
MICROWARE SYS'I'EMS CORPORA110N
1900 N.W. 114th Street
Des Moines, Iowa 50322

Phone: 515-224-1929
Telex: 910-520-2535
FAX: 515-224-1352

The OS-9 Starter/Intermediate/ Advanced Seminar
Please help us to improve our training seminars . Please complete this
evaluation form and return it to the instructor or send it to .
Microware Systems, 1900 NW 114th St., Des Moines, IA 50325-7077,
A TIN: Training and Education

Date of Course_· _____ _
Instructor: _______ _

Pleas~ rate the quality of coverage on each topic:

uate

·on/Paths

I~~~--------

MICROWARE SYSTEMS CORPORATION
1900 N.W. 114th Street
Des Moines, Iowa 50322

What topic(s) do you feel were most beneficial?

Phone:515-224-1929
Telex: 910-520-2535
FAX: 515-224-1352

What topics were not covered that should have been? _________ _

For the subjects covered, this course was: (too long) (the right length) (too short)

Would you have been able to attend a longer course?

Please write any general comments about the course that were not covered in the
preceding questions.

~ .

- ~~ic...,-

TESTIMONIAL STATEMENT

II

"The statement above is my personal opinion of Miaoware's training and does not necessarily reflect my employer's opinion of Miaoware 's training. Microware has my permission to use all or part of my
testimonial in Miaoware's literature and/ or adv~ materials."

Signed:
Date:

Company:
'ntle:

Phone Number:

M I C ROW A R E S Y S T B M S C O R P O RA T I 0 . N
Corpome Hadquutla,. 1SO> N.W.1t4dl Stmet • DIii Maha, Iowa S032S-7017 • Pbcme: (515) 22~1929 • Fax: '515) 22'91352

Of6ceof the

Tnining

and l!ducatlon

Cocmlinatar

Mlaowme

Syatl!ms

Coiporatian

1900N.W. 1141h5tnlet

Dm Moines, Iowa

rJmS.'/f/ll

Tel: 515/224-19'19

Fu: 515/224-1352

Name:

Company:

Mailing Address:

Phone: ()

Fax: ()

E-Mail Address:

Course/Dates: /_

Specific Questions :

•

•

•.__..

COPYRIGHT AND PUBLICATION INFORMATION

Copyright © 1994 Microware Systems Corporation . All Rights Reserved . May contain previously copy-
righted material . Reproduction of this document, in part or whole, by any means, electrical,
mechanical, magnetic, optica1, chemica1, manua1, or otherwise is prohibited, without written permis-
sion from Microware Systems Corporation.

Publication date:
Product Number:

DISCLAIMER

June, 1994
BND68NA68SL

The information contained herein is believed to be accurate as of the date of publication . However, Mi-
croware will not be liable for any damages, including indirect or consequential, resulting from the use
of this documentation . The information contained herein is subject to change without notice.

TRADEMARKS

08-9, 08-9000 and Ultra C are trademarks of Microware Systems Corporation. All other product
names referenced herein are either trademarks or registered trademarks of their respective owners.

Mlcroware Systems Corporation• 1900 N.W.114th Street
Des Moines, Iowa 50325-7on • Phone: 515/224-1929

July, 1994

'i)

. -
Training and Education

Presents:

05-9 Resident Navigation

• "° Section: OS-9 Resident Navigation

.)

,,
)

Welcome!

Welcome to this OS-9 training course! Before you may continue, you should log into the system
this course is being taught on. Logging in requires a user-name and, perhaps, a password. Your instruc-
tor will provide you with your user-name and, if required, your password as well. All students begin the
training session with a user-name in the form of userX , where Xis a unique number for each student.
D~ng your training session, your user-name may change, but your assigned user number (X) will
remain with you for the duration of your course(s) this week.

Logging Into The System
When user security is implemented on the OS-9 system, a program called tsmon monitors all

ports that may be used to log in. Tsmon (time sharing monitor) waits for a carriage return to be entered
on each port being monitored , and once the carriage return arrives, tsmon allows the login program to
run on that port. Login will prompt for a user-name , and if applicable, a password for that user. If the
user-name is recognized and the password is correct, login allows the user to access the system. This
access is normally granted by allowing the user to run a program called shell. Shell is the standard
command interpreter supplied with the OS-9 system. (Other command interpreters are also available
for OS-9.) ·

Section: 0S -9 Resident Navigation

'\

"

2

"
)

The Shell Interface

Once you have logged into the resident OS-9 system you are given a prompt from a program
whose job is to get your commands. This program, which may be called shell, will get your input and
perform some task after processing it. Although your prompt differs, the prompt shown in this material
will always be the dollar sign($) since that is the default prompt.

In the eyes of the computer, the shell is nothing more than another program, and since OS-9 is a
multi-tasking system, many people can run the shell at the same time.

Some basic commands
Here are several simple-to-use commands that can get you started. The dir command is used to

find out the names of all files in a current directory. The command pd shows you the absolute pathlist to
your current directory while chd allows you to change it. Procs is used to discover what processes you
are currently running. None of these (or any other) commands are case sensitive unless they reside on a
compact disk. (Normal OS-9 file systems are case insensitive, ·but the file system for a CD does rely on
the case of files).

Section: OS-9 Resident Navigation

\

"

3

)

Command Options

Most commands accept input on the command line directing them to modify the way the com-
mand is to be executed. For example, the dir utility accepts the -e option to force the utility to display
its output in extended format. Try the command dir -e and you will notice the difference. Procs also
accepts the -e option, but the option has a very different meaning : procs' -e tells the utility to display
information for every process on the system, rather than just the user's processes.

On-Line Help
If you would like to find out what options a command accepts, your first intuition should be to

consult your manual. However, since that option wil1 often follow "sleeping on it", Microware has
written a small amount of on-line help into each of its utilities. If you choose the -? option for any
Microware utility you will be presented with a list of what command options the particular command
accepts on the input line. Try this (dir -?) with the dir utility to discover how the output will appear.

Section: OS-9 Resident Navigation 4

,,
OS-9 File Structure

The OS-9 file structure is hierarchial in nature. That is, data is placed within directories , which
may in turn also be within directories, creating a structure somewhat resembling a record tree. As pre-
viously mentioned, the chd command allows you to change your current directory. (Note , that since chd
is not an actual command but is rather built into the shell, and as such there is no on-line help available
through -? .)

The required syntax for chd is chd <destination> . The destination directory may either be speci-
fied as an absolute path or one that is relative to your current directory. (Recall , the pd command dis-
plays the name of your current directory.) H you have used other directory-based systems, you may be
familiar with .. notation (pronounced dot-dot) as a shortcut referring to one directory level higher. OS-9
takes this notation a little further: you may add a third dot to refer to a second directory level up, a
fourth dot, and so on. There is no limit to the number of dots that may be specified. You are protected,
however, from going beyond the root directory of your current disk.

Disks on OS-9 are all separated from one another in the file system. Put another way, to change
directory from one disk to another always requires an absolute path~ relative paths just won't cut it. An
absolute path is one beginning with a slash(/). The characters following the slash (and before a second
slash) contain the name of the device representing the disk.

Section: OS-9 Resident Navigation

·,

-!J
5

,,
J

t

Environment Variables

Just as any program may have global variables, the OS-9 system supports a set of variables that
programs may access, called environment variables. These variables are kept in an "environment" that
is copied from one program to another when new processes are started. The environment of a process is
kept in a private area, not accessible to any other processes , and may be of any size.

Environment variables may have any purpose programmed into individual applications. Some of
the more common environment variables include : PORT, HOME, SHELL , USER, PROMPT, TERM ,
and _sh. Note, that case is sensitive in environment variables.

The command printenv is used to display your shell's environment. No arguments are accepted
with printenv.

The command setenv is used to create or change an environment variable. It takes exactly two
arguments: the name of the variable and the contents to assign to it.

The command unsetenv takes exactly one argument, the name of a variable, and removes it.

Section: OS-9 Resident Navigation

')

"

i!J
6

,,
)

Environment Variables and the C Language

The simple program below demonstrates how to view the contents of an environment variable .

#include <stdio.~>
#include <stdlib.h >
main ()
{

}

char *mynarne;
mynarne = getenv("MYNAME");
if (rnynarne==NULL)

print£ ("You must set MYNAME first! \n") ;
else

printf("Hello, %s\n" ,mynarne);
exit(O);

This program can be input with the build utility which takes the name of the file to create as its
only parameter, as in build envestX.c. (Remember to replace X with your user number!) Once the pro-
gram has been entered, compile it with the command cc envtestX.c. The cc program, Microware's C
compiler, will spend some time compiling and create a program called envtestX. Assuming no errors
occur during compilation, type the command envestX to run your program.

Section: OS-9 Resident Navigation

\

7

Shell Command Line Modifiers

There are a number of special character sequences which may be entered on the command line to
modify how the command will run. These sequences are not handled by the application but rather by
the shell, prior to starting your application. These sequences are shown in Table 1.

Table 1: Shell Command Line Modifiers

Modifier Description

> redirection of standard output (std.out)

< redirection of standard input (stdin)

>> redirection of standard error (std.err)

! pipe creation between processes

' sequential command separation

& concurrent command separation
/\ priority of process

additional stack space operator

(,) command grouping operators

*,? filename wild card characters

Section: OS-9 Resident Navigation 8

,,
I
r

,I

Background Operation

Using the concurrent command separator, commands can be made to execute in the background.
By executing a command in the form command &, you are telling the shell to start up a process but do
not wait for it to complete; merely issue another command prompt and await further input. Thus, run-
ning "in the background" means the process is in the background with respect to your shell.

The procs command is useful for discovering what process you have in the background.

Bringing processes to the foreground
Since a "background " process is that way only with respect to your shell, bringing a process to

the foreground entails telling your shell to wait for it to complete. There is no way to tell the shell to
wait for a particular process, but there are two commands that tell the shell to place itself in the back-
ground with respect to your other processes. The w command tells your shell to wait until one of its
child processes has terminated before continuing. As soon as any of its children terminate, the shell
will present another prompt for input. The wait command tells· the shell to wait for all of its children to
complete before issuing the next prompt.

Section: OS-9 Resident Navigation

-!J
9

) ,,

Interrupt Characters

The OS-9 system supports two interrupt characters, or "hot keys," that, when pressed, get imme-
diate attention. (When other characters are pressed, they enter a buffer of incoming data, but when a hot
key is pressed, it is not entered into a buffer.) Though the hot keys can be reassigned, their default val-
ues are found in Table 2.

Tobie 2: Hot Keys

Key Name

"C SIGINT

"E SIGQUIT

Each of these keys causes a signal (named in column two) to be sent to the last process to per-
form 1/0 on the device the keystroke came from. If that process is your command, the signal will possi-
bly kill your process. If the last process to access the device is your shell, the action taken will depend
on the signal itself. SIGINT causes the shell to stop waiting for children to terminate, while SIGQUIT
will simply be passed along to the last process the shell created .

-
Section: OS-9 Resident Navigation 10

,,
Extended Directory Listing

DIR is used to list the contents of a directory and is commonly used with the '-e' option to
acquire an extended-information listing. This option produces, for each file in the directory being
listed, a line of information similar to what follows.

1 . 142 94/01/18 1323 . + •
'-Group of file owner

'--owner of file
·Date of last modification
Time of last modification-

d-ewrewr 1A2B3C 128 FILENAME
•• l _ ____.t j

---------t-1--1-Public file permissions
-----+-+-4~Group file permissions

d: file is a subdirectory ___,

.......... -Sector location of file
Data size of file (bytes)
Name of file

s: file is not shareable-----
(single user access)

Section: OS-9 Resident Navigation

)

11

Other Directory Related Commands

Besides dir, there are several other commands whose functions pertain to the file system in one
way or another. We have already seen dir and mentioned chd and pd. Some additional commands
include: chx, makdir, deldir , and dcheck. (Chd and chx are both built into the shell.)

pd: This command, seen earlier, shows your current data directory by default. It also accepts the
'-x' option to display your current execution directory.

chx: Similar to chd, this command allows you to change your current execution directory.

makdir: This command allows you to create a new subdirectory.

deldir : Allows you to remove a subdirectory and its contents.

dcheck: Checks the integrity of the file system and, optionally (-r) allows you to repair problems .

