

Motorola 6809 and
Hitachi 6309
ProgrammerÕs Reference

© 2009 by Darren Atkinson

- 2 -

A note about cycle counts

The MPU cycle counts listed throughout this document will sometimes show two
different values separated by a slash. In these cases the first value indicates the number
of cycles used on a 6809 or a 6309 CPU running in Emulation mode. The second value
indicates the number of cycles used on a 6309 CPU only when running in Native mode.

Part I
Instruction Reference

- 4 -

ABX

Add Accumulator B to Index Register X

X’

←←←←

 X + ACCB

The ABX instruction performs an unsigned addition of the contents of Accumulator B
with the contents of Index Register X. The 16-bit result is placed into Index Register X.
None of the Condition Code flags are affected.

The ABX instruction is similar in function to the LEAX B,X instruction. A significant
difference is that LEAX B,X treats B as a twos complement value (signed), whereas
ABX treats B as unsigned. For example, if X were to contain 301B

16

 and B were to
contain FF

16

, then ABX would produce 311A

16

 in X, whereas LEAX B,X would produce
301A

16

 in X.

Additionally, the ABX instruction does not affect any flags in the Condition Codes
register, whereas the LEAX instruction does affect the Zero flag.

One example of a situation where the ABX instruction may be used is when X contains
the base address of a data structure or array and B contains an offset to a specific field or
array element. In this scenario, ABX will modify X to point directly to the field or array
element.

The ABX instruction was included in the 6x09 instruction set for compatibility with the
6801 microprocessor.

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

ABX INHERENT 3A 3 / 1 1

E F H I N Z V C

- 5 -

ADC

(8 Bit)

Add Memory Byte plus Carry with Accumulator A or B

r’

←←←←

 r + (M) + C

These instructions add the contents of a byte in memory plus the contents of the Carry
flag with either Accumulator A or B. The 8-bit result is placed back into the specified
accumulator.

H

The Half-Carry flag is set if a carry into bit 4 occurred; cleared otherwise.

N

The Negative flag is set equal to the new value of bit 7 of the accumulator.

Z

The Zero flag is set if the new accumulator value is zero; cleared otherwise.

V

The Overflow flag is set if an overflow occurred; cleared otherwise.

C

The Carry flag is set if a carry out of bit 7 occurred; cleared otherwise.

The ADC instruction is most often used to perform addition of the subsequent bytes of a
multi-byte addition. This allows the carry from a previous ADD or ADC instruction to be
included when doing addition for the next higher-order byte.

Since the 6x09 provides a 16-bit ADD instruction, it is not necessary to use the 8-bit
ADD and ADC instructions for performing 16-bit addition.

See Also:

ADCD

,

ADCR

E F H I N Z V C

↕ ↕ ↕ ↕ ↕

ADCA 89 2 2 99 4 / 3 2 A9 4+ 2+ B9 5 / 4 3
ADCB C9 2 2 D9 4 / 3 2 E9 4+ 2+ F9 5 / 4 3

OP

~

#

IMMEDIATE

OP

~

#

DIRECT

OP

~

#

INDEXED

OP

~

#

EXTENDEDSOURCE
FORMS

- 6 -

ADCD

Add Memory Word plus Carry with Accumulator D

ACCD’

←←←←

 ACCD + (M:M+1) + C

The ADCD instruction adds the contents of a double-byte value in memory plus the value
of the Carry flag with Accumulator D. The 16 bit result is placed back into Accumulator
D.

H

The Half-Carry flag is not affected by the ADCD instruction.

N

The Negative flag is set equal to the new value of bit 15 of the accumulator.

Z

The Zero flag is set if the new Accumulator D value is zero; cleared otherwise.

V

The Overflow flag is set if an overflow occurred; cleared otherwise.

C

The Carry flag is set if a carry out of bit 15 occurred; cleared otherwise.

The ADCD instruction is most often used to perform addition of subsequent words of a
multi-byte addition. This allows the carry from a previous ADD or ADC instruction to be
included when doing addition for the next higher-order word.

The following instruction sequence is an example showing how 32-bit addition can be
performed on a 6309 microprocessor:

LDQ VAL1 ; Q = first 32-bit value
ADDW VAL2+2 ; Add lower 16 bits of second value
ADCD VAL2 ; Add upper 16 bits plus Carry
STQ RESULT ; Store 32-bit result

See Also:

ADC

 (8-bit)

,

ADCR

E F H I N Z V C

↕ ↕ ↕ ↕

6309 ONLY

ADCD 1089 5 / 4 4 1099 7 / 5 3 10A9 7+ / 6+ 3+ 10B9 8 / 6 4

OP

~

#

IMMEDIATE

OP

~

#

DIRECT

OP

~

#

INDEXED

OP

~

#

EXTENDEDSOURCE
FORM

- 7 -

ADCR

Add Source Register plus Carry to Destination Register

r1’

←←←←

 r1 + r0 + C

The ADCR instruction adds the contents of a source register plus the contents of the
Carry flag with the contents of a destination register. The result is placed into the
destination register.

H

The Half-Carry flag is not affected by the ADCR instruction.

N

The Negative flag is set equal to the value of the result’s high-order bit.

Z

The Zero flag is set if the new value of the destination register is zero; cleared otherwise.

V

The Overflow flag is set if an overflow occurred; cleared otherwise.

C

The Carry flag is set if a carry out of the high-order bit occurred; cleared otherwise.

Any of the 6309 registers except Q and MD may be specified as the source operand,
destination operand or both; however specifying the PC register as either the source or
destination produces undefined results.

The ADCR instruction will perform either 8-bit or 16-bit addition according to the size of
the destination register. When registers of different sizes are specified, the source will be
promoted, demoted or substituted depending on the size of the destination and on which
specific 8-bit register is involved. See “6309 Inter-Register Operations” on page 143 for
further details.

The Immediate operand for this instruction is a postbyte which uses the same format as
that used by the TFR and EXG instructions. See the description of the

TFR

 instruction
for further details.

See Also:

ADC

 (8-bit)

,

ADCD

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

ADCR

r0

,

r1

IMMEDIATE 1031 4 3

E F H I N Z V C

↕ ↕ ↕ ↕

6309 ONLY

- 8 -

ADD

(8 Bit)

Add Memory Byte to 8-Bit Accumulator

r’

←←←←

 r + (M)

ADDE

 and

ADDF

 are available on 6309 only.

These instructions add the contents of a byte in memory with one of the 8-bit
accumulators (A,B,E,F). The 8-bit result is placed back into the specified accumulator.

H

The Half-Carry flag is set if a carry into bit 4 occurred; cleared otherwise.

N

The Negative flag is set equal to the new value of bit 7 of the accumulator.

Z

The Zero flag is set if the new accumulator value is zero; cleared otherwise.

V

The Overflow flag is set if an overflow occurred; cleared otherwise.

C

The Carry flag is set if a carry out of bit 7 occurred; cleared otherwise.

The 8-bit ADD instructions are used for single-byte addition, and for addition of the
least-significant byte in multi-byte additions. Since the 6x09 also provides a 16-bit ADD
instruction, it is not necessary to use the 8-bit ADD and ADC instructions for performing
16-bit addition.

See Also:

ADD

 (16-bit)

,

ADDR

E F H I N Z V C

↕ ↕ ↕ ↕ ↕

ADDA 8B 2 2 9B 4 / 3 2 AB 4+ 2+ BB 5 / 4 3
ADDB CB 2 2 DB 4 / 3 2 EB 4+ 2+ FB 5 / 4 3
ADDE 118B 3 3 119B 5 / 4 3 11AB 5+ 3+ 11BB 6 / 5 4
ADDF 11CB 3 3 11DB 5 / 4 3 11EB 5+ 3+ 11FB 6 / 5 4

OP

~

#

IMMEDIATE

OP

~

#

DIRECT

OP

~

#

INDEXED

OP

~

#

EXTENDEDSOURCE
FORMS

- 9 -

ADD

(16 Bit)

Add Memory Word to 16-Bit Accumulator

r’

←←←←

 r + (M:M+1)

ADDW

 is available on 6309 only.

These instructions add the contents of a double-byte value in memory with one of the 16-
bit accumulators (D,W). The 16-bit result is placed back into the specified accumulator.

H

The Half-Carry flag is not affected by these instructions.

N

The Negative flag is set equal to the new value of bit 15 of the accumulator.

Z

The Zero flag is set if the new accumulator value is zero; cleared otherwise.

V

The Overflow flag is set if an overflow occurred; cleared otherwise.

C

The Carry flag is set if a carry out of bit 15 occurred; cleared otherwise.

The 16-bit ADD instructions are used for double-byte addition, and for addition of the
least-significant word of multi-byte additions. See the description of the

ADCD

instruction for an example of how 32-bit addition can be performed on a 6309 processor.

See Also:

ADD

 (8-bit)

,

ADDR

E F H I N Z V C

↕ ↕ ↕ ↕

ADDD C3 4 / 3 3 D3 6 / 4 2 E3 6+ / 5+ 2+ F3 7 / 5 3
ADDW 108B 5 / 4 4 109B 7 / 5 3 10AB 7+ / 6+ 3+ 10BB 8 / 6 4

OP

~

#

IMMEDIATE

OP

~

#

DIRECT

OP

~

#

INDEXED

OP

~

#

EXTENDEDSOURCE
FORMS

- 10 -

ADDR

Add Source Register to Destination Register

r1’

←←←←

 r1 + r0

The ADDR instruction adds the contents of a source register with the contents of a
destination register. The result is placed into the destination register.

H

The Half-Carry flag is not affected by the ADDR instruction.

N

The Negative flag is set equal to the value of the result’s high-order bit.

Z

The Zero flag is set if the new value of the destination register is zero; cleared otherwise.

V

The Overflow flag is set if an overflow occurred; cleared otherwise.

C

The Carry flag is set if a carry out of the high-order bit occurred; cleared otherwise.

Any of the 6309 registers except Q and MD may be specified as the source operand,
destination operand or both; however specifying the PC register as either the source or
destination produces undefined results.

The ADDR instruction will perform either 8-bit or 16-bit addition according to the size
of the destination register. When registers of different sizes are specified, the source will
be promoted, demoted or substituted depending on the size of the destination and on
which specific 8-bit register is involved. See “6309 Inter-Register Operations” on
page 143 for further details.

A

Load Effective Address

 instruction which adds one of the 16-bit accumulators to an
index register (such as LEAX D,X) could be replaced by an ADDR instruction (ADDR
D,X) in order to save 4 cycles (2 cycles in Native Mode). However, since more Condition
Code flags are affected by the ADDR instruction, you should avoid this optimization if
preservation of the affected flags is desired.

The Immediate operand for this instruction is a postbyte which uses the same format as
that used by the TFR and EXG instructions. See the description of the

TFR

 instruction
for further details.

See Also:

ADD

 (8-bit)

,

ADD

 (16-bit)

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

ADDR

r0

,

r1

IMMEDIATE 1030 4 3

E F H I N Z V C

↕ ↕ ↕ ↕

6309 ONLY

- 11 -

AIM

Logical AND of Immediate Value with Memory Byte

M’

←←←←

 (M) AND IMM

The AIM instruction logically ANDs the contents of a byte in memory with an 8-bit
immediate value. The resulting value is placed back into the designated memory
location.

N

The Negative flag is set equal to the new value of bit 7 of the memory byte.

Z

The Zero flag is set if the new value of the memory byte is zero; cleared otherwise.

V

The Overflow flag is cleared by this instruction.

C

The Carry flag is not affected by this instruction.

AIM is one of the more useful additions to the 6309 instruction set. It takes three separate
instructions to perform the same operation on a 6809:

6809

(6 instruction bytes; 12 cycles)

:

LDA #$3F
ANDA 4,U
STA 4,U

6309

(3 instruction bytes; 8 cycles)

:

AIM #$3F;4,U

Note that the assembler syntax used for the AIM operand is non-typical. Some
assemblers may require a comma (,) rather than a semicolon (;) between the immediate
operand and the address operand.

The object code format for the AIM instruction is:

See Also:

AND

,

EIM

,

OIM

,

TIM

E F H I N Z V C

↕ ↕

0

OPCODE IMMED VALUE ADDRESS / INDEX BYTE(S)

6309 ONLY

AIM #

i8

;

EA

02 6 3 62 7+ 3+ 72 7 4

OP

~

#

IMMEDIATE

OP

~

#

DIRECT

OP

~

#

INDEXED

OP

~

#

EXTENDEDSOURCE
FORM

- 12 -

AND

(8 Bit)

Logically AND Memory Byte with Accumulator A or B

r’

←←←←

 r AND (M)

These instructions logically AND the contents of a byte in memory with either
Accumulator A or B. The 8-bit result is then placed in the specified accumulator.

N

The Negative flag is set equal to the new value of bit 7 of the accumulator.

Z

The Zero flag is set if the new value of the accumulator is zero; cleared otherwise.

V

The Overflow flag is cleared by this instruction.

C

The Carry flag is not affected by this instruction.

The AND instructions are commonly used for clearing bits and for testing bits. Consider
the following examples:

ANDA #%11101111 ;Clears bit 4 in A
ANDA #%00000100 ;Sets Z flag if bit 2 is not set

When testing bits, it is often preferable to use the BIT instructions instead, since they
perform the same logical AND operation without modifying the contents of the
accumulator.

See Also:

AIM, ANDCC, ANDD

,

ANDR

,

BAND

,

BIAND

,

BIT

E F H I N Z V C

↕ ↕

0

ANDA 84 2 2 94 4 / 3 2 A4 4+ 2+ B4 5 / 4 3
ANDB C4 2 2 D4 4 / 3 2 E4 4+ 2+ F4 5 / 4 3

OP

~

#

IMMEDIATE

OP

~

#

DIRECT

OP

~

#

INDEXED

OP

~

#

EXTENDEDSOURCE
FORMS

- 13 -

ANDCC

Logically AND Immediate Value with the CC Register

CC’

←←←←

 CC AND IMM

This instruction logically ANDs the contents of the Condition Codes register with the
immediate byte specified in the instruction. The result is placed back into the Condition
Codes register.

The ANDCC instruction provides a method to clear specific flags in the Condition Codes
register. All fl ags that correspond to "0" bits in the immediate operand are cleared, while
those corresponding with "1"s are left unchanged.

The bit numbers for each flag are shown below:

One of the more common uses for the ANDCC instruction is to clear the IRQ and FIRQ
Interrupt Masks (I and F) at the completion of a routine that runs with interrupts disabled.
This is accomplished by executing:

ANDCC #$AF ; Clear bits 4 and 6 in CC

Some assemblers will accept a comma-delimited list of the bit names to be cleared as an
alternative to the immediate expression. For instance, the example above might also be
written as:

ANDCC I,F ; Clear bits 4 and 6 in CC

This syntax is generally discouraged due to the confusion it can create as to whether it
means clear the I and F bits, or clear all bits except I and F.

More examples:

ANDCC #$FE ; Clear the Carry flag
ANDCC #1 ; Clear all flags except Carry

See Also:

AND

 (8-bit)

,

 ANDD

,

ANDR

,

CWAI

,

ORCC

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

ANDCC

#i8

IMMEDIATE 1C 3 2

7 6 5 4 3 2 1 0

E F H I N Z V C

- 14 -

ANDD

Logically AND Memory Word with Accumulator D

ACCD’

←←←←

 ACCD AND (M:M+1)

The ANDD instruction logically ANDs the contents of a double-byte value in memory
with the contents of Accumulator D. The 16-bit result is placed back into Accumulator D.

N

The Negative flag is set equal to the new value of bit 15 of Accumulator D.

Z

The Zero flag is set if the new value of the Accumulator D is zero; cleared otherwise.

V

The Overflow flag is cleared by this instruction.

C

The Carry flag is not affected by this instruction.

One use for the ANDD instruction is to truncate bits of an address value. For example:

ANDD #$E000 ;Convert address to that of its 8K page

For testing bits, it is often preferable to use the

BITD

 instruction instead, since it
performs the same logical AND operation without modifying the contents of
Accumulator D.

See Also:

AND

 (8-bit)

,

ANDCC, ANDR

,

BITD

E F H I N Z V C

↕ ↕

0

6309 ONLY

ANDD 1084 5 / 4 4 1094 7 / 5 3 10A4 7+ / 6+ 3+ 10B4 8 / 6 4

OP

~

#

IMMEDIATE

OP

~

#

DIRECT

OP

~

#

INDEXED

OP

~

#

EXTENDEDSOURCE
FORM

- 15 -

ANDR

Logically AND Source Register with Destination Register

r1’

←←←←

 r1 AND r0

The ANDR instruction logically ANDs the contents of a source register with the contents
of a destination register. The result is placed into the destination register.

N

The Negative flag is set equal to the value of the result’s high-order bit.

Z

The Zero flag is set if the new value of the destination register is zero; cleared otherwise.

V

The Overflow flag is cleared by this instruction.

C

The Carry flag is not affected by this instruction.

Any of the 6309 registers except Q and MD may be specified as the source operand,
destination operand or both; however specifying the PC register as either the source or
destination produces undefined results.

The ANDR instruction will perform either an 8-bit or 16-bit operation according to the
size of the destination register. When registers of different sizes are specified, the source
will be promoted, demoted or substituted depending on the size of the destination and on
which specific 8-bit register is involved. See “6309 Inter-Register Operations” on
page 143 for further details.

The Immediate operand for this instruction is a postbyte which uses the same format as
that used by the TFR and EXG instructions. For details, see the description of the

TFR

instruction.

See Also:

AND

 (8-bit)

,

ANDCC, ANDD

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

ANDR

r0

,

r1

IMMEDIATE 1034 4 3

E F H I N Z V C

↕ ↕

0

6309 ONLY

- 16 -

ASL

(8 Bit)

Arithmetic Shift Left of 8-Bit Accumulator or Memory Byte

These instructions shift the contents of the A or B accumulator or a specified byte in
memory to the left by one bit, clearing bit 0. Bit 7 is shifted into the Carry flag of the
Condition Codes register.

H

The affect on the Half-Carry flag is undefined for these instructions.

N

The Negative flag is set equal to the new value of bit 7; previously bit 6.

Z

The Zero flag is set if the new 8-bit value is zero; cleared otherwise.

V

The Overflow flag is set to the Exclusive-OR of the original values of bits 6 and 7.

C

The Carry flag receives the value shifted out of bit 7.

The ASL instruction can be used for simple multiplication (a single left-shift multiplies
the value by 2). Other uses include conversion of data from serial to parallel and vise-
versa.

The 6309 does not provide variants of ASL to operate on the E and F accumulators.
However, you can achieve the same functionality using the ADDR instruction. The
instructions

ADDR E,E

 and

ADDR F,F

 will perform the same left-shift operation on the E
and F accumulators respectively.

The ASL and LSL mnemonics are duplicates. Both produce the same object code.

See Also:

ASLD

E F H I N Z V C

~

↕ ↕ ↕ ↕

C b7 b0

0

ASLA 48 2 / 1 1
ASLB 58 2 / 1 1
ASL 08 6 / 5 2 68 6+ 2+ 78 7 / 6 3

OP

~

#

INHERENT

OP

~

#

DIRECT

OP

~

#

INDEXED

OP

~

#

EXTENDEDSOURCE
FORMS

- 17 -

ASLD

Arithmetic Shift Left of Accumulator D

This instruction shifts the contents of Accumulator D to the left by one bit, clearing bit 0.
Bit 15 is shifted into the Carry flag of the Condition Codes register.

N

The Negative flag is set equal to the new value of bit 15; previously bit 14.

Z

The Zero flag is set if the new 16-bit value is zero; cleared otherwise.

V

The Overflow flag is set to the Exclusive-OR of the original values of bits 14 and 15.

C

The Carry flag receives the value shifted out of bit 15.

The ASL instruction can be used for simple multiplication (a single left-shift multiplies
the value by 2). Other uses include conversion of data from serial to parallel and vise-
versa.

The D accumulator is the only 16-bit register for which an ASL instruction has been
provided. You can however achieve the same functionality using the ADDR instruction.
For example,

ADDR W,W

 will perform the same left-shift operation on the W
accumulator.

A left-shift of the 32-bit Q accumulator can be achieved as follows:

ADDR W,W ; Shift Low-word, Hi-bit into Carry
ROLD ; Shift Hi-word, Carry into Low-bit

The ASLD and LSLD mnemonics are duplicates. Both produce the same object code.

See Also:

ASL

(8-bit)

,

ROL

 (16-bit)

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

ASLD INHERENT 1048 3 / 2 2

E F H I N Z V C

↕ ↕ ↕ ↕

6309 ONLY

C b15 b0

0

- 18 -

ASR

(8 Bit)

Arithmetic Shift Right of 8-Bit Accumulator or Memory Byte

These instructions arithmetically shift the contents of the A or B accumulator or a
specified byte in memory to the right by one bit. Bit 0 is shifted into the Carry flag of the
Condition Codes register. The value of bit 7 is not changed.

H

The affect on the Half-Carry flag is undefined for these instructions.

N

The Negative flag is set equal to the value of bit 7.

Z

The Zero flag is set if the new 8-bit value is zero; cleared otherwise.

V

The Overflow flag is not affected by these instructions.

C

The Carry flag receives the value shifted out of bit 0.

The ASR instruction can be used in simple division routines (a single right-shift divides
the value by 2). Be careful here, as a right-shift is not the same as a division when the
value is negative; it rounds in the wrong direction. For example, -5 (FB

16

) divided by 2
should be -2 but, when arithmetically shifted right, is -3 (FD

16

).

The 6309 does not provide variants of ASR to operate on the E and F accumulators.

See Also:

ASRD

E F H I N Z V C

~

↕ ↕ ↕

b7 b0 C

ASRA 47 2 / 1 1
ASRB 57 2 / 1 1
ASR 07 6 / 5 2 67 6+ 2+ 77 7 / 6 3

OP

~

#

INHERENT

OP

~

#

DIRECT

OP

~

#

INDEXED

OP

~

#

EXTENDEDSOURCE
FORMS

- 19 -

ASRD

Arithmetic Shift Right of Accumulator D

This instruction shifts the contents of Accumulator D to the right by one bit. Bit 0 is
shifted into the Carry flag of the Condition Codes register. The value of bit 15 is not
changed.

N

The Negative flag is set equal to the value of bit 15.

Z

The Zero flag is set if the new 16-bit value is zero; cleared otherwise.

V

The Overflow flag is not affected by this instruction.

C

The Carry flag receives the value shifted out of bit 0.

The ASRD instruction can be used in simple division routines (a single right-shift divides
the value by 2). Be careful here, as a right-shift is not the same as a division when the
value is negative; it rounds in the wrong direction. For example, -5 (FFFB

16

) divided by 2
should be -2 but, when arithmetically shifted right, is -3 (FFFD

16

).

The 6309 does not provide a variant of ASR to operate on the W accumulator, although it
does provide the LSRW instruction for performing a logical shift.

An arithmetic right-shift of the 32-bit Q accumulator can be achieved as follows:

ASRD ; Shift Hi-word, Low-bit into Carry
RORW ; Shift Low-word, Carry into Hi-bit

See Also:

ASR

(8-bit)

,

ROR

(16-bit)

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

ASRD INHERENT 1047 3 / 2 2

E F H I N Z V C

↕ ↕ ↕

6309 ONLY

b15 b0 C

- 20 -

BAND

Logically AND Register Bit with Memory Bit

r.dstBit’

←←←←

 r.dstBit AND (DPM).srcBit

The BAND instruction logically ANDs the value of a specified bit in either the A, B or
CC registers with a specified bit in memory. The resulting value is placed back into the
register bit. None of the Condition Code flags are affected by the operation unless CC is
specified as the register, in which case only the destination bit may be affected. The
usefulness of the BAND instruction is limited by the fact that only Direct Addressing is
permitted.

The figure above shows an example of the BAND instruction where bit 1 of Accumulator
A is ANDed with bit 5 of the byte in memory at address $0040 (DP = 0).

The assembler syntax for this instruction can be confusing due to the ordering of the
operands:

destination register

,

source bit

,

destination bit

,

source address

.

Since the Condition Code flags are not affected by the operation, additional instructions
would be needed to test the result for conditional branching.

The object code format for the BAND instruction is:

See Also:

BEOR

,

BIAND

,

BIEOR

,

BIOR

,

BOR

,

LDBT

,

STBT

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

BAND

r

,

sBit

,

dBit

,

addr

DIRECT 1130 7 / 6 4

$11 $30 POSTBYTE ADDRESS LSB

6309 ONLY

Memory Location $0040

1 1 0 0 0 1 1 0$0F0 0 0 0 1 1 1 1

7 6 5 4 3 2 1 0

$0D0 0 0 0 1 1 0 1

$C6

Accumulator A

7 6 5 4 3 2 1 0

0AND

BAND A,5,1,$40

Source (memory) Bit Number (0 - 7)

Destination (register) Bit Number (0 - 7)

Register Code

7 6 5 4 3 2 1 0

POSTBYTE FORMAT

Code Register

0 0 CC

0 1 A

1 0 B

1 1 Invalid

- 21 -

BCC

Branch If Carry Clear

IF CC.C = 0 then PC’

←←←←

 PC + IMM

This instruction tests the Carry flag in the CC register and, if it is clear (0), causes a
relative branch. If the Carry flag is 1, the CPU continues executing the next instruction in
sequence. None of the Condition Code flags are affected by this instruction.

When used following a subtract or compare of unsigned binary values, the BCC
instruction will branch if the source value was higher than or the same as the original
destination value. For this reason, 6809/6309 assemblers will accept BHS as an alternate
mnemonic for BCC.

BCC is generally not useful following INC, DEC, LD, ST or TST instructions since none
of those affect the Carry flag. BCC will always branch following a CLR instruction and
will never branch following a COM instruction due to the way those instructions affect
the Carry flag.

The branch address is calculated by adding the current value of the PC register (after the
BCC instruction bytes have been fetched) with the 8-bit twos-complement value
contained in the second byte of the instruction. The range of the branch destination is
limited to -126 to +129 bytes from the address of the BCC instruction. If a larger range is
required then the LBCC instruction may be used instead.

See Also:

BCS

,

BGE

,

LBCC

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

BCC address RELATIVE 24 3 2

E F H I N Z V C

- 22 -

BCS

Branch If Carry Set

IF CC.C

≠

 0 then PC’

←←←←

 PC + IMM

This instruction tests the Carry flag in the CC register and, if it is set (1), causes a relative
branch. If the Carry flag is 0, the CPU continues executing the next instruction in
sequence. None of the Condition Code flags are affected by this instruction.

When used following a subtract or compare of unsigned binary values, the BCS
instruction will branch if the source value was lower than the original destination value.
For this reason, 6809/6309 assemblers will accept BLO as an alternate mnemonic for
BCS.

BCS is generally not useful following INC, DEC, LD, ST or TST instructions since none
of those affect the Carry flag. BCS will never branch following a CLR instruction and
will always branch following a COM instruction due to the way those instructions affect
the Carry flag.

The branch address is calculated by adding the current value of the PC register (after the
BCS instruction bytes have been fetched) with the 8-bit twos-complement value
contained in the second byte of the instruction. The range of the branch destination is
limited to -126 to +129 bytes from the address of the BCS instruction. If a larger range is
required then the

LBCS

 instruction may be used instead.

See Also:

BCC

,

BLT

,

LBCS

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

BCS

address

RELATIVE 25 3 2

E F H I N Z V C

- 23 -

BEOR

Exclusive-OR Register Bit with Memory Bit

r.dstBit’

←←←←

 r.dstBit

⊕

 (DPM).srcBit

The BEOR instruction Exclusively ORs the value of a specified bit in either the A, B or
CC registers with a specified bit in memory. The resulting value is placed back into the
register bit. None of the Condition Code flags are affected by the operation unless CC is
specified as the register, in which case only the destination bit may be affected. The
usefulness of the BEOR instruction is limited by the fact that only Direct Addressing is
permitted.

The figure above shows an example of the BEOR instruction where bit 1 of Accumulator
A is Exclusively ORed with bit 6 of the byte in memory at address $0040 (DP = 0).

The assembler syntax for this instruction can be confusing due to the ordering of the
operands:

destination register

,

source bit

,

destination bit

,

source address

.

Since the Condition Code flags are not affected by the operation, additional instructions
would be needed to test the result for conditional branching.

The object code format for the BEOR instruction is:

See the description of the

BAND

 instruction on page 20 for details about the postbyte
format used by this instruction.

See Also:

BAND

,

BIAND

,

BIEOR

,

BIOR

,

BOR

,

LDBT

,

STBT

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

BEOR

r

,

sBit

,

dBit

,

addr

DIRECT 1134 7 / 6 4

$11 $34 POSTBYTE ADDRESS LSB

6309 ONLY

Memory Location $0040

1 1 0 0 0 1 1 0$0F0 0 0 0 1 1 1 1

7 6 5 4 3 2 1 0

$0D0 0 0 0 1 1 0 1

$C6

Accumulator A

7 6 5 4 3 2 1 0

1EOR

BEOR A,6,1,$40

- 24 -

BEQ

Branch If Equal to Zero

IF CC.Z

≠

 0 then PC’

←←←←

 PC + IMM

This instruction tests the Zero flag in the CC register and, if it is set (1), causes a relative
branch. If the Z flag is 0, the CPU continues executing the next instruction in sequence.
None of the Condition Code flags are affected by this instruction.

