Mastering OS-9
on the Tandy
Color Computer

A comprehensive learning guide
for OS-9 Level 2 complete with
step-by-step tutorials.

Requires an 80 column display
(RGB preferred), two 40 track
double sided disk drives,

and 512K of memory.

Written by Paul K. Ward
edited by Francis G. Swygert
Published by FARNA Systems

THIRD EDITION

FARNA Systems Publishing

Printed in USA by CopyMasters

524 N. Houston Lake Blvd.

Centerville, GA 31028

Copyright March 1995, FARNA Systems

Tandy Color Computer 3

Mastering OS-9
on the
Tandy Color Computer 3

An enjoyable, hands-on guide to OS-9 Level 2 complete
with step-by-step tutorials. Requires an 80 column
display (RGB preferred), two 40 track double sided disk
drives, and 512K of memory.

First and Second Editions copyright 1988 by Paul K. Ward

and Kenneth-Leigh Enterprises

Third Edition copyright 1995 by Paul K. Ward and Francis G. Swygert
Third Edition published in 1995 by FARNA Systems with permission

DISCLAIMER

The author, editor, Kenneth-Leigh Enterprises, nor FARNA Systems
guarantee the suitability or accuracy of this book or its accompanying disk
software. There are no warranties, expressed or implied, including those of
merchantability or fitness for a particular purpose.

The software is copyrighted and rights are reserved. Reproduction of disk
or book contents, except for archival purposes, is forbidden by law.
Utilities specifically designated as shareware or public domain may be
copied in their entirety per instructions in the documentation files. Please
register shareware— provide the authors with an incentive to write more
programs!

For questions and suggestions, please contact:

FARNA Systems
Box 321
Warner Robins, GA 31099-0321
or

FARNA Systems

c/oF.R. Swygert, Sr.
Rt. 4 Box 145

Leesville, SC 29070

0S-9 is a trademark of Microware Systems Corporation, Copyright (c)
1983

Color Computer 3 is a trademark of Tandy Corporation

UNIX is a trademark of Bell Laborotories

IBM and IBM-PC are trademarks of International Business Machines
1-2-3 is a trademark of Lotus Development

Flight Simulator is a trademark of subLogic

Wyse is a trademark of Wyse Computer

All other products are trademarks of their respective companies.

Page |

Mastering OS-9

Acknowledgements:

The people snd entities listed below all had a direct or indirect
influence on the writing of this edition:

Microware Systems Corp.

Charles Askins

Andy Ball

Bill Brady

James Gibbons

Steve Goldberg

Marty Goodman

Michael Litt

Eric Miller

Dale Puckett

Rick Ulland

Bruce Warner

Richard White

And I have to personally thank Paul Ward, who gave FARNA
Systems permission to edit and print the third edition (original
title of first and second editions: "Start OS-9").

Foreword: Francis G. Swygert

This is my second major work concerning the Color Computer.
It goes without saying that the majority of the work here is Paul
Ward's, but editing and revising is still a lot ofwork!

It is not easy writing for this market, mainly because it is
shrinking. There are few new CoCo users, and few purchasers of
new material. Nevertheless, I still support this little beast, and a
beast it can be under OS-9. I say this not only because of the
difficulty some have with learning OS-9, but more because of
the POWER that OS-9 unleashes. With this power comes a more
complex way of doing things... very complex when compared to
Tandy's simple Disk Extended Color BASIC.

I have decided to continue to support the CoCo, and will do so
for many years to come. I love my little simple and powerful
computer. Simple under DECB, powerful under OS-9. It works
well for me, and I expect it to continue doing so for many years
to come.

Page 2

Tandy Color Computer 3

Preface: Paul K Ward

You are holding the only hands-on introduction to OS-9 Level 2.
It differs from preceding books on OS-9 Level 2 because it is written
for the intelligent beginner in a no-nonsense format, with clear,
short examples which will speed you on your way to both USING
and UNDERSTANDING OS-9 Level 2.

In “Mastering OS-9”, we teach you the most-used features by
providing sensible examples you perform yourself. This is our
secret. “Mastering OS-9” brings the power of OS-9 Level 2 to your
fingertips by putting those fingertips on the computer keyboard.

In hands-on tutorials you learn the most practical aspects first, one
step at a time. By the end, you’ll be able to explore with confidence
aspects of OS-9 not covered here.

“Mastering OS-9” offers:

* ten tutorials, each providing immediate use of many
powerful features of OS-9

* a wealth of clearly-written explanatory material to
help you understand and retain what you learn

* appendices offering advice on software and hardware

* suggestions on customizing your system for special tasks

Here are some benefits you reap from finishing the tutorials:

* The investment in your computer system and OS-9 Level 2
wlll pay off.

* Your OS-9 computer will adapt to your work style.

* You will ultimately spend less time at your computer and
put out a better product.

* You get a foundation in OS-9 that eases learning more
advanced techn iques.

* You can make better-informed purchases when buying
hardware and software for your computer system.

0S-9 Level 2 offers broader benefits, too. People who aspire to be
software developers will revel in OS-9 Level 2’s programming
environment, the most sophisticated you can find at most any price.
Also, using business software available for your OS-9 computer
puts professional power in your home and workplace for a modest
investment. And OS-9 Level 2 is just plain fun. Please enjoy
yourself.

CONTENTS

Page 3

Mastering OS-9

Day One

Welcome To OS-9 Level 2, page 13

Introduction, page 17

The OS-9 Ethos, page 21

Before You Start the Tutorials, page 23

OS9Boot, page 25

About the Kernel: OS-9 is ticking away, page 27
IOMan: Input and Output Unification, page 31

The Shell: Guide and Intermediary, page 35

Notes on the Kernel, IOMan, and the Shell, page 39

Day Two

Introducing the OS-9 Directory System, page 41
Everything About Path Names, page 45

Data Directories: Keeping Data Organized, page 53
Execution Directories: Where the Action Is, page 57
Command Syntax: Get It Right! page 61

Day Three

Preparing for the Tutorials, page 69
Getting Started with Tutorial 1, page 71
Tutorial 1, page 87

Day Four
Getting Started with Tutorial 2, page 101
Tutorial 2, page 105

Day Five
Getting Started with Tutorial 3, page 113
Tutorial 3, page 119

Day Six
Getting Started with Tutorial 4, page 125
Tutorial 4, page 131

Day Seven

Getting Started with Tutorial 5, page 139

Tutorial 5, page 147

Day Eight

Application Programs for OS-9 on the Color Computer. page 155
0OS-9: Origins, Directions page 161

Day Nine

Page 4

Tandy Color Computer 3

Do I Really Have To Learn Hexadecimal? page 167
Compact Disk-interactive, page 175

Day Ten

Getting Started with Tutorial 6, page 179
Tutorial 6, page 185

Day Eleven
Getting Started with Tutorial 7, page 193
Tutorial 7, page 205

Day Twelve
Getting Started with Tutorial 8 page 211
Tutorial 8, page 219

Day Thirteen
Getting Started with Tutorial 9, page 223
Tutorial 9, page 229

Day Fourteen
Getting Started with Tutorial 10, page 235
Tutorial 10, page 239

Appendices

A - Where To Go For More Information
Francis Swygert

B - Hardware for Your CoCo 3 / OS-9 Level 2 System
Martin H. Goodman

C - Telecomputing and OS-9
William L. Brady

D - Hard Drive Systems for the Tandy Color Computer
Kevin Darling and Francis Swygert

E - Start BasicO9!
Dale L. Puckett

F - Syntax and Usage for the “Mastering OS-9” utilities
Stephen Goldberg

G - OS-9 and Music
Paul K. Ward

H - OS-9 User’s Group Application and information

Page 5

In the Beginning

A little work with a
lot of reward

Mastering OS-9

Welcome To OS-9 Level 2

From the start, computers have been crotchety and demanding. The
first computers took up large rooms and were expensive to maintain.
It took years of training to design and run them. Large staffs of
scientists swarmed over the equipment, constantly replacing tubes
and adding new data.

When computers, now the size of a phone book, showed up in the
American living room, they weren’t much better. If you bought
one, you understand. There were few programs on the market, so
you often had to write your own. This required days, even weeks,
of poring over confusing manuals to accomplish the simplest task.
The few programs available were either games or were so puny and
powerless it is a wonder we didn’t all throw up our hands in
frustration and call off the Computer Revolution. So why are
computers still around? Blame VisiCalc.

VisiCalc was the first truly USEFUL program for a microcomputer.
It excited business people because it solved complex financial
calculations. It taught us that computers can help us plan better, thus
saving our time and money.

Certainly VisiCalc for the Apple II computer convinced Apple to
continue producing computers. It probably urged IBM into the
home computer market. Other major names entered the market
around this time, including Tandy/Radio Shack, Osborne, Timex,
and others. Competition suddenly heated up in the personal computer
industry.

In the end, the victors in this market struggle survived by following

these principles:

* A computer won’t sell unless it has great software.

* Great software is powerful and easy-to-use.

* Both the computer and the software need a large base of
users to remain vital.

* Both the computer and the software need continued support
from the manufacturers.

0OS-9 Level 2 on the Color Computer 3 is a mature system which
scores high marks on each of these tests — except one. OS-9 has
a reputation for being less than easy to use.

If you started out with Tandy’s Disk Extended Color Basic or a
variant (the CoCo’s built-in software), OS-9 will require some
rethinking. Be prepared. Mastering OS-9 is more difficult. But
here’s the payoff: your OS-9 based computer is harder to learn

Page 6

Tandy Color Computer 3

because it off ers more than any other home computer system. It
offers so much more that comparing the OS-9 “learning curve” with
that of Disk Extended Color Basic is unfair.

0OS-9 has a greater similarity to UNIX, the operating system found
on larger, more expensive computers. Although UNIX also has a
reputation for being confusing, its power and versatility have
created a revolution in the computer industry. Most computer
companies are scrambling to bring UNIX and UNIX-style operating
systems to personal computers. UNIX “is driving many of our
decisions at IBM,” according to IBM fellow Andrew Heller. IBM
even moved its Scientific Division to the Entry Systems Division
specifically “to accelerate the porting of IBM’s Unix operating
system ... to the PS/2 Model 80,” one of IBM’s personal computers
(BYTE Magazine, November 1987, p. 12.).

0S-9, smaller and faster than UNIX, brings a UNIX “feel” into your
home. OS-9’s similarity to UNIX means you already have the
power most other computer owners will have to wait for.

Some beneficial aspects of OS-9 Level 2 are listed below:

*1t’s expandable. OS-9 Level 2 is a collection of over one hundred
little programs, each of which does only one very small job. By
adding new little programs, called utilities, or modules, OS-9 Level
2 can expand its power. New utilities and modules are included with
“Mastering OS-9”. Your operating system has already grown!

* It’s Multi-tasking. OS-9 allows you to do several jobs at once. For
example, you may wish to print Section One of an important report
while you continue writing Section Two. The printing is the first job
or “process”, and the writing is the second job or “process”. You
can even check spelling on another document by creating a third
process. OS-9 executes these three processes apparently at the
same time.

* It has windows. To provide you visual access to several programs
at once, Level 2 sets up windows for each. You have control over
the function and appearance of each window. Choose colors, sizes,
and whether the window must be able to display pictures.

Once each program has its own window, you select a window by
pressing the CLEAR key. Each window appears on your screen in
turn as you press the key. Need to write some text? Press CLEAR
to get to your word-processor. Need to make some calculations?
Press CLEAR to get to your spreadsheet. Each of these programs
runs as though it has its own independent terminal.

Page 7

Why use OS-9 ?

Mastering OS-9

* It helps you organize your work. Organized people have their
files in file folders. OS-9 offers “files” of an electronic variety. You
can group similar files in file directories (or simply directories). You
can even group directories in other directories! This organizing
principle, the hierarchical directory system, allows you to assemble
your work neatly and sensibly.

* Automate dreary tasks.When you tell your computer to do
something for you, you generally use commands. Sometimes,
typing in commands is repetitious and time-consuming. OS-9 gives
you an option. It doesn’t care if its commands come from you or
from a file.

If you know in advance all the commands you will need, just create
a file which contains those commands, in order, to get your job
done. What you are creating is a procedure file, so-called because
it contains a list of procedures which OS-9 executes one at a time,
without your intervention if you so choose.

In addition,

* 0S-9 Level 2 is well-supported by the OS-9 Users Group and
many enthusiasts worldwide.

* 0S-9 has a strong future. Anything you learn about level 2 is
applicable to OS-9/68000. Microware’s client list reads like a
Who’s Who in industry. OS-9 is everywhere. It’s the heart of the
latest Compact Disk technology, CD-i, and the Interactive Televi-
sion set-top boxes; computers from Japan to England to Tennessee,
many of them state-of-the-art, run OS-9; and it is available on many
different computers (including the Atari ST, Amiga, and even IBM
clones). Your purchase of OS-9 Level 2 was a smart idea.

Introduction

You have a job to do. OS-9 Level 2 provides the tools. In fact, it
offers so many tools that becoming familiar with all 50 available
commands is a big challenge.

Now for the good news: you will only use about 20 with any
frequency. In “Mastering OS-9” we explain the most-used com-
mands first so you can get right to work. Plus, you gain confidence
in using OS-9 Level 2 which is sure to inspire you to experiment
with the 30 or so commands we will not cover in depth.

Since it’s best to learn by doing, “Mastering OS-9” teaches you

what you need to know by having you perform simple exercises —
each of which is extremely practical. You also learn:

Page 8

Tandy Color Computer 3

* the “lingo” of OS-9. You discover explanations for new words in
the main text, in end notes, and in essays. You learn how the words
refer to your task at hand while avoiding words best left to the
theorists.

* some OS-9 “theory”. A little theory is important to know. It
provides a framework for understanding. Consequently, you will
more likely remember what you are learning.

* how to build your own tools. OS-9’s procedure f iles help you
create a system customized for exactly your needs.

You should already be familiar with your CoCo 3 system. If you
know these terms and how to use what they describe, you should
be in good shape:

computer monitor
disk drive

printer

Multi-Pak Interface
reset b u tto n
write-protect tab
backup copies

If you don’t understand these terms, please take a while to become
familiar with them by referring to the manuals provided with your
CoCo 3 or a third party reference such as FARNA System's
“Tandy's Little Wonder”. The OS-9 Level 2 manual is essential! If
you do not have one, try to obtain a copy. Once you are
comfortable with these terms, make a commitment to yourself to
finish “Mastering OS-9”. Then, glance through it once or twice to
get a feel for the structure of it. You should discover the following
flow:

Introductory material — where you become familiar with the
general terms, concepts, and commands involved in normal OS-9
work situations.

Getting Started with Tutorial x — where you become familiar
with specific terms, concepts and commands mentioned in the
upcoming tutorial .

Tutorial x — where you go through specific examples.
End-notes (if any) — comments on the tutorial.

Once you’ve leafed through this book, set up a loose schedule in
your mind. You probably noticed that the hook’s contents are

Page 9

How to use this book.

Pay close attention to
the sub-headings in
these margins. They
will serve well as
index tabs, as all
items in them are
indexed. All
commands and
important terms will
be in bold print.

Dypographic Notations

Mastering OS-9

divided into days (Day One, Day Two, etc.). At about ninety
minutes a day, you would finish the book in about two weeks. Our
suggestion, however, is to choose your own pace. It’s best to go
straight through the book, no skipping. The comments in the end-
notes are designed to be thought-provoking and are usually less
central to the tutorial.

At the end of the first “week” you’ll find some essays. Read through
them! You should find them interesting, light reading — perfect for
the “Mastering OS-9” weekend. You’ll find similar articles at the
end of the second week, as well as valuable appendices on OS-9
topics, including the OS-9 User’s Group.

Before we proceed we should explain the typographic notation
used in “Mastering OS-9” to represent what your screen displays
and what you must type. When you see

0S89:
in this book, it refers to the “OS9:” prompt printed to your screen
by OS-9 (by the Shell, to be precise). DOn’t type those characters
yourself.You also see:

E:
in this book. This is the OS-9 Editor’s prompt. DOn’t type those
characters either. Last, when you see:

<ENTER> or <SPACE>
press the key on your keyboard marked “ENTER” or the spacebar
respectively. Other special keys will also be bracketed by the less
than (<) and greater than (>) signs.

Other words and symbols are usually to be typed by you. For
example, if we are discussing the dir (directory) command, we
might print in the book:

089: dir <ENTER>
This indicates that, when you see the “OS9:” prompt, you should
type “d”, “i”, and “r”, followed by pressing the key marked
“ENTER”. Similarly, when you work with the OS-9 Editor, you
might see in the book:

E: <SPACE> Zype this text <ENTER>
Once again, don’t type “E:” since that already appears on your
screen. Go ahead and press the spacebar, type the text “Type this
text” and then press the key marked “ENTER”.

One last note about the disk which is included with “Mastering OS-
9”. It contains valuable software. DO NOT neglect to back it up.

Instructions are provided in the first tutorial to help you.

To conclude, we hope you find that learning OS-9 Level 2 has never
been easier. Enjoy!

Page 10

Tandy Color Computer 3

DAY ONE: The OS-9 Ethos

The ancient Greeks imagined that every object in nature
contained an ethos, a characteristic spirit which guidcd the
ohject in the course of its existence. The lithe wall of a horse, the
integrity of a dramatic play, the sonority of a lyre, all were
exmples of ethos. The word embodies excellence and elegance,
balance and focus, the marriage of thought and actlon.

Today, we don’t have a word to describe ethos. And yet it still
exists, especially in software such as OS-9, a product designed
with intelligence and implemented with care. What is the ethos
which the Microware engineers provided OS-9? To find out, use
this book. It starts you on your path to understanding the OS-9
ethos in its usefulness and elegance.

You may never have to know the details of how OS-9 works.
Still, we now take the time to show you the broad outline of
what OS-9 does inside your CoCo. We introduce terms to help
you understand configuring a custom system disk, terms such as
pipe, driver, and descriptor.

In addition, we explain in further detail what a command is,
what it does, and where on a disk to store one. You learn ahout
data and how to organize it in logical directories. We also
introduce general concepts which clarify the OS-9 ethos.

Starting software on a computer, by long-standing tradition, is
called booting that software, and OS-9 is no different. Part of the
code which boots OS-9 is contained on your system disk in a
file named OS-9 Boot.

The OS-9 boot process installs information in your computer
which it needs to deal both with “higher-level” humans and
“lower-level” computer hardware. The low-level functions of
0S-9 involve managing your computer’s memory and
peripherals (peripherals are devices attached to your CoCo such
as printers, modems, and disk drives). High-level functions of
0OS-9 accept your English-language commands, interpret them,
and see to it they are executed.

The Kernel and the I/O manager (IOMan) handle most of the
low-level activities of your OS-9 computer. The Shell is in
charge of most high-level activities. Following is a brief
summary of each of these important parts of OS-9:

Page |1

Day One:

Beginning Day One.
The spirit of OS-9

What we’ll cover

The OS-9 Boot Process

The Kernel and
/0O Manager

Day One:

OS9Boor

Creating your own,
personal OS9Boot.

Mastering OS-9

* The Kernel, the heart of OS-9, manages computer resources
such as memory, requests for input and output of data, and
coordination of all programs, allowing multi-tasking.

* JOMan is the “errand boy” for the Kernel during data input
and output; it can recognize and “talk to” all different kinds of
peripheral devices.

* The Shell accepts your English language commands and
translates them into a form the Kernel can understand; the
Shell is the courier between you and the Kernel.

Of these three parts of the OS-9 operating system software, the
one you encounter most often is the Shell. It prompts you to

give it a command by printing “OS9:” to your screen, a prompt
you wlll find familiar— and friendly— by the end of this book.

When you power up your Color Computer 3 in preparation for
0OS-9, there is already software purring inside: Disk Extended
Color Basic. Your first step is to replace this software with OS-9.
Disk Extended Basic uses the DOS command to find the OS-9
Kernel which in turn finds OS9Boot. Both are loaded from the
disk’s storage area into the CoCo 3’s internal storage area, called
memory. OS9Boot and the Kernel are found on an OS-9 System
Disk (sometimes called Boot Disk after the OS9Boot file it
contains).

OS9Boot is one example of an OS-9 file. A file contains a series
of patterns (usually electric or magnetic) which OS-9 under-
stands. The precise structure of the OS9Boot file can vary. It is
composed of modules of codes which can be mixed and
matched in many ways. These modules contain information OS-
9 uses to run your computer and its peripheralls— disk drives,
ram disks, printers, and so on. Because OS9Boot is a file many
users casually call it a bootfile.

When you add a new peripheral, OS-9 can talk to it only if you
also install new modules into memory. Even though you may
easily load these modules at any time, most people include them
in the OS9Boot file. Since OS9Boot is present in your computer
from the moment you Mastering OS-9, the modules for your
new peripheral will be ready for you whenever you need them.

Creating OS9Boot files to match your system is not a trivial task.
It is also not an impossibly complex task— when you know
what you’re doing. “Mastering OS-9” tells you how. In fact, we
show you three ways to make a bootable system disk. When you
master the craft of making OS9Boot files, you master your

Page 12

Tandy Color Computer 3

computer. Understanding each method of OS9Boot creation
involves the same terms; modules, and bootlists, for example.
Keep an eye out for these two.

Each way to create an OS9Boot shares two other traits. First, the
0S-9 Kernel is written on part of a system disk’s Track 34. A
track on a disk is somewhat like an individual song on a record
album. Specifically, it is a concentric ring on your disk which is
set up by OS-9 to store data. Just as you must place a phono
needle in just the right place on a record album to hear the
Beatles’ “Eight Days a Week”, your computer must also place
the disk drive head at the correct place on the disk to find the
Kernel. This is the general function of the Disk Extended Color
Basic DOS command.

The second feature common to system disks is that OS9Boot is
always created as an unbroken file on the same disk as the
Kernel. Because the boot process is picky about the existence
and locations of OS9Boot and the Kernel, simply copying over
the OS9Boot file from one disk to another is insufficient to make
a disk bootable. You must learn to correctly craft your own
OS9Boot files.You should be comfortable with each of the three
ways of creating bootfiles by the end of this book. Each one
allows you to customize your system to differing degrees.

The idea of adding modules to a bootfile excites knowledgeable
computer fans. Imagine: an operating system that’s expandable
and easy to customize! Plus, correctly-written modules can be
added to memory even after bootup. This practice is handy
when testing a new peripheral or adding a ramdisk drive on the
fly, for example. OS-9’s flexlbility and fame stem from this
revolutionary memory module system. It stands as one of
Microware’s proudest achievements.

There are a few practical limits to customizing OS-9’s modular
boot related to particular hardware and software combinations.
Most users never reach these limits, but if you do, we outline
causes and solutions to these limits during our discussion of
Config in “Getting Started With Tutorial 1”.

The foundation for OS-9 is the OS9Boot file. Once the bootfile’s

role and structure are clear to you, other OS-9-related concepts
will fall into place.

Page 13

Day One:

Memory modules

Bootfiles are easy to
understand and create

Day One:

OS-9Boot Summary

77e kernel --
0S-9 is ticking away

Taking turns means
multi-rasking.

Mastering OS-9

SUMMARY OF 0S9BOOT SECTION

* The OS-9 Kernel and the OS9Boot file (sometimes just called
bootfile) is the first OS-9 software loaded into your computer.

* The bootfile contains modules which allow OS-9 to function
and to talk to your peripherals.

* You can affect which modules a bootfile includes by using
three different techniques.

* These techniques always create the bootfile and Kernel as the
first step in creating a bootable system disk.

* You must learn at least one of these techniques in order to
customize your OS-9 computer.

The OS-9 Kernel

The Kernel, a small and powerful part of OS-9, serves as a heart
for your computer. The Kernel organizes your computer’s
resources to fulfill requests by you and your software. It know
the “nuts and bolts” about which parts of your system are ready
to do work. It knows how much memory is

avallable, how much memory your programs need, and how
much priority each program receives. It knows what devices are
attached to your computer and the general kind of data each
device requires.

One of the most useful and unique aspects of OS-9 is its built-in
multi-tasking. Multi-tasking is possible thanks to the hardware
design of your Color Computer and to the Kernel’s software.

A computer can execute hundreds of thousands of instructions
per second. Not all of these instructions do “useful” work. For
example, most programs on most computers spend much of
their time waiting for the user— you— to enter information at
the keyboard. The programs stop a CPU from doing useful work
while waiting for you input.

Under OS-9, however, as you enter information for one program
your CPU can take turns serving other programs in memory. By
switching between programs as quickly as ten times per second,
the Kernel gives the impression that all your programs are
running at the same time — and it hardly ever loses a keystroke
of yours! (Actually, if the Kernel ever misses a keystroke it is
not the fault of OS-9 but the hardware on which it runs. You can
alter your Color Computer 3 setup to virtually eliminate lost
characters.) OS-9 allocates your CPU’s resources with efficiency
not to be found in Disk Extended Color Basic.

Page 14

Tandy Color Computer 3

Typically, when you use several programs (or processes) at once
on your CoCo, each receives equal attention by the CPU; they
have the same priority. If desired, you can boost the relative
priority of any process at any tlme.

Why would you need control over process priority? Consider a
typical scenario. Suppose in one window (a display screen
created by the CoCo 3 which can present a program to you) you
are word-processing. In another window, your spell-checker
sifts through a large text document for spelling errors. The word-
processor in the first window interacts directly with you making
it a high-priority program. After all, you want your keyboard to
react quickly to keypresses. In the other window, the spell-
checker’s text-sifting hogs the CPU and thus may take away
some of the responsiveness of your word-processor. Typically,
you don’t care if the spell-checker finishes in thirty seconds or a
minute. This makes the spell-checker a low-priority program.
Simply increase the priority of your word-processor and
decrease the priority of your spell-checker. The spell-checker
works blissfully in the background while your word-processor
doesn’t even slow down.

To increase the priority of a process, you first must know its
Procss ID number. OS-9 gives each process a unique one. At the
OS-9 prompt, type:

08S9: procs <ENTER>
and OS-9 will give you a report like:

User Mem Stack

Id PId Number Pty Age Sts Signl Siz Ptr Primary Module

2 1 0 128 129 $81 228 3 $02FO DEAD

3 4 0 128 129 $80 0 3 $71E2 Shell
4 0 0 128 128 $80 0 33 $75E2 gshell
5 4 0 128 128 $80 0 119 $69B2 ds

6 3 0 128 128 $80 0 6 $05F3 Procs

The left-most column shows the Process ID number. To increase
the priority of the word-processor (named “ds” in the right-most
column) to a value of 200, one would type:

08S9: setpr 5 200
The highest priority available is 255.

The Kernel keeps track of how much time the CPU spends on
each process by counting the numher of ticks that go by on its
clock. Each tick is 1/60th of a second and is sometimes called a
time-slice.

Page 15

Day One:

Process Priority

Commands you will
use— procs and setpr

A slice of time.

Day One:

Kernel Summary

Uniffied /O

[OMan’s assistants —
RBFMan, SCFMan,
and PipeMan.

Mastering OS-9

The Kernel’s clock serves other purposes as well. Each time you
boot up OS-9, the Shell asks you for the current date and time.
The Kernel remembers this time and, every time you save a file
to disk, the current date and time are saved to disk with the file.
You don’t normally need to know a file’s last revision date, but
it might come in handy if you ever want to find the latest version
of a business proposal or form letter.

SUMMARY OF KERNEL SECTION
* The Kernel manages the system’s resources.
* The Kernel divides the CPUs attention between different
programs or processes.
* You can change process priority.
* You can — and should — set the time for your system.

IOMan: Input and Output Unification

The Kernel, busy with multi-tasking and with servicing your
programs, leaves a lot of the “dirty work™ to the input/output
Manager (IOMan). IOMan handles the finer details of transfer-
ring data around your computer system. This design displays
one of the elegant features of OS-9: unified input/output. This
concept has been notably included in the UNIX operating
system from AT&T. OS-9’s implementation of Unified 1/0
continues to draw praise from many industrial giants.

Briefly, Unified 1/0 makes files transferrable to or from any
device or program on your computer. The precise nature of the
data itself is irrelevant to the operating system (in our case,
0S-9). It is up to the destination device or program to be able to
make sense of the data. Unified I/0 thus helps OS-9 be device
indpendent. If the data to be transferred contains control codes
(say, for on-screen formatting), it is up to the program to
interpret the codes and provide the actual formatting. The
consequence of Unified I/0 which concerns us is that, under
0S-9, you can often direct data output to and input from many
different devices and programs. This increases the flexibility and
power of the software and hardware on your system .

The precise way IOMan sends data around your system depends
on the device to which the data is being sent. Some devices can
only handle one character at a time. Others can handle whole
blocks of characters at a time. Additionally, a device can be a
virtuall device — not a physical device but part of your monitor
screen or memory which can be configured to act like a real,
physical device.

Page 16

Tandy Color Computer 3

To help IOMan transfer data to a device there must exist two
modules in memory: the device descriptor and its device driver.

IOMan uses the device’s descriptor to find out which way to

send the data.

* If the device can handle blocks, IOMan passes the data to the
part of OS-9 which manages blocks (the RBF Manager). An
example of this kind of device is your disk drives.

* If the device accepts one character at a time, the SCF
Manager moves the data to the device (for example, to a
modem or a printer).

* Another data manager deals exclusively with the virtual device
called the pipe. Pipes offer a way for different programs to
pass data to each other. IOMan calls on the pipe manager
PipeMan for this task.

When you learn to configure a custom OS9Boot, you will see
the terms RBF, Pipe, SCF, and other related terms. Now that you
know what they are, the configuration process will be less of a
mystery.

Device descriptors also include the name of the device as OS-9
will use it. Your printer is typically named “/p1”. The slash, “/”,
tips off OS-9 that “p1” is a device and not a command or other
module. Your first disk drive is typically named “/d0”.

Device descriptors can also contain numbers — initializing
values — which help OS-9 “talk to” the device correctly.
Windows, for example, can be created in many different shapes
and sizes. The window descriptors arrive on your system disk
with initial size and shape information. We will continue to
explore disk drives, modems, printers, pipes, and windows as
“Mastering OS-9” progresses. If these concepts are still hazy to
you, no need to worry.

0OS-9 requires each device to have a device driver and
descriptor. As noted above, the device descriptor describes to
0OS-9 many general features of the device — its name and the
type of data it requires, for example.

The device driver is much more specific. It provides OS-9 with
the ability to communicate with a device in the device’s own
language. The device driver, in some ways, is OS-9’s doorway
to the real world. It knows the nitty-gritty, ugly details of how to
communicate with a peripheral. Examples are the drivers for
your disk drives, your keyboard and screen, and your printer.

Page 17

Day One:

More on device
descriptors

Device Drivers

Day One:

How you will use
descriprors and drivers

10OMan Summary

The OS-9 Shell

Mastering OS-9

Device descriptors, in conjunction with their drivers, allow OS-9
to send its “unified” I/O to all the peripherals on your system.
Many device drivers and descriptors also allow the peripherals
to talk to your computer.

When you attach a new device to your Color Computer 3 you
must also install the device’s driver and descrlptor modules. This
installation can be accomplished in several ways. The best way,
mentioned in the introduction to OS9Boot, is to include these
modules in your OS9Boot file.

IOMAN SUMMARY

* 0OS-9 uses the Unified I/O philosophy made popular by UNIX.

* The unified I/O of data is managed by IOMan.

* JOMan determines whether each devlce attached to your
computer accepts data in blocks, in sequence, or in a pipe.

* JOMan then delegates data transfer to RBFMan, SCFMan,
or PipeMan as necessary. These modules must be in your
OS9Boot file.

* IOMan uses device drivers to communicate with your
peripherals.

* Every device attached to your system requires a device driver
and descriptor.

The Shell: Guide and Intermediary

Except for terms associated with the Kernel and IOMan — terms
such as priority and driver — you need to know very little about
these two parts of OS-9. The reason is that OS-9 provides an
intelligent Intermediary — the OS-9 Shell. The Shell, a powerful
OS-9 program, has several useful functions:

* The Shell translates your keyboard instructions into special,
compact codes which the Kernel requires to do its work. If

your
keyboard instructions are mistyped or misguided, OS-9 offers
you a numbered error message to help you find your mistake.

* The Shell can also accept instructions written in text files.
We’ll examine procedurefiles in detail during the tutorials.

* The Shell’s command-line modifiers make it easy for you to
start several tasks. You can run one command after another
(sequential execution), or execute them simultaneously
(concurrent execution). You can also execute a program and
direct its output to another program or to a data file (input/
output redirection). See the following section on “Paths”.

Page 18

Tandy Color Computer 3

After you boot OS-9 and enter the date and time, the Shell
comes to life on your terminal screen. When it’s ready for your
commands, the Shell prints “OS9:” on your screen, like this:
0S9:
This symbol, called a prompt, is the Shell’s way of asking for an
instruction. To the right of the prompt is a graphics block called
the cursor. It marks the current position where text appears as
you type on the keyboard.

Once you enter your instruction at the prompt, press the key
marked <ENTER> . The Shell now accepts your entry and
attempts to interpret it. If you misspelled the entry, OS-9
discovers the mistake and prints an error message to your
terminal screen.

0OS-9 generally understands two types of entries at the “OS9:”

prompt. First, the entry can be the name of an executable file.

Secondly, the entry can be the name of a procedure file. Let’s

quickly define these terms before moving into a more in-depth
discussion of each.

Executable Files — Executable files contain computer code
which your CoCo 3 can interpret directly (although it may
sometimes need the help of a run-time module as with BasicO9).
Most OS-9 users don’t employ the term “executable file”
referring to one instead by one of the following terms:
command, utility, program, or application. You cannot read or
alter the code in executable files without powerful software tools
and some programming knowledge.

Executable files can be kept in your CoCo’s memory and on
disk. If an executable file is in memory it is executed immedi-
ately. They are often followed by names of data files, as when a
word processor (an executable file) is followed on a command
line by the name of the file you wish to edit.

Procedure Files — You can read a procedure file by listing it to
your screen or printer. It is a text file, created with any text
editor, which contains the names of valid OS-9 commands. It
may also contain the names of other procedure files. In addition
to reading procedure files, you can also edit them or create your
own from scratch. Procedure files are stored on disk. When you
enter the name of one at the “OS9:” prompt it is executed one
line at a time just as if you were typing each line by hand. You
use procedure files to automate repetitive tasks.

Page 19

Day One:

What to enter:
Words that do work.

Executable Files

Procedure Files

Day One:

Executable Files:
Commands, Programs,
Applications, & Utils

Mastering OS-9

OS-9 users have many different names for executable files. They
differ only in code size or number of features and generally may
be classified as follows:

A command typed at the “OS9:” prompt is the name of a small
file of computer code. The Shell sees to it that the Kernel
executes the specified file. The Kernel uses these command files
to do most of your work.

A command and a utility are basically the same, although a
utility is often used for a specific purpose such as counting the
number of words in a text file or converting numbers back and
forth from hexadecimal to decimal. Commands are often used
for general purposes such as listing a file to your screen .

Commercial programs, or applications, can be very large indeed.
These two terms are used interchangeably. The term applications
seems to be more in vogue perhaps because the word conveys
that computers can be applied to solving your problems. Calling
a large executable file a program has perhaps been avoided
because people in general dislike or are afraid of programmlng.

Applications usually provide a wide array of features. You often
access these new features through techniques sometimes
completely different than those employed using Shell. For
example, most applications currently incorporate a mixture of
menus, where you choose from a text list of options, and
graphic icons, where you choose a program function by
selecting an on-screen option with a mouse. Frequently an
application avoids using Shell for many functions, instead using
the Kernel directly. But a Shell incorporates so many useful
functions that an application usually provides you a gateway to
one.

Examples of applications are:

* word processors

* gpell-checkers and on-line thesauruses

* telecommunications software

* databases

* spreadsheets

* stock portfolio managers

* graphics programs for drawing and desk-top publishing
and other, more specialized products.

For a complete overview of these types of applications see the

Page 20

Tandy Color Computer 3

essays at the end of this week's tutorials.

Procedure files, or simply procedures, are a variation on
executable files. They themselves are not executable code. They
contain names of commands or other procedure files, ordered to
accomplish a complex task. In a sense, a procedure file is a
“script” such as an actor might use to learn his or her move-
ments around a stage. The Shell uses these scripts as instructions
for its activities around your system. UNIX users will recognize
at once that procedure files parallel the UNIX Shell script. This
term is even used in OS-9 circles in place of the term procedure
file. If one is familiar with MS-DOS, a procedure file is similar to
a “batch” file.

You may use a word processor to create a text file listing valid
0S-9 command lines, one per line, and save it to disk. Just
invoking the name of the text file at the “OS9:” prompt is
sufficient to start the sequential execution of each included
command line. Examples of procedure files will be discussed
and dissected in later reading.

0S-9’s Kernel expects to send all output data to your screen. In
0OS-9 parlance, your screen is the standard output path. Error
messages are also sent to your screen, making it serve double
duty as the standard error path. Similarly, OS-9 normally accepts
input from your keyboard making it the standard input path.

Just about every program you run under OS-9 uses these three
paths. Why not? They’re built into the Kernel ready for use by
any program requiring keyboard input and computer monitor
output. But if these paths are built into the Kernel, why mention
them here in a discussion of the Shell? Because the Shell can
redirect each of those paths.

Example: If Utilityl normally outputs data to your screen, the
Shell can redirect that output to a disk file by using the Shell’s
reserved symbol for output redirection (>) like so:

08S9: utilityl > diskfile <ENTER>

If Utility2 normally accepts data input from your keyboard, the
Shell can instead send it data input from a disk file when you
use the reserved input redirection symbol (<):

08S9: utility2 < diskfile <ENTER>
You can often send the output of Utilityl as the input to Utility2.

This uses the Shell’s pipe modifier (!):
08S9: utilityl ! utility 2 <ENTER>

Page 21

Day One:

Procedure files.
delegating a tedious j
ob to the Shell.

Paths and pathnames

Day One:

Shell Summary

Kernel, 10Man,
& Shell Notes

Mastering OS-9

Tutorial 10 demonstrates how to redirect all three paths in order
to automatically start your favorite program in a custom
window.

The Shell’s presence between you and the Kernel makes
running OS-9 fun and exciting. We’ll get to know many of its
useful options in the tutorials.

SHELL SUMMARY

* The Shell, an OS-9 program, exists as an intermediary
between you and the Kernel.

* The Shell executes commands, procedure files, and applica-
tions when you invoke them at the “OS9:” prompt.