Section: OS-9 Resident Navigation 12

Multiple User Setup

In order for other users to log into the OS-9 system, they must have a valid entry in the file
/dd/SYS/password. (Usually, this file cannot be read by users other than the super user. The Training
and Education machine used in class is an exception.)

Each line in the password file appears as follows:

Note that these entries are separated by a
period, unlike the comma separator found
between all other entries.

1p.us~r,shell_priority,EXE_DIR,DATA_DIR,shell -opts

·User name specified to login
·Password for this entry
·User's group number
User's id number------"

Section: OS-9 Resident Navigation

• 1 1 Priority· of user's initial application
User 's execution directory
User's home directory
User's initial application--------

13

Text Editing

The text editor supported under OS-9 is called umacs, which is sometimes pronounced "micro-
emacs" or "micro-macs" from the original spelling of macs. It is usually invoked with a command line
such as umacs <filename> where <filename> is the name of a file to edit or create .

This editor is usually in "insert" mode, meaning, any text you type (other than special key com-
binations) will be inserted into the document. This editor is a very powerful tool, though it does require
memorization of several non-intuitive commands to master its capabilities. Many of the more simple
command sequences are listed below.

Tobie 3: Common Macs command sequences

Command Description

"P Move to the nrevious line

"N Move to the next line

"B Move b&;kward~ one character

"F Move forewords one character

..
Section: OS-9 Resident Navigation 14

'

Tobie 3: Common Macs command sequences

Command Description

"V Move down a page

"Z Move up a page

"A Move to the beginning of the line

"E Move to the end of the line

"D Delete the character under the cursor

<BS> (backspace key) Delete the character to the left of the cursor
.

"K Delete (kill) to the end of the current line, place text into "kill buffer"

"Y Yank text from kill buffer to current cursor position

<ESC>Z Save your document and exit the editor

"XS Save your document

"X "C Exit

Section: 0S-9 Resident Navigation 15

"'
)
•'

More on the C Compiler

Using the macs editor, create the small program shown below (called mytestX.c) in the direc-
tory called C_DIR, which is a subdirectory from your home directory. Once the program has been writ-
ten, save the file and compile it. (cc mytestX.c).

/*** mytestX.c ***/
main()
{

}

get_term_defs();
els() ;
cursor(0,0,"<firstname>");
cursor(0,70,"<lastname>");
cursor(l2,35,"<middlename>");
cursor (23, 0, 11 11

) ;

exit (0) ;

You should expect to see a few unresolved references when you compile. (Try cc mytestX.c) This
is caused by making references to functions which are not part of the libraries we are including.

Section: OS-9 Resident Navigation

·~:

16

,,
Multi-source Compiling

The example just compiled failed due to some unresolved function reference s. Specifically, func-
tions get_term_defs() , els(), and cursor() are not defined in the C libraries. (That covers everything you
tried to do in that program!) The reason you were instructed to write this code within the C_DIR direc-
tory is because there is a file here containing the functions you are missing . To compile your program
including this second source file, issue the command:

cc mytestX.c c_ctrl.c

This command will take a while to complete, but when it does, you will receive more unresolved refer-
ence errors! This time they are caused by c_ctrl.c making references to functions that are also not part
of the standard library. These functions are, however, more or less standards; they are part of a library
that is not automatically included, however.

Section: OS-9 Resident Navigation 17

I

Compiling with Additional Libraries

You need to make a small change to your compilation command, telling the C compiler to bring
in a special library: "curses.I". H you reissue your command as:

cc mytestX.c c_ctrl . c -l=curses.1

your program should compile without any errors. Once the compilation completes, execute your
program to make sure it works as you expect it to. What's that? Error 000:216 File Not Found? What
did you type in? mytestX? Hmmm. You're pretty sure it should work ; check out the files in your execu-
tion directory and see what cc created . Any new files? Just one, called output, huh? Well, go ahead and
run it, lets see what happens.

output

Well, it seems to execute , but it won't be reliable.

• flD
Section: OS-9 Resident Navigation 18

\l ')

Naming Your Executables

H you were able to get the correct information on screen when you entered the command output,
you were lucky. H you change your current data directory to match your execution directory and then
use the command rename output mytestX, the results may surprise you . The file will have a new name,
but when you type the command mytestX, you may still find yourself running another executable . The
reason for this will be made clear at the beginning of the Intermediate course. For now, you should
compile your program one more time, specifying on the command line the name you want your final
product to have:

cc mytestX.c c_ctrl . c - l=curses.l -f=mytestX -olM=Sk

Note, that the executable needs more than the default 3k of stack space. The option on the end of the
command line allocates 5k for this binary.

Section: OS-9 Resident Navigation

\

19

.)

,,
\
I

Compiling to Objects

To get that example to compile, we had to go through several iterations , most of which were
really unnecessary and time consuming . If, rather than trying to go directly from ' .c' files to an execut-
able, we had compiled each source file to an object first, things would have gone considerably quicker.

Ultra-C supports two types of object , or intermediate files. The first is assembled code which
needs to be linked with libraries to create an executable ; this is the traditional object file, and has the
extension of ' .r'. The second, an "icode" file, is an Ultra-C specific object type. Compiling to icode
takes longer but leaves more room for code optimization by the compiler. Thus, in the development set-
ting you will probably want to perform traditional compiling and when your product is ready to ship, a
final icode compilation may be in order.

To compile to an object you simply need to tell the compiler to stop early. The command option
"-e<phase>" tells cc what phase to stop after. To stop at the assembled object level, stop at phase as,
i.e., cc -eas mytestX.c . This creates the file "mytestX.r" which can be combined with c_ctrl.r and the
termlib library to create our executable. The "io" phase is the icode optimizer, a good point to stop after
if you are interested in an icode file called mytestX.i. Icode can be grouped along with object code and
the required libraries to generate a final executable.

Section: OS-9 Resident Navigation

"

20

)

,,
) ,,

Project Management

There is a utility called make on the OS-9 system which has been designed to improve produc-
tivity in updating executables generated from (reasonably) large numbers of source files. (This utility is
very similar to utilities of the same name found on other systems.) Make's function is to allow you to
build your final product by separately compiling all items for your project and then linking them
together, by typing one command. The utility reads a text file which basically tells make what you are
building and how it gets done.

This text file, often called "makefile," contains macros, dependency lists, and rules. Macros are
simply there to ease the job of maintaining dependencies and rules . Dependencies describe the relation-
ship between high level items and low level items and rules tell make how to create a high level item .
For the project we built minutes ago, the makefile shown below could suffice:

lines beginning with a# are comments
ODIR = /hO/CMDS/exe # our execution directory

mytestX: mytestX.r c_ctrl.r
cc mytestX.r c_ctrl.r -l=curses. l -f=mytest

Section: OS-9 Resident Navigation

·,
_i

21

·,
.l l

Debugging Under OS-9

Tobie 4: Debuggers Available for OS-9

Debug SrcDbg SysDbg RomBug

State user user/system system system

Language asm C/asm asm asm
Expressions yes YES yes yes

Break Points yes YES yes yes

Watch Points no yes no no

-
Section: OS-9 Reside nt Navigation 22

Microware is committed to providing more tlian
technologically-advanced software.

Microware was conceived as a "total solution" software
supplier, dedicated to serving its clients.

Microware develops software products designed to address
the needs of today with solutions for tomorrow .

1977

1990

OS-9 Training and Education

Important Dates In Microware's History

1977: Microware Incorporated in Des Moines , Iowa
Fmt ROMable Real-Time Kernel Released

Established
mentBegins

acks Released

Introduction - 2

OS-9 Version 2.4 Release Highlights
Complete details covering the Version 2.4 release of OS-9 / 680X0 may be found in the
Release Notes , OEM: Installation Manual and ROMbug Manual. OS-9 / 680X0 release
highlights include :
• 68332 Support

05-9 / 68332 includes full support for the MVME BCC Evaluation System and can
be licensed in both Port Pak and distribution license configurations.

• New ROM Debugger (ROMBug)
05-9 / 680X0 now includes a symbolic ROM-based debugger . ROMBug incorpo-
rates many of the features of the System State Debugger and can be used to debug
interrupt service routines .

• Variable Sector Size RBF
RBF now supports variable sector sizes . This enhancement can significantly in-
crease disk I/0 throughput and media efficiency. Logical sector sizes can be any
integral binary power ranging from 256 to 32768.

• RBF Caching Support
RBF now supports write-through disk caching. This caching system increases disk
1/ 0 throughput by accessing structures in system memory and reducing external
bus usage . A new Di skcache utility has been added to enable / disable cache, set
cache size and report usage statistics .

• Extended Non-Contiguous Boot Files
RBF boot files can now be non-contiguous and as large as any file allowed by a

'-._.,. given device. This feature is especially attractive for systems whicll need to load
large modules as a part of the bootstrap file.

• SCSI Support for hard disks, floppies and tape drives
SCSI software includes support for the Common Command Set, connect / discon-
nect and a unique modular design that simplifies the installation process . SCSI
software will be included in license updates and installation paks for Professional
OS-9, RBF and SBF.

• C Booting Technology
ROM boot-code can now be developed using C language technology to simplify
sophisticated boot options on multiple devices .

• A new Profile Shell command has been added
Profile allows the shell to receive input from a file and then return to the original
input path .

• Professional OS-9 and TapePaks now include a Tapegen utility
Tapegen allows the user to install bootstrap files on magnetic tape .

• Industrial OS-9 now includes 13 new utilities:
Deiniz, Dump, Echo , Exbin , Help , !dent , Iniz , Link, Printenv , Sleep, Tmode, Unlink
and Xmode.

OS-9 Training and Education Introduction - 3

Microware Systems Corporation
1900 N.W. 114th Street
Des Moines, Iowa 50325-7077

Telephone: 515 224-1929
FAX: 515 224-1352
Telex: 910 520-2535

OS-9 Topics - Course Syllabuses

Starter
1 Day Course

• TI,e OS-9 User Interface

Using the Shell

- Environments

- Redirection and modifiers

Using Utilities

- Execution directory

- Directory layout
(CMDS, USR, IO, DEFS, LIB, etc.)

Making OS-9 Multi-User

- Group/User numbers

- Permissions

- Creating password file entries

• Using the C Compiler

Compiler options

Compiling multiple source programs

Using the Make utility

• Using the Debuggers

Available debuggers

The C source debugger - Srcdbg

Day One

Intermediate
2 Day Course

• TI,e OS-9 Module Overview

Memory module

Kernel/ !nit

Trap handlers

1/0 system

• Process Creation

Process descriptor

0S9exec

• Path Manipulation

Path table

1/0 functions

• Interprocess Communication

Pipes (named / unnamed)

- Creating pipes

- Using pipes

- Error conditions

Microware Systems Corporation
1900 N.W. 114th Street
Des Moines , Iowa 50325-7077

Telephone : 515 224-1929
FAX: 515 224-1352
Telex : 910 520-2535

OS-9 Topics - Course Syllabuses, continued

Intermediate

Day Two

• Interprocess Commwtication , (continued)

Data Modules
- Shared RAM
- Creating and using data modules
- Module related functions

Signals/ Alarms
- Sending and receiving
- Predefined signals
- System state signals

Events (semaphores)
- Creating events
- Waiting for a condition
- Signaling an event
- Example protocols
- Other calls

IPC Lab
- Create and play a simple and enjoyable

game using:
Pipes and signals
or
Data modules and events

Advanced
2 Day Course

Day One

• Process Scheduling
Process states
Moving between queues
Scheduling algorithm
Implementing real-time objectives

• Memory Usage
Global memory map
Memory allocation functions
Colored memory - installation and uses

• Subroutine Modules
Building a subroutine module
substart.a
Using a subroutine module
Rules and regulations

• Advanced C Topics
Assembly to C interface
Assembly generation from C compiler
Create your own C-binding in assembly

Advanced
Day Two

• Exception Handling
Boot Procedure

- Bootcode
- Kernel

Trap Handlers
- Run time library
- Installing
- Executing

Pro cess (Program) Exception Handling
Customization Extension Modules

- Adding your own system calls to
the kernel

Interrupt Service Routines
- Installing on a vector table
- Demonstration

'---

The 0S-9 Shell

The shell is the OS-9 command interpreter program . The shell takes the
commands you enter and transl ates them into commands the operating system
understands and executes .

