses are set up, which starts the internal three phase clock
and latches the addresses into an internal register. m must be brought low in order to connect the data
input and output to the data cells and the Read/Write line must be brought high to inhibit the ¢3 cycle which
writes data into the storage cells. A write cycle (2b) occurs in exactly the same manner as a read cycle except
that the R/W line is placed in the Write mode, which gates the input data onto the bit sense lines, and enables a
3 cycle to write into the data cells.

A write and a refresh cycle are the same with the exception of Chip Select, which is held high for a
refresh cycle and low for a write cycle.

The Read-Modify-Write cycle is a read followed by a write within the same CE cycle. CSis brought
low shortly after the leading edge of CE and R/W is held high long enough for the Data Out to become valid.
The R/W line can then be strobed low for a minimum write time to enter the Data In (which has been placed on
the input) into the data cells.

By holding the C—hlp Select high during refresh, the input data is inhibited from modifying the bit
sense lines and the original data is returned to the data cells during ¢3 of the cycle. This refreshing action
recharges the storage cells and must be done at least every two milliseconds if the memory is to retain the
information. The fact that the data is stored on a capacitor in a dynamic memory (rather than an ‘“ON”’
transistor in a static memory) requires that the capacitor be recharged periodically. This capacitive storage
produces a low power standby mode of operation where only refreshing takes place, which is the foundation of
this low current drain non-volatile memory design. The memory device typically dissipates 330 mw in the
active mode but only 2.6 mw in the standby mode (refreshing only).

MEMORY SYSTEM DESIGN REQUIREMENTS

This memory system was designed with the following major design goals:

First, non-volatility for a period of time in the range of 7 to 10 days from a reasonable sized battery.
It is also desirable for the system to operate from one battery voltage during the standby mode to simplify the
battery requirements. Second, the memory size was desired to be 8K bytes on a PC card easily expandable
upward and addressable in 4K byte blocks. Third, the memory system must be able to interface with the
MC6800 microprocessor which has a basic cycle time of 1 usec. Fourth, the memory system controller must
handle all refresh requirements in a manner as invisible as possible to microprocessor operation.

4-71

"——”—tcyc(R) 470 ns mln_._____—‘

26 V———
Address Stable Address
12V-——
vy

L
" Onsmin-*'-—'" F—GOnsmxn—b{ — ‘-—20ns —{ +—20ns
i |

‘-—120nsmin————
VSi: ' |/ /__*TJOnsmax ——ﬂ —Ors min
e T e || I

re——310 ns min—"

Chip Enable

I —

I 20V——————— + /
Data Out <——Floating Floating — /

VP Apipul pu M2 U 4

\J
Timing Shown for MCM6605L-1. m - Don’t Care

FIGURE 4-2.5.3-2a. Read Cycle Timing (Minimum Cycle)

‘cyc(w) =470 ns rnin___—_q

L
HOnsmin-+o——~ |<—60nsmm——| —»l te—20 ns — }4——20ns

Vpp-20V ———-1 |
}1——430 ns min—j 120 ns min‘f‘
Chip Enable
VceL
70 ns max (Refresh) — 0 ns min

gt m\\\\\\\\ A\
\\\\\\\\W W

70 ns max Ons min

\\\‘ - Don’t Care
Timing Shown for MCM6605L-1. 0

FIGURE 4-2.5.3-2b. Write and Refresh Cycle Timing (Minimum Cycle)

4-72

tcvc(R/W) 590 ns min

|
-+

ViH
26 V-~
V;/EIL 0 ns min —je—s] }<—60 ns min —e 20 ns —»] ’____ 20 "54'1 -
VDD-ZOV———J-—— !
i —“i i ns min
Chip Enable ‘ 430 ns min r120 s _.1
2.0 V—‘—" — ’

VCEL

70 ns max 0 ns min 0 ns min
VIH
Chlp Select
\ 1.2V
"—430 ns min

}'210 ns min

70 ns max — F—]Onsmmk————»{ Onsmln}'ﬂ

l *—280 ns max

]
20V ————+— +
Data Out -— Floatlng Valid Floating
08vV—F————I—

. I ’
Timing shown for MCM6605L-1. \\\\\\\ -~ Don’t Care

FIGURE 4-2.5.3-2c. Read-Modify-Write Timing (Minimum Cycle)

MEMORY SYSTEM DESCRIPTION

A block diagram of the memory system is shown in Figure 4-2.5.3-3. This system can be split into
three main sections as follows. The first section is comprised of the address buffers, Read/Write and Chip
Select decoding logic. The second section consists of the data bus buffering and the memory array. The
memory array consists of sixteen memory devices (4K words X 1 bit) organized into two rows of 4096 bytes
each. The third section consists of the refresh and control logic for the memory system. This logic provides the
timing of the refresh handshaking, request for refresh, generation of the refresh addresses, synchronization of
the POWERFAIL si gnal, multiplexing of the external MEMORY CLOCK with the internal clock (used during
standby), and generation of the —5 volt supply on the board by a charge pump method.

Figure 4-2.5.3-4 is a worst case timing diagram of the read and write cycles of the EXORciser and
the 4K memory system. The timing is composed of two phases. During phase 1 (¢1) addresses are setup and
during phase 2 (¢2) data is transferred. Figure 4-2.5.3-5 is a timing diagram of the memory system in standby
showing refresh cycles only. This timing analysis will be referred to in the following discussions of the memory
control circuitry.

ADDRESS BUFFERS AND DECODING

Figure 4-2.5.3-6 is a schematic of the address buffers, decoding logic, and refresh address
multiplexer. Address and data lines from the EXORciser are buffered from the capacitance of the memory array
in order to provide a small load to the bus. Since the addresses are valid on the EXORCciser bus 300 nsec into ¢ 1,
200 nsec is available to setup the address on the memories. The worst case input capacitance on the address

4-73

r -————__.——__._._._..._—._-—-—-——-.—.——————.—_—_——I
| Address Buffers and Decoding Logic l Refresh and Power Fail Logic I
I |
A0 A |
: BAO —— ™ cmos [T A0 | |
i t | Multiplex
I ! [A4 Lt Tautfer |t A4 : |
|
: 1 L _—-} : Refresh Addresses !
| AOQ A4 AD Ad
= : Address Refresh Addresses | Power Fail t # |
Buffers | + —_——
I
l ! T L As I H_f—_ﬁ '
| : | Refres| l
l 1 A1 | CMOS Request
| : o i Refresh/Power Fail I
| - CSp Logic Refresh |
l LOCS_ l Grant l
- I BA15 -—L—. gic » CSg l
® | > MTo ! !
/ emory
2] mmw aw [RWal aray | CEp CEg |
o | VMA Buffers | |
w l Memory Memory Clock l l
| Clock 1 |
[~ —————————————— IS g S M S S |
I
: DO —71 - 1 Dout0]
! 1
| : -t —Dout7 :
l] Dat? 8K x 8 Memory Array
;| Transceivers = Dino 16 MCM6605L-1 |
| 1 ! 2 Rows x 8 Columns '
| p7 —L— > Din7 | I
L Data Buffers and Memory Array —'

FIGURE 4-2.5.3-3. Non-Volatile Memory System Block Diagram

lines of the MCM6605 is 5 pf/input. A system of 16 memory devices (8K bytes) presents a total capacitive load
on the address lines of only 100 pf (20 pf stray capacitance). Since 200 nsec is available to set up the addresses
on the memory devices, no high current buffers are required to drive the memories. For address lines AS
through A11 the output of the MC8T26 address receiver drives the address lines directly. AO through A4 must
be multiplexed with the refresh addresses so that all 32 columns will be refreshed every 2 msec. Because of the
requirement of low current drain in the standby mode, an MM80C97* CMOS buffer with a 3-state output is
used to meet the multiplexing requirement. The buffers have sufficient current drive capability to drive the
address line’s capacitance within 100 nsec. An open collector TTL gate (MC7406) is used to translate to +12
volt CMOS levels. A0 through A4 are driven with GND and 12 volt logic levels so that +5 volts is not required
in the standby mode.

The high order address lines (A12-A15) are used to decode one 4K block of memory out of the 16
total possible blocks in the 65K address map. The addresses and their complements are routed through
hexidecimal switches to MC7430 Nand gates in order to create a CS signal for each 4K bytes of memory. By
rotating the hexidecimal switches (S3 and S4), all combinations of true and complement addresses can be
routed to the Nand gates, thereby selecting one of the sixteen 4K blocks. VMA and REFA are also inputs to
these Nand gates VMA is a Valid Memory Address signal on the bus indicating that the address lines are valid
and REFA is a control signal indicating that a refresh cycle is taking place. During a refresh cyclem goes
low forcing-éﬁ and CSB high (a refresh cycle for the memory devices is a write cycle with the Chip Select

*To be introduced as MC14503, third quarter 1975

4.74

Time (ns) 0 200

400 600 800

1 4

1000 12

00

Memory Clock Jf \\
(¢2)
CEx, CEg \ / \
300 ns *I —— 80 ns
EXORciser Address 9
and VMA Bus W
100 ns —m
Memory Address Bus N %m
120 ns—poy
- 350 n -
. NS
E XORciser R/W) \"A".:“‘z’A 2
120 ns —

Memory R/W
{Read Cycle)

N

Memory R/W
(Write Cycle)

30 nSﬁi

280 ns

Memory Ouput Data
{Read Cycle)

25 ns

— |-%— tData Hold =

EXORciser Data Bus
{Read Cycle)

TASD = 200 ns—m

EXORciser Data Bus
(Write Cycle) %‘

IANN NN N N
EIRRRRLIKR

Memory Input Data
(Write Cycle)

Notes: R
Valid

\Invalid /

All timing measured from 50% points.

R
SRR

0 ns min

RERRRIR:

~%—1Data Valid = 120 ns

R

R

tData Stable
210 ns min

FIGURE 4-2.5.3-4. EXORciser/4K Memory System Timing Diagram

Refresh Clock

32 us

CE A, CEg

64 us

\ Refresh Address Counter Incremented

|

TS, CSg 17

R/Wa, R/Wg 0"

FIGURE 4-2.5.3-5. Memory Timing in Standby Mode

4-75

To
Memory
Array

Ri
Ref
A5

.k R B kR

=
!
|
—

MC14503

A4}

L

3

!

&

A2
Y
Refrash
Addresses

Al

AO

A

L L5 L5 O 4 !

Eﬁﬁﬁflm%x

MC14503

3.3k
l—*\/\/\«—{ﬂzv
3.3k
IJVV\o—O‘IZ’V
3.3k
[—’\/W—O‘lzv
3.3k
3.3k
l—-’\/\/v—01
3.3k
—VW—~0 12 v
3.3k

o
Do
T
Do
P

-
|
'
T

|
|
1

|
|
T
|

|
-
|

1

T

|

|

|

|

1
T

|

t

i
-
l

|

MC14503

r--

MC14503

Ref

sng 48s19HOX 3

4-76

FIGURE 4-2.5.3-6: Address Buffers and Decoding Logic

MC7430

m
8
g
®

4

_

0.

SVO—C)

s3
AMP 531371 MC7430 J\>_4

[e]
%
»

' f T

5V

1/6-
MC7407

BAGAh
P

l
|
|
L —

| |
l I Bat
L ‘ !
[~ Tmcerze ~ | l:
I / AOM :Ej
I $1/ write Inhibit A N
! 1 g)
— > Cg
}/G r MC14503 ﬂl
sV 1k] f\
1/2-MC7420" 2v N I
1/4-MC7408 | |
| Rwa
\O - l
J 1/6-MC7407 | P | .
3 P
2 t ,h/ I
K] l < | =
5 1k + N
) 12v I
¢ 1/4-MC7408 l q |
o/i 1/2-MC7420 | e
*
) / 7407 : I
- sa 1/6-MC | 33k
Mc8T26 B AMP 53137-1 |
I I =
| I
ROM \\rite [
inhibit B l
i L=k
= 1/4-MC7408 Bat
5V 1/4-MC7400
yma 511k)
| 1% RE
Bus | T1 T2
Memory 4
Clock !
| 172-
I MC8602 Refpy
Not 280 ns
Used Write Inhibit Pulse
al
| 5v
sv 1/2 MC7404
Memory Clock ;

Memory Clock

FIGURE 4-2.5.3-6. Address Buffers and Decoding L.ogic
(continued from preceding page)

477

held high). The output of the MC7430 is translated to 12 volt CMOS levels with the open collector gates and
buffered with the MM80C97 3-state buffer. The capacitive loading on each set of 3 paralleled drivers is 60 pf
allowing m to be decoded and valid 120 nsec after addresses are valid on the data bus. During the
standby mode (BAT = ‘‘1°") the CMOS buffer is disabled allowing the 3.3K ohm resistors to pull CSA and
CSB high for continuous refreshing.

The Read/Write signal is received by an MC8T26 and then decoded in the following manner. A
write inhibit feature is provided using switches S1 and S2 for each 4K byte block of memory so that in a ROM
simultation application, the memory can be protected from inadvertant writes due to programming or operator
errors. The Ready-Modify- Write cycle of the MCM660S5 is used in this application because it requires a shorter
data valid time (TData Stable) than a normal write cycle (See Figure 4-2.5.3-2b and 4-2.5.3-2c). This feature is
desirable because the EXORciser places valid data on the bus for the last 300 nsec of a Write cycle. In order to
delay the write pulse to the memory array until the data is valid on the Data Inputs of the memory array, a write
inhibit pulse is combined with the EXORciser’s R/W signal in the MC7420 Nand gates. This write inhibit pulse
is generated by the MC8602 monstable multivibrator triggered from the leading edge of the memory clock
(MEM CLOCK) bus signal. The effect of this added delay can be seen from Figure 4-2.5.3-4 when comparing
the memory array’s R/W line for a read and a write cycle. Note that for a write cycle, the R/W of the memory
array is inhibited from dropping to the Write mode until memory input data is valid.

The refresh control signal (REFA) is combined with the output of the MC7420 in a MC7408 AND
gate in order to force a write signal on the memory array’s R/W lines while in a refresh cycle. Translation and

buffering is accomplished in a similar manner to that for the Chip Select signals. When in the standby mode
(BAT = “‘1”’) the MMB80C97 buffers are disabled allowing the 3.3K resistor to establish a zero level on the
R/W line of the memory array for continuous refreshing.

DATA BUFFERS AND MEMORY ARRAY

The EXORciser data bus is bidirectional while the MCM6605 memory has separate data inputs and
outputs. The MC8T26* data bus receiver/driver buffers the capacitance of the memory array (very low, about
30 pf per data line) and combines the Data Input and mof the memory array into one bidirectional bus
as shown in Figure 4-2.5.3-7. The Data Out of the memory devices is inverted from the Data In requiring an
extra inverter (MC7404) in the data path when working with a non-inverting bus (i.e., the data is returned to the
bus in the same sense it was received).

During a memory write cycle, the data is valid on the data bus 200 nsec (TASD) after the leading edge
of ¢2. With a 50 nsec delay through the bus translators, the data setup requirement of the memories (210 nsec)
is easily met (See Figure 4-2.5.3-4). A memory read cycle requires a data setup time on the data bus of 120
nsec. The access time of the memory from the leading edge of the CE signal plus the bus transceiver delay of
305 nsec is compatible with this setup time.

REFRESH AND CONTROL LOGIC

The refresh control logic shown in Figure 4-2.5.3-8 handles the refreshing of the memory during
both operating and standby modes. The timing is shown in Figure 4-2.5.3-9.

The refresh timing is controlled by an astable multivibrator constructed with a MC3302 comparator.
This device was chosen for its low current consumption (1.5 ma max) and single supply voltage operation, both

*To be introduced third quarter 1975

4-78

EXORciser Bus

RE DE
i_ MC8T26 | Y
|
| 10 k
| 5V
DO { ’\>@ # Dinp
| | 1/6:MC7404
} 1 < Bouto
|
| | 9 10k
LN | 5 v
D1 >—@ ™ T J.‘>% > Din1
| | 1/6-MC7404
4 0<} 1 — Douti
| | 10 k
| 5V
D2 i 4{>“ﬁ - Din2
| | 1/6-MC7404
{ D
—4—% I \ out2
| 10 k
[| 5V
D3)—¢— #\l\ f — Din3
l | 1/6-mc7404
I I — Dout3
’ I
b ceme T
| MC8T26
| I 10 k
| 5V
D4 {>@ — Dina
] 1/6-MC7404
< Douta
| .

10 k
£—'\/V\F—05V
- Din5

Y

1/6-MC7404
< DPouts
10k
:’VW-O 5V
D6 D@ = Ding
| 1/6-MC7404
BING -
I 10k
5V
D7 >—Q lI 4\ J— Do_ﬂ_’ Din7
' I 1/6-MC7404
L - —— —— —

FIGURE 4-2.5.3-7. Data Buffers and Memory Array (Sheet 1 of 2)

4-79

08+

R/W, CSp CEa
R/MW =3 CE R/W T3 CE R/W T3 CE R/W CE R/W 43 CE R/W 3 CE R/W =3 CE R/W [cE
MCMM6E605L-1 ﬁou(MCMMEB05L-1 Uuu(MCM6B605L-1 Dout MCM6605L-1 Dout MCME605L-1 Dout MCME605L-1 m MCM6605L-1 Dout MCMB605L-1 Dout
AD...A11 Preset Dj, AO...A11 Preset Dj, AQ...A11 Preset Dy, AD...A11 Preset D, AO...A11 Preset Din AD...A11 Presot Djn AO...A11 Preset Dj, AO...A11 Preset Dj, J
1 1 1 1 1 1
L = Bouto _ = out = Bouez | ___ = Souts o = Douta ~ = Bouts B N Doute . = Doutz
A0 .. AN Dino AD...A11 Din1 AQ...A11 Dinz A0 ... A1 Din3 AQ A1 Dina AOD...A11 Dins AOQ...A1% Din6 AD...A1 Din7
R/Wg csg CEg
. -
I T r I 1 ! l
am T3 CE R/W T3 CE R/W o3 CE R/W TE CE R/W [CE R/W c3 ce \ R/W cs ce AW s
MCMMS605L-1 Eout MCMME05L-1 Uout MCM6605L-1 Bgu[MCMB605L-1 Dout MCME605L.-1 Dout MCME605L-1 ET MCME605L-1 Dour MCME605L-1 Dout
AG...A11 Preset Dj, AD...A11 Preset Dj, AD...A11 Preset Dj, AQ...A11 Preset D AD...A11 Preset Djp AQ...A11 Presat Dj, AO...A11 Preset Dj, AD...A11 Preset Dj,
R = Bout0 | ___ = Ooutt = Boutz = Bous - = Douta = Bouts __ N Oout6 . = Dout?
AD...A11 Oino AD...A11 Din1 AO...ATY Din2 AD...A11 Din3 AQ...A11 Dina ANl Dins AD...A11 Dine AD...A11 Oin7

FIGURE 4-2.5.3-7: Data Buffers and Memory Array

(Sheet 2 of 2)

important for battery operation. The refresh requirement of 32 refresh cycles every 2 msec is handled by
stealing cycles from the processor. This cycle stealing results in a 1.6% slower program execution rate than the
basic microprocessor clock frequency. During the refresh cycle, the clocks to the MiCroprocessor are
“stretched’” during the ¢1 high and the ¢2 low times by 1 usec as shown in Figure 4-2.5.3-9. During this 1
psec period, the memory executes a refresh cycle. In order to minimize the effects of memory refresh on
microprocessor program execution the 32 refresh cycles are distributed over the 2 msec period, one occuring
every 62.5 usec. Refresh could be done in a burst of 32 cycles every 2 msec but this would cause a larger gapin
program execution which in this case was undesirable.

The MC3302 produces the 62.5 psec signal to time the refresh requirement and also is used in the
generation of the —5 VDC supply required by the MCM6605 memory. Since these functions are required in the
standby mode, which is powered by the battery, a CMOS buffer is used in a charge pump circuit to minimize
current drain from the battery. This charge pump creates —5 VDC at 3 ma from the +12 volt battery to satisfy
the bias requirements of the memory devices.

The REFRESH CLOCK is used to increment the address counter (MC14024) and to clock the
refresh handshaking logic (MC14027). REFRESH REQUEST goes low on the leading edge of the REFRESH

12V

100 PF 221k 1%
e
1 1/4 MC3302 22 k 1/6-MC 14049
=) 0.022 uF 1N4148
5.1Vt
b {>G 3 i * 0 Ven °
12 / Refresh Addresses 1N4148 100 ufF I _l % MZ4625
A 12V ov L Rt
100 k A0 A1 A2 A3 A4 = = = 1/2-MC14049
1% | | [] T A +5.0 V
’ 475k 1% Q1 Q2 Q3 Q4 a5 4 Q 3 Q
L ac MC14024 c1/2-MC14027 c1/2-MC14027
Refresh =1 _
R — K Q
Clock S R

100 k
1%

[
= Ref

|||—~
H
|||——

5V

1/6-MC7406 < 3.3k 1/6.MC 12001 {g‘; J>O_>

Refresh Grant :Do" D 1/6-MC14049 1/6-MC7404
1/6-MC14049 §

1/6-MC 14049

FIGURE 4-2.5.3-8. Refresh Control Logic

1 s —
EXORciser Bus ¢1 —r_—‘-—[_]._Ji LT l__I—
exoRciser us2 L1 LT 1 : i I T D
Occurs Every 64 us
Refresh Request | % A/ |
Refresh Grant I I
Memory Clock | [| j | | L | I

U/ Don’t Care

FIGURE 4-2.5.3-9. Refresh Timing

4-81

CLOCK thus requesting a refresh cycle. Logic in the clock generation circuitry stretches the high portion of ¢1
and the low portion of ¢2 while sending back a REFRESH GRANT signal. This stretching of the ¢1 signal
delays program execution during this cycle. The leading edge of REFRESH GRANT starts the refresh cycle
and cancels REFRESH REQUEST. The trailing edge of REFRESH GRANT returns the refresh logic to the
normal state and the memory is ready for a memory access. The trailing edge of the REFRESH CLOCK then
increments the refresh counter in preparation for the next refresh cycle.

Decoding of the memory clock (CEA and CEB) and the circuitry to synchronize the POWERFAIL
signal is shown in Figure 4-2.5.3-10 with the timing given in Figure 4-2.5.3-11.

The memory device clock (CEA and CEB) during standby is generated by a monostable multivib-
rator (MC14528) and buffered from the memory array by three MM80C97 buffers in parallel. This clock is
multiplexed with the MEMORY CLOCK by use of the 3-state feature of the MM80C97. The MEMORY
CLOCK (used during normal operation) is translated to 12 volt levels by use a MC3460 clock driver.*
Decoding of the CE signals (i.e., only clocking the memory bank addressed) to conserve power is
accomplished by internal logic within the MC3460.