When used following almost any instruction that produces, tests or moves a value, the
BEQ instruction will branch if that value is equal to zero. In the case of an instruction
that performs a subtract or compare, the BEQ instruction will branch if the source value
was equal to the original destination value.

BEQ is generally not useful following a CLR instruction since the Z flag is always set.

The following instructions produce or move values, but do not affect the Z flag:

ABX BAND BEOR BIAND BIEOR
BOR BIOR EXG LDBT LDMD
LEAS LEAU PSH PUL STBT
TFM TFR

The branch address is calculated by adding the current value of the PC register (after the
BEQ instruction bytes have been fetched) with the 8-bit twos-complement value
contained in the second byte of the instruction. The range of the branch destination is
limited to -126 to +129 bytes from the address of the BEQ instruction. If a larger range is
required then the

LBEQ

 instruction may be used instead.

See Also:

BNE

,

LBEQ

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

BEQ

address

RELATIVE 27 3 2

E F H I N Z V C

- 25 -

BGE

Branch If Greater than or Equal to Zero

IF CC.N = CC.V then PC’

←←←←

 PC + IMM

This instruction tests the Negative (N) and Overflow (V) flags in the CC register and, if
both are set OR both are clear, causes a relative branch. If the N and V flags do not have
the same value then the CPU continues executing the next instruction in sequence. None
of the Condition Code flags are affected by this instruction.

When used following a subtract or compare of signed (twos-complement) values, the
BGE instruction will branch if the source value was greater than or equal to the original
destination value.

The branch address is calculated by adding the current value of the PC register (after the
BGE instruction bytes have been fetched) with the 8-bit twos-complement value
contained in the second byte of the instruction. The range of the branch destination is
limited to -126 to +129 bytes from the address of the BGE instruction. If a larger range is
required then the

LBGE

 instruction may be used instead.

See Also:

BHS, BLT

,

LBGE

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

BGE

address

RELATIVE 2C 3 2

E F H I N Z V C

- 26 -

BGT

Branch If Greater Than Zero

IF (CC.N = CC.V) AND (CC.Z = 0) then PC’

←←←←

 PC + IMM

This instruction tests the Zero (Z) flag in the CC register and, if it is clear AND the values
of the Negative (N) and Overflow (V) flags are equal (both set OR both clear), causes a
relative branch. If the N and V flags do not have the same value or if the Z flag is set then
the CPU continues executing the next instruction in sequence. None of the Condition
Code flags are affected by this instruction.

When used following a subtract or compare of signed (twos-complement) values, the
BGT instruction will branch if the source value was greater than the original destination
value.

The branch address is calculated by adding the current value of the PC register (after the
BGT instruction bytes have been fetched) with the 8-bit twos-complement value
contained in the second byte of the instruction. The range of the branch destination is
limited to -126 to +129 bytes from the address of the BGT instruction. If a larger range is
required then the

LBGT

 instruction may be used instead.

See Also:

BHI, BLE

,

LBGT

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

BGT

address

RELATIVE 2E 3 2

E F H I N Z V C

- 27 -

BHI

Branch If Higher

IF (CC.Z = 0) AND (CC.C = 0) then PC’

←←←←

 PC + IMM

This instruction tests the Zero (Z) and Carry (C) flags in the CC register and, if both are
zero, causes a relative branch. If either the Z or C flags are set then the CPU continues
executing the next instruction in sequence. None of the Condition Code flags are affected
by this instruction.

When used following a subtract or compare of unsigned binary values, the BHI
instruction will branch if the source value was higher than the original destination value.

BHI is generally not useful following INC, DEC, LD, ST or TST instructions since none
of those affect the Carry flag.

The branch address is calculated by adding the current value of the PC register (after the
BHI instruction bytes have been fetched) with the 8-bit twos-complement value
contained in the second byte of the instruction. The range of the branch destination is
limited to -126 to +129 bytes from the address of the BHI instruction. If a larger range is
required then the

LBHI

 instruction may be used instead.

See Also:

BGT, BLS

,

LBHI

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

BHI

address

RELATIVE 22 3 2

E F H I N Z V C

- 28 -

BHS

Branch If Higher or Same

IF CC.C = 0 then PC’

←←←←

 PC + IMM

This instruction tests the Carry flag in the CC register and, if it is clear (0), causes a
relative branch. If the Carry flag is 1, the CPU continues executing the next instruction in
sequence. None of the Condition Code flags are affected by this instruction.

When used following a subtract or compare of unsigned binary values, the BHS
instruction will branch if the source value was higher or the same as the original
destination value.

BHS is generally not useful following INC, DEC, LD, ST or TST instructions since none
of those affect the Carry flag.

BHS is an alternate mnemonic for the BCC instruction. Both produce the same object
code.

The branch address is calculated by adding the current value of the PC register (after the
BHS instruction bytes have been fetched) with the 8-bit twos-complement value
contained in the second byte of the instruction. The range of the branch destination is
limited to -126 to +129 bytes from the address of the BHS instruction. If a larger range is
required then the

LBHS

 instruction may be used instead.

See Also:

BGE

,

BLO

,

LBHS

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

BHS

address

RELATIVE 24 3 2

E F H I N Z V C

- 29 -

BIAND

Logically AND Register Bit with Inverted Memory Bit

r.dstBit’

←←←←

 r.dstBit AND (DPM).srcBit

The BIAND instruction logically ANDs the value of a specified bit in either the A, B or
CC registers with the inverted value of a specified bit in memory. The resulting value is
placed back into the register bit. None of the Condition Code flags are affected by the
operation unless CC is specified as the register, in which case only the destination bit
may be affected. The usefulness of the BIAND instruction is limited by the fact that only
Direct Addressing is permitted.

The figure above shows an example of the BIAND instruction where bit 3 of
Accumulator A is ANDed with the inverted value of bit 1 from the byte in memory at
address $0040 (DP = 0).

The assembler syntax for this instruction can be confusing due to the ordering of the
operands:

destination register

,

source bit

,

destination bit

,

source address

.

Since the Condition Code flags are not affected by the operation, additional instructions
would be needed to test the result for conditional branching.

The object code format for the BIAND instruction is:

See the description of the

BAND

 instruction on page 20 for details about the postbyte
format used by this instruction.

See Also:

BAND

,

BEOR

,

BIEOR

,

BIOR

,

BOR

,

LDBT

,

STBT

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

BIAND

r

,

sBit

,

dBit

,

addr

DIRECT 1131 7 / 6 4

$11 $31 POSTBYTE ADDRESS LSB

6309 ONLY

Memory Location $0040

1 1 0 0 0 1 1 0$0F0 0 0 0 1 1 1 1

7 6 5 4 3 2 1 0

$070 0 0 0 0 1 1 1

$C6

Accumulator A

7 6 5 4 3 2 1 0

0AND

BIAND A,1,3,$40

1 INVERT

- 30 -

BIEOR

Exclusively-OR Register Bit with Inverted Memory Bit

r.dstBit’

←←←←

 r.dstBit

⊕

 (DPM).srcBit

The BIEOR instruction exclusively ORs the value of a specified bit in either the A, B or
CC registers with the inverted value of a specified bit in memory. The resulting value is
placed back into the register bit. None of the Condition Code flags are affected by the
operation unless CC is specified as the register, in which case only the destination bit
may be affected. The usefulness of the BIEOR instruction is limited by the fact that only
Direct Addressing is permitted.

The figure above shows an example of the BIEOR instruction where bit 3 of
Accumulator A is Exclusively ORed with the inverted value of bit 0 from the byte in
memory at address $0040 (DP = 0).

The assembler syntax for this instruction can be confusing due to the ordering of the
operands:

destination register

,

source bit

,

destination bit

,

source address

.

Since the Condition Code flags are not affected by the operation, additional instructions
would be needed to test the result for conditional branching.

The object code format for the BIEOR instruction is:

See the description of the

BAND

 instruction on page 20 for details about the Postbyte
format used by this instruction.

See Also:

BAND

,

BEOR

,

BIAND

,

BIOR

,

BOR

,

LDBT

,

STBT

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

BIEOR

r

,

sBit

,

dBit

,

addr

DIRECT 1135 7 / 6 4

$11 $35 POSTBYTE ADDRESS LSB

6309 ONLY

Memory Location $0040

1 1 0 0 0 1 1 0$0F0 0 0 0 1 1 1 1

7 6 5 4 3 2 1 0

$070 0 0 0 0 1 1 1

$C6

Accumulator A

7 6 5 4 3 2 1 0

1EOR

BIEOR A,0,3,$40

1 INVERT

- 31 -

BIOR

Logically OR Register Bit with Inverted Memory Bit

r.dstBit’

←←←←

 r.dstBit OR (DPM).srcBit

The BIOR instruction ORs the value of a specified bit in either the A, B or CC registers
with the inverted value of a specified bit in memory. The resulting value is placed back
into the register bit. None of the Condition Code flags are affected by the operation
unless CC is specified as the register, in which case only the destination bit may be
affected. The usefulness of the BIOR instruction is limited by the fact that only Direct
Addressing is permitted.

The figure above shows an example of the BIOR instruction where bit 4 of Accumulator
A is logically ORed with the inverted value of bit 0 from the byte in memory at address
$0040 (DP = 0).

The assembler syntax for this instruction can be confusing due to the ordering of the
operands:

destination register

,

source bit

,

destination bit

,

source address

.

Since the Condition Code flags are not affected by the operation, additional instructions
would be needed to test the result for conditional branching.

The object code format for the BIOR instruction is:

See the description of the

BAND

 instruction on page 20 for details about the Postbyte
format used by this instruction.

See Also:

BAND

,

BEOR

,

BIAND

,

BIEOR

,

BOR

,

LDBT

,

STBT

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

BIOR

r

,

sBit

,

dBit

,

addr

DIRECT 1133 7 / 6 4

$11 $33 POSTBYTE ADDRESS LSB

6309 ONLY

Memory Location $0040

1 1 0 0 0 1 1 0$0F0 0 0 0 1 1 1 1

7 6 5 4 3 2 1 0

$1F0 0 0 1 1 1 1 1

$C6

Accumulator A

7 6 5 4 3 2 1 0

1OR

BIOR A,0,4,$40

0 INVERT

- 32 -

BIT

(8 Bit)

Bit Test Accumulator A or B with Memory Byte Value

TEMP

←←←←

 r AND (M)

These instructions logically AND the contents of a byte in memory with either
Accumulator A or B. The 8-bit result is tested to set or clear the appropriate flags in the
CC register. Neither the accumulator nor the memory byte are modified.

N

The Negative flag is set equal to bit 7 of the resulting value.

Z

The Zero flag is set if the resulting value was zero; cleared otherwise.

V

The Overflow flag is cleared by this instruction.

C

The Carry flag is not affected by this instruction.

The BIT instructions are used for testing bits. Consider the following example:

ANDA #%00000100 ;Sets Z flag if bit 2 is not set

BIT instructions differ from AND instructions only in that they do not modify the
specified accumulator.

See Also:

AND

 (8-bit)

, BITD

,

BITMD

E F H I N Z V C

↕ ↕

0

BITA 85 2 2 95 4 / 3 2 A5 4+ 2+ B5 5 / 4 3
BITB C5 2 2 D5 4 / 3 2 E5 4+ 2+ F5 5 / 4 3

OP

~

#

IMMEDIATE

OP

~

#

DIRECT

OP

~

#

INDEXED

OP

~

#

EXTENDEDSOURCE
FORMS

- 33 -

BITD

Bit Test Accumulator D with Memory Word Value

TEMP

←←←←

 ACCD AND (M:M+1)

The BITD instruction logically ANDs the contents of a double-byte value in memory
with the contents of Accumulator D. The 16-bit result is tested to set or clear the
appropriate flags in the CC register. Neither Accumulator D nor the memory bytes are
modified.

N

The Negative flag is set equal to bit 15 of the resulting value.

Z

The Zero flag is set if the resulting value was zero; cleared otherwise.

V

The Overflow flag is cleared by this instruction.

C

The Carry flag is not affected by this instruction.

The BITD instruction differs from ANDD only in that Accumulator D is not modified.

See Also:

ANDD, BIT

 (8-bit)

,

BITMD

E F H I N Z V C

↕ ↕

0

6309 ONLY

BITD 1085 5 / 4 4 1095 7 / 5 3 10A5 7+ / 6+ 3+ 10B5 8 / 6 4

OP

~

#

IMMEDIATE

OP

~

#

DIRECT

OP

~

#

INDEXED

OP

~

#

EXTENDEDSOURCE
FORM

- 34 -

BITMD

Bit Test the MD Register with an Immediate Value

CC.Z

←←←←

 (MD.IL AND IMM.6 = 0) AND (MD./0 AND IMM.7 = 0)
MD.IL’

←←←←

 MD.IL AND IMM.6
MD./0’

←←←←

 MD./0 AND IMM.7

This instruction logically ANDs the two most-significant bits of the MD register (the

Divide-by-Zero

 and

Illegal Instruction

 status bits) with the two most-significant bits of
the immediate operand. The Z flag in the CC register is set if the AND operation
produces a zero result, otherwise Z is cleared. No other condition code flags are affected.
The BITMD instruction also clears those status bits in the MD register which correspond
to '1' bits in the immediate operand. The values of bits 0 through 5 in the immediate
operand have no relevance and do not affect the operation of the BITMD instruction in
any way.

The BITMD instruction provides a method to test the

Divide-by-Zero

 (/0) and

Illegal
Instruction

 (IL) status bits of the MD register after an Illegal Instruction Exception has
occurred. At most, only one of these flags will be set, indicating which condition caused
the exception. Since the status bit(s) tested are also cleared by this instruction, you can
only test for each condition once.

Bits 0 through 5 of the MD register are neither tested nor cleared by this instruction.
Therefore BITMD cannot be used to determine or change the current execution mode of
the CPU. See “Determining the 6309 Execution Mode” on page 144 for more
information on this topic.

The figure below shows the layout of the MD register:

See Also:

LDMD

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

BITMD

#i8

IMMEDIATE 113C 4 3

E F H I N Z V C

↕

7 6 5 4 3 2 1 0

/0 IL

FM NM

6309 ONLY

- 35 -

BLE

Branch If Less than or Equal to Zero

IF (CC.N

≠

 CC.V) OR (CC.Z = 1) then PC’

←←←←

 PC + IMM

This instruction performs a relative branch if the value of the Zero (Z) flag is 1, OR if the
values of the Negative (N) and Overflow (V) flags are not equal. If the N and V flags have
the same value and the Z flag is not set then the CPU continues executing the next
instruction in sequence. None of the Condition Code flags are affected by this
instruction.

When used following a subtract or compare of signed (twos-complement) values, the
BLE instruction will branch if the source value was less than or equal to the original
destination value.

The branch address is calculated by adding the current value of the PC register (after the
BLE instruction bytes have been fetched) with the 8-bit twos-complement value
contained in the second byte of the instruction. The range of the branch destination is
limited to -126 to +129 bytes from the address of the BLE instruction. If a larger range is
required then the

LBLE

 instruction may be used instead.

See Also:

BGT, BLS

,

LBLE

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

BLE

address

RELATIVE 2F 3 2

E F H I N Z V C

- 36 -

BLO

Branch If Lower

IF CC.C

≠

 0 then PC’

←←←←

 PC + IMM

This instruction tests the Carry flag in the CC register and, if it is set (1), causes a relative
branch. If the Carry flag is 0, the CPU continues executing the next instruction in
sequence. None of the Condition Code flags are affected by this instruction.

When used following a subtract or compare of unsigned binary values, the BLO
instruction will branch if the source value was lower than the original destination value.

BLO is generally not useful following INC, DEC, LD, ST or TST instructions since none
of those affect the Carry flag.

BLO is an alternate mnemonic for the BCS instruction. Both produce the same object
code.

The branch address is calculated by adding the current value of the PC register (after the
BLO instruction bytes have been fetched) with the 8-bit twos-complement value
contained in the second byte of the instruction. The range of the branch destination is
limited to -126 to +129 bytes from the address of the BLO instruction. If a larger range is
required then the

LBLO

 instruction may be used instead.

See Also:

BHS

,

BLT

,

LBLO

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

BLO

address

RELATIVE 25 3 2

E F H I N Z V C

- 37 -

BLS

Branch If Lower or Same

IF (CC.Z

≠

 0) OR (CC.C

≠

 0) then PC’

←←←←

 PC + IMM

This instruction tests the Zero (Z) and Carry (C) flags in the CC register and, if either are
set, causes a relative branch. If both the Z and C flags are clear then the CPU continues
executing the next instruction in sequence. None of the Condition Code flags are affected
by this instruction.

When used following a subtract or compare of unsigned binary values, the BLS
instruction will branch if the source value was lower than or the same as the original
destination value.

BLS is generally not useful following INC, DEC, LD, ST or TST instructions since none
of those affect the Carry flag.

The branch address is calculated by adding the current value of the PC register (after the
BLS instruction bytes have been fetched) with the 8-bit twos-complement value
contained in the second byte of the instruction. The range of the branch destination is
limited to -126 to +129 bytes from the address of the BLS instruction. If a larger range is
required then the

LBLS

 instruction may be used instead.

See Also:

BHI, BLE

,

LBLS

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

BLS

address

RELATIVE 23 3 2

E F H I N Z V C

- 38 -

BLT

Branch If Less Than Zero

IF CC.N

≠

 CC.V then PC’

←←←←

 PC + IMM

This instruction performs a relative branch if the values of the Negative (N) and Overflow
(V) flags are not equal. If the N and V flags have the same value then the CPU continues
executing the next instruction in sequence. None of the Condition Code flags are affected
by this instruction.

When used following a subtract or compare of signed (twos-complement) values, the
BLT instruction will branch if the source value was less than the original destination
value.

The branch address is calculated by adding the current value of the PC register (after the
BLT instruction bytes have been fetched) with the 8-bit twos-complement value
contained in the second byte of the instruction. The range of the branch destination is
limited to -126 to +129 bytes from the address of the BLT instruction. If a larger range is
required then the

LBLT

 instruction may be used instead.

See Also:

BGE, BLO

,

LBLT

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

BLT

address

RELATIVE 2D 3 2

E F H I N Z V C

- 39 -

BMI

Branch If Minus

IF CC.N

≠

 0 then PC’

←←←←

 PC + IMM

This instruction tests the Negative (N) flag in the CC register and, if it is set (1), causes a
relative branch. If the N flag is 0, the CPU continues executing the next instruction in
sequence. None of the Condition Code flags are affected by this instruction.

When used following an operation on signed (twos-complement) binary values, the BMI
instruction will branch if the resulting value is negative. It is generally preferable to use
the BLT instruction following such an operation because the sign bit may be invalid due
to a twos-complement overflow.

The branch address is calculated by adding the current value of the PC register (after the
BMI instruction bytes have been fetched) with the 8-bit twos-complement value
contained in the second byte of the instruction. The range of the branch destination is
limited to -126 to +129 bytes from the address of the BMI instruction. If a larger range is
required then the

LBMI

 instruction may be used instead.

See Also:

BLT

,

BPL

,

LBMI

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

BMI

address

RELATIVE 2B 3 2

E F H I N Z V C

- 40 -

BNE

Branch If Not Equal to Zero

IF CC.Z = 0 then PC’

←←←←

 PC + IMM

This instruction tests the Zero flag in the CC register and, if it is clear (0), causes a
relative branch. If the Z flag is set, the CPU continues executing the next instruction in
sequence. None of the Condition Code flags are affected by this instruction.

When used following almost any instruction that produces, tests or moves a value, the
BNE instruction will branch if that value is not equal to zero. In the case of an instruction
that performs a subtract or compare, the BNE instruction will branch if the source value
was not equal to the original destination value.

BNE is generally not useful following a CLR instruction since the Z flag is always set.

The following instructions produce or move values, but do not affect the Z flag:

ABX BAND BEOR BIAND BIEOR
BOR BIOR EXG LDBT LDMD
LEAS LEAU PSH PUL STBT
TFM TFR

The branch address is calculated by adding the current value of the PC register (after the
BNE instruction bytes have been fetched) with the 8-bit twos-complement value
contained in the second byte of the instruction. The range of the branch destination is
limited to -126 to +129 bytes from the address of the BNE instruction. If a larger range is
required then the

LBNE

 instruction may be used instead.

See Also:

BEQ

,

LBNE

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

BNE

address

RELATIVE 26 3 2

E F H I N Z V C

- 41 -

BOR

Logically OR Memory Bit with Register Bit

r.dstBit’

←←←←

 r.dstBit OR (DPM).srcBit

The BOR instruction logically ORs the value of a specified bit in either the A, B or CC
registers with a specified bit in memory. The resulting value is placed back into the
register bit. None of the Condition Code flags are affected by the operation unless CC is
specified as the register, in which case only the destination bit may be affected.

The figure above shows an example of the BOR instruction where bit 1 of Accumulator A
is ORed with bit 6 of the byte in memory at address $0040 (DP = 0).

The assembler syntax for this instruction can be confusing due to the ordering of the
operands:

destination register

,

source bit

,

destination bit

,

source address

.

The usefulness of the BOR instruction is limited by the fact that only Direct Addressing
is permitted. Since the Condition Code flags are not affected by the operation, additional
instructions would be needed to test the result for conditional branching.

The object code format for the BOR instruction is:

See the description of the

BAND

 instruction on page 20 for details about the postbyte
format used by this instruction.

See Also:

BAND

,

BEOR

,

BIAND

,

BIEOR

,

BIOR

,

LDBT

,

STBT

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

BOR

r

,

sBit

,

dBit

,

addr

DIRECT 1132 7 / 6 4

$11 $32 POSTBYTE ADDRESS LSB

6309 ONLY

Memory Location $0040

1 1 0 0 0 1 1 0$080 0 0 0 1 0 0 0

7 6 5 4 3 2 1 0

$0A0 0 0 0 1 0 1 0

$C6

Accumulator A

7 6 5 4 3 2 1 0

1OR

BOR A,6,1,$40

- 42 -

BPL

Branch If Plus

IF CC.N = 0 then PC’

←←←←

 PC + IMM

This instruction tests the Negative (N) flag in the CC register and, if it is clear (0), causes
a relative branch. If the N flag is set, the CPU continues executing the next instruction in
sequence. None of the Condition Code flags are affected by this instruction.

When used following an operation on signed (twos-complement) binary values, the BPL
instruction will branch if the resulting value is positive. It is generally preferable to use
the BGE instruction following such an operation because the sign bit may be invalid due
to a twos-complement overflow.

The branch address is calculated by adding the current value of the PC register (after the
BPL instruction bytes have been fetched) with the 8-bit twos-complement value
contained in the second byte of the instruction. The range of the branch destination is
limited to -126 to +129 bytes from the address of the BPL instruction. If a larger range is
required then the

LBPL

 instruction may be used instead.

See Also:

BGE

,

BMI

,

LBPL

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

BPL

address

RELATIVE 2A 3 2

E F H I N Z V C

- 43 -

BRA

Branch Always

PC’

←←←←

 PC + IMM

This instruction causes an unconditional relative branch. None of the Condition Code
flags are affected.

The BRA instruction is similar in function to the JMP instruction in that it always causes
execution to be transferred to the effective address specified by the operand. The primary
difference is that BRA uses the Relative Addressing mode which allows the code to be
position-independent.

The branch address is calculated by adding the current value of the PC register (after the
BRA instruction bytes have been fetched) with the 8-bit twos-complement value
contained in the second byte of the instruction. The range of the branch destination is
limited to -126 to +129 bytes from the address of the BPL instruction. If a larger range is
required then the

LBRA

 instruction may be used instead.

See Also:

BRN

,

JMP, LBRA

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

BRA

address

RELATIVE 20 3 2

E F H I N Z V C

- 44 -

BRN

Branch Never

This instruction is essentially a no-operation; that is, the CPU never branches but merely
advances to the next instruction in sequence. No Condition Code flags are affected. BRN
is effectively the equivalent of

BRA *+2

The BRN instruction provides a 2-byte no-op that consumes 3 bus cycles, whereas NOP
is a single-byte instruction that consumes either 1 or 2 bus cycles. In addition, there is the
LBRN instruction which provides a 4-byte no-op that consumes 5 bus cycles.

Since the branch is never taken, the second byte of the instruction does not serve any
purpose and may contain any value. This permits an optimization technique in which a
BRN opcode can be used to skip over some other single byte instruction. In this
technique, the second byte of the BRN instruction contains the opcode of the instruction
which is to be skipped. The two code examples shown below both perform identically.
The difference is that Example 2 uses a BRN opcode to reduce the code size by one byte.

Example 1 - conventional:

CMPA #$40
BLO @1
SUBA #$20
BRA @2 ; SKIP NEXT INSTRUCTION

@1 CLRA
@2 STA RESULT

Example 2 - use BRN opcode ($21) to reduce code size:

CMPA #$40
BLO @1
SUBA #$20
FCB $21 ; SKIP NEXT INSTRUCTION

@1 CLRA
STA RESULT

See Also:

BRA

,

NOP, LBRN

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

BRN

address

RELATIVE 21 3 2

E F H I N Z V C

- 45 -

BSR

Branch to Subroutine

S’

←←←←

 S - 2
(S:S+1)

←←←←

 PC
PC’

←←←←

 PC + IMM

This instruction pushes the value of the PC register (after the BSR instruction bytes have
been fetched) onto the hardware stack and then performs an unconditional relative
branch. None of the Condition Code flags are affected.

By pushing the PC value onto the stack, the called subroutine can "return" to this address
after it has completed.

The BSR instruction is similar in function to the JSR instruction. The significant
difference is that BSR uses the Relative Addressing mode which implies that both the
BSR instruction and the called subroutine may be contained in relocatable code, so long
as both are contained in the same module.

The branch address is calculated by adding the current value of the PC register (after the
BSR instruction bytes have been fetched) with the 8-bit twos-complement value
contained in the second byte of the instruction. The range of the branch destination is
limited to -126 to +129 bytes from the address of the BSR instruction. If a larger range is
required then the

LBSR

 instruction may be used instead.

See Also:

JSR, LBSR, RTS

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

BSR

address

RELATIVE 8D 7 / 6 2

E F H I N Z V C

- 46 -

BVC

Branch If Overflow Clear

IF CC.V = 0 then PC’

←←←←

 PC + IMM

This instruction tests the Overflow (V) flag in the CC register and, if it is clear (0), causes
a relative branch. If the V flag is set, the CPU continues executing the next instruction in
sequence. None of the Condition Code flags are affected by this instruction.

When used following an operation on signed (twos-complement) binary values, the BVC
instruction will branch if there was no overflow.

The branch address is calculated by adding the current value of the PC register (after the
BVC instruction bytes have been fetched) with the 8-bit twos-complement value
contained in the second byte of the instruction. The range of the branch destination is
limited to -126 to +129 bytes from the address of the BVC instruction. If a larger range is
required then the

LBVC

 instruction may be used instead.

See Also:

BVS

,

LBVC

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

BVC

address

RELATIVE 28 3 2

E F H I N Z V C

- 47 -

BVS

Branch If Overflow Set

IF CC.V

≠

 0 then PC’

←←←←

 PC + IMM

This instruction tests the Overflow (V) flag in the CC register and, if it is set (1), causes a
relative branch. If the V flag is clear, the CPU continues executing the next instruction in
sequence. None of the Condition Code flags are affected by this instruction.

When used following an operation on signed (twos-complement) binary values, the BVS
instruction will branch if an overflow occurred.

The branch address is calculated by adding the current value of the PC register (after the
BVS instruction bytes have been fetched) with the 8-bit twos-complement value
contained in the second byte of the instruction. The range of the branch destination is
limited to -126 to +129 bytes from the address of the BVS instruction. If a larger range is
required then the

LBVS

 instruction may be used instead.

See Also:

BVC

,

LBVS

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

BVS

address

RELATIVE 29 3 2

E F H I N Z V C

- 48 -

CLR

(accumulator)

Load Zero into Accumulator

r

←←←←

 0

CLRD

,

CLRE

,

CLRF

 and

CLRW

 are available on 6309 only.

Each of these instructions clears (sets to zero) the specified accumulator. The Condition
Code flags are also modified as follows:

N

The Negative flag is cleared.

Z

The Zero flag is set.

V

The Overflow flag is cleared.

C

The Carry flag is cleared.

Clearing the Q accumulator can be accomplished by executing both CLRD and CLRW.

To clear any of the Index Registers (X, Y, U or S), you can use either an Immediate Mode
LD instruction or, on 6309 processors only, a TFR or EXG instruction which specifies
the Zero register (0) as the source.

The CLRA and CLRB instructions provide the smallest, fastest way to clear the Carry
flag in the CC register.