The shell also provides a user-configurable environment to personalize the
way OS-9 works on your system . You can use U,e shell to change the shell
prompt , send error messages to a file, or backup your disk before you log out.

Multiple processes can simultaneously use the shell utility . This allows each
user to have their own shell . It also allows a user to have more than one shell .

Shells are easy to create. The quickest way to
create a new shell is to type shell on the command
line. The new shell is a descendent , or child
process of the original , or parent shell .

You can also create child shells by executing a
procedure file . A procedure file contains shell
commands, one command per line . When the file is
invoked , the shell forks (creates) a shell to execute the
commands as if each command had been entered on
the shell command line .

PARENT
PROCESS

CHILD
PROCESS

The child shell automatically accepts and executes the command lines from the
procedur e file instead of a terminal keyboard . This technique is sometimes
called batc1, processing .

OS-9 Training and Education

MuH/ple
Shells

Shell - l

The shell maintains a list of environment variables for each user on an OS-9 The Shell
system . These variables affect the operation of the shell or other programs Environment
subsequently executed and can be set according to the user's preference .

All environment variables can be accessed by any process called by the
environment's shell or by descendant shells. This allows you to use
environment variables as global variables .

If an environment variable is redefined by a subsequent shell , the variable is
only redefined for that shell and its descendents . The environment is not
redefined for the parent shell .

Four environment variables are automatically set up when you log on to a time-
sharing system:

PORT

HOME

SHELL

USER

Specifies the name of the terminal . An example of a valid name
is /t1. PORT is automatically set up by the tsmon utility.

Specifies your 1,ome directory . The home directory is specified in
your password file entry and is your current data directory when
you first log on the system .

The name of the shell program to run.

The user name you type when prompted by the login command .

For single user systems, you can set these variables with the setenv command.
You can also set up a procedure file with your normal configuration of these
variables . You could execute this file when you boot up your system.

There are four other important environment variables :

PA TH Specifies any number of directories to be searched when a
command is executed .

PROMPT Sets the current prompt .

_ sh Specifies the base level for counting the number of shell levels.
_sh is the only standard environment variable in lower case
letters .

TERM Specifies the type of terminal being used .

Environment variables are case sensitive . OS-9 w ill not recogniz e a vari able if
the proper case is not used.

OS-9 Training and Education Shell- 2

The Shell

Three utility programs are available for use with environment variables:
printenv, setenv, and unsetenv .

• printenv prints the variables and their values to standard output. For
example:

$ printenv
PATH-/dd/cmds:/hO/cmds:/dO /c mds
PORT-/term
HOHE-/ho/usr/markd
SHELL-shell
USER-mark
PROMPT-$
_sh-0

• setenv declares the variable and sets its value. The variable is put in
an environment storage area accessed by the shell. setenv requires
two parameters. For example :

$ setenv PATH /dd/cmds:/dd/cmds/tel:/hO/cmds:/dO/cmds
$ setenv _sh 0
$ setenv SOURCE /hO/usr/tel/code

• unsetenv clears the value of the variable and removes it from
storage. For example:

$ unsetenv PATH
$ unsetenv _sh

OS-9 Training and Education

The 0S-9 Shell

Changing
the Shell

Environment

Shell - 3

The Shell

Command Line Processing

Execution modifiers , separators, and wildcards are not passed to the program
as parameters when the shell processes a command line. Instead, these
characters are stripped from the command line and processed by the shell. The
following is a list of the available execution modifiers , separators, and
wildcards:

modifiers: # Additional Memory Size ,. Process Priority
> Redirect Output
< Redirect Input
>> Redirect Error Output

separators: Sequential Execution .
& Concurrent Execution
I Pipe Construction

wildcards: " Matches Any Character(s)
? Matches a Single Character

grouping () Group shell commands together

OS-9 Training and Education Shell- 4

The Shell Command Une Proce11lng

The shell processes execution modifiers before the program is run. If an error
is detected in any of the modifiers , the run is aborted and the error reported .

Execute program with a new stack size modifier(#). This increases the
default stack size used to execute a program . This increase in stack size
can be assigned in lK increments. If the specified stack size allocation is
smaller than what is normally allocated , the modifier is ignored . The
increase in stack size allocation only affects one command. The
following are examples of the additional stack size modifier:

"

recurse #100
update #SO.new old

Uses WOK of stack siu for recurs.
Uses SOK of stack size for update.

If you want a program to run at a higher priority , the process priority
modifier(") is used . By specifying a higher priority , a process is placed
higher in the execution queue . Also, processes with higher priorities
receive more CPU time . The following is an example of a process
priority modifier:

$ format /dl A255 Specifies tl,at fon11at /,as an i11itial priority of 255.

< Redirects standard input. The standard input path normally passes
data from a terminal 's keyboard to a program.

> Redirects standard output. The standard output path normally passes
output data from a program to a terminal 's display .

>> Redirects standard error . By default , the standard error path uses the
same device as the standard output path .

NOTES : Redirection modifiers can be used before and/ or after the pro-
gram 's parruneters , but each modifier can only be used once in a given
command · lirie. Redirection modifiers can be used together to cause
more than one of the standard paths to be redirected.

+ - You can use the plus and hyphen characters(+ and-) with redirection
modifiers. The >- modifier redirects output to a file. If the file already
exists, the output overwrites it . The>+ modifier appends the output to
the end of the file .

Spaces may not occur between redirection operators and the device or
file path. The following are examples of redirection modifier s:

shell <>»ltl Rcdirc«:ts all standard pat/is to t1.
dir >ldl/savelisting Redirects output of dir to a file.

OS-9 Training and Education

Execution
Modlflers

Shell- 5

The Shell Command Line Processing

A single shell input line can include more than one command line . These
command lines may be executed sequentially or concurrently .

Sequential execution causes one program to complete its function and
terminate before the next program is allowed to begin execution .
Commands are sequentially executed by separating the command lines
with a semicolon(;). After initiating a program , the shell waits until the
program it created terminates . The command line prompt does not
return until the program has finished . If an error is returned by any
program, subsequent commands on the same line are not executed
regardless of the -nx option . In all other regards , a semicolon (;) and a
carriage return act as identical separators . For example:

list newf1le; dir >Ip Executes tlte list command and t/1e,1 tl,e dir command.

& Concu"ent execution allows several command lines to run simulta-
neously . Commands are concurrently executed by separating the com-
mand lines witl, an ampersand(&) . This allows programs to run at the
same time as other programs , including the shell . The shell does not
wait to complete a process before processing the next command . Con-
current execution begins a background program .

The number of programs that can run simultaneously is not fixed ; it
depends upon tl1e amount of free memory in the system and the
memory requirements of the specific programs.

By adding an ampersand (&) to the end of a command line, regardless of
the type of execution specified, the shell returns the ID number of the
background process , returns command to tl,e keyboard , displays the $
prompt, and wails for a new command. This frees you from waiting for
a process or sequence of processes to terminate . For example :

tsmon /tl /t2&
dir >/pl& list file!

Runs tsmon in the background.
Executes tl,e dir command in tl1e background at the same

time tl,e list co11111umd is running in the fi,reground.

Pipelines are constructed with an exclamation point (I) . Pipelines consist
of two or more concurrent programs whose standard input and / or
output paths connect to each other using pipes . For exampl e:

pro cs -e I grep procs
list data I qsort
dir - rus I grep filename

OS-9 Training and Education

Pi17cs outp11f 11/ 11rocs to the grcl' Jll't1gra111.
Pipes 011tp11t of list to tl,c qwrt 11rogrn111.

This co111111a11tf is rq11ivalc11t ton fi 11rl co1111111111d.

Command
Separators

Shell - 6

Th•Sh•II Command Un• Pr~,s/ng

The shell accepts wildcards in the command line to identify file and directory
names. The two recognized wildcard characters are the asterisk and the
question mark (* and ?).

• An asterisk (*) matches any group of zero or more characters. The shell
searches the current data directory or the directory given in a path for
matching file names. For example :

l i st f* Lists all f11es beginning wiJ/1 tire letter f, including ft1es sud, as f.txt.
di r .. /*. backup Lists tl,e files in the parent directory that end with .backup.

NOTE: OS-9 does not require you to append an extension (such as .doc)
on filenames. Therefore, use of the asterisk as a wild card character in
OS-9 has different results than when used in MS-DOS. For example, in
OS-9:

dir *.*

dir *

Lists only ft1es in tire current directory witlr a <filename> .<ext>. File
mimes witJ,out a .<at> are not included in tire list.
Lists all files in tl,e current directory, regardless of wl1etl1er the file
name contains a .<.ext>.

? A question mark (?) matches any single character. The shell searches the
current data directory or the directory specified in a path for matching
file names. For example:

list f??
del form?

Lists tliree-cl,aracter filenames begirmi11g witl, f.
Deletes files beginning witlt fi,rm and ltaving one additional character.

Wildcards may be used together . For example, the command list •.? lists any
files that end in a period followed by any character, number, or special
character, regardless of what comes before the period.

() Sections of shell input lines can be enclosed in parentheses. This allows
modifiers and separators to be applied to an entire set of programs. The
shell processes them by calling itself recursively as a new process to
execute the enclosed program list. It is important to remember that OS-9
processes commands from left to right. For example:

(dir /dO; dir /dl) >!pl
(del *.backup;procs -e >/pl)&
()

Directs output 11(both dir comma11ds tu /p1.
Runs dcl n11d procs in //,e l1t1ckgrow1d.

Wit/1 no commands,() forks a cl,ild sl,cll.

OS-9 Training and Education

Wlldcard
Matching

Command
Grouping

Shell- 7

Using OS-9's Multi-User Capabilities

OS-9 is a multi-user /mu lti-tasking operating system. This means that OS-9
supports the actions of more than one user at a time. Also, each user can run
more than one process at a time.

Before adding users to your system, you should understand two concepts: file
ownership and current directories.

When a file or directory is created, a group.user ID is automatically stored with
it. The group.user ID is formed from the user's group number and their user
number. The group number allows people that work on the same project or
work in the same department to be given a common group identification. The
user number identifies a specific user. Therefore, a group.user ID identifies a
specific user in a specific group or department.

The group.user ID determines file ownership. OS-9 users are divided into two
classes: Ute owner and the public. The owner is any user with the same group
or user number as the person who created the file. The public is any person
with a group number that differs from the person who created the file.

A user with a group ID of O is referred to as a super user. A super user can
access and manipulate any file or directory on the system regardless of the file's
ownership.

0S-9 Training and Education

File
Ownership

Shell - 8

Th•Sh•II OS-9's Multl-Us•r Capabl/Hl•s

On multi-user systems, the system manager generally assigns a group.user ID
for each user. This number is stored in a special file called a password file. A
super user on a multi-user system is generally the system manager, although
other people such as group managers or project leaders may also be super
users.