* The Shell has several options, allowing you to start processes
either sequentially, concurrently, or utilizing input/output
redirection.

NOTES ON THE KERNEL, IOMAN, & THE SHELL
1. Many applications handle both low-level and high-level
computing jobs. For example, a typical desk-top publishing
program may be written to handle the low-level tasks involved
printing graphics even while it handles the high-level task of
creating a news article.

2. There are many ways to speed up system performance.
Setting process priorities is one. For example, I can word-
process in one window while my spell-checker, in another
window, checks another document. To keep my word processor
feeling snappy, I boost its priority to 200 out of a possible 255. I
lower the spell-checker’s priority to 40. With these priorities I
never feel a slowdown. The spell-checker checked a 2000 word
document in one minute forty-five seconds — only 15 seconds
longer than if had left its priority equal to the word processor’s!
No-halt floppy controllers, ramdisks, and hard disks are also
good choices to speed up your CoCo 3’s performance.

3. UNIX and similar operating systems try to make data transfer
easy and it’s paying off. Personal Computing recently surveyed
industry leaders and found that UNIX’s popularity was sharply

on the rise.

4. Sony and Philips searched carefully for an operating system
for their state-of-the-art Compact Disk-interactive (CD-i)
devices. These devices are really super-microcomputers which
have special support chips to output a multitude of graphics,

Page 22

Tandy Color Computer 3

text, and audio formats. Their search ended with OS-9 due in
large part to OS-9’s device independence and easily-maintain-
able code. A proposal from Microsoft based on Windows was
turned down. Microsoft made an offer to buy Microware shortly
before developing their own alternative. Microsoft executives
recognized Microware’s lead in real-time operating systems.

Some program data needs formatting and other special codes to
make sure data have built-in relationships. Data such as this,
while easily transferred to devices and programs, may be to
specific to a single application to be interpreted by the target
programs and devices. Spreadsheets are a common culprit. OS-9
spreadsheets usually offer a way around this. Dynacalc, for
example, offers a data file option which any OS-9 word
processor could read.

It should be stressed that data files unreadable by devices or
programs may not be violating the Unified I/O principle. As
long as the operating system perceives the file as a valid system
“object”, Unified I/O is maintained.

6. Actually, OS-9 comes with serial printer support built right in.
No need to buy any descriptors and drivers for your printer —
as long as you plug it into your serial port directly or through a
serial to parallel convertor. You can buy true parallel ports for
parallel printers (no serial-to-parallel convertor required). Check
“the world of 68' micros” magazine or Delphi and other on-line
services (don’t forget Internet and FIDO networks) for vendors
who can help you.

Page 23

Day One:

Day Two:

Beginning Day Two.
0S-9 Directory System

Files and folders
parallel
Sfiles and directories.

Mastering OS-9

DAY TWO: Day Two:

Introducing the OS-9 Directory System
When you finished preparing your taxes this year, you probably

made a vow tobe more organized tax time next year . You can
avoid a lot of pain if you keep an on-going filing system.

You might first create a simple filing system making it easy to
file each receipt as you go. You would also make it flexible to
allow for changes.

Using file cabinets, drawers, file folders, and envelopes provides
enough ways to sort your receipts and records. Use a whole file
cabinet for all of your deductibles, and then use the drawers in
the cabinet to hold specific kinds of deductibles such as travel
expenses, mortgage payments, and so on.

Then, within the drawer holding travel expense records, you
may have separate file folders for different trips (or maybe not,
choose any organizing principle that suits you).

OS-9 uses a directory system as intuitive as this. Called a hier-
archial directory system, it has parallels to drawers and file
folders. File folders can even be within file folders! OS-9 calls
these logical partitions directories, subdirectories, and files.

Files are the smallest unit. Files are put in subdirectories, and
subdirectories are put in directories. A directory can hold names
of subdirectories and files; one or several of the subdirectories
may contain the names of files and other sudirectories (which
are, thankfully, not called sub-sub-directories). This system is
both simple and flexible. Most OS-9 users cannot imagine living
without hierarchical directories; most newcomers to OS-9 cannot
imagine them at all. Study the diagram below. It outlines only
one possible directory structure that can be created.

ROOT DIRECTORY
[|
DIRECTORY1 DIRECTORY?2
filel file2 file3 SUBDIRECTORY

filel file2

Page 24

Tandy Color Computer 3

In this diagram, the root directory is the topmost logical compo-
nent in the structure. It “contains” every other file and directory
on the disk. Even though the diagram shows the root directory’s
name to be “root”, a storage medium’s root directory always has
the same name as the storage device in which it currently
resides. For example, if OS-9’s name for your boot-up drive is ““/
d0”, then any floppy inside that drive has a root directory named
“/d0” as well. Similarly, disks in drive /dl have a root directory
named “/d1”.

The only two names contained in the root directory shown are
DIRECTORY1 and DIRECTORY?2. These are the components
of the directory structure just one level down from the root di-
rectory. The contents of DIRECTOY1’s directory are just filel
and file2, but notice that DIRECTORY?2 contains yet another
directory, called a SUBDIRECTORY (a directory within a direc-
tory). Note that directories directly under a root directory are not
usually refferred to as subdirectories.

Directory levels below a root directory cause the directory struc-
ture to bloom, and the branches and leaves are directories and
files. It’s no wonder that a directory structure is often called a
directory tree! In the first few tutorials you gain experience mov-
ing around a directory structure and creating one of your own.

The basic unit of your work is the file. OS-9 users most often
deal with files which fall into two fundamental categories: ex-
ecutable files such as commands and applications, and data files
such as letters to prospective clients and lists of phone numbers.
Procedure files are also data files even though they can he
“executed” in a sense. Both executable files and data files must
have unique pathnames. We discuss pathnames in

the next chapter.

Executable files contain special codes designed for direct read-
ing by the Kernel and your CPU. You cannot read these files.
Data files usually contain characters which are acted on by ex-
ecutable files. For example, word processors (executable files)
create letters and proposals (data files). Likewise, graphics
processors create pictures (graphics files).

In a large sense, executable files are like verbs — they take
action of some kind. They frequently take action on data files,
which are thus like nouns. OS-9’s directory system philosophy
separates the “nouns” from the “verbs”. To be precise, execut-
able files used for commands and applications are kept in an

Page 25

Day Two:Day Two:

Roor Directories

Directories and
Subdirectories

Files

Executable Files

Day Two:

Mastering OS-9

execution directory. Data is kept in data directories. We discuss
these in the pages ahead. As you might guess, organizing your
data and executable files in directories takes planning. The plan-
ning is well worth it.

Before discussing directories and how to plan them in further
detail, we introduce path names. Path names provide shorthand
directions used by OS-9 to navigate through the directory struc-
tures you create.

The OS-9 directory system is hierarchical; that is, a directory
may contain other directories. A directory which contains files
or other directories is called a parent directory. Parent directories
may give rise to a family tree of directories. Each directory in
the directory tree may contain files or other directories, and so
on to any level of organization. Examine our directory structure
example from the previous section:

ROOT DIRECTORY

I |
DIRECTORY1 DIRECTORY2

filel file2 file3 SUBDIRECTORY

filel file2

The root directory is the parent directory to DIRECTORY1 and
DIRECTORY?2. DIRECTORY1 is the parent directory to Filel
and File2. DIRECTORY is the parent directory to File3 and
SUBDIRECTORY. Each parent directory contains all files and
directories below it in the directory structure. Thus, DIREC-
TORY2 contains File3, SUBDIRECTORY, and both of SUB-
DIRECTORY'S files. To continue the family tree metaphor, you
can accurately distinguish between Filel within DIRECTORY1
and Filel within SUBDIRECTORY if you specify its parent and
— if you will —grandparent. A full name for each of these
Filels must include its full “lineage”.

To phrase this in OS-9 parlance, every file on a disk has a full

path name. This path name explicitly states the path OS-9 takes
to find the file. A full path name contains three sections:

Page 26

Tandy Color Computer 3

1) the name of the root directory,

2) the name of subdirectories, under the root directory, which
contain the file, and

3) the local name of the file.

The general syntax for a full path name is:

Day Two:

/[rootdirectory] /[subdirectory] /... /[subdirectory] /[local.filename]

Local file names are defined shortly. In the meantime, we exam-
ine the first two parts of a full path name. After the above syntax
is clearer, we will show some examples.

Each mass-storage device (floppy disk drives, hard disk drives,
and ramdisks) has a root directory with the same name as the
device name. When you specify a device on the command line,
0S-9 looks for the device name in a list of device names which
it keeps in memory. For most purposes, you type the device’s
name with a preceding slash.

For example, imagine a data disk in Drive /d0. The name of the
device is /d0, where the slash signals to OS-9 that /d0 is a de-
vice. Similarly, /p is “the device p”, /term is “the device term”,
and so on.

The name of the root directory of any disk in Drive /d0 is /dO as
well. To list the contents of a device’s root directory, simply
specify the name of the device after the Dir command. Since all
full pathnames begin with a root directory name, we can formu-
late the following rule from what we have learned: When speci-
fying a full path name, precede the root directory name with a
slash.

Just as you might use a finger to keep track of your place in a
book, OS-9 uses current data directories to keep track of your
“place” in the directory structure. In the book analogy, you
might say to yourself “I want to find a photograph I saw in the
chapter I'm currently reading”. Calling that chapter a “current
chapter” is much simpler, for example, than calling it “the chap-
ter which follows the fourth chapter which follows the third
chapter which follows the second chapter...”. In OS-9 parlance,
you establish a current data directory to avoid constantly speci-
fying the complete path name of the directory or file in which
you

are interested.

Page 27

Roor Directories

Current data directories

Day Two:

Commands you will
use — chd

Local files and
subdirectories

Mastering OS-9

When you first boot OS-9, your default current directory is usu-
ally the root directory of drive /d0 (a hard drive user has /h0 or
some similar name as the default current directory name). You
can change which directory is your current directory with the
chd command.

If every person’s name included his or her entire lineage, you’d
go crazy. Imagine the size of the “Name” blank on application

forms! Imagine going to a party and seeing a “Hello My Name

Is” sticker that reached out the door and down the elevator!

With OS-9 you can avoid continually typing the full path name
for a file. Just change your current data directory to the directory
which contains the file and then just type the local file name.

You can get a list of file names in the current directory by
typing:

089: dir <ENTER>
The resulting text on your screen only gives the names of the
files located in the current directory. The FULL path name for a
file on your screen is merely the path name of the current direc-
tory with the file name attached to the end. The Dir command
does NOT return complete path names for each file — and thank
goodness, since those path names can be long indeed!

For the puroses of “Mastering OS-9” we created a term for file
names which appear In a current directory listing. The term is
local file name. A local file name is the name of a f ile as it ap-
pearsin the current directory. Thus, if your current directory is
/d0, the local file name of /d0 /OS9Boot is simply OS9Boot.
Similarly, a local directory name is the name of a subdirectory
appearing in the current directory listing. Thus, if your current
directory is /d0, then the local directory name of /d0 /SYS is sim-
ply SYS.

Now that these terms are defined, here is an important rule
specifying items in the current directory: Local file names do not
need a slash preceding the name. Similarly, local directory
names do not require a slash preceding the name.

Let’s now show the chd command in action through imaginary
examples. Look again at our sample directory structure:

Page 28

Tandy Color Computer 3

DIRECTORY DIiRECTORYZ |

filel file2 file3 SUBDIRECTORY

filel file2

Example: Listing of the root directory contents (see chart) would
show only DIRECTORY1 and DIRECTORY?2. If you set your
current data directory to the root directory, typing:

089: dir <ENTER>
displays:

Directory of . 16:29:56

DIRECTORY1 DIRECTORY2

to your screen.

Once you use the Chd command to change your current
directory
to DIRECTORY, a listing of the directory contents shows:
089: dir <ENTER>
Directory of . 16:31:
filel file2

Example. Filel under DIRECTORY1 can he called simply Filel
if you first change your current data directory from the root di-
rectory to DIRECTORY . If your root directory is /d1, first type:
0S9: chd /d1 /directoryl <ENTER>
Now you can type:
08S9: list filel <KENTER>
and OS-9 knows to list /d1 /directoryl /Filel and not, say,
/d1 /directory2 /subdirectoryl /Filel. You may also type:
089: list file2 <ENTER>
to list /d1 /directory1 /file2.

Example: After a long session at your computer, you may have
used the chd command several times to move yourself about the
directory tree. In order to see the root directory of drive /d0
without reassigning the current directory, type:

08S9: dir /d0
This displays a root directory listing. The name /d0 is the full

Page 29

Day Two:

Day Two:

Anonymous directories

Mastering OS-9

path name of the root directory of the disk in drive /d0. No mat-
ter where you position yourself in a directory tree with chd you
may always find a directory listing of any directory by typing dir
followed by a full pathname of the directory whose listing you
desire.

Example: Assuming you, like many CoCo OS-9 Level 2 users,
don’t use a hard disk yet, if you type:

089:dir <ENTER>
right after booting up, you will see the root directory of drive /d0O
displayed on your monitor. These file names and directory
names are local to the root directory. You can receive the same
listing if you type:

0S9:dir /d0

You may have surmised from previous reading the following
rule: Slashes are used to separate directory names from each
other in long path names. The only two occasions when you
must type a preceding slash occur when you specify a device
name (such as /p, /term, or /d0) or when you must specify a full
path name starting with the root directory.

Example: In my /d0/SYS directory, I have a file whose local file
name is df.init. Its entire path name is /dO/SYS/df.init. Imagine
my current data directory is the root directory of drive /d0. To
list the file df.init, I have several choices:
1) I can change my current directory to /d0/SYS; in this case I
type: 08S9: chd /d0/sys <ENTER>
0S9: list df.init <ENTER>
2) I can use the local directory name rule and type:
089: list sys/df.init <ENTER>
(Notice there is no preceding slash)
3) Or I can specify the entire path name.
0S9: list /d0/sys/df.init <ENTER>
(Here you see a preceding slash since /d0 is a root directory
name)

Every file on an OS-9 disk is contained within one and only one
parent directory. Each directory except the root directory is also
contained within only one parent directory. This is similar to
saying that each of us has only one set of biological parents.

OS-9 uses this fact to help you find a directory listing of a parent
directory, a “grandparent” directory, and so on, without having
to specify each path name. If a dot (.) represents the current
directory “generation” (your parent directory), then dot-dot (..)

Page 30

Tandy Color Computer 3

represents the previous “generation” (your grandparent direc-
tory, if you will).

To demonstrate, typing:

089: dir . <ENTER>
dislays the contents of the parent directory (typing just dir at
the“OS9:” prompt gives you the same result so most users never
bother typing this command line). Similarly,

089: dir .. <ENTER>
shows you the contents of the grandparent directory. You will
see the name of your current directory in that listing. You can
also use the “dot” and “dot-dot” method to change current direc-
tories.

If you are at the very bottom of an immense directory tree, you
can move to somewhere in the middle and look around for your
bearings with:

089: dir ... <ENTER>
Use several dots. If you see the name of a desired directory or
file then type:

0S9: chd ... <ENTER>

using the same number of dots.

Naming previous generations of directories with dots and not
with their full path names is easy and fun. Any directory named
with dots and not its “real” name is called an anonymous direc-
tory. It might be advised that you avoid the anonymous
directory convention until you get the hang of building and
moving about complex directory structures. As you grow
accustomed to directory structures you will find anonymous
directories convenient.

PATH NAME SUMMARY
The rules for putting all the names together:
* The general syntax for a full path name is
/[root directoryl /[subdirectory] /.../ [subdirectory] /[filename]
* Full path names for a file potentially include the names of
many directories. They always end with a file’s local file
name.
* Slashes separate directory names from each other and from
the local file name.
* 1f the path name begins with the name of a root directory then
you are giving the full path name. When giving a full path
name
precede it with a slash. Otherwise, a path name should not
begin with a slash.

Page 31

Day Two:

Pathname Summary

Day Two:

Data Directories.

Commands you will
use— makdir

Mastering OS-9

* Reading from the right, each file or directory is contained
within the directory to its left. This is the basis for anonymous
directories.

Data Directories: Keeping Data Organized

In this section we explore how to use OS-9’s hierarchical direc-
tory system for data storage. This directory system provides a
method for organizing data in a way that is sensible and easy to
use. You learn about the Makdir and Deldir commands and ex-
ercise your knowledge of pathnames.

When you use an application you usually create data files. Using
a single application (a word processor, for example) you might
produce hundreds of separate data files. With several different
applications the total number of data files may eventually reach
into the thousands. How wil! you go about organizing all these
data files so you can get to them qulckly?

OS-9 offers data directories and subdirectories for exactly this
purpose. Just as you might store related personal papers in file
folders and related folders in drawers, OS-9’s directory structure
relies on the notion that logically related files should be placed
together. Because you can create directories and subdirectories
in any manner your work style requires, storing your data files is
easy and flexible.

Suppose you have just finished booting OS-9. Usually OS-9
establishes the root directory of drive /d0 as your current data
directory. Also, /d0/CMDS is established as the current execu-
tion directory.

Suppose you just purchased Ulti-U-Til, “the Ultimate Utilities,”
from XYZ Corporation. These utilities are executable files simi-
lar to the OS-9 commands which arrived on your System Mater
from Tandy. Suppose also that you wish to put these files in
your CMDS directory but you want to group them together.

Create a subdirectory of /d0/CMDS called, say, /d0/CMDS/XYZ.
To do this, use the makdir command. Begin by typing makdir
followed by the path name of the directory which will contain
your new directory (in this case, we would type “makdir /dO/
cmds”). Then type a slash (“/”) followed hy the name of your
new directory in capital letters. Then press <ENTER>. Alto-
gether, here is what you would type:

Page 32

Tandy Color Computer 3

0S9: makdir /d0/cmds/XYZ <ENTER>

Now copy the utilites from the Ulti-U-Til disk into your new
directory. If one of the utilities is named dsort, it now has the
pathname /d0/cmds/xyz/dsort. To use this utility all you have to
type is: OS9: xyz/dsort

0S-9 can now find the command (how OS-9 finds commands is
discussed in more detail in the next chapter).

Notice that the directory XYZ was created with all capital letters
in its name. By common agreement, OS-9 users use capital
letters for directory names and lowercase letters for file names.
A mixture of capital and lowercase letters is sometimes used for
file names, but NEVER for directory names. Your OS-9 life will
be much happier if you follow this simple rule. If you don’t, it is
impossible to tell the difference between files and directories in a
normal directory listing. In the tutorials we give you plenty of
practice creating directories and files, so the “rule” should be a
“habit” by the end of “Mastering OS-9”.

Organizing your files into directories helps. Let’s experiment in
our minds to learn this organizing process. Imagine that the task
at hand is to organize your word processing files.

The first step is to determine how you classify your work. For
example, the results of your computer productivity might fall
into two broad categories: letters resulting from business and
letters relating to your personal life. Once you establish the
logical categories of your work, prepare a disk with
corresponding directories. For example, as you work with a
word processor in drive /d0 you may store all your data on the
disk in drive /d1 (the disk in /d1 will only contain data and thus
becomes your data disk). You can create two directories on your
data disk with makdir which parallel the categories business files
and personal files.

Example: Once you format the data disk for OS-9 (see Tutorial
1) place it in drive /d1 and type:

0S9: makdir /d1/PERSONAL <ENTER>

0S9: makdir /d1/BUSINESS <ENTER>
Letters to friends and family you save in /d1/PERSONAL. Busi-
ness related letters would be stored in /d1/BUSINESS.

If your business work requires both letters and business propos-
als, create subdirectories:

089: makdir/d1/business’LETTERS <ENTER>

Page 33

Day Two:

Distinguishing between
directories and files

Organizing files in
directories.

Day Two:

Directory names.

Unigque names required,

Data directory
summary

Execution directories

Mastering OS-9

0S9: makdir /d1/business’/PROPOSALS <ENTER>

The full name of a directory specifies the path along the direc-
tory tree which OS-9 takes to find that directory. Likewise, a file
within a directory has a full name corresponding to the full path
0OS-9 follows to find it.

In the example on the previous page, the data disk’s root direc-
tory has the name /d1. Creating BUSINESS on that disk makes
the full name of the BUSINESS directory “/d1/BUSINESS”.
What happens if you moved the disk over to drive /d0?

First, signal OS-9 that you have moved the data disk over to
drive /d0 by typing:

0S9: chd /d0 <ENTER>
The BUSINESS directory now has the full name “/d0/BUSI-
NESS”. Subdirectories within the BUSINESS directory, LET-
TERS and PROPOSALS, now have new full names too: “/dO/
BUSINESS/LETTERS” and “/dO/BUSINESS/PROPOSALS”.

Being able to change your current data directory means you
often can avoid stating a file’s complete path name. Still, OS-9 is
always aware of each file’s full name. To avoid confusing files,
OS-9 requires unique path names for each file and directory.
This requirement prevents you from creating a file or directory
with a path name that is already used on a disk. If you try, OS-9
sends you the error message “Error 217 (“File Already Exists”)
to your screen.

DATA DIRECTORY SUMMARY

* Create a directory structure which reflects the way you
organize your thoughts and papers.

* Use the makdir command to create a directory. If the directory
you create is not in the current directory, provide a path name
sufficient to have OS-9 place it within the correct directory.

* Use all capital letters when creating a directory.

* OS-9 prevents you from creating file or directories with
duplicate names.

Execution Directories: Where the Action Is

During the boot process, OS-9 loads a large number of com-
monly-used commands into your CoCo 3’s memory. When
commands are in memory, the Shell can execute them instanta-
neously. Lesser-used commands are not loaded in memory.
When you request a lesser-used command, OS-9 looks to a disk
drive to find it. A floppy disk drive can hold hundreds of com-

Page 34

Tandy Color Computer 3

mands. While access to floppy disk is slower than to memory,
floppy disk drives are fast enough for most purposes.

To speed up OS-9’s search for the command you want, Micro-
ware designed OS-9 to look for disk-based commands in a stan-
dard location — the current execution directory. Most floppy
disks have at most one execution directory. Within that directory
you may keep a large number of commands and other
executable files. Bootable system disks have a directory named
CMDS which OS-9 establishes as its current execution directory
on

boot-up.

If you guessed that the term “current execution directory” im-
plies that a disk may contain additional execution directories,
you were right! A disk may contain several directories each full
of executable files. Execution directories need not be named
CMDS and they may be placed anywhere within a directory
structure. You will create execution directories most often in a
floppy disk’s root directory.

When you enter the name of a command at the “OS9:” prompt,
the Shell looks first in memory. If the Shell cannot find the com-
mand in memory, it looks for the command name in the current
execution directory. When it finds the command there, the Shell
loads it into your CoCo and executes it. If the command you
want is not in the current execution directory, it may be in an-
other directory full of executable files. For OS-9 to find the com-
mand there automatically you must change your current execu-
tion directory.

When you change to a new execution directory, all commands
you ask for — if not in memory — should be in that execution
directory. If OS-9 fails to find the command it sends an error
message (usually ERROR #216 — path not found) to your
screen to let you know. A common reason first-time OS-9 users
receive errors is that they replace the system disk with another
disk after bootup. Since OS-9 expects to see the execution
directory /dO/CMDS in a particular location, this situation
confuses OS-9, even if both disks contain a directory named
CMDS. You need to reorient OS-9 to the location of the new
CMDS directory. To do this, use the chx command.

Page 35

Day Two:Day Two:

How and when Shell
uses current execution
directories.

Commands you will
use — chx

Day Two:

Conclusion.

Execution Directory
Summary

Mastering OS-9

We now examine how you can change your execution directory.
Suppose you have a directory named MYCMDS in the root di-
rectory of drive /d0. Thus its path name is /dO/MYCMDS. Imag-
ine it contains word processing related commands and a word
processor named “WordKing”. Suppose also that “WordKing” is
invoked with the command:

08S9: wk <ENTER>

0OS-9 won’t find wk unless its current execution directory is
changed to /dO/MYCMDS. You can do this with the following
command line:

0S9: chx /d0/MYCMDS <ENTER>
Now OS-9 will look in the directory /d0/MYCMDS instead of,
perhaps, /d0/CMDS to find the commands you enter at the
“OS9:” prompt.

Example: To keep OS-9 informed about disk switches, this is
what I do:
1) I replace my boot disk (currently in drive /d0) with my word
processing disk.
2) I type: OS9: chx /d0/cmds
which tells OS-9 to go find a new execution directory on
drive
/d0. If I then want to use a third disk containing yet another
CMDS directory, I repeat the above steps:
1) I replace my word processing disk with the new disk.
2) Itype: OS9: chx /d0/cmds
and OS-9 looks again for a new execution directory.
Incidentally, if a data directory I need ALSO exists on the new
disk, I use the chd command to reorient OS-9 to the new data
directory as well.

You switch current execution and data directories throughout
the

tutorials. By the end of the book you’ll be an old pro at keeping
up with execution and data directories.You will also be on the
way to using them to organize your data and programs logically,
making you more productive and making your OS-9 computer a
joy to use.

EXECUTION DIRECTORY SUMMARY

* A boot disk contains an execution directory named CMDS.

* 0S-9 looks in execution directories for commands. If the
execution directory is your current execution directory, the
Shell loads commands automatically from that directory.

* There may be several execution directories on a disk but only
one current execution directory.

* Execution directories may have any name and may be placed

Pa gzgn}_;gvhere within a directory structure. Most often they are

Tandy Color Computer 3

within a floppy disk’s root directory.

You now know to change execution directories:

* Whenever you change from one disk which contains needed
commands to another disk which contains needed commands

* Whenever one disk contains several execution directories and
you need to switch OS-9’s attention from one to another.

Command Syntax: Get It Right!

The fifty commands which arrive on the Level 2 System disk
range from the simplest utilitv to the most complex. One com-
mand, date, displays today’s date on your screen. In contrast,
the edit command provides text editing, advanced macro capa-
bility, and multiple buffers allowing you to edit several
documents at once with your own custom editing functions.

Despite this abundance and range of command power, you nor-
mally use only twenty or so commands. Two dozen of these
commands, together with their options, can display great power
and flexibility.

There is one catch though. Unless you type the commands and
their options correctly, error messages — and possibly damage
to your files — could result.

In the tutorials, we’ll explain the pitfalls and dangers of some of
the commands. Refer to the Tandy manual often, but when you
do, use the information provided here to help you understand a
command line’s syntax.

We begin with a brief explanation of the following terms, com-
plete with simple examples:

* command

* required parameter

* optional parameter

* options

* switches

Books about OS-9 adopt slightly differing notation when ex-
plaining command syntax. Keep this in mind when comparing
this book’s syntax with another books.

In the last section we touched on how the Shell looks for com-
mands. Here we discuss that process in more detail. Once you

Page 37

Day Two:Day Two:

Command Syntax

What we’ll cover.

Where OS-9
Jinds commands

Day Two:

Commands in memory

Commands you will
use - load and mdir

Mastering OS-9

understand how the Shell searches for commands you will better
grasp at what point the Shell, failing to find a command name,
sends an error message to your screen. Being familiar with this
process helps you deal intelligently with these error messages.

Recall that executable files are machine-readable codes which
act in a useful way when correctly called from the Shell com-
mand line. Commands are one example of executable files. A
command can exist in two places: in your computer’s memory,
and on a device like a floppy or hard disk drive. If OS-9 can’t
find a command name in memory it looks first in the current
execution directory. If it fails to find the command name there, it
looks in the current data directory. At this point, OS-9 has given
up assuming that the name represented an executable file.
Instead it looks in the current data directory for a data file such
as a procedure file.

To sum up, when you type a name at the “OS9:” prompt, OS-9
takes up its search for the name in the following places:
1)Assuming the name is a command, OS-9 first looks
in memory.
2) If it fails to find the command in memory, it next looks on
your
disk drive in the most logical place for commands— the cur-
rent
execution directory.
3) If OS-9 fails to find the command in the current execution
directory, it looks in the current data directory for a procedure
file with the name you typed.

Don’t put a command -- an executable file — in a data directory.
Since you are in charge of where commands are stored on disk
go ahead and put them in a directory with other executable files
and chx to that directory when you need the commands it con-
tains. Using similar logic, in most cases you will not put proce-
dure files in an execution directory.

We now examine the Shell’s command search in more detail.
We begin by discussing the advantages of having commands in
memory.

The Shell can access in-memory commands immediately. Often-
used commands can be placed in memory to improve your
CoCo 3’s responsiveness. Tandy and Microware had this goal in
mind when they merged nineteen commonly-used commands
into the Shell. After boot-up all these commandsreside in

Page 38

Tandy Color Computer 3

memory along with the Shell, there for your immediate use (due
to the CoCo3’s hardware design, these extra nineteen commands
take up no more memory than the Shell occupies by itself!).

If you need additional commands for a time-consuming, repeti-
tive job, you may also use the OS-9 load command to load them
into memory. We discuss the costs of using the load command
in a tutorial later.

Modules loaded by
0OS-9 keeps track of which commands are in 8§ﬁ?0?§/bﬂ)tﬁﬂg'
you can, too, by using the mdir command. Mdir lists the names
of all modules in memory. This includes commands and
modules such as device descriptors and data managers. An mdir
listing of modules currently in my CoCo 3’s memory is:

Module Directory at 14:33:2&— Commands begin here

REL Boot 0S9pl

0S9p2 IOMan Init

CC3Go Clock RBF

CC3Dhisk DO D1

DD SCF ACIAPAK

T2 PRINTER P <— Some of these are not
CC310 GrfInt Term commands but modules
w Wl W2 which install RAMdisks
w3 wé W5 on my system.

wé w7 PipeMan

Piper Pipe GrfDrv

Shell Copy Date

DeIniz Del Dir

Display Echo Iniz

Link List Load

MDir Merge free

Procs Rename Setime

TMode Unlink Ram

RO Rdisk RamPak

R1 gotoxy ds

grep

Speed is the advantage to having commands in memory. The
drawback is that memory-resident commands take up more
memory than you would expect, memory that is best used for
big programs such as your word processor. The trade-off of
speed for available memory can be handled easily with a few
techniques. We introduce these techniques in Tutorial 6.

Page 39

Day Two:

Day Two:

Commands on disk

Unlocatable and mis-

spelled commands

Commands you will
use -- error and help

Mastering OS-9

Example: BasicO9 (included with your Level 2 system) is a 24
kilobyte (24K) program which takes roughly 8 seconds to ex-
ecute when loaded into my CoCo 3 from a floppy drive. If I load
BasicO9 into memory first, it executes instantly. Loading Ba-
sicO9 from my hard drive takes a little under 5 seconds, and
from a ramdisk the time is just under 4 seconds.

Example: The cmp command which comes with OS-9 compares
two files. If they are identical it reports no differences; if they
differ, each character that differs is listed by number. This kind
of file comparison is needed rarely so I usually don’t load cmp
into memory. Without cmp in memory, comparing two 6000-
byte files takes five seconds. With cmp in memory, the
comparison takes two seconds (the files I compared were stored
on a ram disk and a hard disk).

Example: 1f my database software is in memory, I can start it in
two seconds. If it is not in memory it executes in eight seconds
off of a hard disk. By contrast, I can start it in six seconds off of
a ram disk.

If a command does not appear in memory, the Shell must look
in the current execution directory. If the command you
requested appears there, OS-9 loads it into memory to execute it.
When the job is finished, most often OS-9 removes the
command from memory. This conserves system memory.

The Shell has a recourse if it can’t find the name you type either
in memory or in the current execution directory. The Shell tries
the current data directory. If successful, the Shell reads this file
into memory. However, the file is read as data and not as ex-
ecutable code. The reasoning behind this will be clear when we
investigate procedure files in depth in the tutorials.

If the name you type at the “OS9:” prompt occurs neither in
memory or in the current execution or data directories, OS-9
returns an error number to your screen (usually ERROR 216 —
path not found). The precise error number provides a clue about
what went wrong. Dealing with error messages can be frustrat-
ing, but Microware and Tandy provide two handy commands,
error and help, to assist you along the bumpy error path.

The error command gives you a brief English-language explana-
tion for the provided error number. For example, if I mistype list
on a command line, like:

08S9: lust Daily Schedule <ENTER>

Page 40

Tandy Color Computer 3 Day Two:Day Two:

0S-9 will not be able to find a command named “lust” and

gvy(%{ltlgx refurn a chl)g% @ﬁ%%pﬁ}!gaéﬁ this point use the error
8‘%%%3? éﬁé%t%i‘ﬁ?&%’&%@gaﬁ% tocopy all files in a directory system
Opts : ngzmﬁlﬂ@ﬁ g%tﬁm using 0S9boot if present

ZMQCB%ﬂl N%meeN_@fsEQHBﬂsk using path as source

-1 =indent for directory levels

The help cémmendoprovidesss bahenatpofarcemmbades

syntax. JusP matitelthe Mﬂﬁﬁ&‘%rtfﬁﬁ%aﬁéﬁxin procedure file
OS9YHelp dsitve RENTERS ™" &

Reguired parameters

The screen will show:

Now that we have explored where the Shell finds commands, we
tackle the specifics of command syntax. A command name,
even if typed properly, may not function as you wish unless you
also include additional parameters.

A parameter is a word or other symbol following a command on
a command line. Some commands require a parameter. Most of
the time these required parameters are file names or directory
names, although sometimes parameters modify or enhance the
function of the command. For the sake of this book, we distin-
guish between word parameters such as file names and options,
switches, or modifiers. This latter category includes single let-
ters, hyphens, or symbols used to increase memory allocated for
a command.

Example: The list command requires a valid file name after it in
order to function, and this file name is called the “parameter”. It Optional parameters
makes no sense to type OS9: list <ENTER> because the Shell
needs to know which file you wish to list.

Example: Similarly, the copy command requires two
parameters, the source pathname and the destination pathname.
This, too, makes sense. When you call the copy command, the
first name on the command line following “copy” is the file you
wish to copy. The second name on the command line is the

Page 41

Day Two:

Options and Switches

Memory modifiers

Conclusion

Mastering OS-9

pathname for the new copy of the file. For example:
089: copy ChapterOne /d1/LatestBook/FirstChapter

Many commands permit the use of parameters in addition to any
required ones.The additional parameters, while not necessary for
the command to work, can save you steps.

Example: The del command has one required pathname, the
name of the file you wish to delete. However, if you wish to
delete several files, you may do so by listing the file name of
each after the del command.

08S9: del filel file2 file3 <ENTER>
For the del command, if all the files are in the current data dir-
ectory use just the local file name. Any file not in the current
data directory can be deleted if you provide a fuller path name.

In addition to parameters such as file names, you may type let-
ters or numbers after the command; these are frequently called
options or switches.

Example: The date command without options returns the
current date: 0S9: date <ENTER>

March 21, 1995
When you use the “t” option, you also get the current system
time: 0S9: date t <ENTER>

March 21, 1995 14:36:45

Example: Dir entered by itself at the “OS9:” prompt shows a
listing of your current data directory to your screen. But type:

089: dir x <ENTER>

and you will see a listing of your current execution directory.

Example: The del command can delete commands from the
current execution directory — no matter where your current data
directory is positioned within the directory structure. To delete
merge from your execution directory just type:

08S9: del -x merge <ENTER>

Most of the time a command uses a small amount of memory
called a buffer to perform its work. You can increase the size of
the buffer by using a memory modifier. When using copy with
large files, you can speed up the process by increasing copy’s
buffer.

08S9: copy #32k bigfile /d1/BIGFILES/new.bigfile
With no memory modifier, copy transfers around 4000 bytes at
a
time. The command line above sets copy’s buffer at 32,767
bytes (32K).

Page 4
Tiere 21s no replacing the official Tandy manual to OS-9 Level 2.
Keep it handy for the full story on the syntax and use for each

Tandy Color Computer 3

Preparing for the Tutorials
The last two days you have learned dozens of terms and con-

cepts you will need in the tutorials ahead. These terms and con-
cepts are important, so before you start you might quickly re-
view the Section Summaries.

For these tutorials you should have at hand:

* At least one new box of Double-Sided, Double-Density 5-1/4"
disks, including labels and write-protect tabs (if you use a
3-1/2" drive you may need two or three of those also, espe-
cially if you only have one 5-1/4" drive).

* A felt-tip pen.

* A list of commonly-called phone numbers (friends, business
associates, and so on). You’ll be creating a database with
these. Optionally, know the addresses and occupations for
each person.

* Your Tandy OS-9 Level 2 manual and/or Level II Quick
Reference Guide for reference, if you wish.

GETTING STARTED WITH TUTORIAL 1
“Getting Started” with Tutorial 1 is lengthy compared to other
“Getting Started” sections in this book. The reason? We dis-cuss
config, a utility which involves a number of important con-
cepts. It also involves lists of modules requiring explanation.We
will step through booting OS-9, backing up your Tandy system
disks, and customizing your system using config.

While “Getting Started” is long, Tutorial 1 itself is short. You
should find it easy going and sensible, particularly after com-
pleting the following material.

Your first job is to read through all of the following material
before attempting the tutorial. We will attempt to explain every-
thing completely and in a logical order, but don’t be to con-
cerned if you get a little lost. Once the tutorial begins the order
and con-tent of the explanations will become clearer. If there is
anything you don’t quite grasp after the tutorial, simply re-read
the ex-planations dealing with that item.

The software purchaser’s first job upon returning home is to
make backup copies of their new disks. In Tutorial 1 you start
off learning how to backup your valuable disks.

The original disks are called distribution masters. After backing

them up you should store them away from your computer setup.
This keeps fire, water, or — worse yet — YOU from destroying

Page 43

Day Three:

More reading
than usual.

What we’ll cover.

Day Three:

Commands you will
use -- mfree and dir

Entering the
mvisible sector.

Mastering OS-9

both a distribution master and its backup. Re-purchasing distri-
bution masters damaged through accident or negligence can
quickly lighten a wallet.

Making a backup copy requires you to format a fresh disk to
prepare it for use by OS-9. There is a wide variety of possible
disk formats. We’ll discuss some of those which apply to floppy
disk drives.

Once your distribution disks are backed up, it’s time to run
config employing your knowledge of device drivers and de-
scriptors. Config creates a custom system disk (within limits).
You will also backup this custom system disk.

With this vital preparatory work done, we turn our attention to
two important commands. Mfree tells you how much memory
storage remains unused inside your computer; and dir tells you
what files and directories reside within the directory you name
after dir. If you exclude the directory name parameter and type
only: 08S9: dir <ENTER>

OS-9 shows only the files and directories you have in your cur-
rent data directory. You may wish to review the introductory
reading on data directories before beginning Tutorial 1.