See Also:

CLR

 (memory)

,

LD

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

CLRA INHERENT 4F 2 / 1 1

CLRB INHERENT 5F 2 / 1 1

CLRD INHERENT 104F 3 / 2 2

CLRE INHERENT 114F 3 / 2 2

CLRF INHERENT 115F 3 / 2 2

CLRW INHERENT 105F 3 / 2 2

E F H I N Z V C

0 1 0 0

- 49 -

CLR

(memory)

Store Zero into a Memory Byte

(M)

←←←←

 0

This instruction clears (sets to zero) the byte in memory at the Effective Address
specified by the operand. The Condition Code flags are also modified as follows:

N

The Negative flag is cleared.

Z

The Zero flag is set.

V

The Overflow flag is cleared.

C

The Carry flag is cleared.

The CPU performs a Read-Modify-Write sequence when this instruction is executed and
is therefore slower than an instruction which only writes to memory. When more than
one byte needs to be cleared, you can optimize for speed by first clearing an accumulator
and then using ST instructions to clear the memory bytes. The following examples
illustrate this optimization:

Executes in 21 cycles (NM=0):

CLR $200 ; 7 cycles
CLR $210 ; 7 cycles
CLR $220 ; 7 cycles

Adds one additional code byte, but saves 4 cycles:

CLRA ; 2 cycles
STA $200 ; 5 cycles
STA $210 ; 5 cycles
STA $220 ; 5 cycles

See Also:

CLR

 (accumulator),

ST

E F H I N Z V C

0 1 0 0

CLR 0F 6 / 5 2 6F 6+ 2+ 7F 7 / 6 3

OP

~

#

IMMEDIATE

OP

~

#

DIRECT

OP

~

#

INDEXED

OP

~

#

EXTENDEDSOURCE
FORMS

- 50 -

CMP

(8 Bit)

Compare Memory Byte from 8-Bit Accumulator

TEMP

←←←←

 r - (M)

CMPE

 and

CMPF

 are available on 6309 only.

These instructions subtract the contents of a byte in memory from the value contained in
one of the 8-bit accumulators (A,B,E,F) and set the Condition Codes accordingly.
Neither the memory byte nor the accumulator are modified.

H

The affect on the Half-Carry flag is undefined for these instructions.

N

The Negative flag is set equal to the value of bit 7 of the result.

Z

The Zero flag is set if the resulting value is zero; cleared otherwise.

V

The Overflow flag is set if an overflow occurred; cleared otherwise.

C

The Carry flag is set if a borrow into bit-7 was needed; cleared otherwise.

The Compare instructions are usually used to set the Condition Code flags prior to
executing a conditional branch instruction.

The 8-bit CMP instructions perform exactly the same operation as the 8-bit SUB
instructions, with the exception that the value in the accumulator is not changed. Note
that since a subtraction is performed, the Carry flag actually represents a Borrow.

See Also:

CMP

 (16-bit)

,

CMPR

E F H I N Z V C

~

↕ ↕ ↕ ↕

CMPA 81 2 2 91 4 / 3 2 A1 4+ 2+ B1 5 / 4 3
CMPB C1 2 2 D1 4 / 3 2 E1 4+ 2+ F1 5 / 4 3
CMPE 1181 3 3 1191 5 / 4 3 11A1 5+ 3+ 11B1 6 / 5 4
CMPF 11C1 3 3 11D1 5 / 4 3 11E1 5+ 3+ 11F1 6 / 5 4

OP

~

#

IMMEDIATE

OP

~

#

DIRECT

OP

~

#

INDEXED

OP

~

#

EXTENDEDSOURCE
FORMS

- 51 -

CMP

(16 Bit)

Compare Memory Word from 16-Bit Register

TEMP

←←←←

 r - (M:M+1)

CMPW

 is available on 6309 only.

These instructions subtract the contents of a double-byte value in memory from the value
contained in one of the 16-bit accumulators (D,W) or one of the Index/Stack registers
(X,Y,U,S) and set the Condition Codes accordingly. Neither the memory bytes nor the
register are modified unless an auto-increment / auto-decrement addressing mode is used
with the same register.

H

The Half-Carry flag is not affected by these instructions.

N

The Negative flag is set equal to the value of bit 15 of the result.

Z

The Zero flag is set if the resulting value is zero; cleared otherwise.

V

The Overflow flag is set if an overflow occurred; cleared otherwise.

C

The Carry flag is set if a borrow into bit 15 was needed; cleared otherwise.

The Compare instructions are usually used to set the Condition Code flags prior to
executing a conditional branch instruction.

The 16-bit CMP instructions for accumulators perform exactly the same operation as the
16-bit SUB instructions, with the exception that the value in the accumulator is not
changed. Note that since a subtraction is performed, the Carry flag actually represents a
Borrow.

See Also:

CMP

 (8-bit)

,

CMPR

E F H I N Z V C

↕ ↕ ↕ ↕

CMPD 083 5 / 4 4 093 7 / 5 3 0A3 7+ / 6+ 3+ 0B3 8 / 6 4
CMPS 18C 5 / 4 4 19C 7 / 5 3 1AC 7+ / 6+ 3+ 1BC 8 / 6 4
CMPU 183 5 / 4 4 193 7 / 5 3 1A3 7+ / 6+ 3+ 1B3 8 / 6 4
CMPW 081 5 / 4 4 091 7 / 5 3 0A1 7+ / 6+ 3+ 0B1 8 / 6 4
CMPX 8C 4 / 3 3 9C 6 / 4 2 AC 6+ / 5

+

2

+

BC 7 / 5 3
CMPY 08C 5 / 4 4 09C 7 / 5 3 0AC 7+ / 6

+

3

+

0BC 8 / 6 4

OP

~

#

IMMEDIATE

OP

~

#

DIRECT

OP

~

#

INDEXED

OP

~

#

EXTENDEDSOURCE
FORMS

- 52 -

CMPR

Compare Source Register from Destination Register

TEMP

←←←←

 r1 - r0

The CMPR instruction subtracts the contents of a source register from the contents of a
destination register and sets the Condition Codes accordingly. Neither register is
modified.

H

The Half-Carry flag is not affected by this instruction.

N

The Negative flag is set equal to the value of the high-order bit of the result.

Z

The Zero flag is set if the resulting value is zero; cleared otherwise.

V

The Overflow flag is set if an overflow occurred; cleared otherwise.

C

The Carry flag is set if a borrow into the high-order bit was needed; cleared otherwise.

Any of the 6309 registers except Q and MD may be specified as the source operand,
destination operand or both; however specifying the PC register as either the source or
destination produces undefined results.

The CMPR instruction will perform either an 8-bit or 16-bit comparison according to the
size of the destination register. When registers of different sizes are specified, the source
will be promoted, demoted or substituted depending on the size of the destination and on
which specific 8-bit register is involved. See “6309 Inter-Register Operations” on
page 143 for further details.

The Immediate operand for this instruction is a postbyte which uses the same format as
that used by the TFR and EXG instructions. See the description of the

TFR

 instruction
starting on page 137 for further details.

See Also:

ADD

 (8-bit)

,

ADD

 (16-bit)

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

CMPR

r0

,

r1

IMMEDIATE 1037 4 3

E F H I N Z V C

↕ ↕ ↕ ↕

6309 ONLY

- 53 -

COM

(accumulator)

Complement Accumulator

r’

←←←←

 r

COMD

,

COME

,

COMF

 and

COMW

 are available on 6309 only.

Each of these instructions change the value of the specified accumulator to that of it’s
logical complement; that is each 1 bit is changed to a 0, and each 0 bit is changed to a 1.
The Condition Code flags are also modified as follows:

N

The Negative flag is set equal to the new value of the accumulators high-order bit.

Z

The Zero flag is set if the new value of the accumulator is zero; cleared otherwise.

V

The Overflow flag is always cleared.

C

The Carry flag is always set.

This instruction performs a ones-complement operation. A twos-complement can be
achieved with the NEG instruction.

Complementing the Q accumulator requires executing both COMW and COMD.

The COMA and COMB instructions provide the smallest, fastest way to set the Carry
flag in the CC register.

See Also:

COM

 (memory)

,

NEG

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

COMA INHERENT 43 2 / 1 1

COMB INHERENT 53 2 / 1 1

COMD INHERENT 1043 3 / 2 2

COME INHERENT 1143 3 / 2 2

COMF INHERENT 1153 3 / 2 2

COMW INHERENT 1053 3 / 2 2

E F H I N Z V C

↕ ↕

0 1

- 54 -

COM

(memory)

Complement a Byte in Memory

(M)’

←←←←

 (M)

This instruction changes the value of a byte in memory to that of it’s logical complement;
that is each 1 bit is changed to a 0, and each 0 bit is changed to a 1. The Condition Code
flags are also modified as follows:

N

The Negative flag is set equal to the new value of bit 7.

Z

The Zero flag is set if the new value is zero; cleared otherwise.

V

The Overflow flag is always cleared.

C

The Carry flag is always set.

This instruction performs a ones-complement operation. A twos-complement can be
achieved with the NEG instruction.

See Also:

COM

 (accumulator),

NEG

E F H I N Z V C

↕ ↕

0 1

COM 03 6 / 5 2 63 6+ 2+ 73 7 / 6 3

OP

~

#

IMMEDIATE

OP

~

#

DIRECT

OP

~

#

INDEXED

OP

~

#

EXTENDEDSOURCE
FORMS

- 55 -

CWAI

Clear Condition Code Bits and Wait for Interrupt

CC’

←←←←

 CC AND IMM
CC’

←←←←

 CC OR 80

16

(

E flag

)

Push Onto S Stack: PC,U,Y,X,DP,[W

If NM = 1

],D,CC
Halt Execution and Wait for Unmasked Interrupt

This instruction logically ANDs the contents of the Condition Codes register with the 8-
bit value specified by the immediate operand. The result is placed back into the
Condition Codes register. The E flag in the CC register is then set and the

entire

 machine
state is pushed onto the hardware stack (S). The CPU then halts execution and waits for
an unmasked interrupt to occur. When such an interrupt occurs, the CPU resumes
execution at the address obtained from the corresponding interrupt vector.

You can specify a value in the immediate operand to clear either or both the I and F
interrupt masks to ensure that the desired interrupt types are enabled. One of the
following values is typically used for the immediate operand:

$FF = Leave CC unmodified
$EF = Enable IRQ
$BF = Enable FIRQ
$AF = Enable both IRQ and FIRQ

Some assemblers will accept a comma-delimited list of the Condition Code bits to be
cleared as an alternative to the immediate value. For example:

CWAI I,F ; Clear I and F, wait for interrupt

It is important to note that because the

entire

 machine state is stacked prior to the actual
occurrence of an interrupt, any FIRQ service routine that may be invoked must not
assume that PC and CC are the only registers that have been stacked. The RTI instruction
will operate correctly in this situation because CWAI sets the E flag prior to stacking the
CC register.

Unlike SYNC, the CWAI instruction does not place the data and address busses in a
high-impedance state while waiting for an interrupt.

See Also:

ANDCC

,

 RTI

,

SYNC

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

CWAI

#i8

IMMEDIATE 3C 22 / 20 2

- 56 -

DAA

Decimal Addition Adjust

A

[4..7]

’

←←←←

 A

[4..7]

 + 6 IF:
 CC.C = 1
 OR: A

[4..7]

 > 9
 OR: A

[4..7]

 > 8 AND A

[0..3]

 > 9
A

[0..3]

’

←←←←

 A

[0..3]

 + 6 IF:
 CC.H = 1
 OR: A

[0..3]

 > 9

The DAA instruction is used after performing an 8-bit addition of Binary Coded Decimal
values using either the ADDA or ADCA instructions. DAA adjusts the value resulting
from the binary addition in accumulator A so that it contains the desired BCD result
instead. The Carry flag is also updated to properly reflect BCD addition. That is, the
Carry flag is set when addition of the most-significant digits (plus any carry from the
addition of the least-significant digits) produces a value greater than 9.

H

The Half-Carry flag is not affected by this instruction.

N

The Negative flag is set equal to the new value of bit 7 in Accumulator A.

Z

The Zero flag is set if the new value of Accumulator A is zero; cleared otherwise.

V

The affect this instruction has on the Overflow flag is undefined.

C

The Carry flag is set if the BCD addition produced a carry; cleared otherwise.

The code below adds the BCD values of 64 and 27, producing the BCD sum of 91:

LDA #$64
ADDA #$27 ; Produces binary result of $8B
DAA ; Adjusts A to $91 (BCD result of 64 + 27)

DAA is the only instruction which is affected by the value of the Half Carry flag (H) in
the Condition Codes register.

See Also:

ADCA

,

 ADDA

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

DAA INHERENT 19 2 / 1 1

E F H I N Z V C

↕ ↕

~

↕

- 57 -

DEC

(accumulator)

Decrement Accumulator

r’

←←←←

 r - 1

DECD

,

DECE

,

DECF

 and

DECW

 are available on 6309 only.

These instructions subtract 1 from the specified accumulator. The Condition Code flags
are affected as follows:

N

The Negative flag is set equal to the new value of the accumulators high-order bit.

Z

The Zero flag is set if the new value of the accumulator is zero; cleared otherwise.

V

The Overflow flag is set if the original value was 80

16

(8-bit)

 or 8000

16

(16-bit)

; cleared otherwise.

C

The Carry flag is not affected by these instructions.

It is important to note that the DEC instructions do not affect the Carry flag. This means
that it is not always possible to optimize code by simply replacing a SUB

r

#1 instruction
with a corresponding DEC

r

. Because the DEC instructions do not affect the Carry flag,
they can be used to implement loop counters within multiple precision computations.

When used to decrement an unsigned value, only the BEQ and BNE branches will
always behave as expected. When operating on a signed value, all of the signed
conditional branch instructions will behave as expected.

See Also:

DEC

 (memory)

,

INC

,

SUB

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

DECA INHERENT 4A 2 / 1 1

DECB INHERENT 5A 2 / 1 1

DECD INHERENT 104A 3 / 2 2

DECE INHERENT 114A 3 / 2 2

DECF INHERENT 115A 3 / 2 2

DECW INHERENT 105A 3 / 2 2

E F H I N Z V C

↕ ↕ ↕

- 58 -

DEC

(memory)

Decrement a Byte in Memory

(M)’

←←←←

 (M) - 1

This instruction subtracts 1 from the value contained in a memory byte. The Condition
Code flags are also modified as follows:

N

The Negative flag is set equal to the new value of bit 7.

Z

The Zero flag is set if the new value of the memory byte is zero; cleared otherwise.

V

The Overflow flag is set if the original value of the memory byte was $80; cleared otherwise.

C

The Carry flag is not affected by this instruction.

Because the DEC instruction does not affect the Carry flag, it can be used to implement a
loop counter within a multiple precision computation.

When used to decrement an unsigned value, only the BEQ and BNE branches will
always behave as expected. When operating on a signed value, all of the signed
conditional branch instructions will behave as expected.

See Also:

DEC

 (accumulator),

INC

,

SUB

E F H I N Z V C

↕ ↕ ↕

DEC 0A 6 / 5 2 6A 6+ 2+ 7A 7 / 6 3

OP

~

#

IMMEDIATE

OP

~

#

DIRECT

OP

~

#

INDEXED

OP

~

#

EXTENDEDSOURCE
FORMS

- 59 -

DIVD

Signed Divide of Accumulator D by 8-bit value in Memory

ACCB’

←←←←

 ACCD ÷ (M)
ACCA’

←←←←

 ACCD MOD (M)

* If a two’s complement overflow occurs, the DIVD instruction uses one fewer cycle than what is shown in the
table. If a range overflow occurs, DIVD uses 13 fewer cycles than what is shown in the table.

This instruction divides the 16-bit value in Accumulator D (the dividend) by an 8-bit
value contained in a memory byte (the divisor). The operation is performed using two’s
complement binary arithmetic. The 16-bit result consists of the 8-bit quotient placed in
Accumulator B and the 8-bit remainder placed in Accumulator A. The sign of the
remainder is always the same as the sign of the dividend unless the remainder is zero.

N

The Negative flag is set equal to the new value of bit 7 in Accumulator B.

Z

The Zero flag is set if the new value of Accumulator B is zero; cleared otherwise.

V

The Overflow flag is set if an overflow occurred; cleared otherwise.

C

The Carry flag is set if the quotient in Accumulator B is odd; cleared if even.

When the value of the specified memory byte (divisor) is zero, a

Division-By-Zero

exception is triggered. This causes the CPU to set bit 7 in the MD register, stack the
machine state and jump to the address taken from the Illegal Instruction vector at $FFF0.

Two types of overflow may occur when the DIVD instruction is executed:

• A two’s complement overflow occurs when the sign of the resulting quotient is
incorrect. For example, when 300 is divided by 2, the result of 150 can be represented
in 8 bits only as an unsigned value. Since DIVD performs a signed operation, it
interprets the result as -106 and sets the Negative (N) and Overflow (V) flags.

• A range overflow occurs when the quotient is larger than can be represented in 8 bits.
For example, when 900 is divided by 3, the result of 300 exceeds the 8-bit range. In
this case, the CPU aborts the operation, leaving the accumulators unmodified while
setting the Overflow flag (V) and clearing the N, Z and C flags.

See Also:

DIVQ

E F H I N Z V C

↕ ↕ ↕ ↕

6309 ONLY

DIVD 118D 25* 3 119D 27

/

26* 3 11AD 27+* 3+ 11BD 28/27* 4

OP

~

#

IMMEDIATE

OP

~

#

DIRECT

OP

~

#

INDEXED

OP

~

#

EXTENDEDSOURCE
FORMS

- 60 -

DIVQ

Signed Divide of Accumulator Q by 16-bit value in Memory

ACCW’

←←←←

 ACCQ ÷ (M:M+1)
ACCD’

←←←←

 ACCQ MOD (M:M+1)

* When a range overflow occurs, the DIVQ instruction uses 21 fewer cycles than what is shown in the table.

This instruction divides the 32-bit value in Accumulator Q (the dividend) by a 16-bit
value contained in memory (the divisor). The operation is performed using two’s
complement binary arithmetic. The 32-bit result consists of the 16-bit quotient placed in
Accumulator W and the 16-bit remainder placed in Accumulator D. The sign of the
remainder is always the same as the sign of the dividend unless the remainder is zero.

N

The Negative flag is set equal to the new value of bit 15 in Accumulator W.

Z

The Zero flag is set if the new value of Accumulator W is zero; cleared otherwise.

V

The Overflow flag is set if an overflow occurred; cleared otherwise.

C

The Carry flag is set if the quotient in Accumulator W is odd; cleared if even.

When the value of the specified memory word (divisor) is zero, a

Division-By-Zero

exception is triggered. This causes the CPU to set bit 7 in the MD register, stack the
machine state and jump to the address taken from the Illegal Instruction vector at FFF0

16

.

Two types of overflow are possible when the DIVQ instruction is executed:

• A two’s complement overflow occurs when the sign of the resulting quotient is
incorrect. For example, when 80,000 is divided by 2, the result of 40,000 can be
represented in 16 bits only as an unsigned value. Since DIVQ is a signed operation, it
interprets the result as -25,536 and sets the Negative (N) and Overflow (V) flags.

• A range overflow occurs when the quotient is larger than can be represented in 16
bits. For example, when 210,000 is divided by 3, the result of 70,000 exceeds the 16-
bit range. In this case, the CPU aborts the operation, leaving the accumulators
unmodified while setting the Overflow flag (V) and clearing the N, Z and C flags.

See Also:

DIVD

E F H I N Z V C

↕ ↕ ↕ ↕

6309 ONLY

DIVQ 118E 34* 4 119E 36

/

35* 3 11AE 36+* 3+ 11BE 37

/

36* 4

OP

~

#

IMMEDIATE

OP

~

#

DIRECT

OP

~

#

INDEXED

OP

~

#

EXTENDEDSOURCE
FORMS

- 61 -

EIM

Exclusive-OR of Immediate Value with Memory Byte

(M)’

←←←←

 (M)

⊕

 IMM

The EIM instruction exclusively-ORs the contents of a byte in memory with an 8-bit
immediate value. The resulting value is placed back into the designated memory
location.

N

The Negative flag is set equal to the new value of bit 7 of the memory byte.

Z

The Zero flag is set if the new value of the memory byte is zero; cleared otherwise.

V

The Overflow flag is cleared by this instruction.

C

The Carry flag is not affected by this instruction.

EIM is one of the instructions added to the 6309 which allow logical operations to be
performed directly in memory instead of having to use an accumulator. It takes three
separate instructions to perform the same operation on a 6809:

6809

(6 instruction bytes; 12 cycles)

:

LDA #$3F
EORA 4,U
STA 4,U

6309

(3 instruction bytes; 8 cycles)

:

EIM #$3F;4,U

Note that the assembler syntax used for the EIM operand is non-typical. Some
assemblers may require a comma (,) rather than a semicolon (;) between the immediate
operand and the address operand.

The object code format for the EIM instruction is:

See Also:

AIM

,

OIM

,

TIM

E F H I N Z V C

↕ ↕

0

OPCODE IMMED VALUE ADDRESS / INDEX BYTE(S)

6309 ONLY

EIM #

i8

;

EA

05 6 3 65 7+ 3+ 75 7 4

OP

~

#

IMMEDIATE

OP

~

#

DIRECT

OP

~

#

INDEXED

OP

~

#

EXTENDEDSOURCE
FORM

- 62 -

EOR

(8 Bit)

Exclusively-OR Memory Byte with Accumulator A or B

r’

←←←←

 r

⊕

 (M)

These instructions exclusively-OR the contents of a byte in memory with either
Accumulator A or B. The 8-bit result is then placed in the specified accumulator.

N

The Negative flag is set equal to the new value of bit 7 of the accumulator.

Z

The Zero flag is set if the new value of the accumulator is zero; cleared otherwise.

V

The Overflow flag is cleared by this instruction.

C

The Carry flag is not affected by this instruction.

The EOR instruction produces a result containing '1' bits in the positions where the
corresponding bits in the two operands have different values. Exclusive-OR logic is often
used in parity functions.

EOR can also be used to perform "bit-flipping" since a '1' bit in the source operand will
invert the value of the corresponding bit in the destination operand. For example:

EORA #%00000100 ;Invert value of bit 2 in Accumulator A

See Also:

BEOR

,

BIEOR

,

EIM

,

EORD

,

EORR

E F H I N Z V C

↕ ↕

0

EORA 88 2 2 98 4 / 3 2 A8 4+ 2+ B8 5 / 4 3
EORB C8 2 2 D8 4 / 3 2 E8 4+ 2+ F8 5 / 4 3

OP

~

#

IMMEDIATE

OP

~

#

DIRECT

OP

~

#

INDEXED

OP

~

#

EXTENDEDSOURCE
FORMS

- 63 -

EORD

Exclusively-OR Memory Word with Accumulator D

ACCD’

←←←←

 ACCD

⊕

 (M:M+1)

The EORD instruction exclusively-ORs the contents of a double-byte value in memory
with the contents of Accumulator D. The 16-bit result is placed back into Accumulator D.

N

The Negative flag is set equal to the new value of bit 15 of Accumulator D.

Z

The Zero flag is set if the new value of the Accumulator D is zero; cleared otherwise.

V

The Overflow flag is cleared by this instruction.

C

The Carry flag is not affected by this instruction.

The EORD instruction produces a result containing '1' bits in the positions where the
corresponding bits in the two operands have different values. Exclusive-OR logic is often
used in parity functions.

EOR can also be used to perform "bit-flipping" since a '1' bit in the source operand will
invert the value of the corresponding bit in the destination operand. For example:

EORD #$8080 ;Invert values of bits 7 and 15 in D

See Also:

EOR

 (8-bit)

,

EORR

E F H I N Z V C

↕ ↕

0

6309 ONLY

EORD 1088 5 / 4 4 1098 7 / 5 3 10A8 7+ / 6+ 3+ 10B8 8 / 6 4

OP

~

#

IMMEDIATE

OP

~

#

DIRECT

OP

~

#

INDEXED

OP

~

#

EXTENDEDSOURCE
FORM

- 64 -

EORR

Exclusively-OR Source Register with Destination Register

r1’

←←←←

 r1

⊕

 r0

The EORR instruction exclusively-ORs the contents of a source register with the
contents of a destination register. The result is placed into the destination register.

N

The Negative flag is set equal to the value of the result’s high-order bit.

Z

The Zero flag is set if the new value of the destination register is zero; cleared otherwise.

V

The Overflow flag is cleared by this instruction.

C

The Carry flag is not affected by this instruction.

All of the 6309 registers except Q and MD can be specified as either the source or
destination; however specifying the PC register as either the source or destination
produces undefined results.

The EORR instruction produces a result containing '1' bits in the positions where the
corresponding bits in the two operands have different values. Exclusive-OR logic is often
used in parity functions.

See “6309 Inter-Register Operations” on page 143 for details on how this instruction
operates when registers of different sizes are specified.

The Immediate operand for this instruction is a postbyte which uses the same format as
that used by the TFR and EXG instructions. For details, see the description of the

TFR

instruction.

See Also:

EOR

 (8-bit)

, EORD

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

EORR

r0

,

r1

IMMEDIATE 1036 4 3

E F H I N Z V C

↕ ↕

0

6309 ONLY

- 65 -

EXG

Exchange Registers

r0

↔↔↔↔

 r1

This instruction exchanges the contents of two registers. None of the Condition Code
flags are affected unless CC is one of the registers involved in the exchange.

Program flow can be altered by specifying PC as one of the registers. When this occurs,
the other register is set to the address of the instruction that follows EXG.

Any of the 6309 registers except Q and MD may be used in the exchange. The order in
which the two registers are specified is irrelevant. For example,

EXG A,B

 will operate
exactly the same as

EXG B,A

 although the object code will be different.

When an 8-bit register is exchanged with a 16-bit register, the contents of the 8-bit
register are placed into both halves of the 16-bit register. Conversely, only the upper or
the lower half of the 16-bit register is placed into the 8-bit register. As illustrated in the
diagram below, which half is transferred depends on which 8-bit register is involved.

The EXG instruction requires a postbyte in which the two registers that are involved are
encoded into the upper and lower nibbles.

See Also:

EXG (

6809 implementation

)

,

 TFR

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

EXG

r0

,

r1

IMMEDIATE 1E 8 / 5 2

6309 IMPLEMENTATION

A B E F DP CC

MSB LSB

16-bit register (D, X, Y, U, S, PC, W, V):

8-bit register:

b0b15 b8 b7

Code Register Code Register

0000

D

1000

A

0001

X

1001

B

0010

Y

1010

CC

0011

U

1011

DP

0100

S

1100

0

0101

PC

1101

0

0110

W

1110

E

0111

V

1111

F

r0
r1

b0b3b7 b4

POSTBYTE:

Shaded encodings are invalid
on 6809 microprocessors

- 66 -

EXG

Exchange Registers

r0

↔↔↔↔

 r1

This instruction exchanges the contents of two registers. None of the Condition Code
flags are affected unless CC is one of the registers involved in the exchange.

Program flow can be altered by specifying PC as one of the registers. When this occurs,
the other register is set to the address of the instruction that follows EXG.

Any of the 6809 registers may be used in the exchange. When exchanging registers of the
same size, the order in which they are specified is irrelevant. For example,

EXG A,B

will operate exactly the same as

EXG B,A

 although the object code will be different.

When exchanging registers of different sizes, a 6809 operates differently than a 6309.
The 8-bit register is always exchanged with the lower half of the 16-bit register, and the
the upper half of the 16-bit register is then set to the value shown in the table below.

*The one exception is for

EXG A,D

 which produces exactly the same result as

EXG A,B

The EXG instruction requires a postbyte in which the two registers are encoded into the
upper and lower nibbles.

If an invalid register encoding is specified for either register, a constant value of FF

16

 or
FFFF

16

 is used for the exchange.

The invalid register encodings have valid meanings
on 6309 processors, and should be avoided in code intended to run on both CPU’s.

See Also:

EXG (

6309 implementation

)

,

 TFR

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

EXG

r0

,

r1

IMMEDIATE 1E 8 2

Operand Or der 8-bit Register Used 16-bit Register’ s MSB after EXG

16 , 8 Any FF

16

 *

8 , 16 A or B FF

16

 *

8 , 16 CC or DP Same as LSB

6809 IMPLEMENTATION

Code Register Code Register

0000

D

1000

A

0001

X

1001

B

0010

Y

1010

CC

0011

U

1011

DP

0100

S

1100

invalid

0101

PC

1101

invalid

0110

invalid

1110

invalid

0111

invalid

1111

invalid

r0
r1

b0b3b7 b4

POSTBYTE:

- 67 -

INC

(accumulator)

Increment Accumulator

r’

←←←←

 r + 1

INCD

,

INCE

,

INCF

 and

INCW

 are available on 6309 only.

These instructions add 1 to the contents of the specified accumulator. The Condition
Code flags are affected as follows:

N

The Negative flag is set equal to the new value of the accumulators high-order bit.