On single-user systems, users have super user status by default.

File use and security are based on file attributes. Each file has eight attributes.
The dlr -e command displays these characters as an eight character string.

The term permission is used when one of the eight possible attribute characters
is set. Permission determines who can access a file or directory and how it can
be used. H a permission is not valid for the file or directory being examined, a
hyphen(-) will be in its position.

Here is an attribute listing for a directory in which all permissions are valid:

dsewrewr

The attr utility changes file attributes. For example, the following command
denies public read access of the file myfile:

attr -npr myfile

By convention, attributes are read from right to left. They are:

Attribute Abbrevlaffon Description

Group Read r

Group Write w

Group Execute e
Public Read pr
Public Write pw

Public Execute pe
Single user s

Directory d

OS-9 Training and Education

The group can read the file. When off, this
denies any access to the file.

The group can write to the file. When off,
this attribute protects files from accidental-
ly being modified or deleted.

The group can execute the file.

The public can read the file.

The public can write to the file.

The public can execute the file.

When set, only one user at a time can open
the file .

When set, indicates a directory .

FIie Security
System

Sh•l1- 9

Th•Sh•II OS-9's Multi-User Capablllfl•s

Two working directories are always associated wiU1 each user or process. These
directories are the current data directory and the current execution directory.
You create and store your text files in a data directory. Executable files, such as
programs you have created and utilities, are located in an execution directory.

The current directory concept allows you to organize your files while keeping
them separate from other users on the system. The word curre1tt is used because
it is possible for you to move through the tree structure of the OS-9 file system to
a different directory. This new directory would then become your current data
or execution directory.

The following is an example of how a directory structure on a multi-user system
might look:

USR

SYS

User Directories

-E errmsg
password
termcap

SYSMODS-+= ~~b~rr.a t=_ sysgo.a

IO

/hO LIB

C

DEFS

CMOS

OS-9 Training and Education

sysgo _nodisk.a

-E makefile
defsfile
hO.a

-E cio.l
clib.l
math.I

examples

errno.h
float.h
stdio.h
termcap .h

cc
copy
dir kernel
BOOTOBJS -+= nil t=: null -

pipe
User Directories

Current
Directories

Shell- 10

0S-9'1 Muttt-u,., Capabllttt••

On multi-user systems, a password file should be located in the SYS directory .
Each line in the password file is a login entry for a user . The line has seven
fields separated by a comma:

<D User name. The user name may contain up to 32 characters includ-
ing spaces . If this field is empty, any name will match .

<%> Password . The password may contain a maximum of 32 characters
including spaces . If this field is omitted , no password is required for
the specified user .

<ID Group.user ID number. Both the group and the user portion of this
number may be from O to 255. This number is used by the file
security system as the system-wide user ID to identify all processes
initiated by the user . The system manager should assign a unique ID
to each potential user .

@ Initial process priority. This number may be from 1 to 65535. It indi-
cates the priority of the initial process. By convention Microware
suggests 128 as the default priority .

(5) Initial execution directory. This field is usually set to /hO/CMDS or the
user's execution directory .

 Initial data directory. This is usually the specific user directory .

<1> Initial program. This field contains the name and parameters of the
program to be initially executed . This is usually the shell.

NOTE: Fields left empty are indicated by two consecutive commas.

The following is a sample password file:

general,,200.1,128, / hO/ CHOS,/ hO/USR,shell
superuser , secret,0.0,255,/hO/CMDS,/hO.shell -p-"@howdy"
account,false,1 . 3,125,/hO/cmds/account,/hO/usr/account,shell
amy, mark,13 . 153,128 ,/ hO/CHDS/ AHY,/ hO/USR/ AHY.shell
justin,dragon,3 . 10,128,/hO /CHDS,/ hO/ USR/ JUSTIN,Bas i c

OS-9 Training and Education

The
Password

FIie

Shell - 11

The Shell OS-9 's Multi-User Capabilities

Users may have more than one login entry . A single user name can hav e as
many password file lines as desired , although the first line reached sequentiall y
with a valid password is the password line used. For example , if user amy is
also a super user , another line may be added to the password file:

amy,love,0.153.128 ,/ hO/ CHDS/ AMY,/ hO/ USR/ AMY,s hell

If amy enters love at the password prompt, she will have super user privileges .
She will have non-super user privileges if she enters mark at the password
prompt.

OS-9 Training and Education
Shell - 12

Setting Up a Time-Sharing System Startup Procedure File

OS-9 systems used for time-sharing usually have a procedure file that brings
the system up by means of one command or the system startup file. This
procedure file initiates the time-sharing monitor for each terminal. It begins by
starting the system clock and initiating concurrent execution of a number of
processes that have their 1/0 redirected to each time-sharing terminal.

tsmon is a special program which monitors a terminal for activity. Typically,
tsmon is executed as part of the start-up procedure when the system is first
brought up and remains active until the system shuts down .

tsmon normally monitors 1/0 devices capable of bi-directional communica-
tion, such as CRT terminals.

It is possible to run several tsmon processes concurrently, each one watching a
different group of devices. Because tsmon can ·monitor up to 28 device name
pathlists, multiple tsmon processes must be run whenever more than 28
devices are to be monitored. Multiple tsmon processes are useful for other
reasons. For example, it may be desirable to keep modems or terminals
suspected of hardware trouble isolaled from other devices in the system.

Here is a sample startup file for a time-sharing system with terminals named
TERM, T1, T2, T3, and T71:

* system startup procedure file
echo Please Enter the Date and Time
setime <!term
tsmon /tl /t2 /t3&
tsmon /t71&

In this example, setime has its input redirected from the system console
terminal. If the input was not redirected, 05-9 would attempt to read the time
information from the current standard input path which is the procedure file
instead of from the keyboard. Also notice that the ampersand (&) modifier is
used to place tsmon in the background. This allows you to perform other tasks
on your terminal while tsmon continues to run in the background.

NOTE: This startup file should not be used until a /hO/SYS/ Password file with
the appropriate entries has been created .

OS-9 Training and Education Shell- 13

TheSh•II

Setting Up a Multi-User System

Now that the basic principles have been discussed , the steps involved with
making an OS-9 system multi-user are relatively simple :

<D Decide and document the group and user number s.

<%> Create the directories that the users will need . For each user , create
a sub-directory in the USR directory and a sub-directory in the
CMOS directory .

<3> Edit the password file to allow each user to log in .

© Copy / write a .login file for each user . Each time a user logs in, the
shell will run the .login file just before issuing its first prompt . A
typical .login file might look like the following :

- 1
setenv TERM st
setenv PATH / hO/c mds: / nO/ TrEd/ hO/ cmds
setenv EDITOR umacs
date

A .logout procedure file that runs when the user exits the login shell
may also be created .

Make the startup file run tsmon on each port on the system .

At this point , your system should be up and running multiple users.

0S-9 Training and Education Shell - 14

--

The Shell

OS-9 Utility and Built-in Shell Command Summary
The following is a list ot the utilities and built-in shell commands that come
with the Professional OS-9 package. A + preceding a description specifies a
built-in shell command.

UtHlty

attr
backup
binex
break
build
cfp
chd
chx
cmp
code
compress
copy
count
date
dcheck
deiniz
del
deldir
devs
dir
dsave
diskcache
dump
echo
edt
ex

exbin
expand
fixmod
format
free
frestore
fsave
grep
help
ident

Description

Display or change file attributes
Make backup copy of a disk
Convert bi.nary data to S records
Invoke the system level debugger or reset the system
Build a short text file from standard input
Create/ execute a temporary procedure file
+Change your current data di.rectory
tChange your current execution directory
Compare two files
Return the hex value of a terminal key
Compress an ASCil file
Copy file(s)
Count characters, lines, and words in a file
Display the system date and time
Check di.rectory/ file integrity
Detach device(s)
Delete file(s)
Delete a directory
Display the system's device table
Display . the contents of a di.rectory
Copy a di.rectory structure
Enable, disable, or display status of cache
Formatted display of file contents
Echo text to output
Line-oriented text editor
+Terminate execution of parent process and begin execution of
child process
Convert S record(s) to binary data
Expand a compressed file
Fix module CRC and parity
Format an RBF device
Report free space on disk
Restore di.rectory structure(s)
Backup a directory sh"':lcture
Search file for lines matching expression
Display usage of OS-9 utilities
Display module information

OS-9 Training and Education Shell- 15

The Shell

Utlllty

iniz
irqs
kill
link
list
load
login
logout
makdir
make
maps
mdir
merge
mfree
moded
os9gen
pd
pr
printenv
procs
profile
qsort
rename
romsplit
save
set
setenv
setime
setpr
shell
sleep
tape
tapegen
tee
tmode
touch
tr
tsmon
unlink
unsetenv
w
wait
xmode

OS-9 Ufl/Hy and Built-In Shell Command Summary

Description

Attach devices
Display the system's IRQ polling table
+Abort specified process
Increment a memory module's link count
List contents of a file
Load a module into memory
Timesharing security log-in system; Execute .login file
+Terminate current shell; Execute .logout file
Create a new directory file
Program maintenance tool
Refom1at display of data memory
Display module directory
Merge file(s) to standard output
Display system memory information
Edit certain OS-9 modules
Create boot on disk
Print path of data or execution directory
Display text file in specified format
Display shell environment variables
Display user/ system process information
Read comments from file and return
Quick sort of text file
Rename a file or directory
Split a ROM image file
Save memory modules to files
:J:Set shell options
:J:Set environment variable to value
Set system date and time
+Set process priority
Command interpreter
Suspend process for ticks/ seconds
Tape device special control commands
Put files on a tape
Copy input to multiple output paths
Display/ change terminal characteristics on an SCF path
Update the date of a file
Convert all occurrences of characters in <String 1 > to <String2>
Timesharing device monitor
Decrement a memory module 's link count
+Clear value of environment variable
+ Wait for last process to die
fWait for all child processes to die
Display/ change SCF device descriptor options

OS-9 Training and Education Shell - 16

.._

The C Compiler

Microware 's C Language Compiler System is a technologically advanced ,
high-performance , software development tool capable of the following:

• Comprehensive implementation of the full languag e
• Efficient code generation producing fast and compact object

programs
• Generating position-independ ent, re-entrant , ROMable code
• High compilation speed
• UNIX and OS-9 compatible standard libraries

This compiler also serves as a gateway between UNIX and OS-9. Almost any
application program written in C can be transported from a UNIX system to an
OS-9 system , recompiled , and executed correctly . The compiler can also be run
on UNIX-based computers , and the output can be downloaded to an
OS-9-based 680.xO system .

OS-9 Training and Education The C Compller - 1

The C Complier

The compiler recognizes many command line options which modify the
compilation process. Options are not case significant. All options are
recognized before compilation begins. Consequently , the options may be
placed anywhere on the command line . Options may be grouped together
(such as -sr) except where an option specifies a parameter (such as -f=<path>) .

Option
-a

-bg

-bp

-c

-d<identifier>

-e-<number>

Description
Suppresses the assembly phase, leaving the output as
assembler code in a file with a .a suffix.

Sets the sticky bit in the module header . This causes the
module to remain in memory even if the link count
becomes zero .

Prints the parameters passed to each compiler phase and
prints an exit status message.

Outputs the source code as comments with the assembler
code . This option is most useful with the -a option .
Equivalent to a #define <identifier> in the source file. Use
this option when different versions of a program are
maintained in one source file and differentiated through
the #if def or #if ndef pre-processor direc"tives. If <identifier>
is used as a macro for expansion by the pre-processor, 1 is
the expanded value unless an expansion string is specified
using -ckidentifier>•<string>.

Sets the edition number constant byte to the specified
number. This is an OS-9 convention for memory modules.