When you buy disks from the store they are about as blank as a
disk ever gets. Most computers cannot read a disk if it is blank;
their operating systems prefer disks with special patterns mag-
netically applied to them. Your OS-9 CoCo 3 is no exception.
Asking an OS-9 computer to read a blank disk (for example,
with the dir command) ensures you’ll wind up seeing an error
number.

Formatting a fresh disk adds the special magnetic patterns to the
disk which your OS-9 computer understands. The initial patterns
divide the disk into sectors. Some of the sectors, invisible to the
dir command, are reserved by OS-9 for certain bookkeeping
purposes. You usually don’t have or need access to this

area. The second area constitutes that disk’s root directory.

For example, when you format a 35-track single-sided drive OS-
9 reserves 10 sectors for its own use, leaving the remaining 620
sectors for you. The “invisible” sectors contain information
about the disk structure. Some of the information housed in
these “invisible” sectors includes how the disk is formatted, who
created each file, when each file was last updated, and what kind
of file each is. OS-9 adds information to the “invisible” sectors

Page 44

Tandy Color Computer 3

as you add directories, sub-directories, and files to

the “visible” sectors. Some OS-9 commands can access this in-
formation, allowing you some control over the way OS-9
handles the files on the disk.

The root directory is the topmost directory in a directory system
you can easily extend. All other directories created on a format-
ted disk are placed “below” the root directory. When you boot
up, OS-9 sets your current data directory as the root directory of
the disk in drive /d0. Tutorial 2 goes into detail on how to
change your directory from this root directory to another (hard
drive owners, note that your hard drive may be your current data
directory on boot-up, and the hard disk’s CMDS directory would
be the current execution directory).

The amount of information you can store on one disk depends
on how the disk is formatted. OS-9’s format command offers a
wide variety of disk formats. Each format initially reserves the
same 10 “invisible” sectors; formats differ mainly in the amount
of storage available to you. The format you choose should opti-
mize disk storage within the limits of your disk hardware.

Some of you may be restricted by older Tandy drives which can
only be formatted to 35 tracks (or cylinders — 156K). These
drives are no longer manufactured. If you have a Tandy FD-501
system you have a single sided 40 track drive (180K). The FD-
502 is the only Tandy system to come with 40 track double
sided drives (360K). Chances are good if you purchased your
drives from a third party supplier (such as OwlWare) that you
have 40-track double-sided drives. If you purchased your sys-
tem used, it is possible that the single sided drives have been
replaced with double sided units. Some 5-1/4" drives are 80
track double sided (720K). These have proven popular with
many CoCo OS-9ers because they can also read and write 40
track disks. 3-1/2" drives are also used ocassionally, but only the
low density type (720K — electrically identical to the 5-1/4" 80
track drives) can be used with standard CoCo disk controllers.

Only two aftermarket supplier, Hemphill Electronics and Frank
Hogg Labs, ever made disk controllers that would utilize high
density 5-1/4" (1.2MB) and 3-1/2" (1.4MB) floppies for the
CoCo, and these systems are rare today. Some OS-9ers have
modified the older 12 volt controllers to interface with high den-
sity drives. The modifications are extensive and the controller
requires a source of +12V for power (not supplied from the
CoCo 2 or 3 — a Multi-Pak Interface would be required). Since

Page 45

Day Three:

Disk format options

Day Three:

Formatting: Beware
the absent modules

How ro use format

Mastering OS-9

most OS-9 files aren’t really huge, this modification has not
been real popular. If you have a used system, ask the previous
owner about the drive capacities.

Six hundred and thirty sectors — the storage space available on
a 35-track single-sided drive — stores the equivalent of up to 78
pages of double-spaced text on a disk. Not all of this storage
space is directly usable by you since some disk storage is always
reserved for OS-9. Also some of it is wasted when a sector, allo-
cated for use, is not completely filled.

A 40-track double-sided drive can hold 1,440 sectors or almost
180 pages of double-spaced text — all on the same sized floppy
disk used for 35-track single-sided disks! If you still have the
older 35-track single-sided drives, take note: double-sided 40-
track or 80-track drives can “pay for themselves” through fewer
floppy disk purchases.

Eighty-track double-sided drives store twice what forty-trackers
can store. Almost 360 pages of double-spaced text on one
floppy disk is astounding technology.

The format command can only create disk formats based on
device descriptors and drivers in memory. The device descrip-
tors and drivers you use should match the maximum capacity of
your drives. With these modules in memory you can format
disks to any standard format WHICH DOES NOT EXCEED
THE STORAGE ALLOWED BY THE DESCRIPTORS AND
DRIVERS. The driver and descriptor modules must be present in
the module directory before any formatting can take place. OS-9
can't format a disk in a drive which has no “description”.

When you first boot up with the distribution OS-9 Level 2 Sys-
tem Master, the only descriptors and drivers in memory are for
35-track single-sided drives. How, then, can 40-track drive own-
ers format 40-track disks in order to capitalize on their added
storage power? The answer: create a new bootfile with the cor-
rect descriptors and drivers! We show you how in this tutorial.

Once the correct descriptors and drivers have been installed on
your system, using the format command is easy. Type:

08S9: format /drivename <ENTER>
Note well, however, that the format comand writes over any
information on an existing disk. If the disk you format has data
on it already, it will be lost. Make sure to DOUBLE-CHECK that
a disk you are about to format contains no valuable data.

Page 46

Tandy Color Computer 3

Consider a common use for format. If drive /d1 contains an ex-
pendable disk (either blank or containing data you no longer
need), you would type: 0S9: format /d1 <ENTER>

0OS-9 depends on information in the device driver and descriptor
for drive /d1 to proceed with the formatting process. Drive /d1
will now be formatted to the maximum capacity allowed in its
descriptor.

One “Mastering OS-9” customer owns a 35-track single-sided
drive /d0, two 40-track double-sided drives (named /d1 and /d2)
and an 80-track double-sided drive built into her top-notch
Frank Hogg Labs hard disk. These last two are named /d3 and /
hO0. Even with these widely varying formats, to format a disk all
she has to do is use a system disk with the right descriptors and
drivers. The format command takes care of the rest!

What if the customer mentioned above wanted to place a disk in
drive /d1 (a 40-track double-sided drive) and format it for 35-
track single-sided operation? Format offers options to allow this.
Take a look at the general syntax for format:

08S9: format <drive> <options> <ENTER>

Options are just that — optional. You must give them in the fol-
lowing order, however:

Option Description
r Ready to proceed, no need to prompt user
“name” Give the disk the name in quotes
1 or 2 Number of sides to format
357, ‘40’, or ‘80° Format number of tracks (cylinders) in
single quotes

Note the single-quotation marks surrounding the number of
tracks. If you want to format a disk to be 35-track single-sided
(consistent with the standard Tandy format) use this command
syntax: 0S9: format /d1 1 ‘35’ <ENTER>

Here we assume your fresh disk is in drive /d1 and that you
have installed drivers and descriptors in the boot capable of for-
matting AT LEAST 35-track single sided drives. The numbers
one and 35 tell OS-9 to format a single-sided, 35-track disk.
What would be the syntax for a double-sided, forty-track disk
format? OS9: format /d1 2 ‘40’ <ENTER>

Once again, drivers and descriptors must be present in memory

Page 47

Day Three:

Choosing the right
Jormat for you

Day Three:

Backing up disks —
legal and therapeutic

How 1o backup disks

Mastering OS-9

for AT LEAST 40-track double-sided drives. If no options are
specified (OS9: format <ENTER>) the disk will be formatted at
the maximum capacity the drivers and descriptors allow.

Most software companies only sell you the disk and the manual
while reserving rights to the software itself. Most often, the origi-
nal software products are legally usable on only one computer.
Making backup copies of distributed software for use on a single
computer is legal. It also calms the minds of consumers who
worry about damaging their distribution copies.

Many software companies in the past have made disk backups
impossible through copy-protection. This practice has become
rarer to the benefit of consumers. On the other hand, the soft-
ware industry depends on our honesty. Please do not make ille-
gal backup copies of your software to give to friends. Program-
mers are not rich. Despite the love many of them have for pro-
gramming, they do not love struggling to put food on the table.

Distribution masters aren’t the only investment to protect
through backups. You should also make frequent backups of
your data disks to protect hours, weeks, even months of hard
work (recall that data disks usually do not contain programs or
commands but the fruit of your labor — letters, spreadsheet
data, addresses, etc.). Save your sanity — back up your disks.

In this tutorial we backup these disks:

* the Tandy OS9Boot disk (labeled “System Master”)

* the Tandy config disk (labeled “Boot/config/Basic 09”)
* your “Mastering OS-9” disk.

You will create other disks during the course of the tutorials.
Make sure you backup each of these, too.

The backup command transfers data from the source disk to the
destination disk. The source disk is the disk you wish to back
up. The destination disk is the disk onto which the data will be
transferred.

NOTE: The destination disk need not be empty as long its for-
mat is identical to that of the source disk. All existing data on a
destination disk, however, will be lost in the backup process.
Since this would create disaster if the destination disk contained
valuable information, the backup process asks you if it is OK to
wipe out or “scratch” the contents of the destination disk. Be-
cause source and destination disks must be identically formatted

Page 48

Tandy Color Computer 3

for backup to work, you must use other OS-9 commands to
transfer data between differently formatted disks. These com-
mands are discussed in later tutorials and include dsave.

Once you determine the disk format that maximizes your disk
storage space and install corresponding drivers and descriptors,
most of your disks will be identically formatted. As a result, all
your backups will be easy.

Place the disk you want to backup in one drive — typically
drive /d0 — and place the identically-formatted destination disk
in another drive — typically drive /d1. Then type:

08S9: backup <source> <destination> <ENTER>

Most users think of drive /d0 and drive /d1 as the source and
destination drives, respectively. To save keystrokes, OS-9 sets
up these two drives as the standard assignment for backups. To
demonstrate, if you type: OS9: backup <ENTER>

your system responds: “Ready to backup from /d0 to /d1 ?:”
Usually just type “y” (yes) to continue. Cautious users will
double check that the drives contain the right disks before pro-
ceeding. Once the process has begun it is too late to stop without
risking damaging BOTH disks. The way backup works may
save your data.

A typical session with Backup might go like this:

You type: 0S9:backup /d0 /d1 <ENTER>
you see: Ready to backup from /d0 to /d1 ?:
you type: <y>
you see: Disk Name
(whatever name you gave the disk when formatting)
is being scratched
Ok 2:
you type: <y>
you see: Sectors copied: $05A0
(on 40-track double-sided drives)
Verify pass
Sectors verified: $05A0
0S9:

Notice how carefully OS-9 guards you from using backup un-
less you are really sure. By forcing you to interact with it, the
backup command will likely save you from destroying valuable
data one day. Notice also that the number of sectors copied isn’t
630, 1440, or 2880. Instead, that “number” ($05A0) has a LET-
TER in it!

The number $05A0 is a hexadecimal (or simply hex) number. If

Page 49

Day Three:

Day Three:

Config —w/ar it does

Mastering OS-9

you had sixteen fingers instead of ten you would very likely
count in hex. You can usually tell when a veteran computer user
writes hex numbers since they usually precede the hex number
by a dollar sign (“$”). There are replacement utilities that give
decimal rather than hexadecimal results available. You may
wish to consider them after learning to use the supplied hex ver-
sions. The essay “Do I Really Have To Learn Hexadecimal?”,
located at the end of this week’s tutorial, explains more about
hexadecimal numbers.

In the sample output above, $05A0 sectors equals 1,440 sectors
in more common decimal notation. Backup has just successfully
transferred data from one 40-track double-sided disk to another.

A system disk must contain an OS9Boot file and Kernel, care-
fully placed so that the Disk Extended Color Basic (DECB) com-
mand DOS can find them and begin the boot process. In addi-
tion to OS9Boot, OS-9 Level 2 requires two commands in the
boot disk’s CMDS directory to complete the boot process —
grfdrv and Shell. Actually, this is true ONLY if you use win-
dows. Since a productive OS-9 Level 2 system uses windows
heavily, we include both grfdrv and Shell.

Config can create a boot with these features for you. With
config you can do some “customizing” of your boot disk includ-
ing individually choosing device drivers, descriptors and com-
mands. It is reasonably automatic.

Before you use config let’s review the steps it takes you
through. These eleven steps each require an explanation. Wad-
ing through this material will pay off when learning to use other
0OS-9 boot-making utilities.

Config takes these actions:

1) It displays a copyright notice.

2) It prompts you for the number of drives on your system.

3) For systems with two or more drives (as is the case with
most users of “Mastering OS-9”), it asks for the name of
the source and the destination drive.

4) The screen clears; config then announces that it is building a
descriptor list. Descriptors are modules which tell OS-9 the
name, location, and “starting values” for a device attached
to your CoCo. Config builds this descriptor list so that it can
present you with device choices.

5) The first part of the descriptor list appears on your screen.

Page 50

Tandy Color Computer 3

This part of the list includes device descriptor names for each
of the following devices when using the standard Tandy
config disk:

Descriptor Name Device it Describes

P serial printer

Tl an eternal terminal (keyboard/screen)

T2 another external terminal

T3 another external terminal

M1 Modem-pak for telecommunications
(now obsolete!)

M2 another modem-pak

PIPE Pipe — internal buffer for data transfer

DO0_35S 35-track single-sided descriptor for /d0
D1_35S 35-track single-sided descriptor for /d1
D2_35S 35-track single-sided descriptor for /d2

If the descriptor for your particular drive, say a 40-track double
sided unit, is not present don’t worry. There are more descriptors
available, but we will go over the ones on screen first.

Move up and down along this list with the arrow keys. Select
thedescriptor you want (and therefore the DEVICE you want) by
pressing “S”. An “X” will appear next to a selected descriptor. If
you make a mistake by selecting a wrong descriptor simply
press “S” again. The “S” will now switch OFF the “X”. Let’s
examine the list above one line at a time:

P - The P descriptor is required if you have a printer attached to
the serial I/0 port on the back of your CoCo. Even if you don’t
have a printer yet, select P. That way when you do get a prionter
your system will already be set up for one (and you will eventu-
ally want a printer!)

T1 - T3 - You may be surprised to see no less than three
descriptors for external terminals. Remember that OS-9 is multi-
user as well as multi-tasking. It is possible to attach three key-
board/monitor combinations to your CoCo and have three more
people access the computer’s resources while you do your work.
Three terminals isnot the limit; however, adding a terminal may
slow down your own work, especially under heavy computation
and disk access.

M1, M2 - The ModemPak from Tandy is a ROM pak which al-

lows you to call up information services. The ModemPak has a
built-in RS-232 port and a 300-baud modem. Needless to say, it

Page 51

Day Three:

Day Three:

Mastering OS-9

has long been obsolete.

A better choice is a Tandy RS-232 Pak. These are discontinued
and require luck to find. The best bet is to purchae an RS-32 Pak
work-alike from CoNect (address in appendices).Sometimes
called hardware serial ports, they allow you to use up to 14.4K
baud modems if you wish, speedlng up flle transfer rates be-
tween you and an electronic bulletin board system (BBS). They
can even be used to run an external terminal at up to 19.2K
baud. There are plans circulating on CoCo BBS systems to con-
vert the ModemPak to a limited RS-232 serial port. The conver-
sion is useful for using a modem up to 9600 baud, but does not
support hardware handshaking required for higher speeds.

PIPE - This device descriptor is associated with the virtual de-
vice inside your CoCo called a pipe. As explained in the intro-
ductory reading, OS-9 utilities can pass data to each other
through such a pipe.

Dx_35S - 35-track single-sided drive descriptors (35 = number
of tracks, S = single sided). The original drive system sold by
Tandy for the CoCo had a single sided 35 track drive. Luckily,
these are becoming rare since it is cheaper to replace a worn or
troublesome unit with a higher capacity 40 trak double sided
drive. Still, the descriptors and their drivers are included as a
courtesy and for backward compatibility.

6) At this point in the config process, press the right arrow
key to proceed to the second part of the descriptor list. This part
of the list includes these device descriptor names:
Descriptor Name Device it Describes
D3_35S 35-track single-sided descriptor for /d3
DDDO0_35S 35-track single-sided descriptor for
default drive

DO0_40D 40-track double-sided descriptor for /d0
D1_40D 40-track double-sided descriptor for /d1
D2_40D 40-track double-sided descriptor for /d2

DDD_40D 40-track double-sided descriptor for
default drive

D1_80D 80-track double-sided descriptor for /d1
D2_80D 80-track double-sided descriptor for /d2
RO Descriptor for surprise software from
Kevin Darling
HWP Public-domain descriptor from William
Brady

Page 52

Tandy Color Computer 3

The second list includes descriptor names for 40 and 80 track
double-sided drives. It also includes default drive descriptors for
35 track single sided and 40 track double sided drives. Note that
there are no default drive descriptors for 80 track double sided
drives. OS-9 supports these, and they can be used as default
drives by modifying the default descriptors with dmode (a pub-
lic domain utility). The reason there is no default drive descrip-
tor is that a 35 or 40 track drive is needed for backwards com-
patibility with other systems and required to boot from the origi-
nal distribution disk.

Notice the last two descriptors. These modules and their associ-
ated device drivers will be “snuck into” your OS-9 bootlist
thanks to some “Mastering OS-9” trickery. All we divulge at this
point: RO will dramatically increase your productivity, and MWP
and its associated driver will allow you to communicate with
electronic BBS’s when you have a modem and shareware
software such as WizPro. Thanks go to Kevin Darling and Bill
Brady for these extras.

Press “S” for each descriptor (with corresponding driver) you
wish included in your boot file. Chances are you will have
drives capable of more than 35-track single-sided operation. If
so, make sure you de-select that descriptor for drive /d0. Choose
a descriptor which maximizes drive /d0’s storage — D0_40D,
for example. Be sure to include a default drive descriptor
(DDD_xxx) which matches the format of drive /d0.

An exception to this approach exists for those who own hard
drives. For some hard drive systems you must modify or “patch”
existing device descriptors. Instructions are usually provided
when you purchase a Color Computer hard drive.

Owners of these capacious and incredibly fast drives benefit
when their default drive descriptor forces OS-9 to look on the
hard drive when accessing the default drive. Programs load
quickly and system response is excellent. For more information
on hard drives, see Francis Swygert’s article in the appendix.

7) The next menu in config asks you to choose your terminal
descriptor and windows. In the Tutorial, we have you choose
Term_Win over Term_VDG. When you make this selection, you
are shown a list of window descriptors labeled W1 through W7.
Select all of them for inclusion in your boot file.

Page 53

Day Three:Day Three:

Day Three:

Mastering OS-9

8) When window selection is complete, config creates a bootlist
which includes only the names of the modules you have chosen.
Later, when building the actual OS9Boot, config will refer to the
bootlist for guidance.

9) After building the bootlist config prompts you to provide the
name of the correct clock module. Two choices are given, S0Hz
and 60Hz. American users should choose 60Hz, Australian and
most European users 50Hz (refers to cycles per second of the
electric power).

10) Now that you have carefully and knowledgeably chosen the
descriptors you want in your bootfile, config asks you to insert a
freshly-formatted disk in drive /d1. Do so, and the utility pro-
ceeds to generate the new bootfile. 1t consults its bootlist and,
based on the names it finds, tracks down the correct drivers and
descriptors from the directory /dO/MODULES.

11) The next and last step for config is to transfer to the (almost)
empty disk in drive /d1 any OS-9 commands you wish. For the
purposes of these tutorials, transfer a full set of commands to the
disk in drive /d1. The Startup file is also transferred to the new
disk.

Before commands can be transferred from drive /dO to drive /d1,
the CMDS directory containing the commands must be present
in drive /d0. The CMDS directory we seek is on the System disk.
You must remove the config disk from drive /d0 and replace it
with the System disk when prompted. Then the command trans-
fer can begin.

When you choose to transfer a full set of commands, the Startup
file from the System Master is also transferred to the new disk.
Startup is not a command, but a special file which OS-9 uses at
bootup to tidy and customize your computer operations. The
command transfer process takes several minutes.

If you use config to create a system disk which includes ONLY
the modules distributed on the config disk, you will probably
succeed in making a bootable custom system disk. Problems
arise when you use config to add a large number of modules to
the boot. Also, sometimes third-party (non-Tandy vendor) mod-
ules should be added to the boot with great care.

IF MODULES ARE INSTALLED IN A BOOT IN THE WRONG
ORDER, MEMORY ALLOCATION FOR CERTAIN OPERA-

Page 54

Tandy Color Computer 3

TIONS MAY BE IMPOSSIBLE. The result may be error mes-
sages or even unbootable disks. Some users report unreliable
performance only on occasion, making the source of the prob-
lem hard to track down. OS-9 Level 2’s sensitivity to bootlist
ordering has been called the “Boot List Order Bug” (BLOB). To
learn more about the BLOB, see the appendices.

There may come a time when you see ERROR #207 or ERROR
#237. Sometimes this means your computer’s memory is full.
Other times, you may be asking OS-9 to do work which requires
more than 64K of memory at once — an impossibility resulting
from your computer’s hardware. Thus, just because you have
memory free does not mean you have enough for all tasks.

To see how much memory you have available for programs,
you can type: 0S9: mfree <ENTER>
You should receive a report such as:

Blk Begin End Blks Size

17 2E000 6BFFF 1F 248k

The mfree command also gives information about which
memory blocks are in use. Most users don’t need this informa-
tion. These blocks, however, will be important to understand
when we explore memory management in a later tutorial.

As mentioned in the introductory reading, OS-9 employs current
data directories and current execution directories. At all times,
0S-9 must know which is which.

When you boot OS-9 the system software automatically estab-
lishes /dd as the current data directory and /dd/CMDS as the cur-
rent execution directory. To make full use of the directory sys-
tem you will want to create directories on disk and then move
among them with Chd and Chx. We’ll discuss and use

these commands extensively in Tutorial 2.

Once you have established a current data directory, you may
wish to determine which files it contains. A list of these files,
called a directory listing, scrolls down your screen when you
type: 08S9: dir <ENTER>

Page 55

Day Three:

Abour mfree

mfree — How ir works

The dir command tells
you where you stand

Day Three:

Changing where you
stand

Mastering OS-9

The files in your current data directory will be listed to your
screen. For example, here is what I have in my current data di-
rectory:

Directory of . 04:19:08
safl Tutl.Ptl.dsa FN_1 Tutl.Ptl.dsa.SCR

The dot (“.””) following “Directory of” tells me that the directory
listing is of the current data directory. Thus, the listing hows
local file names as defined in the introductory reading.

In the example above there are four files — an original copy of
this tutorial (“Tutl.Ptl.dsa”), a “scratch” copy (“Tutl.Ptl.
dsa.SCR”) used by my word processor, and my own “safety”
copy (“saf1”). There is also a file containing a footnote
(“FN_17). The directory containing the above four files is
named /d1/TUT1/DAY_THR. Let’s examine this pathlist.:

* Drive /dl1 is a device (note the slash) for mass data storage;
“/d1” refers to the root directory of the disk inside drive /d1.

* “TUT1” is a directory I created beneath the root directory.
T use it to store all my first week’s tutorials.

* “DAY_THR” is contained within “TUT1” and houses all
files related to the third day of the first week’s tutorials.

Other directories exist on drive /d1. I created separate data direc-
tories for each day of the first week, for example. I also have
directories for ENDNOTES and ADS. These two directories are
placed beneath the root directory along with TUT1. With all
these directories and there cumbersome pathnames, chd is
handy and saves a lot of typing. When I chd to the root directory
of drive /d1 a directory listing reveals:

Directory of . 04:33:30
ENDNOTES TUT1 ADS

The complete directory tree looks like this:

ENDNOTES TUT1 ADS

notel note2 DAY_ONE DAY_TWO DAY_THR adl ad2

[[
safl Tutl.Ptl.dsa FN_1 Tutl.Ptl.dsa.SCR

footnotel

Page 56

Tandy Color Computer 3

This is an action packed tutorial. The important points to note
are that it is easy to understand config when you know what it’s
doing; that dir tells you what files and directories are contained
in your current directory; and that you can discover how much
memory is available at any time with the mfree command. Keep
in mind that safety copies (backups) of your disks are essential!

NOTES:
1) There ARE magnetic patterns on blank disks. Disk manufac-
turers test their disks before they leave the factory by writing test
patterns on them. But these patterns aren’t intelligihle to any
personal computer I know of, including the CoCo. So “blank”
disks aren’t really blank — but they might as well be.

2) The number of tracks affects how much information can be
stored, but sometimes the interleave (or skew) of the cylinders
strongly affects how quickly this data can be reached, especially
with hard disks. Interleave refers to the placement of sectors on
each cylinder. An interleave value of one (1) means that sectors
are numbered consecutively. A value of five (5) means that
there are five sectors skipped between sector one and two. This
is done so that the computer is ready to read the next sector by
the time it actually arrives under the drive head. An interleave of
one on a slow drive means that the disk will have to complete a
revolution to before it is ready to read the next sector, thus slow-
ing reads (and writes) down consdierably when compared to a
drive formatted with an interleave of five on the same machine.
The drive with the interleave of five is faster because the drive
heads are over each sector when the computer is ready to read
or write that sector.

Format allows you to alter interleaev, but you must be careful. If
the computer is capable of reading an interleave of five but the
disk was formatted with an interleave of six, it will only be
slightly slower. If the disk is formatted with a lower value than
the computer is capable of reading, say four in this example, a
complete revolution will have to be made to read each sector
and the machine will be considerably slower. It is best to leave
the floppy drive interleave at the default value of three.

3) You can speed up a multi-user CoCo system in many ways.
Get a hard drive, for example. These allow super-fast access to
all data without halting the CPU as floppies typically do. Several
users can easily use such a CoCo multi-user configuration.

Page 57

Day Three:

Get ready

Tutorial One Notes

Day Three:

Tutorial 1
Step 1 Booting OS-9

Mastering OS-9

For the money-conscious, consider ramdisks and a no-halt
floppy controller. Check with magazines, clubs, on-line services,
and CoCo supporting BBSes for used controllers. FARNA Sys-
tems still carries a SCSI hard drive interface for the CoCo.

TUTORIAL 1

STEP 1: BOOTING OS-9
1.1 Turn on your system in the following order: Drives,
MultiPak
Interface (if any), CoCo 3, monitor. Make sure your drives are
empty and all computer system components are correctly con-
nected. If all items are plugged into a switched power strip, they
may all be turned on at the same time with the strip switch.

1.2 Find the disk marked “OS9 Level Two Operating System —
System Master”. Place a write-protect tab over the rectangular
notch near the corner of the disk.

1.2 Place the System Master disk in drive /d0 and close the drive
door.

1.3 At the BASIC “OK” prompt, type “DOS” followed by the
<ENTER> key: OK: DOS <ENTER>

1.4 After a moment your screen will show the OS-9 bootup mes-
sage in the center: 0S9 BOOT

If you run into any problems, confirm that your system is cor-
rectly configured by consulting your computer manuals and try
again. Early disk controllers (the type that require 12V from an
MPI) do not support the 2MHz clock speed of the CoCo 3 (see
Marty Goodman’s article, Appendix B). OS-9 Level II automati-
cally boots at 2MHz and cannot be slowed to 1MHz.

1.5 You will see:

0S-9 LEVEL TWO VR. 02.00.01
COPYRIGHT 1986 BY
MICROWARE SYSTEMS CORP.
LICENSED TO TANDY CORP.
ALL RIGHTS RESERVED.

* Welcome to OS-9 LEVEL 2 *
* on the Color Computer 3 *

yy/mm/dd hh:mm:ss
Time ?

Page 58

Tandy Color Computer 3

1.6 At the Time ? prompt, enter the date and time as indicated
(yy:mm:dd hh:mm:ss — year, month, day, hour, minutes, and
seconds). One may separate the individual components of time
with a space, colon, slash, or not at all. OS-9 will read 95:03:04
14:10:20 and 950304141020 as the same date and time (1995,
March 4, 2:10 pm, 20 seconds after). All entries must be filled in
order with the exception of seconds. If there is no value for sec-
onds, “00” is assumed (most users do not provide seconds).

If no date and time are given, OS-9 sets all values to “00”.

End the date entry by pressing the <ENTER> key. Note that sys-
tems equipped with a real-time clock and the appropriate drivers
will automatically display the date and time according to the
clock.

STEP 2: FORMATTING DISKS

2.1 When the boot process finishes you will see Shell and OS9:
on the monitor screen. At the “OS9:” prompt, type:

089: load format <ENTER>
This loads the format command into memory from the system
disk. We’ll explore the vices and virtues of in-memory
commands in another tutorial. The word “Shell” simply reminds
you that the OS-9 Shell is up and running, waiting for a com-
mand from you.

2.2 Place a fresh, blank disk in drive /d1. Then type:
089: format /d1 <ENTER>

2.3 The screen shows:
COLOR COMPTER FORMATTER
Formatting drive /dl
v (yes) orn (no)
Ready ?

2.3 The format command requests approval to format the disk
in drive /d1. Answer “yes” by pressing <y>.

2.4 Give the disk the name “x” when prompted.

Each time you format a disk, the disk is imprinted with sectors
where data can be stored. You also give the disk a name. The
name can be anything up to 32 characters including dots. In this
case, you could call the disk “System Master Backup” (20 char-
acters including spaces). A name must be provided. The disk
name is usually unimportant, so a single space may be used to
effectively leave the name blank. The only way to change the
name later is to reformat or use a special utility (none is pro-

Page 59

Day Three:Day Three:

Step 2: Formatting
Disks

Day Three:

Mastering OS-9

vided by Tandy).

After the sectors have been created OS-9 checks to make sure
data can be written to and read from each sector. This process is
called “verification”. As each sector is verified, its number is
printed to your screen in hexadecimal notation.

2.5 You should see the following report:
Number of good sectors: $000276

This is the number of sectors (630) in hexadecimal notation. If
any sectors were bad, you will get a different number. Since this
is your System Master (and the Boot/Config/Basic09 disk later),
a disk with bad sectors should not be used. Often formatting a
second time will clear any bad sectors (go back to step 2.2.0). If
after formatting the same disk a second time there are still bad
sectors reported, get another disk. The disk with bad sectors can
still be used, since OS-9 will not write on the bad sectors, but it
will hold less data and could be less reliable in the future. There
is no way to know why the sectors are bad or if the entire disk
will be affected later.

2.6 Since we will be backing up the Boot/Config/Basic09 and
the Mastering OS-9 disks also, go back to step 2.2.0 and format
two more disks now. We will also need a formatted disk to make
a custom boot on, so make that three disks to be formatted. If
you wish, name these disks “Boot/Config/Basic09 Backup”,
“Mastering OS-9 Backup”, and “Custom Boot 1” instead of “x”
or “ ““. Label the disks accordingly. Remember: don’t write on a
disk label already on a 5-1/4" disk unless using a felt-tip pen.
The pressure from a ball-point pen or pencil could damage the
disk. It is always best to write on the label BEFORE placing it on
the disk. It would not be a bad idea to go ahead and format two
or three additional disks after backing up the Tandy and Master-
ing OS-9 disks just to have them handy later. One good thing
about the OS-9 windowing system is that you can switch to an-
other window and format disks if needed without leaving your
application or program. Unless you are using a no-halt floppy
controller, however, you will have to wait until format is fin-
ished before returning to your work.

Page 60

Tandy Color Computer 3

STEP 3: BACKING UP THE SYSTEM MASTER
3.1 When you have completed formatting three disks, place the
disk labeled “System Master Backup” in drive /d1 and type:
0S9: unlink format <ENTER> (optional)
08S9: load backup <ENTER>
08S9: backup #56K <ENTER>

3.2 Answer all prompts with “yes” by pressing <y >.

3.3 The backup process begins. When all files have been cop-
ied, backup begins a verify pass. When verification is com-
pleted, the screen should show:

Sectors copied: $0276
Verify pass
Sectors verified: $0276

If all sectors do not verify, repeat the process. If they do not
verify the second time, get another formatted disk and try again.

Unlink removes the following command name (in this case for-
mat) from memory, freeing it for other use. If you intend to for-
mat more disks after making the system backups, you may want
to leave format in memory for now.

After backup has loaded into memory, we executed it with the
command “backup #56K”. This increases the size of the
memory buffer backup uses to copy all the files from one disk to
another. If we had not used a modifier and simply typed
“backup <ENTER>", the buffer would have only been 4600
bytes (approximately 4.5K) instead of 56,000. The larger the
buffer, the fewer reads and writes. 56K is the largest buffer al-
lowed. This is especially important when doing a single drive
backup. In the future, if backup returns an error message, try a
smaller buffer or unlink some commands from memory.

One can backup using a single drive by using only one drive
identifier (“backup /dx <ENTER>", where /dx is the number of
the drive to use). Note that the Tandy manual does not indicate
that single drive backups are allowed. The only occasion to use
a single drive for backup is when an exact duplicate of a disk is
needed and only one drive of the required size is available.

3.4 Remove the System Master Backup disk from drive /d1.

3.5 Place the disk in a sleeve and set it aside.

Page 61

Day Three:

Step 3. Backing up the
System Master disk

Day Three:

Step 4: Backing up the
Mastering OS-9 disk

Mastering OS-9

Another disk-handling tip: Avoid magnetic fields. Don’t place
disks too close to your monitor (especially the left side — that’s
usually where the flyback transformer is) or disk drives. Don’t
place them on or too near a loudspeaker. And don’t do what a
college student reportedly did: stick them to a refrigerator door
with a magnet!

STEP 4: BACKING UP THE
“MASTERING 08S-9” DISTRIBUTION DISK
4.1 Place the blank formatted disk labeled “Mastering OS-9
Backup” in drive /d1.

4.2 Remove the System Master disk from drive /d0. Put it in its
sleeve and put it away .You won’t need the distribution System
Master disk again unless the backup made in Step 3 fails for
some reason.

4.3 Place the distribution copy of the “Mastering OS-9” disk in
drive /d0.

4.4 Type: 08S9: chd /d0 <ENTER>

This is your way of reminding OS-9 that you have placed a new
disk in drive /d0. This tells OS-9 to “change your current data
directory to the root directory of the disk in drive /d0".

4.5 Type: 089: dir <ENTER> You will see:
Directory of /dl 18:52:04
CMDS CMDS.S09 ERRATA HANDY_PROCS
MODULES SOURCE TUT2 make_7

make_80 add.mods test.pipe TUT6.EDIT.FILES
make_1_2

Hmm... here are a few interesting directory and file names.
You’ll explore each of these during the ten tutorials ahead.

4.6 Type: 08S9: backup #56k <ENTER>

4.7 Answer all prompts with “yes” by pressing <y> .

4.8 When the backup is complete, remove the disk from drive /
dl

and place the new label on it.

4.9 Remove the “Mastering OS-9” distribution disk and store it
away in a sleeve.

Page 62

Tandy Color Computer 3

STEP 5: BACKING UP
THE BOOT/CONFIG/BASIC(09 DISK
5.1 Place a write-protect tab over the notch on the disk labeled
“OS-9 Level Two Operating System — Boot/config/Basic 09”.

5.2 Place the disk in drive /dO.

5.3 Place the blank formatted disk labeled “Boot/Config/Basic09
Backup” in drive /d1.

5.4 Type: 0S9: backup #56k <ENTER>
5.5 Answer all prompts with <y> to proceed with the backup.
5.6 Put the distribution disk in a sleeve and store it away.

5.7 Place the “Mastering OS-9 Backup” disk in drive /d0 and the
“Boot/Config/BasicO9 Backup” disk in Drive /d1.

5.8 Type: 0S9: chd /d0; chx /d0/cmds <ENTER>
Tip: You can place two or more commands on the same line by
separating them with a semi-colon.

5.9 Type: 089: add.mods <ENTER>

The drive lights will come on. If you receive an error message,
make sure the correct disks are placed in the drives. The proce-
dure file “add.mods” adds some additional modules from the
“Mastering OS-9 Backup” disk to the “Boot/Config/Basic09
Backup” disk.

5.10 Remove both disks from the drives when disk activity
stops.

STEP 6: CONFIGURING
A CUSTOM DISK WITH CONFIG
6.1 Place the”Boot/Config/Basic09 Backup” disk in drive /d0.

6.2 Place the blank formatted disk labeled “Custom Boot 1” in
drive /d1

6.3 Our next step is to tell OS-9 that we have yet another disk in
drive/d0. Once again (as in Step 4.5.0), use the chd command:
0S9: chd /d0 <ENTER>

The drive light for drive /dO should come on for a moment while

Page 63

Day Three:

Step 5. Backing up
Boot/Config/Dasic09

Step 6. Configuring a
custom boot w/ config

Day Three:

Mastering OS-9

OS-9 gets its bearings.

Now that OS-9 knows where its data directory is, we need to
tell it where the new execution directory is. Use the chx com-
mand for this: 0S9: chx /d0/cmds <ENTER>

6.4 Type: 0S9: config <ENTER>
The following copyright message and prompt is displayed:

CONFIG
CONFIG VERSION 2.0
COPYRIGHT 1986 BY
MICROWARE SYSTEMS CORP.
REPRODUCED UNDER LICENSE
TO TANDY CORP.
ALL RIGHTS RESERVED

HOW MANY DRIVES DO YOU HAVE:
1 - ONE DRIVE ONLY

2 - TWO OR MORE DRIVES
SELECTION [1,2]

For the purposes of “Mastering OS-9 “, you need two disk
drives. Actually, for OS-9 in general, two disk drives are wise.
While it is possible to operate with only one drive, it is much
more pleasurable (and less frustrating!)with two.
6.5 Answer ‘“2” by pressing <2> .
6.6 Next config presents this prompt:

ENTER NAME OF SOURCE DISK:
6.7 Tell config that the source drive is drive /d0 by typing: /d0
Although config asks for a name, what it really wants is the de-

vice number!

6.8 Config will print to your screen:
ENTER NAME OF DEST. DISK:

6.9 The destination drive is drive /d1. Type: /d1

6.10 Config begins building a descriptor list. You see on your
screen:

BUILDING DESCRIPTOR LIST
. PLEASE WAIT

Page 64

Tandy Color Computer 3

6.11 The first page of the descriptor list appears:

ARROWS - UP/DOWN/MORE/BACK
S - SEL/UNSEL H - HELP D - DONE

6.12 Use the arrow keys and the <S> key to select the modules
needed for your system.

You will probably NOT select T1, T2, T3, Ml or M2. Nor are you
likely to select descriptors for the 35-track single-sided drives —
unless all you own is two older 35-track single-sided drives.