Z

The Zero flag is set if the new value of the accumulator is zero; cleared otherwise.

V

The Overflow flag is set if the original value was $7F

(8-bit)

 or $7FFF

(16-bit)

; cleared otherwise.

C

The Carry flag is not affected by these instructions.

It is important to note that the INC instructions do not affect the Carry flag. This means
that it is not always possible to optimize code by simply replacing an ADD

r

#1
instruction with a corresponding INC

r

.

When used to increment an unsigned value, only the BEQ and BNE branches will
consistently behave as expected. When operating on a signed value, all of the signed
conditional branch instructions will behave as expected.

See Also:

ADD

,

DEC

,

INC

 (memory)

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

INCA INHERENT 4C 2 / 1 1

INCB INHERENT 5C 2 / 1 1

INCD INHERENT 104C 3 / 2 2

INCE INHERENT 114C 3 / 2 2

INCF INHERENT 115C 3 / 2 2

INCW INHERENT 105C 3 / 2 2

E F H I N Z V C

↕ ↕ ↕

- 68 -

INC

(memory)

Increment a Byte in Memory

(M)’

←←←←

 (M) + 1

This instruction adds 1 to the contents of a memory byte. The Condition Code flags are
also modified as follows:

N

The Negative flag is set equal to the new value of bit 7.

Z

The Zero flag is set if the new value of the memory byte is zero; cleared otherwise.

V

The Overflow flag is set if the original value of the memory byte was $7F; cleared otherwise.

C

The Carry flag is not affected by this instruction.

Because the INC instruction does not affect the Carry flag, it can be used to implement a
loop counter within a multiple precision computation.

When used to increment an unsigned value, only the BEQ and BNE branches will
consistently behave as expected. When operating on a signed value, all of the signed
conditional branch instructions will behave as expected.

See Also:

ADD

,

DEC

,

INC

 (accumulator)

E F H I N Z V C

↕ ↕ ↕

INC 0C 6 / 5 2 6C 6+ 2+ 7C 7 / 6 3

OP

~

#

IMMEDIATE

OP

~

#

DIRECT

OP

~

#

INDEXED

OP

~

#

EXTENDEDSOURCE
FORMS

- 69 -

JMP

Unconditional Jump

PC’

←←←←

 EA

This instruction causes an unconditional jump. None of the Condition Code flags are
affected by this instruction.

The JMP instruction is similar in function to the BRA and LBRA instructions in that it
always causes execution to be transferred to the effective address specified by the
operand. The primary difference is that BRA and LBRA use only the Relative
Addressing mode, whereas JMP uses only the Direct, Indexed or Extended modes.

Unlike most other instructions which use the Direct, Indexed and Extended addressing
modes, the operand value used by the JMP instruction is the Effective Address itself,
rather than the memory contents stored at that address (unless Indirect Indexing is used).
Here are some examples:

JMP $4000 ; Jumps to address $4000
JMP [$4000] ; Jumps to address stored at $4000
JMP ,X ; Jumps to the address in X
JMP B,X ; Jumps to computed address X + B
JMP [B,X] ; Jumps to address stored at X + B
JMP <$80 ; Jumps to address (DP * $100) + $80

Indexed operands are useful in that they provide the ability to compute the destination
address at run-time. The use of an Indirect Indexing mode is frequently used to call
routines through a jump-table in memory.

Using Direct or Extended operands with the JMP instruction should be avoided in
position-independent code unless the destination address is within non-relocatable code
(such as a ROM routine).

See Also:

BRA

,

JSR, LBRA

E F H I N Z V C

JMP 0E 3 / 2 2 6E 3+ 2+ 7E 4 / 3 3

OP

~

#

IMMEDIATE

OP

~

#

DIRECT

OP

~

#

INDEXED

OP

~

#

EXTENDEDSOURCE
FORMS

- 70 -

JSR

Unconditional Jump to Subroutine

S’

←←←←

 S - 2
(S:S+1)

←←←←

 PC
PC’

←←←←

 EA

This instruction pushes the value of the PC register (after the JSR instruction bytes have
been fetched) onto the hardware stack and then performs an unconditional jump. None of
the Condition Code flags are affected. By pushing the PC value onto the stack, the called
subroutine can "return" to this address after it has completed.

The JSR instruction is similar in function to that of the BSR and LBSR instructions. The
primary difference is that BSR and LBSR use only the Relative Addressing mode,
whereas JSR uses only the Direct, Indexed or Extended modes.

Unlike most other instructions which use the Direct, Indexed and Extended addressing
modes, the operand value used by the JSR instruction is the Effective Address itself,
rather than the memory contents stored at that address (unless Indirect Indexing is used).
Here are some examples:

JSR $4000 ; Calls to address $4000
JSR [$4000] ; Calls to the address stored at $4000
JSR ,X ; Calls to the address in X
JSR [B,X] ; Calls to the address stored at X + B

Indexed operands are useful in that they provide the ability to compute the subroutine
address at run-time. The use of an Indirect Indexing mode is frequently used to call
subroutines through a jump-table in memory.

Using Direct or Extended operands with the JSR instruction should be avoided in
position-independent code unless the destination address is within non-relocatable code
(such as a ROM routine).

See Also:

BSR

,

JMP

,

 LBSR

,

 PULS

,

 RTS

E F H I N Z V C

JSR 9D 7 / 6 2 AD 7+ / 6+ 2+ BD 8 / 7 3

OP

~

#

IMMEDIATE

OP

~

#

DIRECT

OP

~

#

INDEXED

OP

~

#

EXTENDEDSOURCE
FORMS

- 71 -

LBCC

Long Branch If Carry Clear

IF CC.C = 0 then PC’

←←←←

 PC + IMM

*The 6809 requires 6 cycles only if the branch is taken.

This instruction tests the Carry flag in the CC register and, if it is clear (0), causes a
relative branch. If the Carry flag is 1, the CPU continues executing the next instruction in
sequence. None of the Condition Code flags are affected by this instruction.

When used following a subtract or compare of unsigned binary values, the LBCC
instruction will branch if the source value was higher or the same as the original
destination value. For this reason, 6809/6309 assemblers will accept LBHS as an
alternate mnemonic for LBCC.

LBCC is generally not useful following INC, DEC, LD, ST or TST instructions since
none of those affect the Carry flag. Also, the LBCC instruction will always branch
following a CLR instruction and never branch following a COM instruction due to the
way those instructions affect the Carry flag.

The branch address is calculated by adding the current value of the PC register (after the
LBCC instruction bytes have been fetched) with the 16-bit twos-complement value
contained in the third and fourth bytes of the instruction. Long branch instructions permit
a relative jump to any location within the 64K address space. The smaller, faster BCC
instruction can be used instead when the destination address is within -126 to +129 bytes
of the address of the branch instruction.

See Also:

BCC

,

LBCS

,

LBGE

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

LBCC

address

RELATIVE 1024 5 (6) * 4

E F H I N Z V C

- 72 -

LBCS

Long Branch If Carry Set

IF CC.C

≠

 0 then PC’

←←←←

 PC + IMM

*The 6809 requires 6 cycles only if the branch is taken.

This instruction tests the Carry flag in the CC register and, if it is set (1), causes a relative
branch. If the Carry flag is 0, the CPU continues executing the next instruction in
sequence. None of the Condition Code flags are affected by this instruction.

When used following a subtract or compare of unsigned binary values, the LBCS
instruction will branch if the source value was lower than the original destination value.
For this reason, 6809/6309 assemblers will accept

LBLO

 as an alternate mnemonic for
LBCS.

LBCS is generally not useful following INC, DEC, LD, ST or TST instructions since
none of those affect the Carry flag. Also, the LBCS instruction will never branch
following a CLR instruction and always branch following a COM instruction due to the
way those instructions affect the Carry flag.

The branch address is calculated by adding the current value of the PC register (after the
LBCS instruction bytes have been fetched) with the 16-bit twos-complement value
contained in the third and fourth bytes of the instruction. Long branch instructions permit
a relative jump to any location within the 64K address space. The smaller, faster BCS
instruction can be used instead when the destination address is within -126 to +129 bytes
of the address of the branch instruction.

See Also:

BCS

,

LBCC

,

LBLT

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

LBCS

address

RELATIVE 1025 5 (6) * 4

E F H I N Z V C

- 73 -

LBEQ

Long Branch If Equal to Zero

IF CC.Z

≠

 0 then PC’

←←←←

 PC + IMM

*The 6809 requires 6 cycles only if the branch is taken.

This instruction tests the Zero flag in the CC register and, if it is set (1), causes a relative
branch. If the Z flag is 0, the CPU continues executing the next instruction in sequence.
None of the Condition Code flags are affected by this instruction.

When used following almost any instruction that produces, tests or moves a value, the
LBEQ instruction will branch if that value is equal to zero. In the case of an instruction
that performs a subtract or compare, the LBEQ instruction will branch if the source value
was equal to the original destination value.

LBEQ is generally not useful following a CLR instruction since the Z flag is always set.

The following instructions produce or move values, but do not affect the Z flag:

ABX BAND BEOR BIAND BIEOR
BOR BIOR EXG LDBT LDMD
LEAS LEAU PSH PUL STBT
TFR

The branch address is calculated by adding the current value of the PC register (after the
LBEQ instruction bytes have been fetched) with the 16-bit twos-complement value
contained in the third and fourth bytes of the instruction. Long branch instructions permit
a relative jump to any location within the 64K address space. The smaller, faster BEQ
instruction can be used instead when the destination address is within -126 to +129 bytes
of the address of the branch instruction.

See Also:

BEQ

,

LBNE

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

LBEQ

address

RELATIVE 1027 5 (6) * 4

E F H I N Z V C

- 74 -

LBGE

Long Branch If Greater than or Equal to Zero

IF CC.N = CC.V then PC’

←←←←

 PC + IMM

*The 6809 requires 6 cycles only if the branch is taken.

This instruction tests the Negative (N) and Overflow (V) flags in the CC register and, if
both are set OR both are clear, causes a relative branch. If the N and V flags do not have
the same value then the CPU continues executing the next instruction in sequence. None
of the Condition Code flags are affected by this instruction.

When used following a subtract or compare of signed (twos-complement) values, the
LBGE instruction will branch if the source value was greater than or equal to the original
destination value.

The branch address is calculated by adding the current value of the PC register (after the
LBGE instruction bytes have been fetched) with the 16-bit twos-complement value
contained in the third and fourth bytes of the instruction. Long branch instructions permit
a relative jump to any location within the 64K address space. The smaller, faster BGE
instruction can be used instead when the destination address is within -126 to +129 bytes
of the address of the branch instruction.

See Also:

BGE

,

LBHS, LBLT

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

LBGE

address

RELATIVE 102C 5 (6) * 4

E F H I N Z V C

- 75 -

LBGT

Long Branch If Greater Than Zero

IF (CC.N = CC.V) AND (CC.Z = 0) then PC’

←←←←

 PC +

IMM

*The 6809 requires 6 cycles only if the branch is taken.

This instruction tests the Zero (Z) flag in the CC register and, if it is clear AND the values
of the Negative (N) and Overflow (V) flags are equal (both set OR both clear), causes a
relative branch. If the N and V flags do not have the same value or if the Z flag is set then
the CPU continues executing the next instruction in sequence. None of the Condition
Code flags are affected by this instruction.

When used following a subtract or compare of signed (twos-complement) values, the
LBGT instruction will branch if the source value was greater than the original destination
value.

The branch address is calculated by adding the current value of the PC register (after the
LBGT instruction bytes have been fetched) with the 16-bit twos-complement value
contained in the third and fourth bytes of the instruction. Long branch instructions permit
a relative jump to any location within the 64K address space. The smaller, faster BGT
instruction can be used instead when the destination address is within -126 to +129 bytes
of the address of the branch instruction.

See Also:

BGT

,

LBHI

,

LBLE

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

LBGT

address

RELATIVE 102E 5 (6) * 4

E F H I N Z V C

- 76 -

LBHI

Long Branch If Higher

IF (CC.Z = 0) AND (CC.C = 0) then PC’

←←←←

 PC +

IMM

*The 6809 requires 6 cycles only if the branch is taken.

This instruction tests the Zero (Z) and Carry (C) flags in the CC register and, if both are
zero, causes a relative branch. If either the Z or C flags are set then the CPU continues
executing the next instruction in sequence. None of the Condition Code flags are affected
by this instruction.

When used following a subtract or compare of unsigned binary values, the LBHI
instruction will branch if the source value was higher than the original destination value.

LBHI is generally not useful following INC, DEC, LD, ST or TST instructions since
none of those affect the Carry flag.

The branch address is calculated by adding the current value of the PC register (after the
LBHI instruction bytes have been fetched) with the 16-bit twos-complement value
contained in the third and fourth bytes of the instruction. Long branch instructions permit
a relative jump to any location within the 64K address space. The smaller, faster BHI
instruction can be used instead when the destination address is within -126 to +129 bytes
of the address of the branch instruction.

See Also:

BHI

,

LBGT

,

LBLS

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

LBHI

address

RELATIVE 1022 5 (6) * 4

E F H I N Z V C

- 77 -

LBHS

Long Branch If Higher or Same

IF CC.C = 0 then PC’

←←←←

 PC + IMM

*The 6809 requires 6 cycles only if the branch is taken.

This instruction tests the Carry flag in the CC register and, if it is clear (0), causes a
relative branch. If the Carry flag is 1, the CPU continues executing the next instruction in
sequence. None of the Condition Code flags are affected by this instruction.

When used following a subtract or compare of unsigned binary values, the LBHS
instruction will branch if the source value was higher or the same as the original
destination value.

LBHS is generally not useful following INC, DEC, LD, ST or TST instructions since
none of those affect the Carry flag.

LBHS is an alternate mnemonic for the LBCC instruction. Both produce the same object
code.

The branch address is calculated by adding the current value of the PC register (after the
LBHS instruction bytes have been fetched) with the 16-bit twos-complement value
contained in the third and fourth bytes of the instruction. Long branch instructions permit
a relative jump to any location within the 64K address space. The smaller, faster BHS
instruction can be used instead when the destination address is within -126 to +129 bytes
of the address of the branch instruction.

See Also:

BHS

,

LBGE

,

LBLO

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

LBHS

address

RELATIVE 1024 5 (6) * 4

E F H I N Z V C

- 78 -

LBLE

Long Branch If Less than or Equal to Zero

IF (CC.N

≠

 CC.V) OR (CC.Z = 1) then PC’

←←←←

 PC +

IMM

*The 6809 requires 6 cycles only if the branch is taken.

This instruction performs a relative branch if the value of the Zero (Z) flag is 1, OR if the
values of the Negative (N) and Overflow (V) flags are not equal. If the N and V flags have
the same value and the Z flag is not set then the CPU continues executing the next
instruction in sequence. None of the Condition Code flags are affected by this
instruction.

When used following a subtract or compare of signed (twos-complement) values, the
LBLE instruction will branch if the source value was less than or equal to the original
destination value.

The branch address is calculated by adding the current value of the PC register (after the
LBLE instruction bytes have been fetched) with the 16-bit twos-complement value
contained in the third and fourth bytes of the instruction. Long branch instructions permit
a relative jump to any location within the 64K address space. The smaller, faster BLE
instruction can be used instead when the destination address is within -126 to +129 bytes
of the address of the branch instruction.

See Also:

BLE

,

LBGT

,

LBLS

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

LBLE

address

RELATIVE 102F 5 (6) * 4

E F H I N Z V C

- 79 -

LBLO

Long Branch If Lower

IF CC.C

≠

 0 then PC’

←←←←

 PC + IMM

*The 6809 requires 6 cycles only if the branch is taken.

This instruction tests the Carry flag in the CC register and, if it is set (1), causes a relative
branch. If the Carry flag is 0, the CPU continues executing the next instruction in
sequence. None of the Condition Code flags are affected by this instruction.

When used following a subtract or compare of unsigned binary values, the LBLO
instruction will branch if the source value was lower than the original destination value.

LBLO is generally not useful following INC, DEC, LD, ST or TST instructions since
none of those affect the Carry flag.

LBLO is an alternate mnemonic for the LBCS instruction. Both produce the same object
code.

The branch address is calculated by adding the current value of the PC register (after the
LBLO instruction bytes have been fetched) with the 16-bit twos-complement value
contained in the third and fourth bytes of the instruction. Long branch instructions permit
a relative jump to any location within the 64K address space. The smaller, faster BLO
instruction can be used instead when the destination address is within -126 to +129 bytes
of the address of the branch instruction.

See Also:

BLO

,

LBHS

,

LBLT

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

LBLO

address

RELATIVE 1025 5 (6) * 4

E F H I N Z V C

- 80 -

LBLS

Long Branch If Lower or Same

IF (CC.Z

≠

 0) OR (CC.C

≠

 0) then PC’

←←←←

 PC +

IMM

*The 6809 requires 6 cycles only if the branch is taken.

This instruction tests the Zero (Z) and Carry (C) flags in the CC register and, if either are
set, causes a relative branch. If both the Z and C flags are clear then the CPU continues
executing the next instruction in sequence. None of the Condition Code flags are affected
by this instruction.

When used following a subtract or compare of unsigned binary values, the LBLS
instruction will branch if the source value was lower than or the same as the original
destination value.

LBLS is generally not useful following INC, DEC, LD, ST or TST instructions since
none of those affect the Carry flag.

The branch address is calculated by adding the current value of the PC register (after the
LBLS instruction bytes have been fetched) with the 16-bit twos-complement value
contained in the third and fourth bytes of the instruction. Long branch instructions permit
a relative jump to any location within the 64K address space. The smaller, faster BLS
instruction can be used instead when the destination address is within -126 to +129 bytes
of the address of the branch instruction.

See Also:

BLS

,

LBHI

,

LBLE

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

LBLS

address

RELATIVE 1023 5 (6) * 4

E F H I N Z V C

- 81 -

LBLT

Long Branch If Less Than Zero

IF CC.N

≠

 CC.V then PC’

←←←←

 PC + IMM

*The 6809 requires 6 cycles only if the branch is taken.

This instruction performs a relative branch if the values of the Negative (N) and Overflow
(V) flags are not equal. If the N and V flags have the same value then the CPU continues
executing the next instruction in sequence. None of the Condition Code flags are affected
by this instruction.

When used following a subtract or compare of signed (twos-complement) values, the
LBLT instruction will branch if the source value was less than the original destination
value.

The branch address is calculated by adding the current value of the PC register (after the
LBLT instruction bytes have been fetched) with the 16-bit twos-complement value
contained in the third and fourth bytes of the instruction. Long branch instructions permit
a relative jump to any location within the 64K address space. The smaller, faster BLT
instruction can be used instead when the destination address is within -126 to +129 bytes
of the address of the branch instruction.

See Also:

BLT

,

LBGE

,

LBLO

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

LBLT

address

RELATIVE 102D 5 (6) * 4

E F H I N Z V C

- 82 -

LBMI

Long Branch If Minus

IF CC.N

≠

 0 then PC’

←←←←

 PC + IMM

*The 6809 requires 6 cycles only if the branch is taken.

This instruction tests the Negative (N) flag in the CC register and, if it is set (1), causes a
relative branch. If the N flag is 0, the CPU continues executing the next instruction in
sequence. None of the Condition Code flags are affected by this instruction.

When used following an operation on signed (twos-complement) binary values, the
LBMI instruction will branch if the resulting value is negative. It is generally preferable
to use the LBLT instruction following such an operation because the sign bit may be
invalid due to a twos-complement overflow.

The branch address is calculated by adding the current value of the PC register (after the
LBMI instruction bytes have been fetched) with the 16-bit twos-complement value
contained in the third and fourth bytes of the instruction. Long branch instructions permit
a relative jump to any location within the 64K address space. The smaller, faster BMI
instruction can be used instead when the destination address is within -126 to +129 bytes
of the address of the branch instruction.

See Also:

BMI

,

LBLT

,

LBPL

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

LBMI

address

RELATIVE 102B 5 (6) * 4

E F H I N Z V C

- 83 -

LBNE

Long Branch If Not Equal to Zero

IF CC.Z = 0 then PC’

←←←←

 PC + IMM

*The 6809 requires 6 cycles only if the branch is taken.

This instruction tests the Zero flag in the CC register and, if it is clear (0), causes a
relative branch. If the Z flag is set, the CPU continues executing the next instruction in
sequence. None of the Condition Code flags are affected by this instruction.

When used following almost any instruction that produces, tests or moves a value, the
LBNE instruction will branch if that value is not equal to zero. In the case of an
instruction that performs a subtract or compare, the LBNE instruction will branch if the
source value was not equal to the original destination value.

LBNE is generally not useful following a CLR instruction since the Z flag is always set.

The following instructions produce or move values, but do not affect the Z flag:

ABX BAND BEOR BIAND BIEOR
BOR BIOR EXG LDBT LDMD
LEAS LEAU PSH PUL STBT
TFM TFR

The branch address is calculated by adding the current value of the PC register (after the
LBNE instruction bytes have been fetched) with the 16-bit twos-complement value
contained in the third and fourth bytes of the instruction. Long branch instructions permit
a relative jump to any location within the 64K address space. The smaller, faster BNE
instruction can be used instead when the destination address is within -126 to +129 bytes
of the address of the branch instruction.

See Also:

BNE

,

LBEQ

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

LBNE

address

RELATIVE 1026 5 (6) * 4

E F H I N Z V C

- 84 -

LBPL

Long Branch If Plus

IF CC.N = 0 then PC’

←←←←

 PC + IMM

*The 6809 requires 6 cycles only if the branch is taken.

This instruction tests the Negative (N) flag in the CC register and, if it is clear (0), causes
a relative branch. If the N flag is set, the CPU continues executing the next instruction in
sequence. None of the Condition Code flags are affected by this instruction.

When used following an operation on signed (twos-complement) binary values, the
LBPL instruction will branch if the resulting value is positive. It is generally preferable
to use the LBGE instruction following such an operation because the sign bit may be
invalid due to a twos-complement overflow.

The branch address is calculated by adding the current value of the PC register (after the
LBPL instruction bytes have been fetched) with the 16-bit twos-complement value
contained in the third and fourth bytes of the instruction. Long branch instructions permit
a relative jump to any location within the 64K address space. The smaller, faster BPL
instruction can be used instead when the destination address is within -126 to +129 bytes
of the address of the branch instruction.

See Also:

BPL

,

LBGE

,

LBMI

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

LBPL

address

RELATIVE 102A 5 (6) * 4

E F H I N Z V C

- 85 -

LBRA

Long Branch Always

PC’

←←←←

 PC + IMM

This instruction causes an unconditional relative branch. None of the Condition Code
flags are affected.

The LBRA instruction is similar in function to the JMP instruction in that it always
causes execution to be transferred to the effective address specified by the operand. The
primary difference is that LBRA uses the Relative Addressing mode which allows the
code to be position-independent.

The branch address is calculated by adding the current value of the PC register (after the
LBRA instruction bytes have been fetched) with the 16-bit twos-complement value
contained in the second and third bytes of the instruction. Long branch instructions
permit a relative jump to any location within the 64K address space. The smaller, faster
BRA instruction can be used when the destination address is within -126 to +129 bytes
of the address of the branch instruction.

See Also:

BRA

,

LBRN

,

JMP

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

LBRA

address

RELATIVE 16 5 / 4 3

E F H I N Z V C

- 86 -

LBRN

Long Branch Never

This instruction is essentially a no-operation; that is, the CPU never branches but merely
advances the Program Counter to the next instruction in sequence. None of the Condition
Code flags are affected.

The LBRN instruction provides a 4-byte no-op that consumes 5 bus cycles, whereas
NOP is a single-byte instruction that consumes either 1 or 2 bus cycles. In addition, there
is the BRN instruction which provides a 2-byte no-op that consumes 3 bus cycles.

Since the branch is never taken, the third and fourth bytes of the instruction do not serve
any purpose and may contain any value. These bytes could contain program code or data
that is accessed by some other instruction(s).

See Also:

BRN

,

LBRA

,

NOP

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

LBRN

address

RELATIVE 1021 5 4

E F H I N Z V C

- 87 -

LBSR

Long Branch to Subroutine

S’

←←←←

 S - 2
(S:S+1)

←←←←

 PC
PC’

←←←←

 PC + IMM

This instruction pushes the value of the PC register (after the LBSR instruction bytes
have been fetched) onto the hardware stack and then performs an unconditional relative
branch. None of the Condition Code flags are affected.

By pushing the PC value onto the stack, the called subroutine can "return" to this address
after it has completed.

The LBSR instruction is similar in function to the JSR instruction. The primary
difference is that LBSR uses the Relative Addressing mode which allows the code to be
position-independent.

The branch address is calculated by adding the current value of the PC register (after the
LBSR instruction bytes have been fetched) with the 16-bit twos-complement value
contained in the second and third bytes of the instruction. Long branch instructions
permit a relative jump to any location within the 64K address space. The smaller, faster
BSR instruction can be used instead when the destination address is within -126 to +129
bytes of the address of the branch instruction.

See Also:

BSR

,

JSR

,

PULS

,

 RTS

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

LBSR

address

RELATIVE 17 9 / 7 3

E F H I N Z V C

- 88 -

LBVC

Long Branch If Overflow Clear

IF CC.V = 0 then PC’

←←←←

 PC + IMM

*The 6809 requires 6 cycles only if the branch is taken.

This instruction tests the Overflow (V) flag in the CC register and, if it is clear (0), causes
a relative branch. If the V flag is set, the CPU continues executing the next instruction in
sequence. None of the Condition Code flags are affected by this instruction.

When used following an operation on signed (twos-complement) binary values, the
LBVC instruction will branch if there was no overflow.

The branch address is calculated by adding the current value of the PC register (after the
LBVC instruction bytes have been fetched) with the 16-bit twos-complement value
contained in the third and fourth bytes of the instruction. Long branch instructions permit
a relative jump to any location within the 64K address space. The smaller, faster BVC
instruction can be used instead when the destination address is within -126 to +129 bytes
of the address of the branch instruction.

See Also:

BVC

,

LBVS

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

LBVC

address

RELATIVE 1028 5 (6) * 4

E F H I N Z V C

- 89 -

LBVS

Long Branch If Overflow Set

IF CC.V

≠

 0 then PC’

←←←←

 PC + IMM

*The 6809 requires 6 cycles only if the branch is taken.

This instruction tests the Overflow (V) flag in the CC register and, if it is set (1), causes a
relative branch. If the V flag is clear, the CPU continues executing the next instruction in
sequence. None of the Condition Code flags are affected by this instruction.

When used following an operation on signed (twos-complement) binary values, the
LBVS instruction will branch if an overflow occurred.

The branch address is calculated by adding the current value of the PC register (after the
LBVS instruction bytes have been fetched) with the 16-bit twos-complement value
contained in the third and fourth bytes of the instruction. Long branch instructions permit
a relative jump to any location within the 64K address space. The smaller, faster BVS
instruction can be used instead when the destination address is within -126 to +129 bytes
of the address of the branch instruction.

See Also:

BVS

,

LBVC

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

LBVS

address

RELATIVE 1029 5 (6) * 4

E F H I N Z V C

- 90 -

LD

(8 Bit)

Load Data into 8-Bit Accumulator

r’

←←←←

 IMM8|(M)

LDE and LDF are available on 6309 only.

These instructions load either an 8-bit immediate value or the contents of a memory byte
into one of the 8-bit accumulators (A,B,E,F). The Condition Codes are affected as
follows.

N

The Negative flag is set equal to the new value of bit 7 of the accumulator.

Z

The Zero flag is set if the new accumulator value is zero; cleared otherwise.

V

The Overflow flag is always cleared.

C

The Carry flag is not affected by these instructions.

See Also:

LD

 (16-bit)

,

LDQ

E F H I N Z V C

↕ ↕

0

LDA 86 2 2 96 4 / 3 2 A6 4+ 2+ B6 5 / 4 3
LDB C6 2 2 D6 4 / 3 2 E6 4+ 2+ F6 5 / 4 3
LDE 1186 3 3 1196 5 / 4 3 11A6 5+ 3+ 11B6 6 / 5 4
LDF 11C6 3 3 11D6 5 / 4 3 11E6 5+ 3+ 11F6 6 / 5 4

OP

~

#

IMMEDIATE

OP

~

#

DIRECT

OP

~

#

INDEXED

OP

~

#

EXTENDEDSOURCE
FORMS

- 91 -

LD

(16 Bit)

Load Data into 16-Bit Register

r’

←←←←

 IMM16|(M:M+1)

LDW

 is available on 6309 only.

These instructions load either a 16-bit immediate value or the contents from a pair of
memory bytes (in big-endian order) into one of the 16-bit accumulators (D,W) or one of
the 16-bit Index registers (X,Y,U,S). The Condition Codes are affected as follows.

N

The Negative flag is set equal to the new value of bit 15 of the register.

Z

The Zero flag is set if the new register value is zero; cleared otherwise.

V

The Overflow flag is always cleared.

C

The Carry flag is not affected by these instructions.