Since the POWERFAIL signal will occur asynchronously with both the MEM CLOCK and the
refreshing operation (REF CLOCK), it is necessary to synchronize the POWERFAIL signal to the rest of the
system in order to avoid aborting a memory access cycle or a refresh cycle. An MC14027 dual flip flop is used
as the basic synchronization device. The leading edge of the REFRESH CLOCK triggers a 3 usec monostable
multivibrator which is used as a refresh pretrigger. The trailing edge of this pretrigger triggers a 500 nsec
monostable which creates the CE pulse during standby operation. The 3 usec pretrigger signal is used to direct
set half of the MC14027 flip-flop, the output of which then inhibits a change over from the standby to the
operating modes (or vice versa). This logic prevents the system from aborting a refresh cycle should the
POWERFAIL signal change states just prior to or during a refresh cycle. The trailing edge of the 500 nsec
monostable clears the MC14027 flip-flop enabling the second flip-flop in the package. The state of
POWERFAIL and POWERFAIL is applied to the K and J inputs, respectively, of this second flip-flop and is
synchronized by clocking with MEM CLOCK.

The outputs of this flip-flop, labeled BAT and BAT, lock the system into the refresh mode and
multiplexes in the internal clock for standby operation when BAT = ““1°’.

SYSTEM PERFORMANCE

Figure 4-2.5.3-12 is a photograph of the breadboard of this dynamic memory system. This
breadboard was interfaced with an EXORciser system and tested using a comprehensive memory test program
written in-house.

Figure 4-2.5.3-13 is a photograph of waveshapes associated with alternate reads and writes in one
4K bank of the memory system. Included also is the simple MC6800 program used to generate these
waveforms. This type of operation produces repetitive signals on the memory board in order to aid
troubleshooting. Note the refresh cycle sandwiched in amongst the read and write cycles and that the decoding
of the CE signals produces no clocks on CEA (accesses are to bank B), except during refresh.

Figure 4-2.5.3-14 shows the printed circuit memory array used to interconnect the memories. The
addresses are bused between the 4K memory chips in the horizontal direction. Data lines are bused in the
vertical direction. The MCM6605 4K RAM has power and ground pins on the corners of the package allowing

*To be introduced first quarter 1975

4-82

520 pF

511k =Y
T

Refresh Clock

T1 T2

1/2-MC14528
3us

1% 82 pFT

p— NW—O0 12 Vv
5.11k

T T2

1/2-MC14528

500 ns

Q

MC14503

————

.

1/3-MC 14049

a4 a
Cp Cp
12 v 12 v
1/4-MC14001

J Q

1/2-MC14027

s
i

1/2-MC14027

|
T
I
L
!
I

|
|
i
|
I
|
|
+
|
|

|
|
[
1
[
i
I
I
L

> CEp

—» CEg

c c
1/4-MC14001
12 VO—{K o K a
R R
Memory Clock
12V
1/4-MC3302
22k
Power Fail ———— 4§ -
12V ®
* 12V
100 k 1/4-MC3302
12 k)
MC3460
Ca ASEL
A
Refp REF SEL
Cg BSEL
B
Memory Clock Clock .
CSEL DSEL E2

2
i

FIGURE 4-2.5.3-10. Power Fail Logic and Chip Enable Driver

4-83

[¢] 1.0 us 2.0 us 3.0 us 4.0 us

Refresh Clock
(64 us Period) —/

3 us Monostable
(Refresh Pretrigger) —/ \

500 ns Monostable m
CEp or CEg —\
(Standby)

Clock Input (&) __/
Inhibit / \

Power Fail signal changes will not ‘
be recognized during this time.

FIGURE 4-2,5.3-11. Power Up/Down Synchronization

;ﬁﬁﬁ%%ﬁ?é

pernenee

FIGURE 4.2.5.3-12. Memory System Breadboard

wide, low impedance power and ground interconnects within the memory array. Decoupling capacitors were
used as follows within the memory array: +12 volt— one 0.1 uf ceramic per package, +35 volt — one 0.01 uf
ceramic for every three packages, and —5 volt — one 0.01 uf ceramic for every three packages. Figure
4-2.5.3-15 is a photograph showing the ripple on the power supplies in the memory array caused by accesses to
one 4K byte bank of memory as shwon in the photograph. The +12 volt line supplies the most current to the
array and is the one on which the most care in decoupling (wide PC lines and distributed capacitance) should be
taken. Placement of the VDD pin on the corner of the package gives the designer the option to do this easily.

The dc power dissipation of this memory system is shown in Table 4-2.5.3-1. Of these current
drains, the most critical to non-volatile operation is the current requirement in the Standby mode where the
current would probably be supplied from a battery. A breakdown of the typical current required from + 12 volts
to maintain the memory in the Standby mode is shown in Table 4-2.5.3-2.

By using CMOS for the refresh logic and capacitance drivers, a dynamic memory, and a low current
refresh oscillator; the standby current has been reduced to a level that can be supplied easily by a battery. Table
3 is a brief list of various capacity 12 volt batteries that could be used to power a system of this type in the
Standby mode. Support time runs from one-half to 35 days and can be made as long as desired if sufficient
battery capacity is available.

4-84

10 V/Div

Read

Write

Write

Read
Refresh

Write
Read

Write
Read

5 us/Div

M6800 Program to Generate Waveforms Shown

Address Data Mnemonic Comment
0000 B6 LDA #$55 Load data to be written (55)
0001 55
0002 B7 STA A $3000 | Store data in address 30004¢
0003 30
0004 00
0005 F6 LDA B $3000 | Read data from address 300044
0006 30
0007 00
0008 7E JMP $0002 Loop back
0009 00
000A 02

FIGURE 4.2.5.3-13. Alternate Read and Write Memory Accesses

TABLE 4.2.5.3-1 8K x 8 Non-Volatile Memory System Power

Requirements (1-MHz EXORciser Clock Rate)

Current
Mode Power Supply* Typical Maximum
+12 V** 100 mA 300 mA
Operating
+5V 600 mA 860 mA
+12V 14 mA 20 mA
Standby
+5 'V No +5 V Supply required

*5 V supply is not listed because it is generated on the board

from +12 V

**Because memory is dynamic, the +12 V current requirement
is dependent on rate of memory access.

4-85

>4K x 8
Bank A

|, 4K x 8
Bank B

—— e S]
s e e =

R e e e e e e e a—

+12V +12v

Gn

d \
\
]] (]
2
{ (-,
O 101 © (-, O (-, O O
-]
[} O~
10 v of 1O 0 ad ad -0
Cce3@
]
>
v a0
a30 - -0 QA
©- QA10
O O O O -, (-, O 0A9
ANO . 0As8
cLk® .Y [o OA7
O 10 (- 8 -] ad g 0 ad QAs
CE4Q o~ OAS5
A4© -0 .3 OR/'W
A20 O~ > QA0

° ! 66 & &4 66 66 66 &
\"{dd DO DI vDD DODI VvssS DODI DO DI DO Dt DO DI []e} DO

\ / \ vee
/ Data In Data Qut Data In

Bit 0 Bit 7

LX)

o9

4

°Q

Data Out

FIGURE 4.2,5.3-14. Memcry PC Board Array

4-86

Circuit Section Typical Current
+12 V Current (Vpp) 5 mA
Charge Pump 3mA
Comparator 2mA
Capacitance Drivers 4 mA
Total 14 mA

TABLE 4.2.5.3-2 Standby Mode Current Allocation

Size
Battery AH (LxWx H) Weight Support Time*
Globe GC 12200 20 6.9” x 6.5 x 4.9” 16.75 Ibs. 35 days (850 hrs)
Globe GC 1245-1 4.5 6" x25"x4" 4.51 |bs. 8 days (192 hrs)
Globe GC 1215-1 1.5 7" x1.3" x 2.6” 1.51 Ibs. 2.6 days (63.75 hrs)
Burgess MP 202 0.6 34" x1.4" x2.3" 11.6 oz. 1.25 days (30 hrs)
Burgess 12.0V 225 Bh 0.225 3.5” H x 1" Diam. 4.65 oz. 47 days (11.25 hrs)

*Assumes 20 ma average current drain (14 ma for memory and 6 ma for powerfail detection

circuitry) and a battery voltage range during discharge of from 13 to 11 volts.

TABLE 4-2.5.3-3. Battery Characteristics

CEpg R Y Y Y Y Y 10 v/Div

+12 V Power Line 1 V/Div

+5 V Power Line 1V/Div

-5 V Power Line 1V/Div

5 us/Div
FIGURE 4.2.5.3-15 Power Line Ripple

4-87

4-2.5.4 Design Considerations When Using Non-Family Memories with the MC6800

The previous sections have discussed general interfacing with slow and dynamic memories and two
design examples using the MCM6602 1K X 1 static RAM and the MCM6605 4K X 1 dynamic RAM.In this
section, the general interface characteristics of the M6800 family will be discussed as well as methods for
interfacing with various classes of memory devices. The categories of memories to be discussed are the
following: Bipolar PROMS/ROMS, MOS PROMS/ROMS, Bipolar RAMS, and MOS RAMS.

Table 4-2.5.4-1 lists the relevant characteristics of the M6800 family parts to be considered when
interfacing with each other or with non-family parts. In most small systems, the limiting factor will be the data
bus load exceeding 130 pf maximum capacitance and/or 1 TTL (7400) load. Depending on the mix of
PIA/ACIA and memories, the fanout can be 7 to 10 family parts before buffering is required.

BIPOLAR PROMS/ROMS

The PROMS available in bipolar technology are constructed with nichrome or poly silicon links
which can be ““blown’’ or programmed in the field to provide a custom program for small quantity, quick turn
around, requirements. In many cases, a pin for pin equivalent is available in a mask programmable ROM for
large quantity usages of a known bit pattern. Common memory organizations available are 64 X 8, 256 X 4,
512 X 4, and 512 X 8 from several manufacturers. Because these devices are constructed in bipolar TTL
technology, their speed is much greater than required by the MPU. A typical device of this type will have a

IDATA
DEVICE CiN CouT N (3 st) IDATA (drive)
MC6300 MPU 10 pf logic 12 pf logic -100pua +130 of
15 pf data 15 pf data 2.5ua 10ua 1.6 ma P
MCM6810 RAM -100ua
(128 X8) 7.5pf 16 pf 26ua 10ua 1.6ma 130 Pf
MCM6605 RAM
MCM6815 RAM -100ua
(4K X 1) 5 pf 5 pf 10ua 10ua 2 ma * 50 pf
7 pf logic -100pua
MC6820 PIA 10pfdata 10 pf 26ua 10ua 1.6ma 130Pf
MCM6830 ROM -100pa
(1K X 8) 7.5 pf 15 pf 26ua 10ua 1.6ma 130Pf
MCM6832 ROM A0ua o0
(2K X 8) 8 pf 10 pf 10ua 10pa 1.6ma - P
MC6850 ACIA 7 pflogic -100pua +130 of
10 pf data 10 pf 25ua 10ua 1.6 ma P

*Current leakage on data bus in high impedance state is into the device.

TABLE 4-2.5.4-1. MPU Family Interface Chart

4-88

maximum access time of 70 nsec from address valid while the MPU only requires 575 nsec access time when
operating at full speed. Because of their programmability, these types of devices find use in system prototypes,
bootstrap loaders, and system debug packages. Devices of these types are the MCM5003 PROM and its mask
programmable equivalent, the MCM4003.

Interfacing with these devices requires buffers for the MPU because each bipolar PROM/ROM is
one unit TTL load. Since the MPU has TTL levels on all inputs and outputs, no level translation is necessary.
Timing interface between the MPU operating at full speed and these TTL memories can be accomplished easily
because the TTL memories are much faster.

MOS PROMS/ROMS

The mask programmable MOS ROMS are both P-channel and N-channel with the newer faster
devices being N-channel. Memory organizations commonly available at 1K X 8 and 2K X 8. Most of these
ROMS require multiple power supplies with +12V, +5V, =3V, or +5V, —12V, being common. Current
requirements on the non—3V supply voltages are in many cases low so that charge pump techniques can be
used. The majority of these devices are TTL compatible on the inputs and outputs making MPU interfacing
easy. Because of the MOS technology, these devices all present light loads on their inputs usually 10 ua leakage
and 5-10 pf shunt capacitance and, therefore, can be interfaced without buffering up to 130 pf + 1 TTL load.
Those parts with an access time of longer than 575 nsec will require usage of the slow memory techniques
described in Section4-2.5.1 in order to operate with an MPU at a 1 MHz clock rate. These devices vary in speed
from 350 nsec to 1800 nsec depending on manufacturer and process type. Devices of this type are the
MCM6830 and the MCM6832.

The PROMS available in MOS technology are electrically programmable and erasable by exposure
to ultraviolet light. Device organizations available are 256 X 8 with 512 X 8 under development. Inputs and
outputs are TTL compatible with the use of pull up resistors on the inputs and access times range from 500 nsec
t0 2.5 usec. Inputloading is on the order of 1-5 pa and 15 pf. A MPU system operating at full speed may require
the slow memory techniques described in Section 4-2.5.1 to operate with the devices.

DYNAMIC MOS RAMS

These devices are available in P-channel in a 1K X 1 organization with the newer devices being
N-channel and 4K X 1 organization. Their dynamic characteristics require that periodic refreshing of the
memory take place. The number of refresh cycles varies from 16 to 64 every 1 or 2 ms. Several ways to handle
this refresh requirement in the MPU system were described in Section4-2.5.1. The access time of these devices
is usually less than 500 nsec resulting in easy timing interface with the MPU at full speed. Inputs and outputs of
most of these devices are TTL compatible with input loading being typically 10 pua leakage and 5 pf shunt
capacitance. These devices typically require a clock signal which can be derived from the ¢$2 MPU clock
signal. A design of a memory system for the MPU using dynamic memories is detailed in Section 4-2.5.3.
Devices of this type are the MCM6605 and the MCM6815.

4-89

STATIC MOS RAMS

Static RAMS do not require refreshing and as such are simple to interface into a MPU system. In
N-channel MOS technology, the common organizations are 128 X 8, 256 X 4, and 1024 X 1. The inputs and
outputs are TTL level compatible with the input loading on the order of 10 na and 5-10 pf Output drive
capability typically is one TTL gate and 100 pf shunt capacitance. These devices operate from a single 5 volt
power supply with access times between 200 and 1000 nsec.

- Example of this type of device are the MCM6810 and the MCM6602. A design of a static memory
design for the MPU using the MCM®6602 is detailed in Section 4-2.5.2

4-90

CHAPTER 5

5. PERIPHERAL CONTROL TECHNIQUES

The MC6800’s general I/O handling capability is described in detail in Chapter 3 of this manual.
This Chapter further demonstrates the I/O characteristics of the M6800 system by applying them to a variety of
specific peripheral control problems. The emphasis here is on control of the peripherals; system integration
procedures are described in Chapter 6.

The development of both hardware and software is described for representative peripherals in the
following categories:

(1) Input devices such as keyboards and labelbscanning wands;
(2) Output devices such as visual displays and hard-copy printers;

(3) Data interchange devices such as teletype terminals, tape cassettes, and floppy disks. Where
appropriate, the possible hardware/software trade-offs and their effect on system efficiency and
cost are discussed. However, the main objective was to minimize the external conventional
circuit requirements by using the MC6820 PIA and the MC6850 ACIA family interface
devices. The PIA and ACIA are described in detail in Sections 3-4.1 and 3-4.2, respectively, of
Chapter 3.

5-1 DATA INPUT DEVICES
5-1.1 KEYBOARDS FOR MANUAL ENTRY OF DATA

Keyboards represent particularly good examples of the hardware/software tradeoffs that should be
considered when configuring a system. They can be obtained from original equipment manufacturing (OEM)
sources with widely varying amounts of electronics provided.

At one extreme is the fully decoded! keyboard complete with multiple key rollover protection? and a
strobe signal for indicating that data is available. Use of these units with an MPU results in the simplest
interface and also requires a minimum control program.

At the opposite extreme is the keyboard with no electronics at all; only the terminals of the individual
key switches are provided. With this type, the designer may choose to add a full complement of external
electronics, do a partial decode, or let the MPU perform the complete task in software.

Representative examples of each approach are described in the following paragraphs. In each case,
the MC6820, Peripheral Interface Adapter (PIA), is used for interfacing to the MC6820 Microprocessor.

5-1.1.1 Decoded Keyboard for a POS Terminal

A MICROSWITCH 26SW3-1 POS Keyboard was selected for use with the Transaction Terminal
described in Chapter 6. A schematic representation of the key configuration is shown in Figure 5-1.1.1-1. The
function keys CODE ENTRY, SUBTOTAL (+), SUBTOTAL (—), and CLEAR each provide a logic level out
when depressed. The remaining keys are decoded, that is, closure generates a 6-bit code word accompanied by

IEach switch closure is converted to a unique code word.

2The first of near-simultaneous closures is selected.

5-1

Grocery Waght. Code Entry
Dairy 1 2 3
Meat

4 5 6

Coupon

Produce

7 8 9

Bottles
Hshld

—_— °

Stamps

Subtotal
No —
Tax
Total
Q
T
Y
Cash
Check
Sub
Tol
+
Clear

FIGURE 5.1.1.1-1 POS Keyboard Configuration

Key Function

OCONOOODWN-=0

. (Demical pt.)

Grocery
Dairy
Meat/Coupon
Produce/Bottles
Hshld/Stamps

Weight
No Tax

Quantity
Total
Cash
Check

Code Entry
Subtotal (—)
Subtotal (+)

Clear

Strobe

1. Strobe will be high while any key is closed

Key Number Code to PIA

b7 be bs bg b3 b2 b1 bg
43 0o o 0 0 0o O 0 O
13 0 ¢ o 0 0O o0 o0 1
14 6 o 0 0 0 O 1 0O
15 0O 0 0 O o0 0 1 1
23 0O o 0 0O ¢ 1 0 O
24 0o 0 0 0o O 1t 0 1
25 0o 0 6 0o 0o 1 1 O
33 0O o 0o O o 1 1 1
34 o o o0 o 1 0 0 O
35 o o o o0 1 0 0 1
45 o o o 0 1 0 1 O
1 0O 0 0 0 O 0 0 1
11 0o 0 0 o 0 o0 1 O
21 0O o0 0 0 0 0 1 1
31 0O 0 0 0 O 1 0 O
41 o o0 0 o o0 1 0 1
3 0o o 1 0 O O 0 O
7 0O 0 1 0 0O 0 1 1
17 o o 1t o0 0 1 1 1
20 o 0o 1 0 1 0 1 O
30 o 0 1 0 1 1 1 1
40 o 0 1t 1 o0 0 1 1
5 0o 1 Will be holding
10 1 0 data from
37 1 1 previous entry
50 [C2 interrupt]

0o 0 o0 t 1 0 0 O

[C1 interrupt]

FIGURE 5.1.1.1-2 Keyboard Coding/PIA Interface

a strobe pulse. The code generated by the keyboard is shown in Figures 5-1.1.1-2. That Figure also shows the
interconnection to an MC6820 PIA as represented schematically in Figure 5-1.1.1-3.

For system purposes, it was decided that any key closure should cause an interrupt via the PIA’s CA1
Input. The interrupt was generated by using a Quad Exclusive OR gate package to combine the four function
key outputs and the STROBE signal. The CLEAR signal was also required as a separate interrupt and is, hence,
applied to the CA2 Interrupt Input. The remaining three function outputs, CODE ENTRY, SUBTOTAL (+),
and SUBTOTAL (—), were decoded by using two 2-input NAND gates applied to PA6 and PA7 of the PIA.

Operation of the system executive program described in Chapter 6 is largely determined by data that
is input through this keyboard. However, the control program for the actual capture of the data is relatively
simple. When the MPU is ready to accept manually entered data, it polls the keyboard PIA interrupt flag bits
until an input is detected. A Flowchart and an Assembly Listing of the relevant portion of the executive
program?® are shown in Figures 5-1.1.1-4 and 5-1.1.1-5, respectively.

After recognizing an interrupt, the MPU checks for a keyboard closure by testing flag bits 6 and 7 of
the keyboard PIA’s Control Register. These bits would have been set by transitions on CA1 or CA2. If neither is
set, the MPU branches to check for a Wand interrupt service request. If one is set, the MPU tests for a CLEAR
closure (bit 6) and, if it is present, branches to the CLEAR service routine. If the CLEAR flag is not set, the
MPU assumes bit 7 was set and proceeds with the keyboard service routine.

This sequence is typical for encoded keyboards. Aside from the interrupt service housekeeping,
capturing the data consists of nothing more than the MPU *‘reading’’ a PIA Data Register as it would any other

memory location.
3See Section 6-4.2.4 of Chapter 6 for the relationship to the remainder of the executive program.