Most readers should have forty-track double-sided drives, and a
few of you might have 80-track double sided drives (5-1/4" or
3-1/2"). The rest of this tutorial assumes you have selected the
forty-track double-sided drive descriptors. If you don’t have
two forty-trackers, no need to worry. Just keep in mind that
your screen may occasionally show something slightly different
than what you see printed here.

You should see the following after selecting the drivers for our
assumed configuration (two 40-track double sided drives). We
will select the printer (P) and PIPE while deselecting the 35 track
single-sided drive (DO_35S):

ARROWS - UP/DOWN/MORE/BACK
S - SEL/UNSEL H - HELP D - DONE

P X
T1

T2

3

ML

M

PIPE X
DO_35S

D1_35S

Page 65

Day ThreDay Three:e:

Day Three:

Mastering OS-9

D2_35S

6.13 Press the right-arrow key to proceed to the next page of
descriptors.

6.14 Use the arrow keys and the < S > key to elect the following
descriptors (do NOT select MWP or RO at this time):

ARROWS - UP/DOWN/MORE/BACK
S - SEL/UNSEL H - HELP D - DONE

D3_358
DDD_35S
DO_40D
D1_40D X
D2_40D

DDD_40D X
D1_80D

D2_80D

RO

MNP

b

If you are lucky enough to have an 80-track double-sided drive,
select a descriptor for that drive. Notice that the default drive
descriptors (whose names begin with “DD”) can only be 35 or
40 tracks with existing descriptors. Those of you with 80-track-
ers must choose the descriptors D1_80D and/or D2_80D de-
pending on whether you have one or two 80-trackers on your
system.

Incidentally, 80-track drives are becoming increasingly cheap
and easy-to-find. Advertised in most computer magazines, you
can easily attach them to your system with instructions received
from the appendices. Better yet, purchase a modem and join
CompusServe, Delphi, or Genie where you can consult OS-9 ex-
perts just about any hour of the day. There are also OS-9 groups
on Internet and FIDO net.

6.15 Press <d> to show you are done. Press <y> to show you are
sure.

6.16 Config then presents the following screen:

SELECT TERM DESCRIPTOR
1 - TERM_VDG
2 - TERM_WIN
H - HELP

Page 66

Tandy Color Computer 3

SELECTION [1,2]

6.17 Press <2> . Term_VDG (the 32 column screen, jokingly
called “Very Dumb Green”) is only used by a few old games,
and most of those are on self-booting disks. For general work
and most, if not all, applications, you will want the 40 column
Term_Win screen.

6.18 The next screen asks you to select window descriptors.
Choose them all. We’re not showing you the screen this time
because you should be getting the hang of it by now.

6.19 Press <d> when done. Press <y> to confirm.
6.20 The screen then shows:

BUILDING BOOT LIST
. PLEASE WAIT

6.21 Config presents the following screen:

WHAT CLOCK MODULE IS NEEDED?

1 - 60 HZ (AMERICAN POWER)

2 - 50 HZ (EUROPEAN POWER)
SELECTION [1,2]

6.22 Most readers of “Mastering OS-9” will choose <1> .

Be sure you know what your alternating current rate is. If

you are in doubt, ask! This is the electric power cycle. Choosing
the wrong one can cause flickering of the screen and the clock
not to keep the correct time. The computer counts the highly
stable cycles (Hz) of the electric power to time itself.

6.23 The next screen shows:

PLACE FORMATTED DISK IN
/D1
HIT ANY KEY TO CONTINUE

We’ve thought ahead: the formatted Custom Boot 1 disk is al-
ready in drive /d1. Consider what would happen if we had
reached this step in the config process without having a format-
ted disk on hand. We would have had to STOP the configuring
process, format a disk,and START ALL OVER! So, make sure
you have a formatted disk on hand BEFORE you use config.
Another note. Most of the time when a program or utility says
“Hit Any Key To Continue”, they lie. What they mean is, “Hit

Page 67

Day Three:

Day Three:

Step 7: Adding
commands

Mastering OS-9

Any Key (Except the <BREAK> key) To Continue”. So go
ahead and press any key (except the <BREAK> key!).
6.24 The screen will then show:

GENERTING A NEW BOOT
. PLEASE WAIT

Your drives will rattle for around 90 seconds. This is a good
time to leaf through “Mastering OS-9”. See you in a minute or
s0.

STEP 7: ADDING COMMANDS
TO THE NEW BOOT DISK.
7.1 At this point, a new, custom OS9Boot file exists on the disk
in drive /d1. Add commands to the disk by responding to the
next screen:

DO YOU WISH TO ADD

[N]O COMMANDS, STOP NOW
[F]ULL COMMAND SET
[I]NIDIVIDUALLY SELECT
[H] RECEIVE HELP
SELECTION [N,F,I,H]

7.1 Press<F>to tranfer a full command set to the new boot disk.

7.2 Config now prompts you to place a system disk in drive /d0.
Place the System Disk Backup you created in Step 3.3.0 in /d0.
Follow the directions to continue config .This process takes a
few minutes. While config is doing its automatic magic, let’s
discuss the merits of each choice in the menu above.

Leaving the new boot disk with [N]JO commands allows you to
later create a CMDS directory on it which contains only those
commands and applications you want. If you want to create a
disk just for word processing, you may wish to transfer just a
few standard OS-9 utilities after config is done. Then add the
word processor application and various writing style utilities you
may have purchased.

[[INDIVIDUALLY selecting commands may be the choice you
make in the future as you become familiar with each OS-9 com-
mand. Until you develop a work “style” at your OS-9 computer,
however, you won’t know which of the almost 50 OS-9 com-
mands you need. Two commands you MUST include to accom-
plish windowing are Grfdrv and Shell.

Page 68

Tandy Color Computer 3

For now, we choose the [FJULL set of commands. In addition to
transferring the commands, this option creates a Startup file on
the new boot disk. We can (and will) eliminate commands we
don’t need in later tutorials.

Hmm... the drives are still working, eh? Browse some more
through this book if you like. You’ll find articles on music,
telecomputing, OS-9 related hardware and software, and so on.

STEP 8: TESTING THE NEW DISK — DISK DRIVES
8.1 Remove the System Disk Backup from drive /d0 and put it
away.

8.2 Remove the newly configured Custom Boot 1 disk from
drive /d1 and put it in drive /d0. Close the drive door and press
the reset button.

8.3 After a moment you will see the OS-9 bootup message (OS9
BOOT) in the middle of the screen. A 40-column screen is then
created.

8.4 Set the time when prompted.

8.5 Check to see if OS-9 has configured your drives correctly.
Place a blank floppy disk in drive /d1. Type:

0S9: format /d1 <ENTER>
Since format hasn’t been loaded, the command will first load
from the new boot disk in drive /d0.

8.6 Proceed with the format. If you chose 40-track double-sided
descriptors and drivers, the format will show $05A0 sectors veri-
fied. If you chose 80-track double-sided descriptors and drivers,
you should see $0B40 sectors verified.

8.7 Remove the newly formatted disk from drive /d1. Label it as
you wish to remind you that it has been formatted.

8.8 Format any remaining blank disk on hand.You’ll be needing
several formatted disks throughout the Tutorials. We’ll remind
you to format a disk each time you need one, but having a for-
matted disk already handy will save you time. You may want to
load the format command to speed up the formatting process
slightly should you decide to format your remaining blank disks

Page 69

Day Three:

Step 8 Testing the
disk drives

Day Three:

Step 9: Testing pipes

Mastering OS-9

now.

STEP 9: TESTING THE NEW DISK — PIPES
9.1 Place the “Mastering OS-9 Backup” disk in drive /d1. Type:
0S9: chx /d1/cmds <ENTER>
Think through what you have just done. OS-9 will now look for
all its commands in memory and then in /d1/CMDS. The CMDS
directory on /d1 had better contain any commands you need
which are not already in memory!

9.2 Now type: 0S9: chd /d1 <ENTER>
Now OS-9 will look first in the root directory of the disk in drive
/d1 for data.

9.3 Type: 0S9: list test.pipe <ENTER>

Even though we haven’t “formally” met the list command, you
can probably guess what it does. In this case, it lists the text file
“test.pipe” to your screen.

9.4 You should see:

Each

Sensibly
Perfectly

Gets

Steve
Goldberg’s
Utility: “Sort”
Re-arranged and
Sorted by

Entry

Look carefully. If you read it as a sentence it almost makes
sense. This list is really a scrambled statement. Actually, the list
is a scrambled commercial for Steve Goldberg’s sort utility, in-
cluded on your “Mastering OS-9” disk.

Including Sort and other excellent Goldberg Utilities with the
“Mastering OS-9” disk is our way of introducing OS-9 users

to utilities and commands not available on your Level 2 disks.
Tandy sells additional utilities with the Development Pak for
Level 2. Companies like CoNect, Sub-Etha Software, FARNA
Systems, and others offer great packages full of handy com-
mands — at reasonable cost. Check with these and other compa-
nies before you buy.

Page 70

Tandy Color Computer 3

Enough commercial break, let’s finish this first tutorial up!

9.5 Type: 0S9: list test.pipe ! sort <ENTER>
You should see:

Each

Entry

Gets

Perfectly
Re-arranged and
Sensibly

Sorted by

Steve Goldberg’s
Utility: “Sort”

So pipes work too. The ! symbol (exclamation mark) is the
pipe modifier. When the Shell encounters this symbol, it
sends output of the command preceding it as input to the
command following it.

Thus, list test.pipe generates as output a listing of the
“scrambled” sentence. The pipe transfers this as input to sort
which alphabetizes any list that comes its way. Sort’s output is
the alphabetized list you see above.

STEP 10: TESTING THE NEW DISK — WINDOWS
10.1 Type: OS9: chd /d0 <ENTER>

10.2 Type: OS9: chx /d0/cmds <ENTER>

Now you tell me: where will OS-9 look for all its data? Where
will OS-9 look for all its commands (after checking memory, of
course)? Note that both commands could have been combined
on a single line by typing: OS9: chd /d0;chx /d0/cmds <EN-
TER>

10.3 Now let’s type:

08S9: iniz /w7 <ENTER>

089: echo Hello > /w7 <ENTER>
Don’t worry about what these commands mean for now. They
open windows, a topic covered in a later tutorial.

10.4 If using an RGB monitor such as the Tandy CM-8, Com-
modore 1084, or Magnavox 8CM515 or 1CM135, type:
0S9: montype r <ENTER>
If using a color composite monitor, type:
0S9: montype ¢ <ENTER>
If using a monochrome monitor, type:

Page 71

Day Three:

Step [0: Testing
windows

Day Three:

Step 11 Closing down
Zutorial 1

Mastering OS-9

0S9: montype m <ENTER>
These commands make your screen more readable for each par-
ticular monitor type. Later, we will add the montype command
to our startup file.
10.5 Press the <CLEAR> key. Your screen should change to an
80 column “window”. If it did, windows work too! Press the
clear key again to return to your original 40 column screen.

I’'m getting ahead of myself here, but I can’t resist! While in the
40 column screen, type: 089: dir Now press <CLEAR>
while the disk drive is running. Type OS9: mdir <ENTER>
Now press <CLEAR> again. Press <CLEAR> once more. This is
the power of a windowing operating system: having more than
one application open at once. If you had been working on a pro-
gram in one window and discovered you needed to format a
disk to save your work on, you can merely toggle over to the
other window and format a disk wi#sour quitting and losing any
work!

STEP 11: CLOSING DOWN SHOP
11.1 Remove all disks from the drives. Place them in sleeves
and store them away.

11.2 Switch off system power. If all units are attached to a single
power strip, turn off the strip. Otherwise, switch off the monitor,
CoCo, MultiPak (if any), and drives in that order.

11.3 Now for some homework! Read up on Tutorial 2 before we
get started on it another day!

Page 72

Tandy Color Computer 3

GETTING STARTED WITH TUTORIAL 2
In Tutorial 2 we take care of business unfinished in Tutorial 1.
For example, the custom system disk you created in the first
tutorial, while perfectly bootable, omits the SYS directory found
on most system disks, including the Tandy distribution disk.

Once we transfer a SYS directory to your new custom disk, we’ll
back it up. We then explore the directory system on that disk
with the chx and chd commands. We’ll list a couple of files and
use dir and dir x to find the contents of directories.

We also examine the uses for error and help, two commands
which make life easier for the first-time user of OS-9 Level 2.

Most OS-9 system disks for the Color Computer include the
following in the root directory:

Directory of /d011:20:38
0S9Boot CMDS SYS Startup

You already know that OS9Boot contains OS-9 modules and
that CMDS contains your executable commands, utilities, and
applications.

What about the SYS directory? SYS frequently serves as a
handy “catch-all” directory containing graphics fonts and
patterns, data files which initialize OS-9 applications, error and
help messages, and so on. Many OS-9 Level 2 applications are
written to seek the default drive’s SYS directory, using /dd/SYS
in its traditional catch-all role. Without such a directory on your
default drive these applications cannot function.

The last common item in a system disk’s root directory is the
startup file, a “script” telling OS-9 which housekeeping chores
to take care of before giving you control of the computer. The
startup file can be as simple or as powerful as you wish to make
it. All you have to do is add and delete instructions with a text
editor.

Typical startup files prompt you to set the system time, start
windows automatically, load favorite utilities and modules, and
“patch” OS-9 to run better on your hardware. By the time you
finish “Mastering OS-9", you will have edited startup to do all of
these.

In Tutorial 2 we have you list the Startup file to your screen just
to get a broad idea of how Startup works. We leave the details of
its role and function for another Tutorial.

Page 73

Day Four:

Tutorial 2
What we’ll cover

The SYS directory
and the startup file

Day Four:

dir x — /e other
directory

error — How fo not
crack a book

Mastering OS-9

0OS-9 employs two current directories, the current data directory
and the current execution directory. You can change which
directories OS-9 looks to for data and commands with the chd
and chx commands. To find a listing of the contents of the
current data directory, type: 08S9: dir <ENTER>

No need to type a full pathname.

What about the execution directory? If /d0/CMDS is your
current
execution directory (as it most often is) you could type:

089: dir /d0/cmds <ENTER>
to find out what commands are available to you on disk. You
may need to check the contents of your execution directory
often when you first start using OS-9 Level 2.

But typing the above command line (12 keystrokes) can be
aggravating. Avoid aggravation. Just type:

089: dir x <ENTER>
to see a listing of the contents of the current execution directory.
It’s easy to remember (the “x” stands for “execution”) and it’s
only five keystrokes. The element of the OS-9 Ethos shown
here: if at all possible, avoid unnecessary keystrokes, and make
commands easy to remember.

If only you could get help using OS-9 without having that
enormous Tandy manual in your lap... no problem! OS-9 helps
you up the learning curve by providing useful error messages
and on-line help. This is a big improvement over the Microsoft
Disk Extended Basic approach. Most user errors simply return
7SN ERROR — not very helpful in determining the precise
error.

Under OS-9, if you make a mistake or if OS-9 has painted itself
into a corner (see the comments on mfree in Tutorial 1), you
receive an error message on your screen. For example, if your
fingers slip and you type OS9: di <ENTER> instead of

089: dir <ENTER> the shell, unable to find the command
“di”, will return ERROR #216 to your screen. ERROR #216
means the shell couldn’t find the pathname you specified. To
verify this, type: 0S9: error 216 <ENTER>

At this point the shell goes searching for two items: the error
command (which should be in the current execution directory)
and the errmsg file in /dd/SYS. If OS-9 succeeds on both counts,
you see on your screen:

Page 74

Tandy Color Computer 3

216 - Path Name Not Found

Chances are excellent most of your “flubs” will be typographic,
so you’ll get familiar with error #216. Otherwise, with the
grounding in OS-9 you receive from “Mastering OS-9”, you
may need error to translate error numbers only rarely.

Another handy file you should tuck into /dd/SYS is helpmsg.
This file contains usage and syntax summaries for each OS-9
command. To access a command’s summary, type:

08S9: help commandname <ENTER>

Example: To find out information on the cobbler command,
type:

0S9: help cobbler <ENTER>
The shell searches for the help command in the current
execution
directory; then it searches for information on the cobbler
command in /dd/SYS/Helpmsg. If successful, OS-9 then shows
the following on your screen:

Syntax:Cobbler devname
Usage :Creates 0S-9 bootstrap file from current boot

You might guess from the above that creating a boot file on a
disk in drive /dl involves typing:

08S9: cobbler /dl <ENTER>
Good guess (this command line works best if the disk in drive /
dl is freshly formatted)! You figured it out without cracking
open a single book! We cover the cobbler command in greater
detail later.

Example: The modpatch command (unmentioned in the Tandy
manual) is a handy tool for patching OS-9 — if you know how
to use it. To get some help, type:

0S9: help modpatch <ENTER>

Syntax:Modpatch <filename> [opts]
Usage :patch amodule in memory from command file
Opts :-s = silent mode
-w = suppress warnings
-c = compare module only, do not change
-? = receive help

Cmds :L modname = 1link to module
C off obyte nbyte=change obyte at
off (set) to nbyte
V = verify module

Page 75

Day Four:

7he help command
and helpmsg file

Day Four:

Getting ready

Tutorial 2

Step 1 Transferring
SYS and other files

Mastering OS-9

M = mask IRQs
U = unmask IRQs

Look over that last report. True, the report might be more help if
you knew what “IRQs”, “bytes”, and “offsets” were. This
information, however, can help the knowledgeable user change
0OS-9 to access drives faster, alter keyboard repeat delay, and
add other streamlining features.We’ll be making patches such as
these in later tutorials.

Since a typical OS-9 work session requires perhaps 20 com-
mands, don’t expect to understand every single line you type
during the course of Tutorial 2. Though some command lines
may now seem mysterious, by the end of “Mastering OS-9” you
will be able to review earlier tutorials and understand every line
they contain.

For this tutorial you’ll need the “Config/Basic09 Backup”, the
“System Disk Backup”, and “Custom Disk #1”. You’ll also need
the “Mastering OS-9 Backup” disk.

TUTORIAL 2
STEP 1: TRANSFERRING SYS AND HANDY FILES

1.1 Turn on your system.

1.2 Boot up OS-9 with the “System Master Backup”, NOT the
configured “Custom Boot 1”. Set the date/time when prompted.

1.3 Place the “Custom Boot 1” disk in drive /d1.

1.4 Type: OS9: makdir /d1/SYS <ENTER>
Make sure you capitalize SYS. When you create directories,
always remember to name them with all capital letters.

1.5 Now type: OS9: chd /d0/sys <KENTER>

Even though you capitalize a directory name when making it,
OS-9 doesn’t care what case it is typed in later. It will look for a
file or directory in the same case you typed first. If it doesn’t
find a file or directory exactly as typed, OS-9 will search for any
case combination (it would find Sys or SyS also).

1.6 Type: 08S9: dsave /d0 /dl1/sys ! shell
<ENTER>

There are spaces between “dsave”, “/d0”, and “/d1/sys”. Don’t
forget to include them. The exclamation point is the “pipe”

Page 76

Tandy Color Computer 3

symbol you first saw in Tutorial 1. If you guessed that the output
of the dsave command is being sent through a pipe to the shell,
fantastic! You are absolutely right.

If you are lost, don’t worry. We will explore dsave and pipes
more extensively in later tutorials. In the meantime, just watch
the scree — OS-9 is automating a tedious job for you. This is
what computers are for!

1.7 Type: 0S9: chd /d0 <ENTER>

1.8 Now type:
08S9: copy window.t80s /d1/window.t80s <ENTER>

1.9 Remove the “System Master Backup” from drive /d0. Put it
away in a sleeve.

1.10 Place the “Mastering OS-9 Backup” disk in drive /d0 then
type: OS9: chx /d0/cmds <ENTER>

Notice that we used the chx command. This tells the shell that if
it can’t find a command in memory, it should look in the CMDS
directory on the disk in drive /d0.

1.11 Type: 0S9: chd /d0 <ENTER>
Now OS-9 will look for data first in the root directory of the disk
in drive/d0 unless you specify another pathname.

1.12 We now need to copy a couple more files by typing:

08S9: copy make_80 /d1/make_80 <ENTER>

08S9: copy make_7 /d1/make_7 <ENTER>
To create the underscore character you see between “make” and
“80”, hold down the <CTRL> key and press the hyphen (dash)
key. This is used a lot in OS-9!

1.13 Remove “Mastering OS-9 Backup” from drive /d0. Keep it
close at hand.

1.14 Place “Boot/Config/Basic09 Backup” in drive /d0 then
type: 089:chd /d0 <ENTER>

0S9:chx /d0/cmds <ENTER>
Where will the shell now look for commands on disk? Where is
the current data directory?

1.15 Now to copy another file. Type:
08S9:copy /d0/cmds/runb /d1/cmds/runb <ENTER>

Page 77

Day Four:

Day Four:

Step 2 Backing up the
custom master

Mastering OS-9

1.16 Remove the “Boot/Config/Basic09 Backup” disk from
drive /d0 and put it away.

STEP 2: BACKING UP THE CUSTOM MASTER
2.1 Remove “Custom Master 1” from drive /dl and place it in
drive /d0.

2.2 Write “Custom Master 1 Backup” on a disk label.
2.3 Place the label on a fresh, blank disk.

2.4 Place the blank disk in drive /d1 and type:
0S9: chd /d0 <ENTER>
0S9: chx /d0/cmds <ENTER>

2.5 Now type: 08S9: format /d1 <ENTER>
This formats the disk in drive /dl to be a 35-track single-sided
disk. Remember, backup cannot proceed if the destination disk’s
format differs from the source disk’s format. Since we booted
with the “System Master Backup” (which uses 35-track single-
sided descriptors for /d1) we do not need to use format’s
options. If we had booted with the new “Custom Disk 17, we
would have had to type:

08S9: format /d1 1 ‘35’ <ENTER>

2.6 Answer all prompts to proceed with the format. Choose any
disk name (or none by pressing the space bar).

2.7 When the formatting has finished, type:
08S9: backup #56k <ENTER>

2.8 Proceed with the backup process.
2.9 When backup is done, remove “Custom Master 1 “ from
drive /d0, place a write-protect tab over the corner notch, and

put it away.

2.10 Remove “Custom Master 1 Backup” from drive /d1 and
place it in drive /dO.

2.12 Reboot OS-9 by pressing the reset button while leaving all

disks in place. Set the time. When the“OS9:” prompt appears,
proceed to Step 3.

Page 78

Tandy Color Computer 3

STEP 3: EXPLORING THE
DIRECTORY SYSTEM WITH CHX AND CHD
3.1 Type: 089: dir <ENTER>
As promised in “Getting Started with Tutorial 2 “, you can see at
least OS9Boot, CMDS, SYS, and startup in the root directory.

3.2 Display a listing of the current execution directory by

typing:
089: dir x <ENTER>

3.3 Now let’s display the contents of the CMDS directory in four
ways: 089: dir cmds <ENTER>

089: dir CMDS <ENTER>

08S9: dir /d0/cmds <ENTER>

089: dir /dd/cmds <ENTER>
You obviously have lots of options to find that listing! In the last
line, we assumed drive /dO is your default drive (/dd). Notice
that OS-9 doesn’t care which case you use — upper or lower —
when reading a directory name. Typing “dir x” is much easier
than any of the above four command lines.

3.4 Let’s now take a look at the SYS directory, change directo-
ries, and then check to make sure OS-9 is where we want to be.
Type the following thrt:,e lines:

OS9: dir sys |<ENTERF T T

08S9: chd sys <ENTER>

0S89: dir <ENTER>
What are these files? Where are you now in the directory
system?

/d0
CMDS *SYS* OS9Boot Startup

You are now inside the SYS directory, marked on both sides
by asterisks in our graph above. The f iles you see are NSIDE
the SYS directory.

3.5 Let’s take a look at the “errmsg” and “helpmsg” files. Type:
089: list errmsg <ENTER>

Press the space bar to continue the listing. When finished
viewing the error message file, type:

Page 79

Day Four:

Step 3 Exploring
directories with
chx and chd

Day Four:Day Four:

Step 4: Help with
commands and errors

Mastering OS-9

089: list helpmsg <ENTER>
Press the space bar to continue the listing. OS-9 uses these two
files in conjunction with the error and help commands. Let’s
explore these now.

STEP 4: GETTING HELP WITH
COMMANDS AND ERROR MESSAGES
4.1 Let’s cause OS-9 to generate an error message by deliber-
ately misspelling the “dir” command: OS9:di < ENTER >

4.2 Investigate the error message returned by typing:
08S9: error 216 <ENTER>
Leave off the number/pound sign (#).

4.3 Generate another error mesage with:

089: dir /d0/cmd <ENTER>
Obviously, “Path Name Not Found” doesn’t merely refer to
misspelled commands. Just about anything you misspell returns
error number 216 — incorrectly typed pathnames too!

4.4 Generate another error message with

0S9: iniz d3 <ENTER>
Iniz takes as a parameter the legal name of a device descriptor.
Since we have no device descriptors for a drive named “d3 “,
0OS-9 sends us an error number.

4.5 Use error to f ind out what the number returned means by
typing: OS9: error 221 <ENTER>

No surprise here. Of course OS-9 couldn’t f ind that module
since we didn’t include it in our bootlist from Tutorial 1.

4.6 Let’s move on to the help command. Type:

08S9: help makdir <ENTER>
We used the makdir command in step 1.4. Help tells us makdir’s
usage and syntax.

4.7 Lets try again: OS9: help dsave <ENTER>
This command is obviously a lot more involved than makdir.
We’ll cover makdir in Tutorial 3 and dsave in Tutorials 7 and 8.

4.8 Okay, one more time: 0S9: help shell <KENTER>

In Step 1.6, the shell, which offers us the “0S9: “ prompt, ran
another shell explicitly. Imagine, a shell running a shell — both
running at the same time! You started a multi-tasking process
and didn’t even know it!

Page 80

Tandy Color Computer 3

STEP 5: INVESTIGATING THE STARTUP FILE
5.1 Change directories to the root directory of drive /d0:
0S9: chd /d0 <ENTER>

5.2 Now let’s list the “startup” file to the screen:
089: list startup <ENTER>
You will see:

* Echo welcome message

echo * Welcone to OS-9 LEVEL 2 *
echo * on the Color Conputer 3 *

* Lock shell and stdutils into memory
link shell

* Start system time from keyboard
setime </1

date t

Each line is a perfectly acceptable OS-9 command line. To prove
it, let’s type each line at a prompt:
08S9: * Echo welcome message <ENTER>

This command line does nothing — it doesn’t even return an
error message! The asterisk at the beginning of the line tips off
the shell to ignore what follows, all the way up to the <ENTER>.

0S9: echo * Welcome to OS-9 LEVEL 2 * <ENTER>

(Now THIS does something!)

08S9: echo * on the Color Computer 3 * <ENTER>
08S9: * Lock shell and std utils into memory <ENTER>
08S9: link shell <ENTER>
08S9: * Start system time from keyboard <ENTER>
08S9: setime < /1 <ENTER> (Familiar?)
089: date t <ENTER> (You should remember this, too.)

Now you probably have an inkling about how startup works.

Startup is an example of a procedure file.We explore procedure
files in detail later.

Page 8l

Day Four:

Step S: Investigating
startup

Day Four: Mastering OS-9

Step 6. Directories
and subdirectories

STEP 6: INVESTIGATING
DIRECTORIES AND SUBDIRECTORIES
6.1 Place the “Mastering OS-9 Backup” disk in drive /d1.

6.2 Type the following command lines:
0S9: make_7 <ENTER>
08S9: load pwd runb <ENTER>
08S9: load /d1/cmds/where <ENTER>
08S9: chd /d1/tut2 <ENTER>
08S9: dir <ENTER>

You will see:

Directory of . 12:00:03
BUSINESS CABINET where

Throughout Steps 6 and 7 of this tutorial, each directory and
subdirectory will contain a file called “where”. Ignore it. Or list
it if you wish. It exists for the benefit of the where command I
wrote to help you keep track of your directory-system-where-
abouts.

6.3 To see where you are in relation to the directory system
created under TUT2, type: OS9: where <ENTER>

and then press the <CLEAR> key. You will see a graphic
representation of your location. The directory in which you are
located is marked on both sides with an asterisk. Press
<CLEAR> again to return to your work (this is your first session
with windows, by the way).

6.4 Let’s see what’s in the CABINET directory (we know it’s a
directory because we always follow the rule that directories use
all capital letters, right?):

08S9: chd cabinet <ENTER>

089: dir <ENTER>

Imagine the disk in drive /dl is a house of information. Enter the
house and you f ind a room named TUT2. Enter it (with chd)
and look around (with dir). Ah, there’s a CABINET in this room.
Look inside (once again with dir). But which DRAWER do we

Page 82

Tandy Color Computer 3

investigate?

6.5 Type: 089: chd drawerl <ENTER>
What have we here?

6.6 Now type: 0S9: dir <ENTER>
A folder! Chances are good it contains some files...

6.7 Let’s see what’s in FOLDERI:

08S9: chd folder] <ENTER>

089: dir <ENTER>
Here you see four f iles. Do you see how well organized you
can be with such a directory system? Think of all the
information a person handles. Now no one has an excuse for not
having a LOGICAL place to put their information. Just create a
directory!

Once again, if you get lost in this directory system, type “where”
at the “OS9:” prompt and proceed as instructed in Step 6.5

STEP 7: A PRACTICAL
APPLICATION OF THE DIRECTORY SYSTEM
7.1 Let’s change directories again:

0S9: chd /d1/tut2 <ENTER>

7.2 Now “where” are we in the directory system?:

089: where <ENTER>
Press the <CLEAR> key to check your whereabouts. Press it
again to return.

7.3 We’ll now take a look at what is in TUT2, change directories
once more to BUSINESS, and then see exactly “where” we are
again: 0S9: dir <ENTER>

08S9: chd business <ENTER>

089: where <ENTER>
Press the <CLEAR> key. Hopefully your movement around the
directory tree makes more and more sense as we do this!

7.4 Let’s move around some more then again check our
bearings: 0S9: dir <ENTER>

08S9: chd sales <ENTER>

089: dir <ENTER>

0S9: where <ENTER>

You should be getting the hang of this by now. Take your time

Page 83

Day Four:

Step 7: Applying the
directory system

Day Four:

Step 8. Closing down
Turorial 2

Mastering OS-9

wandering through the directory structure you see listed on the
80-column screen. Be sure to go all the way to the bottom of the
BUSINESS directory. To climb back up, either go right to the
top with:: OS9: chd /dl/tut2 <ENTER> or go back up one
level at a time by specifying complete pathnames for each
directory. Or use anonymous directories!

If you run into problems, remember

* You can’t use “list” on directories

* You can’t use “dir” on files

* You can’t chd to files

* “help” and “error” are always waiting for you.

Good luck!

STEP 8: CLOSING DOWN SHOP
8.1 When you are finished exploring the directory tree, remove
all disks from the drives.

8.2 Power down the computer, monitor, MPI (if you have one),
and drives (or turn all off together if on a power strip).

8.3.0 Put all disks away in their sleeves.

Page 84

Tandy Color Computer 3

GETTING STARTED WITH TUTORIAL 3
You now get first-hand experience in creating directories. You
will also learn how to delete them. We explore file attributes
which apply not only to files but to directories as well, pointing
out a fundamental similarity between them.You will learn how
to rename files and directories. You will also discover yet
another kind of directory listing, dir e, which provides you with
extensive and useful file information.

Recall that the basic unit of your work under OS-9 is the file.
Command files and data files are obvious examples. Directories,
too, are files with special attributes distinguishing them from
“ordinary” files. A directory file contains file name entries its
local files and shorthand entries for itself and its parent directory

To recap:

* Command files contain machine codes which constitute
programs, utllities, and commands.

* Data files contain data used and created by programs, utilities,
and commands.

* Directories file away names of command files, data files, and
other directories (these last names are then subdirectories).

In addition to these three classes of files, another class is
available to OS-9: OS-9 modules. These are not usually used as
either commands or program data. Examples are the device
drivers and device descriptors mentioned in earlier reading.

Just as modules are files, files can be viewed as modules. Both
are essential units in the OS-9 operating system and in your
work. Viewing every “object” on your system as a file allows
0OS-9 to manipulate them in a similar, “unified” way. It is part of
what makes OS-9 both simple and powerful.

For each file there is a wealth of information on the disk. A
directory contains the name of a file and a pointer to a file
descriptor. This file descriptor contains a summary of a file’s
attributes. You can see a file’s attribute report by typing:

089: attr filename <ENTER>
You can use the attr command to change a file’s attributes also.
We’ll use this handy tool often.

On multi-user systems, one person is in charge of “straightening

Page 85

Day Five:

Tutorial 3:
What we’ll cover

A file is a file is a file —
is a module

Describing files

Day Five:

More on file attributes

Mastering OS-9

up” the system (deleting unnecessary files, organizing who can
use the system and who cannot, and so on). This person, the
“superuser”, has wider access to files than anyone else with the
ability to read and write to most files on the system, no matter
who the files belong to.

On OS-9 multi-user systems, the superuser has a special “User
Identification Number” of zero. On your own CoCo system,
your

User ID Number is zero, making you the superuser. Conversely,
users who are not superuser usually have less access to a
computer system. This helps protect the system from being
damaged through accident or abuse.

A multi-user CoCo 3 Level 2 system is easy toassemble. One
Radio Shack franchiser in Delaware runs his store on Wyse
terminals hooked up to a CoCo 3 running OS-9 Level 2. It’s as
easy for you to do. With simple software and hardware serial
ports and terminals (or computers running terminal emulation
software), you could have a Color Computer terminal in every
room of your home (and probably cause domestic problems
thereby).

File attributes summarize who is permitted access to files. Some
of these attributes tell OS-9 that a file may be read or written to
only by the superuser — you. Other attributes tell

OS-9 that the public can read or write to a file. Permission to
read or write to a file may even be denied to both you AND the
public! The file is thus unusable until its attributes are deliber-
ately set to give you appropriate permission (we explain set and
reset attributes later).

When you request an attribute report with attr, the screen shows
a series of letters and hyphens representing permissions granted
and denied. A quick example is in order:

089: attr <directory_name> <ENTER>
may provide the following report:

d-rwerwe

The position of the letters and hyphens determines precisely
which permission has been granted or denied.

Page 86

Tandy Color Computer 3

Study this table:

Position Character Permission

1 “d” access only as a directory
2 “s” used by single user only
3 “r’ user O can read the file

4 “w” user 0 can write to the file
5 “e” user O can execute the file
6 “r’ public can read the file

7 “w” public can write to the file
8 “e” public can execute the file

A dash in the position indicates the permission is NOT granted
(i.e. — in the example “d-rwerwe”, the file is NOT useable by a
single user, so can be accessed by ALL users).

You can see from the above example and table that the directory
named “directory_name” is:
1) a directory (no surprises here!)
2) shareable
3) publicly available to be written to, read from, and
executed
4) available to you as user 0 to write to, read from, and
execute

We say that a file is a directory if its directory attribute is set.
We also say that a file is not a directory if its directory attribute
is reset. The same is true for the other attrihutes — if the letters
“s”,“e”, “r”, and so on appear in the attribute report then these
attributes are set. If instead you see hyphens, these attributes are
reset. The reason for this language goes back to computer
programming at the bit and byte level and is beyond the scope
of this book.

OS-9 cares which attributes are set and reset because many

system operations and commands will only work on files with

specific attributes set. For example:

* You can delete (del) a file, but not a directory.

* You can delete a directory with deldir, but it won’t work
on files.

* You can copy files, but not directories — at least not with the
copy command.

* You can’t list a file with its read and public-read attributes
reset, nor can you list a directory.

* A directory whose execute and public-execute attributes are
reset cannot be used as an execution directory.

Page 87

Day Five:

Table 3: File Attributes

How OS-9 uses
[file attributes

Day Five:

Deleting directories

Commands you will
use -- deldir

When to change a
Jfile's attributes

Mastering OS-9

Since the del command does not work on directories, you may
wonder how a directory is deleted:

1) One way to delete a directory SAFELY would be to delete
every file in the directory with the del command. This is tedious
but forces you to reconsider deleting each and every file.

2) Once all files are deleted, you can use the attr command to
remove the directory attribute of the directory, making it an
ordinary file. You cannot reset a directory’s “d” attribufe unless
it is empty.

3) Last, delete the “directory” (now just a file) with the del
command.

Or you can just use the deldir command. Deldir works by
automating the procedure outlined above.You must use deldir
with great care, as it can wipe out many weeks or months of
work. Even though you must use EXTREME caution when
deleting directories (particularly while you learn the directory
system), deldir does provide you the option of examining the
contents of each and every directory it eliminates.

Most of you will be the only user on your OS-9 CoCo so you
don’t require secret passwords, log-on sequences, and reset
attributes to control access to files. When, then, will you need to
change a file’s attributes? There are chiefly two occasions to use
the attr command on a single-user system:

1) To protect files of extreme importance, you can deliberately
deny write permissions. Months later you won’t unknowingly
delete these files with the del or deldir commands.

2) Command files joined together with the merge command
cannot be executed. The attr command can be used to grant
execution permission.

In Tutorial 3 we use the chd command to move around the

directory structure. As we proceed create a mental image of the
disk’s directory structure.

Page 88

Tandy Color Computer 3

TUTORIAL 3
STEP 1: CREATING DIRECTORIES
1.0 Boot OS-9 with “Custom Disk 1 Backup”

1.2 Get out “Mastering OS-9 Backup”. Remove the write-protect
tab if necessary.

1.3 Place “Mastering OS-9 Backup” in drive /d1

1.4 Type: 0S9: chd /dl <ENTER>

0S9: makdir MY_DIR <ENTER>
Once again, you create the underscore character by holding
down
the <CTRL> key while you press the hyphen key. This
character is used all the time by old-time OS-9ers, although I'm
not sure why (probably a carry over from some programmer's
main-frame days).

1.5 Now type: 0S89: dir <ENTER>

Notice that there is a new directory named MY_DIR. You just
created this directory yourself with the makdir command. You
capitalized the name, respecting OS-9’s convention to use
capital letters when naming directories and lowercase letters
when naming files. If you didn’t do this, it would be impossible
to distinguish ordinary files from directories.

1.6 Now let’s make a subdirectory:

0S9: makdir my_dir/BUSINESS <ENTER>
Notice we did not capitalize “my_dir ”. OS-9 will find MY_DIR
whether you type MY_DIR, My_Dir, my_DIR, or some other
combination. OS-9 is NOT case-sensitive when READING file
names and directory names; it IS case-sensitive when WRITING
file names. This is why you capitalized BUSINESS; 0S-9 creates
the directory with all capital letters in its name because creating
that name on disk is a WRITE operation. Remember, a
subdirectory is a directory within (or under) another directory.