Overrides the output file naming conventions. The last
element of <path> specifies the name of the output file.
The module name will be the same as the file name unless
overridden by the -n-<name> option . The -f•<path>
option causes an error if either the -a or -r options are also
present. If <path> is a relative pathlist, it is relative to the
current execution directory .

Similar to the -f •<path> option with the following
exception: if <path> is a relative pathlist, it is relative to
the current data directory .

Complier Options

Complier
Opttons

OS-9 Training and Education The C Compiler. 2

Th• C Compll•r

Option
-g

-i

Description
Causes the linker to output a symbol module for use by the
symbolic assembly language level debugger. The symbol
module has the same name as the output file with .stb
appended. If a STB directory exists in the target output
directory, the symbol module is placed there . Otherwise,
it is placed in the same directory as the output file.

Links the program with the cio.l library, causing
references to selected C l/0 fw1ctions to be handled by the
cio trap handler module .

-j Prevents the linker from creating a jump table.
-k•<n>[wll][cwlclJ[f]

-m-<mem size>

-o

-q

<n> Specifies the target machine: 0=68000 (default),
2=68020.

w Causes 16-bit data offsets to be generated. The
default is 68000.
Causes 32-bit data offsets to be generated. The
default is 68020.

cw Causes 16-bit code references to be generated. The
default is 68000.

cl Causes 32-bit code references to be generated . The
default is 68020.

f Causes c68020 to generate 68881 instructions for
float/ double types .

Specifies a library file to be searched by the linker before
the standard library, math libraries , and system interface
library .

Instructs the linker to allocate <mem size> for the program
stack. Specify the memory size in kilobytes. The default
stack size is approximately 21<.

Specifies the output module's name.

Inhibits the assembly code optimizer pass. The optimizer
shortens object code by about 11 % with a comparable
increase in speed . It is recommended for production
versions of debugged programs .

Specifies quiet mode: the executive does not announce
internal steps as they occur. Only error messages, if any ,
are displayed .

Compiler Options

OS-9 Training and Education The C Complier - 3

The C Complier

Option

-s

-x

Description
Suppresses linking library modules into executable
programs. Output is left in files with a .r suffix. If-r-<dir>,
.r files stay in <dir>.
Stops the generation of stack-checking code. This option
should only be used with great care when the application
is extremely time critical and when the use of the stack by
compiler generated code is fully understood.

Causes the executive to place the temporary files used by
any compiler phase in the directory named <dir>. If the
device containing the directory is a RAM disk device (for
example, -t-/rO), compilation time will be drastically
reduced.

Undefines previously defined pre -process or macro
names. Macro names pre-defined iI_1. the pre-processor are
OSK and mc68000 . These names are useful for
identifying the compiler under which the program is
being compiled for the purposes of writing machine and
operating system independent programs.

Specifies an additional directory to search for pre-
processor #include files. File names within quotes are
assumed to be in the current directory. The specified
directory is searched for file names within angle brackets
(<>). This option may appear more than once. If this
option appears more than once, each directory is searched
in the order given on the command line. The default
DEFS directory is searched after all specified directories
have been searched.

Specifies the directory containing the default library files
(cstart.r, clib.l, etc.).

Causes the compiler to generate trap instructions to access
the floating point math routines. This option should
appear on the command line when the program is both
compiled and linked (if performed separately). The linker
causes the object program to use the trap handler modules
rather than extracting code from the math libraries.

Compiler Options

OS-9 Training and Education The C Complier - 4

Th• C Complier

Linker Command Line Options

The linker (168) transforms the r68 assembler output into a single OS-9 format
memory module. Many modules require more than the bask memory module
requirements. The contents of the assembly language relocatable output files
(ROFs) provide the information required to create each type of memory
module . The linker allows references to occur between modules in order for
one module to reference a symbol in another module . This involves adjusting
the operand of many machine-language instructions .

When a program is being assembled , the assembler does not know the
addresses of names which are external references to other program sections .
Therefore , when an external reference is encountered, the assembler will set up
information in the ROF which identifies the instructions that reference external
names. Because the assembler is not aware of what the actual offset within the
module is , each section is assembled as though it starts at offset O.

The linker uses the ROFs produced by the assembler as input . The linker reads
all the ROFs and then assigns each ROF a relative starting offset for its data
storage space and a relative starting offset for its object code space .

The following options can appear on the command line. Options are case
significant :

Option
-a

Description
Converts out--of-range bsr instructions and PC-relative
lea instructions to jump table references. bsr
instructions that address labels of 321< distant are
automatically converted lo jsr instructions using a jump
table (in the initialized data area) that contains the desired
destination address . lea instructions are changed to
move instructions that move the destination from a jump
instruction in the jump table . The linker automatically
builds the required jump tables and includes them in the
output file. This allows large programs to overcome the
+ I- 321< offset limit of bsr instructions without violating
the OS-9 requirement for position independ ent code.
Sets the module edition number . <n> is used for the
edition number in the final output module. 1 is used if this
option is not specified .

OS-9 Training and Education The C Complier - 5

The C Compiler

Option
-g

-j

-m

-r

Linker Command Line Options

Description
Outputs symbol modules for use by the user and/ or
source debugger . H the .r files were created with the -g
option, two symbol files are created: one file name with
.stb appended and the other with .dbg appended . H not
compiled with the -g option , only the .stb file is created . H
a STB directory is present in the cw-rent execution
directory, the symbol files are placed U1ere. Otherwise,
they are placed in the cw-rent execution directory.

Prints jump table calculation map. See the description in
U1e -a option .

Uses <path> as a library file. A library file consists of one
or more merged assembly ROF flles. Each psect in the file
is checked to see if it resolves any unresolved references.
H so, the module is included in the final output module.
Otherwise, it is skipped. No mainline psects are allowed
in a library file. You can repeat this option up to 32 times
in one command line to specify multiple library files.
Library files are searched in the order given on the
command line . The standard definition files are sys.I for
assembly language or clib.l for the C compiler .

Adds <mem>K to the stack memory allocation.

Prints the linkage map indicating the base addresses of the
psects in U1e final object module.

Uses <name> as the module name.

Writes linker object (memory module) output to the
specified file, relative to Ute execution directory. The last
element in <path> is used as the module name unless
overridden by the -n option.

Writes linker object (memory module) output to the
specified file, relative to the data directory. The module
name is the last element in <path> unless overridden by
the -n option.

Sets the permission word in the module header to <n>.
<n> must be hexadecimal .

Outputs a raw binary file for a non-OS-9 target system .
The output~ not be in memory module format.

OS-9 Training and Education The C Complier - 6

T11e C Complier

Option

-s

-S

-w

-z
-z-<file>

Unker Command Une Options

Description

Outputs a raw binary file for non-05-9 target systems with
an object code base address at abs olute address <n> . <n>
must be a hexadecimal address . The base address is used
to make absolute addressing references operate correctly .

Prints a list of relative addresses assigned to symbols in
the final object module . The symbols are listed in numeric
order . This option is usually used with the -m option .

Sets the sticky bit in the module header . This causes the
module to remain in the module directory even if the link
count becomes zero .

When used with -s, this option displays symbols in
alphabetic instead of numeric order .

Reads module names from standard input .

Reads module names from <file> . .

OS-9 Training snd Educstton The c Compiler - 7

COMM.AND NAME BINDING DESCRIPTION

baclr:vard-cllar,ct.er ·e . Moves cursor one diaracter to the left

fon,ard-cllancter ·r MoYes cursor one character to the right

nut-wrd M-F Moves cursor one word to the right

pn,· -.o,rd M-8 Moves cursor one word to the left

nv. ' .N Move, cursor down the window one line --
pn,vlcus-11ne •p Moves cursor up the window one line

next-paragraph M-H Moves cursor ahead to the next paragraph

pnvtcus-paragraph M-P MoYes cursor back to the last paragraph

ne:xt-page ·v Moyes cursor ahead one window

pn,vl cus-page ·z MoYes cursor back one window

beg1nlng-of-1 lne .A MoYes cursor to the begh1.oiog of the Une

end-of-11ne .E Moves cursor to the end of the line

beglnlng-of-f Ile M-< MoYes cursor to the beginning of the file

erd-of-f11e M-> Moves cursor lo the end of the file

ooto- line M-C Moves cursor to the specified line

COMMAND NAME BINDING DESCRIPTION

searcll-forvard M-S Moves the cursor forward to the first
occurence of the specified surd, string

St&rch-n!verse M-R Moves the cursor backward to the first
occu re nee of the specified search string
preYious to the original cursor position

hunt-forvard <unbound> Moves the cursor forward to the first
occurence of the current search string

hunt-wckvard <unbound> Moves the cursor backward to the first
occurtnce of the current search string
previous to the original cursor position

replace-string .R Substitutes all occurrt-ncu of the specified
search string with the specified replace•

- ment string

querpr€p la«-strlng H- .R Prompts to subslitutes each occurence of
the specified search siring with the spec•
ified replacement string

COMM.ANDNA.ME BINDING DESCRIPI'ION

set-«ark K-. Set marked bound of the region
K-<spu:e>

ucllange-polnt-M><l•Nric ·x·x E:i:chaoge marked bound or the region
with the cursor position

c09y-n,91on K-W Copy the marked region to the kill
bufTer

k111-n,glon '11 Delete the marked region

cue-n,glon-upper ·x-u Cha .nge all letters in the regioo to upper
case

cu e-n,glon-lower 0 X0 l Change all letters in the region to lower
use

yank ·y Paste the kill buffer at the cursor pos-
ition

COMMAND NA.ME • BINDING DESCRJPnON

tp 11 t-cu...,.,,nt-vlndov ·xz dupliute current window in new window

nut-vlnd°" ·xo Move cursor to next window

, n,vlcus-vlndow •xp Move cursor to previous window

oon-v1 ndow-up ·x-p Scroll current window up one line

aove 11-down ·x-N. Scroll cuneot window down one line -
so-0 ·1. _,t-up M-·z Scroll next window up one page

scrol 1-ncxt-down M-0 V Scroll l\ext window down one page

shrink-window ·x·z Decrease siie of current window

,..,_window ·xz Increase size of current window
<ctrl>X-

felete-ot~r-11lrdows ·x1 Display only current window

COM:MAND NAME BINDING DESCRlPTlON

de 1 ete-next-chtracter ·o
de 1 ete-prev1ous-chlracter .H

<bs>

de lete-ne,t-vord H-0 .

de 1 ete-prevlous...ord M-·11

de lete-blank-llnes

k111-par&graph

k111-n,g1on

k111-to--erd~f-llne

nnk

COMMANDNAME

Insert-space

'quote-chara,;ter

newline

open-line

new-1 lne-and-1ndent

handle-tab

1nnrt-fl le .
Macro C<,m.m.ands

·xc
"A
• I
.M
•A
·xi

COMMANDNAME

extt-m1es

quiet-nit

COMMANDNAME

1 ht-buffers

select-buffer

nut-buffer

n..,._buffer

buffer-pos1 t Ion

delete buffer

ere01te-buffer

COMMAND NAME

insert-file

read-file

f Ind-file

chlnge-f11e-n-

san-f11e

write-file

1-shell

s~ 11-cc-ard

H-<bs>

·x·o
M-•w
·w
.K

·y

BINDING

·c
H-Q
.H

·o
• J
<linefeed>

• I

·x· I

begin-macro
beginiog-of-lioe
handle-tab
out-line
berioinr-of-line
cod-macro

BINDING

TC

M-Z

BINDING

·x-a
·xs
·xx
M- 0 JI

·x-

·xi:

<unbound>

BINDING

·x-,
·x-R

•x·F

·n
·xs
·x-w
·xc

·x,

Deletes character under cursor

Deletes character before cursor

Deletes from cursor to cod of word

Deletes word up to cursor

Deletu blank lines between te:i:t

Deletes p~ragnph under cursor

Deletes marked region

Deletes line slarting at cursor position

Inserts kill buffer (last deleted item(s))

DESCRIPTlON

Inserts space character before cursor

Allows control character to be printed

H:is the same efTect as a urriaie return

Inserts newline character after cur-sor

Inserts newline character and indents line
equal to preYious line

Redefines and/or ins erts tab character

Inserts (i le from directory before cursor

I\.