Microswitch
265W3-1
Keyboard PIA — Side A

Code Entry

Sub Total -
Sub Total +

Clear

Ve Gnd Strobe
I l \

N V' Y YYYVYYYY

+5V =

FIGURE 5-1.1.1-3 Keyboard/PIA Hardware Interface

5-3

XKSTP

Turn On
Ready Light

Get PIA Control
Register Byte

No
Is Is
Either Wand
Interrupt Reading
Flag Data
Set? ?
Yes
Is It
Yes The Clear aTurn Off
Key Iinterrupt ady Light
Request?
Turn Off Ready No
Light :
Go To Wand
Data Processing
Get Keyboard Routine

Data From Keybaord
PlA Data Register

Go To Clear

Key Processing

Turn Off Ready
Light

Go To Keyboard Data

Processing Routine

FIGURE 5-1.1.14 Flow Chart for Keyboard Service Routine

54

gonds
aucyg
OOOFe
QO07vse

Qaion
a0tio
=AY
et
o014
2014
gnled
aa1vo

Gois0

OO1=n

N E=RARY

OoEsn

Qo=sg

a3

DO=210 §

gazzcno
TR
NIt 81
pozsn

H1Co
HI& :

n (s (1w A1 1]
Ll o =
mmTm

i1
nF
il
P!
FE
CH

.M
4

-

b I I W 3

ORI

[S)

TSI b D TR 0 O 00 il 0 e

aa)
Bt I SO

T
M~ T

=)o T

B
Fi

Cotd

INIREL
CE

IR
EF

I
B
R1CE

HEIFTR

HOF

IEI

MOF

MHOF

LIA B «FZLFA
OrA B 44F L
TR B AFZLRA
CLl

« KEVEORFD FECLEIT 7

= omklidn ot
Gkl 05

*
* LIAMD
*

HE10eS

LOR H RS
EIT / #3CG
EED HhILeS
BEIT A #3230
EEL: S QT T
LA AR #%1=

B SFZDER
=E1045

[aa B
L IR R I o]
oI U o S VRS (O (0 o)

trt i bt
*r
[~)
L
m

S

AEETIMN

[T (NN R
LRI I o

ZERMICE RECHIEE

LR R SPSLRA
EMI AREFTR
LR E =Fz0OEH
ANMD B S EREF

ITR B HFPELEA
JIE AEbiptiD
AMF AEIFTF

TUREN CM FERDY LIGHT
ZET FR-E

EMAELE IMTERRUFTZ

FERD kEYEDARD FIA COMTROL
CHECK CRAT CRAE

IF MO FREQLZZTs CHECK LAMD
CHECE FOR ZLERR HEY

IF MOs COMTIMUE EYED ZERVIC
IF YEZ« LORD CLERF COLDE
CLERF IMTERRUFT

LOAL EYED DATA-CLERF INTERR
TURM OFF RERDY LIGHT
CLR FA-£

30 TO EYED FOUTIMESsROCA=DRT

IEowRMND Gr ZFRCEs BVP=07
ir MCT LGCF ERCK
TuRM OFF RERDY LIGHT

LR FPR-S

OTHEFWIZEs 50 7O WAMD ROUTI

FIGURE 5-1.1.1-5 Keyboard Service Assembly Listing

5-5

CB1

F PRO @ A Ko P K P K2 P K3

PB1 @ ./.K4 :fKS ./.KG Iy FIGURE 5-1.1.2-1: Keyboard/PIA Interface

S
~
W
S
~

R
N

. P K9 K10 A K1

y/ [5// ' y/ ,5,/
pB3e Kz P K13 _PKi4 K15
. . - ¢
L J ® b
PB4 PB5 PB6 PB?
\ w J
e ol
TO PIA

5-1.1.2 Non Encoded Keyboard

An example of capturing data from a keyboard with no external electronics is shown in Figure
5-1.1.2-1 where half of a PIA being used to interface with a sixteen function keyboard connected in a matrix
configuration. The row lines of the matrix are connected to PBO through PB3, the column lines to PB4 through
PB7. A suitable keyboard control Flowchart is shown in Figure 5-1.1.2-2. The corresponding Assembly
Listing is shown in Figure 5-1.1.2-4.

An initialization sequence uses the Data Direction Register, DDR, to establish the Row lines
(PBO-PB3) as outputs and the Column lines (PB4—PB7) as inputs. In addition, ones are written into the
Column section and zeros are written into the Row section, leading to the situation shown in Figure 5-1.1.2-4.

Any key closure will now couple a Row zero through the key switch, causing one of the Column
lines to go low and generate a CB1 interrupt via the 4-input NAND gate. A typical case (K6 closed) is illustrated
in Figure 5-1.1.2-5.

The programmable features of the PIA can be used to generate a simple program for capturing the
data. Refer to the Flow Chart and Assembly Listing of Figures 5-1.1.2-2 and 5-1.1.2-3, respectively as
additional aids to understanding. The MPU, as its first step in servicing the keyboard, reads Peripheral Interface
Register B (PIRB), thus clearing the interrupt (b7 of Control Register B) and storing the current contents of
PIRB in accumulator A. Note that because of the initial conditions, the word stored in ACCA must be one of the
four* shown in Figure 5-1.1.2-6 depending on which column the closure was in.

The MPU, using the DDR as in the Initialization sequence, next reverses the I/O relationship of the
column and row lines, that is, PBO—PB3 are established as inputs and PB4—PB7 as outputs (see Figure

*This assumes only one key was closed. Multiple key closures will be discussed in a later paragraph.

5-6

‘ KSETUP)

Establish Row lines
{PBO-PB3) as Outputs,
Column lines (PB4-
PB7) as Inputs. Write
initial pattern ($F0)

KBOARD

Fetch data from
KBRDPR; Reverse
Column/Row |I/O
(PBO-PB3=Inputs,
PB4-PB7=0Qutputs)

into PIRB (KBRDPR)

'

Load row section of
data word with ones
and write back
into KBRDPR

Fetch closure data
from KBRDPR; Set
Index Reg. to Starting
Addr of lookup table.

Comp. Closure data
to current word table

Match?

1

Store key count in
Number buffer

v Increment key count
and move to next
table location.
‘ Check for end of
table.

Re-initialize Row/
Column 1/O: PBO-PB3
=Qutputs; PB4-PB7=

Inputs. Write ones
into Col. Sect., zeros

into Row Section.

!

Enable Interrupt by
next key closure

Search
Complete?

Perform BDREAD
Subroutine

]

FIGURE 5-1.1.2-2 Keyboard Control Flow Chart

5-7

wognd RI=1g!
Wﬁﬂlﬁ +THIT FPROGRAM
+TD CACTURE KEY] fH 2% KEYEDPFD
+AMD FLACE THE EBIARRY EGLDIVALENT 1. FIWFFER
#HAMEDR MERERINE . THRE B ZIDE OF AH R 2 FIA
#1% UZIED TO EWTER THE TETE.,
arT M
arnd & 100
DLO0 RS Y ROMRRE LT . ERTIFE REAT THE 14 FPEFIFH FEG.
UU!Uu n1az LTiAH R4 LOAT ACCE WTITH 000600100
ontlo oios =TH FERDCFE TELECT DATH TIR RERF
olzo olos (=] HEF O SELECT FEO-2EBEZ A% IHFUTS An
a0 gioR TR hE“BEF *FES3-FFT ST OQuUTRUTS,
anidn oton LR

1 ZROFFOCE S SR

o bl D

DOLSO 0108 A OrRA A #E0F = IFOACTA WITH O
anisn §OET Snm TR & KERDFR ITE E IMTD FERIFH FER
ANLTO 0113 RS EAGS LUA A KERDFR FETOH CLOTURE TRTA.
O01E0 0116 FE 01473 LD TRELE POIMT TO TE. ZTFT ADLR
G013 0119 A1 30 LO0KUR CHE & DETE = CURRIMT TABLE WRLUET
11F &7 fa = TTATH *¢ETy GO PUT DATA If FUFFER
=0 MO ATVHCE HEF CTUNT ANT
#MOVE TO MEAT TRELE LOCATID
015z S TELENT 't EEHHLETET

N

Lo B B IEN A BN

L OO UF
ELFERT
ERERLF

SR 2 COMT TRTH
’ "r, HT O RTH

T es 1]
s T] e

]
—j
I:I
I

TR #

I

LA

HEE A
EERTOR +
SETURM TT MaTH RPROGREAM,

RS LIt COMTROL SEG WTH RPRITERN
EERERTUCF ¢T0 ZELECTY DIRECTION RES
wEOF TELECT PEG-FTZ AT RUTRUTS
FERDDRE *RMHT PRA-FRT ITHFLITE
WEITE 11110a0y
+FER IFHERRAL. R tIiTEF
FL—THFH T HAaiH FPROGFAM
HU SR SRR
IR ENEPR IR S R o) =

TURE IMTRET

: N
ter b

i

¥
I
=
¥

,E'

i
=g

IMTO

~d T~ T omg T

foua oo v B

a1 T T

Al

ww4nr
0410 n14s

g i=-
m
m

o
I

m

i

[

i

k4|

I

— =
I
Al
-
m
o
D)
el

ondzn 014 oE FLE EDESFER S F7R«FET 2307 HET

-] b
Y B

RN
ot

0odzn N1se
nngan
ondsn

TELEMD FCE
] EERDCR Eilis
= KERDOR EnRi)
O0g= RIS FERRDFR Fiid ‘
00470 1 HERBUF EQL EO0E0
Ond=n EMT

1

e 0
o N bl
=
N

FIGURE 5-1.1.2-3: Keyboard Control Assembly Listing

5-8

TO PiA

TO PIA

CB1=0

s s s 4
P80 S RO 2K &K S
0
y/' 7/' y/ y/
PB1 } _/ K4 / K5 ‘vf K6 A K7
0
i p
s s s sl
b2 Y K8 WS Pl 7K
0
7 7 A s/
P83> _%(12 ‘/.KB '3/.(14 _PKis
0 A\ 4 (% v N
1 1 1 1
PB4 PB5 PBE PB7
TO PIA

FIGURE 5-1.1.2-4: Initial P1A 1/0 Configuration

cB1

Pso) P KO J K1 "/ K2 J K3
\\
) 3 \\ 3 4
y/ A > ;a/ y/
Pg’ > _) K4 '/ K5 < K6 ﬁ/ K7
p p) b
4o A 5l 7
os2). '/’ K8 L K9 adsl /§/K11
| y/' ~ '5//
N ‘3'/&12 K3 '/é/xm ‘/K15
° A 4 \J' ' 4 W
1 1 0 1
PB4 PBS PB6 PB7
TO PIA

FIGURE 5-1.1.2-5: Result of Key Closure

59

TO PIA

b7 b6 bb b4 b3 b2 bl

b0

OR 1110|1010

[~ R K]

OR 117011110} 0

OR |O|1|1]1]0|O0)| O

FIGURE 5-1.1.2-6: Contents of Accumulator A

cB1

\{s
N

X
Ny
AN

o K12 P13 K14 _PKis
P83 & ¢ ¢ _
1
N\ /\ N\ /\
1 1 0 1
PB4 PB5 PB6 PB7
\ J
ol
TO PIA

FIGURE 5-1.1.2-7: 1/O Conditions Reversed

5-10

5-1.1.2-7). ACCB is used in order to avoid disturbing the contents of ACCA. The ORAA instruction is then
used to replace the row bit positions with ones (see Figure 5-1.1.2-8) and the resulting word is written back into
PIRB.

The time required for the MPU to perform the steps just described is very short compared to typical
minimum switch closure times. Therefore, the switch is still closed and the conditions are as shown in Figure
5-1.1.2-7. The column zero that was preserved and written back into PIRB is coupled through the still closed
switch and applies a low signal to a row input now established as an input. PIRB is immediately re-read back
into ACCA by the MPU. For a single key closure, the word thus captured must be one of the sixteen stored in
memory locations 0143 to 0152 in the Assembly Listing of Figure 5-1.1.2-3. The first four values are also
illustrated in Figure 5-1.1.2-9.

The MPU sequentially compares the contents of ACCA to the lookup table (stored in ROM)
containing the words until a match is obtained. ACCB is incremented following each comparison; when the
match occurs, a binary number corresponding to the key number is stored in ACCB and is available for transfer
to a buffer location in RAM.

If a match is obtained, the MPU stores the key count, re-initializes the PIA, and returns from the
service routine interrupt. If no match is obtained, it is assumed that the data is bad and a Bad Read subroutine is
called. Since only data corresponding to valid single key closures is stored in the lookup table, this approach
automatically takes care of both multiple key closures and inadvertent noise.

The specific action to be taken following a bad read is not shown since it depends on the particular
application. In many practical designs, affirmative action such as an audible approval tone is taken following
the entry of good data. The Bad Read subroutine in this case would merely disable the approval sequence. A
different routine would be used in designs requiring positive indication (blinking light, tone, etc.) of bad data.
In either case, the Bad Read sequence should end with a return from subroutine instruction, RTS, so that the
PIA will be properly re-initialized.

Many mechanical switches exhibit contact bounce when they are initially closed. A bad read will
result if the MPU reads PIRB during one of the bounce intervals. This problem can be avoided by inserting a
suitable delay routine (see Section 2-2 for examples) as the initial steps of the keyboard service routine. The
duration of the bounce varies with switch design but is normally in the range of one millisecond or less. The
keyboard manufacturer should be able to provide specific information.

The extension of this procedure to larger keyboards is straight forward. For instance, a sixty-four
key matrix could be implemented using both halves of a PIA and similar programming techniques.

b7 b6 b5 b4 b3 b2 bl bo

ACCA l1|0l1|1|1]1[ol1
b7 b6 b5 b4 b3 b2 bl bO
ACCA [1Jo[1[1]o]o]o] o] W Ko 1111]o]1{1]1]|o0
[s]
constanT=0f o JoJof o[1] 1] 1] 1] £ K 1l1fo|1]|1|1]|1]o0
o
ORA #0F [1Jo[a]ala]a]a]] %Kz oy ryo
9 K3 ol1|1|1|1]|1]|1]0
1 '
FIGURE 5-1.1.2-8: Generation of Qutput Word FIGURE 5-1.1.2-9: Lookup Table

5-11

5-1.2 SCANNING WAND FOR CAPTURING DATA FROM PRINTED SYMBOLS

The use of scanning techniques to retrieve information from machine readable labels, badges, credit
cards, etc., is gaining acceptance in a wide variety of business machine applications. This is due in large part to
the development and acceptance of industry-wide standards. The simultaneous growth of systems based on
microprocessors will give additional impetus to this trend.

Few tasks are as made-to-order for an MPU as the conversion of scanned data to a usable format. The
specifications for both magnetic and optical recording formats were designed to allow for either mechanical or
manual capture techniques. In addition, it was desirable for the labels to be humanly readable and verifiable in
case of equipment failure. The net result is that emphasis is given to the human aspects of the problem rather
than simplification of the electronics involved.

5-1.2.1 Universal Product Code (UPC) Symbol

The grocery industry’s Universal Product Code (UPC) symbol is an excellent example of the genre.
Labels similar to the example shown in Figure 5-1.2.1-1 are beginning to appear on virtually every kind of retail
grocery product. They are intended to facilitate the use of automatic checkstand equipment and are the result of
an industry-wide effort to improve productivity in the grocery industry®. The symbol is optimized for ease of
printing, reading, and manually checking results. The symbol is designed to minimize the cost of marking by
the manufacturers and their suppliers. The symbol size is infinitely variable to accommodate the ranges in
quality achievable by various printing processes. It can be uniformly magnified or reduced from the nominal
size without significantly affecting the degree to which it can be scanned. An example of the human orientation
is indicated by the error check calculation described in Section 5-1.2.5. The error check is an involved addition,
multiplication, and modulo-ten reduction, a formidable task for conventional digital IC’s, but relatively simple
for people (and microprocessors).

A suitable control method depends on both the characteristics of the symbol and the scanning
technique that is used. The symbol is designed for use with either fixed position scanners (label passes by on a
conveyor belt) or handheld wands. The ‘‘wandable’’ approach will, in general, be more difficult to implement
since allowance must be made for variable human scanning techniques. The control program described in this
section is suitable for either but was developed specifically for use with handheld wands.

A 10-digit numbering system was adopted by the grocery industry for product identification. Each
participating supplier is issued a 5-digit manufacturer’s identification number. The remaining 5 digits are
assigned to generic product categories, that is, tomato soup, canned peas, tissue paper, etc., each have specific
numbers regardless of brand name. This 10-digit number? is combined with error checking features and
encoded into a symbol similar to that shown in Figure 5-1.2.1-2.

The standard symbol consists of a series of parallel light and dark bars of different widths. The
symbol will be referred to as the ‘bar code”” to distinguish it from the *‘UPC code’’ that it represents. The basic
characteristics of the bar code are summarized in Figures 5-1.2.1-2 and 5-1.2.1-3 and the following list of
features from the UPC specification:

Information concerning the UPC symbol described in this Section is from the UPC Symbol Specification obtained from: Distribution
Number Bank, 1725 K Street N.W., Washington, D.C. (Telephone — (202)833-1134), Administrator of the Universal Product Code
and UPC Symbol for the Uniform Grocery Product Code Council.

* Although the symboi is primarily designed for these 10-digit codes, it aiso inciudes growth capacity for ionger codes to faciiitate future
compatibility in other distribution industries.

5-12

-
heck or
‘or:
feenex®
Is from
s.

leenex®
Delsey®

Py

.er good only in
_.ates. Allow 4 to 6
.ciivery. Offer void where
«4, restricted or license re-
'_‘.rad. Offer expires June 30, 1875.

ofder.
payable

36000727

Y-CLARK CORP., NEENAH, WIS. 54356 MADE IN U.SA ALL RIGHTS RESERVED.

FIGURE 5-1.2.1-1 UPC Symbol from Box of Kleenex1 Tissues
Registered trademark of Kimberly-Clark Corp., Neenah, Wis.

Right 5 Characters of Code

Left-Hand teft 5 Characters of Code
Guard Bars Pattern (101) / Tall Center
Bar
Pattern
Number System (01010)
A Character o

Left Light Margin

I
]
|
|
[
|
|
|
i
Minimum 11 Modules Widel

Number System
Character

|
|
I
|
|
|
1

Example:(
Not to Scale

\

[0/
National Health-
Related Items Code

-
' 1234
1
|
)| \
11-Character
NDC Code or o

Right-Hand

Guard Bar Pattern (101)
Modulo
Check —{-@
Character

R 4

I Right Light Margin
| Minimum 7 Modules Wide
|

5
[

National
Drug Code

Regular

. UPC Code

67890
N

|
|
|
|
|
|
|
?
| 4

Characters Per
OCR-B Font
Number System
Character Format
Numb.
System: 4 3 3 0
H N
R D
Digit Correspond- i Cc

ing to Lead Digit
if NDC Grows to
6-Digit Labeler
Code

FIGURE 5-1.2.1-2: UPC Standard Symbol

5-13

Dark Bar 44— 1 Character —_

1 Character

Dark Module —2

Light Module—-

AV V-

7 Modules 7 Modules

2 Bars/2 Spaces 2 Bars/2 Spaces
The Above The Above
Character Character
Represents a Represents a
Left-Hand 6"’ Left-Hand ‘0"
Which is Which is

Encoded 0101111 Encoded 0001101

FIGURE 5-1.2.1-3: UPC Character Structure

Series of light and dark parallel bars (30 dark and 29 light for any 10-character code) with a light
margin on each side.

Overall shape is rectangular.
Each character or digit of a code is represented by 2 dark bars and 2 light spaces.

Each character is made up of 7 data elements; a data element hereinafter will be called a
““module.”

A module may be dark or light.

A bar may be made up of 1, 2, 3, or 4 dark modules, as shown in Figure 5-1.2.1-3.
Each character is independent.

The symbol also includes two characters beyond the 10 needed to encode the UPC.

— One character, a modulo check character (see Section 5-1.2.5 for details) is embedded in the

right-most position of the symbol to insure a high level of reading reliability. (See Figure
5-1.2.1-2))

— Another character, embedded in the left-most position of the symbol, shows which number
system a particular symbol encodes. Concurrent number sets are used to accommodate such
things as meat and produce without the need to set aside code numbers in the UPC.

e The symbol prevents tampering. Unauthorized addition of lines is readily detectable by scanning
devices. In the same way, poor printing will not result in scanning devices reading a wrong
number. This is facilitated by multiple error-detecting features which allow scanner designers to
build equipment to automatically detect and reject a very poorly printed symbol or one that has
been tampered with.

e The symbol also incorporates and presents the code number in a human-readable form.

The nominal dimensions of a typical symbol (as printed on a product) are shown in Figure 5-1.2.1-4.
The dark and light bars are built up from nominal 0.0130-inch modules, however, some of the characters
involve undersize dark bars and oversize light spaces. There are 95 modules in the symbol itself and 18 modules
in the white marginal guard bands.

Starting at the left side of the symbol, it is encoded first with ‘“guard bars’’, then a number system
character (‘°0”’ in the figure) followed by five UPC characters on the left side of the center ‘‘guard bars.”” To the
right of the center bars is the remaining five UPC characters followed by a modulo ten check character. Finally,
the same guard bar pattern is repeated on the right-hand side.

Y

) 0650 @ — 4_} __1 - 130
|
|

DN

» ;
. 3 L
:

12345167890

€ B 039 Yy & !

] |

_..-462

900

912

965

1.020

[

3

. 1.469
[P

NOTES

[i] (6x) .0910 MAY VARY £.0005 FROM X-X| TOLERANCES APPLY
(8X) .0910 MAY VARY ¢.0005 FROM Y-Y | TO ARTWORK ONLY
NUMBERS ARE OCR-B

FIGURE 5-1.2.1-4: Nominal Dimensions of Printed UPC Symbol

5-15

On the left-to-right basis, each character on the left side of the center bars begins with a light space
and ends with a dark bar; characters to the right of the center bars begin with a dark bar and end with a light
space. Dark modules represent 1’s while light modules represent 0’s. The number of dark modules per
character on the left side is always three or five; the number of dark modules is always two or four for right-hand
characters. Encoding is identical for all similar characters on a given side of the symbol, whether it is a number
system character, UPC Character, or check character. The first two bars at either end encode the guard bar
pattern, 101. The guard bars in the center encode as 01010. The corresponding encodation for the characters is
summarized in Figure 5-1.2.1-5.

Since the UPC number encoded in the symbol does not include price information, the primary
objective is to recover the 10-digit number and store it in RAM where it can be used by a price lookup routine.
As is usually the case in MPU-based systems, stripping of the extraneous information, performing error checks
and recovering the data can be accomplished in a variety of ways. A software oriented approach was selected in
this case; external hardware processing is held to a minimum.

Decimal Left Right
Value Characters Characters
{Odd Parity — 0) (Even Parity — E)

0 0001101 1110010
1 0011001 1100110
2 0010011 1101100
3 0111101 1000010
4 0100011 0011100
5 0110001 0001110
6 0101111 1010000
7 0111011 1000100
8 0110111 1001000
9 0001011 1110100

FIGURE 5.1.2.1-5 Encoding For UPC Characters

5-1.2.2 Hardware Requirements

For the wand used in this application, the data is captured by using a photo-cell to detect the variation
in reflectivity as a light source as passed across the light (high reflectivity) and dark (low reflectivity) areas on
the symbol. Circuitry suitable for recovering the resulting analog signal is shown in Figure 5-1.2.2-1. Two
MC1747 Dual Operational Amplifiers are used to amplify and condition the photo-cell output. The conditioned
output provides a TTL level logic ‘‘1°” while the wand is scanning black and a logic *‘0’’ while scanning white.
This is ail the externai hardware that is required; the MPU can perform aii additionai processing.

5-16

47uf
6V

+

10k
1k
—‘:[< 10k 3.9k
47uf
I -5V

+12 Vv

6V

~ 7 Clip on Photo-cell
| Assembly Port No. 4
Spec. Unknown

Wand Lamp: 5 V @ 750 mA
+12V

jok %MC1747L

Orange

Y%-MC1747L

+12

13 '
+ 12

o0 -5V %-MC1747L

+12
%B-MC1747L 6
+12 —— 9
Out
.01 A —— 10 o

82k
NV

1
—/f
-5
100 k
V-

6.8 k

FIGURE 5-1.2.2-1 UPC Wand Signal Conditioning Circuitry

5-17

5-1.2.3 Data Recovery Technique

The output of the conditioning circuitry is effectively an asynchronous waveform with a widely
variable and unknown datarate. An initial decision must be made as to what synchronization techniques will be
used and what range of scanning rates can be expected. Lacking more specific information, it was deemed
reasonable to expect rates from one-half inch per second to fifty inches per second.