1.7 Make another subdirectory by typing:
0S9: makdir my dir/PERSONAL <ENTER>

1.8 Get a directory listing of MY_DIR to confirm your work.
1.9 Change your current data directory to my_dir/business and
then make two more directories by typing

08S9: chd my_dir/business <ENTER>
0S9: makdir PROPOSALS <ENTER>

Page 89

Day Five:

Day Five:

Step 2. Working with
[file attributes

Commands you will
use -- dir e

Mastering OS-9

0S9: makdir LETTERS <ENTER>
1.10 Get a directory listing.

1.11 Change your current data directory to my dir/business/
proposals: 08S9: chd proposals <ENTER>

Remember that the full pathname of PROPOSALS is really
/dl/my_dir/business/proposals. By setting our current data
directory to /dl/my_dir/business, we save ourselves from typing
the first part of the pathname in the above step.

1.12 We’ll now make some subdirectories under PROPOSALS
and PERSONAL then inspect our work:

089: makdir NEWSLETTER <ENTER>

089: makdir COST_CUTS <ENTER>

089: dir <ENTER>

089: chd /d1/my_dir/personal <ENTER>

089: makdir LETTERS <ENTER>

089: dir <ENTER>

1.13 Did you follow what happened in step 1.12? If not, go
back through the directories using the full path names and chd
command. You should be conf ident enough now to create your
own directories. Remember: if you want to create a directory in
the current directory just use a local directory name after typing
makdir. To create directories elsewhere, specify enough of a
path name so that OS-9 positions the directory where you want it
in the directory system.

STEP 2: WORKING WITH FILE ATTRIBUTES
2.1 We now learn how to view data hidden in these directories,
data.such as the date and time each file and directory was last
modified and the file attributes of each. This data is revealed by
another variant of the dir command — dir e.

2.2 Type the following:
089: chd /dI/my_dir <ENTER>
08S9: dir e personal <ENTER>

You should receive a report on your screen similar to this:

Directory of /dl/my_dir/personal 18:34:44

Owner Last modified Attributes Sector Bytecount Name

0 95/03/07 1827 d-ewrewr F7 40 LETTERS

Page 90

Tandy Color Computer 3

Notice that the owner of the LETTERS directory has number
zero. This is the User Identification Number mentioned at the
beginning of the tutorial. The next columns give the date and
time the directory was last modified, the attribute report (in this
case, the file is a directory, and can be executed, written to, and
read by-all users), the disk sector the directory (or file) is located
on, how many bytes the file contains (in hexadecimal), and the
file name. If we had used lowercase letters to name this
directory, we’d have to look at the attribute report to discover
that it is a directory and not a file!

2.3 Let’s play with the attr command some more:

08S9: chd personal <ENTER>

089: attr letters <ENTER>
The attr command looks on disk for the attribute report on the
file “letters”.

2.4 Now type:
089: chd letters <ENTER>
089: dir e <ENTER>
The “dir e” command will give you everything you want to
know about the LETTERS directory’s contents. Since LETTERS
is empty, don’t expect much.
Directory of . 01:35:00

Owner Last modified Attributes Sector Bytecount Name

2.5 So let’s try using the attr command to reset (turn off) the
directory attribute of PERSONAL:

0S9: chd ..<ENTER>

08S9: attr personal -d <ENTER>

Attr will now try to reset or turn off the directory attribute. If OS-
9 actually did this, you could then use the del command to
delete the file. However, since PERSONAL is not empty (it
contains the LETTERS directory), 0S-9 will not let you reset the
directory attribute.

2.6 So let’s try deleting LETTERS:
08S9: chd personal <ENTER>
089: attr letters <ENTER>
0S9: del letters <ENTER>

Page 91

Day Five:

Day Five:

Step 3. Renaming

Mastering OS-9

This won’t work either. Since LETTERS has its directory
attribute set, you must either reset it or use the deldir command
to delete it.

2.7 For right now, let’s reset the directory attribute. Since
LETTERS is an empty directory, OS-9 gladly resets it for us:
08S9: attr letters -d <ENTER>
08S9: del letters <ENTER>
0S9: chd .. <ENTER>

2.8 Now that we have successfully deleted LETTERS, the

PERSONAL directory is empty. Let’s delete this directory:
08S9: del personal <ENTER>

Did you get an error? You know what to do. Hint: see step 2.7.

2.9 Now let’s use deldir — the easy way to do all this. First, re-
create the directories we just deleted:

0S9: makdir PERSONAL <ENTER>

089: makdir personal/LETTERS <ENTER >

2.10 Delete the directory by typing:

08S9: deldir personal <ENTER>
You’re on your own now!. You will be given choices to make.
Use your judgement. The interactive nature of the deldir com-
mand may keep you from deleting valuable files and
directories.

STEP 3: RENAMING FILES AND DIRECTORIES

3.1 Let’s first examine the effect of lower and upper-case letters
in naming and renaming files (the files in this case are
directories). Make the following directories:

0S9: chd<ENTER>

(yes, that’s five dots!)

089: makdir TestFile <ENTER>

089: makdir testfile/TestFile.sub <ENTER>

089: dir <ENTER>

Notice that OS-9 named your f ile exactly as you typed it.
However, you named this directory in mixed-case (both lower-
case and upper-case letters) which — by convention — is
incorrect style for a directory name. You can’t tell whether this
is a directory or file by typing dir — you must use dir e then
examine the attribute report. Have you memorized the report
sequence yet? No? So you have to refer back to the manual.

Page 92

Tandy Color Computer 3

Sure does take a while, doesn’t it?

3.2 Let’s rename TestFile to follow the OS-9 naming conven-
tion: 0S9: rename testfile TESTFILE <ENTER>
TestFile can be typed “testfile” in the line above because 0S-9
can READ file names in either lower-case or upper-case or any
mixture. However, since renaming TestFile to TESTFILE
involves a WRITE to disk, 0S-9 is sensitive to the exact letters

you type.

3.3 Take a look at what you did: ~ OS9: dir <ENTER>
You can now easily tell that TESTFILE is a directory.

3.4 Now that TESTFILE looks like a directory, let’s change

O59thknaitie testfile/testfile.sub testfile/ TESTFILE.SUB <ENTER>

Why did we receive an error? Doesn’t it make sense to use the
entire pathname for both the old f ile name and the new one?
Perhaps it makes sense from a path name standpoint, but it does
involve some unnecessary typing. 0S-9 tries hard to incorporate
short-cuts, and the syntax of the rename command is no
exception.

3.5 When you rename a file or directory, the second parameter
0S9: rename testfile/testfile.sub TESTFILE.SUB <ENTER>

the local file name you desire. Try this:

That should have worked fine. You may want to look at the
directory just to see.

Page 93

Day Five:

Day Five:

Step 4. More file
attributes

Mastering OS-9

STEP 4: ONE LAST
EXERCISE WITH FILE ATTRIBUTES
4.1 Type the following lines:
0S9: chd /d1 <ENTER>
0S89: attr cmds.s09 <ENTER>

4.2 The directory CMDS.S09 is an execution directory. It
contains special utilities for use with “Mastering OS-9 ” — in
fact, use them anywhere. They are fun and extremely useful.
Applause to Stephen Goldberg, who donated them to ‘“Mastering
0S-9”. But what’s wrong with this picture? Why are there no e’s
in the attribute report? Because I reset them when preparing the
disk.

4.3 As it stands, you cannot chx to CMDS.s09. Try it:
089: chx /d1/cmds.s09 <ENTER>

Use the error command to determine what error #214 means.

4.4 Since you are the super-user of your CoCo, you can set the
execute attributes on this directory. We’ll be using its commands
heavily in the upcoming tutorials:

089: attr cmds.s09 e pe <ENTER>
If you were the super-user on a multi-user system, or if you ran
an electronic bulletin board system (BBS) on your CoCo 3,
resetting public execute attributes can be handy. A little security
can go a long way!

4.5 Remove all disks from the drives and power down your
system. Another tutorial has been finished!

Page 94

Tandy Color Computer 3

GETTING STARTED WITH TUTORIAL 4
We examine only three commands in this Tutorial. One of them
(edit) invokes a powerful text editor that warrants most of our
attention. We also formally introduce the list command
mentioned extensively in previous reading. The third command,
tmode, is perhaps most often used in conjunction with the list
command.

You should have a list of commonly used phone numbers next
to your computer for this and subsequent tutorials. These serve
as good practice in entering data into the OS-9 text editor. They
also constitute an ongoing project for these tutorials. When
you’re done with “Mastering OS-9”, you’ll have a handy phone
directory at your fingertips.

If you’re eager to type, include addresses and occupations for
each person in your phone list. We can then show you a quick
way to create a list of your doctors or perhaps baby-sitters. All it
takes is one command line!

When you create text on your computer (letters, memos, lists,
and so on) you insert text on your computer screen. If you make
an error, you can change or delete that part of the text. You also
need to move backward or forward in the file since flawed text
may occur anywhere in your text file. To do all this, you’ll need
some kind of editor. Most editors:

1) Create text.

2) Move up or down one or more lines in the text.

3) Move forward and backward one or more characters.

4) Change text from <old text> to <new text> .

5) Delete lines and characters.
There are as many ways to implement these features as there are
programmers. Below we discuss two general approaches.

Most editors allow you to move your cursor anywhere you wish
on your screen with simple keystrokes, typically with your
keyboard arrow keys. Move to any faulty text appearing on your
screen, make your change, and you’re done. This type of editor
is the screen-oriented editor. While powerful and easy-to-use,
these programs use up large amounts of memory.

The Macro Text Editor provided with OS-9 (from here on
referred to as “edit”) is a line-orinted editor. It is compact and
powerful, in many ways surpassing in features many conven-
tional text-editors.

Page 95

Day Six:

Tutorial 4
What we’ll cover

Whart editors are
supposed to do

Differing editors:
screen oriented
versis

line oriented

Day Six:

Commands you will
use -- edit

Entering edit

Commands that move
the edit pointer

Mastering OS-9

Being a line-oriented editor means you usually insert text, make
changes, and view your text one line at a time. Short commands
move edit’s invisible cursor through text which may or may not
be on the screen. Once edit’s invisible cursor is near text that
needs changing, short commands change or delete that text.
Summarizing, OS-9’s edit responds to short commands which

* create text

* move around your text one line at a time

* change the text in the given line to your new text

* delete a line or more of text

Edit therefore meets standard editing requirements. It also has
many more powerful features beyond the scope of this book. To
learn more pick up the Tandy OS-9 Level 2 manual where they
present detailed lessons on edit’s full capabilities

Typing “edit <filename>" at the “OS9:” prompt starts the OS-9
Macro Text Editor, or simply edit. At this point, a new prompt
(“E:”) replaces the familiar “OS9:” prompt on your

screen. The “E:” prompt reminds you to type edit commands

and not Shell commands.

One of your disk drives should be active, searching for a text
file named <filename> in your current data directory. If it exists,
edit loads the file and allows you to edit it. If there is no file
named <filename>, edit creates an empty file in the current data
directory with that name. Don’t try to edit a command file. The
machine codes create havoc on your screen and may hang up
your computer.

If the file to edit is larger than edit normally handles (say, more
than a page of single-spaced text), you can start Edit with a
larger memory buffer. Type: OS9: edit #24k <ENTER>
to set up Edit’s buffer to 24 kilobytes (around 7 or 8 pages of
single-spaced text).

Edit has two basic modes in creating a perfect text file: writing
text and revising text. Writing text is done in the Insert Mode.
Revising text is done in the Edit Mode. Whenever you start
typing right at the “E:” prompt you are automatically in the Edit
Mode, ready to revise text. Enter the Insert Mode by pressing the
spacebar (denoted < SPACE> in this book) at the “E:”

prompt, like so:

E: <SPACE> This is our first line of text. <ENTER>

Page 96

Tandy Color Computer 3

Whenever you finish a line, press the <ENTER> key to get ready
for the next line. An invisible marker called the “edit pointer” is
advanced each time you enter a character or press the <ENTER>
key.

Edit normally accepts up to 126 characters on a line. This is
enough, say, to input a person’s name, address, occupation, and
telephone number. For our purposes let’s keep lines short (less
than eighty characters) to keep the screen from getting too
cluttered.

Having finished entering your “rough draft”, you may now be
interested in maklng changes and deletions. These actions
require edit commands.

The table below summarizes edit commands which move the
invisible “edit pointer”. These commands are logical and should
be easy to remember.

You must type: In order to:

- (hyphen key) move edit pointer back one line

+ (plus key) move edit pointer forward one line

n (a number) move edit pointer back “n” lines

+n (n=a number) move edit pointer forward “n” lines

-* (hyphen-asterisk) move edit pointer to the beqinning
of your text

+* (plus-asterisk) move edit pointer to the end of the text
currently in your memory buffer

If a line in your text file contains a small error, you can easily
change the old text to new, correct text. Or, if the error is
complex, you may want to delete the line and start all over again
in the Insert Mode. Study this chart:

You must type: In order to:
c/original text/new text/ change an occurrence of “original

text” to “new text”

cn/original text/new text/ change the next “n” (number)
of occurrences of “original text”
to “new text”

c*/original text/new text/ change all occurrences of ‘“original
text” to “new text”, starting from
the position of the edit pointer.

D or d delete the current line
L or 1 list the next line in your file
L* or I* list rest of file in the buffer

Page 97

Day Six:

edit commands that
move the edit pointer

edit commands that
change and delete text

Day Six:

Using the asterisk

Leaving edit

Listing files from
the Shell
Commands you will
use -- list

Listing files to the
printer with redirection

Mastering OS-9

Notice the asterisk (“*”) following the C command in the
preceding command chart. C is obviously short for “change”.
What does the asterisk represent?

The asterisk can be loosely translated as “all”. It can be used to
mean ‘“change all [occurrences of a string after the edit pointer]”
as in the example above. It can be used with D to “delete all [file
contents after the edit pointer]”. It can be used with L to “list all
[the file after the edit pointer]”.

If you are at the top of a file, typing E:d* will “delete all” text.
E: I* means “list all” the file from the present pointer position.
To list the entire file, first place the edit pointer at the top of the
file. Do this by typing: E:-* <ENTER>. Once the edit pointer is
at the top of the text file, use the “list all” command: E:l*
<ENTER>. We’ll get first-hand experience with the asterisk in
the tutorials, where you will find it a useful, easy way to
enhance the normal function of edit commands.

Once your session with Edit is complete, you will want to leave
it and return to the “OS9:” prompt. To do this simply type
E:q <ENTER> at the edit prompt. The “q” stands for “quit”.

We leave our discussion of Edit for now to introduce at last

the list command. Type: OS9: list filename <ENTER> to list a
text file named “filename” to your screen. If filename is not in
the current data directory use a fuller path name so OS-9 can
find the file. If OS-9 cannot find your file, it prints ERROR #216
(Path Name Not Found).

We briefly mentioned paths in the introductory reading. OS-9
sets up three paths for data flow: the standard input path,
standard output path, and standard error path. Your screen
constitutes the standard output path.

One consequence of OS-9’s Unified I/0 is that you are able to
redirect the standard output path to devices other than your
screen. You do this at the Shell’s “OS9:” prompt with the output
redirection modifier (>). For example, instead of viewing a
listing on your screen by typing: OS9: list filename you
can print the same listing on your printer by typing

08S9: list filename > /p. This means “list the file named
filename to the printer”. Don’t forget the slash preceding the
device name.

Page 98

Tandy Color Computer 3

Your screen ordinarily holds up to 24 lines of text. Listing a file
longer than 24 lines causes the top part of the file to scroll off
the screen. This is a nuisance when you need to read a file
carefully, so you’ll want to pause the display when the screen
fills. Doing this takes a simple command line:

08S9: tmode .1 pause <ENTER>
This tmode command line offers a temporary way to change the
way text is put out of your system. Although this output can go
to many destination devices (for example, your screen, a printer,
or an external terminal), most data is output to your screen, the
standard output path. OS-9 assigns the standard output path the
number one (1). This path is referenced by tmode when the
period key (<. >) followed by the numeral one (< 1 >) is
included after the command. Thus, the command line above
pauses the display of data to the standard output path (your
computer screen).

Under some circumstances you do NOT want the screen display
to pause when it is full. Many OS-9 programs stop activity when
the screen fills. They will not continue unless you press a key
(other than the <BREAK> key). Setting the screen to pause
(OS9: tmode .1 pause <ENTER>) may force you to attend to
your CoCo in case an OS-9 utility needs you to press a key. A
good example: formatting a hard drive requires that screen
-pause be off. Hard drive formats easily fill up a screen and
simply won’t continue when data fills a paused screen.

Let’s move on to Tutorial 4. Don’t forget to have your phone list
handy!

Page 99

Day Six:

Pausing a listing by
changing output

Commands you will
use -- tmode

Turning pause off

Day Six:

Turorial 4
Step 1: Inserting text

Mastering OS-9

TUTORIAL 4
STEP 1: INSERTING TEXT WITH EDIT
1.1 Boot OS-9 with Custom Disk 1.

1.2 Create an eighty-column text screen (window) by typing:
089: window.t80s <ENTER>
Enter the screen or window by pressing the <CLEAR> key.

1.3 Now, looking at the eighty-column screen, type:

0S9: montype x <ENTER>
Replace the “x” with an “r” if you have a color RGB monitor
(such as the Tandy CM-8 or Magnavox 8CMS515). Replace with
“m” if you have a monochrome monitor capable of displaying
eighty-column text. If you are using a color composite monitor,
you would replace “x” with “c”. Most color composite monitors,
however, will not adequately display 80 column text. If you are
stuck with a color compoite for now, use montype m anyay and
turn the color control until no colors are displayed. This turns
your color monitor into a black and white monitor. Using
montype m will turn the color burst signal off.

1.4 Find a disk label and a formatted, blank floppy disk. Write
“Phone List and other files” on the label; place the label on the
disk. Format the disk if necessary (I told you having a couple
extra formatted disk on hand would come in handy later!).

1.5 Place the disk in drive /dl and close the drive door. Now
change your current data directory to the root directory of that

disk: 08S9: chd /dl <ENTER>

Since you are using a blank, formatted disk, there is nothing in
the root directory. If you wish, type dir at the “OS9:” prompt to
check this.

1.6 Let’s enter edit and create a new file:

089: edit Phone_LF <ENTER>

1.7 Before we start entering text, try to imagine the progress
of the invisible edit pointer. It begins at the very top of the
buffer. When you press “F”, it moves just one space past that
character. Then you press “i” and it moves one space further
along in the buffer. The edit pointer continues to move along the
first line until you press <ENTER >. Then it advances to the
beginning of the next line. Type the following:

E: <SPACE> First line <ENTER>

Page 100

Tandy Color Computer 3

1.8 The following steps continue text insertion. Remember to
press the spacebar when you see <SPACE . This brings you into
the Insert Mode.

E: <SPACE> Second line <ENTER>

E: <SPACE> We’ll delete this line <ENTER>

E: <SPACE> Fourth line <ENTER>

E: <SPACE-> Fifth and last line <ENTER>

STEP 2: USING EDIT COMMANDS
2.1 Type: E: L <ENTER>
The L command, typed at Edit’s “E:” prompt, signals that
edit should list the line following the edit pointer. Since the edit
pointer is placed at the beginning of the (empty) sixth line, the L
command shows nothing.

2.2 Now type: E: L* <ENTER>
Likewise, the L* command, meaning “list all ” the text from the
edit pointer to the end of the buffer, shows nothing.

2.3 First, we must move the edit pointer to some place closer to
the beginning of the text. Type: E: - <ENTER>

The edit pointer moves back to the beginning of the previous
line (line 5). Edit prints the line of text from the edit pointer to
the end of the line. You will see “Fifth and last line” listed to
your screen.

2.4 Now let’s move the pointer to the beginning of the file:

E: -* <ENTER>
This command moves the edit pointer “all the way back”. Now
that the edit pointer is at the f irst character of your text file, edit
displays the line of text from the edit pointer to the end of
the line. This is, of course, the first line. You will see listed to
your screen:

First line

2.5 Let’s play with the List (L) comand some more. Type:
E: L<ENTER>. You will see:

First line

Now type: E: L*<ENTER>. You will see:
First line
Second line
We’ll delete this line
Fourth line
Fifth and last line

Page 101

Day Six:

Step 2: Using edir
commands

Day Six:

Step 3. Moving the
edit pointer

Step 4. Deleting text

Mastering OS-9

2.6 Important: using the L command does not move the edit
pointer. To prove that the edit pointer is still at the top of your
text, type: E: L<KENTER>

STEP 3: MOVING THE EDIT POINTER
3.1 Move the edit pointer to the beginning of the next line with:
E: + <ENTER>

3.2 Type: E: +<ENTER> again.
You should now see:
We’1ll delete this line

3.3 Now let’s go back to the top of the text buffer:
E: -* <ENTER>

3.4 Hit the ENTER key twice. Notice that using the + command
and hitting the <ENTER> key has the same effect.

STEP 4: DELETING TEXT
4.1 Let’s delete a line. If all has transpired as predicted, the edit
pointer should be at the line reading “We’ll delete this line”.
Type: E: d <ENTER>
The command for deleting a line is D or d. Specifically, this
command has deleted the line from the edit pointer (which is at
thebeginning of the line) to the end of the line. Edit prints to
your screen the line it just deleted.

4.2 So now we’ll go back to the beginning of the text buffer and
list our file:

E: - * < ENTER>

E: 1* <ENTER>

You should now see:
First line
Second line
Fourth line
Fifth and last line

4.3 Let’s reinsert the line we just deleted. Move the edit pointer
to the beginning of “Fourth Line”.

E: <ENTER>

E: <ENTER>

Page 102

Tandy Color Computer 3

You should now see:
Fourth line
The edit pointer sits right before the “F” in “Fourth”.

4.4 Type:
E: <SPACE> We’ll zap this one again. <ENTER>

4.5 Move to the beginning of the buffer and list the file:
E: -* <ENTER>
E: L* <ENTER>
You should now see:
First line
Second line
We’ll zap this one again.
Fourth line
Fifth and last line

4.6 Now move the pointer to the third line and check your work
by displaying the lines before and after the former third line:

E: <ENTER>

E: <ENTER>

E: d <ENTER>

E :- <ENTER>

E: <ENTER>

4.7 Move the edit pointer to the beginning of the buffer then
forward two lines:

E: -* <ENTER>

E: +2 <ENTER>
You should see:

Fourth line

4.8 Type in the following new line:
E: <SPACE> Line three <ENTER>
Where is the edit pointer now? To f ind out, immediately type:
E: L <ENTER>
As we noted at the beginning, our edit pointer was pushed
forward with each keystroke; after we typed the new line, the
edit pointer was pushed to the beginning of the fourth line.

4.9 Let’s try that again, just to make sure you understand what’s
going on:

E: - <ENTER>

E: d <ENTER>

E: <SPACE> Line three again. <ENTER>

E: -* <ENTER>

E: L* <ENTER>

Page 103

Day Six:

Day Six:

Step 5. Changing text

Step 6. Building a
phone list

Mastering OS-9

STEP 5: CHANGING TEXT

5.1 Let’s change some text:

E: c*/line/line goes here/ <ENTER>
This command is straight forward. It simply means “change all
occurrences of ‘line’ to ‘line goes here’ “. Edit is case-sensitive
so it will not change line three, which should have the word
“line” will a capitalized “L”. Note that Edit reports which
lines were changed.

5.2 Now we need to determine the location of the edit pointer:
E: L <ENTER>

Edit moves only as far into the text as the last occurrence of the

target text (“line”).

5.3 Let’s try changing some text again:

E: -* <ENTER> (go to beginning of text)

E: L* <ENTER> (list all of file)

E: c*/again./is what goes here/ <ENTER>
(change all occcurences of ‘again.’ to ‘is what

goes here’)

E: L <ENTER> (list the line at the edit pointer)

E: -* <ENTER> (go to beginning of text)

E: L* <ENTER> (list all of file)

STEP 6: BUILDING A PHONE LIST
6.1 Now that you have experience inserting, deleting, changing
, and listing text, let’s start from scratch with our phone list. The
first step is to clear the buffer of all text:
E: d* <ENTER>

Once again, the delete command prints to your screen all the
text it has deleted.

6.2 Now begin entering your list of names and numbers in the
Insert Mode. Recall that the Insert Mode is entered by pressing
the spacebar at the “E:” prompt. So, press the space-bar, enter a
line of data, then press <ENTER>. The backslash symbol (“\”) is
generated by pressing the <CTRL> key and the slash key (“/”) at
the same time. Enter all names and numbers in the following
format, each list on its own line, like this:

Lastname, Firstname\occupation or note\phone # with area code

Swygert, Francis G.\Publisher, 68' micros\912-328-7859
FARNA Systems\CoCo Vendor\912-328-7859

Page 104

Tandy Color Computer 3

For now, put in at least 25 names and numbers. You need that
many lines in the list to properly demonstrate the tmode
command in Step 7. If you don’t know enough numbers , pick
up a phone book and just put any in. You can delete them later.

STEP 7: USING THE LIST TMODE COMMANDS
7.1 Quit Edit with the following command:
E: q <ENTER>

7.2 After the file is saved, the Shell prompt reappears.

7.3 Type the following:

08S9: tmode .1 pause <ENTER>

089: list Phone_LF <ENTER>
Not all of your phone list will appear. Press any key (but the
<BREAK> key!) to continue the listing.

7.4 Now let’s turn pause off and list the file:

0S9: tmode .1 -pause <ENTER>

089: list Phone_LF <ENTER>
This time, the screen did not pause when it was full. How do
you pause the screen output when tmode has not been set to
pause?
Use the <CTRL> - <W> key combination during the listing
(press and hold CTRL then press W). This pauses scrolling text
until the next keypress. To help remember this combination,
think of “W * as being short for “wait”.

7.5 Let’s try using the <CTRL> - <W> combination. List the
phone list again, this time using <CTRL> - <W> to keep the list
from scrolling past the top of the screen:

089: list phone_If <ENTER>
As the text scrolls, type

<CTRL> - <W>
Press any key to continue the listing. Pressing BREAK will abort
the listing. This is exactly like using “<SHIFT> - <@>" to halt a
BASIC program listing under CoCo BASIC.

7.6 Remove all disks from drives when finished and power
down. But before you do — when is the last time you backed up
your data disks? If you accidentally format a disk or delete a file
while we are going through the tutorials, you’ll have to go back
and start all over! You might want to make sure you have an
extra copy (backup) of the Phone List disk just in case. Every
time you add names to the list, back it up again. If you somehow
loose you data file, you’ll only have to retype what was entered
between backups, not the entire list.

Page 105

Day Six:

Day Seven

Tutorial 5.
What we’ll cover

Procedure files

Mastering OS-9

GETTING STARTED WITH TUTORIAL 5
Tutorial 5 finishes the first “week” of “Mastering OS-9”. This
time, we explore procedure files. One such procedure file,
named “startup”, comes with the OS-9 system disk. Using edit,
we’ll change the startup file to meet the needs of those who own
printers and disk drives capable of quick access. We learn about
the xmode command which is like a big brother to the tmode
command introduced in Tutorial 4.

Other commands and concepts in this Tutorial are familiar
territory. In addition to edit, we again use the copy, del, and
rename commands. If you are rusty on these, take a moment to
review them. At the end of Tutorial 5, we ask that you add to the
Phone_LF text file created in Tutorial 4. Keep your personal list
of phone numbers handy.

Now that you can use edit, you can create and edit a procedure
file. Knowing what to include in a procedure file depends on an
understanding of the different ways the Shell accepts com-
mands.

The Shell normally processes your commands one at a time as
you enter them from your keyboard; thus, the keyboard is the
standard input path, as we have discussed before. The Shell can
receive commands from a source other than your keyboard, too.
In these cases you are witnessing an example of input path
redirection. The Shell’s execution of procedure files from the
command line is a case of input redirection.

The most common form of input redirection you will encounter
is the procedure file. The Shell begins processing command
lines in a procedure file almost as soon as you type the
procedure’s pathname and press <ENTER> (the only business
the Shell takes care of first is making sure that the pathname is
not a command but a procedure file). After the Shell determines
that you want it to process a procedure file, it reads the file one
line at a time. At this point, the Shell treats the text in the
procedure file exactly as it treats commands you type in from
the keyboard.

One way to work is to keep your most commonly-used
procedure files in the system disk’s root directory. After boot-up
simply type the name of the procedure file to execute it. What
could be more convenient?

Page 106

Tandy Color Computer 3

Procedure files can contain any valid command line. This may
include commands and other utilities. It may even include other
procedure files.

One work strategy is to write a handful of short procedure files
each of which does one simple job. These become tools used to
tackle larger jobs. Do this by stringing together the pathnames of
appropriate procedure files into a single “master” procedure file.
Execute the master file and the job is done.

A customized Startup file is a good example of this technique.
Your boot disk’s root directory contains a few procedure files
which create windows of various colors and capabilitles. By
including the pathnames of some of these procedure files in
your startup file, you can automatically create a windowing
environment. Tutorial 5 demonstrates how to include the
procedure files “window.t80s” and “make_80" in your Startup
procedure file. These two files create attractive eighty-column
screens.

0S-9 takes care of a lot of business before you see the first
“OS9:”prompt. One of its tasks is to search in the root directory
of drive /d0 (drive /hO for hard drive users) for the startup file.
When OS-9 finds it, startup is executed line by line.

Startup — a procedure file — can he as simple or as complex as
you wish. On the Level 2 distribution disk, the startup file reads:

* Echo welcome message

echo * Welcome to OS-9 LEVEL 2 *
echo * on the Color Computer 3 *

* Lock shell and stdutils into memory
link shell

* Start system time from keyboard
setime </1

date t

This file, executed one line at a time, has two simple but
important purposes:
* It makes the Shell available to you at all times by linking it to
the OS-9 system inside the CoCo.
* It prompts you for the time and date as part of its
record- keeping.

Page 107

Day Seven

Command lines in
procedure files

The startup file

Day Seven

Translating startup
line-by-line

Mastering OS-9

The Shell’s first job when encountering startup is to translate it
line-by-line. In Tutorial 5 we simulate startup’s action in “slow
motion” by typing each line ourselves at the “OS9:” prompt. To
prepare you, let’s preview that process.

Before we start, though, you should know that the Shell will not
process any text which begins with an asterisk in the first
column. Any text following a first-column asterisk serves as a
comment. This text reminds the user what various parts of the
file are designed to do.

line 1: *Echo welcome message

Since the first character in this line is an asterisk, the Shell
skips this line and goes to the next. This line is here to tell us
what the next lines will do.

line 2: echo * Welcome to OS-9 LEVEL 2 *

The OS-9 echo command simply prints to the screen all the text
which follows it. This command line therefore prints

“* Welcome to OS-9 LEVEL 2 *” to your screen.

The echo command cannot directly print all characters, though.
Some characters are reserved for the Shell. For example, the
following characters cause problems: < > ! &

These are Shell modifiers which redirect input and output and
set up processes to be run concurrently. If they were included in
a message typed after echo, the Shell would try to execute them
and would not echo them to your screen. If you want these
characters to appear in a message, follow the example which
“window.t80s” provides:

echo Creating 80 column text window

*

* Create a 80 column text window using descriptor /w7
* using White letters on a blue background

* NOTE: Wcreate is commented out since

* the defaults for /w7 are used.

* wcreate /w4 -s=2 008024011

iniz /w7

echo Window /w7 >/w7

shell i=/w7&

* Print Message to user

echo “Press <clear> to select window screen”

Page 108

Tandy Color Computer 3

Note especially the last line. The symbols < and > appear, and
yet they do not cause problems. Why? The secret is in the
quotation marks. They protect the enclosed text from interpreta-
tion by the Shell.

line 3: echo * on the Color Computer 3 *
The echo command here is used to finish the welcome message.

line 4: * Lock shell and std utils into memory

Once again, the asterisk marks this as a comment line. This line
informs us that the next line will lock the Shell into memory for
permanent use by OS-9. Since the Shell file contains not only
the OS-9 Shell but many often-used commands which are
merged into it, these standard commands are also permanently
available. These often-used commands are what is meant here
by “std utils” (standard utilities).

line 5: link shell

The link command increases the Shell’s link count by one. This
means that you would now have to work VERY HARD to get
rid of the Shell in memory. Having the Shell permanently in
memory is what you want, though, so linking it is a good idea.

line 6: * Start system time from keyboard
Here is the comment line belonging to the next line.

line 7: setime < /1

The setime command asks you for the current date and time.
This time is entered in “military” or “European” format, with a
24-hour clock — but you know this by now, having entered this
data several times..

Recall from the discussion of tmode that the standard input path
is given the number one (1). The standard input comes from
your keyboard. Thus the Shell translates “ < /1” as “redirecting
input from the standard input device”.

line 8: date t

The date command returns the current date to the screen. If you
add the “t” parameter it also returns the current system time. By
the time the Shell gets to this line, you have entered the current
time and date; now it displays it so you can make sure you
entered the right information. As you know, date prints the date
in “English”, not in military format.

Page 109

Day SevenDay Seven

Day Seven

Possible enhancements

A specific example

Mastering OS-9

We created an eighty-column text screen in Tutorial 4 using
“window.t80s” at the “OS9:” prompt. That procedure file may
be included in your startup file. If it is added to startup, when the
boot process is over you will have a new eighty-column text
screen available with a press of the < CLEAR > key. This is in
addition to the familiar 32-column green VDG screen (VDG
actually stands for Video Display Generator, a term borrowed
from previous Color Computer hardware). Other features can be
added to your system by adding commands to the startup file,
including:

1) Faster disk access

2) Faster printing speed

3) Eighty-column screen on boot-up

4) Additional screens (windows)

5) Personalized startup message

6) Automatic loading of your favorite utilities

7) Automatic execution of an application

8) Almost limitless additional features!

Being able to automatically load and execute an application on
bootup allows you to create a separate boot disk for each given
job; this boot disk may AUTOMATICALLY load your favorite
utilities into memory (for fast access) and then start the
application best suited for your task in a screen of your own
design.

For example, if you do a great deal of word processing, you
may have purchased utilities — small programs — which:

* count the number of words in a file

* count the number of lines in a file

* find the average length of words

* find the longest word

* find the longest sentence

* find the longest paragraph

* ...and so on.

These utilities may be used to help your writing style respond to
the reading level of, say, younger audiences by pointing out
longer words, sentences, and paragraphs. You can load these
automatically by adding command lines to the Startup file to do
the job (you might first want to merge them for reasons covered
in Tutorial 6). After the Startup file has loaded these utilities it
might automatically execute your word processor in an eighty-
column window set up just for it. All this with no additional
typing from you!

Page 110

Tandy Color Computer 3

Before editing the startup file, sketch out a plan of attack.:

1) Make sure we have a “backup” copy of the original startup
file. Do this by copying the original to a new file named, say,
startup.old. Extensive edits are then possible to the original
startup file. If your editing session goes foul, you can always
start from scratch with startup.old.

2) Edit the file. Use either edit or your own OS-9 based
word processor.

3) Reboot OS-9 to test the new startup file. In some cases,
rebooting is unnecessary; just type “startup” at the
“OS9” prompt.

4) Didn’t work correctly? Make any necessary changes
and additions.

5) Repeat steps (3) and (4) until startup is perfected.

6) You're done.

(Those who are familiar with MS-DOS machines will
notice that startup Is exactly the same as autoexec.bat.)

There is no use in your Color Computer sending text to your
printer as fast as it can. Your computer is just too fast. The
printer can become over-run with data inside of a second or two.
The printer must have some way of telling your computer to
stop sending data until it is ready again. This is done through
handshaking — an electronic version of the human custom.
When the printer is ready to receive more text from the
computer, it sends out a handshake signal. It sends out another
handshake signal when it is full of data and can accept no more.

Handshaking and transfer of text requires that the computer and
your printer be communicating at the same baud rate. Baud (bits
per second) refers to the speed at which data is transferred.
While OS-9 defaults to a baud rate of 600, your printer can
probably accept data faster than that. Most modern printers
accept data up tol6 times faster (9600 baud). Even Tandy’s old
DMP-105 can accept data at 2400 baud! Once you determine
how fast your printer can accept data, use the xmode command
to change the speed at which OS-9 sends data to the printer.

Note that most serial-to-parallel convertors can also be set to
9600 baud. Some have an adjustable setting. My Epson LX-800
printer (a 180 cps nine pin printer) is connected to my CoCo
through an adjustable rate Botek (OLD!) serial-to-parallel
convertor. I experimented with the settings under Disk Basic and
found that sending it data over 2400 baud netted no

Page 111

Day Seven

How to optimize
your printer

Commands you will
use -- xmode

Day Seven

The xmode command
in general

The xmode command
and you

Mastering OS-9

improvements in print speed. Therefore, I have my personal
system set at 2400 baud. You can easily change the baud rate
while OS-9 is running to determine your printer’s fastest setting.
Sometimes, setting it to fast will actually cause a reduction in
print speed. If you have a hardware parallel port and not a serial
printer or convertor, changing the baud rate will not affect print
speed.

The xmode command changes values in the device descriptor
tables in your CoCo’s memory making xmode’s effect powerful.
After the baud rate for your printer has been set with the xmode
command, every path opened to the printer sends data at the
new rate.

To use xmode, you provide two pieces of information. The first
is the name of the device or module you wish to affect. The
second is the new value for its device descriptor table.

Example: Xmode provides detailed control over many device
parameters. Suppose you need to print a report in all uppercase
letters. Go ahead and edit on your screen in mixed case, but set
your printer descriptor to print all uppercase with the following
command line: 08S9: xmode /p upc <ENTER>

Now, even though your screen shows “Quarterly payments less
in-kind contribution”, your printer will print “QUARTERLY
PAYMENTS LESS IN-KIND CONTRIBUTION™.

If you forget which parameters you can change in the printer’s
device descriptor, receive a report by typing:

089: xmode /p <ENTER>
}(Spucr_ekc)gg/gbtlslf —fgléggl—nlgf rr?gfit:() -pause pag=66 bsp=08
del=18 eor=0D eof=00 reprint=04 dup=01 psc=17 abort=00
quit=00 bse=5F bell=07 type=00 baud=06 xon=00 xof£=00

Notice some common words among the codes above. Other
codes are suggestive of what they represent. For example, if you
guessed “bsp” stands for backspace, you were right. You can
find more complete explanations for each of these codes in the
0OS-9 Level 2 manual from Tandy.