See Also:

LD

 (8-bit)

,

LDQ

,

LEA

E F H I N Z V C

↕ ↕

0

LDD CC 3 3 DC 5 / 4 2 EC 5+ 2+ FC 6 / 5 3
LDS 10CE 4 4 10DE 6 / 5 3 10EE 6+ 3+ 10FE 7 / 6 4
LDU CE 3 3 DE 5 / 4 2 EE 5+ 2+ FE 6 / 5 3
LDW 1086 4 4 1096 6 / 5 3 10A6 6+ 3+ 10B6 7 / 6 4
LDX 8E 3 3 9E 5 / 4 2 AE 5+ 2+ BE 6 / 5 3
LDY 108E 4 4 109E 6 / 5 3 10AE 6+ 3+ 10BE 7 / 6 4

OP

~

#

IMMEDIATE

OP

~

#

DIRECT

OP

~

#

INDEXED

OP

~

#

EXTENDEDSOURCE
FORMS

- 92 -

LDBT

Load Memory Bit into Register Bit

r.dstBit’

←←←←

 (DPM).srcBit

The LDBT instruction loads the value of a specified bit in memory into a specified bit of
either the A, B or CC registers. None of the Condition Code flags are affected by the
operation unless CC is specified as the register, in which case only the destination bit will
be affected. The usefulness of the LDBT instruction is limited by the fact that only Direct
Addressing is permitted.

The figure above shows an example of the LDBT instruction where bit 1 of Accumulator
A is Loaded with bit 5 of the byte in memory at address $0040 (DP = 0).

The assembler syntax for this instruction can be confusing due to the ordering of the
operands:

destination register

,

source bit

,

destination bit

,

source address

.

The object code format for the LDBT instruction is:

See Also:

BAND

,

BEOR

,

BIAND

,

BIEOR

,

BIOR

,

BOR

,

STBT

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

LDBT

r

,

sBit

,

dBit

,

addr

DIRECT 1136 7 / 6 4

$11 $36 POSTBYTE ADDRESS LSB

6309 ONLY

Memory Location $0040

1 1 0 0 0 1 1 0$0F0 0 0 0 1 1 1 1

7 6 5 4 3 2 1 0

$0D0 0 0 0 1 1 0 1

$C6

Accumulator A

7 6 5 4 3 2 1 0

LDBT A,5,1,$40

Source (memory) Bit Number (0 - 7)

Destination (register) Bit Number (0 - 7)

Register Code

7 6 5 4 3 2 1 0

POSTBYTE FORMAT

Code Register

0 0 CC

0 1 A

1 0 B

1 1 Invalid

- 93 -

LDMD

Load an Immediate Value into the MD Register

MD.NM’

←←←←

 IMM.0
MD.FM’

←←←←

 IMM.1

This instruction loads the two least-significant bits of the MD register (the

Native Mode

and

FIRQ Mode

 control bits) with the two least-significant bits of the immediate
operand. None of the Condition Code flags are affected.

The LDMD instruction provides the method by which the 6309 execution mode can be
changed. Upon RESET, both the NM and FM mode bits are cleared. The execution mode
may then be changed at any time by executing an LDMD instruction. See page 144 for
more information about the 6309 execution modes.

Care should be taken when changing the value of the NM bit inside of an interrupt
service routine because doing so can affect the behavior of an RTI instruction.

Bits 2 through 7 of the MD register are not affected by this instruction, so it cannot be
used to alter the /0 and IL status bits.

The figure below shows the layout of the MD register:

See Also:

BITMD

,

RTI

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

LDMD

#i8

IMMEDIATE 113D 5 3

E F H I N Z V C

7 6 5 4 3 2 1 0

/0 IL

FM NM

6309 ONLY

- 94 -

LDQ

Load 32-bit Data into Accumulator Q

Q’

←←←←

 IMM32|(M:M+3)

This instruction loads either a 32-bit immediate value or the contents of a quad-byte
value from memory (in big-endian order) into the Q accumulator. The Condition Codes
are affected as follows.

N

The Negative flag is set equal to the new value of bit 31 of Accumulator Q.

Z

The Zero flag is set if the new value of Accumulator Q is zero; cleared otherwise.

V

The Overflow flag is always cleared.

C

The Carry flag is not affected by this instruction.

See Also:

LD

 (8-bit),

LD

 (16-bit)

E F H I N Z V C

↕ ↕

0

6309 ONLY

LDQ CD 5 5 10DC 8 / 7 3 10EC 8+ 3+ 10FC 9 / 8 4

OP

~

#

IMMEDIATE

OP

~

#

DIRECT

OP

~

#

INDEXED

OP

~

#

EXTENDEDSOURCE
FORMS

- 95 -

LEA

Load Effective Address

r’

←←←←

 EA

* The Z flag is updated by LEAX and LEAY only.

These instructions compute the effective address from an Indexed Addressing Mode
operand and place that address into one of the Stack Pointers (S or U) or one of the Index
Registers (X or Y).

The LEAS and LEAU instructions do not affect any of the Condition Code flags. The
LEAX and LEAY instructions set the Z flag when the effective address is 0 and clear it
otherwise. This permits X and Y to be used as 16-bit loop counters as well as providing
compatibility with the INX and DEX instructions of the 6800 microprocessor.

LEA instructions differ from LD instructions in that the value loaded into the register is
the address specified by the operand rather than the data pointed to by the address. LEA
instructions might be used when you need to pass a parameter by-reference as opposed to
by-value.

The LEA instructions can be quite versatile. For example, adding the contents of
Accumulator B to Index Register Y and depositing the result in the User Stack pointer
(U) can be accomplished with the single instruction:

LEAU B,Y

NOTE:

The effective address of an auto-increment operand is the value prior to
incrementing. Therefore, an instruction such as

LEAX ,X+

 will leave X unmodified. To
achieve the expected results, you can use

LEAX 1,X

 instead.

See Also:

ADDR

,

LD

 (16-bit)

,

SUBR

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

LEAS INDEXED 32 4+ 2+

LEAU INDEXED 33 4+ 2+

LEAX INDEXED 30 4+ 2+

LEAY INDEXED 31 4+ 2+

E F H I N Z V C

*

- 96 -

LSL

(8 Bit)

Logical Shift Left of 8-Bit Accumulator or Memory Byte

These instructions shift the contents of the A or B accumulator or a specified byte in
memory to the left by one bit, clearing bit 0. Bit 7 is shifted into the Carry flag of the
Condition Codes register.

H

The affect on the Half-Carry flag is undefined for these instructions.

N

The Negative flag is set equal to the new value of bit 7; previously bit 6.

Z

The Zero flag is set if the new 8-bit value is zero; cleared otherwise.

V

The Overflow flag is set to the Exclusive-OR of the original values of bits 6 and 7.

C

The Carry flag receives the value shifted out of bit 7.

The LSL instruction can be used for simple multiplication (a single left-shift multiplies
the value by 2). Other uses include conversion of data from serial to parallel and vise-
versa.

The 6309 does not provide variants of LSL to operate on the E and F accumulators. You
can however achieve the same functionality using the ADDR instruction. The
instructions

ADDR E,E

 and

ADDR F,F

 will perform the same left-shift operation on the E
and F accumulators respectively.

The ASL and LSL mnemonics are duplicates. Both produce the same object code.

See Also:

LSLD

E F H I N Z V C

~

↕ ↕ ↕ ↕

C b7 b0

0

LSLA 48 2 / 1 1
LSLB 58 2 / 1 1
LSL 08 6 / 5 2 68 6+ 2+ 78 7 / 6 3

OP

~

#

INHERENT

OP

~

#

DIRECT

OP

~

#

INDEXED

OP

~

#

EXTENDEDSOURCE
FORMS

- 97 -

LSLD

Logical Shift Left of Accumulator D

This instruction shifts the contents of Accumulator D to the left by one bit, clearing bit 0.
Bit 15 is shifted into the Carry flag of the Condition Codes register.

N

The Negative flag is set equal to the new value of bit 15; previously bit 14.

Z

The Zero flag is set if the new 16-bit value is zero; cleared otherwise.

V

The Overflow flag is set to the Exclusive-OR of the original values of bits 14 and 15.

C

The Carry flag receives the value shifted out of bit 15.

The LSL instruction can be used for simple multiplication (a single left-shift multiplies
the value by 2). Other uses include conversion of data from serial to parallel and vise-
versa.

The D accumulator is the only 16-bit register for which an LSL instruction has been
provided. You can however achieve the same functionality for other 16-bit registers using
the ADDR instruction. For example,

ADDR W,W

 will perform the same left-shift
operation on the W accumulator.

A left-shift of the 32-bit Q accumulator can be achieved as follows:

ADDR W,W ; Shift Low-word, Hi-bit into Carry
ROLD ; Shift Hi-word, Carry into Low-bit

The ASLD and LSLD mnemonics are duplicates. Both produce the same object code.

See Also:

LSL

(8-bit)

,

ROL

 (16-bit)

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

LSLD INHERENT 1048 3 / 2 2

E F H I N Z V C

↕ ↕ ↕ ↕

6309 ONLY

C b15 b0

0

- 98 -

LSR

(8 Bit)

Logical Shift Right of 8-Bit Accumulator or Memory Byte

These instructions logically shift the contents of the A or B accumulator or a specified
byte in memory to the right by one bit, clearing bit 7. Bit 0 is shifted into the Carry flag
of the Condition Codes register.

N

The Negative flag is cleared by these instructions.

Z

The Zero flag is set if the new 8-bit value is zero; cleared otherwise.

V

The Overflow flag is not affected by these instructions.

C

The Carry flag receives the value shifted out of bit 0.

The LSR instruction can be used in simple division routines on unsigned values (a single
right-shift divides the value by 2).

The 6309 does not provide variants of LSR to operate on the E and F accumulators.

See Also:

LSR

 (16-bit)

E F H I N Z V C

0

↕ ↕

b7 b0 C

0

LSRA 44 2 / 1 1
LSRB 54 2 / 1 1
LSR 04 6 / 5 2 64 6+ 2+ 74 7 / 6 3

OP

~

#

INHERENT

OP

~

#

DIRECT

OP

~

#

INDEXED

OP

~

#

EXTENDEDSOURCE
FORMS

- 99 -

LSR

(16 Bit)

Logical Shift Right of 16-Bit Accumulator

This instruction shifts the contents of Accumulator D to the right by one bit. Bit 0 is
shifted into the Carry flag of the Condition Codes register. The value of bit 15 is not
changed.

N

The Negative flag is cleared by these instructions.

Z

The Zero flag is set if the new 16-bit value is zero; cleared otherwise.

V

The Overflow flag is not affected by this instruction.

C

The Carry flag receives the value shifted out of bit 0.

These instructions can be used in simple division routines on unsigned values (a single
right-shift divides the value by 2).

A logical right-shift of the 32-bit Q accumulator can be achieved as follows:

LSRD ; Shift Hi-word, Low-bit into Carry
RORW ; Shift Low-word, Carry into Hi-bit

See Also:

LSR

(8-bit)

,

ROR

(16-bit)

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

LSRD INHERENT 1044 3 / 2 2

LSRW INHERENT 1054 3 / 2 2

E F H I N Z V C

0

↕ ↕

6309 ONLY

b15 b0 C

0

- 100 -

MUL

Unsigned Multiply of Accumulator A and Accumulator B

ACCD’

←←←←

 ACCA * ACCB

This instruction multiplies the unsigned 8-bit value in Accumulator A by the unsigned 8-
bit value in Accumulator B. The 16-bit unsigned product is placed into Accumulator D.
Only two Condition Code flags are affected:

Z

The Zero flag is set if the 16-bit result is zero; cleared otherwise.

C

The Carry flag is set equal to the new value of bit 7 in Accumulator B.

The Carry flag is set equal to bit 7 of the least-significant byte so that rounding of the
most-significant byte can be accomplished by executing:

ADCA #0

See Also:

ADCA

,

MULD

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

MUL INHERENT 3D 11 / 10 1

E F H I N Z V C

↕ ↕

- 101 -

MULD

Signed Multiply of Accumulator D and Memory Word

ACCQ’

←←←←

 ACCD x IMM16|(M:M+1)

This instruction multiplies the signed 16-bit value in Accumulator D by either a 16-bit
immediate value or the contents of a double-byte value from memory. The signed 32-bit
product is placed into Accumulator Q. Only two Condition Code flags are affected:

N

The Negative flag is set if the twos complement result is negative; cleared otherwise.

Z

The Zero flag is set if the 32-bit result is zero; cleared otherwise.

See Also:

MUL

E F H I N Z V C

↕ ↕

6309 ONLY

MULD 118F 28 4 119F 30 / 29 3 11AF 30+ 3+ 11BF 31 / 30 4

OP

~

#

IMMEDIATE

OP

~

#

DIRECT

OP

~

#

INDEXED

OP

~

#

EXTENDEDSOURCE
FORMS

- 102 -

NEG

(accumulator)

Negation (Twos-Complement) of Accumulator

r’

←←←←

 0 - r

NEGD is available on 6309 only.

Each of these instructions change the value of the specified accumulator to that of it’s
twos-complement; that is the value which when added to the original value produces a
sum of zero. The Condition Code flags are also modified as follows:

N

The Negative flag is set equal to the new value of the accumulators high-order bit.

Z

The Zero flag is set if the new value of the accumulator is zero; cleared otherwise.

V

The Overflow flag is set if the original value was 80

16

(8-bit)

 or 8000

16

(16-bit)

; cleared otherwise.

C

The Carry flag is cleared if the original value was 0; set otherwise.

The operation performed by the NEG instruction can be expressed as:

result = 0 - value

The Carry flag represents a Borrow for this operation and is therefore always set unless
the accumulator’s original value was zero.

If the original value of the accumulator is 80

16

 (8000

16

 for NEGD) then the Overflow
flag (V) is set and the accumulator’s value is not modified.

This instruction performs a twos-complement operation. A ones-complement can be
achieved with the COM instruction.

The 6309 does not provide instructions for negating the E, F, W and Q accumulators. A
32-bit negation of Q can be achieved with the following instructions:

COMD
COMW
ADCR 0,W
ADCR 0,D

See Also:

COM

,

NEG

 (memory)

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

NEGA INHERENT 40 2 / 1 1

NEGB INHERENT 50 2 / 1 1

NEGD INHERENT 1040 3 / 2 2

E F H I N Z V C

↕ ↕ ↕ ↕

- 103 -

NEG

(memory)

Negate (Twos Complement) a Byte in Memory

(M)’

←←←←

 0 - (M)

This instruction changes the value of a byte in memory to that of it’s twos-complement;
that is the value which when added to the original value produces a sum of zero. The
Condition Code flags are also modified as follows:

N

The Negative flag is set equal to the new value of bit 7.

Z

The Zero flag is set if the new value is zero; cleared otherwise.

V

The Overflow flag is set if the original value was 80

16

; cleared otherwise.

C

The Carry flag is cleared if the original value was 0; set otherwise.

The operation performed by the NEG instruction can be expressed as:

result = 0 - value

The Carry flag represents a Borrow for this operation and is therefore always set unless
the memory byte’s original value was zero.

If the original value of the memory byte is 80

16

 then the Overflow flag (V) is set and the
byte’s value is not modified.

This instruction performs a twos-complement operation. A ones-complement can be
achieved with the COM instruction.

See Also:

COM

,

NEG

 (accumulator)

E F H I N Z V C

↕ ↕ ↕ ↕

NEG 00 6 / 5 2 60 6+ 2+ 70 7 / 6 3

OP

~

#

IMMEDIATE

OP

~

#

DIRECT

OP

~

#

INDEXED

OP

~

#

EXTENDEDSOURCE
FORMS

- 104 -

NOP

No Operation

The NOP instruction advances the Program Counter by one byte without affecting any
other registers or condition codes.

The NOP instruction provides a single-byte no-op that consumes two bus cycles (one
cycle on a 6309 when NM=1). Some larger, more time-consuming instructions that can
also be used as effective no-ops include:

BRN LBRN
ANDCC #$FF ORCC #0
PSHS #0 PULS #0
PSHU #0 PULU #0
EXG r,r TFR r,r
LEAS ,S LEAS ,S+ LEAS ,S++
LEAU ,U LEAU ,U+ LEAU ,U++

See Also:

BRN

,

EXG

,

LBRN

,

LEA

,

PSH

,

PUL

,

TFR

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

NOP INHERENT 12 2 / 1 1

E F H I N Z V C

- 105 -

OIM

Logical OR of Immediate Value with Memory Byte

(M)’

←←←←

 (M) OR IMM

The OIM instruction logically ORs the contents of a byte in memory with an 8-bit
immediate value. The resulting value is placed back into the designated memory
location.

N

The Negative flag is set equal to the new value of bit 7 of the memory byte.

Z

The Zero flag is set if the new value of the memory byte is zero; cleared otherwise.

V

The Overflow flag is cleared by this instruction.

C

The Carry flag is not affected by this instruction.

OIM is one of the instructions added to the 6309 which allow logical operations to be
performed directly in memory instead of having to use an accumulator. It takes three
separate instructions to perform the same operation on a 6809:

6809

(6 instruction bytes; 12 cycles)

:

LDA #$C0
ORA 4,U
STA 4,U

6309

(3 instruction bytes; 8 cycles)

:

OIM #$C0;4,U

Note that the assembler syntax used for the OIM operand is non-typical. Some
assemblers may require a comma (,) rather than a semicolon (;) between the immediate
operand and the address operand.

The object code format for the EIM instruction is:

See Also:

AIM

,

EIM

,

TIM

E F H I N Z V C

↕ ↕

0

OPCODE IMMED VALUE ADDRESS / INDEX BYTE(S)

6309 ONLY

OIM #

i8

;

EA

01 6 3 61 7+ 3+ 71 7 4

OP

~

#

IMMEDIATE

OP

~

#

DIRECT

OP

~

#

INDEXED

OP

~

#

EXTENDEDSOURCE
FORM

- 106 -

OR

(8 Bit)

Logically OR Accumulator with a Byte from Memory

r’

←←←←

 r OR IMM8|(M)

These instructions logically OR the contents of Accumulator A or B with either an 8-bit
immediate value or the contents of a memory byte. The 8-bit result is then placed back in
the specified accumulator.

N

The Negative flag is set equal to the new value of bit 7 of the accumulator.

Z

The Zero flag is set if the new value of the accumulator is zero; cleared otherwise.

V

The Overflow flag is cleared by this instruction.

C

The Carry flag is not affected by this instruction.

The OR instructions are commonly used for setting specific bits in an accumulator to '1'
while leaving other bits unchanged. Consider the following examples:

ORA #%00010000 ;Sets bit 4 in A
ORB #$7F ;Sets all bits in B except bit 7

See Also:

BIOR

,

BOR

,

OIM, ORCC, ORD

,

ORR

E F H I N Z V C

↕ ↕

0

ORA 8A 2 2 9A 4 / 3 2 AA 4+ 2+ BA 5 / 4 3
ORB CA 2 2 DA 4 / 3 2 EA 4+ 2+ FA 5 / 4 3

OP

~

#

IMMEDIATE

OP

~

#

DIRECT

OP

~

#

INDEXED

OP

~

#

EXTENDEDSOURCE
FORMS

- 107 -

ORCC

Logically OR the CC Register with an Immediate Value

CC’

←←←←

 CC OR IMM8

This instruction logically ORs the contents of the Condition Codes register with the 8-bit
immediate value specified in the operand. The result is placed back into the Condition
Codes register.

The ORCC instruction provides a method to set specific flags in the Condition Codes
register. All fl ags that correspond to '1' bits in the immediate operand are set, while those
corresponding with '0's are left unchanged.

The bit numbers for each flag are shown below:

One of the more common uses for the ORCC instruction is to set the IRQ and FIRQ
Interrupt Masks (I and F) at the beginning of a routine that must run with interrupts
disabled. This is accomplished by executing:

ORCC #$50 ; Set bits 4 and 6 in CC

Some assemblers will accept a comma-delimited list of the bit names as an alternative to
the immediate value. For instance, the example above might also be written as:

ORCC I,F ; Set bits 4 and 6 in CC

More examples:

ORCC #1 ; Set the Carry flag
ORCC #$80 ; Set the Entire flag

See Also:

ANDCC

,

OR

 (8-bit)

,

 ORD

,

ORR

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

ORCC

#i8

IMMEDIATE 1A 3 2

7 6 5 4 3 2 1 0

E F H I N Z V C

- 108 -

ORD

Logically OR Accumulator D with Word from Memory

ACCD’

←←←←

 ACCD OR (M:M+1)

The ORD instruction logically ORs the contents of Accumulator D with a double-byte
value from memory. The 16-bit result is placed back into Accumulator D.

N

The Negative flag is set equal to the new value of bit 15 of Accumulator D.

Z

The Zero flag is set if the new value of the Accumulator D is zero; cleared otherwise.

V

The Overflow flag is cleared by this instruction.

C

The Carry flag is not affected by this instruction.

The ORD instruction is commonly used for setting specific bits in the accumulator to '1'
while leaving other bits unchanged.

When using an immediate operand, it is possible to optimize code by determining if the
value will only affect half of the accumulator. For example:

ORD #$1E00

could be replaced with:

ORA #$1E

To ensure that the Negative (N) condition code is set correctly, this optimization must not
be made if it would result in an ORB instruction that sets bit 7.

See Also:

BIOR

,

BOR

,

OIM

,

OR

 (8-bit)

,

ORCC, ORR

E F H I N Z V C

↕ ↕

0

6309 ONLY

ORD 108A 5 / 4 4 109A 7 / 5 3 10AA 7+ / 6+ 3+ 10BA 8 / 6 4

OP

~

#

IMMEDIATE

OP

~

#

DIRECT

OP

~

#

INDEXED

OP

~

#

EXTENDEDSOURCE
FORM

- 109 -

ORR

Logically OR Source Register with Destination Register

r1’

←←←←

 r1 OR r0

The ORR instruction logically ORs the contents of a source register with the contents of
a destination register. The result is placed into the destination register.

N

The Negative flag is set equal to the value of the result’s high-order bit.

Z

The Zero flag is set if the new value of the destination register is zero; cleared otherwise.

V

The Overflow flag is cleared by this instruction.

C

The Carry flag is not affected by this instruction.

All of the 6309 registers except Q and MD can be specified as either the source or
destination; however specifying the PC register as either the source or destination
produces undefined results.

Although the ORR instruction is capable of altering the flow of program execution by
specifying the PC register as the destination, you should avoid doing so because the pre-
fetch capability of the 6309 can produce un-predictable results.

See “6309 Inter-Register Operations” on page 143 for details on how this instruction
operates when registers of different sizes are specified.

The Immediate operand for this instruction is a postbyte which uses the same format as
that used by the TFR and EXG instructions. For details, see the description of the

TFR

instruction.

See Also:

OR

 (8-bit)

,

ORD

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

ORR

r0

,

r1

IMMEDIATE 1035 4 3

E F H I N Z V C

↕ ↕

0

6309 ONLY

- 110 -

PSH

Push Registers onto a Stack

One additional cycle is used for each BYTE pushed.

These instructions push the current values of none, one or multiple registers onto either
the Hardware (PSHS) or User (PSHU) stack. None of the Condition Code flags are
affected by these instructions.

Only the registers present in the 6809 architecture can be pushed by these instructions.
Additionally, the stack pointer used by the instruction (S or U) cannot be pushed. Each
register specified in the operand field is pushed onto the stack one at a time in the order
shown in the figure below (the order you list them in the operand field is irrelevant).

For each 8-bit register specified, the stack pointer is decremented by one and the
register’s value is stored in the memory location pointed to by the stack pointer. For each
16-bit register specified, the stack pointer is decremented by one, the register’s low-order
byte is stored, the stack pointer is again decremented by one and the register’s high-order
byte is then stored.

The PSH instructions use a postbyte wherein each bit position corresponds to one of the
registers which may be pushed. Bits that are set (1) specify the registers to be pushed.

See Also:

PSHSW

,

PSHUW

,

PUL

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

 PSHS

r0

,

r1,...rN

 PSHS #

i8

IMMEDIATE 34 5+ / 4+ 2

 PSHU

r0

,

r1,...rN

 PSHU #

i8

IMMEDIATE 36 5+ / 4+ 2

Lower Memory Addresses

CC
A
B

DP
X
Y

U

 or

S
PC

Higher Memory Addresses

P
us

h
O

rd
er

POSTBYTE:

PC U/S Y X DP B A CC

7 0

- 111 -

PSHSW

Push Accumulator W onto the Hardware Stack

S’

←←←←

 S - 2
(S:S+1)’

←←←←

 ACCW

This instruction pushes the contents of the W accumulator (E and F) onto the Hardware
Stack (S). None of the Condition Code flags are affected by this instruction.

The PSHSW instruction first decrements hardware stack pointer (S) by one and stores the
low-order byte (Accumulator F) at the address pointed to by S. The stack pointer is then
decremented by one again, and the high-order byte (Accumulator E) is stored.

This instruction was included in the 6309 instruction set to supplement the PSHS
instruction which does not support the W accumulator.

To push either half of the W accumulator onto the hardware stack, you could use the
instructions

STE

,-S

or

STF

,-S

, however these instructions will set the Condition
Code flags to reflect the pushed value.

See Also:

PSH

,

PSHUW

,

PULSW

,

PULUW

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

PSHSW INHERENT 1038 6 2

6309 ONLY

- 112 -

PSHUW

Push Accumulator W onto the User Stack

U’

←←←←

 U - 2
(U:U+1)’

←←←←

 ACCW

This instruction pushes the contents of the W accumulator (E and F) onto the User Stack
(U). None of the Condition Code flags are affected by this instruction.

The PSHUW instruction first decrements user stack pointer (U) by one and stores the
low-order byte (accumulator F) at the address pointed to by U. The stack pointer is then
decremented by one again, and the high-order byte (accumulator E) is stored.

This instruction was included in the 6309 instruction set to supplement the PSHU
instruction which does not support the W accumulator.

To push either half of the W accumulator onto the user stack, you could use the
instructions

STE

,-U

or

STF

,-U

, however these instructions will set the Condition
Code flags to reflect the pushed value.

See Also:

PSH

,

PSHSW

,

PULSW

,

PULUW

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

PSHUW INHERENT 103A 6 2

6309 ONLY

- 113 -

PUL

Pull Registers from Stack

One additional cycle is used for each BYTE pulled.

These instructions pull values for none, one or multiple registers from either the
Hardware (PULS) or User (PULU) stack. None of the Condition Code flags are affected
by these instructions unless the CC register is specified as one of the registers to pull.

Only the registers present in the 6809 architecture can be pulled by these instructions.
The stack pointer used by the instruction (S or U) cannot be pulled. A value is pulled
from the stack for each register specified in the operand field one at a time in the order
shown below (the order you list them in the operand field is irrelevant).

For each 8-bit register specified, a byte is read from the memory location pointed to by
the stack pointer and then the stack pointer is incremented by one. For each 16-bit
register specified, the register’s high-order byte is read from the address pointed to by the
stack pointer and then the stack pointer is incremented by one. Next, the register’s low-
order byte is read and the stack pointer is again incremented by one.

The PUL instructions use a postbyte wherein each bit position corresponds to one of the
registers which may be pulled. Bits that are set (1) specify the registers to be pulled.

See Also:

PSH

,

PULSW

,

PULUW

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

 PULS

r0

,

r1,...rN

 PULS #

i8

IMMEDIATE 35 5+ / 4+ 2

 PULU

r0

,

r1,...rN

 PULU #

i8

IMMEDIATE 37 5+ / 4+ 2

Lower Memory Addresses

CC
A
B

DP
X
Y

U

 or

S
PC

Higher Memory Addresses

P
ul

l O
rd

er

POSTBYTE:

PC U/S Y X DP B A CC

7 0

- 114 -

PULSW

Pull Accumulator W from the Hardware Stack

ACCW’

←←←←

 (S:S+1)
S’

←←←←

 S + 2

This instruction pulls a value for the W accumulator (E and F) from the Hardware Stack
(S). None of the Condition Code flags are affected by this instruction.

The PULSW instruction first loads the high-order byte (Accumulator E) with the value
stored at the address pointed to by the hardware stack pointer (S) and increments the
stack pointer by one. Next, the low-order byte (Accumulator F) is loaded and the stack
pointer is again incremented by one.

This instruction was included in the 6309 instruction set to supplement the PULS
instruction which does not support the W accumulator.

To pull either half of the W accumulator from the hardware stack, you could use the
instructions

LDE

,S+

or

LDF

,S+

, however these instructions will set the Condition
Code flags to reflect the pulled value.

See Also:

PSHSW

,

PSHUW

,

PUL, PULUW

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

PULSW INHERENT 1039 6 2

6309 ONLY

- 115 -

PULUW

Pull Accumulator W from the User Stack

ACCW’

←←←←

 (U:U+1)
U’

←←←←

 U + 2

This instruction pulls a value for the W accumulator (E and F) from the User Stack (U).
None of the Condition Code flags are affected by this instruction.