Having a uniform constant pattern at the beginning and middle of each scan suggests that data
recovery could be accomplished as follows: (1) Assume that the data rate is constant; (2) use the known initial
guard bar pattern to establish a sampling rate; (3) use that rate to sample the data at the expected midpoint of
each module for the next six characters; (4) use the middle guard bar to update the sampling rate; (5) sample the
last six characters at the expected module midpoints.

A second data recovery method that does not require a synchronization technique could also be used:
(1) Again assume a reasonably constant data rate during the scan; (2) measure and store in memory the time
between transitions for an entire scan; (3) calculate the total time and divide it by the known number of moduies
per symbol (95) to determine an ‘‘average’’ module time; (4) use this and a comparison of ‘‘bar widths’’ (time
between adjacent transitions) to one another; (5) use ratios established by (4) to determine bit patterns for each
character.

An analysis of the expected rate variations, symbol printing tolerances, and computing complexity
indicated that either of these two methods would lead to marginal results. A major difficulty lies in the way the
module patterns for the individual characters are specified (see Figure 5-1.2.3-1). It is important to note that the
dimensional specifications for each character are referenced to the edge of the pattern nearest the middle of the
symbol. This means that left-hand characters are specified from their right edge and the right-hand characters
are specified from their left edge. In addition, a printing tolerance (see Figure 5-1.2.3-2) is specified that
swamps the tolerances shown in Figure 5-1.2.3-1. For example, the artwork tolerance of =0.0002 inches is lost
in the tolerance of 0.013 = 00397 inches that is permitted for printing a nominal module width. The net result is
that legitimate symbols can have both undersize and oversize bars. This is illustrated in Figure 5-1.2.3-3, where
a worst case situation for a left-hand ‘‘zero’’ is shown.

There, the right-hand black bar could be only 0.010 inches wide and still be in tolerance. Since the
specification requires that the combination of the right-hand bar and the adjacent white bar be 0.0260 + 0.0002
inches, this implies that the white bar could be 0.016 inches wide and still be in tolerance. Variations of this
magnitude were observed when actual symbols on a variety of products were examined.

When the allowable dimensional variations across an entire symbol are considered, neither of the
two methods proposed would give reliable results. The procedure finally selected incorporates features from
both methods.

5-1.2.4 WAND/MPU Interface

Obtaining a record of the time between transitions is the first step in capturing the data. This raises
the question of how the waveform recovered by the wand is to be entered into the MPU system. Since it is a

5-18

61-S

| LEFT RIGHT JLEFT RIGHT LEFT RIGHT
| 0 | |) | [s 1l NOTE
L {l [Il Ili o ll.l | :.. || ! [[] TYPICAL WIDTH OF ONE CHARACTER
) =S & .
7o'|3oJ i pro ot | | |lloisb 0s0 || | |l loieb = ARTWORK TOLERANCES .0002
| | 'l T]]]
|
ozfeq,l _l 0650 .oesol! R claz'eo 0520 T L.oz,sq
) | [|] '
1
0520 ‘_ N A_Lweo ;9780" . | |.0850 0790/ .0510
| i I ! K |
\			
! ' !			
I : }			
LIERL nisam mom			
l) !	’ !	
oo	l] o270 0130 !‘ __‘ [.0130 ozeol		_
		r \l	
o3so		.0520 0520 !	! .0390 oa'so_j T 0520
\ i [y i			
\ i			
0640 L . _lo790 10730'_ N L llorso 0520 N .0650			
\ I	!		
1			
	: T O P		
	I	START OF ADJACENT	
1 ' . 2 .. ; Il. 6 .I : CHARACTERS			
! | ‘ | | .{ ‘ | | Ty
,0350‘ -0270 0520 .0130 |]] |
- D220, — LEFT | | |
! N ! f EDGE\ OI30| ! ‘ !
0520 || | .| [.03%0 ,0650 | lozeo | . 0130 | I
| i] i ’ |
0260 |
20640 | | B _l.éego 0780 . L.o3%0 I Q'ﬂ’a:—\—|
| I | I |
| : | | | 9390 .0260; JI
I | |
: | | | 182 iy 9;9_0%_ +
| |
I ! LEFT GUARD by
| : | : |l .0130
|
-y 31 AR 7 h 0650 ||
o'||30 ” oulo o;’vol (IJ!zc') n |
. B : . RIGHT
T i o ~L—-, | l EDGE CENTER PATTERN
:oz'so_] L L J.c‘)eso 0390 | | | L.dszo 0130
) i [i
| ' | ' Lwox
.0780 N le ,]:0780 .0790 | 0640 ™ _I
|
0910 | :09I0 0910 | loaio 0390 L |
S—REF [T =~ —1="—REF [1] S==REF (I]—L*# 1= —REF [1] I

he——— 1304y N

RIGHT GUARD

FIGURE 5-1.2.3-1: Dimensioning for Standard Symbol Characters

{Thousandths of an Inch)

Module Width

Magnification
Factor

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

.85

92
1.00
1.08
1.15
1.23
1.30
1.38
1.46
1.54
1.62
1.69
1.77
1.84
1.92

Total Bar-Width Tolerance
(Thousandths of an Inch)

+2
+3
+3.97
44
4.9
+5.4
+58
+6.3
+6.8
+7.2
7.7
8.2
+8.6
+9.1
+9.6

FIGURE 5.1.2.3-2 UPC Symbol Printing Tolerances

Nominal Character Width: .081"

3 4

?/

Nominal Module
Width: .013""

(Approximately 100 x Nominal Size)

%

7

ft—— 016" ——

tg—— 010" —

FIGURE 5-1.2.3-3 Worst Case Printing Tolerances for *’Lefthand 0”'.

5-20

[—.026"' £

002" ————

serial stream and there are no handshaking requirements, only a single PIA input to the MPU is involved. The
data can be introduced either through an interrupt line[CA(B)1,CA(B)2] or one of the data lines, PA(B)0—
—PA(B)7. Input through a data line was selected based on the system flow shown in Figure 5-1.1.4-1. The
wand is assumed to be one of the two manual input devices (the other is a keyboard) to a transaction terminal.
The terminal’s executive program enters a polling loop when it is willing to accept data®. This approach
assumes that both devices will not be in use at the same time, hence, there is no need to handle the incoming data
on an interrupt driven basis.

3The relationship of the wand routines to system flow is duscussed in greater detail in Section 6-4.2.4.

Power On

\

System
Start Up
Initialization

Y

>- Initialization
New
S Traosaction

Initialization

Y

New

———————— Item

Initialization

\.

Wand T

Keyboard/
Wand
Load Poll
Transaction
Data On
Cassette

J

Keyboard Wand
Decode Interpreter

l >_ Item
Entry
NOGO
Fail Safe
Interlock
‘ GO

Process & Disk UPC

Data
Continue ————— Lookup

Entry

Item Entry
Complete

Transaction Entry J
Complete

FIGURE 5-1.2.4-1: Transaction Terminal Flow Diagram

5-21

5-1.2.5 Data Recovery Control Program

3 The encoded wavefore enters the MPU via the seventh bit, PB7, on the B side of the Wand PIA.
Selecting bit 7, the sign bit, provides the simplest means of testing to see if the current status of the waveform is
one or zero.

Recovery of the UPC data consists of the following steps:

(1) Initialization — XKIWND — (Figures 5-1.2.5-1 and 5-1.2.5-2) Clears the various memory
locations that will be used for buffers and data storage. This routine is entered each time a UPC
Code is to be read.

Get Starting Address of
Memory block $00-$75
Into Index Register

Use Indexed Addressing
to clear current location.
Test for finished

Yes

Move to starting Address
of next block to be cleared
($102-$122)

Use Indexed Addressing
to clear current location.
Test for finished

FIGURE 5-1.2.5-1 Flow Chart for XKIWND Initialization Routine

gootn HEAEM Wk TIWHT

nonzn BSER OrG TESEE

o002l BSER CE O QOGT T HE 0D BET ZTRTHEG ALDR OF BUFFER
gooan BESEE &F 00 WDLREL CLFE * CLERR CHREEMT LOCATION
OOnso BSFLD 02 IH= MOWE TO MEST LOCATION
QO0en BSF1 2 007s CE #ETE FIMIZHEDY

QOonFg BSF4 & F2 BHE WMILREEL MOs COMTUESYEZ G0 MH&T EBLE
Qnosn BSFe CE RiE LD EER S I GET ZTRT AILDR OF H=T EBLOCE
aoiod BSF2 &F 04 WCLREE CLRE kS CLEAR CURREMT LOCATION
oiin BSFE 02 Irs MOWE TO HM=T LOCATION
aolzo BSFC 20 0123 CRE #F123 FIMIZHEDT

onizd BRFF 25 F2 BHE WCLREED MOs COMTIMUS ZERRCHIME
gai4a Bl =9 ET= YESZs RETURMN T ESECUTIVE

FIGURE 5-1.2.5-2: XKIWND Assembly Listing

(2) DataRecovery — YKWAND — (Figure 5-1.2.5-3 and 5-1.2.5-4) This routine is entered from
the executive’s Keyboard/Wand Interrogation loop. The Interrogation loop continually tests bit
7 of XP4DRB, the PIA Data Register until a ‘‘zero’’ is encountered. The zero is assumed to
result from reading the high reflectivity white space caused by the wand passing across the white
guard band at the edge of a symbol. The wand output will normally be high at other times. For
example, the wand just laying on a counter is equivalent to reading ‘‘black’’ or some other low
reflectivity surface. The objective of YK WAND is to measure the time between transitions and
store the results in RAM memory.

(3) Data Processing — WSORT — (Figures 5-1.2.5-5 and 5-1.2.5-6) The objective of WSORT is
to reduce the timing data captured during YK WAND to set up UPC characters in binary format.

There are several additional routines associated with recovering the data: WERCHK tests the data to
see if it is a valid UPC number by performing an error check based on the check character included in the
symbol; (2) WBCDPK converts the data into packed BCD (two digits per byte), the format required for the
price look-up routine; (3) WBADRD, the error processing routine, may be called for a variety of reasons during
execution of YKWAND, WSORT, WCDTST, or WPACK. Each of these routines include validation tests and
will call WBADRD if a bad read occurs. The action to be taken following a bad read depends on the particular
application and may be performed by either the MPU or the human operator. Therefore, no specific WBADRD
routine is included in this description. The system described in Chapter 6 generates an audible ‘‘approval’’ tone
for *“‘good data.”” In this case, the WBADRD routine could be nothing more than a deletion of the approval
tone, indicating that either another scan or manual entry is required.

Details of the YKWAND routine are shown in the Flow Chart and Assembly Listing of Figures
5-1.2.5-3 and 5-1.2.5-4, respectively. Following entry from the Keyboard/Wand Interrogation Loop, bit 7 of
the PIA Register (XP4DRB) is again tested to insure that the data is still low. If the entry was caused by a short

5-23

yT-s

WBDRLP

YKWAND

Enter from

Interrogation Loop

|

Increment
Timer.

WBAD

(Too Long)

Line
Still Low?

Yes (Reading White)

Start Timer

1

WBLKLP

Increment
Timer.

Count = 30?

“From Yes

Black’’ Set?

Storage Buff. Addr.

Increment

)

|

Start Timer.

fncr. Bar Count
Set “From Black'*

Incr. Space Count
Reset “From Black”’

Store Time per
Storage Buffer
Address.

Figure 5-1.2.5-3 Flow Chart for YKWAND Routine

WSTRGE

WHITLP

Increment
Timer.

Space
Count = 307

oooin M HEWAMD

Goain aFT LIZT

cooin + MAME: ARWAMD

ooazo + REVE 12-13-74

ooz EBenC OrG LESOC

ooo4n +

oonsn 44 bbbttt strtssdessd LAMHD ROUTINE e+t ssbestese

AT +
O0En +

Q0090 ESOC FE BE10 HKWAMD JMP VEWMAMD EMTRY EOINTE
SOF 2T S TWHD RTE MO IMITIALIZATION

Oo=2sn

anzsn

+ ZECTIOMN "=EWAND" +

+*

+*

+

* THIZ PRET OF THE ROUTIME IZ THE

+* DATA GATHERIMNG ZECT. 0OF <EWRMD.

* IT READE THE URC CODED LABEL

+* AZ &0 ELACK AMD WHITE EBEAELT AMD

* ZTOREZ THE ZCRMHING TIME OF ERACH
* EAR OF ZPACE IM LOCATIOME ®00-375
+*

FF O1oé yEMAMD CLE WERCHMT

FF oa104 CLE WMFLAG

FE 0105 CLFE WEZPCNT

7F on1i4 CLFE WZEFAD

TF G115 CLR MEZEFRD+1

Fe Cola LDA B HP2IRA LIME LOWs EZPACET
angdan zE Z0 EMI WERD HO: ERROR

nng3z0 +*

T T |f'. (3

1T 1T

oo oo Bw u B o w0 B e Bl]
1T
P et ke et ok ke e

FCT) Co e
=
-n

1T

ong4s0 BeSd CE QOO0 LT #EOQODO TE=
oog40 Be2¥ Fe C0O10 WBDELP LA B HPZDRA LIME HIGHs EART
Node 0 Be2A 2B 05 EmMlI WELELF YEZ: TO TIMIMG BARAR LOOP

LO470 *
oo4E0 * ZET MAXIMUM TIME RLLOWED OM EORDER
00450 *

Gos00 BEZC 2C FFOO CFR= #EFF OO HO: GUARD BAMD DELAY

Osio EecF 27 23 BEL WEAD TOO LOMG OM GUARRD EAMLO: ERE
nas&n BE31 02 TH:

00530 Be3z 20 F2 ERA WEDRLF LOOF EACE

FIGURE 5-1.2.54: YKWAND Assembly Listing (Sheet 1 of 2)

5-25

oosgn
nossa

ooSen

noe1 0
DOeZ0

aovyon
nouvrio
aovrza
OOvV=0
oov4n
nny=a
HO7ven
narsTo
oovFan
no=nan
RSN
goas

non=s0

no=Zen

0o=e10
noaz2a0
no=Ez0
o034 n
QoS

ooaro
aossn
OO0
n1aon
oi10z20
Oi0z0
1040
1050
olosn
o1avo

holt I
Moo M)
=) = T It T M

[a Ol 0 Y
QA X

v 0T L)

ot om

IEI'-': T

o
T

£
i

BE4E
BES]

tr
[
N
I

T T

[n g}
DL B |

[n IR A
(5 4
o B o BRI

o e

[}
[ng]
m

T
[}
L3 RN R %

[n)
T]
| N

[n g T
[0} g
I

(s e allonl
(2 A I
=3 I

P

X (T

(g

I N BN B |

W M 02 N

1T

[B T Y

g
[ux]

N = R T

=} M

[Or s s I A

[n S o)

‘v EE

o T D

Do Ba® I o B & IS BN Y I N

opz9
o
EC
01 GE

0104

Eevh

goon

. ooin

oF
o105
1E
F

1400

EC

0105
01

BETS

o1os
a114
010z
010z
oo
1

0114
0104

AS
Cdg

WELELF LIix
WELKL1 LIR

an)

T

)

+E0000 ELACK EARE TIMIMG LOOF
sP2DRER LIME LOWs ZFRCET

WHE1 YEZ: END LOOF

WERCHT O

#+E1E EAR COUNT = 207

WEORT YEEZ: EMD EZCAHM

MA=IMM TIME ALLOWED OM ELEK EBAF

#E0BSY HOs TIMER = 94xid7
WEARD YEE

HO
WELELL LOOF EBACE

WERCHT IMC EARE COUNMT
WFLAG ZET "FROM ELACK" FLAG
WETRGE

SR A WHITE ERR TIMING LOOF
“PZDRA LIME HIGHs ERETY

WHEZ YE=: EMD LOOF

WEFCNT HO

#E1E ZPACE COUNT = 207

WERD YEZs TOO MAMY ZFRCEZ: ERED

fMASIMOM TIME ALLOWED OH WHITE ERE

sE1400 HOs TIMER=7=UY
WEAD YEE

MO
WHITL1

WEFCNHT IMC ZPACE COUMT
WFLAG FEZET "FROM ELACEKE" FLAG
WETHEBE

WDUMEF LOARD A AMD E
WEEFAD MITH COMTEMTE: OF
WDOUMEF IMDEX REG. <TIMER?
WIUMEF+1

Elsx STORE TIMER IM ZTORRAGE ELUFF
IMCEEMEMT =TORAGE
BUFFER RIDRE:ZE

WEZEFRD

WFLAG TEET FLAG

WELELF AUME TO COREECT

WHITLF TIMING LOGF

FIGURE 5-1.2.54: YKWAND Assembly Listing (Sheet 2 of 2)

5-26

LTS

Addr. 1st Group of

] 4. Reset WF612.
Set Addr (WSBFAD=06).
initialize WCBFAD.

j

Load Bar
with Mad. time

Set 4 Bar End*
Values (WBEND)

WODDBR

WEVNBR
Yes No

Shift a Zero
into WCHBUF

Shift a One
into WCHBUF

Shift a One
into WCHBUF

Shift a Zero

into WCHBUF

Add WMODTM
to WTSAMP,

WTSAMP <
WBEND1?

WTSAMP <
WBEND2?

WTSAMP <
WBEND3?

WTSAMP <
WBEND4?

Char.
Count = 67?

Set WF712
Set WSBFAD

§

Char.
Count = $C?

FIGURE 5-1.2.5-5 Flow Chart for WSORT Routine

Determine WMODTM,
1st WTSAMP.

End #1 = Time for Bar 1;

End #2 = Time for 1st 2 Bars;
End #3 = Time for 1st 3 Bars;
End #4 = Time for all 4 Bars;

Addr, Next Char. Buff;
Incr. Char. Count;
Addr. Next Group of 4.

013810
01270
G1z20

1400
nig410
n014z20
ni4:z=0
nigd440
01450
11451
ni4yo
1450
414320
015z0
0is40
g13s0
N1S&0
n1svao
015E0
H15%0
nie 00
gleln
olegn
018320
oled
01a5S0
glesn
0levn
O1es0
n1e9d
o17o0
01y
aivzo
017=0
1740
01vsa
01ven
0170
nivaao
a1730
0i=E00
nisin
niszn
n1=z0

n1=40

[
L

[x)
Iy}

T 1T
YR Y ¥

(anianllonllinadlenllsn]
T T T T 0]
Lo oL

e RS N N

[0}
I

DU SR SR S T R 0
e B W W W R]
i DM Mo

o

i

[

[AT n N A LY

oo b bt b bt bl o b b o bl bl i
()

1T

M DO mmemm e b T D D D

w0 T L= M I e T

EECE
B0
E&Diz
Belig
BEeDis
BEaDia
E-DE
E&DE
EcE1l
EeEZ
BeEZ
ERES

CE
FF
ZE
FF

-

I
m

R e R

]
o oha =g~

I T M
Lo

m T M
b =g

’.J - ,l

Lo B B LY S|

T

Y = o IS U IR e Y 2

A
T T -

-4

- -

aoo0e
ni14
0104
n11e
a1n0s
01n0es

0114
an
0l
nins
o109
nz
ns
010R
010k
ns
g
01 0oc
n10n
oy
e
01 0E
01 aF

L&
Lv
av
s
ERZE
3
g110
0111

oiic
1113

L B B N BE R K AR R R AR

+
W=ORT

*
WERTLF

LD
STH
LR
LD
ETH
CLE

LI
LIA
LA
=TH
=TH
ALD
ALC
=TH
ZTH
HID
HIWC
“TH
TR
HID
HEC
=TH
=TH

=TH
=ZTH
LT
=TH
JER
LIA
CLE
=TH
CLE
ROR
=TH
=TH

+ ZECTION

TWEORTT o+

THIZ FPART OF THE ROUTINE UZEE
THE DATA IH RAM EOO-E75 AND

LECIFHERX
EIMARY

HE

CODE=

H

M DM D DD ot oo T

i T

Do Dok

AMD

S
WERFHD
WFY1c
#WETGEF
WCEFARD
WCHECT

WEZEFARD

B
HEEMD1
WEEMD1+1

WEEMDZ
WEEMLZ+1
Fda
WEEMLZ
WEEMDZ+1
7
B
MEEMTI4
WEEMDG+1

sk TWHT
AETWMD+ 1
+EO7
AEDVER
AETIVD
AEGUOT+1
WMODTM
MOnITM+1

WTZAMF
WTEAMF+1

IT INTO 12
WORLE WHICH ARE CODED
OorE OF THE
LOARLDED

12 EYTE EUFFEE

v=EIT

CHARACTER
INTO WETSEF

UFRC

IMIT DATH T4 ETART
AFTER GUARD EREZ
FEZET FLAG V-12

IMIT CHRERCTER ELUFFER
ADDREEE
CLEARR CHARACTER COUNT

ZET WEEMDs: VWARLUE=

ZET DINVIDEMD

ZET DINVMIZOR
LIVIDE EY 7

FECOVER AMEZWER
LORD MODULE TIME EUF,
DIVIDE EY 2

LORD ZAMF. TIME ELUF,
WITH IMIARL “HLUE

FIGURE 5-1.2.5-6: WSORT Assembly Listing (Sheet 1 of 3)

5-28

ai1asa
n1seq
01370
nisazn
012390 BEES E& 0113 LA
01200 BESEC 44 LER
01310 BEED EE 0113 RLOT
01320 BeFO BY 0107 =TH
019=0 +

01940 BeF: FE G114 LI WZEFRD
31950 BeFe Fe 0111 LIk B upODTM+1
120 BEFS Be 0107 LIH A WZ24mOn

ADUETHMENT TEET: I: OME OF THE
BEAREZ OF ZPACE: TOO HARROWY

* o »

WTEAMF+1

WTEAMP+1 CRLCULATE =~4 OF MODULE T
Wz24M0n ZTORE FOR UZE

DD

mmm

IF AHY EAR 1= TOO MHRREROWs THE MOMIMAL
MODULE WIDTH I% UZIED TO REFLACE ITs

THIZ ALLOWEZ FDOR MORE ACCURATE DRTH FROC.
oo =T = CHECE FIEET ERE

ns EMHE WCHMFP1
i CMP A ElsH
04 ECE WCHFP 1
01 ETRH B ¥l
=) ERA WERTLF
s MCHMPL TET ESe s CHECE ZECOMD EBAE
s EMHE WCMFS
0z CMP A EZsH
04 ECE WCMPE
= ZTH B E ACT R
SF ERHA K
04 wopPs TET
s EMHE WZMP S
0S CMF A ESa=
ECE WMCHMFPZ

—
u
X

L I A

=

2020 EeFC
0E020 EeFE
02040 EFOO0

PR -
02050 BV OS2

oZuen BEVO4
oz oy n
oo n=n

 =j LN o= T

o I e}
=

ozio0n0
nsi11a
o1z
a213n
nz140
gzi1ou

Pan B L) I ST 0

.