M-

DESCRIPTION

E:i:its after prompting to save changed
files

£%its after saving all changed files

DESCRIPTION

Lists buffers to be used by µMACS

Selects burrer to be edited

Selects oe:i:t buffer in buffer list to be edited

Changes the name of the bufTer currently
being edited

Displays stalus line giYiog the current buf-
fer position in relation to the entire file

Delet.ts the specified buffer

E~_ecutes bufTer as an µMACS procedure
file

DESCRIPTION

Inserts file at current cursor position

Reads file into current buffer (onrwrit.es
current te:i:t)

·Reads file into a new buffer

Names or Renames file in current buffer

Saves chang,d file

Writes file to specili•d name

Forks Shell; control remains in the Shell
uoul an <esc> character is entered

Forks Shell; executes specified command;
control is then returned lo µMACS

I

I

l
I
I

I

Using tile Make Utility

Many types of files are dependent on various other files for U,eir creation . If
the files that make up the final product are updated , the final product becomes
out-of-date . The make utility is designed to automate the maintenance and re-
creation of files that change over a period of time. By keeping track of
modifications to program sources , make can determine the need to recompile ,
reassemble, and / or relink the files necessary to create an object file.

make maintains the files by using a special type of procedure file known as a
makefile . The makefile describes the relationship between the final product
and the files that make up Ute final product. For the purpose of this discussion,
the final product is referred to as the target file and the files that make up the
target file is referred to as dependents.

A makefile contains three types of enb'ies : dependency, command , and
comment .

A dependency entry specifies the relationship of a target file and the
dependents used to build the target file . The entry has the following syntax:

<target> : ((<dependent >J<dependent >J

The list of files following the target file is known as the dependency list . No
limit is placed on the length of the dependency list, and any number of
dependency enb'ies can be listed in a makefile . A dependent in one entry may
also be a target file in another entry. There is, however , only one main target
file in each makefile . The main target file is usually specified in the first
dependency entry in Ule makefile .

OS.9 Training and Education

Dependency
Entry

Make- t

The Make Utility

A command entry specifies the particular command that must be executed to
update, if necessary, a particular target file. make updates a target file only if
its dependents are newer than itself . If no instructions for update are provided,
make attempts to create a command entry to perform the operation.

make recognizes a command entry by a line beginning with one or more spaces
or tabs. Any legal OS-9 command line is acceptable. More, than one command
entry can be given for any dependency entry. Each command entry line is
assumed to be complete unless it is continued from U1e previous command
with a backslash (\). You should not intersperse comments with commands.

For example:

<target>:[[<fil e>J<file>J
<OS-9 command line>
<OS-9 command line>\
<contin ued command line>

CAVEAT: Spaces may not follow the backslash (\).

A coniment entry consists of any line beginning with an asterisk (*). All
characters following a pound sign (#) are also ignored as comments unless a
digit immediately follows the pound sign. In this case, the pound sign is
considered part of the command entry . All blank lines are ignored . For
example:

<t arget >:[[<file>J<file>J

* the following command will be executed if the dependent
* files are newer than the target file
<OS-9 command line> # this is also a comment

To continue any entry, place a space followed by a backslash(\) at the end of
Ute line to be continued. All entries longer than 256 characters must be
continued on another line. All continuation lines must follow the rules for its
entry type. For example, if a command line is continued on a second line, Ute
second .line must begin with a space or a tab:

FILE: aaa . r bbb.r ccc.r ddd.r eee.r \
fff.r ggg.r

touch aaa . r bbb .r ccc . r \
ddd . r eee.r fff . r ggg . r

NOTE: Spaces and tabs preceding non-command , continuation lines are
ignored.

OS-9 Training and Education

Command Entry

Command
Entry

Comment
Entry

Mske-2

The Make Utility

To run the make utility, type make, followed by the name of the file(s) to be
created and any options desired.

make processes the data three times .

During the first pass, make examines the makefile and sets up a table of
dependencies. This table of dependencies stores the target file and the
dependency files exactly as they are listed in the makefile. When make
encounters a name on the left side of a colon, it first checks to see if it has
encountered the name before. If it has, make connects the lists and continues.

After reading the makefile, make determines the target file on the list and
makes a second pass through the dependency table. During this pass, make
tries to resolve any existing implicit dependencies. Implicit dependencies will
be discussed.

make does a third pass through the list to get and compare the file dates. When
make finds a file in a dependency list that is newer _ than its target file, it
executes the specified command(s). If no command entry is specified, make
generates a command based on the assumptions given in the next section.
Because OS-9 only stores the time down to the closest minute, make remakes a
file if its date matclles one of its dependents.

When a command is executed, it is echoed to standard output. make normally
stops if an error code is returned when a command line is executed.

To understand the relationship of the target file, its dependents, and the
commands necessary to update the target file, the structure of the makefile
must be carefully exaµrined.

OS-9 Training and Education

Running Make

Running
Make

Make-3

The Make Utility

Any time a command line is generated , make assumes that the target file is a
program to be compiled . Therefore , if the target file is not a program to be
compiled, any necessary command entries must be specified for each
dependency list . make uses the following definitions and rules when forced to
create a command line:

Object files

Relocatable files

Source files

Default compiler

Default assembler

Default linker

Default directory
for all files

Files with no suffixes . An object file is made
from a relocatable file and is linked when it
needs to be made .

Files appended by the suffix : ., . Relocatable files
are made from source files and are assembled or
compiled if they need to be made .

Files having one of the following suffixes : .a, .c,
.f, or .p.

cc

r68

cc

Current data directory(.)

NOTE: Only use the default linker with programs using cstart .

In addition to recognizing compilation rules and definitions , make recognizes
certain macros . make recognizes a macro by the dollar sign ($) character in
front of the name. ll a macro name is longer than a single character , you must
surround the entire name by parentheses . For example, $R refers to the macro
R, $(PFLAGS) refers to the macro PFLAGS, $(8) and $8 refer to the macro 8,
and $BR refers to macro B followed by the character R.

Macros may be placed in the makefile for convenience or on the command line
for flexibility . Macros are allowed in the form of <macro name> =
<expansion> . The expansion is substituted for the macro name whenever the
macro name appears .

OS-9 Training snd Education

Implicit Definitions

lmp/lcff
Deflnfflons

Macro
Recognition

Make-4

The Make Ullllty Macro Recognition

A macro definition is a line containing a macro name, followed by an equal sign
(•) . Both trailing and leading spaces and tabs are ignored. The macro
expansion may contain other previously defined macros. Typically, macros
appear before the main text of the makefile, but they may appear anywhere in
the makefile. You must define macros before they are used.

In order to determine what the proper command lines are, make uses def a ult
ndes. The general forms of the default command lines are:

Compiler
Assembler
Linker

cc $(CFLAGS) $*.c -r -$(RDIR)
r68 $(RFLAGS) $*.a -o-$(RDIR)/$@
cc $(LFLAGS) $(RDIR)/$*.r -f-$@

By substituting the proper macro definitions into place, make builds the proper
command for each file.

li all of the files needed to be made were found, make would generate the
following output:

cc -t-/dd testl.c -r-rels
cc -t-/dd test2.c -r-rels
cc -t -/dd test3.c -r -rels
r68 -q test4.a -o-rels/test4.r
chd rels; cc -gi testl.r test2.r test3.r test4.r -f-test

If you de.fine a macro in your makefile and then redefine it on the command
line, the command line definition will override the definition in the makefile.
This feature is useful for compiling with special options.

To increase make 's flexibility, you can define special macros in the makefile.
make uses these macros when assumptions must be made in generating
command lines or when searching for unspecified files. For example, if no
source file is specified for program.r, make searches either the directory
specified by SDIR or the current data directory for program.a (or .c, .p, .f).

OS-9 Training and Education Make-5

-

The Aflllce Utility Macro Recognition

make recognizes the following special macros:

Macro Definition
O0IR-<path> make searches the directory specified by <path> for

all files with no suffix or relative pathlist. H O0IR
is not defined in the makefile, make searches the
current directory by default .

S0IR-<path> make searches Ute directory specified by <path> for
all source files not specified by a full pathlist. H
SOIR is not defined in Ute makefile , make searches
Ute current directory by default.

RDIR-<path> make searches the directory specified by <path> for
all relocatable files not specified by a full pathlist . H
RDIR is not defined, make searches Ute current
directory by default .

CFLAGS-<opts> These compiler options are used in any necessary
compiler command lines.

RFLAGS-<opts> These assembler options are used in any necessary
assembler command lines .

LFLAGS-<optS> These linker options are used in any necessary
linker command lines.

LC•<link>

make uses this compiler when generating
command lines. The default is cc.
make uses tllis assembler when generating
command lines . The default is r68 .
make uses Ulis linker when generating command
lines. The default is cc.

Some reserved macros are expanded when a command line associated with a
particular file dependency is forked . These macros may only be used on a
command line . When you need to be explicit about a command line but have
a target program with several dependencies, these macros can be useful . In
practice, they are wildcards witll Ute following meanings:

Macro Definition
Expands to U1e file name made by the command .
Expands to Ute prefix of the file to be made .
Expands to the list of files that were found to be newer
than the target on a given dependency line .

OS-9 Training and Education Malce-6

The Mske Utility Cresting Your Own Default Rules

You can also create your own default rules. For example , if you always want
files ending in .bet to be processed a special way , you could build your own
default rule :

.txt.set:
spl S*. txt
touch $*.set

NOTE: Any line beginning· in the left most margin ends a default rule
declaration.

Now in your makefile , you can add the following line :

myfile.set: myf11e.txt

myfile .set is dependent on myfile.txt. If myfile.txt has been updated more
recently than myfile.set when the make utility is used on this file, the file is
spooled to the printer and the date is updated with the touch utility .

Existing default rules can also be changed in this way. For example, if you
want to use a different option for C files, you could change the existing default
rules :

.c.r:
cc $(CFLAGS) ·ix $*. c -r-$(RDIR)

Notice that the -i and -x options have been added . By d:efault, all programs will
now use the cio module and the math trap handler.

OS-9 Training and Education

Creating
Your Own

Defauff Rules

Make- 7

The Make Utll/ty Make a.nen,ted Command Unes

make is capable of generating three types of command lines: compiler
command lines, assembler command lines, and linker command lines.

<D Compiler command lines are generated if a source file with a suffix
of .c needs to be recompiled . The compiler command line generated
by make has the following syntax:

S(CC) S(CFLAGS) $(SDIR)/<fil e>[.c] -r-S(RDIR)

<2> Assembler command lines are generated when an assembly
language source file needs to be re-assembled. The assembler
command line generated by make has the following syntax:

$(RC) $(RFLAGS) $(SDIR)/<fi le >.a -o-S(RDIR)/<file>.r

Linker command lines are generated if an object file needs to be
relinked in order to re-make the program module. The linker
command line generated by make has the following syntax:

$(LC) S(LFLAGS) S(RDIR)/<file> . r -f•S(ODIR)/<file>

WARNING: When make is generating a command line for the linker, it looks
at its list and uses the first relocatable file that it finds, but only the first one . For
example:

prog: x.r y.r z.r
The previous command line would generate cc x.r instead of cc x.r y.r z.r or cc
prog.r .