The PULUW instruction first loads the high-order byte (Accumulator E) with the value
stored at the address pointed to by the user stack pointer (U) and increments the stack
pointer by one. Next, the low-order byte (Accumulator F) is loaded and the stack pointer
is again incremented by one.

This instruction was included in the 6309 instruction set to supplement the PULU
instruction which does not support the W accumulator.

To pull either half of the W accumulator from the user stack, you could use the
instructions

LDE

,U+

or

LDF

,U+

, however these instructions will set the Condition
Code flags to reflect the pulled value.

See Also:

PSHSW

,

PSHUW

,

PUL, PULSW

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

PULUW INHERENT 103B 6 2

6309 ONLY

- 116 -

ROL

(8 Bit)

Rotate 8-Bit Accumulator or Memory Byte Left through Carry

These instructions rotate the contents of the A or B accumulator or a specified byte in
memory to the left by one bit, through the Carry bit of the CC register (effectively a 9-bit
rotation). Bit 0 receives the original value of the Carry flag, while the Carry flag receives
the original value of bit 7.

N

The Negative flag is set equal to the new value of bit 7.

Z

The Zero flag is set if the new 8-bit value is zero; cleared otherwise.

V

The Overflow flag is set equal to the exclusive-OR of the original values of bits 6 and 7.

C

The Carry flag receives the value shifted out of bit 7.

The ROL instructions can be used for subsequent bytes of a multi-byte shift to bring in
the carry bit from previous shift or rotate instructions. Other uses include conversion of
data from serial to parallel and vise-versa.

The 6309 does not provide variants of ROL to operate on the E and F accumulators.
However, you can achieve the same functionality using the ADCR instruction. The
instructions

ADCR E,E

 and

ADCR F,F

 will perform a left-rotate operation on the E and F
accumulators respectively.

See Also:

ADCR

,

ROL

 (16-bit)

E F H I N Z V C

↕ ↕ ↕ ↕

C b7 b0

ROLA 49 2 / 1 1
ROLB 59 2 / 1 1
ROL 09 6 / 5 2 69 6+ 2+ 79 7 / 6 3

OP

~

#

INHERENT

OP

~

#

DIRECT

OP

~

#

INDEXED

OP

~

#

EXTENDEDSOURCE
FORMS

- 117 -

ROL

(16 Bit)

Rotate 16-Bit Accumulator Left through Carry

These instructions rotate the contents of the D or W accumulator to the left by one bit,
through the Carry bit of the CC register (effectively a 17-bit rotation). Bit 0 receives the
original value of the Carry flag, while the Carry flag receives the original value of bit 15.

N

The Negative flag is set equal to the new value of bit 15.

Z

The Zero flag is set if the new 16-bit value is zero; cleared otherwise.

V

The Overflow flag is set equal to the exclusive-OR of the original values of bits 14 and 15.

C

The Carry flag receives the value shifted out of bit 15.

The ROL instructions can be used for subsequent words of a multi-byte shift to bring in
the carry bit from a previous shift or rotate instruction. Other uses include conversion of
data from serial to parallel and vise-versa.

A left rotate of the 32-bit Q accumulator can be achieved by executing

ROLW

immediately followed by

ROLD

.

See Also:

ROL

(8-bit)

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

ROLD INHERENT 1049 3 / 2 2

ROLW INHERENT 1059 3 / 2 2

E F H I N Z V C

↕ ↕ ↕ ↕

6309 ONLY

C b15 b0

- 118 -

ROR

(8 Bit)

Rotate 8-Bit Accumulator or Memory Byte Right through Carry

These instructions rotate the contents of the A or B accumulator or a specified byte in
memory to the right by one bit, through the Carry bit of the CC register (effectively a 9-
bit rotation). Bit 7 receives the original value of the Carry flag, while the Carry flag
receives the original value of bit 0.

N

The Negative flag is set equal to the new value of bit 7 (original value of Carry).

Z

The Zero flag is set if the new 8-bit value is zero; cleared otherwise.

V

The Overflow flag is not affected by these instructions.

C

The Carry flag receives the value shifted out of bit 0.

The ROR instructions can be used for subsequent bytes of a multi-byte shift to bring in
the carry bit from previous shift or rotate instructions. Other uses include conversion of
data from serial to parallel and vise-versa.

The 6309 does not provide variants of ROR to operate on the E and F accumulators.

See Also:

ROR

 (16-bit)

E F H I N Z V C

↕ ↕ ↕

b7 b0 C

RORA 46 2 / 1 1
RORB 56 2 / 1 1
ROR 06 6 / 5 2 66 6+ 2+ 76 7 / 6 3

OP

~

#

INHERENT

OP

~

#

DIRECT

OP

~

#

INDEXED

OP

~

#

EXTENDEDSOURCE
FORMS

- 119 -

ROR

(16 Bit)

Rotate 16-Bit Accumulator Right through Carry

These instructions rotate the contents of the D or W accumulator to the right by one bit,
through the Carry bit of the CC register (effectively a 17-bit rotation). Bit 15 receives the
original value of the Carry flag, while the Carry flag receives the original value of bit 0.

N

The Negative flag is set equal to the new value of bit 15 (original value of Carry).

Z

The Zero flag is set if the new 16-bit value is zero; cleared otherwise.

V

The Overflow flag is not affected by these instructions.

C

The Carry flag receives the value shifted out of bit 0.

The ROR instructions can be used for subsequent words of a multi-byte shift to bring in
the carry bit from a previous shift or rotate instruction. Other uses include conversion of
data from serial to parallel and vise-versa.

A right rotate of the 32-bit Q accumulator can be achieved by executing

RORD

immediately followed by

RORW

.

See Also:

ROR

(8-bit)

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

RORD INHERENT 1046 3 / 2 2

RORW INHERENT 1056 3 / 2 2

E F H I N Z V C

↕ ↕ ↕

6309 ONLY

b15 b0 C

- 120 -

RTI

Return from Interrupt

The RTI instruction restores the
machine state which was
stacked upon the invocation of
an interrupt service routine.

The exact behavior of the RTI
instruction depends on the state
of the E flag in the stacked CC
register and the state of the NM
bit in the MD register.

The E flag will have been set or
cleared at the time of the
interrupt, based on the type of
interrupt that occurred and the
state of the FM bit in the MD
register at that time.

Interrupt service routines should strive to use the RTI instruction for returning control to
the interrupted task. All the logic for proper restoration of the machine state, based on the
CPU’s current execution mode, is built-in.

When an RTI instruction is executed, the state of the NM bit in the MD register must
match the state it was in when the interrupt occurred, otherwise if the E flag was set, the
wrong values will be restored to the DP, X, Y, U and PC registers. For this reason,
interrupt service routines should avoid changing the NM bit unless they are prepared to
deal with this situation.

Service routines which must examine or modify the stacked machine state can require a
considerable amount of additional code to determine which registers have been
preserved. In particular, the 6309 provides no instruction for testing the state of the NM
bit in the MD register (see page 144 for the listing of a subroutine which can accomplish
this).

See Also:

CWAI

,

RTS

,

SWI

,

SWI2

,

SWI3

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

RTI INHERENT 3B

 CC.E=0:

 6

 CC.E=1:

 15 / 17 1

RTI

PULL CC

E = 1
?

PULL A, B

Yes

NM = 1
? PULL E, F

Yes

PULL DP, X, Y, U

No

PULL PC

No

DONE

6309 Only

RTI Instruction Flow

- 121 -

RTS

Return from Subroutine

PC’

←←←←

 (S:S+1)
S’

←←←←

 S + 2

This instruction pulls the double-byte value pointed to by the hardware stack pointer (S)
and places it into the PC register. No condition code flags are affected. The effective
result is the same as would be achieved using a

PULS PC

 instruction.

RTS is typically used to exit from a subroutine that was called via a BSR or JSR
instruction. Note, however, that a subroutine which preserves registers on entry by
pushing them onto the stack, may opt to use a single PULS instruction to both restore the
registers and return to the caller, as in:

ENTRY PSHS A,B,X ; Preserve registers
...
...
PULS A,B,X,PC ; Restore registers and return

See Also:

BSR

,

JSR

,

 PULS

,

RTI

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

RTS INHERENT 39 5 / 4 1

E F H I N Z V C

- 122 -

SBC

(8 Bit)

Subtract Memory Byte and Carry from Accumulator A or B

r’

←←←←

 r - IMM8|(M) - C

These instructions subtract either an 8-bit immediate value or the contents of a memory
byte, plus the value of the Carry flag from the A or B accumulator. The 8-bit result is
placed back into the specified accumulator. Note that since subtraction is performed, the
purpose of the Carry flag is to represent a Borrow.

H

The affect on the Half-Carry flag is undefined for these instructions.

N

The Negative flag is set equal to the new value of bit 7 of the accumulator.

Z

The Zero flag is set if the new accumulator value is zero; cleared otherwise.

V

The Overflow flag is set if an overflow occurred; cleared otherwise.

C

The Carry flag is set if a borrow into bit-7 was needed; cleared otherwise.

The SBC instruction is most often used to perform subtraction of the subsequent bytes of
a multi-byte subtraction. This allows the borrow from a previous SUB or SBC instruction
to be included when doing subtraction for the next higher-order byte.

Since the 6809 and 6309 both provide 16-bit SUB instructions for the accumulators, it is
not necessary to use the 8-bit SUB and SBC instructions to perform 16-bit subtraction.

See Also:

SBCD

,

SBCR

E F H I N Z V C

~

↕ ↕ ↕ ↕

SBCA 82 2 2 92 4 / 3 2 A2 4+ 2+ B2 5 / 4 3
SBCB C2 2 2 D2 4 / 3 2 E2 4+ 2+ F2 5 / 4 3

OP

~

#

IMMEDIATE

OP

~

#

DIRECT

OP

~

#

INDEXED

OP

~

#

EXTENDEDSOURCE
FORMS

- 123 -

SBCD

Subtract Memory Word and Carry from Accumulator D

ACCD’

←←←←

 ACCD - IMM16|(M:M+1) - C

The SBCD instruction subtracts either a 16-bit immediate value or the contents of a
double-byte value in memory, plus the value of the Carry flag from the D accumulator.
The 16-bit result is placed back into Accumulator D. Note that since subtraction is
performed, the purpose of the Carry flag is to represent a Borrow.

H

The Half-Carry flag is not affected by the SBCD instruction.

N

The Negative flag is set equal to the new value of bit 15 of Accumulator D.

Z

The Zero flag is set if the new value of Accumulator D is zero; cleared otherwise.

V

The Overflow flag is set if an overflow occurred; cleared otherwise.

C

The Carry flag is set if a borrow into bit 15 was needed; cleared otherwise.

The SBCD instruction is most often used to perform subtraction of subsequent words of
a multi-byte subtraction. This allows the borrow from a previous SUB or SBC instruction
to be included when doing subtraction for the next higher-order word.

The following instruction sequence is an example showing how 32-bit subtraction can be
performed on a 6309 microprocessor:

LDQ VAL1ADR ; Q = 32-bit minuend
SUBW VAL2ADR+2 ; Subtract lower half of subtrahend
SBCD VAL2ADR ; Subtract upper half of subtrahend
STQ RESULT ; Store difference

See Also:

SBC

 (8-bit)

,

SBCR

E F H I N Z V C

↕ ↕ ↕ ↕

6309 ONLY

SBCD 1082 5 / 4 4 1092 7 / 5 3 10A2 7+ / 6+ 3+ 10B2 8 / 6 4

OP

~

#

IMMEDIATE

OP

~

#

DIRECT

OP

~

#

INDEXED

OP

~

#

EXTENDEDSOURCE
FORM

- 124 -

SBCR

Subtract Source Register and Carry from Destination Register

r1’

←←←←

 r1 - r0 - C

The SBCR instruction subtracts the contents of a source register plus the value of the
Carry flag from the contents of a destination register. The result is placed into the
destination register.

H

The Half-Carry flag is not affected by the SBCR instruction.

N

The Negative flag is set equal to the value of the result’s high-order bit.

Z

The Zero flag is set if the new value of the destination register is zero; cleared otherwise.

V

The Overflow flag is set if an overflow occurred; cleared otherwise.

C

The Carry flag is set if a borrow into the high-order bit was needed; cleared otherwise.

All of the 6309 registers except Q and MD can be specified as either the source or
destination; however specifying the PC register as either the source or destination
produces undefined results.

The SBCR instruction will perform either 8-bit or 16-bit subtraction according to the size
of the destination register. When registers of different sizes are specified, the source will
be promoted, demoted or substituted depending on the size of the destination and on
which specific 8-bit register is involved. See “6309 Inter-Register Operations” on
page 143 for further details.

Although the SBCR instruction is capable of altering the flow of program execution by
specifying the PC register as the destination, you should avoid doing so because the pre-
fetch capability of the 6309 can produce un-predictable results.

The Immediate operand for this instruction is a postbyte which uses the same format as
that used by the TFR and EXG instructions. See the description of the

TFR

 instruction
for further details.

See Also:

SBC

 (8-bit)

,

SBCD

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

SBCR

r0

,

r1

IMMEDIATE 1033 4 3

E F H I N Z V C

↕ ↕ ↕ ↕

6309 ONLY

- 125 -

SEX

Sign Extend the 8-bit Value in B to a 16-bit Value in D

This instruction extends the 8-bit twos complement value in Accumulator B into a 16-bit
twos complement value in Accumulator D. This is accomplished by copying the value of
bit 7 (the sign bit) from Accumulator B into all 8 bits of Accumulator A.

N

The Negative flag is also set equal the value of bit 7 in Accumulator B

Z

The Zero flag is set if the new value of Accumulator D is zero (B was zero); cleared otherwise.

V

The Overflow flag is not affected by this instruction.

C

The Carry flag is not affected by this instruction.

The SEX instruction is used when a signed (twos complement) 8-bit value needs to be
promoted to a full 16-bit value. For unsigned arithmetic, promoting an 8-bit value in
Accumulator A to a 16-bit value in Accumulator D requires zero-extending the value by
executing a CLRA instruction instead.

On a 6309, you can sign extend an 8-bit value in Accumulator A to a 32-bit value in
Accumulator Q by executing the following sequence of instructions:

SEX ; Sign extend A into D
TFR D,W ; Move D to W
SEXW ; Sign extend W into Q

See Also:

SEXW

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

SEX INHERENT 1D 2 / 1 1

E F H I N Z V C

↕ ↕

b7

Accumulator A Accumulator B
Accumulator D

N

- 126 -

SEXW

Sign Extend a 16-bit Value in W to a 32-bit Value in Q

This instruction extends the 16-bit twos complement value in Accumulator W into a 32-
bit twos complement value in Accumulator Q. This is accomplished by copying the value
of bit 15 (the sign bit) from Accumulator W into all 16 bits of Accumulator D.

N

The Negative flag is also set equal the value of bit 15 in Accumulator W

Z

The Zero flag is set if the new value of Accumulator Q is zero (W was zero); cleared otherwise.

V

The Overflow flag is not affected by this instruction.

C

The Carry flag is not affected by this instruction.

The SEXW instruction is used when a signed (twos complement) 16-bit value needs to
be promoted to a full 32-bit value. For unsigned arithmetic, promoting a 16-bit value in
Accumulator W to a 32-bit value in Accumulator Q requires zero-extending the value by
executing a CLRD instruction instead.

You can sign extend an 8-bit value in Accumulator A to a 32-bit value in Accumulator Q
by executing the following sequence of instructions:

SEX ; Sign extend A into D
TFR D,W ; Move D to W
SEXW ; Sign extend W into Q

See Also:

SEX

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

SEXW INHERENT 14 4 1

E F H I N Z V C

↕ ↕

6309 ONLY

b15

Accumulator D Accumulator W
Accumulator Q

N

- 127 -

ST

(8 Bit)

Store 8-Bit Accumulator to Memory

(M)’

←←←←

 r

STE

 and

STF

 are available on 6309 only.

These instructions store the contents of one of the 8-bit accumulators (A,B,E,F) into a
byte in memory. The Condition Codes are affected as follows.

N

The Negative flag is set equal to the value of bit 7 of the accumulator.

Z

The Zero flag is set if the accumulator’s value is zero; cleared otherwise.

V

The Overflow flag is always cleared.

C

The Carry flag is not affected by these instructions.

See Also:

ST

 (16-bit)

,

STQ

E F H I N Z V C

↕ ↕

0

STA 97 4 / 3 2 A7 4+ 2+ B7 5 / 4 3
STB D7 4 / 3 2 E7 4+ 2+ F7 5 / 4 3
STE 1197 5 / 4 3 11A7 5+ 3+ 11B7 6 / 5 4
STF 11D7 5 / 4 3 11E7 5+ 3+ 11F7 6 / 5 4

OP

~

#

IMMEDIATE

OP

~

#

DIRECT

OP

~

#

INDEXED

OP

~

#

EXTENDEDSOURCE
FORMS

- 128 -

ST

(16 Bit)

Store 16-Bit Register to Memory

(M:M+1)’

←←←←

 r

STW

 is available on 6309 only.

These instructions store the contents of one of the 16-bit accumulators (D,W) or one of
the 16-bit Index/Stack registers (X,Y,U,S) to a pair of memory bytes in big-endian order.
The Condition Codes are affected as follows:

N

The Negative flag is set equal to the value in bit 15 of the register.

Z

The Zero flag is set if the register value is zero; cleared otherwise.

V

The Overflow flag is always cleared.

C

The Carry flag is not affected by these instructions.

See Also:

ST

 (8-bit)

,

STQ

E F H I N Z V C

↕ ↕

0

STD DD 5 / 4 2 ED 5+ 2+ FD 6 / 5 3
STS 10DF 6 / 5 3 10EF 6+ 3+ 10FF 7 / 6 4
STU DF 5 / 4 2 EF 5+ 2+ FF 6 / 5 3
STW 1097 6 / 5 3 10A7 6+ 3+ 10B7 7 / 6 4
STX 9F 5 / 4 2 AF 5+ 2+ BF 6 / 5 3
STY 109F 6 / 5 3 10AF 6+ 3+ 10BF 7 / 6 4

OP

~

#

IMMEDIATE

OP

~

#

DIRECT

OP

~

#

INDEXED

OP

~

#

EXTENDEDSOURCE
FORMS

- 129 -

STBT

Store value of a Register Bit into Memory

(DPM).dstBit’

←←←←

 r.srcBit

The STBT instruction stores the value of a specified bit in either the A, B or CC registers
to a specified bit in memory. None of the Condition Code flags are affected by the
operation. The usefulness of the STBT instruction is limited by the fact that only Direct
Addressing is permitted.

The figure above shows an example of the STBT instruction where bit 5 from
Accumulator A is stored into bit 1 of memory location $0040 (DP = 0).

The object code format for the STBT instruction is:

See Also:

BAND

,

BEOR

,

BIAND

,

BIEOR

,

BIOR

,

BOR

,

LDBT

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

STBT

r

,

sBit

,

dBit

,

addr

DIRECT 1137 8 / 7 4

$11 $37 POSTBYTE ADDRESS LSB

6309 ONLY

Accumulator A

1 1 0 0 0 1 1 0$0F0 0 0 0 1 1 1 1

7 6 5 4 3 2 1 0

$0D0 0 0 0 1 1 0 1

$C6

Memory Location $0040

7 6 5 4 3 2 1 0

STBT A,5,1,$40

Source (register) Bit Number (0 - 7)

Destination (memory) Bit Number (0 - 7)

Register Code

7 6 5 4 3 2 1 0

POSTBYTE FORMAT

Code Register

0 0 CC

0 1 A

1 0 B

1 1 Invalid

- 130 -

STQ

Store Contents of Accumulator Q to Memory

(M:M+3)’

←←←←

 Q

This instruction stores the contents of the Q accumulator into 4 sequential bytes of
memory in big-endian order. The Condition Codes are affected as follows.

N

The Negative flag is set equal to the value of bit 31 of Accumulator Q.

Z

The Zero flag is set if the value of Accumulator Q is zero; cleared otherwise.

V

The Overflow flag is always cleared.

C

The Carry flag is not affected by this instruction.

See Also:

ST

 (8-bit),

ST

 (16-bit)

E F H I N Z V C

↕ ↕

0

6309 ONLY

STQ 10DD 8 / 7 3 10ED 8+ 3+ 10FD 9 / 8 4

OP

~

#

IMMEDIATE

OP

~

#

DIRECT

OP

~

#

INDEXED

OP

~

#

EXTENDEDSOURCE
FORMS

- 131 -

SUB

(8 Bit)

Subtract from value in 8-Bit Accumulator

r’

←←←←

 r - IMM8|(M)

SUBE

 and

SUBF

 are available on 6309 only.

These instructions subtract either an 8-bit immediate value or the contents of a byte in
memory from one of the 8-bit accumulators (A,B,E,F). The 8-bit result is placed back
into the specified accumulator. Note that since subtraction is performed, the purpose of
the Carry flag is to represent a Borrow.

H

The value of Half-Carry flag is undefined after executing these instructions.

N

The Negative flag is set equal to the new value of bit 7 of the accumulator.

Z

The Zero flag is set if the new accumulator value is zero; cleared otherwise.

V

The Overflow flag is set if an overflow occurred; cleared otherwise.

C

The Carry flag is set if a borrow into bit 7 was needed; cleared otherwise.

The 8-bit SUB instructions are used for single-byte subtraction, and for subtraction of the
least-significant byte in multi-byte subtractions. Since the 6809 and 6309 both provide
16-bit SUB instructions for the accumulators, it is not necessary to use the 8-bit SUB and
SBC instructions to perform 16-bit subtraction.

See Also:

SUB

 (16-bit)

,

SUBR

E F H I N Z V C

~

↕ ↕ ↕ ↕

SUBA 80 2 2 90 4 / 3 2 A0 4+ 2+ B0 5 / 4 3
SUBB C0 2 2 D0 4 / 3 2 E0 4+ 2+ F0 5 / 4 3
SUBE 1180 3 3 1190 5 / 4 3 11A0 5+ 3+ 11B0 6 / 5 4
SUBF 11C0 3 3 11D0 5 / 4 3 11E0 5+ 3+ 11F0 6 / 5 4

OP

~

#

IMMEDIATE

OP

~

#

DIRECT

OP

~

#

INDEXED

OP

~

#

EXTENDEDSOURCE
FORMS

- 132 -

SUB

(16 Bit)

Subtract from value in 16-Bit Accumulator

r’

←←←←

 r - IMM16|(M:M+1)

SUBW

 is available on 6309 only.

These instructions subtract either a 16-bit immediate value or the contents of a double-
byte value in memory from one of the 16-bit accumulators (D,W). The 16-bit result is
placed back into the specified accumulator. Note that since subtraction is performed, the
purpose of the Carry flag is to represent a Borrow.

H

The Half-Carry flag is not affected by these instructions.

N

The Negative flag is set equal to the new value of bit 15 of the accumulator.

Z

The Zero flag is set if the new accumulator value is zero; cleared otherwise.

V

The Overflow flag is set if an overflow occurred; cleared otherwise.

C

The Carry flag is set if a borrow out of bit 7 was needed; cleared otherwise.

The 16-bit SUB instructions are used for 16-bit subtraction, and for subtraction of the
least-significant word of multi-byte subtractions. See the description of the

SBCD

instruction for an example of how 32-bit subtraction can be performed on a 6309.

See Also:

SUB

 (8-bit)

,

SUBR

E F H I N Z V C

↕ ↕ ↕ ↕

SUBD 83 4 / 3 3 93 6 / 4 2 A3 6+ / 5+ 2+ B3 7 / 5 3
SUBW 1080 5 / 4 4 1090 7 / 5 3 10A0 7+ / 6+ 3+ 10B0 8 / 6 4

OP

~

#

IMMEDIATE

OP

~

#

DIRECT

OP

~

#

INDEXED

OP

~

#

EXTENDEDSOURCE
FORMS

- 133 -

SUBR

Subtract Source Register from Destination Register

r1’

←←←←

 r1 - r0

The SUBR instruction subtracts the value contained in the source register from the value
contained in the destination register. The result is placed into the destination register.
Note that since subtraction is performed, the purpose of the Carry flag is to represent a
Borrow.

H

The Half-Carry flag is not affected by the SUBR instruction.

N

The Negative flag is set equal to the value of the result’s high-order bit.

Z

The Zero flag is set if the new value of the destination register is zero; cleared otherwise.

V

The Overflow flag is set if an overflow occurred; cleared otherwise.

C

The Carry flag is set if a borrow into the high-order bit was needed; cleared otherwise.

All of the 6309 registers except Q and MD can be specified as either the source or
destination; however specifying the PC register as either the source or destination
produces undefined results.

The SUBR instruction will perform either 8-bit or 16-bit subtraction according to the size
of the destination register. When registers of different sizes are specified, the source will
be promoted, demoted or substituted depending on the size of the destination and on
which specific 8-bit register is involved. See “6309 Inter-Register Operations” on
page 143 for further details.

Although the SUBR instruction is capable of altering the flow of program execution by
specifying the PC register as the destination, you should avoid doing so because the pre-
fetch capability of the 6309 can produce un-predictable results.

The Immediate operand for this instruction is a postbyte which uses the same format as
that used by the TFR and EXG instructions. See the description of the

TFR

 instruction
for further details.

See Also:

SUB

 (8-bit)

,

SUB

 (16-bit)

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

SUBR

r0

,

r1

IMMEDIATE 1032 4 3

E F H I N Z V C

↕ ↕ ↕ ↕

6309 ONLY

- 134 -

SWI

Software Interrupt

The SWI, SWI2 and SWI3
instructions each invoke a
Software Interrupt.

Each of these instructions first
set the E flag in the CC register
and then push the machine state
onto the hardware stack (S).

After stacking the machine
state, the SWI instruction sets
the I and F interrupt masks in
the CC register. SWI2 and
SWI3 do not modify the mask.

Finally, control is transferred to
the interrupt service routine whose address is obtained from the vector which
corresponds to the particular instruction.

The state of the NM bit in the MD register determines whether or not the E and F
accumulators are included in the stacked machine state. Service routines should be
written to work properly regardless of the current state of the NM bit. This is best
accomplished by avoiding modification of the NM bit and using the RTI instruction to
return control to the interrupted task. If an SWI service routine needs to examine or
modify the stacked machine state, it may first need to determine the current state of the
NM bit. See page 144 for the listing of a subroutine that will accomplish this task.

NOTE

: When Motorola introduced the 6809, they designated SWI2 as an instruction
reserved for the end user, and not to be used in packaged software. Under the OS9
operating system, SWI2 is used to invoke

Service Requests

.

See Also:

RTI

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

SWI INHERENT 3F 19 / 21 1

SWI2 INHERENT 103F 20 / 22 2

SWI3 INHERENT 113F 20 / 22 2

SWI,

SWI2,

SWI3

SET: E = 1

SET: I = 1; F = 1

DONE

SWI Instruction Flow

PUSH

Yes

No

PC

←

 [FFFA:B]

PC

←

 [FFF4:5]

PC

←

 [FFF2:3]
PC, U, Y, X, DP

PUSH F, E

6309 Only

NM = 1
?

PUSH B, A, CC

SWI SWI2 SWI3

- 135 -

SYNC

Synchronize with Interrupt

Halt Execution and Wait for Interrupt

The SYNC instruction allows software to synchronize itself with an external hardware
event (interrupt). When executed, SYNC places the CPU’s data and address busses into a
high-impedance state, stops executing instructions and waits for an interrupt. None of the
Condition Code flags are directly affected by this instruction.

When a signal is asserted on any one of the CPU’s 3 interrupt lines (IRQ, FIRQ or NMI),
the CPU clears the synchronizing state and resumes processing. If the interrupt type is
not masked and the interrupt signal remains asserted for at least 3 cycles, then the CPU
will stack the machine state accordingly and vector to the interrupt service routine. If the
interrupt type is masked, or the interrupt signal was asserted for less than 3 cycles, then
the CPU will simply resume execution at the following instruction without invoking the
interrupt service routine.

Typically, SYNC is executed with interrupts masked so that the following instruction will
be executed as quickly as possible after the synchronizing event occurs (no service
routine overhead). Unlike CWAI, the SYNC instruction does not include the ability to set
or clear the interrupt masks as part of its operation. A separate ORCC or ANDCC
instruction would be needed to accomplish this.

SYNC may be useful for synchronizing with a video display or for performing fast data
acquisition from an I/O device.

See Also:

ANDCC

,

 CWAI

,

 RTI

,

SYNC

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

SYNC IMMEDIATE 13

≥

 4 /

≥

 3 1

- 136 -

TFM

Transfer Memory

Three additional cycles are used for each BYTE transferred.

The TFM instructions transfer the number of bytes specified in the W accumulator from a
source address pointed to by the X, Y, U, S or D registers to a destination address also
pointed to by one of those registers. After each byte is transferred the source and destination
registers may both be incremented by one, both decremented by one, only the source
incremented, or only the destination incremented. Accumulator W is always decremented by
one after each byte is transferred. The instruction completes when W is decremented to 0.