You are spared having to learn the intricacies of xmode

because it is typically used in only a few instances:

1) When you want to change your printer baud rate.

2)When your printer requires a line-feed with each
carriage return.

Page 112

Tandy Color Computer 3

3) When you want to create an extra VDG window.
The command line which changes the printer baud rate is:

08S9: xmode /p baud = nn <ENTER>
where you replace “nn” with the baud code corresponding to the
highest baud rate your printer accepts. The following chart
summarizes codes for each common baud rate:

Baud Rate Code
600 02
1200 03
2400 04
4800 05
9600 06

In the following tutorial (Tutorial 5) we assume that your printer
handles 2400 baud. We therefore edit our tartup file to contain
the command:

08S9: xmode /p baud=04 <ENTER>

Now that you know about procedure files in general and the
Startup file in particular, we can move into Tutorial 5. Be
prepared to edit startup and experiment. You should also have
your phone list handy so we can add to your previous work.

NOTE: In Tutorial 5 we have you call “BoostStep” from the
startup file in order to speed up your drive’s stepping rate.
Ordinarily, the drives step at 30ms (milliseconds) track-to-track,
which can sound loud and unpleasant. BoostStep pushes the
step rate down to 6ms, which most drives can easily handle.

If you have older drives which produce I/O errors when
operating at 6ms, you will need to reboot your computer using a
disk with the original startup. You can then edit the modified
startup by replacing BoostStep with “BoostStep.20” or
“BoostStep.10”. These change the step rate to 20ms and 10ms,
respectively. If 6ms fails, try 10ms. Even the oldest full height
Tandy drives will handle 20ms; almost any newer drive should
handle at least 10ms. All the “BoostStep” files are on the
“Mastering OS-9” disk in the HANDY_PROCS directory.

Page 113

Day SevenDay Seven

Printer Baud Codes

Let’s start

Day Seven

Tutorial 5
Step [Copying
startup

Mastering OS-9

TUTORIAL 5
STEP 1: CREATING A
SECOND COPY OF THE STARTUP FILE
1.0 Boot OS-9 with Custom Disk Backup 1. Make sure it is not
write-protected by removing the write-protect tab from the disk
if one is present.

1.1 we now make an 80 column text screen:

089: window.t80s <ENTER>
Switch to the new screen with the <CLEAR> key.

1.2 Get a listing of the root directory of the disk in drive /dO:
089: dir <ENTER>
Notice the startup file

.1.3 Now let’s get a listing of the current execution directory:

089: dir x <ENTER>

1.4 Which modules are loaded in memory?:

0S89: mdir <ENTER>
To remind you of your OS-9 “whereabouts”, you just retrieved
a directory from the current data directory with the dir
command (in this case, the current data directory is your root
directory).
Then you used dir x to see the current execution directory with
all its commands Last, you used mdir to find the list of modules
and commands in memory. Notice the edit command is not in
memory.

1.5 To make a little more room on your Custom Disk 1 Backup,
type the following lines:

08S9: del -x build cmp dcheck deiniz iniz

08S9: del -x date dir dislay echo

089: del -x tuneport mdir mfree

1.6 Since you’ll be doing a lot of editing, go ahead and load
edit. Also load xmode.
0S9: load edit xmode <ENTER>

1.7 We now need to make a spare copy of startup just in case we
run into problems later:

08S9: copy startup startup.old <ENTER>

089: dir <ENTER>

There is your spare copy of the startup file.

Page 114

Tandy Color Computer 3

1.8 Now type: 08S9: list startup <ENTER>
You will see:

* Echo welcome message

echo * Welcome to OS-9 LEVEL 2 *
echo * on the Color Computer 3 *

* Lock shell and stdutils into memory
link shell

* Start system time from keyboard
setime </1
date t

STEP 2: CUSTOMIZING
STARTUP MESSAGE AND BAUD RATE
2.1 In order to edit the file, we need to start edit and move the
pointer to the beginning of the file:
089: edit Startup <ENTER>
E: - ¥* <ENTER>
You will see:

* Echo welcome message

2.2 List the entire file:
E: I* <ENTER>
You will see:
* Echo welcome message
echo * Welcome to OS-9 LEVEL 2 *
echo * on the Color Computer 3 *

* Lock shell and stdutils into memory
link shell

* Start system time from keyboard
setime </1

date t

2.3 We now explore how to change the welcome message:
E: + 3 <ENTER>
You will see

* Lock shell and std utils into memory

The edit pointer is now at the beginning of this line. We want to

insert another message to be echoed before this line is executed

by the Shell. So press the space bar (for Insert Mode), type echo,
E<$PA OES' échec*sudiichiGatbepkally fan * <ENTER>

E: <SPACE> echo * (depite what they say) * <ENTER>

E:-* <ENTER>

E:l* <ENTER>

Page 115

Day SevenDay Seven

Szep 2: Changin startup
message and printer
baud rate

Day Seven

Mastering OS-9

Check your work. Looks good! Now go back and change these
lines (or even the original two lines) to whatever you want. After
all, it IS your computer!

2.4 Now let’s insert a few housekeeping lines after the “date t”
command line. Since that line is almost all the way at the end of
the startup file, advance to the end with

E: +* <ENTER>
which means “go all the way to the end of the buffer”. To make
sure we insert our command line immediately after date t, back
up line by line with the “-” until you see: E: date t
Then type: E: <ENTER>

2.5 Now type:

E: <SPACE> montype r <ENTER>
if you have an RGB monitor. Replace r with m if you have a
monochrome monitor. Insert this line next:

E: <SPACE> xmode /p baud = 04 <ENTER>

2.6 Oops! We forgot to add a comment line! We also forgot to
add a line to echo to the screen exactly what the Startup file is
doing. This is a courtesy to the user. Think about it: one day,
someone other than you will start your OS-9 computer and
wonder why the screen is empty. Without echoes to the user,
your startup file could do ten minutes of “computer house-
keeping” hidden behind a blank screen.

2.7 Type the following to move the edit pointer back one line:
E :- <ENTER>
You will see:

E:
xmode /p baud = 04

Just where we want it to be!

2.8 Now we’ll insert the comment lines:
E: <SPACE> * xmode changes the printer <ENTER>
E: <SPACE> * rate to 2400 baud <ENTER>
E: <SPACE> echo Boosting baud to 2400 <ENTER>
E :-* <ENTER>
E: I* <ENTER>

Once again, we check our work with the “1*” command. You

Page 116

Tandy Color Computer 3

should see:

* Echo welcome message

echo * Welcome to OS-9 LEVEL 2 *
echo * on the Color Computer 3 *
echo * which can really be fun *
echo * (despite waht they say) *
* Lock shell and stdutils into memory
link shell

* Start system time from keyboard
setime </1

date t

montype r

* xmode changes the printer

* rate to 2400 baud

echo Boosting baud to 2400

xmode /p baud=04

2.9 Now we can quit the editor:
E: quit <ENTER>

2.10 Okay, let’s check and see if this thing really works! First,
we’ll see what xmode is currently set to:

08S9: xmode /p <ENTER>
Notice the baud rate reads 02.

2.11 Now let’s run startup:
08S9: startup <ENTER>
Enter the correct time and date.

2.12 We should have a clearer screen from the “montype”
command. Let’s check the baud rate:

08S9: xmode /p <ENTER>
Notice that the baud rate now reads 04, which translates to 2400
baud.

STEP 3: TESTING STARTUP
AND PLAYING WITH XMODE
3.1 Set your printer or serial-to-parallel convertor up to 2400
baud if you haven’t done so already (of course, if your printer
handles a higher baud rate, you will have to change the Startup
file as indicated in the introductory text). Turn the power on and
get it ready to print. Consult your printer manual if necessary.
Now let’s print a copy of the startup file:
089: list startup > /p <ENTER>

3.2 Let’s see what else we can do with xmode:
08S9: xmode /p upc <ENTER>

Page 117

Day Seven

Step 3. Testt startup,
more with xmode

Day Seven

Step 4: Adding windows
10 startup

Mastering OS-9

089: list startup > /p <ENTER>

Compare the printouts. See how easy it is to change the printer
device descriptor? Change the descriptor back by typing:
08S9: xmode /p -upc <ENTER>

3.3 Turn the speaker up on your monitor if you have one. Now
type: 08S9: display 7 <ENTER>

You should hear a beep, called the “bell”. The numeral 7 is

the computer (ASCII) code commonly used to sound a device’s
beeper or bell.

3.4 Now try this: OS9: display 7 > /p <ENTER>

If your printer has a bell, it will ring or beep (if not, nothing
should happen). Here we redirect the output of the display
command with the “ > “ symbol. In this case, we redirect the
output to the printer /p.

3.5 Check the xmode parameters:
089: xmode /p <ENTER> You hould see:

upc -bsb -bsl -echo -1f null=0 -pause pag=66 bsp=08
del=18 eor=0D eof=00 reprint=04 dup=01 psc=17 abort=00
quit=00 bse=5F bell=07 type=00 baud=06 xon=00 xof£=00

Notice the bell parameter is set for 7. Refer to Tandy’s OS-9
manual for explanations of the other xmode prameters.

STEP 4: ADDING
WINDOWS IN THE STARTUP FILE
4.1 Let’s edit our startup file once again to have it create an 80-
column screen. We’ll also convert the 32-column green VDG
screen into a black-and-white 80-column screen. We do this by
naming two other procedure files in the startup file. This
demonstrates that procedure files can call other procedure files.

4.2 We’ll start by calling edit and loading startup into its buffer.
Then we’ll move the edit pointer to the top of the file and list it:
089: edit startup <ENTER>
E: -* <ENTER>
E: I* <ENTER>

4.3 Where do we want to place our new command lines? How
about at the very end of the existing Startup file. Don’t forget we
have to comment our work and echo to the user what the system
is doing:

E: +* <ENTER>

Page 118

Tandy Color Computer 3

E: - <ENTER>
E: - <ENTER>
You should see:

E:
xmode /p baud = 04

Place the edit pointer after this line by pressing <ENTER>

4.4 Now we can insert our new text:

E: <SPACE> * Change current window <ENTER>

E: <SPACE> * to 80-column text window <ENTER>
E: <SPACE> echo Changing terminal <ENTER>

E: <SPACE> make_80 <ENTER>

E: <SPACE> * create blue 80-col screen <ENTER>
E: <SPACE> echo Setting up New Window <ENTER>
E: <SPACE> echo and Shell <ENTER>

E: <SPACE> window.t80s <ENTER>

E: <SPACE> merge sys/stdfonts > /'w <ENTER>

Notice in particular the last line. This command line makes
available the standard text fonts for graphics screens. You can-
not merge sys/stdfonts or any other fonts to a VDG (32-column
green screen) device. I also advise you to merge fonts into your
system BEFORE initializing a graphics window with wcreate,
iniz, or display.

The reason for these two rules: First, VDG screens emulate the
older CoCo 1 and 2 video hardware, which knew nothing about
windows much less graphics windows. Only when windows are
opened does OS-9 worry about which fonts are in which buffers.
Secondly, if you initialize a graphic window WITHOUT merging
any fonts into memory, the screen will only display dots where
characters should be.

4.5 Now let’s check our work:
E: -$ <ENTER>
E: 1 * <ENTER>

You should see:

Page 119

Day Seven

Day Seven

Mastering OS-9

* Echo welcome message

echo * Welcome to OS-9 LEVEL 2 *
echo * on the Color Computer 3 *
echo * which can really be fun *
echo * (despite waht they say) *

* Lock shell and stdutils into memory
link shell

* Start system time from keyboard
setime </1

date t

montype r

* xmode changes the printer

* rate to 2400 baud

echo Boosting baud to 2400

xmode /p baud=04

* Change current window <ENTER>

* to 80-column text window <ENTER>
echo Changing terminal <ENTER>
make_80 <ENTER>

* create blue 80-col screen <ENTER>
echo Setting up New Window <ENTER>
echo and Shell <ENTER>

window. t80s <ENTER>

merge sys/stdfonts > /w <ENTER>

4.6 That completes our editing session for now, so we can leave
the editor:
E:q <ENTER>

STEP 5: ALTERING KEY REPEAT
AND DISK DRIVE STEP RATE

5.0 If you have drives which can handle a 6ms step rate (and all
modern disk drives can), you may wish to include a procedure
in
your Startup file to boost your step rate to that speed. Such a
file, BoostStep, is included on your “Mastering OS-9” diskette in
the HANDY_PROCS directory. There is a better, more
permanent method to change the drive step rate which we will
show you later in one of the appendix articles.

Also included is a short procedure file, MudKeys, to delay a
little longer before repeating the current key press. Slowing key
repeat can avoid accidental doubling or tripling of characters on
your screen.

Page 120

Tandy Color Computer 3

5.2 Place the BACKUP of the “Mastering OS-9” disk in drive
/dl and type:

089: chd /dVhandy_procs <ENTER>

089: copy MudKeys /d0/sys/MudKeys <ENTER>

08S9: copy BoostStep /d0/sys/BoostStep <ENTER>
This copies the files we need from the Mastering OS-9 backup
disk to Custom System Diskl Backup, which should still be in
drive /dO0.

5.3 Now we need to change our data directory back to drive /d0
and edit Startup again:

08S9: chd /d0; edit startup <ENTER>

E: +* <ENTER>

E: - <ENTER>

Continue the above step (E: -) until the edit pointer is at the
beginning of the following line of text:
xmode /p baud=04

5.4 We want the pointer to be right after the above line, so we
need to press <ENTER> one more time. We can then insert the
following text:

E: <SPACE> sys/BoostStep <ENTER>

E: <SPACE> sys/MudKeys <ENTER>

5.5 Check your work by listing the startup file. You should be
familiar with how to do this by now!

5.6 If all is well, quit the editor: E: quit <ENTER>
If you made a mistake, go back and fix it!

5.7 Press reset to test the new startup. When reset is pressed
once, OS-9 tries to boot from the disk in drive /d0. If reset is
pressed twice, OS-9 aborts and control is returned to Disk Basic.

5.8 If all works well, type: OS9: del startup.old <ENTER>
A copy of the original startup file is still on your original System
Master and your System Master Backup.

Page 121

Day Seven

Day Seven

Step 6. Adding to
phone list

Mastering OS-9

STEP 6: ADDING TO THE PHONE LIST
6.1 Place the disk marked “Phone List” in drive /d1 and change
the data directory to that disk:
0S9: chd /d1 <ENTER>

6.2 Enter the editor to edit the file Phone_LF:
089: edit Phone_LF <ENTER>

6.3 Move to the end of the list with the appropriate Edit
commands. Add at least six numbers to the list. We need a long
list later in the tutorials for demonstartion purposes. You can use
the practice with Edit also!

6.4 When finished adding names, backup your data disk. When
the backup process finishes, remove all disks and power down.

I don't know about you, but all this work sure has made
me want a break! And that's exactly what you're getting...
sort of. The next couple of sections are essays on just
what you can do with OS-9, some handy items to keep in
mind, and its future.

If you are considering skipping the next sections, please
don't! Some very good information will be presented that
I'm sure you'll want to know. If I weren't, it wouldn't be
here!

So relax and enjoy some light reading for a couple days!
We'll get right back to work afterwards.

Page 122

Tandy Color Computer 3

Application Programs

for OS-9 on the Color Computer

Of the tens of thousands of application programs available for
all computers, most fall into five categories. I call these “The
Big Five™:
: 1) word processors

2) spreadsheets

3) computer languages

4) utilities

5) telecommunications sof tware

0S-9 on the Color Computer offers strong contenders in each of
these fields. Before you choose a particular brand read through
this essay where these questions are answered:

How can these applications help me?

How do they work?

Who offers these applications?
Products are mentioned only for purposes of illustration. No
endorsements are intended nor implied. Before you buy, ask
around. Everybody’s needs are different — that’s why so many
programs are written!

Word -processors usually come in two parts under OS-9 to help
preserve the OS-9 “Unified I/0” philosophy and to maximize
use of memory. The first part is the text editor. An editor usually
allows your cursor to move freely around your

computer screen so you can add, delete, and move text. You can
also add symbols in the text which tell the formatter (commonly
offered as a companion to the editor) exactly how to print the
text on your partlcular printer. The formatter translates special
symbols within your text into codes the printer understands.
Keeping the main text free of printer-specific codes allows the
text to be easily manipulated by other programs. Often you can
buy the editor separately from the formatter.

Most OS-9 word processors (DynaStar and Ved, for example)
are modeled closely after the infamous WordStar (tm), made
popular first on C/PM machines and then IBM compatibles.
They are, in the lingo of computer salesmen, “similar in
functionality”. A person who knows the WordStar keyboard
commands (held over from the earliest to the latest versions for
the benefit of upgraders) has an easy transition when moving to
these word processors.

Ved and its companion text formatter, Vprint, are still available
from Bob van der Poel. Color Systems markets a specialized

Page 123

Day Eight

CoCo OS-9 Applications

Word Processors

Day Eight

Spreadsheets

Databases

Mastering OS-9

“point-n-click” shell for use with your text editor, formatter, and
related utilities (such as a spell-checker). While this shell isn’t a
word processor itself, it does serve to integrate the editor,
formatter, spell-checker, and other utilities of your choice into a
very easy to use package.

You can also choose from several programs to transfer text files
from your OS-9 CoCo to a PC compatible running MS-DOS. 1
know many OS-9 users who retain their OS-9 home system to
complete office work created on a PC.

Spell-checkers, especially useful under OS-9 since you can
easily check the spelling on a document in the background
while continuing your work. The most famous is Dale Puckett’s
DynaSpell. You can add to the exising DynaSpell dictionary by
purchasing spell checking dictionaries from the OS-9 Users
Group. At last look, the User’s Group library also contained a
spell-checker, handy if you can’t find a copy of DynaSpell.

Spreadsheets are advanced electronic calculators that finally
bring easy financial planning to your desktop. They divide your
screen into rows and columns. The intersection of, say Row A
and Column 1, is a cell (named “A1” in this case). Numbers and
mathematical formulae are entered into cells to create a custom
calculation system. Change one number and any other number
derived from it will change automatically, allowing you to test a
variety of values to arrive at an optimal answer. Most OS-9
spreadsheets offer several ways to transfer their data to other
OS-9 programs (such as word processors) frequently including
only results and ommitting formulas.

By far the most popular OS-9 spreadsheet is DynaCalc. It has
lightning-fast recalculation, large spreadsheet size, windowing
features, and on-line help. It is an extended remake of VisiCalc
(tm) and feels much like Lotus 1-2-3 (tm).

DynaCalc is still available through Radio Shack Consumer Mail
Centers. Ask to see the CMC catalog at any RS and they can
order it (and many other Tandy OS-9 titles) for you.

Databases usually allow you to create screen forms for data
entry. This data can be of most any type (names, numbers,
dates, and so on). You can also create reports summarizing data.
Printing formats such as mailing labels and envelopes are
commonly supported.

Page 124

Tandy Color Computer 3

Data is generally assembled in a file containing individual
records. A record for your personal medical history is included
in a master medical file, for example. The place on the form
where your last name is entered is a f ield. Thus, data about you
goes in fields. All of these fields together make up your record,
and all related records are a file.

Most databases allow you to create screen forms to keep the file
up-to-date. You can often create report forms, too, for printing
results.

More powerful databases create relational indexes which allow
quicker access to your data. An index for one database (say,
Widgets) can be linked to another file’s index (say, Customer
Info), allowing you to access information in several database
files at once. In this example, you could easily keep track of
how many customers you have, how many widgets are in stock,
and which customers bought widgets. Linking relational indices
makes your data “intellient”.

In conjunction with a query language (similar to BASIC or
Pascal), you can often find and update data in surprisingly
useful ways. The database I use, for example, includes an
interactive mode in which the “query” command line:

list all for occupation ct “Dentist”” <ENTER>
gives me a list of all dentists in the database.

To give a more complex example, these languages can be used
to create a short program which will search for a given field
(say, Earned Income or Donations 1994), perform a calculation,
print a special report, and then delete the record. The query
language is often so close to English that its learning curve is
even softer than BASIC.

One database package, Data Master from Computerware, while
reportedly not fully relational, is the only database program I
know which was written expressly for CoCo 3 OS-9 Level 2
with Windows.

Two popular and capable relational database programs are the
Clearbrook Software Group’s Information Management System
(IMS) and Sculptor . Each is a strong package and highly
competitive in performance.

Page 125

Day Eight

Day Eight

Languages

Mastering OS-9

Languages, including the powerful Basic09 language that
comes with OS-9 Level 2, usually produce text files which you
can edit and perfect. These “source files” are usually changed
by a compiler into the codes your computer needs. Basic09
implements a sort of “half-compiled” intermediate code called i-
code which runs incredibly fast for a Basic language. In addition
to Basic09, OS-9 supports excellent C and Pascal

compilers from Microware.

The biggest seller (other than Basic09) is surely the C compiler.
The last version came with the OS-9 Level 2 Development
Package and includes handy features for professional and
beginning C programmers alike.

For a more offbeat and fascinating language, take a look at
FORTHO9 from D.P. Johnson. Johnson worked hard to follow
0S-9’s “rules” and has produced a ROMable, reentrant, and
relocatable FORTH code generator. Code produced by this
package is small and very fast. The main D.P. Johson FORTH09
module has now been released to the public domain and is
available for downloading on Delphi and possibly other services
supporting the CoCo. D.P. Johnson continues to sell specialized
modules for FORTHO9.

The OS-9 assembler is one of the most advanced assemblers on
any microcomputer. It helps protect from creating OS-9
incompatible code through system call “equates”. These equates
can also speed assembly programming as they offer short-cuts to
accessing the computer. The assembler will be found in the OS-
9 Level II Development Package or with the OS-9 Level I
package. The Level I assembler is the same as that found in the
Level II Dev Pack. That is the primary reason many OS-9ers
pick up Level I (if they don't already have it). The Level II
Developers Package costs much more than Level I and is harder
to find.

OS-9 provides one of the leading development environments on
any computer system. Level 2 with windows can speed program
development substantially. The resulting programs offer high
portability. BasicO9 programs written on your CoCo can almost
always be run on any other OS-9 computer, including the MM/1
and an 0S9/68000 (OSK for short) based Atari ST. Most
Microware C programs can also be compiled and run without
changes on large UNIX based mainframes. This testifies to the
programming power in your OS-9 Color Computer.

Page 126

Tandy Color Computer 3

Utilities, like the Goldberg utilities offered with this book,
frequently accept your data files as input and then produce
another file as output.

For example, suppose you want to sort the contents of your
phone list database we have been working on. You can use
“sort” to do this with the following command line:

0S9: sort < Phone_List > Phone_List.sorted #12K
Note that the “<* and “>” are OS-9 redirection modifiers, not
“brackets” around the filename. Find out more about the sort
utility in the appendix.

Another excellent instance of an OS-9 utility is ar, available on
most information services including Delphi and CompuServe. It
produces a highly compact, or compressed, version of text files,
ideal for transferring them via modem or storing them away for
future use. I also make frequent use of LHA, a similar public-
domain program available for downloading. Ar is very popular,
but the .Izh files created by LHA are often more compact. LHA
appears to be the compression utility of choice on some BBSes.

An excellent utility package called “Patch OS-9” is available
from FARNA Systems or CoNect. This package of utilities,
commands, and patches has been heralded as the next best thing
to an updated version of OS-9 Level 2. In fact, it contains most
of the updated utilities that “leaked out” from Tandy’s aborted
updating project. Other utility packages are available from Color
Systems, Northern Exposure, C. Dekker, Sub-Etha Software,
Hawksoft, and Bob van der Poel.

There are plenty of telecommunications software packages
(frequently called “terminal emulators”) for OS-9. Each allows
the user to call up an information service or bulletin board
(BBS) to read and leave messages, upload and download
programs, and so on. Each allows you to simultaneously use
other OS-9 software. What a dramatic example of OS-9’s multi-
tasking power! Imagine downloading a long text file in one
window while working with a spreadsheet and word processor
in two others!

Commercial telecommunications software for the Color
Computer 3 include “InfoXpress” by Bill Dickhaus. This fine
package can be set up to automatically log onto a service (such
as Delphi) or BBS then check for waiting e-mail and download
new forum messages (in more than one forum). The user can
then read and reply to their e-mail and any forum messages

Page 127

Day Eight

Utilities

Telecommunications

Day Eight

0S-9 Origins &
Directions

Mastering OS-9

while off-line, conserving on-line expenses and their time. The
computer can be left on and set to dial, do its thing, then log-off
totally unattended at any time of the day or night! Replies and
new mail and forum messages are automatically uploaded the
next time InfoXpress calls the same service. This fine program
is available from Wittman Computer Products.

As you can see, each of the Big Five categories are well-
represented In time, more and more OS-9 software will appear,
ensuring that you will have little trouble finding what you need.

08-9: Origins, Directions

Even though your Color Computer purrs quietly in your warm
home, the central processing unit (CPU) inside sharpened its
claws and teeth in laboratories and factories around the world.
Indeed, the personal computer — the most significant addition
to home life since television — owes much of its usefulness to
scientists solving mind-bending industrial problems.

Even today, computing standards set in the laboratory find their
way onto the world’s desktops. High resolution graphics and
plenty of Random Access Memory (RAM), features typical of
home computers such as your CoCo3, evolved from industry’s
advanced computer solutions. OS-9 on your Color Computer 3
also began as a solution to industrial computing needs.

Almost two decades ago technological and manufacturing giants
were aching to have simultaneous control over several manufac-
turing and data collection processes. Motorola, a leading chip
manufacturer, responded to the need by drawing up plans for a
multi-tasking software development environment and advanced
chip hardware. The chip was the Motorola 6809 (a chip from the
same family is in your CoCo 3). The software development
environment, from Microware Systems Corporation in Des
Moines, Iowa, eventually evolved into OS-9. This is the story of
how Motorola’s and Microware’s system — a sophisticated
hardware/ software solution that is hard to beat even today —
ended up on a desk sitting in front of you.

Motorola and Microware: Planning ahead for the 6809.
Microware’s employees numbered only three in 1977. These
three founders; Ken Kaplan, Larry Crane, and Robert Doggett,
all remain with Microware in high positions. Their first project
was a real-time executive (somewhat like the OS-9 Kernel) and a
LISP and BASIC compiler. The expertise they displayed in these

Page 128

Tandy Color Computer 3

products came to Motorola’s attention and in late 1977 Motorola
met with Microware to begin planning software for the
forthcoming 6809 CPU. Their goal was to create a real-time
executive and programming language for the new 6809 which
would debut with the chip.

Motorola set stringent guidelines. First, the software should be
designed to take full advantage of the 6809’s new architecture.
Second, the operating system, programming language, and the
programs generated had to be ROMable — that is, programs
should be able to he stored on an Erasable, Programmable Read-
Only Memory (EPROM) chip. This program storage method is
stable, compact, and easy to maintain in laboratory and
industrial applications.

The chip’s architecture incorporated an efficient, carefully
optimized instruction set. It had a built-in multiply operator and
addressing modes essential for multi-tasking operation. It was,
as one Color Computer expert stated, “the best 8-bit CPU ever
produced” (the 6809 has been classified by some as an “8/16-
bit” CPU because it has some 16 bit capabilities). Microware
knew that it was not enough to port existing 6800 software over
to the (better) 6809. The new software had to be created from
the ground up.

Microware finally delivered a state-of-the-art language, Basic09,
and a real-time multi-tasking Kernel, OS-9. Together with the
Motorola chip they formed an easy-to-learn, powerful system
whose elegance and functionality remain well-respected around
the world. To this day, not only are many older OS-9 (6809)
based control systems still in operation, several companies still
produce a wide assortment of controllers and modules.

Basic09 is a Pascal-like, top-down programming environment
with key words familiar to any BASIC programmer. The
language also offers direct access to hardware. Thus, while its
simplicity promised a softer learning curve, it still gave the
programmer the control they required to control equipment.

Even more exciting, Basic09 was and may still be the fastest
BASIC compiler on an eight-bit CPU. Basic09, included in your
0OS-9 Level 2 package, provides the pro-grammer a sophisti-
cated programming environment worth hundreds of dollars (see
Dale Puckett’s article on Basic09 in the appendices).

Page 129

Day Eight

A few details on
Basic09

Day Eight

The birth of OS-9

Mastering OS-9

As a testimony to BasicO9’s speed, the famous BASIC
programming benchmark, the Sieve of Eratosthenes, runs twice
as fast on a 2MHz CoCo3 as it does under interpreted BASIC on
a 8MHz Commodore Amiga, which has a much more advanced
16 bit 68000 CPU. Thus, the standard software and

hardware included in CoCo 3 Basic09 programming is a better
performer than the standard software and hardware Amiga users
have for BASIC programming. A chip — as Motorola realized
— is only as good as the software running on it.

The real-time Kernel handles the lower-level input and output (I/
O). Written entirely in assembly language, the Kernel has an
eleant, modular design that is extendable, maintainable, and
very fast. The interrupt-handling allows quick response to
changes in process states. Between the Kernel and Basic09,
Microware had hit a home run with its new package.

The Des Moines-based software company, with both software
elegance and marketing strategy in mind, didn’t stop there.
Andy Ball, Microware’s marketing director, said recently, “We
didn’t want just a real-time Kernel, we wanted to provide
complete support.” This support arrived with Microware’s OS-9,
a complete operating system for the 6809 which included a
UNIX-like Shell, a Kernel, I/O routines, and Basic09. It later
added a

UNIX-compatible C compiler that provides a degree of portabil-
ity and dependability not found on most C compilers.

While OS-9’s similarity to UNIX is widely noted, Ball makes it
clear that Microware had its own design goals. UNIX itself was
relatively new when OS-9 was developed so its influence is
much less than most observers suspect. “OS-9 isn’t trying to
compete with UNIX,” explained Ball. “UNIX is really the best in
its class, and we like to think that OS-9 is the best in its class.”
As an indication that Microware complements and does not
compete with UNIX, Ball points to OS-9’s powerful UNIX-
compatible languages, especially the Microware C language.
This makes OS-9 an ideal environment for creating UNIX-
compatible applications.

One distinction is that OS-9 is “real-time”’; that is, “it can
respond to external events as they occur,” says Ball. He
comments further that while UNIX can be “real-time” in certain
applications, OS-9 generally performs much faster. UNIX,
developed on mainframes that deal with user problems in
“batch” fashion, is typically less responsive. Also, UNIX

Page 130

Tandy Color Computer 3

and its software is often not “re-entrant”, necessitating multiple
copies of the same program in memory. This unnecessarily hogs
system resources and ultimately the UNIX-based computer loses
speed. OS-9 is re-entrant and thus much kinder to system
resources, which means it can do the same job as larger systems
with much less. This is one reason typical OS-9 programs aren’t
nearly as big as similar MS-DOS (and other systems)
counterparts.

Microware also designed OS-9 to be modular. Software
engineers enjoy maintaining modular systems. Trouble with the
printer module? Replace it with another! Since Motorola built
position-independent code (PIC) capability into the 6809, these
modules can be loaded in at just about anytime, just about
anywhere in memory. Adding a new device driver or application
program is as easy as loading it from disk. The versatility

of OS-9’s memory modules distinguishes it from any other
major operating system.

0S-9’s marvelous features did not go unnoticed. When Tandy
heard that many CoCo owners were looking for more powerful
software, they examined available operating systems for the
6809E and chose OS-9, not just for the multi-tasking capabilities
but for the application software available under OS-9. This
proved to be a clever choice that in many ways made the Color
Computer 3 possible; without OS-9, the Color Computer as we
know it may well have “passed away” much earlier.

Choosing OS-9 for the Color Computer perhaps demonstrated
another sign of Tandy’s innovation. Tandy Corporation had
long been an innovator in the computer field, a fact which the
media and the public has been slow in acknowledging. “Tandy
deserves a lot more credit than it usually gets,” Ball comments.
“They produced the first (really successful) personal computer
[TRS-80 Model 1 in 1977] and the first laptop [TRS-80 Model
100, 1983].”

Unfortunately, Tandy has been forced by today’s highly com-
petitive computer market to “go along with the crowd” and offer
a line of IBM compatible clones. Yet they still manage to be
innovative; they were among the first computer retailers to mass-
market multi-media computers.

“Tandy has more than 9% of the computer market, and their

most popular computer [in 1988] is the Color Computer,” Ball
continues. “The CoCo is really the main component of their

Page 131

Day Eight

The Tandy Connection

Day Eight

0S-9 Today

Mastering OS-9

market.” Since the introduction of OS-9 on the first Color
Computer, OS-9 was a strong seller on the CoCo 2 and, of
course, on the CoCo 3 as OS-9 Level 2. Tandy announced near
the end of the CoCo’s long life that no disk software would be
marketed unless it was OS-9 Level 2-based. Level 2 had finally
become the “official” operating system for the CoCo 3.

Microware decided to agree on a Color Computer port of OS-9
based on the observation that the Color Computer OS-9 system
would be a low-cost platform to demonstrate OS-9’s features to
the public at large. In fact, Microware had contacted an
independant firm (Frank Hogg Labs) about porting OS-9 to the
CoCo even before getting Tandy's attention. The system proved
so powerful that even today engineers working with some of the
most powerful mainframes develop software at home on a
Tandy Color Computer running OS-9’s C compiler. This
software, perfected at home, will run without a hitch on their
mainframes at work!

Ball himself was impressed by the Color Computer 3’s price/
performance ratio. “No other 8-bit computer can give you 512K
of RAM, a Kernighan and Ritchie C compiler, and performance
that the CoCo 3 provides. There just is no comparison.”

Microware has not ended its relationship with advanced
Motorola chips. Although the bulk of its work on 6809 OS-9
was completed by 1983, the advent of the Motorola 68000
offered them a chance to develop the next generation of OS-9.
Called OS-9/68000 or simply OSK by some, this version of OS-
9 is offered on a large number of 680x0-based machines.

Most OSK systems are not mainstream personal computers.
Software developers use them to develop software for other
machines — even when the target machine is not 680x0 based.
Companies from the US, Germany, England, and Japan offer
OSK systems whose power and utility continues to increase
with Microware’s UniBridge and SLED (a unique source-level C
language debugger).

OSK continues to prevail in process-control. In fact, its
elegance

and versatility in this arena drew the Midas gaze of Philips and
Sony, both mass-market electronics leaders, in their search for
an advanced operating system for Compact-Disk interactive

Compact Disk Interactive (CD-i), an interactive computer

Page 132

Tandy Color Computer 3

entertainment and education system, is poised ready to
revolutionize home entertainment and learning. CD-RTOS, its
operating system, has OS-9/68000 as its heart. [See the Essay on
CD-i for more insights into this new technology.]

Other industry leaders attracted to OS-9 include Honeywell,
NASA, Hughes, and Boeing. Some of the applications involving
OS-9 are secret or proprietary. Some that aren’t: the systems
aboard a Swedish-made Corvette-class naval ship (a bit smaller
than a destroyer) are all controlled by OS-9, as are many Space
Shuttle-related projects. OS-9 is used extensively in cell-
controllers which collect essential data. It is used in testing units
at automobile manufacturing plants and electronics testing firms.
Rumor has it that OS-9 is used in some on-board systems
monitoring equipment in new cars. So if your oil-light comes on
and saves your car from melt-down, you may be able to thank
0S-9.

In the personal computing world, the most exciting news for
many OS-9 users arrived in OSK for the Atari ST series. The ST
port, begun by a now-defunct operation in California and saved
by Microware, is currently available from Cumana Ltd., of
England. The Atari ST, though crippled with a few design flaws
[see the Essay on OS-9 and Music] provides a lot of “bang for
the buck” under OS-9. Microware used STs to aid in CD-i
software development. One insider described the ST software
Microware created for CD-i as “spectacular”.

0S-9 is now available for the Commodore Amiga. The port, by

Tesseract Software of Australia, is not commercially available in
the United States but can be ordered directly from the company.
It is pricey at around $600.00 US though.

While OS-9’s popularity grows in the United States, OS-9
“fanaticism” is rampant in Japan where OS-9 is the number one
business operating system. Microware has 12 full-time em-
ployees in its Tokyo office from whom reports filter back about
0S-9’s competitors: the competition advertises that they offer
“OS-9-1like operating systems”! Its popularity is rising in
Germany, too, perhaps as a result of the success of the Atari ST
which is the German’s first choice in business computers.
Microware also has an office in the United Kingdom.

Soon, a derivative of OSK, used in interactive television set-top

boxes, could well be in more homes than MS-DOS, UNIX, and
System 7.x (Apple Macintosh) combined. Still, Microware has a

Page 133

Day Eight

Kindled interest in the
U.S., popular ity abroad

Is OS8-9 in everyone's
Suture?

Day Eight

The future of the CoCo

Mastering OS-9

challenge. In the years ahead newer, better equipment than even
that found in CD-i and set-top TV boxes will be widely
available — beginning with the next generation of
microprocessor chips from Motorola, IBM, and Apple.

These chips, the RISC based PowerPC series, offer parallel
processing among other hardware achievements. Parallel pro-
cessing speeds up computing by breaking problems down into
small parts, each of which is tackled simultaneously by different
CPUs which are monitored by a “master” CPU. This provides a
form of “real” multi-tasking which operating systems like UNIX,
0S-9, and OS/2 only simulate. Processing power such as this
will indeed revolutionize the way we work with computers. OS-
9 (in the form of OS-9000, which is written in C for portability)
is now available for new chip series, and also for the popular
Intel 80x86 series.

The Future of the Color Computer

We, the current Color Computer users,
ARE our own future. As long as we continue
1o use and support these fantastic machines,

there will always be new sofiware
and hardware available.

So support those small vendors and
the core of excellent programmers and
writers out there who are still willing
to support you. In many ways the CoCo,
especially when paired with OS-9,
was ahead of its time.

And, as evidenced by a strong

(though small) support community,
its time is far from passed...

Page 134

Tandy Color Computer 3

Do I really have to learn hexadecimal?

A great mathematician and logician brought computer science to
dizzying heights with Boolean algebra, a field of mathematics
involving binary (base 2) arithmetic (in Boolean alebra, 1 + 1 =
10). Boole’s contributions left a great number of people staring
blank-eyed at his dizzying height and wondering why he was up
there. After all, who cared that O is false and 1 is true, and that if
you made true false and false ture, it wouldn’t change a thing?
Computers cared.