CHECE THIRD ERE

=

PR B | BN s A
B

R R R R RN RN R N I I I I I I e

[
Pt I

ECT WODDER
STA B E7s 4
AMF WERTLF

bt SR BRI O (N O I e W R LR N e O e AR O I e O O

02120 05 STH B 1S
02130 as ERA WERTLF
nzenn o as WCMRPZ TET oy CHECE FOURTH ERE
gzein o3 EHE WOLLER
gzzz2n rs CHF A E7sH
£

s N B B £

m
T
[h]

] +

i *

1 1oz WODDER LDw WCEFRD LORDIMG LOOF 1
(Y AH=L K

G109 T=T WFv1z

14 EEQ biH=3

e =

HOCR U O N R O WO WO

T

T 0 m

]

i 6T T =) O

az 0o I #
i i ERR wHE

FooPo Do na P o g

+
0102 WEVMERE LI WCEFAD LOATIMG LOGPR
i AEL E

nlog T=T WF712

o ENE WHZZ

0 T !

o

M

m
m

 ovaa? ! o e JURSLUN
T D

[n SO T Ik Y
[&

FIGURE 5-1.2.5-6: WSORT Assembly Listing (Sheet 2 of 3)

5-29

nEq00 +
nz410 BE& 0112 WHES LTiA
nzgden % 0113 LIA
o240 0111 RDD
0440 o110 RIOC
02450 Y 011e =TH
n24en niiz =TH
02470 +
nz420 ni1e LDA
o2430 011z LIA WTEZAMP+1
nE2sao o10s CHF WEEMD1
oz=10 ce BCE WODDER IF TEZAMF<EHDI1
nesen L EHE WHESR IF TERMF>EMDI
ne5z0 o103 CMF E WEEMD1+1
n2s40 ce ECE WODDER IF T=ZAMF<ENIN
02550 0108 WHEZES CHMP A WEEMDZ
AESel CE ECE MEWVMHER IF TEARMF<EMDZ
azsvyn 05 EHE WHZ=10 IF TEAMPXEMDZ
oz5e0 010E CHF B WEENDCS+1
o250 Cd BCE WEYHER IF TEAMP<EMNDZ
""" 0100 WHZ10 CMF A WEEHDZ

El BCE WODDER IF TEZAMF<EMD:=

WTZAMF UFDRTE ZAMF. TIME
WTEAMF+1

WMODTM+1

WMODTM

WTEAMF

WTEAMF+1

-
Loy

Iy

b i b bl b

bt I I e RN R |
L B B SV T Y
[TN B o B e B N
T
[os]
HI DD

Mimm

-] =

WTEZAMP FIRET TEET

I D

DT R I R

L (T 0 = O Rl Tt D T N0 T D

M T fsE M T fmna Tpnnm T

o XYy (T

ISy =Y IR]

nZeln

[l B Sy PR ISP IS e U B R

o b bt b b i b b b b e ok P o bl i i

NI I B B B BN EE I BEN RN B B | = =)) =] =l

SRR R YN Y NI,

Geecl £ 05 EMHE WHE11 IF T=AMF:XEND=
o2z 1 oion CMF B WEEMDZ+1

IZed S AHA ECE WODLEFR IF TZAMF<EMD:Z
n2es0 BYE3 Bl OO10E WHE11 CMF R WEEMDS

oZee S B3 BECE WEVHER IF T=AMF<EMNDS
o & 05 EHE WHE132 IF TEZAMF:END4
nZes 1 010F CHMF B WEEMD4G+1

ne S RO ECE WEVMEEF IF TEZRMF-<EMD4

+
0103 WHE1Z INC WCEFAD+1 ADDRESS MEXT CHAR. EUF.
0n1n0e ITHC WCHRECT IMC., CHARE. COUMT
011s LA WEZEFARD+1 ADDRESE: ME=T GROUF OF
= RIOD g0 FOUR =ZTEGE. EUF.
0115 =TH W=EBFAD+1

P B R e I

T a]

e e I B By
v
oo m

L)

E7
EY
Ev
E -
EY

oa BN o BRY Bt
=-J T
o i s

T S e
L]
Y]

*

LI]
A}
O

1 0e LIA WCHRCT)

s CHF #E0E BEGIMMIME 7 TH CHRE.T
HE EME WHZ14 HO

o104 IMHC WFV12 YEZsZET FLHG FOR V-1
40 LIA #F40 ZEIF OYER GUARD EARE
nils =TH WEZEBFAD+1

T

o Too F Do o Do o 1o D o M) Mg

R SN

e e a0 o e A A RV

b D g Mo O b
=§ T T o T

T W I OO S A

T

+ T

o108 WH=14 LDA HCHRECT

o CHF sEOC FIMIZHED 12 TH CHAR.T
EE® MH=Z1S YEZ
Nigls WERTLF HOs LOOF EARCEK

WHZ1S EERH WMFPRCE =0 TO FACKIMNG ZECT.

*

aEEnn +

Mo b
o [T =g == T
T T

R

i DD
[n S i & W]

o=y 1o 00
[n.0 Mo}

= 1T 0
T
)

FIGURE 5-1.2.5-6: WSORT Assembly Listing (Sheet 3 of 3}

5-30

“‘noise’’ pulse on the data line, the program causes the MPU to exit to the bad read routine, WBADRD. If the
line is still low, indicating that the wand is passing over a white space, the MPU enters a delay loop, WBDRLP,
to wait for the expected first white-to-black transition.

Exit from the loop occurs when the first black guard bar is encountered or after too much time has
passed for the white space to be a symbol border. The count loaded into the Index Register determines a number
of passes through the 23 microsecond waiting loop and hence the maximum time that will be spent on white
before exiting to the bad read routine. The required time is derived from the slowest allowed scan rate and the
nominal dimensions of the symbol. A minimum scan rate of one-half inches per second was deemed reasonable
for this application. The nominal module width of 0.013 inches yields a time per module, tm, width of 0.13
inches/o.5 inches per second = 0.026 seconds at the slowest scan rate. The white guard bar is specified to be at
least eleven modules wide, hence, the waiting time should be at least (.026) (11) = 0.286 seconds. The
program causes the MPU to wait approximately 1.5 seconds before exiting in order to allow for operator
variance at the beginning of a scan. ‘

The next section of the program is used to determine the elapsed time between transitions during a
scan. The first low-to-high (white-to-black) transition following the white border cuases the MPU to enter the
Black Bar Timing Loop, WBLKLP. The symbol consists of 30 black bars and 30 white bars (the last white bar
is the white border at the end of a scan). The program alternates between WBLKLP and a similar White Bar
Timing Loop, WHITLP. The elapsed times are stored in sixty memory locations for later use by the WSORT
processing routine. The Index Register and a 35 microsecond timing loop are used to measure the elapsed time
until the next transition.

The WBLKLP loop will cause an exit to the bad read routine if the elapsed time becomes greater than
what is anticipated for the maximum black bar width of 4 modules at the slowest scan rate. This is monitored by
comparing the number of passes through the 35 microsecond loop to $0B9B, corresponding to (.026) (4) =
0.104 seconds.

When the subsequent black-to-white transition occurs, the current bar count, WBRCNT, is in-
creased by one, a flag indicating ‘‘From Black’’ is set, and the current time between transitions is stored. Since
the count in the Index Register may be as large as $0B9A, two bytes or storage are required for each timeout
(maximum single byte storage is $FF). The storage segment of the program, WSTRGE, is entered from both
the Black Bar Timing Loop and the White Bar Timing Loop and causes the current elapsed time to be stored in
the appropriate buffer.

The time to be stored (current contents of the Index Register) is temporarily placed in RAM locations
WDUMBF and WDUMBF+1. The current storage buffer address, WSBFAD, points to the storage address
and is loaded into the Index Register. The indexed addressing mode is used to retrieve the time from WDUMBF
and WDUMBF+1 and store it in the proper storage buffer location. The Index Register is advanced to the next
storage address and placed in WSBFAD for use during the next storage cycle. Control is returned to the proper
timing loop by testing the ‘‘From Black’’ flag.

The White Bar Timing Loop, WHITLP, functions similarly to WBLKLP except that it measures the
time between black-to-white and white-to-black transitions. If a white bar count of 30 is encountered, the
program exits to WBADRD since a black bar count of 30 should have been reached on the previous pass
through WBLKLP. A time in excess of seven module units. corresponding to the maximum anticipated for a
white (right-hand) border, will also cause an exit to WBADRD. The white bar count is increased by one and the
““From Black™’ flag is cleared prior to branching to WSTRGE.

The WSORT section of the program recovers the 12 UPC characters by operating on the black and

5-31

white timing measurements that were captured and stored as the wand scanned the symbol. The process is based
on the following assumption: since the nominal width of a given character within the symbol is only 0.091
inches, the per character scan rate should be very nearly constant. The format of the black bar — white bar
pattern is specified. Each of the 12 UPC characters are known to consist of 7 modules encoded as 2 white and 2
black bars. The WSORT procedure uses these facts to generate a sampling procedure for recovering the data.

The bar times (from the storage buffer) for each character are used to compute a total time for that
character. This time is then divided by seven to obtain an *‘average time per module.”” Due to the allowable
variations in the symbol, each module should be sampled within * 10% of its midpoint for reliable results.
Therefore, the average module width is used to generate a series of sampling times that occur near the expected
center of each character’s seven modules. The sample times then used to test the bar times and determine the
bit pattern of the character.

A Flow Chart and an Assembly Listing of the WSORT program are shown in Figures 5-1.2.5-5 and
5-1.2.5-6, respectively. The recovery process is best explained with the aid of a representative example.
Assume that the times recorded in memory locations $0006 through $000D of the storage buffer are as follows:

Memory Location Contents
$0006 $ 00
$0007 $ 29
$0008 $ 00
$0009 $ Co6
$000A $ 00
$000B $ 1E
$000C $ 00
$000D $ 30

These locations contain the timing information for the first character to be scanned following the 101 guard bar
pattern (the guard bar data is in locations $0000 through $0005 and is not used in this sequence). Note that for
this example the even positions, $0006, $0008, etc., all contain zero. This simply indicates that none of the
times between transitions were long enough to require the second byte of storage. From the data, the bar pattern
times are:

$29 C6 1E 30 (Hexadecimal)
or: 41 198 30 48 (Decimal)

After an initialization sequence, the program starting at WSRTLP, establishes the Bar End values by
computing accumulative totals and storing them in buffers as:

WBENDI1 WBEND?2 WBEND3 WBEND4
41 239 269 317 (Decimal)

The total, 317 in this case, is then divided by seven to obtain an average module time (the division is performed
by a subroutine located elsewhere in system memory). The result, 45, is stored in buffer WMODTM and the
first sampling time, one-half of WMODTM, is obtained as WISAMP = 22. The MPU next performs a
sequence to determine if any of the bars are too narrow for accurate data recovery. The procedure assumes that

5-32

each bar must be at least three-quarters of the nominal calculated width of 45 or %(45) = 33:

41 > 33
198 > 33
30 <33
48 > 33

If all the bars are greater than % of the nominal bar width, the program branches to the next main
sequence, WODDBR. If, as in the case of the third bar in this example, some of the bars are undersize, they are
replaced with the nominal value and the checking procedure is repeated until all bars are at least the nominal
width. For example, this leads to:

41 198 (45) 43
30

with new values:

WBENDI: 41
WBEND?2: 239
WBEND3: 284
WBEND4: 332

WMODTM: 47
WTSAMP: 23
%(WMODTM): 33

and the test is now satisfied by all four bars.

By repeatedly increasing the initial sample time by WMODTM, a set of sampling times are
generated that can be compared to the Bar End values in order to determine which bars are currently being
sampled. For the example:

23 < WBEND = 41; therefore, in 1st Bar.

41 < 23 + 47 = 70) < WBEND2 = 239;

41 <70 + 47 = 117 < 239;

41 < 164 < 239;

41 < 211 < 239;
239 < 258 < WBEND3 = 284; therefore, in 3rd Bar.
284 < 305 < WBEND4 = 332; therefore, in 4th Bar.
332 < 352; therefore, beyond last Bar.

therefore, in 2nd Bar.

Since the symbol and code are defined such that the first module of a character (scanning from either
direction) is a zero, the result of this sequence indicated that the UPC code for this characteris 0111101, or from
Figure 5-1.2.1-5, the decimal value is ‘‘3.”” Note that it was assumed that the code was a left-hand character
implying a left-to-right sweep since the character was recovered immediately followed the initial guard bar
pattern. The program as shown in Figure 5-1.2.5-6 is for left-to-right scans only. A simple parity check is
adequate to determine whether left or right hand characters are being read since each side has opposite parity.

The data for all 12 characters is recovered in this fashion and stored in consecutive RAM buffer

5-33

locations. At this point, the data is still encoded in the UPC format of Figure 5-1.2.1-5. The UPC code follows
no simple algorithm and, hence, must be converted to weighted binary before error check calculations can be
made.

The Flow Chart and Assembly Listing for WCNVRT, a suitable conversion routine, is shown in
Figures 5-1.2.5-7 and 5-1.2.5-8, respectively. The conversion routine uses a table look-up procedure. Code
words corresponding to each of the ten UPC characters is stored in a permanent table in ROM (see Figure
5-1.2.5-9). The MPU tests each recovered data byte against the values in the table until a match is obtained.
When this occurs, the current UPC data is replaced with its weighted binary equivalent. Since the desired
equivalent is weighted binary, it can be generated by using accumulator B as a counter that tracks with the UPC
look-up table position. When a match results, the value that is to be substituted is then available in the B
accumulator. Note that while there are two sets of codes, left-hand and right-hand, for the UPC characters, only
one table is required. This is due to one’s complement relationship of the two sets. The look-up table contains
the left-hand set. If the MPU tests a given data byte against all ten left-hand words without obtaining a match, it
then complements each bit of the UPC data and goes through the look-up table again. If no match is obtained
after a second pass, the program causes an exit to WBADRD. When all twelve characters have been
successfully converted, the MPU proceeds to the next sequence, an error calculation to determine if the data
represents a valid UPC number.

The Error Check Character included in the symbol was originally obtained by applying the
following steps to the UPC number:

Step 1. Starting at the left, sum up all the characters in the odd positions (that is, first on the left, third from
the left, etc.), starting with the number system character.

Step 2. Multiply the sum obtained in Step 1 by 3.
Step 3. Again starting at the left, sum all the characters in the even positions.
Step 4. Add the product of Step 2 to the sum of Step 3.

Step 5. The modulo-10 check character value is the smallest number which when added to the sum of Step 4
produces a multiple of 10.

The error check routine, WERCHK, applies this algorithm to the first eleven digits of the recovered
data and checks the result against the recovered check character. The Flow Chart and Assembly Listing are
shown in Figures 5-1.2.5-10 and 5-1.2.5-11, respectively.

The error check is performed by duplicating the steps taken during the original generation of the
check character and comparing the result to the recovered check character. The modulo-10 result for Step S is
obtained by repeated subtraction of 10 until the result is less than or equal to zero. If no match is obtained the
program exits to WBADRD. If the test is satisfied, the program proceeds to the last step in the sequence,
placement of the 10-digit UPC number in five bytes of RAM as packed BCD characters.

The Flow Chart and Assembly Listing for the packing routine, WBCDPK, are shown in Figures
5-1.2.5-12 and 5-1.2.5-13, respectively. The packing order is indicated in Figure 5-1.2.5-9.

5-1.2 PRINTER CONTROL

A great many different printers are in use; they range from the slow but economical devices for

5-34

UPC Characters are in WSTGBF

WPACK

Put Starting Addr.
of WSTGBF into
WSBFAD CLR 2nd
Pass Flag

Load X with Current
addr. of Strg. Buff.
Load A with Current
UPC Character. Point
X at next Buff.
Location, Store in
WSBFAD.

CIrB (Char. Value).
Load X with Starting
Addr. of UPC Table.

Compare UPC Char.
In A to Current

Table Value
Complement Current Yes
UPC Char., Set 2nd Match?
Pass Flag, go thru
Table Again.
No
Replace UPC Char.
with BCD Equiv.

Reduce Conversion
Incr. Char. Value. Count.

Move to next table
Location and Test

For Srch W/O Match

Conversion
Complete?

WERCHK

End of
UPC Table?

Test for 2nd Pass

WBADRD

Figure 5-1.2.5-7 Flow Chart for WCNVRT UPC to BCD Conversion Routine

5-35

aaalo
poozEn

aqonstn
aonen
goosn
aqoovo

Qoo
goton
noitlo
oot

00140
ani=n

aolyo
ooLran
0oi1ao0
ooz o0
aaz10
ooz
nozzn

E7CE
E7CS
ETLCT

EVICE

an2sa EBY

ao2sn
nnzvya
Gazan

auz4ao

oozt B

anz=io
anIEn
o024
nnz41
o4z
00342
H0z3dg
ao3ds

R T

BTF1
ETF=
ETF2
ETF4
ETFS
BTF#&
BYFT
EYFZ
ETFS
EFFR

a1l1ie
114
oc

aiiz

=~y M m

d 3 T T

110
a0

nil4

CE EFF1

i
1
nii4g
on
0112
=0

E=

R e R Ny B U

(RN IR 00w i I N

]

BFF1
E
1140
&

nin
oA
ETF1
niid
n1is
nllz
g1in
13

1z

ig

0i

0E

07

ns

nz

0

1R

e W U (YR N N I
R BN R = s X B A R

WCHYET

WH=ETOH

WRPHREZZZ

WCHPRE

wpELOc

WERTRD
WEEBFRT
W=THRF
WERCHT
WFLAG

WRCTEL

HAM
ORiz

LI
ETH
LIA
ETH

CLE
LIA
I
T

CLE
LI

CHE
EME
LI
TR
TEC
BED
ERA

I
INC
CPH
BHE
T=T
BHE
M
IMC
ERRA
Eod
AR
EiaL
e
Ed
FCE

FCE

i

2=}

WZHWYERET
FEVEV

#WETLEF
WEEBFRI
EOC
WEPCHT

WFLAG

™

WERFAT

#HWPCTEL
e

IS e W
WZEFALD
=

WERCHT
WECTIFE
WM TCH

HWPCTEL
WCHMFPRE
WFLAZ
WERLRED

WFLAS
=2 =R
+*

0114
EQl11&
Tialis

o110

GET TITRARTIMNG ADLDREEZE OF
ZTRGE BUFF INTO EBUF ADDE &
LOAD WSPONT WITH = OF
CHART. TO Be COMVERTED

CLERR 2MD PAZE FLRAG

GET CURRENMT UPC CHARACTER
FPOINT TO MEAT URC LOCATION
SHT STORE I BUFFEE

IMITIALIZE ZHAR ECDH WALUE
FET =TART ADDR OF UPC THEL
UPC CHAR MATCH TELE CHARTY
M. CONTIMUE ZEARCH

FET CURRENT RIDTR FROM ELUF
YEZ» REPLRCZ UPC WITH ECD E
REDUCE COMVeREZION COUNT

IF DOMEs EXIT TO WECDFE

IF MOT» BET MEXT CHAE

MOVE TO HEXT UPCTEL LOCATIO
INCREATE ECD CHAR VRLUE
TEARCHED ESNTIRE TRELET

MO COMTIMGZ THRL TAELE

YET . ZEe IF OM ZECOND PREZ

2 PRZIES W74 MO MTCH = ERDF
15T PRSI COMPLEMENT UFRC CH

TET ML PAZE FLAG

30 THRDUGH TRELE SGAIM

F199 B2 B16 501 +BOE 307 0SB 0E

Foda.F1A

FIGURE 5-1.2.5-8: WCNVRT Assembly Listing

5-36

YKWAND

WPCTBL

ROM

o

$7F(CLR)

$01
~—— |

/\\

$3B(RTI)

$19

$13

$16

$01

$0E

$07

$08

$02

$04

$LA

— |

$B610

$B
$B8

$B

WSBFAD

WSTGBF

WSTGBF+11

RAM

UPC#9 UPC#10

UPC#7 UPC#8

UPC#5 UPC#6

UPC#3 UPC#4

UPC#1 UPC#2

/—_‘
T

#System Char.

UPC #1

UPC #2

UPC #3

UPC #4

UPC #5

UPC #6

UPC #7

UPC #8

UPC #9
UPC #10

Check Char.

__p

FIGURES 5-1.2.5-9 XKWAND Table and Buffer Memory Allocation.

5-37

$0000

$0004

$0114

$0116

$0121

BCD Equivalents of UP Char. are in WSTGBF

WERCHK

[Load X with Starting
addr. of data

—

Add Current Value
of WSTGBF to A.
Incr. X twice.

Multiply Odd Sum
by 3. Get Strting
addr. of Even locs.

T3

Add Current Value of
WSTGBF to A. Incre-
ment X twice

-

Subtract 10. Test
for Result < Zero

Added
All Even?

Result
< Zero?

Test for Binary
Value less than 127

Form Binary from
2's compl. and test
for match with
Check Character

Binary
<1272

WBCDPK

WBADRD

Subtract 10

- =YY
VERUMN CITOr i

1uss 5 e

iowchart for

T
[9]
C
X
m
ol
d
AN
[N)
o
]
-t
o
o

5-38

aoaLlo
3

DR R il B

A
gaidn
anisao

aaiFn

i
£

no=ao

Glls MERCHE

Tim

Ja 17y

[ARR HWETEPT

. I

412z
-5
|l

WITERZ

Lol

e li"l B R

hi

BZlA 40 WETERF4
EZip 2R 04
E=iD =0 08
BoiF 20 75

i U EHE R

1 b

T o
T
2

Eone}

:T'x I,_h H
Mot e GO

s =

LS W

iR
EST
MEIs
CrE
Br4E

T

I

i

WE R HE
EEVFE
EH

=TISEF GET ETRTHE

LOCATIONT 3

i

A00R OF OO

LERR R,

FROM CUSREMT ODD
TO HEAT LOCATICH

LOCATI

O0T

LOCATIONS
YEZ .50 TTE

ALGDED ML
HAO O CORTHIOESIF

IF

MU TIFLY
v THREEE.
It AZCR
STREF+] GET

ZTZF1
LERVE

RETULT
FEZULT

EVEM ZTRTME RDLR

e
it

FrROM CUSREMT
TO HMEXT LOCH

HOT
MO

=T h}:r‘

&TEFJ

OCAT IOME™
YET» G

SREATER THAM 127 BI
HO» COMTIMUZ MODULD
YED H
Sl

WMMODLG
AR
WITERY

ETILL =127

SRR H
WD O

SUBTRACT 14
EEERP ZUEBRIMS

FORM EIMRRY
MATCH WITH

LTI O Or
FROM 275 COMFLE
CHE CHART

YEZ COMNTIH

WITEEF+11
WERDSDT HO.