The forms which increment or decrement both addresses provide a block-move operation.
Typically, the decrementing form is needed when the source block resides at a lower address
than the destination block AND the two blocks may overlap each other.

The forms which increment only one of the addresses are useful for filling a block of
memory with a particular byte value (destination increments), and for reading or writing a
block of data from or to a memory-mapped I/O device. For the reasons described below, I/O
transfers should always be performed with interrupts masked.

The Immediate operand for this instruction is a postbyte which uses the same format as that
used by the TFR and EXG instructions. An Illegal Instruction exception will occur if the
postbyte contains encodings for registers other than X, Y, U, S or D.

IMPORTANT

:

The TFM instructions are unique in that they are the only instructions that may be
interrupted before they have completed. If an unmasked interrupt occurs while executing a
TFM instruction, the CPU will interrupt the operation at a point where it has read a byte
from the source address, but before it has incremented or decremented any registers or
stored the byte at the destination address. The interrupt service routine will be invoked in the
normal manner except for the fact that the PC value pushed onto the stack will still point to
the TFM instruction. This causes the TFM instruction to be executed again when the service
routine returns. Since the address registers were not updated prior to the invocation of the
service routine, TFM will start by reading a byte from the previous source address for a
second time.

It is also important to remember that in emulation mode (NM=0), the W register is not
automatically preserved. If a service routine modifies W but does not explicitly preserve its
original value, it could alter the actual number of bytes processed by a TFM instruction.

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

 TFM

r0

+,

r1

+ IMMEDIATE 1138 6 + 3n 3

 TFM

r0

-,

r1

- IMMEDIATE 1139 6 + 3n 3

 TFM

r0

+,

r1

IMMEDIATE 113A 6 + 3n 3

 TFM

r0

,

r1

+ IMMEDIATE 113B 6 + 3n 3

6309 ONLY

- 137 -

TFR

Transfer Register to Register

r0

→→→→

 r1

TFR copies the contents of a source register into a destination register. None of the
Condition Code flags are affected unless CC is specified as the destination register.

Any of the 6309 registers except Q and MD may be specified as either the source,
destination or both. Specifying the same register for both the source and destination
produces an instruction which, like NOP, has no effect.

The TFR instruction can be used to alter the flow of execution by specifying PC as the
destination register.

When an 8-bit source register is transferred to a 16-bit destination register, the contents
of the 8-bit register are placed into both halves of the 16-bit register. When a 16-bit
source register is transferred to an 8-bit destination register, only the upper or the lower
half of the 16-bit register is transferred. As illustrated in the diagram below, which half is
transferred depends on which 8-bit register is specified as the destination.

The TFR instruction requires a postbyte in which the source and destination registers are
encoded into the upper and lower nibbles respectively.

See Also:

EXG

,

 TFR (

6809 implementation

)

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

TFR

r0

,

r1

IMMEDIATE 1F 6 / 4 2

6309 IMPLEMENTATION

A B E F DP CC

MSB LSB

16-bit register (D, X, Y, U, S, PC, W, V):

8-bit register:

b0b15 b8 b7

Code Register Code Register

0000

D

1000

A

0001

X

1001

B

0010

Y

1010

CC

0011

U

1011

DP

0100

S

1100

0

0101

PC

1101

0

0110

W

1110

E

0111

V

1111

F

r0
r1

b0b3b7 b4

POSTBYTE:

Shaded encodings are invalid
on 6809 microprocessors

- 138 -

TFR

Transfer Register to Register

r0

→→→→

 r1

TFR copies the contents of a source register into a destination register. None of the
Condition Code flags are affected unless CC is specified as the destination register.

The TFR instruction can be used to alter the flow of execution by specifying PC as the
destination register.

Any of the 6809 registers may be specified as either the source, destination or both.
Specifying the same register for both the source and destination produces an instruction
which, like NOP, has no effect.

The table below explains how the destination register is affected when the source and
destination sizes are different. This behavior differs from the 6309 implementation.

The TFR instruction requires a postbyte in which the source and destination registers are
encoded into the upper and lower nibbles respectively.

If an invalid register encoding is used for the source, a constant value of FF

16

 or FFFF

16

 is
transferred to the destination. If an invalid register encoding is used for the destination,
then the instruction will have no effect.

The invalid register encodings have valid
meanings when executed on 6309 processors, and should be avoided in code that
needs to work the same way on both CPU’s.

See Also:

EXG

,

 TFR (

6309 implementation

)

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

TFR

r0

,

r1

IMMEDIATE 1F 6 2

Operation 8-bit Register Used Results

16

→�→→→

 8 Any Destination = LSB from Source

8

→�→→→

 16 A or B MSB of Destination = FF

16

 ; LSB = Source

8

→�→→→

 16 CC or DP Both MSB and LSB of Destination = Source

6809 IMPLEMENTATION

Code Register Code Register

0000

D

1000

A

0001

X

1001

B

0010

Y

1010

CC

0011

U

1011

DP

0100

S

1100

invalid

0101

PC

1101

invalid

0110

invalid

1110

invalid

0111

invalid

1111

invalid

r0
r1

b0b3b7 b4

POSTBYTE:

- 139 -

TIM

Bit Test Immediate Value with Memory Byte

TEMP

←←←←

 (M) AND IMM8

The TIM instruction logically ANDs the contents of a byte in memory with an 8-bit
immediate value. The resulting value is tested and then discarded. The Condition Codes
are updated to reflect the results of the test as follows:

N

The Negative flag is set equal to bit 7 of the resulting value.

Z

The Zero flag is set if the resulting value was zero; cleared otherwise.

V

The Overflow flag is cleared by this instruction.

C

The Carry flag is not affected by this instruction.

TIM can be used as a space-saving optimization for a pair of equivalent 6809
instructions, and to perform a bit test without having to utilize a register. However, it is
slower than the 6809 equivalent:

6809:

(4 instruction bytes; 7 cycles)

:

LDA #$3F
BITA 4,U

6309:

(3 instruction bytes; 8 cycles)

:

TIM #$3F;4,U

Note that the assembler syntax used for the TIM operand is non-typical. Some
assemblers may require a comma (,) rather than a semicolon (;) between the immediate
operand and the address operand.

The object code format for the TIM instruction is:

See Also:

AIM

,

 AND

,

EIM

,

OIM

E F H I N Z V C

↕ ↕

0

OPCODE IMMED VALUE ADDRESS / INDEX BYTE(S)

6309 ONLY

TIM #

i8

;

EA

0B 6 3 6B 7+ 3+ 7B 7 4

OP

~

#

IMMEDIATE

OP

~

#

DIRECT

OP

~

#

INDEXED

OP

~

#

EXTENDEDSOURCE
FORM

- 140 -

TST

(accumulator)

Test Value in Accumulator

TEMP

←←←←

 r

TSTD

,

TSTE

,

TSTF

 and TSTW are available on 6309 only.

The TST instructions test the value in an accumulator to setup the Condition Codes
register with minimal status for that value. The accumulator itself is not modified by
these instructions.

N

The Negative flag is set equal to the value of the accumulator’s high-order bit (sign bit).

Z

The Zero flag is set if the accumulator’s value is zero; cleared otherwise.

V

The Overflow flag is always cleared.

C

The Carry flag is not affected by these instructions.

For unsigned values, the only meaningful information provided is whether or not the
value is zero. In this case, BEQ or BNE would typically follow such a test.

For signed (twos complement) values, the information provided is sufficient to allow any
of the signed conditional branches (BGE, BGT, BLE, BLT) to be used as though the
accumulator’s value had been compared with zero. You can also use BMI and BPL to
branch according to the sign of the value.

To determine the sign of a 16-bit or 32-bit value, you only need to test the high order
byte. For example,

TSTA

 is sufficient for determining the sign of a 32-bit twos
complement value in accumulator Q. A full test of accumulator Q could be
accomplished by storing it to a scratchpad RAM location (or ROM address). In a
traditional stack environment, the instruction

STQ -4,S

may be acceptable.

See Also:

CMP

,

 STQ

,

 TST

 (memory)

SOURCE FORM ADDRESSING MODE OPCODE CYCLES BYTE COUNT

TSTA INHERENT 4D 2 / 1 1

TSTB INHERENT 5D 2 / 1 1

TSTD INHERENT 104D 3 / 2 2

TSTE INHERENT 114D 3 / 2 2

TSTF INHERENT 115D 3 / 2 2

TSTW INHERENT 105D 3 / 2 2

E F H I N Z V C

↕ ↕

0

- 141 -

TST

(memory)

Test Value in Memory Byte

TEMP

←←←←

 (M)

The TST instructions test the value in a memory byte to setup the Condition Codes
register with minimal status for that value. The memory byte is not modified.

N

The Negative flag is set equal to bit 7 of the byte’s value (sign bit).

Z

The Zero flag is set if the byte’s value is zero; cleared otherwise.

V

The Overflow flag is always cleared.

C

The Carry flag is not affected by this instruction.

For unsigned values, the only meaningful information provided is whether or not the
value is zero. In this case, BEQ or BNE would typically follow such a test.

For signed (twos complement) values, the information provided is sufficient to allow any
of the signed conditional branches (BGE, BGT, BLE, BLT) to be used as though the
byte’s value had been compared with zero. You could also use BMI and BPL to branch
according to the sign of the value.

You can obtain the same information in fewer cycles by loading the byte into an 8-bit
accumulator (LDA and LDB are fastest). For this reason it is usually preferable to avoid
using TST on a memory byte if there is an available accumulator.

See Also:

CMP

,

 LD

(8-bit)

,

TST

 (accumulator)

E F H I N Z V C

↕ ↕

0

TST 0D 6 / 4 2 6D 6+ / 5+ 2+ 7D 7 / 5 3

OP

~

#

IMMEDIATE

OP

~

#

DIRECT

OP

~

#

INDEXED

OP

~

#

EXTENDEDSOURCE
FORMS

Part II
6309 Specifics

- 143 -

6309 Inter-Register Operations

The 6309 microprocessor adds several new instructions which operate directly on a pair of
register operands. The operations provided are addition, subtraction, bitwise AND, bitwise OR,
bitwise Exclusive-OR, and comparison. There are two forms of addition and subtraction
operations to allow for inclusion or exclusion of the Carry bit.

ADCR ADDR ANDR CMPR
EORR ORR SBCR SUBR

Any of the 6309’s registers except Q and MD may be used in the inter-register instructions as
either the source operand, destination operand or both. Although the PC register can be used in
these instructions, it is not advised. The pipelining performed by the 6309 is not properly
synchronized for these instructions. This causes the actual PC value used in these operations to
be unpredictable. This flaw affects only the new inter-register instructions in the 6309
instruction set. Using PC in a TFR or EXG instruction functions correctly, as on the 6809.

The inter-register instructions will perform either an 8-bit or 16-bit operation according to the
size of the destination register. If the sizes of the source and destination registers differ then the
source operand will either be promoted or demoted as shown in the table below.

Using CC as the destination operand for instructions other than CMPR can be problematic. This
is due to the fact that not only is the resulting value of the operation stored in CC, but so too are
the status bits which reflect that result. The diagram below illustrates the order in which the
internal processing steps occur.

Destination Siz e Sour ce Register Actual Sour ce Operand

8 bits Any 16-bit Register Lower 8 bits of 16-bit Source

16 bits A or B Accumulator D

16 bits E or F Accumulator W

16 bits CC Zero in upper 8 bits; CC in lower 8 bits

16 bits DP DP in upper 8 bits; Zero in lower 8 bits

SBCRADCR SUBR CMPRANDR EORR ORR

Calculate Result of the Operation and Store in Temporary Register

CLEAR CC Flags: N, Z, V, CCLEAR CC Flags: N, Z, V

Move Result from Temporary Register to the Destination Register

SET: N if Negative; Z if Zero SET: N if Negative; Z if Zero; V if Overflow; C if Carry / Borrow

ADDR

- 144 -

Determining the 6309 Execution Mode

The BITMD instruction cannot be used to test the state of the two execution mode bits
(NM and FM). The state of NM can be determined programatically with the TESTNM
subroutine listed below. Upon return, accumulator A will contain the value of the NM
bit. All other registers are preserved. When run on a 6809 processor it will always return
with A = 0.

TSTNM PSHS U,Y,X,DP,CC ; Preserve Registers
ORCC #$D0 ; Mask interrupts and set E flag
TFR W,Y ; Y=W (6309), Y=$FFFF (6809)
LDA #1 ; Set result for NM=1
BSR L1 ; Set return point for RTI when NM=1
BEQ L0 ; Skip next instruction if NM=0
TFR X,W ; Restore W

L0 PULS CC,DP,X,Y,U ; Restore other registers
TSTA ; Setup CC.Z to reflect result
RTS

L1 BSR L2 ; Set return point for RTI when NM=0
CLRA ; Set result for NM=0
RTS

L2 PSHS U,Y,X,DP,D,CC ; Push emulation mode machine state
RTI ; Return to one of the two BSR calls

The state of the FM bit can only be determined when an actual FIRQ interrupt occurs.
Upon FIRQ, the 6309 copies the value of the FM bit into the Entire (E) bit of the CC
register. An FIRQ service routine can check the state of E upon entry:

F_SRV PSHS A ; Save A on the stack
TFR CC,A ; Copy CC into A
ANDA #$80 ; Clear all flags except E
STA FMSTATE ; Store for use by mainline code
... ; Clear interrupt source
PULS A ; Restore A
RTI ; Return

Part III
Quick Reference

Immediate Direct Indexed Extended
Op

~ #

Inherent
H N Z V C
5 3 2 1 0

Addressing Modes

Instr. Forms DescriptionOp

~ #

Op

~ #

Op

~ #

Op

~ #

b

0

b

n

0

}

A
B
D

M8

C

b

0

b

n

}

A
B
D

M8

C

1

6809 / 6309 Programming Aid

ABX ABX 3A 3/1 1 X = X + B (unsigned) - - - - -

ADC ADCA 89 2 2 99 4/3 2 A9 4

+

2

+

B9 5/4 3 A = A + M8 + C

↕ ↕ ↕ ↕ ↕

ADCB C9 2 2 D9 4/3 2 E9 4

+

2

+

F9 5/4 3 B = B + M8 + C

↕ ↕ ↕ ↕ ↕

ADCD 089 5/4 4 099 7/5 3 0A9 7/6

+

3

+

0B9 8/6 4 D = D + M16 + C -

↕ ↕ ↕ ↕

ADCR 031 4 3 r1 = r1 + r0 + C

See Note 2

-

↕ ↕ ↕ ↕

ADD ADDA 8B 2 2 9B 4/3 2 AB 4

+

2

+

BB 5/4 3 A = A + M8

↕ ↕ ↕ ↕ ↕

ADDB CB 2 2 DB 4/3 2 EB 4

+

2

+

FB 5/4 3 B = B + M8

↕ ↕ ↕ ↕ ↕

ADDD C3 4/3 3 D3 6/4 2 E3 6/5

+

2

+

F3 7/5 3 D = D + M16 -

↕ ↕ ↕ ↕

ADDE 18B 3 3 19B 5/4 3 1AB 5

+

3

+

1BB 6/5 4 E = E + M8

↕ ↕ ↕ ↕ ↕

ADDF 1CB 3 3 1DB 5/4 3 1EB 5

+

3

+

1FB 6/5 4 F = F + M8

↕ ↕ ↕ ↕ ↕

ADDR 030 4 3 r1 = r1 + r0

See Note 2

-

↕ ↕ ↕ ↕

ADDW 08B 5/4 4 09B 7/5 3 0AB 7/6

+

3

+

0BB 8/6 4 W = W + M16 -

↕ ↕ ↕ ↕

AIM #I8, EA 02 6 3 62 7

+

3

+

72 7 4 M8 = M8 & I8 -

↕ ↕

0 -

AND ANDA 84 2 2 94 4/3 2 A4 4

+

2

+

B4 5/4 3 A = A & M8 -

↕ ↕

0 -
ANDB C4 2 2 D4 4/3 2 E4 4

+

2

+

F4 5/4 3 B = B & M8 -

↕ ↕

0 -
ANDCC 1C 3 2 CC = CC & I8

See Note 7

ANDD 084 5/4 4 094 7/5 3 0A4 7/6

+

3

+

0B4 8/6 4 D = D & M16 -

↕ ↕

0 -
ANDR 034 4 3 r1 = r1 & r0

See Note 2

-

↕ ↕

0 -

ASL ASLA 48 2/1 1

8

↕ ↕ ↕ ↕

ASLB 58 2/1 1

8

↕ ↕ ↕ ↕

ASLD 048 3/2 2 -

↕ ↕ ↕ ↕

ASL 08 6/5 2 68 6

+

2

+

78 7/6 3

8

↕ ↕ ↕ ↕

ASR ASRA 47 2/1 1

8

↕ ↕

-

↕

ASRB 57 2/1 1

8

↕ ↕

-

↕

ASRD 047 3/2 2 -

↕ ↕

-

↕

ASR 07 6/5 2 67 6

+

2

+

77 7/6 3

8

↕ ↕

-

↕

BAND BAND 130 7/6 4 R.dstBit = M8.srcBit & R.dstBit

See Note 3

BIAND 131 7/6 4 R.dstBit = M8.srcBit & R.dstBit

See Note 3

BEOR BEOR 134 7/6 4 R.dstBit = M8.srcBit XOR R.dstBit

See Note 3

BIEOR 135 7/6 4 R.dstBit = M8.srcBit XOR R.dstBit

See Note 3

BIT BITA 85 2 2 95 4/3 2 A5 4

+

2

+

B5 5/4 3 Bit Test A (A & M8) -

↕ ↕

0 -
BITB C5 2 2 D5 4/3 2 E5 4

+

2

+

F5 5/4 3 Bit Test B (B & M8) -

↕ ↕

0 -
BITD 085 5/4 4 095 7/5 3 0A5 7/6

+

3

+

0B5 8/6 4 Bit Test D (D & M16) -

↕ ↕

0 -
BITMD 13C 4 3 Bit Test MD (MD & I8)

bits 6 and 7 only

- -

↕

- -

BOR BOR 132 7/6 4 R.dstBit = M8.srcBit | R.dstBit

See Note 3

BIOR 133 7/6 4 R.dstBit = M8.srcBit | R.dstBit

See Note 3

CLR CLRA 4F 2/1 1 A = 0 - 0 1 0 0
CLRB 5F 2/1 1 B = 0 - 0 1 0 0
CLRD 04F 3/2 2 D = 0 - 0 1 0 0
CLRE 14F 3/2 2 E = 0 - 0 1 0 0
CLRF 15F 3/2 2 F = 0 - 0 1 0 0
CLRW 05F 3/2 2 W = 0 - 0 1 0 0
CLR 0F 6/5 2 6F 6

+

2

+

7F 7/6 3 M8 = 0 - 0 1 0 0

CMP CMPA 81 2 2 91 4/3 2 A1 4

+

2

+

B1 5/4 3 Compare M8 from A

8

↕ ↕ ↕ ↕

CMPB C1 2 2 D1 4/3 2 E1 4

+

2

+

F1 5/4 3 Compare M8 from B

8

↕ ↕ ↕ ↕

CMPD 083 5/4 4 093 7/5 3 0A3 7/6

+

3

+

0B3 8/6 4 Compare M16 from D -

↕ ↕ ↕ ↕

CMPE 181 3 3 191 5/4 3 1A1 5

+

3

+

1B1 6/5 4 Compare M8 from E

8

↕ ↕ ↕ ↕

CMPF 1C1 3 3 1D1 5/4 3 1E1 5

+

3

+

1F1 6/5 4 Compare M8 from F

8

↕ ↕ ↕ ↕

CMPR 037 4 3 Compare r0 from r1

See Note 2

-

↕ ↕ ↕ ↕

CMPS 18C 5/4 4 19C 7/5 3 1AC 7/6

+

3

+

1BC 8/6 4 Compare M16 from S -

↕ ↕ ↕ ↕

CMPU 183 5/4 4 193 7/5 3 1A3 7/6

+

3

+

1B3 8/6 4 Compare M16 from U -

↕ ↕ ↕ ↕

CMPW 081 5/4 4 091 7/5 3 0A1 7/6

+

3

+

0B1 8/6 4 Compare M16 from W -

↕ ↕ ↕ ↕

CMPX 8C 4/3 3 9C 6/4 2 AC 6/5

+

2

+

BC 7/5 3 Compare M16 from X -

↕ ↕ ↕ ↕

CMPY 08C 5/4 4 09C 7/5 3 0AC 7/6

+

3

+

0BC 8/6 4 Compare M16 from Y -

↕ ↕ ↕ ↕

Legend:

Op

Hex Operation Code (Leading '1' not shown for two-byte opcodes)

EA

Effective Address

~

Number of MPU Cycles (6809 emulation / native)

C

Value of Carry flag in CC

#

Number of Program Bytes

r0

First register (source) operand

I8

8-bit Immediate value

r1

Second register (destination) operand

I16

16-bit Immediate value

↕

Status flag Set if TRUE, Cleared otherwise

M8

8-bit value in Memory (may also include Immediate values)

-

Status flag Not Affected by operation

M16

16-bit value in Memory (may also include Immediate values) Instructions in shaded rows are not available on 6809 microprocessors

– 147 –

6809 / 6309 Programming Aid

continued

Immediate Direct Indexed Extended
Op

~ #

Inherent
H N Z V C
5 3 2 1 0

Addressing Modes

Instr. Forms DescriptionOp

~ #

Op

~ #

Op

~ #

Op

~ #

b

n

b

0

0

}

A
B
D
W

C

M8

b

0

b

n

0

}

A
B
D

M8

C

1

COM COMA 43 2/1 1 A = A -

↕ ↕

0 1
COMB 53 2/1 1 B = B -

↕ ↕

0 1
COMD 043 3/2 2 D = D -

↕ ↕

0 1
COME 143 3/2 2 E = E -

↕ ↕

0 1
COMF 153 3/2 2 F = F -

↕ ↕

0 1
COMW 053 3/2 2 W = W -

↕ ↕

0 1
COM 03 6/5 2 63 6

+

2

+

73 7/6 3 M8 = M8 -

↕ ↕

0 1

CWAI 3C

22/20

2 CC = CC & I8 ; Wait for interrupt

See Note 7

DAA 19 2/1 1 Decimal Adjust A -

↕ ↕

8

↕

DEC DECA 4A 2/1 1 A = A - 1 -

↕ ↕ ↕

-
DECB 5A 2/1 1 B = B - 1 -

↕ ↕ ↕

-
DECD 04A 3/2 2 D = D - 1 -

↕ ↕ ↕

-
DECE 14A 3/2 2 E = E - 1 -

↕ ↕ ↕

-
DECF 15A 3/2 2 F = F - 1 -

↕ ↕ ↕

-
DECW 05A 3/2 2 W = W - 1 -

↕ ↕ ↕

-
DEC 0A 6/5 2 6A 6+ 2+ 7A 7/6 3 M8 = M8 - 1 -

↕ ↕ ↕

-

DIV DIVD 18D 25 3 19D 27/26 3 1AD 27

+

3

+

1BD

28/27

4 B = D ÷ M8; A = modulo

See Note 12

-

↕ ↕ ↕

9

DIVQ 18E 34 4 19E 36/35 3 1AE 36+ 3+ 1BE 37/36 4 W = Q ÷ M16; D = modulo

See Note 12

-

↕ ↕ ↕

9

EIM #I8, EA 05 6 3 65 7+ 3+ 75 7 4 M8 = M8 xor I8 -

↕ ↕

0 -

EOR EORA 88 2 2 98 4/3 2 A8 4

+

2

+

B8 5/4 3 A = A

⊕

 M8 -

↕ ↕

0 -
EORB C8 2 2 D8 4/3 2 E8 4

+

2

+

F8 5/4 3 B = B

⊕

 M8 -

↕ ↕

0 -
EORD 088 5/4 4 098 7/5 3 0A8 7/6

+

3

+

0B8 8/6 4 D = D

⊕

 M16 -

↕ ↕

0 -
EORR 036 4 3 r1 = r0

⊕

 r1

See Note 2

-

↕ ↕

0 -

EXG r0, r1 1E 8/5 2 r0

↔

 r1

See Note 2

- - - - -

INC INCA 4C 2/1 1 A = A + 1 -

↕ ↕ ↕

-
INCB 5C 2/1 1 B = B + 1 -

↕ ↕ ↕

-
INCD 04C 3/2 2 D = D + 1 -

↕ ↕ ↕

-
INCE 14C 3/2 2 E = E + 1 -

↕ ↕ ↕

-
INCF 15C 3/2 2 F = F + 1 -

↕ ↕ ↕

-
INCW 05C 3/2 2 W = W + 1 -

↕ ↕ ↕

-
INC 0C 6/5 2 6C 6

+

2

+

7C 7/6 3 M8 = M8 + 1 -

↕ ↕ ↕

-

JMP 0E 3/2 2 6E 3

+

2

+

7E 4/3 3 PC = Effective Address - - - - -

JSR 9D 7/6 2 AD 7/6

+

2

+

BD 8/7 3 Jump to Subroutine - - - - -

LD LDA 86 2 2 96 4/3 2 A6 4

+

2

+

B6 5/4 3 A = M8 -

↕ ↕

0 -
LDB C6 2 2 D6 4/3 2 E6 4

+

2

+

F6 5/4 3 B = M8 -

↕ ↕

0 -
LDD CC 3 3 DC 5/4 2 EC 5

+

2

+

FC 6/5 3 D = M16 -

↕ ↕

0 -
LDE 186 3 3 196 5/4 3 1A6 5

+

3

+

1B6 6/5 4 E = M8 -

↕ ↕

0 -
LDF 1C6 3 3 1D6 5/4 3 1E6 5

+

3

+

1F6 6/5 4 F = M8 -

↕ ↕

0 -
LDMD 13D 5 3 MD = I8 - - - - -
LDQ CD 5 5 0DC 8/7 3 0EC 8

+

3

+

0FC 9/8 4 Q = M32 -

↕ ↕

0 -
LDS 0CE 4 4 0DE 6/5 3 0EE 6

+

3

+

0FE 7/6 4 S = M16 -

↕ ↕

0 -
LDU CE 3 3 DE 5/4 2 EE 5

+

2

+

FE 6/5 3 U = M16 -

↕ ↕

0 -
LDW 086 4 4 096 6/5 3 0A6 6

+

3

+

0B6 7/6 4 W = M16 -

↕ ↕

0 -
LDX 8E 3 3 9E 5/4 2 AE 5

+

2

+

BE 6/5 3 X = M16 -

↕ ↕

0 -
LDY 08E 4 4 09E 6/5 3 0AE 6

+

3

+

0BE 7/6 4 Y = M16 -

↕ ↕

0 -

LDBT 136 7/6 4 R.dstBit = M8.srcBit

See Note 3

LEA LEAS 32 4

+

2

+

S = Effective Address - - - - -
LEAU 33 4

+

2

+

U = Effective Address - - - - -
LEAX 30 4

+

2

+

X = Effective Address - -

↕

- -
LEAY 31 4

+

2

+

Y = Effective Address - -

↕

- -

LSL LSLA 48 2/1 1

8

↕ ↕ ↕ ↕

LSLB 58 2/1 1

8

↕ ↕ ↕ ↕

LSLD 048 3/2 2 -

↕ ↕ ↕ ↕

LSL 08 6/5 2 68 6

+

2

+

78 7/6 3

8

↕ ↕ ↕ ↕

LSR LSRA 44 2/1 1 - 0

↕

-

↕

LSRB 54 2/1 1 - 0

↕

-

↕

LSRD 044 3/2 2 - 0

↕

-

↕

LSRW 054 3/2 2 - 0

↕

-

↕

LSR 04 6/5 2 64 6

+

2

+

74 7/6 3 - 0

↕

-

↕

– 148 –

b

n

b

0

}

A
B
D
W

C

M8

Immediate Direct Indexed Extended
Op

~ #

Inherent
H N Z V C
5 3 2 1 0

Addressing Modes

Instr. Forms DescriptionOp

~ #

Op

~ #

Op

~ #

Op

~ #

b

n

b

0

}

A
B
D
W

C

M8

1

6809 / 6309 Programming Aid

continued

MUL MUL 3D

11/10

1 D = A * B (unsigned) - -

↕

-

9

MULD 18F 28 4 19F 30/29 3 1AF 30

+

3

+

1BF 31/30 4 Q = D * M16 (signed) -

↕

6

- 0

NEG NEGA 40 2/1 1 A = A + 1

8

↕ ↕ ↕ ↕

NEGB 50 2/1 1 B = B + 1

8

↕ ↕ ↕ ↕

NEGD 040 3/2 2 D = D + 1 -

↕ ↕ ↕ ↕

NEG 00 6/5 2 60 6

+

2

+

70 7/6 3 M8 = M8 + 1

8

↕ ↕ ↕ ↕

NOP 12 2/1 1 No Operation - - - - -

OIM #I8, EA 01 6 3 61 7

+

3

+

71 7 4 M8 = M8 | I8 -

↕ ↕

0 -

OR ORA 8A 2 2 9A 4/3 2 AA 4

+

2

+

BA 5/4 3 A = A | M8 -

↕ ↕

0 -
ORB CA 2 2 DA 4/3 2 EA 4

+

2

+

FA 5/4 3 B = B | M8 -

↕ ↕

0 -
ORCC 1A 3 2 CC = CC | I8

See Note 7

ORD 08A 5/4 4 09A 7/5 3 0AA 7/6

+

3

+

0BA 8/6 4 D = D | M16 -

↕ ↕

0 -
ORR 035 4 3 r1 = r1 | r0

See Note 2

-

↕ ↕

0 -

PSH PSHS 34 5/4

+

2 Push registers onto S stack

See Note 4

- - - - -
PSHU 36 5/4

+

2 Push registers onto U stack

See Note 4

- - - - -
PSHSW 038 6 2 Push W onto S stack - - - - -
PSHUW 03A 6 2 Push W onto U stack - - - - -