Binary arithmetic and truth tables may leave your mouth dry but
computers drool over them. Binary arithmetic has a direct cor-
relation with the hardware of which computers are made. In
computer applications, though, “true” and “false” correspond to
“on” and “off”. If a switch is on, a condition is true. If a switch
is off, a condition is false.

Feeding a computer a series of instructions amounts to feeding it
0’sand 1’s. Computers are happy to eat these, too; one of these
binary digits is called a bit (Binary diglT). Four bits is a nibble;
two nibbles a byte. You might think that two bytes is almost a
meal, but actually it’s more often called a word.

Although computers eat bits and bytes for breakfast, humans
don’t. Most of us aren’t even sure that bits and bytes can be
numbers. Quick, what is 10010011? The number is 147 by our
usual method of counting, called decimal.

If you feel adventurous, if you like to solve puzzles, and if you
ever wondered how written words relate to what they represent,
read on. Still with us? Great.

In order to keep our numbers straight in this essay, let’s agree to
precede all decimal numbers with “#”, all binary numbers with
“%”, and all hex numbers with “$”.

In binary, you are only allowed two characters, 0 and 1. If you
have nothing you write, “I have 0.” If you add one you write, “I
have 1.” Add another and, well, what do you do? You “know”
you have two things, but how do you write it? Take the one and
move it over to your left side and pretend that, when the one is
over on the left, it really means “two”.

OK, so %10 stands for two (decimal). You won’t be surprised

that Col 1 is three (decimal) — just add 10 + 1 = 11. What is
four? If you guessed that four is written by moving a 1 a little

Page 135

Day Nine

Day Nine:
Hexadecimal numbers
and Boolean Algebra

Bits and Bytes

Binary numbers

Day Nine

A little practice

Mastering OS-9

farther to the left, you’ve caught on. Four is %100 — the two
zeroes tell us that the one is over two places to the left and thus
represents the next power of two, namely 2 X 2 or four. Move
the one over to the left one more place, it represents eight.

Decimal Binary

0 0
1 1
2 10
3 11
4 100
5 101
6 110
7 111
8 1000
9 1001
10 1010
16 10000
32 100000

This is EXACTLY the same process we use for decimal nota-
tion. If y ou have one, write 1. If you have ten, move the 1 to the
left and now we pretend it means ten. To remind you that the
one is “to the left” we stick a zero to the right. Ten is then “10”.
Each time we add a zero to the right of a 1, we pretend that the
“1” represents a higher power of ten. Thus, “10” is ten, “100” is
one hundred, and so on.

Writing down numbers — which are really abstract ideas —
raises interesting questions about the relationship between ideas
and writing. It shows how our culture quietly agrees that a
symbol — for example, the numeral “2” — becomes the same
idea for many people.

But a word only represents an idea and therefore exists in a
domain separate from the letters and numerals we use to express
it. Different cultures have different words for similar ideas. In
the same way, “2” and “10” are different symbols for the same
idea: two.

In decimal, 10 is ten. In binary, %10 is two. In decimal, 100 is
one hundred. In binary, %100 is four. And, in decimal 10,000 is
ten-thousand. In binary, you write ten thousand%1001
1100010000. Got it?

Page 136

Tandy Color Computer 3

The good news is that MOST OF YOU DON’T EVER HAVE
TO LEARN BINARY TO DECIMAL CONVERSION.

There are two chief reasons why software engineers use hex
notation. First, hex notation is more compact than decimal
notation. The decimal number #49,876 takes up five digits; in
hex it takes up four ($C2D4). Second, and more importantly,
converting between binary and hex is a snap. Hex is created by
counting powers of 16, binary by counting powers of 2. Since
16 is a power of 2, hex is closely related to binary.

But still, why prefer it over decimal notation on which we were
all raised? To see why, let’s examine counting.

Imagine two planets, Terra One and Terra Two. Both are Terra-
torial and Terra-fied of each other because inhabitants of Terra
One have ten fingers while Terra Two-ites have sixteen. Plus,
there are political differences; Terra One is fiscally conservative
while Terra Two just loves to distribute money liberally among
its population.

One day, a professional coin-counter specializing in pennies
assembles in the square with an accountant known for penny-
pinching. The coin-counter commences counting: “One two
three four five six seven eight nine ten. OK, that’s one dime.”

Notice that he stopped at ten. They start counting the second
dime: “One two three four five...” and so on, really meaning
they have ONE dime and ONE penny, ONE dime and TWO
pennies, and so on. After the coin-counter counts each penny,
the accountant would write in his ledger:

DIMES PENNIES

[=ReBeoBoloNeoRoX=NRo)
N=lEe RN Bie SR I S

“OK, that’s one dime.”
1

1 2 and so on.

—_

Page 137

Day Nine

Hex notation:
compact and easy

Counting in hex

Day Nine

Back on Terra Two...

The scene on
Zerra One:

Mastering OS-9

Switching scenes to Terra Two we find another accountant with
another coin-counter. Ledger in hand, the accountant observes
his sixteen-fingered friend count a pile of pennies. “One two
three four five six seven eight nine A B C D E F. OK, that’s one
dime. One two three four” We, as cultural historians, realize
that A through F are required because our sixteen-fingered
friends from Terra Two don’t have enough digits in their num-
bering system. Zero through F translates to O through 15 on
Terra One. The accountant, his sixteen fingers fumbling with the
pencil, dutifully writes:

DIMES PENNIES
0 1
0 2
0 3
0 4
0 5
0 6
0 7
0 8
0 9
0 A
0 B
0 C
0 D
0 E
0 F

“OK, that’s one dime.”
1
1
1

W N =

and so on.

Also, as cultural historians, we know that if a person from Terra
Two offers us a dime we take it. That dime is worth sixteen
cents. Whatever you do don’t trade it for a dime from Terra
One!

Any technology sufficiently advanced, it is said, becomes
magic; any civilization sufficiently advanced becomes a welfare
state.

And so it is on Terra One and Two.

A welfare worker, given 100 pennies (equivalent to 10 dimes)

by the Big Banker to distribute among welfare recipients, has
just arrived at the Welfare office:

Page 138

Tandy Color Computer 3

Welfare Worker (over anxious crowd noise): “OK I have 100
pennies here. I have to split these up among the federal welfare
recipients, the state welfare recipients, the county recipients, and
the local recipients.”

Subversive Welfare Recipient: “Exactly how do you expect to
divide the 20 dimes?”

Welfare Worker: “I'm willing to listen to suggestions.”

Recipient: “Why don’t you give half your pile to the federal
recipients, half the remaining pile to the state recipients, and so
on until all the pennies are gone?”

Welfare Worker: “Why not? Sure. Let’s see. I have 100 pennies.
OK, fifty go to you (gives 50 cents to federal recipient) and that
leaves me with 50 pennies. Half of that — twenty five — go to
you (gives 25 cents to the state recipient). Wait... does anybody
have change?”

Welfare worker gulps, suddenly realizing one can’t split 25
cents in equal halves. County and local recipients, obviously not
recipients today, begin rioting.

The same thing is going on on Terra Two:

Welfare Worker: “OK, today we are going to distribute our
money as our friends on Terra One do it — halving the pile
each time.”

Another Subversive Recipient: “T’d like to see THAT ...”

Welfare Worker: “I have 10 dimes. Let me get change — OK,
our dime has sixteen pennies so I now have what Terra One
dwellers would call 10 times 16 pennies, or #160 pennies. Half
to you and that leaves #80; half to you and that leaves #40; half
to you and that leaves #20; half to you and that leaves #10.”

Everyone goes home happy. The moral: Sixteen is a power of
two because it can be written as 2 X 2 X 2 X 2. This is the same
as saying that 16 = 24. Because base 16 (hex) is founded on a
power of two, Terra Two can expect fewer riots. And because
hex is based on a power of two, hex numbers are easily divided
by two. Dividing a hex number by two is essential in converting
a hex number to binary. Thus, it is easy to convert hex numbers
into binary numbers.

Page 139

Day Nine

Also on Terrra Two

Day Nine

Converting Decimal
lo Hex

the convert urility

Mastering OS-9

Example: Note that sixteen, as a power of two, is nicely
represented in both binary and hex. In binary, it-is %10000. In
hex, it is $10. Let’s convert $32 into binary:

$32 =930 +2

=3X$10+2

Now, 3 in binary is 11 and $10 (hex) in binary is 10000. Thus, 3
X $10 is the same as 11 X 10000 in binary. This multiplication
yields 110000. Also, $2 in binary is 10.

Summarizing:
00000010 = $2
+ 00110000 = + $3 x $10
00110000 = $32

Notice that adding binary numbers in columns is easy. Just
remember that 1+0 is 1, 0+1 is 1, and 1+1 is O carry a one. This
is just like ordinary decimal addition except that instead of
counting on your fingers, you count on your kneecaps.

Now that you appreciate why computer scientists like hex (well,
perhaps you still don’t), we raise the harder question: how do
you convert between decimal and hex? Easy; take a decimal
number and find the largest power of sixteen that is just smaller
than that number. Subtract. Do the same with the remainder
over and over until you are left with just numbers in the “ones”
place. Add all those powers of sixteen in hex notation and top it
off with the remainder in the ones place and you’re done.

Those instructions resemble one of Tom Lehrer’s dry comedy
classics. They also resemble math torture. The good news is that
MOST OF YOU DON’T EVER HAVE TO LEARN HEX TO
DECIMAL CONVERSION. No, you don’t have to learn hex
conversion.

If computers become your passion chances are good you’ll learn
how to convert hex numbers on sight. You will win the
admiration of many. But many of you don’t want to take the
time. Just for you, the “Mastering OS-9" disk provides a utility
called Convert.

Convert is a Basic09 program which incorporates one of
Stephen Goldberg’s excellent utilities. It converts between
decimal, hex, and binary numbers. Just input a number preceded
by a special symbol. Depending on the symbol the program will

Page 140

Tandy Color Computer 3

read the number as hex, decimal, or binary. The program then
converts that number into all three forms.
Convert requires that you have the “Runb” module in your
current execution directory. To check, type:

089: dir x <ENTER>
This provides a directory listing of your current execution
directory. If neither Convert nor Runb are in memory, they
should be listed in this directory.

Example: Upon running convert you will see:

KK AR KR KA KR KA AR KA KRR KA KR KA AR KA KRR I AR KA AR I AR KA A R I A AR h AR hh kK

Welcome to Convert

Provides Decimal, Hex, and Binary versions of input
number

KK AR KR KA KR KA AR KA KRR KA KR KA AR KA K IA KR KA AR I A KRR A AR I AR *h AR hh kK

Press <BREAK> to Exit

Press <$> for Hex numbers or <#> for Decimal
then type the number

Then you might type: $35 <ENTER>. This is hex 35. The
program then responds:
53 $35%00110101

This tells you that $35 is 53 in decimal notation and 00110101
in
binary. Then you might type: #23 <ENTER>. This is decimal
23. You would see on your screen:

23 $17 %00010111

If you typed: %10 <ENTER>, you would see:
2 $02 %00000010
Press the <BREAK> key to exit. You will then see:

(c) 1988 Kenneth Leigh Enterprises
Portions (c) 1987 Stephen B. Goldberg and FBN Software
Used with Pernission

Page 141

Day Nine

Day Nine

An easier waytto
convert hex/binary/
decimal numbers

Mastering OS-9

There is an easier way to calculate hex/decimal/binary conver-
sions by hand. All you have to do is remember that each hex
character represents a value from 0O to 16. So break each hex
number into “nibbles” (single characters) and try to remember
the following 32 values:

DECIMAL HEX BINARY DECIMAL HEX BINARY

0 0 0000 8 8
1000

1 1 0001 9 9
1001

2 2 0010 10 A
1010

3 3 0011 11 B
1011

4 4 0100 12 C
1100

5 5 0101 13 D
1101

6 6 0110 14 E
1110

7 7 0111 15 F
1111

Take the hex number $F2. The two nibbles are “F” and “2”. “F”
in binary is 1111 and “2” is 0010. So the binary equivalent is
11110010. Converting from binary to hex is the same... only in
reverse. Should be easy enough!

Converting a decimal number is a bit more work. You convert it
to a binary number first. To do this, you start writing digits from
left to right. If your decimal number is 128 or more, it is an eight
bit number. The left-most posiotion represents 128. From left to
right, the positions represent 128, 64, 32, 16, 8, 4, 2, and 1. A
“1” in a position means the number is greater than or equal to
that position's value, a “0” means it is less.

Let's convert 242 into a binary number. Since 242 is greater than
128, we start by writing a “1”. Subtract 128 from 242. That
leaves us with 114. Since 114 is greater than 64 we again write a
“1”. Subtract 64 from 114, leaving 50, which is greater than 32,
so another “1”. Subtracting 32 from 50 leaves us with 18. So
another “1”. 16 from 18 leaves 2. Since 2 is less than 8, there
are no “eights”, so we write a “0”. Same for the “4” position. 2

Page 142

Tandy Color Computer 3

IS 2, so we have a“1” there, and since there are no “ones”,
another zero. So our binary number is 11110010.

To concert a decimal into a hexadecimal number, convert it to a
binary first. Now break the binary number into two nibbles (four
digit numbers). Using 242, this would be 1111 0010. Now look
at our chart and write down the values. 1111=F, and 0010=2.

Hex numbers are not scary, just tedious. Software and hardware
engineers find them useful; if you plan to follow these careers,
learn hex. Otherwise, learn to use convert.

Compact Disk-Interactive: OS-9 in Every Pot

I poped my head into a video arcade several years ago (around
1985) to see a huge crowd aching to see the newest video game.
It was “Dragon’s Lair”, an interactive video disk game with
excellent cartoon-like animation that rivaled broadcast-quality
television (this is now considered a classic!). I saw the future
that day.

Then came Compact Disk players. CD Digital Audio was indeed
music to my ears. The first demo disks sported some of Japan’s
best jazz musicians, but my favorite sound was the one I heard
right before the music started playing: nothing. No static from a
record stylus, no tape hiss... absolutely nothing! I heard the
future that day.

And then came CD-ROM. Using compact disk technology to
store error-free data — not just millions of bytes, but HUN-
DREDS OF MILLIONS of bytes of data (usually 650 megabytes
+ per CD) — was incredible! Think of the birth records, property
deeds, and scientific data you could store and quickly recall
using database management programs! Think of the reference
works! You cold put an entire encyclopedia, dictionary, and
thesaurus on a single disk. True, you had to have a computer
with the necessary software to display and use the information,
so what? I knew the future when I saw it! (Editor’s note:
Remember, this was originally written in 1988, long before CD-
ROM was affordable or even practical!)

Well, it was the future. The three-headed dragon of CD Digital
Audio, CD-ROM, and Video Disk-Interactive has been slain by
Microware, Sony, and Phillips. Together these companies have
created Compact Disk-Interactive (CD-i), which combines most
of the virtues and few of the weaknesses of these three for-mats.
The result? An interactive, informative, and entertaining audio-
visual marvel you connect to your TV and (optionally) your

Page 143

Day Nine

CD-i: Compact Disk
Interactive

Another TV gadget?

Day Nine

Fun to use, hard
lo create

Mastering OS-9

stereo. No personal computer is required because the computer
is built-in. No special software to load because each disk is self
contained with all data and programs needed to operate its title,
and at a reasonable cost.

Imagine walking into your living room or wherever you keep
your TV, turning on your CD-i player and popping in a disk.
Turn on your super high-resolution stereo television and see
colorful full-action video followed by a short animated
sequence. During the animation glorious full stereo music pours
out of your speakers. Finally, a screen appears: “Welcome to
Moon Flight, Press Remote Control Now”... and it says this too.
With iced tea in hand and relaxing comfortably in your recliner,
you activate the show with your remote.

Off you go into an hour long trip to the moon. At various points
in the program you can stop to look back at earth — choose just
what time of day you want it to be; look up at the stars; or
examine the moon. Just touch the proper button on your remote
as displayed on the screen (and sometimes spoken to you!).
Depending on the heavenly body you wish to examine, you are
given choices on screen to get more information about what you
are currently looking at. What is that city down there? Isn’t that
the Great Wall of China I see? Hey, let’s take a side trip to
China! Just push the proper remote button for more
information...

No, the CD-i player may LOOK like another TV/Stereo gadget,
but it is much more. In reality, it provides entertainment and
educational opportunities in a highly advanced computer. This is
the start of the “computer appliance” so many people have
envisioned for years. So easy to use a child can easily operate it
alone. No more intimidating than a stereo tape player, VCR or
any number of other now common gadgets.

The entertainment value of CD-i is tremendous. But creation of
interactive disks may makes this medium a product of expert
programmers... more usually prgramming teams. How are these
disks assembled? I t requires personnel coordintation of night-
marish complexity. Programmers, video producers, composers,
and graphics designers all meet with one goal in mind: they
want to create a single disk to entertain and inform their target
audience based on the best each has to offer.

Conceiving such an enormous audio-visual project is a delicate
task for a director. Combining text, video, animation, and audio

Page 144

Tandy Color Computer 3

onto one disk isa delicate task for a programmer. And coughing
up a quarter million dollars (sometimes more) for each title is the
unenviable task for the producer. Some of the first titles may
have cost millions to produce! With some of the modern tech-
nology available today, it IS possible to cut costs dramatically. It
isn’t inconceivable for a couple people (programmer and video/
animation specialist) to be able to produce a CD-i title. Not as
long as they have the $80-$100,000 of equipment needed.

But the pay-off is there. While predictions are still cautious, the
public is starting to accept this revolutionary medium. All of the
popular video game machines are now using CD-ROM for ever
larger and realistic games, and it is almost mandatory for
computers to have CD-ROM drives. As the public gets more
familiar with these devices, they will want more from them, and
those who don’t have access to computers, or feel intimidated
by them, will probably feel more at home with a CD-i player.
Cost is more justifiable too... nothing else on the market today
can play audio CDs, games and educational software, and full
length movies (Panasonic promises as much with its rival “3DO”
player, but this machine uses a different format and cannot yet
play movies).

An interactive disk contains a variety of data types. There are
several audio formats, several video formats, and text formats
offering a wide variety of fonts. Animation is supported in many
forms and common video effects (mosaic effects, wipes, and
chroma-key type techniques, for example) are available. Audio
can range from AM radio quality all the way to CD digital audio
with many intermediate formats. Programs and their data are
also included on the disk to activate animation and control what
the viewer is presented with.

This data is interleaved on the disk in such a way that all
elements can be synchronized during playback. Data is
frequently encoded in compressed form on the disk. This
interleaved data is read by the players heads at a constant rate
and sent by the operating system, CD-RTOS, to the proper
decoding hardware. When data has been decoded it is then
queued up

for presentation to you.

When Sony and Philips conceived CD-i, they knew that the
software to run it would need to be easily configurable to the
specially-designed hardware; it would need to react in real-time
to various inputs and events, it would have to incorporate a

Page 145

Day Nine

How CD-i works

Why OS-9 for CD-i?

Day Nine

0S-9 in every home...

Advantages of CD-i
over other “game”
machines

Mastering OS-9

sophisticated and reliable user interface and programming
environment, and it would have to be multi-tasking.

This should sound familiar. You probably won’t be surprised to
learn that OS-9 is the heart of CD-RTOS. To be precise, OS-9/
68000 is the heart of it. CD-RTOS contains the Kernel of OS-9/
68K and includes new manager and driver software to accomo-
date the state-of-the-art hardware added by Sony and Philips to
the CD-i player.

One of the greatest achievements of CD-i is its synchronization
of different data output. OS-9 is a natural for this kind of work
as it both multi-tasks and responds to software signals with
sensitivity. (Perhaps“sensitivity” is the wrong word; in
computerese this translates into the ability to handle several
different levels of interrupts.) CD-RTOS, being modular, also
allows software developers to write replacement modules which
fine-tune the CD-i player for a particular disk. This is much like
the techniques Color Computer 3 users employ to add some pep
to their OS-9 based computer.

The CD-i insiders interviewed for “Mastering OS-9” have high
hopes that CD-i will take off like wildfire. This will be true if the
quality of the disk programming is high. As great a challenge as
assembling the hardware was, the greatest challenge is still
ahead: make it entertain without seeming gimmicky or shallow.
Whether or not media leaders want to invest millions in title
development remains to be seen. How quickly they jump into
the market may determine the whole future of CD-i.

One side-effect of CD-i’s success is that OS-9 may be in more
homes than any other operating system in less than two years.
“But,” you may object, “it’s only OS-9 strapped into a piece of
stereo equipment!” Not so. As reported in “Compact Disk-
Interactive: A Designer’sOverview” (McGraw-Hill, 1988), the
bulk of OS-9/68K software will run virtually unchanged on a
CD-i player (within the hardware limits of the player itself). This
means that with a little additional hardware (a keyboard and disk
drive, or perhaps a terminal), thousands could have a state-of-
the-art, multi-user, multi-tasking microcomputer in their homes.
If the demand to use a CD-i player as a computer increases, the
availability of OS-9/68K software might explode. Some of this
0OS-9 excitement is sure to trickle down to Color Computer
users.

The main advantage the CD-i machine has over the other game

Page 146

Tandy Color Computer 3

machines is the ability to play feature length movies. Not only is
the quality of digital video better than tape, but you can do more
with it! I recently saw a demo of a CD-i machine playing “Star
Trek IV”. The disk has several “chapters” stored on it. One can
bring up a menu that shows a still scene from a certain part of
the movie. From that menu, it is easy to jump directly to that
scene in a matter of seconds! No more fast-forwarding and
trying to watch jumpy video so you can get back to where you
stopped watching a day or two ago. And it is really easy to get
close to your favorite part! Although some of the other ma-
chines, namely Panasonic's 3DO, have advertised movies as
being available, this feature has yet to materialize. So the CD-i
palyer is the most versatile piece of entertainment equipment
available. Stereo CD player, video disk, game disk, and
educational programs too!

For more information you can order “Compact Disk-Interactive:
A Designer’s Overview” directly from McGraw-Hill. Written by
Philips, it provides a sketch of what CD-i titles will look like,

how they will be created, and how the hardware works. There is
a generous sampling of technical information. CD-RTOS is also
explained. You may also write Microware Systems Corporation:

New Media

Microware Systems Corp.
1900 NW 114th Street
Des Moines, IA 50322.

If you just want to see on of these amazing machines, they are
as near as your closest Sears, Macy’s, Babbage's Software, or
Best Buy stores. With the support of these wide-spread retailers,
new titles are in most malls across the country. And if all else
fails, telephone Sears.

None of the stores are pushing these devices. One problem is
that store personell just aren’t very knowledgeable. Another is
the way they appear to be selling them.

The Phillips CD-i machine is being sold primarily as a family
entertainment/educational product. There are many game titles,
but the emphasis seems to be toward adults, who will but more
for educational purposes. This is in direct contrast with
Panasonic’s similar 3DO marketing. Panasonic is emphasizing
game play, in competition with the Sega CD and similar game
systesm, then tacking on education as a nice by-product.
Unfortunately, this may be working. Kids see these, then talk
parents into getting them. Maybe Phillips should shift their
emphasis on game play also, then mention the multi-purpose

and educational qualities as well. Page 147

Day NineDay Nine

More info on CD-i

Where 1o find CD-i
players

CD-i marketing...
off target?

Day Eleven

Tutorial 7:

What we'll cover
0S9Gen

0S9Gen: /70 the
guts of a boot

Mastering OS-9

GETTING STARTED WITH TUTORIAL 7
The first part of “Getting Started With Tutorial 7” is intended to
be a stand-alone guide to creating a custom boot disk with
OS9Gen. Instead of separating background information on
OS9Gen from step-by-step instructions in using it, “Getting
Started With Tutorial 7” includes in one essay what you need to
know to create a disk with your favorite modules and
commands.

Why change the book’s format just for this one utility? Simply
because you will probably refer to this essay on OS9Gen more
often than any other section of “Mastering OS-9”. By placing
all the relevant information in one place you won’t have to wade
through numbered steps.

The second part of “Getting Started With Tutorial 7 formally
introduces you to one of the truly revolutionary aspects of Level
2 for the Color Computer 3 — multi-tasking windows. The
hands-on tutorial following this introductory material ONLY
applies to creating these windows.

First-time readers of “Mastering OS-9” are expected to perform
all steps associated with OS9Gen in the essay below so don’t
skim it lightly. The bootdisk you build is required for Tutorial 8.

OS9Gen provides the greatest user interaction with the boot-
making process. Use OS9Gen whenever you create a new boot
disk from scratch and particularly when adding modules to
OS9Boot which are not included on the System Master distribu-
tion disk.

OS9Gen creates a new boot file on a freshly formatted disk. It
only includes modules listed in a specified bootlist. In this way it
is similar to config. The difference is that config automatically
creates its own bootlist based on some choices you make.
OS9Gen requires you to use edit (or any other text editor) to
create your own bootlist. You could, of course, modify an
existing bootlist, such as the one made by config, instead of
creating a new one. In this tutorial, we’ll start from scratch.

A bootlist contains module names, one per line. Recall from
Tutorial 1 that OS-9 Level 2 can be sensitive to the order in
which these module names appear in the bootlist. Thus, Config
— which takes bootlist creation out of your hands — has
limitations. OS9Gen overcomes these.

Page 148

Tandy Color Computer 3

A bootlist used with OS9Gen is usually situated within a
directory containing the actual modules listed in the bootlist.
This directory is commonly called MODULES or MODS. This
directory with its bootlist and modules will reside in drive /d0 for
this tutorial.

Before creating the new boot on drive /d1 you must format a
fresh disk. Then create the bootlist with a text editor, saving it in
a modules directory. Finally, use OS9Gen to create a new boot
disk’s OS9Bootfile.

This done, copy over to the new boot disk a CMDS and SYS
directory and a Startup file using dsave and the Shell’s pipe
modifier. We demonstrate dsave here but we wait for a more
complete introduction to this powerful command until Tutorial
8.

0OS9Gen works with the following syntax:
08S9: 0s9gen device < bootlist <ENTER>

Here, device is the destination drive (see Tutorial 1) for the
OS9Boot you create. While any valid floppy drive may be the
destination drive, we will use drive /d1.

Bootlist refers to the name of a text file you create containing
module names, one per line, for each module to be included in
OS9Boot.

Bootlist can reside anywhere, although it is usually in the current
data directory. If it is not, use a more complete path name to
help OS-9 find the file when running OS9Gen. Also, the module
names listed in bootlist may be complete path names for the
modules if these modules do not reside in the current data
directory.

The “<* symbol indicates that OS9Gen reads bootlist line by line
as its input. OS9Gen takes each module name it finds, looks for
a module with the given path name, and places that module in
the new boot.

There are other alternatives, especially with the utilities included
with “Mastering OS-9”. One utility, from Steve Goldberg, is D
and provides a line-by-line directory listing of the current data
directory.

Page 149

Day Eleven

0S9Gen synrax

Other path redrirection
techniques

Day Eleven

First step: a modules
directory

Mastering OS-9

If all the modules for your new boot are contained in your
current
data directory, you can run OS9Gen like so:

08S9: d!os9gen /d1 <ENTER>
The trouble with this method comes when the modules in your
current directory must fall in a particular order in the OS9Boot
file. Some hardware and software combinations on a system
may require different boot list orders. Once you find a boot list
that works, however, you can transfer the modules named in it
over to a MODULES directory of their own. Then you can use
the above command line with no problems.

If the output of D does not create a workable boot list, you have
encountered the “Bootlist Order Bug” (commonly referred to as
the “BLOB”). This bug has been carefully researched by OS-9
specialists around the country. There is a detailed description of
fixes in the appendix.

I recommend that a backup copy of the OS-9 Boot/Config disk
be used to store all modules. This disk contains a directory
named MODULES already created for you by Tandy. It contains
all standard Tandy modules. “Mastering OS-9” brings you four
additional modules thanks to Bill Brady and Kevin Darling. Any
third-party modules (that is, modules from vendors other than
Tandy) should be copied into this directory as soon as you get
them. If you have “Patch OS-9” from FARNA Systems or
CoNect, you will want to copy any additional modules to your
“Bootmaker” disk instead. Whenever you add modures to the
MODULES directory, backup the disk.

Example: Suppose you buy a house alarm system to run off
your OS-9 based Color Computer 3. The distribution software
arriving with it comes with devlce drivers and descriptors for the
alarm sensors. Suppose further that the device driver and
descriptor are alarm.dr and alarm.dd respectively and that the
manufacturer places these in a MODULES directory on the
distribution disk. Place this disk in drive /d0. Place your Boot/
Config backup (or Bootmaker) in drive /d1. Now type the
following:

089: chd /d0/MODULES <ENTER>

08S9: copy alarm.dr /d1/modules/alarm.dr <ENTER>
08S9: copy alarm.dd /d1/modules/alarm.dd <ENTER>

Page 150

Tandy Color Computer 3

Now that all the modules you need are in MODULES on the
Boot/Config backup disk, you must create a list of each module
name in a text file. One way to create such a list is to use edit or
some other text editor to modify the bootlist already in the
MODULES directory in the Boot/Config disk. Or you can use
the “Mastering OS-9” D utility and send its output to a file which
you can easily edit with a full-featured word processor. Let’s
start from scratch. Here is a bootlist which is known to work:

0s9p2

init

ioman
RBF.mn
cc3disk.dr
r0.dd
rammer.dr
d0_40d.dd
d1_40d.dd
ddd0_40d.dd
SCF.mn
cc3io.dr
grfint.io
term_win.dt
w.dw

w2.d

w3.d

w4.d

w5.d

wo6.d

w7.d
pipeman.mn
piper.dr
pipe.dd
mw

p.dd
proacia.dr
printer.dr
p.dd
clock.60hz
cc3go

MWP.dd and PROACIA.dr- are are the names of public-domain

modules which permit telecommunicating with Bill Brady’s
shareware program WizPro. Once you create a boot disk with

Page 151

Day Eleven

The bootlist

Day Eleven

Running OS9Gen

What next?

Mastering OS-9

the above modules you can run WizPro the first day you receive
or download it. Check an information service such as Genie,
Delphi, or CompuServe for more details. Of course, if you won’t
be running WizPro these aren’t needed.

Many people replace Tandy’s stock ACIA.dr with SACIA.dr,
which is an enhanced public-domain version. This is just one of
the patches found on the “Patch OS-9” disk set. It can also be
found on many bulletin boards that support OS-9.

The modules r0.dd and rammer.dr install a ramdisk on your
system. You use this ramdisk for the first time in Tutorial 9.

Create the list above with a text processor such as edit or use
your own word processor. Make sure you save a copy of the
resulting bootlist in the MODULES directory. For the sake of
this tutorial, call the bootlist “bootlist.sO9”.

Put your backup of the Boot/Config disk in drive /d0. Now type
the following commands, pausing between them to follow our
additional directions:
0S9: chd /d0/modules <ENTER>
Check to make sure your bootlist is in the MODULES directory:
089:dir <ENTER>
Do you see Bootlist.s09? If so, fine. If not, copy it into MOD-
ULES:
0S9: chx /d0/cmds <ENTER>
Confirm that OS9Gen is in your current execution directory:
089:dir x <ENTER>
It should be there if you’re using the Boot/Config backup. If it is
not, find it and either copy it into your current execution
directory or load it into memory.

Place a freshly formatted disk in Drive /d 1 (for help with the
format command, see Tutorial 1) . Type:

08S9: os9gen /d1 < bootlist.sO9 <ENTER>
Everything is automatic. OS9Gen will check the disk in drive /
d1 to make sure it is formatted and a valid OS-9 disk. It will then
read bootlist.s09 line by line and merge the modules into a new
OSO0Boot file which is placed on drive /d1.

At this point, I suggest finding a system disk which includes
your favorite commands and procedure files. Place that disk in
drive /d0.

If you are reading “Getting Started With Tutorial 7 as part of

Page 152

Tandy Color Computer 3

the “Mastering OS-9” tutorials, please use the Custom Master #1
disk as the system disk to be placed in drive/d0.
Orient OS-9 to the new system disk by typing:

08S9: chd /d0; chx /d0/cmds <ENTER>
Check that dsave and makdir are in CMDS. If not, find them on
another disk and load them into memory:

089: dir x <ENTER>

08S9: load dsave <ENTER>

0S9: load makdir <ENTER>
Run dsave and pipe its output to a shell for immediate
execution:

0S9: dsave /d0 /d1 ! shell <KENTER>
sit back and watch dsave do its thing. Users of “Mastering OS-
9” should label the disk in drive /d1 “Custom Master #2".
Backup this disk.

When all is done you should have a bootable disk with all your
favorite features. If your disk is unbootable or behaves errati-
cally, edit your bootlist to reorganize the modules and try again.

Here are some tips on reorganizing bootlists:

* Put block-oriented device descriptors/drivers (such as
ramdisks and disk drives) near RBF.

* Put sequential-oriented device descriptors/drivers near SCF.

* Place all the pipe modules together.

What you want to avoid is forcing OS-9 to map too much of the
0S-9 system in a single 64K block. If you have questions about
this sort of memory allocation problem, read “The Dreaded
BLOB” in the appendix.

You are not required to pipe the output of dsave to a Shell. You
can further customize your new disk if you take the time to
direct dsave’s output to a procedure file and then edit the file to
exclude unneeded files or commands. Then execute the
procedure file.

One last tip. Just because you have 512K does not mean that
OS9Boot can be as large as you wish. Only include modules
you need in a typical work session. For example, if you
telecommunicate and like to capture information in a ramdisk
buffer, install your terminal package’s modules and your
ramdisk modules together, as we have done here. Or, suppose
you run subLogic’s Flight Simulator II (tm) during your word
processing work

sessions. Include Flight Simulator’s drivers with, say, the screen

Page 153

Day Eleven

That's all there is!

Day Eleven

Time to open windows!

Logical devices

Mastering OS-9

driver for your particular word processor or spell-checker.

It is easy to see that you may want several boot disks, one for
general purpose work and several others for specialized work.
Personally, I use a general purpose boot then load additional
modules as needed. But then I don’t do a lot of gaming or
programming on my system. [mainly use the Dynacalc
spreadsheet and Bob van der Poel’s DMLY mailing label/address
database program for keeping FARNA System’s books and the
mail list for “the world of 68' micros” magazine, plus a few
utilities to keep things in order. If I were doing any heavy duty
programming, I'd probably make a boot especially for Basic09
and/or the C compiler. Good luck!

One reason to buy OS-9 Level 2 on the Color Computer 3 is that
it offers true multi-tasking windows. Other computers are
able to do this now, but it doesn’t always work as expected.

Apple’s System 7 for the Macintosh allocates memory in large
chunks for at least four processes whenever MultiFinder (the
multi-tasking module) is called. This wastes a lot of memory if
all you want to do is switch between two programs. It also
makes a 4MB machine rather slow... better have 8MB of RAM if
you want to really use this feature!

Micro-Soft’s Windows for the MS-DOS operating system
handles memory a little better, but not multi-tasking. If a pro-
gram was specifically designed correctly to run under Windows,
then it will (should!!) multi-task correctly. MS-DOS programs
don’t always multi-task, sometimes causing the system to lock
up because they expect to have complete control at all times.
Sometimes Windows specific programs do this also, but not to
often, and not if they were correctly programmed.

Level 2 compares favorably to OS/2 with Windows, costs less,
and is a very stable system. Perhaps the only advantage OS/2-
based systems have over OS-9 Level 2 is in the applications
arena — but OS/2 hasn’t exactly caught on over the years it has
been out.

While you have only one physical terminal — your screen —
OS-9 can create the illusion of having many more by creating
“windows”. In this book we create windows with the wcreate
command. Each window can run its own Shell if you wish,
making it act like another OS-9 computer on your desktop. You
can also use a window to display program data output, as long

Page 154

Tandy Color Computer 3

as the window is not running a Shell.

Recall that each device is recognized by OS-9 when the device’s
drivers and descriptors are in memory. The Level 2 disk comes
with drivers and descriptors for seven windows named /w1
through /w7 plus a generic window descriptor named /w, all of
which were placed in OS9Boot when we Configged the working
system master in Tutorial 1. Confirming that they are in memory
after boot is as easy as using the mdir command. As far as

0S-9 is concerned, these windows might as well be physical
terminals.

Each window “device” /w1 through /w7 comes with default
sizes and colors. To establish a window with all its defaults you
can use the iniz command. Not only is the iniz command
somewhat beyond the range of “Mastering OS-9", but the
defaults for many windows do not suit our purposes. For
example, some windows were apparently defined for use by TV
set bound CoCo 3’s. No users of “Mastering OS-9” should be
using a TV for a computer monitor.

With wcreate you can create a window to exactly match your
needs despite a window’s defaults. Window features which you
control include:
* whether the window is for text only or for graphics
* the heighth and width of the window measured in terms

of text characters
* the location of the window’s upper left-hand corner
* the foreground, background, and border colors
Specifying each of these features requires some background
knowledge.

First, what is the difference between a text-only window and a
graphics window? Text-only windows, called hardware text
windows, use hardware which quickly places text characters on
your screen, making for extremely snappy screen response.
However, you cannot draw circles, bars, lines and other
graphics on text windows. Hardware text windows come in two
types which we introduce in a moment.

Graphics windows can use a virtually unlimited number of fonts
for text composition. They also allow you to draw and paint a
wide variety of objects (circles, bars, arcs, etc.) intermixed with
text. There is a drawback to this versatility, however, text

Page 155

Day Eleven

Creating windows --
text or graphics?

Day Eleven

chrarcters and pixels

Table 7: window types
and codes

What size window?

Mastering OS-9

displaying is not quite as responsive as with hardware text
windows. For many people, being able to use graphics makes
slower text handling an acceptable trade-off.

The four types of graphics windows vary in resolution and
number of colors available on-screen. We introduce these four
types in a moment.

The two types of hardware text screens differ in the number of
characters they can display. Type 1 displays up to 40 characters
across; they can display no more because the characters are
large. Type 2 displays up to 80 characters across with smaller
characters. Both ordinarily display up to 24 rows of text.

Graphics screens come in four types differing in the size and
number of “screen dots”, or pixels, they display and in the
number of colors each pixel can be. Each graphics window is
ordinarily 192 pixels high. Depending on the type of graphics
window you specify, the window may display up to either 320
or 640 pixels across. The number of colors available for each
pixel varies from two to sixteen.

There are 64 colors produced by the Color Computer 3. You can
use up to any sixteen of them. See the Tandy-supplied Level 2
manual for information on how to choose specific colors.