FIGURE 5-1.2.5-11: WERCHK Assembly Listing

5-39

M HECTIFE
0= TR

IR
TTE AT PROEING O
TTRTAE ALDR OF LUNFRU
S EERELR o I REMT ODD RLD CHAER
anaTH B 45 = Onm CARRF TO
oonss & 42 A FouR pITZ OF
goass B 4 A AT LOCATION
4= A
g4 01 B lan
B A
HERBGE 15 M o
anidn BUFFER LIOCRTION
DiLss CRE i1 F'F'“ K I'“-v COMPLETEY
0aien BHE MO FRCEIMG
OOL7o LoE TEZ s F IRoRMD
fiian cLI RETIIRH "D EAECUTINVE
3

FTE

FIGURE 5-1.2.5-13: WBCDPK Assembly Listing

Save Old S.P. Point S.P.
at Packing location. Get
starting addr of unpacked

data into X.

Get current ODD BCD
Char. from WSTGBF and
move to leftmost 4 bits
of A, Pack EVEN Char.
into rightmost 4 bits of
A, Push A into Packing
Location. Move to next
ODD location and test
for finished

No

Yes

Restore old SP and
Return to Executive

FIGURE 5-1.2.5-12 WBCDPK Flowchart for WBCDPK Packing Routine

540

printing out supermarket receipts, to the super-machines capable of printing 1200 132-character lines per
minute. The broadest common ground for printers and microprocessors appears to be in the medium to low
speed printing applications.

Medium performance is taken here to include auxiliary printers used with terminals or small
computing systems printing up to a maximum of 200 132-character lines/minute. The gamut of printers
spanning the medium to low speed range includes: electronic discharge printers, thermal printers, chain
printers, drum printers, matrix printers, serial printers, etc., with types and speed ranges available for almost
any conceivable application. .

High performance microprocessors like the MC6800 provide an efficient means for controlling the
higher speed printers and in the lower speed applications, additional functions can be combined with the
controller function to produce a more cost-effective system.

Designing the microprocessor into the controlling system allows hardware (logic)/software (prog-
ramming) tradeoffs to be made to satisfy the specific system requirements. For example, in the high speed
printers, additional logic might be required if the desired data transfer rate is to be met even though the MPU is
only used for printer control.

At the other end of the spectrum, using one of the newer high performance MPUs as a dedicated
controller for a slower printer amounts to gross overkill. More often the relationship is similar to that shown in
Figure 6-4.1-1, a generalized diagram of an MPU based transaction terminal described in Chapter 6. In
applications of this type, the printer is merely one of several peripherals and its control is a relatively minor task
that involves a small percentage of the MPU’s attention.

It is in applications such as this that the real value of an MPU shows. They permit the designer to
reduce a relatively complex system to a number of manageable tasks. Service routines are developed for the
various peripherals and a suitable executive control program then ties the system together.

In atypical case, there are several factors to be considered in the development of a peripheral control
routine. The device selected must, of course, satisfy the basic system requirements such as speed, reliability,
etc. Beyond that, some devices of the same class are more amenable to MPU control than others. Some of these
factors are illustrated in the following paragraphs where the development of hardware and software for a
representative low speed printer application is discussed.

541

5-2.1.1 SEIKO AN-101F Operating Characteristics

A SEIKO AN-101F printer was selected as the hard copy output device for the transaction terminal
design described in Chapter 6. The SEIKO AN-101F Printer employs a continually rotating print drum
mechanism using what is referred to as the flying printer technique. The printing principle of the mechanism is
indicated schematically in Figure 5-2.1.1-1.

The print drum and the ratchet shaft are geared together and rotate continuously in the direction
shown. During a non-print condition, the right end of the trigger lever s removed from the ratchet’s pawl locus
by the downward force of the trigger lever spring. In the non-printing condition, the trigger magnet is not
actuated and the hammers are lifted upward to a neutral position by the hammer lever springs.

When actuated, the trigger magnet’s actuating lever forces the opposite end of the trigger lever into
the locus of the ratchet pawl. During its next rotation, the pawl will engage the right end of the trigger lever
causing a downward motion to the right hand end of the hammer. The hammer thus strikes through the inked
ribbon and paper, causing the character then under the hammer to be printed.

Hammer Lever Spring

Paper Feeding Roller

Hammer

Inked Ribbon
Paper

[
ot

Print Drum

FIGURE 5-2.1.1-1 SEIKO AN-101F Printing Mechanism

..................

AD ~ Ratchet Shaft

1
H

L220f0720087/72777
1777577775 IIII;I,;"

Hammer

Trigger Lever Spring
Trigger Lever v Inked Ribbon _ Paper
_/

Trigger Lever Guide

Trigger Magnet

Characters

Print Drum

FIGURE 5-2.1.1-2 Timing Signal Generation

Detecting Wheel T Detecting Wheel R

TP41 TLaqr TPo TLo TP1

Timing Signal “/\I—MJ\AAF_
‘ Ratchet Shaft
. \‘ Ferrite Chip

‘ Detecting Head T

Reset Signal

542

Any of 42 characters (alphanumeric plus special characters *, $, °, -, ., and /) may be printed in a
21-column format. Each column position has a complete character set spaced evenly around the drum. Because
of a42:1 gear ratio, the ratchet rotates 42 times for each complete drum rotation. Hence, each character of the
set is positioned under a print hammer once during every rotation of the drum.

From this brief descripiton of the printer mechanisms characteristics, it is evident that the control
circuitry must actuate the hammers at just the right time if printing is to occur. Timing signals are generated
electromagnetically by means of detection heads and ferrite magnets associated with the ratchet shaft and drum
(See Figures 5-2.1.1-2 and 5-2.1.1-3).

Rotation of the ratchet shaft generates signals TP and TL for each of the 42 characters. TP provides
timing for energizing the trigger magnets, TL for de-energizing. A reset signal R is generated by each complete
rotation of the drum. The resulting waveform for a complete drum rotation is illustrated in Figure 5-2.1.4-1,

5-2.1.2 Printer Hardware/Software Tradeoffs

It is at this point that a designer must start considering trade-offs in order to arrive at the most
effective design. A suitable peripheral device has been selected and its characteristics have been studied. In this
case, the manufacturer provides a suggested controller design that can be implemented (exclusive of Trigger
Magnet drive circuitry) with 16-20 SSI and MSI integrated circuits. If this approach is adopted, the MPU
merely monitors status and transfers data bytes to the controller at the proper time.

At the other extreme, the MPU could assume as much of the control function as possible and
eliminate all of the external conventional circuits. When overall system timing permits it, this is usually the
most cost effective approach.

There may be reason to adopt some intermediate approach. For example, a sixteen column format
was required for the application described here. The required information for identifying one of the sixteen
items can be handled by four encoded bits. The desi gn could have been implemented using 4 PIA data lines and
external decode circuitry. However, it was decided to assign each column its own PIA data line, using up the
data capability of one PIA but requiring little external circuitry (See Figure 5-2.1.3-1). Had there been four
“‘spare’’ PIA lines elsewhere in the system, the alternate approach would have been given greater considera-
tion.

As a further consideration in the trade-off area, note that while only 16 columns are used in this
design, the AN-101F has 21 columns available. If all 21 were to be used, the designer could decide between
using five more PIA lines as opposed to an external 5-bit shift register. Unless there happened to be 5 ““spare”’
PIA lines somewhere, the relative cost would probably dictate using the shift register.

Selection of a particular configuration is, of course, not made in pure hardware vacuum. Knowledge
concerning the MPU’s capability to handle the control problem heavily influences the method that is finally
selected.

5-2.1.3 Printer I/O Configuration

As is generally the case with MPU based designs, there are numerous ways to solve a given problem.
The method to be discussed here was selected to satisfy three basic objectives: (1) Use minimum external
electronics; (2) Use the timing signals provided with no additional external processing other than pulse shaping;
(3) Minimize the time in which the MPU must be involved with printer control activity. The hardware
configuration selected is shown in Figure 5-2.1.3-1.

543

MC6820
PIA

cB1

cB2

PBO
PB1

PB2
PB3

PB4

PB5

PB6

PB7

PAO

PA1

PA2

PA3

PA4

PAB

PAG
PA7

CA2

CA1

1.2K 5K 1.6K

S o
< Timing
4'-— ———b\
' MC74452
-
" l MC74452
L
+— -
| MC74452
-
E >
— MC74452 |—g@
—> L To Hammer
' » Magnets
MC74452 —?
:
+- -
i MC74452 —@
:»
*— !
| MC74452 —e
L
‘— -
| MC74452 —
)
Dc @—P Paper
1/6 MC7404
(4 Places)
2N6037
1/4 MC3302
{2 Places) 2N6037 =
620
——» Ribbon
+5 ‘
5K < Reset
1.2K 1.6K %i

FIGURE 5-2.1.3-1: SEIKO Printer Circuit Requirements

544

As indicated in the earlier discussion of hardware/software trade-offs, each hammer driver is
controlled by one of the PIA’s sixteen data lines. These lines are the outputs of Registers ORA and ORB in the
PIA which are regarded as memory locations by the MPU; hence, the MPU can enable the activation of a
particular column hammer by setting the appropriate bit position in the memory locations assigned to ORA and
ORB.

During initialization, CB2 is established as an output and is used by the MPU to strobe the enabled
hammer drivers at the proper time. At the end of a print cycle, the printer’s paper and ribbon must be advanced.
This requires a 36 msec pulse which is generated by the control program and is applied through CA2 which is
also established as an output during initialization.

After being shaped and inverted by the MC3302 Comparators, the printer timing and reset pulses are
applied to the CB1 and CA1 inputs, respectively. It is by means of these signals and the MC6800 interrupt
structure that the Printer ““tells’” the MPU it requires servicing. Part of the printer control program’s function is
to establish suitable interrupt modes using the PIA Control Registers.

As an example, in the control sequence described below, negative transitions on the CB1 timing
input during a print cycle must cause the MPU to service the printer. The MPU sets this up by writing b0=1 and
b1=0 into Control Register B during initialization. The subsequent timing transitions then cause the PIA to
issue an Interrupt Request to the MPU via the system IRQ line.

The MPU responds by interrupting its current activity (the MPU’s internal registers are saved on a
“‘stack’” s0 that the task may be resumed later) and fetches the starting address of an executive service routine
from a memory location permanently assigned to the Interrupt Request. The service routine directs the MPU to
“‘poll”” its peripherals by testing the flag bits in the PIA Control Registers to see which one needs servicing.
Flag bit b7 of the printer PIA’s Control Register was set by the same transition that caused the interrupt. When
the MPU finds this flag set, it jumps out of the polling routine to an appropriate printer control program.

5-2.1.4 Printer Control Program

The basic task, or algorithm, of the control program is to examine the text of the message to be
printed and make sure that the appropriate bits in the PIA’s Output Registers, ORA and ORB, are set at the
proper time. The details of timing and program flow are shown in Figures 5-2.1.4-2 through 5-2.1.4-7.

Understanding of the operation is aided by regarding the time for one print drum rotation as
forty-two equal intervals, to through t41. With this in mind, note that all similar characters in the text are printed
simultaneously, i.e., all 0’s are printed during to, all 1’s during t1, etc. For example, if the text requires the letter
C in columns 3 and 9 (as in Figure 5-2.1.4-1), column hammers 3 and 9 must be engaged during the time
interval t12 during which all C’s are under the hammers.

Following each ““TL” interrupt, the MPU examines the entire message to see if there are any
characters to be printed during the next time interval. The text to be printed may be either a ‘‘canned”’ message
stored in ROM or variable information generated by the executive program and stored in RAM. Messages are
stored in memory in 16-byte blocks with each memory position corresponding to a printer column position.
Prior to calling the printer, the executive program loads the starting address of the message to be printed into a
buffer. The printer routine then uses this address in conjunction with the MPU’s indexed addressing mode to
locate the desired message; this technique permits using the same subroutine for all of the system printer
requirements.

545

1Y

Column Hammer Signals

AL

Reset

{ (= i
u I1RB 1) U
o O
12 133 : 883 3 5
pu | ~ 4
|_|_,_...’] |_’..|—.. .F‘l‘-l—Fl‘-
/

J—I

-

2 1
3 ¢ I—‘
4 R
5 0
6 P
7 R

9 ¢

10 E]—l

1 s J_I
12 S r‘
13 0

14 R

15

16

FIGURE 5-2.1.4-1 Print Cycle Timing: “Microprocessor” .

00230
pG300
00310
00320
00330
00340
00350
00340
00370
00330
00390
60400
00410

7C4cC
TC4aF
g a=T=
vC53
7CS4
7CS?
7CSR
rCaC
7CSF
rCe2
7C65
rces

7F
7F
4F
43
B?
E?
26
E?
E7
B6
Fé
39

8009
S00RB

8008
S00R
3C

20039
200B
s008
800R

PKIPRT

Set PIA Interface Reg’s
as outputs. Disable hammer
strobe and paper ribbon
feed control lines. Set PIA
Interrupt Masks

RTS = Return from Subroutine
R = Reset Timing Pulse

(a)

+¢ INITIRLIZE PRINTER PIR
PKIPRT CLR AFICRA
CLR XPICRE

CLR R

COM R

STH R XP1DRAR SET PIA DATA LINES RS OUT
3TRH A XP1DIRE

LDR A #$3C SET FIR CONMTROL REGSTRS TO
3TA R XPICRA DISAELE OUTPUTS

STR A XPICRB AMHD SET INTRFT MASKS

LDR R XP1DRA READ DATR RGSTRS TO CLERR
LR B XP1DRE INTRPTS AND FLRAGS

TS

(b)

FIGURE 5-2.1.4-2: Initialization

547

A 42-byte Character File corresponding to the printer’s character set is stored! in ROM in the same
sequence as it appears on the printer drum. As each TL interrupt is serviced, the Character File Pointer is
incremented pointing to the address of the next character on the drum.

The MPU then compares every character of the text to the current Character File character, keeping a
running column count as it does so. Each bit position in the PIA Output Registers is set or cleared depending on
whether or not the respective text characters matched the Character File characters.

The flow charts and control programs that resulted are shown in Figures 5-2.1.4-2 through
5-2.1.4-6. The control problem was broken into four tasks: (1) Initialization; (2) Printer Enable; (3) Reset
Service Routine; (4) Print Service Routine.

The Initialization routine, PKIPRT?, defines the housekeeping tasks that are routinely taken care of
by the executive program during system power-up.

Referring to Figure 5-2.1.4-2(b), lines 300 and 310 clear CRA and CRB (XPICRA, XPICRB)
setting bz = 0 so that DDRA and DDRB can be addressed. Lines 320—350 store ones in all of the DDR bits
defining the 16 data lines of ORA and ORB as outputs. Lines 360-380 load the control registers with the
hexadecimal (HEX) value 3C resulting in the control lines being defined as shown below:

bz { be | bs | ba | bs | b2 | b1 | be
0|0 1 1 1 1 0[O0
3 C

CRA(B)

be = 0 IRQ interrupts are disabled.

b1 = 0 CAl, CBI are established as negative edge sensitive inputs

bz = 1 ORA, ORB are now selected

bs =1

bs = 1 CA2, CB2 are established as outputs which follow bs; they are now high.
bs = 1

With CA2 and CB2 high, all the driver circuits are disabled since one input of each driver AND gate
is held low (see Figure 5-2.1.4-1). Note that CA2 and CB2 are inverted prior to reaching the AND gates.

Lines 390 and 400 are ‘‘dummy reads’’ of ORA and ORB which clear the IRQ flags that may have
been set and insure that the IRQA(B) lines are high, i.e., inactive. Line 410 returns control to the executive
program.

The Printer Enable routine, PKNTRL, is called by the executive program whenever a line of text is
to be printed (refer to Figure 5-2.1.4-3(b). Since the printer drum is continuously generating reset pulses at
CALl, the IRQA flag will be set but the IRQA line will be inactive (it was disabled during initialization by setting
bo = 0). In order to insure that the next reset pulse starts the print cycle instead of the CA1 interrupt enable, the
IRQA flag is cleared by a dummy read of ORA (XPICRA) prior to enabling CA1, lines 490-510.

The “‘printer done’’ flag (#$29) is cleared by another service routine before returning to the main
program. Subsequent interrupts generated by the printer will cause the line of text to be printed with further
control by the executive program unnecessary.

'Both Character File data and message characters are stored in memory using ASCII code. Any convenient code could be used,
however, in this application, the ASCII message format is required by other peripherals in the system.

*Labels appeaiing in the following discussion conform o a format adopied for the Transaciion Terminai sysiem. In compiex sysieiis, it
is advisable to sacrifice some mnemonic meaningfulness in favor of system documentation requirements.

548

00430
00440
00450
00460
00470
00490
00500
00510
00520
00530
00540

7C69
7Cel
7CeE
7Ccel
LT3
FCvé

BE
=1
E?
56
BD
39

50602
3D
2009
29
6309

L 2

PKNTRL

Clear previous
R Interrupts

Y

Enabie R Int
on nextnega-
tive transition

'

Reset Printer
Finished Flag

RTS = Return from Subroutine
R = Reset Timing Pulse

(a)

PRINT 16 CHARACTERS BEGINNING AT THE MEM ALD

+¢ STORED IMN PVYTXEF (C?7sC3> ON ONE LINE
+¢ ISR PKMTRL TO STARTs INTRPTS WILL SYNC REMRININ
e¢ OFERATIONS. CB2: HAMMER ENRBLEs CR2: PPR-/RBN
+¢ FEEDs CAl1: RESET INTRPTs CB1: TIMING INTRPT..
PKNTRL LDR A XP1DRR CLR PREY. RESET INTRFTS
LA A #$3D SET CA! TO INTRPT ON HEXT
TR AR XPICRRA NEG TRANSI OF RESET
LIIAR A %29
JER XKRSTF CLEAR PRINTER DONE FLAG
ETS FETURN - WAIT FOR START INT

(b)

FIGURE 5-2.1.4-3 Printer Enable

549

When the CALl input is triggered by the printer reset pulse, the MPU interrupt sequence directs
processing control to the PRNTIR routine (Figure 5-2.1.4-4(b)). Since the IRQ flag and line are active, they
must be disabled prior to exiting from the routine in order to allow further interrupts. Line 590 reads ORA
(XP1DRA) to accomplish this as the first instruction. Lines 600620 test b: of CRA to determine whether the
CA1 input was positive or negative edge sensitive:

(A) Ifb: = 0, CAl was a negative transition and the program branches to PKSCN1. Lines 780 and
790 set CRA to 3C as was done in the initialization routine to mask or disable the CA1 interrupt input. The
starting address of the printer character file, PCKF00, is stored by lines 800—810 for use during the first scan
loop. Lines 820840 clear the previous timing interrupts and set CRB to allow the next negative CB1 transition
to interrupt the MPU. The RTI instruction at line 850 returns the MPU to the status that existed at the time the
interrupt occurred and program execution continues from there.

(B) If b: = 1, CAl was positive signalling the end of the printing cycle. The routine disables the
line, CA1, the hammer strobe and the interrupts CA1, CB1, CB2, with lines 630—640 by setting CRA(B) to
3C. The next two lines store 34 in CRA clearing bs and making CA2 go low. A delay loop is then generated with
lines 670—720. Accumulators A and B are loaded with the values 48 and A6. Accumulator B is then
decremented (A6 times) to zero each time Accumulator A is decremented once. When Accumulator A is zero
(=36 ms), the program jumps out of the delay loop and stops the paper ribbon feed by loading CRA with 3C (bs
= 1) making CA2 go high. Note that the delay loop accumulator values depend on the system clock frequency;
here, 1 MHz.

The printer done flag (#$29) is then set by a jump to another service subroutine before returning to
the program flow where the interrupt occurred.

The printer timing signals are asynchronous with respect to the MPU clock. Hence, if the printer
interrupt is enabled immediately following an interrupt, it could take nearly two full print drum rotations or
approximately 1.5 seconds to print a line of text. This is a relatively long period in terms of MPU processing
time; if the printer required continuous control during this period, it would be impractical in many applications.
Fortunately, the printer signals may be used in an interrupt driven approach that will be clarified as more control
program is described.

The printer interrupt service routines are designed so that the MPU can resume other system tasks
shortly after each printer interrupt is serviced. The relationship between the printer signals and MPU activity is
shown in Figure 5-2.1.4-5. The approximate time in which the MPU is busy servicing the printer is indicated by
the cross-hatched area following each allowed interrupt. Using this interrupt driven approach involves the
MPU for less than 30 msec out of each 850 msec print cycle.

The majority of this time is used during the Print Service routine, PRNTIT (Figure 5-2.1.4-6).
Printer operation requires that the selected print hammers be engaged only during the time between TPn and
TLn (See Figure 5-2.1.4-1). The PRNTIT routine selects the hammers that are required during a given interval
and causes them to engage and disengage at the required times. Most of the processing time (approximately 0.6
msec following each TL pulse) is spent determining which hammers should be engaged during the next
interval.

Referring again to Figure 5-2.1.4-5, TL41 will be the first CB1 transition after PRNTIR has enabled
CB1 to be negative edge sensitive. TL4+1 will cause the IRQB line to go low interrupting the MPU in the same
manner as before, except that this time the IRQB flag is set by CB1. The interrupt sequence will jump to

¥

PRNTIT (Figure 5-2.1.4-6) instead of PRNTIR.