PUL PULS 35 5/4

+

2 Pull registers from S stack

See Note 4

- - - - -
PULU 37 5/4

+

2 Pull registers from U stack

See Note 4

- - - - -
PULSW 039 6 2 Pull W from S stack - - - - -
PULUW 03B 6 2 Pull W from U stack - - - - -

ROL ROLA 49 2/1 1 -

↕ ↕ ↕ ↕

ROLB 59 2/1 1 -

↕ ↕ ↕ ↕

ROLD 049 3/2 2 -

↕ ↕ ↕ ↕

ROLW 059 3/2 2 -

↕ ↕ ↕ ↕

ROL 09 6/5 2 69 6

+

2

+

79 7/6 3 -

↕ ↕ ↕ ↕

ROR RORA 46 2/1 1 -

↕ ↕

-

↕

RORB 56 2/1 1 -

↕ ↕

-

↕

RORD 046 3/2 2 -

↕ ↕

-

↕

RORW 056 3/2 2 -

↕ ↕

-

↕

ROR 06 6/5 2 66 6

+

2

+

76 7/6 3 -

↕ ↕

-

↕

RTI 3B

15/17

1 Return from Interrupt

(when CC.E = 1)

See Note 7

3B 6 1 Return from Interrupt

(when CC.E = 0)

See Note 7

RTS 39 5/4 1 Return from Subroutine - - - - -

SBC SBCA 82 2 2 92 4/3 2 A2 4

+

2

+

B2 5/4 3 A = A - M8 - C

8

↕ ↕ ↕ ↕

SBCB C2 2 2 D2 4/3 2 E2 4

+

2

+

F2 5/4 3 B = B - M8 - C

8

↕ ↕ ↕ ↕

SBCD 082 5/4 4 092 7/5 3 0A2 7/6

+

3

+

0B2 8/6 4 D = D - M16 - C -

↕ ↕ ↕ ↕

SBCR 033 4 3 r1 = r1 - r0 - C

See Note 2

-

↕ ↕ ↕ ↕

SEX SEX 1D 2/1 1 Sign Extend B into A -

↕ ↕

- -
SEXW 14 4 1 Sign Extend W into D -

↕ ↕

- -

ST STA 97 4/3 2 A7 4

+

2

+

B7 5/4 3 M8 = A -

↕ ↕

0 -
STB D7 4/3 2 E7 4

+

2

+

F7 5/4 3 M8 = B -

↕ ↕

0 -
STD DD 5/4 2 ED 5

+

2

+

FD 6/5 3 M16 = D -

↕ ↕

0 -
STE 197 5/4 3 1A7 5

+

3

+

1B7 6/5 4 M8 = E -

↕ ↕

0 -
STF 1D7 5/4 3 1E7 5

+

3

+

1F7 6/5 4 M8 = F -

↕ ↕

0 -
STQ 0DD 8/7 3 0ED 8

+

3

+

0FD 9/8 4 M32 = Q -

↕ ↕

0 -
STS 0DF 6/5 3 0EF 6

+

3

+

0FF 7/6 4 M16 = S -

↕ ↕

0 -
STU DF 5/4 2 EF 5

+

2

+

FF 6/5 3 M16 = U -

↕ ↕

0 -
STW 097 6/5 3 0A7 6

+

3

+

0B7 7/6 4 M16 = W -

↕ ↕

0 -
STX 9F 5/4 2 AF 5

+

2

+

BF 6/5 3 M16 = X -

↕ ↕

0 -
STY 09F 6/5 3 0AF 6

+

3

+

0BF 7/6 4 M16 = Y -

↕ ↕

0 -

STBT 137 8/7 4 M8.dstBit = R.srcBit -

↕ ↕

- -

SUB SUBA 80 2 2 90 4/3 2 A0 4

+

2

+

B0 5/4 3 A = A - M8

8

↕ ↕ ↕ ↕

SUBB C0 2 2 D0 4/3 2 E0 4

+

2

+

F0 5/4 3 B = B - M8

8

↕ ↕ ↕ ↕

SUBD 83 4/3 3 93 6/4 2 A3 6/5

+

2

+

B3 7/5 3 D = D - M16 -

↕ ↕ ↕ ↕

SUBE 180 3 3 190 5/4 3 1A0 5

+

3

+

1B0 6/5 4 E = E - M8

8

↕ ↕ ↕ ↕

SUBF 1C0 3 3 1D0 5/4 3 1E0 5

+

3

+

1F0 6/5 4 F = F - M8

8

↕ ↕ ↕ ↕

SUBR 032 4 3 r1 = r1 - r0

See Note 2

-

↕ ↕ ↕ ↕

SUBW 080 5/4 4 090 7/5 3 0A0 7/6

+

3

+

0B0 8/6 4 W = W - M16 -

↕ ↕ ↕ ↕

– 149 –

6809 / 6309 Programming Aid

continued

Relative
Addressing

Instr. Forms DescriptionOp

~ #

Relative
Addressing

Instr. Forms DescriptionOp

~ #

Immediate Direct Indexed Extended
Op

~ #

Inherent
H N Z V C
5 3 2 1 0

Addressing Modes

Instr. Forms DescriptionOp

~ #

Op

~ #

Op

~ #

Op

~ #

1

SWI SWI 3F

19 / 21

1 Software Interrupt 1

See Note 5

- - - - -
SWI2 03F

20 / 22

2 Software Interrupt 2

See Note 5

- - - - -
SWI3 13F

20 / 22

2 Software Interrupt 3

See Note 5

- - - - -

SYNC 13

≥

4

/

≥

3

1 Synchronize to Interrupt - - - - -

TFM r0+, r1+ 138 6+3n 3 Block Move Incrementing

See Note 10

- - 1 - -
r0-, r1- 139 6+3n 3 Block Move Decrementing

See Note 10

- - 1 - -
r0+, r1 13A 6+3n 3 Block Write to address

See Note 10

- - 1 - -
r0, r1+ 13B 6+3n 3 Block Read from address

See Note 10

- - 1 - -

TFR r0, r1 1F 6/4 2 r1 = r0

See Note 2

- - - - -

TIM #I8, EA 0B 6 3 6B 7

+

3

+

7B 7 4 Bit Test Memory (I8 & M8) -

↕ ↕

0 -

TST TSTA 4D 2/1 1 Test A -

↕ ↕

0 -
TSTB 5D 2/1 1 Test B -

↕ ↕

0 -
TSTD 04D 3/2 2 Test D -

↕ ↕

0 -
TSTE 14D 3/2 2 Test E -

↕ ↕

0 -
TSTF 15D 3/2 2 Test F -

↕ ↕

0 -
TSTW 05D 3/2 2 Test W -

↕ ↕

0 -
TST 0D 6/4 2 6D 6/5

+

2

+

7D 7/5 3 Test M8 -

↕ ↕

0 -

BCC BCC 24 3 2 Branch If C = 0 BLT BLT 2D 3 2 Branch If < 0
LBCC 024 5 (6) 4 Long Branch If C = 0 (

11

) LBLT 02D 5 (6) 4 Long Branch If < 0 (

11

)

BCS BCS 25 3 2 Branch If C = 1 BMI BMI 2B 3 2 Branch If N = 1
LBCS 025 5 (6) 4 Long Branch If C = 1 (

11

) LBMI 02B 5 (6) 4 Long Branch If N = 1 (

11

)

BEQ BEQ 27 3 2 Branch If Z = 1 BNE BNE 26 3 2 Branch If Z = 0
LBEQ 027 5 (6) 4 Long Branch If Z = 1 (

11

) LBNE 026 5 (6) 4 Long Branch If Z = 0 (

11

)

BGE BGE 2C 3 2 Branch If

≥

 0 BPL BPL 2A 3 2 Branch If N = 0
LBGE 02C 5 (6) 4 Long Branch If

≥

 0 (

11

) LBPL 02A 5 (6) 4 Long Branch If N = 0 (

11

)

BGT BGT 2E 3 2 Branch If > 0 BRA BRA 20 3 2 Branch unconditionally
LBGT 02E 5 (6) 4 Long Branch If > 0 (

11

) LBRA 16 5/4 3 Long Branch unconditionally

BHI BHI 22 3 2 Branch If higher BRN BRN 21 3 2 Branch never (no-op)
LBHI 022 5 (6) 4 Long Branch If higher (

11

) LBRN 021 5 4 Long Branch never (no-op)

BHS BHS 24 3 2 Branch If higher or same BSR BSR 8D 7/6 2 Branch to subroutine
LBHS 024 5 (6) 4 Long Branch If higher or same (

11

) LBSR 17 9/7 3 Long Branch to subroutine

BLE BLE 2F 3 2 Branch If

≤

 0 BVC BVC 28 3 2 Branch If V = 0
LBLE 02F 5 (6) 4 Long Branch If

≤

 0 (

11

) LBVC 028 5 (6) 4 Long Branch If V = 0 (

11

)

BLO BLO 25 3 2 Branch If lower BVS BVS 29 3 2 Branch If V = 1
LBLO 025 5 (6) 4 Long Branch If lower (

11

) LBVS 029 5 (6) 4 Long Branch If V = 1 (

11

)

BLS BLS 23 3 2 Branch If lower or same
LBLS 023 5 (6) 4 Long Branch If lower or same (

11

)

Notes:
1. The

Indexed

 column provides base values for the MPU cycles and byte counts. To obtain totals, add the values from the

Indexed Addr essing Mode Table

 on page 150.
2. r0 and r1 may be any pair of 8-bit registers, or any pair of 16-bit registers. Mixing registers of different sizes (TFR, EXG) behaves differently on the 6309 than on the

6809. The ZERO register (6309 only) may be used in combination with any other register. Undefined register codes produce a value of FF or FFFF on the 6809.
3. The bit manipulation instructions (other than STBT) do not affect the CC register unless it is specified as the target register, in which case only the destination bit may

be affected. Target registers for the bit manipulation instructions are limited to A, B and CC.
4. The PSH and PUL instructions require one additional cycle for each

byte

 pushed or pulled.
5. SWI sets the I and F flags in CC. SWI2 and SWI3 do not affect I and F.
6. The MULD instruction sets the Z flag in CC when the high-order word (D) is zero, even if the low-order word (W) is non-zero.
7. The CC register is set as a direct result of the instruction.
8. Value of the Condition Code bit is undefined.
9. Special cases: For MUL, Carry set only if bit 7 is 1. For DIVD and DIVQ, Carry is set only if bit 0 is 1
10. Source and destination registers for the TFM instruction are limited to X, Y, U, S and D. The W register always specifies the byte count. TFM is the only instruction that

can be interrupted before it completes.
11. Conditional long branches require a 6th cycle if the branch is taken (6809 only).
12. The DIV instructions perform signed division. DIVD executes in l fewer cycle if a two's-complement overflow occurs. If a Range error occurs then the destination

registers are not modified, the instruction executes in fewer cycles (13 fewer for DIVD, 21 fewer for DIVQ), the V flag is set and the N, Z and C flags are cleared.

– 150 –

Source Register (r0)
Destination Register (r1)

Source Bit Number (0 - 7)
Destination Bit Number (0 - 7)

Target Register

b0b3b7 b6 b5 b2b0b3b7 b4

Type Forms

Indirect

Assembler

#

Form
Postbyte
Opcode

+
~

+

Non Indirect

Assembler

#

Form
Postbyte
Opcode

+
~

+

Indexed Ad dressing Mode Table

Constant Offset From R No offset

,R 1RR00100

0 0

[,R] 1RR10100

3 0
(twos complement offset) 5 bit offset (-16 to +15)

n,R 0RRnnnnn

1 0

not available - use 8-bit

8 bit offset (-128 to +127)

n,R 1RR01000

1 1

[n,R] 1RR11000

4 1
16 bit offset (-32768 to +32767)

n,R 1RR01001

4 / 3 2

[n,R] 1RR11001

7 / 6 2

Constant Offset From W No offset

,W 10001111

0 0

[,W] 10010000

3 0
(twos complement offset) 16 bit offset

n,W 10101111

2 2

[n,W] 10110000

5 2

Accumulator Offset From R A - Accumulator offset

A,R 1RR00110

1 0

[A,R] 1RR10110

4 0
(twos complement offset) B - Accumulator offset

B,R 1RR00101

1 0

[B,R] 1RR10101

4 0
D - Accumulator offset

D,R 1RR01011

4 / 2 0

[D,R] 1RR11011

7 / 5 0
E - Accumulator offset

E,R 1RR00111

1 0

[E,R] 1RR10111

4 0
F - Accumulator offset

F,R 1RR01010

1 0

[F,R] 1RR11010

4 0
W - Accumulator offset

W,R 1RR01110

1 0

[W,R] 1RR11110

4 0

Auto Increment/Decrement of R Post-Increment by 1

,R+ 1RR00000

2 / 1 0

not allowed

Post-Increment by 2

,R++ 1RR00001

3 / 2 0

[,R++] 1RR10001

6 / 5 0
Pre-Decrement by 1

,-R 1RR00010

2 / 1 0

not allowed

Pre-Decrement by 2

,--R 1RR00011

3 / 2 0

[,--R] 1RR10011

6 / 5 0

Auto Increment/Decrement of W Post-Increment by 2

,W++ 11001111

1 0

[,W++] 11010000

4 0
Pre-Decrement by 2

,--W 11101111

1 0

[,--W] 11110000

4 0

Constant Offset From PC 8 bit offset (-128 to +127)

n,PCR 1XX01100

1 1

[n,PCR] 1XX11100

4 1
(twos complement offset) 16 bit offset (-32768 to +32767)

n,PCR 1XX01101

5 / 3 2

[n,PCR] 1XX11101

8 / 6 2

Extended Indirect 16 bit address

[n] 10011111

5 / 4 2

RR Register

XX = Don't Care

+ and +

these columns indicate the additional
00 X

~ #

number of MPU cycles and program bytes
01 Y for the particular variation.
10 U

11 S

Indexing modes in shaded rows are not available on 6809 microprocessors.

Inter -Register P ostb yte Bit-Manipulation P ostb yte

 (6309 only)

Code Register Code Register Code Register

0000

D

1000

A

00

CC

0001

X

1001

B

01

A

0010

Y

1010

CC

10

B

0011

U

1011

DP

11

Invalid

0100

S

1100

0

0101

PC

1101

0

0110

W

1110

E

0111

V

1111

F

On 6809

microprocessors

, the shaded Register Codes
produce a value of FF or FFFF (all bits set).

– 151 –

b0b7 b2b3b5b6 b4 b1

CC

A

B

DP

X

Y

U/S

PC

PSH / PUL Postbyte

Lower Memory Addresses

Higher Memory Addresses

P
us

h
O

rd
er

P
ull O

rder

}

Stacked on Interrupts only
when the NM bit is set in MD.

Index Register

Index Register

User Stack Pointer

System Stack Pointer

Program Counter

Transfer Value Register

Zero Register

X

Y

U

S

PC

V

0

V CN ZH IE F

/0 IL

FM

b7 b0

Accumulator A Accumulator B Accumulator E Accumulator F

Accumulator D Accumulator W

Accumulator Q

Condition Codes Register CC

Mode Register MD

Direct Page Register DP

NM

6309 Only.

Programming Model

CC Register Bits

E Entire register state stacked
F FIRQ interrupt masked
H Half-Carry
I IRQ interrupt masked
N Negative result (twos complement)
Z Zero result
V Overflow
C Carry (or borrow)

MD Register Bits

/0 Divide-by-zero Exception
IL Illegal Instruction Exception
FM FIRQ uses IRQ stacking method (Entire state)
NM Native Mode (reduced cycles, W stacked on interrupts)

The /0 and IL bits of the MD register can only be read once after an error exception occurs. They are reset to 0 after executing a BITMD
instruction. The FM and NM bits of the MD register are write-only. Using the BITMD instruction to test these bits always produces zero.

Register Stac king Or der

Stack Ptr after stacking

CC

A

B

E

F

DP

X . H

X . L

Y . H

Y . L

U/S . H

U/S . L

PC . H

PC . L

Stack Ptr before stacking

When the FM bit in the MD register is set, the Entire register set is stacked upon an FIRQ interrupt, otherwise only CC and PC are stacked.

The Transfer Value register V is never stacked upon interrupts. No instructions are provided to directly push or pull the V register.

The E and F accumulators are stacked upon interrupts only if the NM bit is set in the MD register.

The PSHS, PULS, PSHU and PULU instructions do not permit the E and F accumulators (W) to be specified. These registers can be pushed and
pulled together using the PSHSW, PSHUW, PULSW and PULUW instructions, or individually using the Auto Increment/Decrement Indexing
modes with STE, STF, LDE, LDF (although these will have an effect on the Condition Codes).

6809 / 6309 Opcode Map

Shaded Instructions are available on 6309 microprocessors only Undefined opcodes generate an Illegal Instruction exception on the 6309 only.

DIRECT

$0_ $1_

REL

$2_ $3_

A / D / E

$4_

B / W / F

$5_

INDEX

$6_

EXTND

$7_

IMMED

$8_

DIRECT

$9_

INDEX

$A_

EXTND

$B_

IMMED

$C_

DIRECT

$D_

INDEX

$E_

EXTND

$F_

 _0 NEG PAGE 2 BRA LEAX NEGA NEGB NEG NEG SUBA SUBA SUBA SUBA SUBB SUBB SUBB SUBB

$10 _0 ADDR NEGD SUBW SUBW SUBW SUBW

$11 _0 BAND SUBE SUBE SUBE SUBE SUBF SUBF SUBF SUBF

 _1 OIM PAGE 3 BRN LEAY OIM OIM CMPA CMPA CMPA CMPA CMPB CMPB CMPB CMPB

$10 _1 LBRN ADCR CMPW CMPW CMPW CMPW

$11 _1 BIAND CMPE CMPE CMPE CMPE CMPF CMPF CMPF CMPF

 _2 AIM NOP BHI LEAS AIM AIM SBCA SBCA SBCA SBCA SBCB SBCB SBCB SBCB

$10 _2 LBHI SUBR SBCD SBCD SBCD SBCD

$11 _2 BOR

 _3 COM SYNC BLS LEAU COMA COMB COM COM SUBD SUBD SUBD SUBD ADDD ADDD ADDD ADDD

$10 _3 LBLS SBCR COMD COMW CMPD CMPD CMPD CMPD

$11 _3 BIOR COME COMF CMPU CMPU CMPU CMPU

 _4 LSR SEXW

BHS/CC

PSHS LSRA LSRB LSR LSR ANDA ANDA ANDA ANDA ANDB ANDB ANDB ANDB

$10 _4

LBHS/CC

ANDR LSRD LSRW ANDD ANDD ANDD ANDD

$11 _4 BEOR

 _5 EIM

BLO/CS

PULS EIM EIM BITA BITA BITA BITA BITB BITB BITB BITB

$10 _5

LBLO/CS

ORR BITD BITD BITD BITD

$11 _5 BIEOR

 _6 ROR LBRA BNE PSHU RORA RORB ROR ROR LDA LDA LDA LDA LDB LDB LDB LDB

$10 _6 LBNE EORR RORD RORW LDW LDW LDW LDW

$11 _6 LDBT LDE LDE LDE LDE LDF LDF LDF LDF

 _7 ASR LBSR BEQ PULU ASRA ASRB ASR ASR STA STA STA STB STB STB

$10 _7 LBEQ CMPR ASRD STW STW STW

$11 _7 STBT STE STE STE STF STF STF

 _8 LSL BVC LSLA LSLB LSL LSL EORA EORA EORA EORA EORB EORB EORB EORB

$10 _8 LBVC PSHSW LSLD EORD EORD EORD EORD

$11 _8

TFM

 r+,r+

 _9 ROL DAA BVS RTS ROLA ROLB ROL ROL ADCA ADCA ADCA ADCA ADCB ADCB ADCB ADCB

$10 _9 LBVS PULSW ROLD ROLW ADCD ADCD ADCD ADCD

$11 _9

TFM r-,r-

 _A DEC ORCC BPL ABX DECA DECB DEC DEC ORA ORA ORA ORA ORB ORB ORB ORB

$10 _A LPBL PSHUW DECD DECW ORD ORD ORD ORD

$11 _A

TFM r+,r

DECE DECF

 _B TIM BMI RTI TIM TIM ADDA ADDA ADDA ADDA ADDB ADDB ADDB ADDB

$10 _B LBMI PULUW ADDW ADDW ADDW ADDW

$11 _B

TFM r ,r+

ADDE ADDE ADDE ADDE ADDF ADDF ADDF ADDF

 _C INC ANDCC BGE CWAI INCA INCB INC INC CMPX CMPX CMPX CMPX LDD LDD LDD LDD

$10 _C LBGE INCD INCW CMPY CMPY CMPY CMPY LDQ LDQ LDQ

$11 _C BITMD INCE INCF CMPS CMPS CMPS CMPS

 _D TST SEX BLT MUL TSTA TSTB TST TST BSR JSR JSR JSR LDQ STD STD STD

$10 _D LBLT TSTD TSTW STQ STQ STQ

$11 _D LDMD TSTE TSTF DIVD DIVD DIVD DIVD

 _E JMP EXG BGT JMP JMP LDX LDX LDX LDX LDU LDU LDU LDU

$10 _E LBGT LDY LDY LDY LDY LDS LDS LDS LDS

$11 _E DIVQ DIVQ DIVQ DIVQ

 _F CLR TFR BLE SWI CLRA CLRB CLR CLR STX STX STX STU STU STU

$10 _F LBLE SWI2 CLRD CLRW STY STY STY STS STS STS

$11 _F SWI3 CLRE CLRF MULD MULD MULD MULD

– 153 –

6809 Undefi ned Opcode Beha vior

Unlike the 6309 microprocessor, the 6809 does not trap illegal instructions. This section describes the behavior of the 6809 when it executes
an undefined opcode. In most cases, the CPU behaves as if it had executed the instruction whose opcode value is either one less or one more
than that of the undefined opcode. The Opcode Map and notes shown below describe the specific behavior of each undefined opcode. The
same behavior will result when an undefined opcode is preceded by a Page 2 ($10) or Page 3 ($11) selector, except that 1 additional MPU
cycle is consumed.

1. Undefined opcodes in row 2 execute as a

NEG

 instruction when the Carry bit in CC is 0, and as a

COM

 instruction when the Carry bit is 1.

2. Opcodes $14, $15 and $CD all cause the CPU to stop functioning normally. One or more of these may be the

HCF

 (Halt and Catch Fire) instruction.
The HCF instruction was provided for manufacturing test purposes. Its causes the CPU to halt execution and enter a mode in which the Address lines
are incrementally strobed.

3. Opcode $18 affects only the Condition Codes register (CC). The value in the Overflow bit (V) is shifted into the Zero bit (Z) while the value in the IRQ
Mask bit (I) is shifted into the Half Carry bit (H). All other bits in the CC register are cleared. Execution of this opcode takes 3 MPU cycles.

4. The 6809 will execute opcode $20 as an LBRA when it is preceded by a Page 2 selector ($10). The 6309 considers this an illegal instruction.

5. Opcode $38 behaves just like the

ANDCC

 instruction ($1C), except for the fact that it uses 1 additional MPU cycle (for a total of 4).

6. Opcodes $87 and $C7 read and discard an 8-bit Immediate operand which follows the opcode. The value of the immediate byte is irrelevant. The
Negative bit (N) in the CC register is always set, while the Zero (Z) and Overflow (V) bits are always cleared. No other bits in the Condition Codes
register are affected. Each of these opcodes execute in 2 MPU cycles.

7. Opcode $3E is similar to the

SWI

 instruction. It stacks the Entire register state, sets the I and F bits in the Condition Codes register and then loads the
PC register with an address obtained from the

RESET

 vector ($FFFE:F). This could potentially be used as a fourth Software Interrupt instruction, so
long as the code invoked by the Reset vector is able to differentiate between a software reset and a hardware reset. It does NOT set the Entire bit (E) in
the CC register prior to stacking the register state. This could cause an

RTI

 instruction for a Reset handler to fail to operate as expected. This opcode
uses the same number of MPU cycles as

SWI

 (15).

8. Opcodes $8F and $CF are STX Immediate and STU Immediate respectively. These instructions are partially functional. Two bytes of immediate data
follow the opcode. The first immediate byte is read and discarded by the instruction. The lower half (LSB) of the X or U register is then written into the
second immediate byte. The Negative bit (N) in the CC register is always set, while the Zero (Z) and Overflow (V) bits are always cleared. No other
bits in the Condition Codes register are affected. Each of these opcodes execute in 3 MPU cycles.

NOTE:
This information was obtained through experimentation and may not be completely accurate. No information about how the 6809 operates when undefined opcodes are
executed was ever published by Motorola.

DIRECT

$0_ $1_

REL

$2_ $3_

ACC. A

$4_

ACC. B

$5_

INDEX

$6_

EXTND

$7_

IMMED

$8_

DIRECT

$9_

INDEX

$A_

EXTND

$B_

IMMED

$C_

DIRECT

$D_

INDEX

$E_

EXTND

$F_

_0 LBRA

4

_1 NEG NEGA NEGB NEG NEG

_2 NEG/

COM

1

NEGA/

COMA

1

NEGB/

COMB

1

NEG/

COM

1

NEG/

COM

1

_3

_4 HCF

2

_5 LSR HCF

2

LSRA LSRB LSR LSR

_6

_7

6 6

_8

3

ANDCC

5

_9

_A

_B DEC NOP DECA DECB DEC DEC

_C

_D HCF

2

_E RESET

7

CLRA CLRB

_F

8 8

	ABX
	ADC (8 Bit)
	ADCD
	ADCR
	ADD (8 Bit)
	ADD (16 Bit)
	ADDR
	AIM
	AND (8 Bit)
	ANDCC
	ANDD
	ANDR
	ASL (8 Bit)
	ASLD
	ASR (8 Bit)
	ASRD
	BAND
	BCC
	BCS
	BEOR
	BEQ
	BGE
	BGT
	BHI
	BHS
	BIAND
	BIEOR
	BIOR
	BIT (8 Bit)
	BITD
	BITMD
	BLE
	BLO
	BLS
	BLT
	BMI
	BNE
	BOR
	BPL
	BRA
	BRN
	BSR
	BVC
	BVS
	CLR (accumulator)
	CLR (memory)
	CMP (8 Bit)
	CMP (16 Bit)
	CMPR
	COM (accumulator)
	COM (memory)
	CWAI
	DAA
	DEC (accumulator)
	DEC (memory)
	DIVD
	DIVQ
	EIM
	EOR (8 Bit)
	EORD
	EORR
	EXG
	EXG
	INC (accumulator)
	INC (memory)
	JMP
	JSR
	LBCC
	LBCS
	LBEQ
	LBGE
	LBGT
	LBHI
	LBHS
	LBLE
	LBLO
	LBLS
	LBLT
	LBMI
	LBNE
	LBPL
	LBRA
	LBRN
	LBSR
	LBVC
	LBVS
	LD (8 Bit)
	LD (16 Bit)
	LDBT
	LDMD
	LDQ
	LEA
	LSL (8 Bit)
	LSLD
	LSR (8 Bit)
	LSR (16 Bit)
	MUL
	MULD
	NEG (accumulator)
	NEG (memory)
	NOP
	OIM
	OR (8 Bit)
	ORCC
	ORD
	ORR
	PSH
	PSHSW
	PSHUW
	PUL
	PULSW
	PULUW
	ROL (8 Bit)
	ROL (16 Bit)
	ROR(8 Bit)
	ROR (16 Bit)
	RTI
	RTS
	SBC (8 Bit)
	SBCD
	SBCR
	SEX
	SEXW
	ST (8 Bit)
	ST (16 Bit)
	STBT
	STQ
	SUB (8 Bit)
	SUB (16 Bit)
	SUBR
	SWI
	SYNC
	TFM
	TFR
	TFR
	TIM
	TST (accumulator)
	TST (memory)
	6309 Inter-Register Operations
	Determining the 6309 Execution Mode
	Instruction Table
	Programming Model
	Opcode Map
	6809 Undefined Opcode Behavior