OS-9 Training and Education

Make
Generated
Command

Unes

Mllke-8

The Make Utlllty Make Options

Several options allow make even greater versatility for maintaining files / Make Options
modules . These options may be included on the command line when you run
make or they may be included in the makefile for convenience.

When a command is executed, it is echoed to standard output, unless the -s, or
silent , option is used or the command line starts with an "at" sign(@). When
the -n option is used, the command is echoed to standard output but not
actually executed. This is useful when building your original makefile .

make normally stops if an error code is returned when a command line is
executed. Errors are ignored if the -i option is used or if a command line begins
with a hyphen .

Sometimes, it is helpful to see the file dependencies and the dates associated
with each of the files in the list. The -d option turns on the make debugger and
gives a complete listing of the macro definitions , a listing of the files as it checks
the dependency list, and all the file modification dates . If it cannot find a file to
examine its date , make assumes a date of-1 / 00/ 00 00:00, indicating the neces-
sity to update the file.

If you want to update the date on a file, but do not want to remake it , use the -t
option . make merely opens the file for update and then closes it, thus making
the date current .

If you are quite explicit about your makefile dependencies and do not want
make to assume anything , use il\e -b option to turn off the built-in rules gov-
erning implicit file dependencies .

OS-9 Training and Education

The MIike Utility

The following is a list of the available options:

Options

-?

-b

-bo

-d

-dd

-f-

·f-<path>

-i
-n

-s

-t
-u

-x
-z

Description

Displays the usage of make.

Does not use built-in rules.

Does not use built-in rules for object files.

Prints the dates of the files in the makefile (Debug
mode).

Double debug mode. Very verbose.
Reads the makefile from standard input.

Specifies <path> as the makefile. H <path> is specified
as a hyphen (-), make commands are read from
standard input.
Ignores errors.

Does not execute commands, but does display them.
Silent Mode: executes commands without echo.
Updates the dates without executing commands.
Does the make regardless of the dates on files.
Uses the cross-compiler/ assembler.

Reads a list of make targets from standard input.

. Reads a list of make targets from <path>.

OS-9 Training and Education

Make Options

Make-10

The Milke Utility Putting It All Together

The following example is a makefile to create make:

* beginning
ODIR - /hO/cmds
RDIR - rels
CFILES - domake.c doname.c dodate.c domac. c
RFILES - domake.r doname.r dodate.r
PFLAGS • -p64 -nhl
R2 - .. /test/domac.r
RFLAGS - -q
make: $(RFILES) $(R2) getfd.r
$(RFILES): defs.h
$(R2): defs.h

cc $*.c -r- . . /test
print.file: $(CFILES)

pr $7 $(PFLAGS) >/pl
touch print.file

*end

The makefile in this example looks for the .r files listed in RFILES in the
directory specified by RDIR: rels. The only exception is . ./test/domac.r, which
has a complete pathlist specified.

Even though getfd.r does not have any explicit dependents, its dependency on
getfd.a is still checked . The source files are all found in the current directory.

-·· Notice U1at this makefile can also be used to make listings. By typing make
print.file on the command line, make expands the macro$? to include all of the
files updated since the last time print.file was updated. If you keep a dummy
file called print.file in your directory, make only prints out the newly made files.
If no print.file exists, all files are printed.

OS-9 Training snd Education

Putting It All
Together

The 0S-9 Debuggers

Before discussing OS-9' s debuggers, two terms need to be defined: system-
state and user-state processes.

System-state processes are processes running in a protected mode. System-
state processes basically have unlimited access to system memory and other
resources. When a process in system state wants to use the CPU, it waits until
it has the highest age . Once it receives CPU time, a process in system state runs
until it finishes, instead of running for a specified time-slice. System state is
sometimes referred to as superoisor state.

User-state processes do not have access to all points in memory and do not
have access to all commands . When a process in user state gains time in Ute
CPU, it will run only for one time-slice. When the process finishes it's time-
slice, it will be entered back in the waiting queue according to its initial priority .

Four debuggers are available for OS-9:

• Debug
• Sysdbg
• SrcDbg
• Rombug

OS-9 Training and Education Debugg.,., - 1

OS-9 Debugger, Differences Between the Debugger,

These debuggers differ in the state and language they use for debugging , the
expressions that are allowed, whether breakpoints can be set, whether
watchpoints can be set, and whether symbolic constants can be used. The
following chart summarizes these differences:

Debug Sysdbg SrcDbg RomBug
state user system user sys tem

language assembly assembly C/assembly assembly

expreaalona simple simple any vali d C simple
expression

breakpoints yes yes yest yes

watchpoints no no yes no

eymbollc yes yes yest yes

i While all of the debuggers allow you to set breakpoints and use symbolic
constants, SrcDbg allows the most freedom and flexibility in these areas.

OS-9 Training and Education

Differences
Between

the
Debuggers

Debuggers - 2

..... __,,

OS-9 D•bugge11

Debug debugs and tests user-state 68000 machine language programs written
for the OS-9 operating system. Debug uses software techniques to control the
process being debugged. Debug uses the F$0Fork and F$0Exec system calls
to create and execute the process to be debugged. These system calls provide
an environment that allows the debugger to control the execution of a process
without affecting other processes on the system . Full access to the 68000 user-
mode registers is also provided..

Debug allows you to disassemble, trace, set breakpoints, and display data
while programs are run. Because Debug runs in user state, it will not interfere
with other users on the system. This means that code, such as drivers, that run
in system state cannot be debugged with Debug.

Debug has symbolic capabilities. When debugging a program, Debug is aware
of your symbols. If the program had the label Start: in it, di Start could be
entered and Debug would know what address to begin the disassembly. An
expression, even expressions involving symbols, may be used anywhere
Debug requires a parameter.

Debug is invoked by typing debug at the shell prompt. Debug waits for a
command with the prompt :

dbg:

The f command should be the first command entered in a Debug session. This
creates a process to execute the program to debug. If any parameters are
specified on the shell command line, they are assumed to be parameters for the
f command. If any · parameters are specified, the f command is implicitly
executed upon startup. If redirection, priority specification, and stack size are
given, enclose the parameters in quotes to protect them from interpretation by
the shell . The f command can pass up to 64 arguments to tlte process .

The following is a summary of most of the commands that can be used with the
user-state debuggers.

Debug maintains eight relocation registers. These registers are useful for
sorting memory base addresses for later use in commands and expressions.
The registers are referenced. by the names rO through r7. The rO register is
hardwired to zero. Whenever an address is specified , the default relocation
register is added to the address automatically . Setting the default relocation
register to zero disables this action. Tite default relocation register is not added
if a symbolic address or an expression is specified.

OS-9 Training and Education

D•bug

Debug

Invoking
Debug

Relocation
Registers

D•buggers - 3

OS-9 D•buggers

The following commands deal with relocation registers .

Command

. r

. r<num> <Val>

Description

Prints the default relocation register .

Sets the default relocation register .

Displays the relocation registers .

Sets the register r<nUm> to <Val> .

Debug allows you to set breakpoints. Breakpoints are positions in the code that
tell the debugger when to stop and dump the contents of the registers and
allow you to enter commands. The debugger sets up to 16 simultaneous
breakpoint addresses. You can only set breakpoints at even-byte addresses .
The debugger supports both soft and hard breakpoints . Each is used
differently.

A soft breakpoint is not actually placed in the code , but is emulated by the
F$DExec system call . This allows you to set breakpoints in ROM code or code
that another process is currently executing . Because the soft breakpoint facility
is implemented in the software, the program runs much slower than normal in
this mode.

A hard breakpoint is an illegal instruction placed in the code to cause an illegal
instruction exception . Because of this, you cannot use a hard breakpoint in
ROM code . If another process is executing the code being debugged , it will
most likely exit wi;th an illegal instruction error when the breakpoint
instruction is reached . The program runs at full speed when using hard
breakpoints.

Command Description

b Displays the list of currently set breakpoints .

b <addr> Sets a breakpoint at <addr>.
k <addr> Kills the breakpoint at <addr> .

k * Kills all breakpoints .

D•bug

Breakpoints

OS-9 Training and Education Debuggen - 4

OS-9 DebCJOQflfl Execution Commands

Debug provides commands to control the execution of the debugged process .
These commands are important for examining the flow of control and effects
on data structures.

Command Description ----------------------Displays a count of the executed instructions.
g Runs the program from the current pc until the program

terminates or hits a breakpoint.
g <addr> Starts running from <addr> with the same stopping condi-

tions as g.
gs Used to "step" across bsr instructions, the debugger will

run the subroutine and dump the registers upon return.
gs <addr> Runs the program until <addr> is reached.
t Causes the debugger to execute on~ instruction and dump

the registers.
t <count> Traces and dumps registers for <count> instructions .
x <COUnt> Executes <count> instructions without register dumps .

x - 1 is used to debug a process at full speed with hard-
ware breakpoints .

To examine or change memory , use the debugger memory change command.
When this command is used , the debugger automatically enters the memory
cliange mode. The basic interface is the same : the debugger displays the current
value of the location and you have a number of options Oeave alone, change,
go back one location , etc.).

Command Description --------------------c <addr> · Changes the memory in byte register increments .
cw <addr> Changes memory by word.
cl <addr> Changes memory by long .
. <reg> <Val> Changes a machine register .
mf <S> <8> <V> Fills memory from <S> to <8> with value <V>.
ms <S> <8> <V> Searches memory from <S> to <8> for value <V>.

Execution
Commands

Memory
Change

Commands

OS-9 Training and Education Debuggers - 5

Dllp/ay Commands

Memory is displayed using the memory display command: d. This command
allows interpretation of memory in a number of ways . The following are the
common forms:

Form
d <addr>
di <addr>

Description
Displays memory from <addr> for 256 bytes .

Disassembles memory from <addr> for 16 instructions.
Displays a register dump .

The symbolic debugging facility of the debugger allows easy debugging with -
out linkage maps or address tables for reference . The -g option of the linker
(168) writes symbol information into an OS-9 data module . The linker places
the symbols associated with global code and data offsets into the symbol table .
If a symbol module is available for the code module being debugged , you can
use symbolic addresses in most debugger commands. .

The following commands deal with the symbol table features :

Command Description

$ Displays all symbols in all symbol modules.
sm Displays symbol module table .

ss Sets current symbol module to the module containing
the current program counter .

ss <addr> . Sets current symbol module to the module containing
<addr>.

ss <name> Sets current symbol module to the symbol module
specified by <name>.

sd <name> Displays all data symbols for the specified symbol
module .

sc <name> Displays all code symbols for the specified symbol
module .

OS-9 Training and Education

Display
Commands

Symbol
Command,

Debuggers - 6

OS-9 Debugf/#lfl

Sysdbg is a system state debugger intended for debugging both system-state
and user-state programs. Sysdbg nms in system state and takes effective con-
trol of the MPU (Memory Process Unit) by causing the kernel to ignore other
processes while it is active .

Sysdbg uses the normal I/0 system calls to perform 1/0 to the controlling
terminal and to load symbol modules from the disk. This technique allows
Sysdbg to run on any OS-9 host system without customization of I/ 0 routines.
Because of this, Sysdbg cannot debug the serial I / 0 driver that it is using for
terminal 1/0 or any IRQ service routines that service interrupts at IRQ levels
greater than that of the terminal 1/0 hardware.

Sysdbg can be used only on a fully booted system because it is invoked wiU1
the F$Fork system call. The system-level bootstrap ROM debugger is normally
used to debug a system until it is able to completely bootstrap from ROM or
disk.

Sysdbg takes control of the system when active. Consequently, normal time-
sharing activities are suspended until control is returned to the kernel. Sysdbg
normally runs at IRQ mask level 0. Therefore, all device interrupts (both clock
and non-clock) are serviced in the usual fashion. Breakpoints or tracing in IRQ
service routines should be performed with care because interrupts below the
mask level are not serviced . A void tracing or breakpointing in the portions of
the kernel dealing with task scheduling and process exception handling be-
cause the system may loop or crash if Sysdbg executes any of this code on be-
half of itself . System calls used implicitly by Sysdbg are F$Sleep, F$AProc, and
F$NProc.