5-50

060
570
530
600
610
&2 0
530
240
230
&50
=70
&30
530
7on
710
el
730
740
7SS0
760
770
730
790
500
210
320
530
340
850

7Cre7
7C7AR
7C7D
TLFF
8l
L83
B8
TC38
TLSB
FC8D
YLSF
.90
rcog
7093
fC9s
7097
7C9R
7C3C
TCSF
rCRO
rCR2
7CAD
7CRS
7CAR
FCARD
7CAF
7CB2

91
B6
835
27
cé
F?
g6
B
86
(W
SH
26
4R
cé
86
B?
86
BD
3B
26
E?
CE
DF
Fé
Ce
F7
3B

5003
8009
02
1F
3C
8008
34
3009
43
Se

FD

F3
3C
3009
29
6303

30
5609
7EBS
| (rg
B00R
30
800B

\

Disable Ham-
mers. Mask TP/
TL Interrupts

'

Mask R Inter-
rupt. Generate
ribbon/paper
feed. (CA2 low
for 36 ms)

PRNTIR

Cir. Ints. (Flgs)

A

Mask R Inter-
rupt. Initial-
ize CF Pointer

Y

Clear previous
timing inter-
rupts. Enable

TP/TL Interrupt
on next nega-

tive transition

Set Printer
Finished Flag
RTI = Return from Interrupt
R = Reset Timing Pulse
(a)

+¢ INTRPT YECTORED HERE IF CA1 INTRPT
*# SCHAN TERT FOR FIRST CHAR OR MRKE FPR-/RBN FEED

PRNTIR LDA A XP1DERR CLR INTRFT AND FLRG
LDAR R KP1CERRA TEST IF CA1 POS OR NEG
BIT A u%02 INTRPT
BEG FPKSCM1 NEGs GO0 INT- L SCAN LDOP
LR B #$3C TRUEs PPR/REN FEED
STH B XPICRB DIZABLE HAMMERS S INTRPT MRASKED
LDA A #¥§34
TAH A HPI1CRA 3TART PPEAREM FEEDSINTRPT M
LDA A #$45 DELRY LOOP = 35 MILLISECOND
PFKTG01 LDR B %32 HSCYCLES=RCCHCCRCCE X 3+5)
FKT502 DEC B FOR A IMHZ CLOCK
EMHE PETGOZ LET ACCA = $42
DEC H RCCE = 3RS
EME FETGO0L LOOF
LDA A #¥3C STOF PFR/REM FEEDSINTRPT MSKD
STH A XPICRA
LDA A #3293
JIR XKESETF ZET FRINTER DOME FLRG 29
FTI RETURM
PKECH1 LIR A $#$30C MZAK CA1 INTRPT
TR A ¥PICFH
LDx #FKCF OO0 INT’L CF POINTER
3TH PYREFF
LR B “F1DRE CLF PREY TIMING IMTRPTS
LDA B #$3D SET CEB1 TO IMTRPT OM MEXT
STR B AXKPICREB HED TIMIMSG PULSE
RTI RETURN

(b)
FIGURE 5-2.1.4-4 Reset Service

5-51

S-S

Reset

Timing

=
T
T

3\ })\
Hf{ t\ -

3 3 7
3 3 - \ Yy 1" 3y -)
t(W(11—‘ 1 \

//\\@ 7 7.

0.2 ms. L—
0.6 ms

N =

GHhWN =

~8.0 ms e 210.0 ms

PRINTIR active * Enables interrupt by TLgq.
PRNTIT active

PRINTIR active — Enables interrupt by TLg4.

PRNTIT active — Selects hammers to be engaged at PTg.

PRNTIT active — Enagages selected hammers.

PRNTIT active — Disengages hammers and selects hammmers to be engaged at next TP.
PRINTIR active — Terminating the print cycle; then performs a paper/ribbon feed.

FIGURE 5-2.1.4-5 Printer Loading of MPU Activity

L L

T

870
830
300
910
920
930
940
950
960
970
930
990
1000
1010
1020
1030

7CB3
7CBé
7CB9
7CBB

7¢CBD
7CCO
7Cce
7CCS
7CC?
7CCA
7CCC
7CCF
7CDO

Fé
Fé

=
B6
B?

ce
F7

D6

F7
3B
DE

PRNTIT

Cir. Ints./Flgs

Clear Previous
R Interrupts
Unmask CA1

'

Print Charac-
ters under ham-
mers (CB2 low,

back high on

next TP/TL int.)

No

Store Character
File Pointerin
the Index Reg.

PKSCAN
(Figure 16)

RTIl = Return from Interrupt

R = Reset Timing Pulse

(a)

e+ INTRPT VECTORED HERE IF CBi INTRFT
UNDER HAMMER: DR SCHAN TERT

¢+ PRINT CHAR

800R PRNTIT LIA
800B LDA
oz BIT
13 BE®R
.

8003 LDRA
3F - LDA
8003 ETA
c3 LDA
800B 3TR
DR LDA
800H 3TH

RTI
o7 FKICH2 LDX

B
B
B

DD

*xF1DRB
“P1CRE
aE02

FKICHZ

#P1DRA
$53F

ZFPICRA
8325

XFP1CREB
BF1DREB
~F1DEB

FVXBFR

(b)

CLE INTRPT AND FLAG

TEST IF CB1 I3 R FOS

OrR NEn INTEPT

MEGs B0 ICAN

FPOZITIVEs FRINT

CLE PREVY RESET INTRPT

SET CR1 TO INTRPT ON NEXT
FOS TRANS OF RESET PULSE
PFINT CHRR MOW UMDER HAMMA
CE2 LOWs HI NEXT NEG CB
GET ZIDE B OUTPUT INFO
ETORE IT AND STRRT FRINT
FETURM ~ WRIT FOR MHEXT
LOAD CURRENT CF POINTER

FIGURE 5-2.1.4-6 Print Service

5-53

Again the first thing done is to clear the IRQB flag and the ﬁline by reading ORB (XP1DRB).
Then lines 910-930 test b1 of CRB to determine whether the CB1 input was positive or negative edge sensitive.

(A) If bs = 0, CBI1 was a negative transition and the program branches to PKSCN2 (line 1030)
which loads the index register with the current character file (CF) address pointer. The scan loop follows and
will be discussed later.

(B) If ba = 1, CB1 was a positive transition, i.e., a TP timing pulse. This means that the hammers
must now be strobed. Before this is done, CAl is cleared and enabled (lines 950—970) to allow the next positive
reset transition at CAL1 to signal the end of the print cycle. The hammer strobe is then armed to be set low on the
next write in ORB by storing #$25 in CRB (lines 980 and 990). This combination of bs, bs, and bs also returns
CB2 high on the next CB1 interrupt at TL. The 8 data bits set by the previous scan loop for the B side outputs are
then stored in ORB (lines 1000 and 1010) causing CB2 to go low. The strobe inputs on the driver AND gates go
high activating those hammers whose data lines have been set high.

Line 1020 returns control to the place the interrupt occurred. The scan loop, PSKCAN (Figure
5-1.2.4-7), is the actual data processing section of the program. The column counter (Accumulator B) is
cleared and the current character file character stored in the test buffer (lines 1410-1430). The next character
file character address is then stored (lines 1440—1450) for initializing the next loop. The first text character
address is loaded into the index register before starting the scanning process.

The first instruction in the actual loop (line 1470) compares the column count with #$10 (decimal
16) to see if the last text character has been checked. If it has, the program enables an interrupt by the next
positive timing pulse transition (lines 1490—1510) and returns control to the executive program. If the last
character has not been tested, the program branches to PVNXT1. Line 1520 loads accumulator A (ACCA) with
the text character corresponding to the present column counter value. This is then compared with the current
character file (CF) character (lines 1530 and 1540) with the carry bit being set if they match (line 1550), cleared
if they don’t (line 1570). The carry is then saved by the TPA instruction so that it will not be destroyed by the
following test. Lines 1550 and 1600 determine which output register is to be operated on. If the column count is
=8, ORA; if <8, ORB. In either case the carry bit is restored by the TAP instruction (line 1610 for side B, 1640
for side A) before it is shifted into ORA or the ORB buffer, BFIDRB, using the ROL instructions on line 1620
for side B and line 1650 for side A, (since a write into ORB is required to activate CB2, the data is stored in a
buffer until time for hammer activation). Figure 5-2.1.4-8 is the schematic representation of the ROL
instruction. As the scan progresses, the bits are shifted from right to left. At the end of the loop, the bits
representing the character to be printed will be shifted into the position indicated in Figure 5-2.1.4-9. When the
shift has been completed, the column counter and text address pointers are incremented (lines 1660 and 1680),
then a branch is executed to the start of the loop.

The control operation just described might appear at first glance to be a slow and cumbersome
approach. However, it should be kept in mind that during an actual print operation, less than 4% (30 msec out of
850 msec) of the MPU’s capability is used.

This combined with the fact that only twenty conventional integrated circuits are being replaced
seems to indicate that the control of printers of this class is a trivial task for high performance microprocessors.
The proper perspective in this situation is to remember that the MPU is controlling 7— 10 other peripheral
devices while also performing the executive function and that the control of the printer is accomplished with a
minimum of additional expense in hardware (200 bytes of ROM) and engineering development time.

5-54

PKSCAN

Zero Column
counter. Store
CF character in

test buffer.

'

Increment CF
pointer. Ini-
tialize text

char. pointer.

Yes

Last
Column
tested?

No (ACCB = $10)*

Store text
Set PIA for char. in ACCA
interrupt on
next positive
transition of
TL/TP

SAVE CARRY

SIDE B SIDE A (ACCB = *
Which ¢ $08)

PIA word?

Restore Carry Restore Carry

Shift Carry in-

Shift Carry in-
to side B Data to Side A Data
Register
Buffer s

-

Increment col-
umn counter.,
Increment text
. char. pointer.
* $ Indicates that a

hexadecimal number r

CF = Character File

follows.
FIGURE 5-2,1.4-7(a): PKSCAN Flow Chart

5-55

01=290
o1410
01420
11430
01440
01450
Ol4a0
01470
01430
01430
a1san
n1sin0
01sz0
nis=n0
01540
n1sso
01S=n
n1svn
aissn
01530
01500
nisin
0120

v

il

C1 14

e

=2F

oD O

0o

o

=

5wl
Lo B SN S LU BN T OO

¥

ni

oy T o UM B 0~ O D T T el D
s T e T o D b G T

LY
o I

\
oo B e B e Y e I N R e B B B R I <2 I B 2 B

« T =3 T

= P T
O T e]

D Y Y Y Y}

O |
ot
&

I

I

EL
01sz0 BSEZ 240
01540 BIES 06
11550 BIEE 79
Oissl BIET SC
01570 BIER 08
01e20 BIEER 20 IS

o1e
011F

Niss

1

-OaE

pies

e

ZCAH TEX

PEEZCAM CLE

FECLOF

P

FM
FM:

Py

P

T4

LR
=TH
I
ETE
LI
CHF
EHE
LITH
=TH
ETI
LDA
ZHF
EHE
=EC
ERH

 CLC
= TFR

MR
BGE
TAF
EOL
EREA
THF
FEOL
IHC
IM=
ERA

D b~

[nal

I

oo

FOR CURRENT CHAF AMD ZET DUTFUT LIMES

FYWCFERF

FY=EBFFE
FYTHEF
»E10
FYHET L
wE3F
=FP1CEE

FUCFEF
FUMKTE

PyHETS

a0s

FYHET S

EF 1 IRE
FYNAT?

AP 1DFEA

FECLOFR

ZERO COLUMN COUNTER

ETORE CF CHAR

ETORE HE=T
GET TEXHT

HAZ=

FO=

ZTORE T
DOE=

YE =

HO s

ZAVYE CAREY

CF

CHAR

LRST TEXT
EEEH TESTED

ZET CE1 TO IMTRET O MEXT
TRAMS
YETs RETURM

CHRERCTER

IH T=ET

ADNDRERE
HDTUREZS
COLLMH

CHAR IN
TE*T MATCH
CURERENT CF

ZET CAREY

ZLERR CHERY

MHICH FIR

ZIDE E:

IHFT
COMTIHUE

ZIDE A:

SHFT T«

IMCEEMENWMT COLUMM CTRE

ZILET

OF TIMIMG

=ET CHFERY
IMTO FEMT EBUFFER

SET CREREY
INTO FIAR ORA

BiLIF

FLLZE

ACCH

IHCREMEMT TEXT FOINTER

FIGURE 5-2.1.4-7(b): PKSCAN Assembly Listing

ORA or ORB’s BUFFER

b7

b0

Carry

FIGURE 5-2.1.4-8: Roll Left Operation on PIA Registers

PRINTER COL. #

19

18

17

16

15 |14

13

12

11

OUTPUT FORMAT

COLUMN COUNTER

PIA OUTPUT LINE

PB7

PB6

PB5

PB4

PB3|PB2

PB1

PBO

PA7

PAS

PA4

PA3

PA2

PAO

TEXT BUFFER ADDR.

+0

10

11

12

13

15

FIGURE 5-2.1.4-9: Printer Column/Text Buffer Relationship

5-56

5-2.2 BURROUGHS SELF-SCAN DISPLAY CONTROL

Interfacing displays such as the Burroughs Self-Scan Model SSD 1000-0061 Gas Discharge Display
(with memory) to the MC6800 MPU can be done using half of one PIA. The display has a sixteen position,
single row array with a 64 character repertoire.

Each character is entered in the right most position, and is shifted left upon entry of another
character. When the dispiay has filled to sixteen characters, the left most position will be shifted off the display
as subsequent characters are shifted into the right most position. The display is also equipped with a
“‘backspace” (effectively a right shift) and ‘‘clear’” capability for flexible error correction. Additional
characteristics of the display are shown in Figure 5-2.2-1.

The PIA/DISPLAY Interface is shown in Figure 5-2.2-2. The “‘B’’ side of the PIA is used to connect
both control and data signals, leaving the ““A” side available for another peripheral. During initialization, the
PBO throughPB7lines are established as outputs;CA lis an interrupt input and CB2 is a strobe output. Data can
be transferred from the MPU to the display using a single instruction, STAA PIADRB, where the data was in
accumulator A and the ‘‘B”” Data Register address was equated to the label PIADRB during assembly. This
instruction transfers the next character to the display and simultaneously generates a *‘data present’’ pulse. The
MPU can then resume other tasks until it is interrupted by a “‘data taken”” pulse from the display.

5-3.1 INTRODUCTION TO DATA COMMUNICATIONS

The following sections contain the hardware and software requirements for a teletype connected
directly to the ACIA and for a teletype connected to the ACIA through a pair of modems. The modems enable
data stored at a remote site to be transmitted over the telephone lines to an MPU system. Therefore, the only
major difference in the software required for the two systems is the modem control functions. For the software
examples, data from a teletype tape is stored into memory under MPU control. After the complete message is
stored in memory, the data is transferred to a Burroughs Self-scan Display for viewing purposes. The data
contained on the tape is stored by program control in memory locations that are specified by the address field on
the tape. Data received from the teletype is in the format shown in Figure 5-3.1-1, which is consistent to that
used in other MPU software packages. The records consist of a header record (S0), data record (S1), and an
end of file record (S9). A data record begins with an S1 preamble, followed by the byte count in that
record, the beginning address to store data, the data and the checksum (one’s complement of the summation of
8-bitbytes). Since an error could occur in the reception of the data, the data is repeated several times on tape and
an S8 is used to indicate the end of tape. Examples of the TTY/ACIA and MODEM/ACIA are shown in Figure
5-3.1-2.

5-3.1.1 TTY To ACIA Hardware

The hardware requirements to interface a teletype to the MPU system include the Asynchronous
Communications Interface Adapter (ACIA) and some form of voltage to current interface circuit or RS232C
type interface. The current interface circuits may vary to suit the particular teletype used within the data system.
Two of the most common methods of receiving data from a teletype are from a teletype keyboard or teletype
paper tape reader. Also, the paper tape reader can have either manual or automatic control. The automatic paper
tape reader turns on and off by internally decoding words received on the serial input line. A <“DC1°* Control
word turns the reader “‘on’” while a ‘‘DC3’’ Control word turns the reader *“off;’* DC1 and DC3 control words

5-57

INPUTS (Figures 3 and 5)

Data Input
Positive logic {a high is written into memory as "'1"'). Data
may not be changed during the period in which the WRITE
cycle line is in the logic 1" state.

Data Present Pulse

A logical 0" causes the INPUT DATA to be written into |

memory. Minimum pulse width is 1.0 us. This function is
triggered on the high-to-low transitional edge.

Clear Pulse
A logical "0 clears the memory. Minimum duration for
the SSD1000-0041 is 33 us. Minimum duration for the
SSD1000-0061 is 66 us.

Blank Disable
A logical 1" blanks the display. This input does not affect
the imemory portion of the system.

Back Space
A logical 0" causes a left-to-right shift of one character.
Minimuni pulse width is 1.0 us. This function is triggered on
the high-to low transitional edge.

OUTPUTS (Figure 3)

Write Cycle
A logical 1" appears at this output during the WRITE
CYCLE beyinning with the negative edge of the DATA
PRESENT pulse and ending with the DATA TAKEN pulse
Data Taken
A logical ~“0'" pulse occurs when INPUT DATA is written
into memory or when BACK SPACE occurs. New data may
he entered no less than 100 ns following the low to high
transition of the DATA TAKEN pulse.

REQUIRED DRIVE SIGNALS

BLANK
DISABLE
A INP T MATRIX
DAT: o REFRESH CHARACTER DODISPL:AY
(SIX LINES) | MEMORY GENERATOR
DEVICE
CLEAR
— e
DATA PRESENT CONTROL 34 CATHODE
CIRCUITRY DRIVE
S——
BACK SPACE
(SSDIOOO-006! ONLY)
DATA TAKEN
WRITE CYCLE

BLOCK DIAGRAM

CLEAR i
MEMORY CYCLE TIME - | -
po— t2 —= CLEAR paneL = 1
oaTA -y
PRESENT | — 7 LS

BACK
SPACE (SSDIO0O-0061 ONLY)
CHARACTER | [*— 1™ = 1 ™| CHARACTER 2

(Suth_____mn Wl I

W7z ", I IR ™

|

S, Wi W S
NPUTS

STl

oI, I S I

L‘I’ I, L e W,
DATA TAKEN ——\ [__ﬁ ‘,.__

WRITE _J—_{_;'—'_/ Note: Occurs only
CYCLE _ after Data Present.
o s {00Ons MIN

TIMING DIAGRAM

BINARY CHAR. | BINARY CHAR.
INPUT INPUT
0 e 32 (BLANK])
1 A 33 !
2 B 34 "
3 c 35 4
q D 36 $
5 E 37 g
6 [38 &
7 G 39 /
8 H 40 <
9 1 41 pl
10 J 42 .
1 K a3 +
12 L 44 ,
13 M 45 -
14 N a6 .
15 o a7 I
16 P 48 ¢
17 Q a9 1
18 R 50 2
19 s 51 3
20 T 52 4
21 U 53 5
22 Y 54 6
23 w 55 7
24 X 56 8
% ¥ 57 9
26 z 58
27 [59 B
28 v 60 <
29] 61 =
30 { 62 >
3t } 63 ’

TRUTH TABLE

FIGURE 5-2.2-1: Burroughs Self-Scan Display Characteristics

5-58

cug

PIA

PBO

PB1

PB2

PB3

PB4

PB5S

PB6

PB7

CB1

cB2

FIGURE 5-2.2-2: PI1A/Burroughs Display Interface

5-59

Pin 15 Pin C
4 B5 (1)
Pin 16 Pin 3
— B4 (2)
Pin 17 Pin B
| B3 (4)
Pin 18 Pin 2 82 (8
> 8 Display
Pin 19 Pin A
4 B1(16)
Pin 20 Pin 1
—»| BO (32)
Pin 21
Pin 22 Pin E
Backspace
Pin 5
¥ Clear
Pin 23 Pin F
g Data Taken
Pin 24 Pin O
¥ Data Present
Pin4 Pin 10 PinJ Pin L

!

-12V +250V +5V

/ Leader (Nulls)
oD (CR) Formatting for printer
0A (LF) readability ; ignored
Frame |
00 (NULL) by leader
1 53 S = Start-of-record
2 CcC CC = Type of Record
3 — _ Byte Count (two frames =
4 ® one byte)
>
5 8 — —
6 S £ — —_ Address/Size
7 2 2 —_ =
X
g g o § ,
py < o - - Date
10 R 3 }
. x ©
L] Q
. s i~
)
‘ - - } Checksum
N

Frames 3 through N are hexadecimat digits {in 7-bit ASCI) which are converted
to BCD. Two BCD digits are combined to make one 8-bit byte.

The checksum is the one’s complement of the summation of 8-bit bytes.

CC=230 CC= 31 CC=39
Header Data End-of-File
Frame Record Record Record
1. Start-of-Record __ 53 S 53 S 53 S
2. Type of Record ___ 30 0 31 1 39 9
3. 31 31 30
3 Byte Count 32 12 36 16 23 023
5. 30 31 30
6. Address/Size 30 31 1100 30 0000
7. 30 0000 30 30
8 30 30 30
9. 34 39 46 FC
10. Data 38 48-11 38 98 43

. 34 30 {Checksum)
. 34 44-D 32 32
. 35 %
. 32 52R 41 _

— 28 A8 (Checksum)

—.—l_/

39 oE

N. Checksum 45 Data

End of File Head of Record

FIGURE 5-3.1-1: Paper Tape Format \@

5-60

19§

TELETYPE

TTY
Current

b Interface

ACIA

TELETYPE

TTY
Current
Interface

MODEM

FIGURE 5-3.1-2 TTY/ACIA and MODEM/ACIA Systems

TTY to ACIA System

MODEM to ACIA System

MPU
SYSTEM

Burroughs Self Scan

MODEM

ACIA

MPU
SYSTEM

PIA

Burroughs Self Scan

MC1489A

>
[
T
< 85 "m » "
el 'S & e —
§ L ([CR
o @ o —.ﬂ _H &l&nmv *
al IIIIIIIIIIIIIII C _——— Aw —Am V.mm R
| i R I_% 23%
| 1 -
i _ p
| |] __
I] > R A W._ N
| ! ar I %
o E L
P S S o i
1 [7l 3o v_ N I
| 1 I |
I N "
|
_ 81,8 [
| Iz |
| 9,7 .
b3 | | z
YT o F
[] ! _
| | ©
||||||_||an « Pt
| | 0 ° | x
] i | 2 O—"\\V\—¢-@ ___ Py
| | N (R L -
| |
| |
| |
| |
| |
| b o e e e e ————
L o e

Rx Data

|
L'
Tx Data !

ACIA

Reader Common

12V

4N33
Relay Driver

b e e e

- 1.2k

I — —_—

FIGURE 5-3.1.1-1 MPU to TTY Interface

562

are teletype requirements. The manual paper tape reader requires an externally provided relay to turn the reader
on and off via the ACIA. For the system shown in Figure 5-3.1.1-1, the Request to Send (RTS) output of the
ACIA is used to control the relay; the RTS output is normally used for interfacing to a modem. There are
separate data lines for serial-in and serial-out data transfer from the teletype which connect to the transmit data
output and receive data input of the ACIA via the interface circuits. The current/voltage options for the serial-in
and serial-out data lines of the teletype are (1) 20 ma, (2) 60 ma, or (3) RS232C. Typical interface circuits for
options 1 and 3 are shown in Figure 5-3.1.1-1. The 4N33 optical coupler can provide the 20 ma requirement,
and the MC1488 and MC1489A line driver/receiver provide the RS232C specifications. Communication
between the teletype and other devices is accomplished with an asychronous data format. This format requires
that the data bits are preceded by a START bit (space) and followed by 1 or more STOP bits (mark). The
teletype requires 2 minimum of 1% STOP bits for completion of mechanical operations within the teletype.

5-3.1.2 TTY To ACIA Software

The flow diagram and assembled program for the communications routine are shown in Figure
5-3.1.2-1 and 5-3.1.2-2 respectively. The shaded areas in these figures represent requirements for using a
modem and therefore would be deleted in a program that does not utilize a modem. Referring to the assembled
program and flow diagram, the internal power-on reset of the ACIA is released by master resetting the ACIA
via the control register. Then, the control register of the ACIA is set for word length, parity, etc. If at any time a
power-fail occurs, these two steps must be repeated to initialize the ACIA. Next, in lines 150~200 the PIA is
initialized to receive data from the MPU System and output this data to the Burroughs Self-Scan display.

Line 240 turns on the teletype by the control character ‘DC1.** If a relay is being used to turn the
reader on instead of a control character, the RTS output of the ACIA could have been used to control the relay.

Line 260 initializes a memory location that stores error conditions from the data that is received.

Lines 280-370 ignores all data that is on the tape until an S1, S9, or S8 indication is found. An S1
indicates a data record as shown in Figure 5-3.1-1, and the following is performed on the data record in lines
400-590. The memory location for accumulating a checksum is cleared. Next, the number of bytes in the data
record (minus two for the byte count) is stored in memory. The next four bytes on the tape represent the
beginning address for the data and these four bytes are loaded into two consecutive addresses. Line 480 loads
the X register with the two consecutive addresses making a 16-bit address.

In lines 520—590 the remaining data in the record is stored in consecutive addresses beginning at the
address specified on the tape. A byte count of zero indicates the end of the record and the checksum is checked
for a data error indication. The final checksum is generated by adding the accumulated checksum to the
checksum (1’s complement) at the end of the record and incrementing the total by one resulting in all zero’s
with a carry. If the checksum does not equal zero, the error memory location is loaded with a one at line 580.

The remaining data records are handled as above until the end of file (S9) is read. Then, at line
600620 the error memory location is checked for an error indication. If an error was stored in this location, the
routine looks for a duplicate of the message on the tape and processes data as before. If data is read into the MPU
without any errors the tape reader is turned off by a “DC3’’ control word at line 680. Again, if a teletype with a
relay is used, the moutput of the ACIA could be used to turn off the relay. In lines 810—970 the data is
fetched from memory and displayed at a program controlled rate on the Burroughs self-scan display.

The input and output of characters through the ACIA is done by the subroutine contained in lines
980~1300. Beginning at line 980, the status of the receiver data register is checked until a full condition exists.

563

Master
Reset
ACIA

\

Set ACIA
Control Word

1

Initialize
PiA

Transmit
DC1

Load Accum B
with 0"’

Clear
Check Sum

Subtract 2
From Bite Count

Load X-Reg
with Address

Load Accum B
with ‘4"’

Decrement
Byte Count

Store Data
at Address

i

Increment
X-Reg

Increment
Check Sum

Load ““1" into
Error

-

5-64

(Sheet 1 of 4)

FIGURE 5-3.1.2-1 Flow Diagram for Comm. Program

Yes

No

Load Accum B
with 2"’

Load Accum B

with “3”
OVN‘ES
?
No Load 1"
into ERROR
PE Yes
?
No Load 1’
into ERROR
Load Char
into A-Reg
Mask Out
Parity Bit
lgnore
Rubouts
RTS

FIGURE 5-3.1.2-1 Flow Diagram for Comm. Program;
(Sheet 2 of 4)

565

IS
Char Less
Than 9

Sub 7 From
Char

Shift Left
4 Times

Transfer
AtoB

1S

Char Less

Than 9
?

Yes

Sub 7 From
Char

\

Mask Out Most
4-Sig. Bits

Add B to A

Transfer
AtoB

Store B in
Checksum

RTS

FIGURE 5-3.1.2-1 Flow Diagram for Comm. Program
{Sheet 3 of 4)

5-66

Transmit
DC3

Load ““PAD"”
Characters

Set RTS = 1

1

Time Delay
For Display

All

Characters

Displayed
?

Return to Store Char
Executive in Self Scan

FIGURE 5-3.1.2-1 Flow Diagram for Comm. Program
{Sheet 4 of 4)

5-67

aonsn =ona coion ol RSN ACIACE
RS S0l ooiio e ACIADR
NOnTo 2023 IR R A= FIR
ooo=n 2022 FIADIT R

""" E20

gOUsn 0200

ooion *EMTER

[

ooyiy 0200 3 BI CE140 HEEE MARZTER RESET S FET
patsn as oz coian

aalzn EAD TOMTROL WMCRD
ani140
aoisn
aoien
aoivn
aoisn
aoisn

(o BRI = o B X e
To =g X0 =§ T =f 0
(I A I R

rﬂtj

DO)

1,

ﬁal

LTA
LTH
LTR

T

- d

aa}

[B)
[gen B B RN |

i
=i (T e 1

0}

B e A R X

LN
Cp

Er

I
.
“r
'

oot

i

To b n) bk e

I
Y

Pt . o4 - -,
et 4 w1 =10
- o

© S

o - ——
i s f
o

M

Ooad i
ood2n
nogan
aoda
foasn
R3S E
RRAS I
Ong=n

o g |

)

= -

iy s BN

o Tk
L B L B B o B

t it

LT E
e

4 W

T s
oy

FIGURE 5-3.1.2-2 Assembled Data Comm Program (Sheet 1 of 3)

5-68

o

IH
3 EA
ITIE CHSEO IMC
3 BED
1

gosan

00540

[ux]

U N B AW

U m BENN

MEXT CHAR

Tl it o
R

LA

522 ZTA
BERR

CETOG OLTR
BED

ERA

v ‘n;l P
T D

g L

CHECK ERFCR

[I ¥ e
T

]

Fed

(%R}

% BN B O N oo T B 8B e BRY B R I

S A v o BRI A NEFY N v o BERY

I DD

S1N B A3 e Mo T

24 L.
S S R Iac]
030 o3 BT 110
aaTad T BE CETS SR

an7ia
L HIERCR

(AR SR
G744

Y T i
|

1]
|

bo e e I e v

VRIS TN (RN (BN
T a0 e

B A A X e o}
v
D}
e

T e
GOTE0 O2Es
.
Wl g4

=t

gQoOvTo

- -

S ioETHERT

Ce dF BE] T nRdrF
2o FF TIMEZ A TFF
AR TIMEL Fi

& FT TIMEY

(I]
R I

(2}

T

gL

T T e T)

THET CHAR

-

4

FIGURE 5-3.1.2-2 Assembled Data Comm Program {Sheet 2 of 3)

569

a10sa
IBNILSY]
a1o70
gloso
a10s0
giiaq0
piiiao
aiizo
g1iz20
ait40
111350
glisn
0ii1vn
01130
11130
g1=00
giz21d
aizzo
G120
NiZd
n1z=0
glaad
M
n1a2an
nig3u
1300
0
0

1
1
0l
1
1
i

“

[,
]

L

B

-
Pl A

S

13
K} il

TR B R RS RN

00 G o0l

a1

ig4zn
01350
Biddn
145
31420
91470
01430
41430
Hisao
gisln
01520
01530

01540

D15Ta
A AT E

N2nz
=Dz
n=Td
nzns
nz2ne
==
02DR
asnc
a2Dnn
n=DF
0zE1
02Ed

(O o S e |

‘o T o T o

=

b

HBUBLIELUELY
LY B IR W IR R

e

o3
nm
Tl -

=

O f

RERER]
n
[|

T T ST

i

spCR el

TR] !:l_» T i

t

a0t Tl o0

T)]

0 0

s I N S T

a0TH e by D A 0 E_—_. Ty = 3 2

T o e T D T 0 G
P SR S

n

o) = i T

Vot

i
ey

¢
()

I

1
i
e
1
IRERLR1

Dot

Cka10on

=
=
Ny

LI

i
(]

Hr!
il
fod = iod bt

[Bgw]

T o
|l
2

Al

iy

1

o B3

FIGURE 5-3.1.2-2 Assembied Data Comm Program
(Sheet 3 of 3)

5-70

BN A K

fan]

T

I ITn

DD DD

A R I K U Te

] il

0l D

rxd

T

CEZ040
a?
av g

i
i
i
1
1
1

IGMOrRE RUBDITE

ECHI CHAR

w41

AL0w

Then the remaining status bits (framing, overrun, and parity error) are checked for an error condition on the
received character. If a framing error condition exists, indicating a possible loss of character synchronization,
the program is terminated. The fact that an overrun or parity error occurred is stored and the program continues
to receive characters. The character is loaded into the A-register of the MPU from the ACIA in line 1200. In
lines 1240 to 1280, the received character is transmitted back to the source. This is accomplished by checking
the status of the transmitter and when empty the character is loaded into the transmitter data register.

The characters stored on tape are in ASCII notation but represent hexadecimal numbers; the
alpha-numeric representation for 0—15 in hexadecimal is 0-9, A—F (10-15). Therefore, the eight bit ASCII
notation must be converted to a four bit binary number (0000—1111). For the ASCII characters 0—9, the four
least significant bits are equivalent to the binary representation 0000—1001. For the ASCII characters A-F,
subtracting 7 from the ASCII character results in the four least significant bits being equivalent to binary
representation 1010—1111. Inlines 1310— 1490, ASCII characters are converted to four bit binary numbers and
then two 4-bit numbers are stored in an eight bit register.

5-3.1.3 ACIA to Modem HARDWARE

The MPU system can communicate over the telephone lines to a remote peripheral by utilizing a
modem and an ACIA as shown in Figure 5-3.1.3-1. The modem takes serial digital data and converts it to an
analog signal for transmission over the telephone lines. Incoming data in analog form from the remote modem
is converted to serial digital form by the on-site modem. The ACIA provides the MPU with the ability to control
the handshaking requirements of the modem. The first step requires that the Data Terminal Ready (DTR) input
be ““low’” to enable the modem to complete the handshaking. Response by the remote modem to the on-site
modem completes the handshaking and results in a “‘low’” logic level from the Clear to Send (CTS) output of
the modem. After handshaking has been completed, the remote and on-site systems can transmit and receive

data. When communications is lost between between the modems, the CTS output returns ‘high.”’

In the transmitter portion of the ACIA, the Transmitter Data Register Empty (TxDRE) flag and
associated interrupt (I_RQ_), are enabled when both the CTS and Transmitter Interrupt Enable (TIE) functions
are enabled. In the receiver portion of the ACIA, the Receiver Data Register Full (RxDRF) flag and associated
interrupt (I_RQ—) are enabled when both the Data Carrier Detect (DTD) and Receiver Interrupt Enable (RIE)
functions are enabled; the low to high transition of the ﬁinput with RIE enabled generates an interrupt
(TR—QS . Since the MC6860 modem does not have a Data Carrier Detect output, the DCD and CTS inputs of the
ACIA can be tied together which results in an interrupt (IRQ) being generated when communications is lost.

Used separately, the DCD and CTS inputs of the ACIA allow the use of higher performance
modems. For example, a high-performance modem will transmit on one pair of wires and receive on another
pair referred to as a four-wire modem system. As in the low speed modem system, the MPU, via the ACIA,
generates a DTR and after a time delay, the moutput of the high-performance modem goes ‘‘low.”’ The
transmitter can start transferring data immediately after CTS goes ‘“‘low.”” After the on-site modem receives the
carrier frequency from the remote modem, the DCD output goes ‘‘low’’ and data can be received. The transmit
and receive lines of the modem are completely independent of each other which, for example, allows
transmission to the remote site when the other line is down.

5-3.1.4 ACIA To Modem Software

The program used to receive data from a teletype with the addition of the modem control functions is

5-71

LS

83ig 830WdY 01 NdIN L-E7L°E-G IHNDIid

BRG
MC14411

To ROM, RAM, DIA

L]

'

N/A

Y

Ri

[Enable
Logic

20
Clk.
Gen.

T

E TxC RxC

ACIA
XC6850

R/N IRQ

n
-
w

Tx Data

Rx Data

DTR

oS

SH

MODEM
XC6860
(Answer Mode)

ANS

Rl

DAA

Amp

LimM

BPF

VAN

IMA

MPU
XC 6800

CDCTB
> To ROM, RAM, PIA

-

Thres-
hold

b3
P ON/DA

’

used for the following explanation. The local modem is initially enabled by writing a control word into the
ACIA as shown in line 130. This control word sets the moutput of the ACIA ““low’’ and in turn enables the
Data Terminal Ready (T)T_R) input of the modem. In lines 210 to 230, the completion of the handshaking
between the remote and local modem (indicated by a “‘low’’ on the mbit) is checked until established. Also,
during the reception of characters the status of CTS is checked as shown in lines 1010 to 1020 to insure that the
program does not remain in an endless loop if the transmission lines go ““down.”’ At the end of the program the
modem is disabled in line 790 by writing a control word into the ACIA to set the RTS output *‘high.’’ This
immediately terminates transmission from the modem.

To insure that the last character to be transmitted is received at the remote site, two © ‘pad’’ characters
must be inserted between the last character and the control word (R—T-S— = 1) as shown in lines 700—780. This
enables the last character to be completely transmitted prior to disabling the modem.

5-3.2 TAPE CASSETTE SUBSYSTEM

This section describes the design of an MPU based Tape Cassette Subsystem. The scope is limited to
the control of a single transport operated in a bit serial format.

The technique used may be extended to the control of multiple transports, however, this requires
some additional hardware (multiplexers for data lines and either an encoder to encode additional control and
status lines, or half of another PIA). A similar approach may be used when data is transferred in parallel format.
This will require additional data lines (8 lines instead of one). The additional data lines could be bidirectional
PIA lines, programmable to be outputs during write, inputs during read. Note also that if data is transferred in
parallel, the MPU can handle the faster data transfer rates resulting from use of more than one transport. In
multiple transport applications, the system will also require additional lines to monitor tape drive status signals
such as ““READY”’ and ‘‘BUSY”’ that provide an indication of whehter the selected transport is available or
busy.

In a typical tape subsystem, many functions must be performed, however, only the following basic
routines are described in this section.

(1) Search to a given record.
(2) Stop in an interrecord gap.
(3) Write (Fwd).

(4) Read (Fwd).

(5) Write filemark.

5-73

5-3.2.1 HARDWARE DESCRIPTION
Tape Transport Description

The data recorded on the tape conforms to the A.N.S.I. “‘Specification For Information Inter-
change”” (X3B1/579 — September 14, 1972). The data recording format is shown in Figure 5-3.2.1-1 below.
A block recording format is used with each data block consisting of: (A) a preamble (1 byte); (B) data (4-256
bytes) including the Cyclic Redundancy Check Character (2 bytes); and a (C) postamble (1 byte).

The Tape Transport that was used has an adjustable capstan controlled Read/Write speed which was
setat 15 ips. The search speed was adjusted for an average speed of 100 ips. The pinch roller engagement time
is 30 msec (max). Disengagement time is 20 msec. The tape acceleration time is 20 msec to stabilized speed.
Speed stability is within the A.N.S.I. specifications. Photo-detectors are used for sensing End Of Tape (EOT)
and Beginning Of Tape (BOT). The transport is provided with both a Cassette-In-Place sensor and a
File-Protect sensor (also called a Write-Protect sensor). A single Read/Write head is used which is also used to
write gaps in erase polarity.

Four control lines are provided for the control of tape motion and to select a given transport. These

are:
(1) SELECT/NOT SELECT
(2) STOP/GO
(3) FORWARD/REVERSE
(4) SEARCH/REWIND or READ/WRITE SPEED

Since in the present subsystem only a single tape drive is used, the select line is not used. The interfaces
between the PIA, the tape drive, and the control electronics are shown in Figure 5-3.2.1-2.

0 BPI _.I t‘_
80 @ :Interblock Gap @) :lnitial Gap @

— —potp————— Data Block ——.{‘— o
1.45 mm Nom. 17.8 mm Min.| 33 mm Min.
(0.057 in.) (0.7 in. Min.) | postamble Data Portion Preamble| (1:3in- Min.)
-g- — - —_ — — — - -
8 Bits 32 to 2064 Bits 8 Bits .
© .
S~ '
24 £ 037t
£ - 051 mm —
gl & (0.0146t0 Track 2 £ £
0 o 0.020in.) £ o
®Q =]
2y S - 8 o
- - - - ® oo ©°
. — ?<
< : | 1
. 2 L
2| Z 037t o L
€ « 0.51T mm P
EL 5 (0016w Track 1 ‘ e
o 3 0.020in.
oL S t
——®» Forward Tape Motion L
Bot Marker
NOTES:
@ The last 2 characters (16 bits) of the data
1 Tape is shown with oxide side out. portion is the Cyclic Redundancy Check (CRC).
@ Tape is fully saturated in the erase direction @ Shown without phase flux reversals that may
in the interblock gap and the initial gap. exist between data bits.

FIGURE 5-3.2.1-1. Recording Format 800 BPI

5-74

PIA Interface

CA1 :Cioek {lo to hi}
CA2 Strobe (rd, wrt handshake — hi to lo)
PAQ p—— Read Data
PA1 ——CRC Error = 1
PA2Z b ——NotinSync =0 Ready
PA3 L——Ready = 1 Cas.
PA4 — Cassette in Place = 1 = n
PA5 p——Wrt Protected = 0 Llace

. Wrt.
PA6 f——Available = 0 Read/Write Protect. g:‘;:
PA7 p——EOT-BOT Seen = 1 yite

Controt Avail.
PIA Electronics

.

PBO = Write Data EOT/BOT

PB1 e Write = 0, Read = 1

PB2 ——Frase = 1, Rd Enable = 0
PB3 |——CRC Reset = 1, CRC Enable = 0
PB4 fe——.Speed+ RD-WRT = 0, Search = 1

Data

Speed

PB5 l——.Directions Fwd = 1, Rev = 0 Direction

PB6 f=—CRC Shift = 0, Wrt Data Enab. = 1
PB7

Motion

+Motion= Stop =1, Go = 0

CB1 p——:=Intrpt Dvfl-Undfl (lo to hi)

IR RN

CB2 p—— *Intrpt EOT-BOT Timeout (lo to hi)

FIGURE 5-3.2.1-2. PIA, Tape Drive and Read/Write Control Electronics Interface

READ/WRITE Electronics Description

The data to be recorded on the tape is presented to the tape transport in Non-Return-to-Zero (NRZ)
format but is recorded in Phase Encoded (PE) format. The data conversion is performed by the logic shown in
Figure 5-3.2.1-3. The timing diagram for the conversion from NRZ to PE format is shown in Figure 5-3.2.14.

Write data (or CRC Data) is gated through a data selector to flip-flop FF1 which provides a one-bit
storage. This storage is necessary because in P.E. format, a phase transition is required whenever the next data
bit is the same as the current bit. The exclusive-OR gate compares the next bit with the current bit, and provides
a high level to FF2 at phase time whenever the two are equal. The 12KHz clock is low at data time, and provides
a high level to FF2 input at data time. Thus, FF2 always toggles at data time and also toggles at phase time if the
next data bit is the same as the current data bit.

The Write data is also sent through a Cyclic Redundancy Check Character Generator (MC8503
CRCC Generator). The CRCC is appended to the data block and the CRC data passes through the same circuitry
as the Write data for conversion to the P.E. format for recordin g. The timing for this operation is also detailed in
Figure 5-3.2.1-4. Both the preamble and the postamble are 8-bit patterns of alternating ones and zeros
(01010101-M.S. bit). (This can be used to establish the data rate during data recovery since there is a single
transition per bit). During the Write operation, the CRC Generator is enabled after the preamble data has been
written. The CRC Generator remains enabled throughout the data block. At the end of the data block, the CRC
Data is shifted out of the generator into the Write circuitry, '

5-75

The read-write head is switched to carry the write current from FF2, via three-state gates enabled by
the Read-Write Line (PB1). The series resistors R adjust the write current to a nominal value of 4 ma.

During a Read operation (Ref. Figures 5-3.2.1-3 and 5-3.2.1-5), the write circuits are disabled, and
one end of the read head is switched to ground via a three-state gate. The other end passes the read signals onto
the read circuits which amplify and convert the read signals to logic levels in P.E. format. The P.E. read data

goes to the Phase Locked Loop data recovery circuit which decodes the data and clock signals. The P.E. data

also goes to a monostable multivibrator which is used to detect gaps during a search operation.

PA7

Stop/Go

T

Man, Selector)

EOT
BOT

Write d S:S.
Osc.
L Search (From Auto/ 12 kHz 24 kHz T g

—

-
EOT
From
Drive

—)> @ Stop/Go
Read Enable

PB2

CRC Shift
PB6

PB7
Rd-Wrt
Erase/Enab.e Jl>¢_'

Data Selector #1

5

Write Data
PBO J
C FF2
CRC Data K
Read/Write
Wrt
Protected
NRZ Data
P.L.L.
Data Recovery
Read Data Data Selector =2
PAOD

PB4

Rd/Wrt or Search/Rewind Speed

I o

Gap
Detect
S.S.

Clock
Selzctor

Cable Interconnects

CRC Enable SR
PB3 R s$DO p——
MC8503
CRC Error
PAY e &z CRCCGen. ¢
Z
Fwd/Rev i
PBS
Clock (Read/Write)
cA1l
PAS
Available
Strobe
CA2 =]
Overflow/Underflow Error
cB1
Not-in-Sync c

L——((® stop/Go

Drive
Available from
Tape Drive —

+V

Overflow/Underflow Error

Not-in-Sync

Ground

————» To Tape Drive

FIGURE 5-3.2.1-3: Read-Write Circuitry

5-76

Clock _’

24 kHz

Clock
12k Hz —5

Erase

Data Time

—

Strobe S]'l]]lﬁ['lll]l]l]'l'

r(4

‘\—- CRC Data

—

24

CRC 1 CRC Gen. (
Enable { '
Write Data —/ 1 "—5| 5_‘-‘] 'l “" 4 EEE—
N.R.Z. (PBO) 0 1) 1 1 1 0 10) o 1
Preamble Write Data ——’i-—ld— Postamble -—-i
I
—f
FF #1 1 [| 1 {27 1 !
Qutput T
i
|
FF #2
Output 1 J Y
(P.E. Data) i—‘ L—-—‘
|
CRC |
Shift

Stop/Go
—I—{,’

J
_ shift CRC

FIGURE 5-3.2.1-4. Write Operation Timing and Format Conversion

Recovered Clock

Strobe

CRC Enable

CRC Error

Read Data

(R LS N R 773 g W g TNy V7 g Wy 72 f

L I % CRC Res. Reset
P—— | Jj S
_Check All Zeros
(No Error)

(PAQ)

L_B—I 1L“_]1 117_0_‘—“_‘———'_“—

l—.— Preamble *! Data -

FIGURE 5-3.2.1-5. Read Operation Timing

5-77

‘4— Postamble —a—l

CRC Data

The Read data goes to the PIA directly (PA0) while the recovered clock goes to the PIA (CA1) via
the clock selector circuit. The clock selector selects between the read and write clock during a read or write
operation. During a search operation, the gap-detector retriggerable single shot output is substituted for the
rea