Sysdbg is usually run with no other users on the system because it can abruptly
halt multi-tasking activities for long periods of time. For this reason, only super
users can initiate Sysdbg.

OS-9 Training and Education

Sysdbg

Sysdbg

Debuggers - 7

OS-9 Debugger,

To invoke Sysdbg , type sysdbg at the shell promp t. There are no meaningful
options or arguments .

Sysdbg performs a number of checks and validations upon entry . First, Sysdbg
verifies that it was invoked by a super user . Non-super users are not allowed
to run Sysdbg . Next , Sysdbg ensures that it is running on the proper version of
the kernel. Sysdbg also verifies that the kernel 's internal data structure formats
are the same as what it expects. This prevents strange behavior on later releases
of the kernel. Finally , Sysdbg verifies the :MPU type (as determined by the
kernel) as 68000, 68010, or 68020.

Sysdbg then enters the command mode . The first commands are usually a
commands to attach to all the symbol modules corresponding to the code
modules to debug. Breakpoints are then set at the appropriate addresses, and
the g command is given to return to normal timesharing . When the breakpoint
is reached, Sysdbg regains control.

The majority of Sysdbg's commands are the same as those for Debug. The
following command is used in Sysdbg , but does not exist in Debug.

A <mod> parameter attaches a module . This command specifies the
module to debug because no program is specified at the initiation of the
debugger .

NOTE: Sysdbg has no x command . Instead , the g command is used to run the
process at full speed until breakpoints are hit. For more complete information
on the System State Debugger , refer to the OS-9 System State Debugger
User's Manus/ .

OS-9 Training and Education

Sysdbg

Invoking
Sysdbg

Debuggers - 8

SrcDbg runs in user state like Debug and can debug both assembly and C
language programs. You have control over the execution of the program and
the values stored in variables . The command line features a C interpreter that
can analyze C expressions. Full symboli c information is available at all times.

The following is the syntax for the SrcDbg command line :

srcdbg (<scrdbg_opts >) [<prog>J (<prog_opts>} cc·J <red1rect1ons>[·JJ

<Srcdbg_opts> are the SrcDbg command line options :

-d SrcDbg does not read the .dbg file.
-m[•)<memory> Extra memory is allocated for <prog>.
-s SrcDbg does not read the .stb file.
-Z[•]<path> SrcDbg reads commands from <path> .

<prog> is the name of the C program being debugged. <prog_opts> are passed
directly to <prog> as command line arguments .

The following are frequently used commands. For a complete reference , see
OS-9 Source Level Debugger User Manual.

fo(rk] <program> (<opts>)
Fo[rk) begins execution of the specified program . Once forked , the
debug process ' program counter points to the primary module 's
execution entry point. Any <Opts> appearing on the fo[rk] command
line are passed to the program as parameters . If no parameters are
specified, fo(rk] re-starts the program with the same parameters used by
either the last fo[rk] command or the SrcDbg command line .

g[o) (<location>)
G[o] executes the program starting at the current location. G[o] executes
the program until a breakpoint is encountered , an exception occurs , a
signal occurs , or the end of the program is reached .

s(tep) (<nUffl>]
S[tep] executes U,e specified number of executable statements of the
program . If no number is specified , S[tep] executes a single statement.
SrcDbg executes a statement , display s the values of any changed watch
expressions , and displays the next executable line.

OS-9 Training and Education

SrcDbg

SrcDbg

Invoking
SrcDbg

Program
Execution

Control
Command•

0.buggers - 9

OS-9 Debuggers Program Execution Control Commands

n[ext] [<num>)
N[ext] executes the specified number of executable statements of the pro-
gram. If a number is not specified , SrcDbg executes one statement .
SrcDbg executes a statement, displays the value of any changed watch
expressions, and displays the next executable line .

r(eturn] (<num>J
R[etum] executes the program until the current function returns to the
calling function or a breakpoint is encountered . If <nUm> is specified ,
r[etum] executes until it returns to the specified number of callers above
the current stack frame.

b[reak] [<locatlon>] [:wh[en) <expr>) [:co[unt] <num>J
B[reak) sets a breakpoint at a specified line number , result of an <8Xpr>,
or upon a when <8Xpr> becoming true. Breakpoints are generally used
to stop execution in a program to allow single-line-stepping through
specific areas . If no parameters are specified , all current breakpoints in
the program are displayed .

w(atch) (<expr>)
W[atch] monitors the value of the specified <expr> as the program is
executed. Each watch expression is evaluated each time a machine
instruction is executed. The watch expression is displayed with its
initial value when it is first set. SrcDbg then displays each watch
expression only when its value changes .

k[III] [<break>/<Watch>] {,[<break>/<watch>]}
K[ill] removes ·all specified breakpoints (<break>) and watchpoints
(<watch>) . SrcDbg notation (i.e., b1, b2, w1, w2, etc.) specifies <break>
and <watch> . You can use wildcards with this command.

l(o]g <path> I : off
L(o]g writes SrcDbg commands to <path> . The specified pathlist is
relative to your current data directory . ": off" closes the log file.

re(ad) [<path>]
Re(ad) reads SrcDbg commands from <path> . The <path> is relative to
your current data directory . The l(o]g command may be used to create
the file referred to in <path>.

o(ptlon] {<Opts>} .
O[ption) allows you to set a variety of display and execution options.

OS-9 Training and Education Debuggers - 10

0S-9 Debug~rs Data Manipulation Commands

l[lst] <param>
L(ist] with no parameters displays the next 21 lines of source code begin-
ning with the current line number. If the end of file occurs before 21
lines are displayed, an end-of-file message is displayed. <param> may
be any 05-9 pathlist, any source file known to SrcDbg, a scope expres-
sion resulting in a block number, a scope expression resulting in a func-
tion, or a line number expression.

l[nfo] [<data Item/structure>]
l[nfo) returns information about specified program objects and the
current program location . If no parameters are specified, SrcDbg
displays the current location of the program .

f[rame] (<num>]
F[rame) displays stack frame information. If no parameters are
specified, the name of each calling function, the location from which it
was called, and the frame number are displayed. The active frame is
designated with an asterisk (*).

p[rlnt] [<expr>]
P[rlnt] returns the value of the specified <8Xpr>. P[rint] displays U1e
value according to the resulting data type of tlie expression. All
program objects referred to within the <expr> are relative to the current

... _, , scope, with one exception: "static" variables outside the current scope
may be accessed using scope expressions.

a[sslgn) (<expr>J = (<expr>)
A[ssign] sets the value of a program object. The left side must resolve to
a variable, but the right may be any C expression that can be assigned to
the variable on the left.

con(text] [<data Item>]
Con[text] displays the complete scope expression of an object.
Frequently , con(text] is used to determine if you are accessing a local or
global object.

fl[nd) <name>
Fi[nd] displays all scope expressions for <name> found in the debug
process. If no parameters are specified, the previous fi[nd) command is
repeated. If there was no previous fi[nd] command, an error message is
returned.

lo[cals]
Lo[cals] displays tl1e value of all the local variables.

OS-9 Training and Education

Data
Manipulation

Commands

Debugtlf)rs - 1 1

0S-9 Debugger, .Auembly Level Commands

asm(.)
Asm or" ." displays the current register values and the current machine
instruction.

c(hange)[w 11 !word I long) [<addr>J
C(hange) changes memory starting at the result of <addr> . When the
c[hange) command is invoked, SrcDbg displays the first byte / word /
longword at the location specified by <addr> and then waits for you to
respond. If a C expression is entered at this point , the memory at that
location is changed to the result of the entered expression .

dll[lst) <location>[: <nUm>)
Dil[ist) displays the current C source line and the assembly code which
maps to the current C source line starting at the address specified by
<location> . If dil(ist) is entered without any parameters, the previous
dil[ist) command is executed. If there was no previous dil[ist) command,
an error message is returned.

dl[sasm] (<addr>] [: <Count>]
Di[sasm) disassembles memory starting at the address specified by
<addr>. If <count> is specified , <count> machine lines are disassembled
and displayed. If <count> is not specified, 16 machine lines are
disassembled and displayed. If di[sasm] is entered without any
parameters , the previous dl[sasm] command is repeated . If there was no
previous di[sasm] command, an error message is returned .

d[ump) (<addr>) [<count>)
D[ump) returns a formatted display of the physical contents starting at
the address specified by <addr> . If <count> is specified , <count> lines of
information are displayed . If <count> is not specified , 16 lines of infor-
mation are displayed.

t[race) (<num>)
T[race] executes the specified number of machine instructions. If <num>
is not specified, t[race] executes a single instruction .

gostop(gs)
Gostop executes the specified number of machine instructions in the
current subroutine.

0S-9 Training and Education

Assembly
Level

Commands

Debuggers - 12

Rombug

Rombug is a system-state ROM debugger for debugging both system-state and Rombug
user-state programs . Rombug runs in system state and takes control of the
w>U . The debugger 's command set allows you to analyze programs by setting
breakpoints , tracing control , and trapping exceptions . This can all be
performed symbolically . Extensive memory commands allow you to examine
and change register values .

Using the talk-through and download commands , you can also communicate
with the host system as a terminal and download programs into RAM for
testing via the communications link .

The debugger accepts command lines from the console that consist of a
command code followed by a return key . You can use the backspace (control-
H) and line delete (control-X) keys to correct errors.

The OS-9 linker (168) produces a symbol module for a program if the 168 -g
option is specified when the program is linked . This option causes global data
and code symbols to be placed in a data module . The symbol table data module
(STB) must be loaded in memory when the • (attach) command is executed .
The program module 's CRC is stored in the STB module and validated by
Rombug to ensure that the symbol module matches Ute version of the code
module being debugged .

Rombug is called by one of the following methods :

• The ROM bootstrap
• The F$SysDbg system call
• The break utility
• The kernel calls Rombug in "system crash" conditions

Rombug can also be activated by any processor exception which it is
monitoring. For example, a hardware abort switch which causes an exception
could invoke Rombug . The other ways in which Rombug may be activated are
discussed in the 05-9 ROM Debugger Users Manual .

The first commands are usually commands to attach to all the symbol modules
corresponding to the code modules to debug. Breakpoints are then set at the
appropriate addresses and the g command is given to return to normal
timesharing . When the breakpoint is reached , control is returned to Rombug .

Rombu g's commands are similar to Debug . See the OS-9 ROM Debugger
User's Manual for more information about the commands .

0S-9 Training and Education

Symbolic
Debugging

Invoking
Rombug

Debuggers - 1 J

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

/ ***
* srcdem<n>.c *
**
* Program to demonstrate how to use the source-level debugger*
* called srcdbg. *
*** /
@_sysedit : equ 10

#include <stdio.h>

struct stl {
char a;
int b;
double c;

} varl;

double func();
void recfunc();
/ ******************** main******************************** /
main ()
{

}

doubled;

varl . a='R';
varl.b = 10101010;
varl . c = 3 . 14159265;
d = func(varl);
printf("d = %.8lf \ n",d);
recfunc(O);
exit(O);

/ ******************** func ******************************* /
double func(par)
struct stl par;
{

double ret;

}

ret = (double)par.a + (double)par.b + par.c;
return (ret);

/ ******************** recfunc **************************** /
void recfunc(val)
register int val;
{

}

if (val< 10)
recfunc(val + 1);

return;

/ ******************** add
add(x,y)
int x,y;
{

int templ;

templ = x;
X = Yi
y = templ;

****************************** /

printf("%d + %d = %d\ n", y, x, y+x);

}
return(y+x);

/ ** /