Code Displays

01 40-column text, up to 16 colors
02 80-column text, up to 16 colors
05 640 X 192 pixels, two colors

06 320 X 192 pixels, four colors
07 640 X 192 pixels, four colors
08 320 X 192 pixels, sixteen colors

We’ll only be using hardware text screens in “Mastering OS-9”
but the concepts you learn in creating text windows are easily
applied to creating graphics windows.

After deciding whether you want a text or graphics screen, the
second question you must answer when designing a window is
“How large will the window be?” Since window size is
measured in terms of numbers of text characters displayed,
another way to phrase the question is, “How many

characters do I want to be able to display in the window?”

Wcreate measures window size in lines and columns of text.

Page 156

Tandy Color Computer 3

Type 1 windows can display no more than 40 characters across,
hence they are 40 columns wide. In contrast, a Type 2 window,
80 columns wide, can display 24 lines of text 40 columns wide
and only use half your monitor screen.

If a large amount of text must appear on your screen, choose a
Type 2 text window or high-resolution Type 5 or Type 7
graphics windows.

Once size is determined, you must specify the location of the
upper left-hand corner. Do this by specifying the horizontal (or
x) coordinate and the vertical (or y) coordinate. In this book,
most windows are 80-columns wide. This means that the x-
coordinate ranges from 0 to 79. The y-coordinate for all
windows ranges from O to 23. The coordinates start in the upper
left-hand corner at (0,0).

The wcreate command requires you to specify foreground,
background, and border color. Study this chart:

WHITE
blue
black
green
red
yellow
magenta
cyan
white
blue

10 WHITE
11 blue

12 black

0NN R W~ O

O

... and the process repeats, meaning that only the numbers 0
through 9 are defined.

Notice the way the colors cycle. This results from initial colors
set up in the Color Computer palette for Type 2 windows. Since
we only establish Type 2 windows in this book you can refer to
this chart when creatlng windows.

If you choose another window type when using wcreate, the

colors cycle differently. Sorry, but the logic to palette registers is
beyond the scope of this book.

Page 157

Day Eleven

Where to put the
window?

What color window?

TABLE 7-2
Initial Type 2
window palette

Day Eleven

Ready ro open
a window

An example you’ve
used before.

Mastering OS-9

The syntax of wcreate includes choices from the issues
discussed above: wecreate /wn -s = type xpos ypos width
heighth foreground background border

Here’s the procedure:

* Insert the window type you want by referring to the window
type table above.

* Decide on the starting coordinates of the upper left-hand
corner (the range of these coordinates depends on the type of
window you choose) and insert these coordinates in the xpos
and ypos places.

* Then, once again within the limits of the window type, select
the width and heighth of your window in terms of lines and
characters. Insert this data in the width and heighth locations.

* Use the color table above to choose codes for the colors you
want — if you choose a Type 2 window. Refer to the Tandy
manual for help on choosing colors for other window types.
The border color refers to the screen space surrounding your
main display. The background color is the “field” on which
your letters are typed and graphics are drawn. Letters and
graphics appear in the foreground color.

To open a Type 2 window occupying an entire screen with blue
letters on a yellow background with a black border, type:

0S9: wcreate/w2-s=2 0 0 80 24 1 5 2

The number of the window you use is unimportant as long as it
has not been previously initialized (that is, used as a parameter
with iniz or wcreate or opened with display codes). Double-
check the above command line. Will it do what we promise?

Here is the listing for make_1_2, the procedure file you used in
the last tutorial when trying to fill the CoCo 3’s memory:

echo creating 80 column text windows 1 and 2

3

* Creates two 80 column text windows using wcreate
* with blue letters on a white background

* and black letters on cyan.

* Notice that we only specify the border color on the
* first window created; the other window “inherits”

* that border color

Page 158

Tandy Color Computer 3

create -z

/wl-s=2 0080 122 77

/w2 012 80 12 1 0

* wereate with the z option demands a blank line after
* the list of windows is finished

* Here it is

shell i=/wl&

shell i=/w2&

k

k

Print message to user

k

echo “Press <clear> to select window screen”
echo “Aren’t you glad you’re Mastering OS-9?7”

Apart from the comment lines (preceded by asterisks) and
messages to be echoed, this procedure file is brief and simple. It
uses wcreate’s -z option which tells wcreate to expect the rest of
its needed data from the standard input path. After the windows
are created, “immortal” Shells are started in each (shell i=/w1&).
These Shells are immortal in that won’t “die” at the end of any
work they do. It is not necessary to start a Shell in a new
window. We show you a good use for a Shell-less window in
Tutorial 10.

Woereate initializes windows. Initialization involves establishing a
device in a device table, setting aside system memory for a path
to the window, and other arcane system chores OS-9 handles in
the blink of an eye. To remove a window, you must “de-
initialize” it by name with the deiniz command.

Always de-initialize windows in an order reverse to which they
were created. If you create window /w2, then /w5, then /w7, you
would have to de-initialize /w7 first, then /w5 and finally /w2.

Before you can de-initialize a window, you must kill any Shell
running in it. You can kill a Shell with the “ex” Shell option. For
example, type: 0S9: ex <ENTER>
in the window you want to close. Then, assuming the window to
be closed is window /w3, type from another Shell:

089: deiniz w3 <ENTER>

To summarize window-closing: If a window has a Shell, remove
the Shell, then deiniz the window from another Shell.
If the window does not disappear try to de-initialize it again.

Concepts associated with wcreate are technically involved.
Don’t be intimidated. If the rules for wcreate are followed it is an

Page 159

Day Eleven

Closing windows

Moving on...

Day Eleven

Tutorial 7
Step 1. Booting up

Step 2: Creating
windows

Mastering OS-9

easy-to-use and helpful command. Oh — have some phone
numbers handy!

TUTORIAL 7
STEP 1: BOOTING UP
Find the backup of the disk created by OS9Gen in “Getting
Started With Tutorial 7". Make sure it is labeled “Custom Disk
#2 Backup”. Place it in drive /d0 and boot up as usual.

STEP 2: CREATING WINDOWS.
2.1 Recall Make_1_2 from the introductory reading. Let’s create
a procedure file named Make_3_4 which creates two additional
80 column windows. We’ll make decisions along the way
concerning color and size.
08S9: load edit <ENTER>
We have two editing sessions back to back in this Tutorial.
Loading edit saves some time. When we’re done, we’ll unlink it.
089:editmake_3_4 <ENTER>
E: -* <ENTER>
This makes sure we’re at the top.

2.2 Type: E:I*<ENTER>

Nothing? Good. Just wanted to make sure you created a NEW
file. It may happen one day that you will accidentally “create” a
file with edit that already exists. Without warning the editor may
let you change the file to a point where results are meaningless.

2.3 Now let’s type in our file:

E: <SPACE> echo Creating 80 column text windows
3 and 4 <ENTER>

E: <SPACE> load wcreate <ENTER>

E: <SPACE> * <ENTER>

E: <SPACE> * Creates two Type 2 windows
<ENTER>

E: <SPACE> * with blue letters on white <ENTER>

E: <SPACE> * and black on cyan <ENTER>

E: <SPACE> * These are “vertical” <ENTER>

The last five lines above are comment lines. Two months from
now, after you’ve written dozens of procedure files for window
creation, you will appreciate these comments. Morale: ALWAYS
comment your procedure files so you can easily folow what you
did even years later!

Page 160

Tandy Color Computer 3

2.4 Now we get down to entering the actual command:
E:<SPACE>wcreate -z <ENTER>
If you ever use the wcreate command from the “OS9: ““ prompt,
you can just use the syntax:
0S9: wcreate /wn -s= type
followed by the location, size, and color parameters. But when
using wcreate in a procedure file, it’s convenient to use the -z
option. Then the Shell looks ahead to the next few lines for the
parameters it needs. It knows to stop sending these parameters
to wcreate when it finally encounters a blank line.

2.4 So let’s enter some parameters:
E:<SPACE>/w3-s=2004024277 <ENTER>
This is window /w3 and its parameters. This will be a Type 2
window. The next two numbers tell you that /w3 will have its
top left-hand corner at the top left of your screen. This corner
has coordinates (0,0). 40 and 24 signify 40 columns and 24
rows. Since this is a Type 2 (small font) screen, these 40
columns stretch only half way across your screen.

The last three numbers specify the foreground, background,

and border colors. Whenever you define your first window in a
series of windows, use -s = type as the first parameter; also
make sure you define the screens border color. Use Table 7-2
for color references. If you learn to set up your own palettes (not
covered in this book) you should create a table like Table 7-2
for each.

Make sure you understand every parameter following wcreate
above. If you don’t, read through the explanation again. Ater all,
wcreate separates your computer from every computer in its
price range — and then some. So get to be handy with wcreate!

2.5 Let’s start another window:

E:<SPACE> /w440 0 40 24 1 0 <ENTER>
More obscure commands. Let’s see, we’re initializing window /
w4 this time. But we don’t use the -s=type parameter. Window /
w4 will therefore inherit its type from the previous window
definition. Also, we don’t have to specify a border color as we
want it to be inherited from /w3 also.

Where is the upper left-hand corner positioned? 41 columns
across (the column labeled 40 is the 41st column because

Page 161

Day Eleven

Day Eleven

Mastering OS-9

programmers and mathematicians count starting with ZERO).
This places the x-coordinate half way across your eighty-column
screen. How far down do we start the window? The zero tells us
to move down zero rows. So (40,0) is half-way across your-
screen at the top. Proceeding along the list of parameters we see
that the window has a size of 40 characters across and 24 lines
down. It is the same size as window /w3. It uses color 1 for
foreground and color O for background. With the current palette
setting, that’s blue letters on a white background.

2.6 Remember, when using the -z option with wcreate, the list
of windows must end with a blank line. So we need to insert
one:

E: <SPACE> <ENTER>

2.7 We want each of the newly created windows to have an
immortal shell when the procedure file executes. This makes the
windows ready to switch to and run commands:

E: <SPACE> shell i = /w3& <ENTER>

E: <SPACE> shell i = /w4& <ENTER>

2.8 Now for some additional comments and to print a message
on screen:
E: <SPACE> * <ENTER>
E: <SPACE> * Print message to screen <ENTER>
E: <SPACE> * <ENTER>
E: <SPACE> echo “Press <CLEAR> to choose
screen” <ENTER>

Why did we use quotation marks? Hint: Which symbols in that
line are normally reserved for the Shell? If you already know the
answer, pardon the pop quiz, move to the head of the class. If
not, the answer is the “<“ and “>”, which are used to redirect
Shell input and output. Since they are enclosed in quatations
above, Shell knows they are just to be printed on screen as is. If
they weren’t in quotations, Shell would try to redirect I/O and
return an error!

2.9 Since we won’t be using wcreate again, we may as well get
rid of it: E: <SPACE> unlink wcreate <ENTER>

When executed, this frees the memory wcreate took up. Wcereate
is a fairly large command — 690 bytes (compare with setime at
280 bytes and makdir at 34 bytes) — yet it’s still far smaller than
the 8191 byte space it occupies in memory!

2.10 Let’s move to the top of the file and check our work:

Page 162

Tandy Color Computer 3 Day Eleven

E: -* <ENTER>
E: I*<ENTER>
You should see the following:

echo Creating 80 colunn text windows 3 and 4
load wcreate

k

* Creates two Type 2 windows

* with blue letters on white

* and black on cyan

* These are “vertical”

wcreate -z

/3-s=2004024277

/w4400402410

shell i=/w3&

shell i=/w4&

k

* Print message to user

echo “Press <clear> to choose screen”
unlink wcreate

If all is well, go on to the next step. Otherwise use your
editing skills to make your file look like the one above.

2.11 So now let’s quit edit and execute our procedure file:
E: q <ENTER>
089: make_3_4 <ENTER>

Page 163

Day Eleven

Step 3. Editing
startup

Step 4. Testing the
new windows

Mastering OS-9

STEP 3: EDITING STARTUP
ON THE NEW SYSTEM MASTER.
3.1 First, let’s see what’s on the disk: O0S9:dir <ENTER>

3.2 Go ahead and add either Make_1_2 or Make_3_4 to
Startup. Take your pick. I suggest you only use one of the two
procedure

files. Too many windows can get confusing

(Did you actuallv hear me complain about TOO MANY
MULTI-TASKING WINDOWS: No, I didn’t think so!). Since
Make_1_2 creates a pair of separate windows, it may be more
useful. Of course, nothing is more useful than side-by-side
screens for comparing hings (such as directories)!

089: edit startup <ENTER>

E: + * <ENTER>

E: <SPACE> make_1_2 <ENTER>

E:q <ENTER>

0S9:unlink edit <ENTER>
Actually, since we’re about to reboot, there is no need to unlink
edit. But it’s a good habit to get into.

STEP 4: TESTING THE NEW WINDOWS
Press the reset button on the back of your computer with the
disk we just finished editing startup on still in drive /d0. Press
the <CLEAR> button several times, checking to see that each
window comes up as it should. If all goes well, insert the disk
marked “Phone List” in drive /d1 and continue adding names,
addresses, phone numbers and occupations to your phone list.
When done, don’t forget to back up your work. Wouldn’t want
to have to start over from scratch if something happened to the
master disk!

Page 164

Tandy Color Computer 3

GETTING STARTED WITH TUTORIAL 8
By now you’ve assemhled an impressive phone list. It’s still not
quite time to use it. Not until Tutorial 9 do you learn how to
search for particular names and numbers, sort entries by last
name, and find duplicate entries.

For now we ask you to continue to add to your list, so have
more
phone numbers handy. Here are some suggestions:
* emergency numbers: hospital, ambulance, poison center
* baby-sitter numbers
* delivery pizza number
* public transportation schedule information number
* favorite vendor’s numbers
* local dinner theater’s phone number
* and so on.

The cobbler and dsave commands, used together, can create a
finely-tuned system master containing neatly stored files.
Tutorial 8 shows you how easy this is to do.

While boot creation involves precision file placement, other files
and directories may be located physically just about anywhere
on a disk. In fact, a single file may exist in small parts all over a
disk. This results when OS-9 cannot find contiguous free space
on a disk to store a file. OS-9 then breaks the file into smaller
pieces that will fit into the many smaller free spaces available.
From a high-level perspective, the resulting file is logically intact
while actually being physically fragmented.

The chief benefit of this approach to saving files is the optimiza-
tion of the disk file storage. By spreading a file amongst unused
spaces, you end up with less disk waste. The chief cost is that
your drive heads must travel all over a disk to read a fragmented
file. After weeks of creating and deleting files you may have a
severely fragmented disk, resulting in slower system response
when loading and saving files.

You can improve drive perormance by creating a new system
disk in which all files are both logically and physically whole.
This process requires two steps:

* First, create an OS9Boot file and Kernel on a new disk. Since
these need to be carefully place, you should use a freshly
formatted disk.

* Then, copy over all files from the old master disk to the new
master. Each copied file will be logically and physically intact.

Page 165

Day Twelve

Tutorial 8:
Getting started
The phone list

What we’ll cover
Commands you will
use -- cobbler &
dsave

File fragmentation

Day Twelve

The benefits of
cobbler

Mastering OS-9

This second step relies on copy’s ability to read a fragmented
file and write it again physically intact when sufficient contigu-
ous storage exists. Thus, given a freshly formatted disk in the
destination drive, you can use copy to transfer a source file —
fragmented or not— to an unfragmented destination file. As
long as the destination disk’s format is at least as roomy as the
source disk’s, no copied files will be fragmented.

In this tutorial we examine cobbler as a painless solution to the
first step above. For the second step we call on dsave, seen in
action in Tutorial 7.

Cobbler provides an easy way to create a new boot which
permanently reflects system patches. When you load OS-9 into
your computer, dozens of modules are loaded into memory.
These memory modules include data managers and device
drivers and descriptors which allow your computer to talk to
peripherals. Changes or improvements to your peripherals
require new modules.

Well — not necessarily. Using modpatch and xmode often you
can alter existing modules in memory to accomodate changes in
hardware configurations. You have already seen modpatch at
work as it changes the disk and keyboard drivers during Startup.
Your Startup file also uses xmode to set your printer baud rate.
Cobbler permanently saves these system changes by creating a
new boot file with patched modules. Using cobbler is simple:
0S9: cobbler <device> <ENTER>
This command line creates a new OS9Boot and Kernel on the
disk drive named in <device>. The disk in the drive should be
freshly formatted.

Once you have cobblered a new disk you should create a CMDS
directory on that disk and transfer GrfDrv and Shell into it to
make it bootable. (Actually, GrfDrv is only required if you plan
on using windows — which of course you do.) You probably
will want to copy over other files, too.

Do NOT transfer the procedure files which streamlined the old
system disk with xmode and modpatch. Since the new system
disk automatically boots with a streamlined system, any attempt
to modpatch the memory modules will only clutter your screen
with an error message and slow down the boot proces. And
since these streamlining procedure files are now irrelevant, you
should remove their path names from Startup.

Page 166

Tandy Color Computer 3

System disks can be stuffed with files and directories. Copying
them by hand to a newly cobblered disk would be a mind-
numbing task. Fortunately, dsave saves you the trouble.

Dsave creates a procedure file which includes a series of copy
and makdir command lines to replicate the source directory’s
structure. The procedure file also includes appropriate chd
commands to move around the source directory’s subdirectories
with no user involvement. Because dsave uses copy it can create
an unfragmented version of a source disk when the destination
disk is freshly formatted. In this regard, dsave is superior to
backup. (It’s also much slower than backup, however.)

Dsave can also copy data between disks with differing formats.
If you have drives which allow more than 35-track single-sided
operation, use dsave to transfer standard a Tandy-format disk’s
contents to a new larger-format disk

.The procedure file which dsave creates is executed by typing its
name at the “OS9:” prompt. Before execution you can easily
alter the file with edit. There are plenty of uses for an edited
procedure file of this kind. We’ll mention a few of them at the
end of this discussion.

Imagine you have a svstem disk in drive /d0 and a freshly
formatted disk in drive /d1. Your goal i to create a new system
master on the disk in drive /d1. Imagine further that your current
boot-up process patched the drive step rate and the delay before
key-repeat. It also set the printer baud rate to 9600 baud. These
changes occur only in memory. The OS9Boot file on drive /d0
remains intact — and unpatched.

To create a new boot on drive /d1 based on the patched modules
in memory, use the cobbler command:

08S9: cobbler /d1 <ENTER>
After cobbler finishes, a directory listing of drive /d1 would
show
OSBoot as the only file. This new OSBoot reflects all changes
made to your system since the most recent boot-up.

The next step in our thought-experiment is to use dsave. Plan
your work hy answering these questions:0) Which directory do
you want saved to the new disk? (Wwish to save the entire file
contents of one disk to another disk; thus our answer is “The
entire directory structure of the disk in drive /d0.”)

Page 167

Day TwelveDay
Twelve

Copying files &
directories with dsave

An example

Planning your
dsave arrack

Day Twelve

Executing the artack

Mastering OS-9

1) Which device is the source device? That is, which device
contains the directory we are saving? (In our case, this is
drive /d0.)

2) Which directory is the destination directory? (For our
purposes, the answer is, “The root directory of the disk in

drive /d 1.”

3) What name should we use for the procedure file which dsave
will create (for now, use “Save.d0.d 17)?

Once you know these answerst use Dsave in three steps.
1) First, change your current data directory to the directory
determined in (0) above. In our case, we would type:
0S9: chd /dO <ENTER>
2) Next, execute the Dsave command with the following syntax
(examine the syntax carefully):
dsave source.device destination.dir > file.name
This uses the answers to questions (1)-(3) ahove. In our
imaginary example, we type:
0S9: dsave /d0 /d1 > Save.d0.d1 <ENTER>
Just for the sake of example, one possible output of the
abovecommand line might be:
chd /d1
tmode .1 -pause
load copy
makdir CMDS
Chd CMDS
Copy /dO/CMDS/grtdrv grfdrv
Copy /dO/CMDS/shell shell
Chd ..
Makdir SYS
Chd SYS
Copy /dO/SYS/termset termset
Copy /dO/SYS/errmsg errmsg
Copy /dO/SYS/helpmsg helpmsg
Chd ..
Makdir COM
Chd COM
Copy /d0/COM/aif.cis aif.cis
Copy /d0/COM/aif.dlp aif.dlp
Copy /d0/COM/aif.wpr aif.wpr
Copy /d0/COM/icon.cis icon.cis
Copy /d0/COM/icon.delphi icon.delphi
Copy /d0/COM/F oicons.doc proicons.doc
Makdir PRO
Chd PRO

Page 168

Tandy Color Computer 3

Copy /d0/COM/PROcis cis

Copy /d0/COM/PRO/nasabbs nasabbs
Copy /d0/COM/PRO/delphi delphi
Copy /d0/COM/PRO/ProStuff ProStuff
Chd ..

Chd ..

Copy /d0/ed ed

Copy /d0/pf pf

unlink copy

tmode .1 pause

The file Save.d0.d1 is created in the current data directory.

3) When all the work is done, execute the created procedure file
by typing its name at the “OS9:” prompt. If the procedure
file is not in the current data directory type its full path name.
We type:

089: save.d0.d1 <ENTER>
Now the Shell executes this file as any other procedure file.
It may contain dozens of lines of Shell comands, lines we
would have had to type by hand if it were not for dsave.
Dsave helped us reduce that work to three steps and only
three command lines!

For each file copied with the imaginary procedure file
Save.d0.d1, copy transfers a little over 4800 characters or bytes
of information. The larger a file, the more transfers copy may
have to make. This makes your disk drives work harder. The
trick to better performance is to make copy’s buffer as large as
possible. You can increase the copy command’s memory
allocation with a memory modifier:

08S9: copy #24k this.path.name that.path.name
In this example, copy expands its buffer to 24k.

Dsave inserts a memory modifier in each copy command line it
creates if you use this syntax:
dsave -s k source.device destination.dir > filename
where “k” is the buffer size in kilobytes used during copying. In
our current example we would type:
089: dsave -24k /d0/d1 > Save.d0.d1 <ENTER>

in order to increase each copy's buffer to 24K.

Without BoostStep and MudKeys on the new system disk, there
is no use in calling them from the startup file. Consequently,
after executing Save.d0.d 1 make sure you edit the new system
disk’s startup file to keep it from calling these two files. You

Page 169

Day TwelveDay
Twelve

Removing BoostStep
and MudKeys

Day Twelve

Further uses for
dsave

Some final
observations

Mastering OS-9

also use edit to remove the command line in which xmode
boosts your printer’s baud rate. Cobbler has already created a
boot file reflecting the new baud.

Fully describing the options of and uses for dsave can fill
hundreds of pages. Examine the Tandy-supplied Level 2 manual
for more ideas and then use your imagination. For example:

* You can create a procedure file for which produces a custom,
unfragmented disk on another drive, or a procedure file for file
archiving. Just edit the procedure file created by Dsave.

* Confused by the complicated directory structure on a disk?

Use
dsave’s indentation option with the problem disk as the source
device. The indentation option creates a procedure file which
indents a subdirectory further to the right than its parent
directory. Studying the file gives you a quick overview of the
disk’s contents and its structure.

* Use dsave to “backup” between disks with “incompatible”
formats. For example, Tandy distributes OS-9 disks with 630
sectors on one side of a disk. Newer drives allow 1,440
sectors using both sides of a disk. Backup doesn’t work
unless both disks are identically formatted, soinstead use
dsave to move the contents from a Tandy distribution master
to a differently formatted disk.

* Use dsave’s output to copy your database disk to a ramdisk.
Edit out any files you don’t absolutely need on the ramdisk.
(Since dsave doesn’t care about the physical format of the
source or destination device, it’s a natural choice.) Running a
database off of a ramdisk is blindingly fast.

The options are limited only by the imagination.

Notice that a small change to a boot file or a procedure file
affects the roles played by files on other parts of a disk. In this
case, cobblering a new disk requires the removal of a few lines
from your startup file. It also makes two procedure files,
BoostStep and MudKeys, no longer necessary and candidates
for deletion.

The consequences of a single change are sometimes consider-
able. If you do not anticipate these consequences you may see
an error message or two crop up. Don’t fret. Error messages,
despite the scolding tone of their name, exists to help the user.
With a little experience these error messages appear far less
often.

Page 170

Tandy Color Computer 3

TUTORIAL 8
STEP 1: SAVING YOUR
CUSTOM BOOT AND USING DSAVE.
1.0 Boot OS-9 with “Custom Disk #2”.
1.1 Label a freshly-formatted disk with the name “Custom Disk
#3” and place it in in drive /d1. Type:
08S9: cobbler /d1 <ENTER>

1.2 When drive /d1 stops whirring, type:
08S9: dir /d1 <ENTER>

1.3 Recall that when we used config to createyour current
system master, we asked f or a f ull command set. Also recall
that Shell has commands merged into it. There is no reason to
duplicate in /d0/CMDS all the commands present in Shell.

08S9: free /d0 <ENTER>

0S9:del -x del <ENTER>
Notice we are deleting from the CMDS directory the command
which deletes f iles. How can this be? Won’t OS-9 need to have
del in the CMDS directory in order to delete files? Actually, no.
Del is one of the nineteen additional commands Microware
merged with Shell. Even though Del will no longer exist in this
disk’s CMDS directory as a stand-alone command, it will always
exist hidden in the command named Shell in the CMDS
directory.

08S9: del -x link list load copy.old <ENTER>

08S9: del -x mergeprocsrename <ENTER>

08S9: del -x setime tmode unlink <ENTER>

08S9: del startup.old sys/mudkeys

sys/booststep <ENTER>

08S9: free /d0 <ENTER>
Now we have created a lot of additional disk space by getting
rid of all the commands that are already merged with Shell.
Unfortunately, we have also fragmented the disk!

1.4 We'll use dsave to copy all the files over to another disk.
This will create an unfragmented copy of the original disk:

08S9: dsave -s16 /d0 /d1 > move.it.over <ENTER>
Dsave is now creating a procedure fil e named move.it.over
in your current data directory which is the root directory of drive
/d0. Wait patiently until the work is done. It won’t take long.

1.5 Let’s look at the procedure file dsave created:
089: list move.it.over <ENTER>

Page 171

Day TwelveDay
Twelve

Turorial 8
Step 1: Save Custom
Boor & using dsave

Day Twelve

Step 2. Testing the
new disk

Mastering OS-9

Notice two things. First, the letter “t” at the top of the

procedure file. This forces the Shell to report to your screen each
command line it executes. Second, tmode .1 -pause, also at the
top of the file, ensures that the Shell won’t stop executing the
file when your screen fills up. Press the spacebar if necessary to
continue the listing. Notice that the last two lines of the
procedure file help return your system to where it started.

1.6 Now let's execute the file:
0S9: move.it.over <ENTER>
Now THIS will take a long time. Go get a drink or a sandwich.

1.7 Let’s see what we accomplished:

0S9:free /d1 <ENTER>
You’ll notice the same amount of disk space is free except that
now it i. all contiguous. That wasn’t so hard!

1.8 Well, since we won't need move.it.over again, let’s delete it:
0S9: del move.it.over

1.9 Now let’sremove linesfrom /d1/startup which call
BoostStep and MudKeys, two procedure files whose patches are
no longer required. We can also delete the xmode baud rate
change line.

0S9: chd /d1 <ENTER>

089: edit startup <ENTER>
Use Edit surgery to remove the lines mentioned above.

STEP 2: TESTING THE NEW DISK.

2.1 Remove “Custom Disk #2” from drive /d0. Put it aside. Put
“Custom Disk #3” in drive /d0. Press the reset button on the
back of your computer. This will cause OS-9 to re-boot.

2.2 When the boot process is complete, check your drive step
rate, key repeat, and prionter baud rate. Use the <CLEAR> key
to confirm the creation of your new windows. If any problems
occur, check your work by reproducing this tutorial.

2.3 If there are no problems, find “Custom Disk #2”, remove
the write-protect tab if there is one, and place it in drive /d1.
Now let's copy “Custom Disk #3” over #2:

089: load backup <ENTER>

08S9: backup #56k <ENTER>

Page 172

Tandy Color Computer 3

Follow the prompts.

2.4 Mark the disk in drive /d1 “Custom Disk #3 Backup” with
the date. Mark the o#er disk “Custom Disk #3 Master” with the
date. Make sure you do not press the disk with a pen or pencil
point; write on a label, then apply the label to the disk.

STEP 3: PHONE LIST
3.1 When the backup process is complete, remove the disk
from drive /d1.

3.2 Place the disk marked “Phone List and other files” in drive
/dl1.

3.3 Add more phone numbers to the end of the current Phone
LF

file.

3.4 Quit the editor.

3.5 Back up your work.

3.6 Power down.

Page 173

Day Twelve

Day Thirteen

Getting started
with Tutorial 9

Path redirection

Input redirection

Mastering OS-9

GETTING STARTED WITH TUTORIAL 9
We finally put your phone list database to work. We also get to
enjoy the handy utilities provided with the “Mastering OS-9”
disk. Weprovide most of these specifically to manage your
database. Utilitiesincluded on the “Mastering OS-9” disk are:

sort

grep

copy

convert

cls

count

uniq

All utilities except convert are written by Stephen B. Goldberg in
OS-9 Macro Assembly language. Convert is written in Basic09.
Still, convert has another Goldberg utility merged into it. There
is also a “BONUS” directory with a few public domain utilities
that have been mentioned throughout this book.

Utilities written in Macro Assembly language are extremely fast
and take up almost no memory space. Basic09, too, is often fast
enough for utilities. Dale Puckett’s “The Official Basic09 Tour
Guide” recounts some BASIC benchmarks which show that
BasicO9 is amazingly fast, perhaps still the fastest and most
elegant BASIC on any microcomputer. (See Dale Puckett’s
article, “Start Basic09”, at the end of this book.)

In Tutorial 6 you merged these utilities together and stored them
in your backup system master’s CMDS directory under the name
copy. Then youplaced a line in your Startup file which loaded
Copy into memory. Now that they are ready for us in memory,
let’s get ready for them by learning a few tricks on how to tap
their power.

The three input/output redirection techniques described below
make it possible for you to create extremely powerful comand
lines. Just assemble a series of simple commands which process
your data to do a larger job. This power is especially enhanced
when using the Goldberg utilities.

To recap what we know of 1/0 redirection:

* Input TO a command often comes from your computer
keyboard. If input comes instead from a disk file or from
another terminal, you have input redirection. To redirect input
to a command from a file you type:

089: command.name < file.name <ENTER>

Page 174

Day Eleven

Day Eleven Tandy Color Computer 3 Day ThirteenDay
Thirteen

where the “<* tells command.name to get its input from
file.name and not from the standard input path (your
keyboard).

Example.: Sort acts on files by input redirection. Use:
089: sort < phone If <ENTER>
to sort your phone list. If you need more memory try the #K
memory modifler. For example,
08S9: sorti32k < phone If <ENTER>
In both cases, the output goes to your screen.

Example: The count utility counts the number of characters,
words, and lines it receives from the standard input path. If you
want to know how many characters, words, and lines are in your
phone list type:

08S9: count < phone If <ENTER>
If you just want to know the number of lines type

08S9: count -1 < phone If <ENTER>
The number of lines in your file is probably the number of
phone numbers you entered. The command line above therefore
informs you about paper needs when listing Phone LF to your
printer.
Output redirection
* Output FROM a command can be redirected to a disk file or to

your printer.

Example.

089: dsave /d0 /d1 > file.name <ENTER>

089: list file.name > /p <ENTER>
In both examples if you had left off “file.name”, the output
would have gone to the standard output path (your screen).

Example: You’ll need to sort your database from time to time.
When you do, sort accepts Phone LF as its input and outputs a
sorted file. Redirect that output to a temporary file named, say,
TEMP: 08S9:sort < phone If > temp <ENTER>
Then you can delete the original (unsorted) phone list and give
TEMP the name Phone LF.

08S9:delphone If <ENTER>

0S9:rename temp Phone LF <ENTER>
Pipes: a third way

* A command can also receive data from — and give data to — to redirect
another command. The data sent from one command to
another

is put temporarily in a memory buffer called a pipe. The first
data into this buffer is the first data out of it.

Page 175

Day Thirteen

grep - /e one you'll
wear out

Grep with pipes

Mastering OS-9

Example: 089: d !count -1 <ENTER>
This command line returns the number of files and directories in
your current data directory. How does it work? The output of D
is a directory listing with one file or directory name per line.
Count with the -1 option counts the number of lines It receives
from the input path and prints that number to your screen. You
can use Count to count the number of phone numbers in Phone
LF — assuming you have one name and phone number per line.
08S9: count -1 < phone If <ENTER>

Of all the utilities provided you’ll use grep most often. Grep
searches through a file (call it Target.file) for a string of
characters which is your target text.
08S9: grep target.text target.file <ENTER>
If you wanted to find Tom Smith’s phone number, you might
try:
08S9: grep Smith phone If <ENTER>
Grep would print each line which contains the string “smith”:
Smithsonian, Air & Space Museum\ 555-1212
Smith Brothers Jewelry and Auto Repair\555-1212
Smith, Tom\911-9090
Jackson, Tom\goldsmith\555-1212
Aerosmith Fanclub Of Outer Loop\555-1212

Notice in this example that Grep is not case sensitive. Also, the
string may be part of another string. Substrings such as “smith”
are usually not a problem; imagine, though, if the substring were
“the” or “ing”. Even though you may be looking for Erin the
Great’s phone number, or Ingot International, be prepared when
Grep returns pages of possible

phone numbers. Be simple enough in choosing a target string to
ensure you find your number; be speciflc enough to ensure you
don’t get a hundred numbers listed to your screen.

If you have a large directory (LARGE. DI R) which may or may
not contain a file you need (f ilename), try these command lines
to track it down:

089: chd large.dir <ENTER>

08S9: d ! grep filename <ENTER>

D outputs a line-by-line directory listing. If the command you
seek is in that directory, Grep will find it in the list which D
sends it through the pipe. When the filename is found, Grep
prints the filename to the screen. Or, if you need to know the

Page 176

Tandy Color Computer 3

hex size of a file, you can type
08S9: dir e ! grep filename <ENTER>

Dir e will send an extended directory listing to the output path.
Grepwill print any line containingfilename, so all thejuicy data
associated with filename will be printed to your screen —
including its size in hex notation.

Space does not permit us to experiment with all the features of
the Goldberg Utilities. You can find complete explanations of
their syntax in the Appendices. Further examples and complete
documentation for each and all of Stephen Goldberg’s utilities
are separately available. There are dozens of other utilities you
may find interesting. If you find the provided utilities useful
(which they are — why else would they call them utilities?) you
can purchase more of them through FARNA Systems and other
dealers. Call around for details.

This is a short tutorial. 1t’s designed to be fun. 1t also contains

a surprise so pay close attention at the beginning. The end of the
tutorial is free-form. And no, you don’t have to add any more
phone numbers to the list if you don’t want to!

Page 177

Day ThirteenDay
Thirteen

Day Thirteen

Tutorial Nine
Step 1 Using count

Step 2: Using grep
and sort

Mastering OS-9

TUTORIAL NINE
STEP 1: USING COUNT
1.1 Boot OS-9 with “Custom Disk #3 Backup”.

1.2 Place “Phone List and other files Backup” in drive /d1.
Type the following:

0S9: chd /d1 <ENTER>

089: dir <ENTER>

Do you see Phone LF? If not, you have probably placed it in a
directory other than the root directory. Use chd to move to that
directory if necessary.

1.3 Type: 0S9: mdir <ENTER>
Make sure grep, sort, count and the other utilities are in
memory. They should be since you loaded copy during startup.

1.4 Now let’s display our phone list:
08S9: tmode . 1 pause <ENTER>
089: list phone_If <ENTER>

1.5 Quite a listyou have,there. How many phone numbers is
that? We'll find out by using count:
08S9: count -1 < phone_If <ENTER>

1.6 To f ind out how much memory you’ll need to sort this
file, count the number of characters in it.
08S9: count -¢c < phone_If <ENTER>

STEP 2: USING GREP AND SORT

2.1 Think of a name on your list. Say the name is “Ward ”.
Now let’s try to find that name in our list:

08S9: grep w phone_If <ENTER>

08S9: grep wa phone_If <ENTER>

08S9: grep war phone_If <ENTER>
Notice how the list narrows after each line is entered. You
probably saw the name you were searching for after the first
line. You can quickly find any name in your list just by looking
for a couple characters in the name.

2.2 08S9: grep 23 phone_If <ENTER>

Page 178

Tandy Color Computer 3

You see a list of people whose phone numbers include
the string “23”.

2.3 Let’s see the numbers in alphabetical order:
08S9:grep 23 phone_If ! sort <ENTER>

2.4 How many phone numbers contain the string “23 ”? Don’t
care to count them yourself ? Try this:
08S9: grep 23 phone_If ! count <ENTER>

2.5 Suppose you had to call all your friends in a long-distance
exchange such as Washington, D. C. No need to play favorites
so alphabetize them:

08S9: grep 202 phone_If ! sort <ENTER>

2.6 If you included addresses in your phone list grep can
come in even handier. Going on a trip to Virginia? Find out how
many people you know there:

0S9:grep VA phone_If ! count <ENTER>

2.7 Choose a generous sort buff er. For example, if your file is
7,000 characters, try 16K or more. In case Phone_LF is really
large, the following example uses a 32K buffer. Sort handles
larger buffers too, up to 56K.

08S9: sort #32k < phone If > temp <ENTER>

How long do you think this will take? Surprised? Imagine
sorting
these by hand!

2.8 Now let’s clean up the old file:
0S9: rename phone_If old.phone <ENTER>
0S9: rename temp phone_If <ENTER>
08S9: list phone_If <ENTER>

Looks neater!

2.9 Suppose you put your acquaintance’s occupations in with
the name and phone number like so:

Jones, Tom\Singer\203-555-1212
Jones, James Earl\Actor\213-555-1212
Welby, Marcus\Doctor\601-555-1212-

You can create a seprate file of doctors easily:

08S9: grep doctor phone If ! sort > Doctor.file
<ENTER>

Page 179

Day ThirteenDay
Thirteen

Day Thirteen

Step 3. Check for
duplicares. uniq

Step 4: The surprise.

« ramdisk

Mastering OS-9

STEP 3: CHECKING FOR DUPLICATES
3.1 The uniq command eliminates consecutive redundant lines.
If you have entered the same line of text twice, this command
sequence will catch the error and correct it (Phone_LF needs to
be sorted immediately before using uniq):
08S9: uniq < phone_If > temp <ENTER>
08S9: del phone_If <ENTER>
08S9: rename temp phone_If <ENTER>

STEP 4: NOW FOR THE SURPRISE
4.1 When OS9Gen ran in Tutorial 7 it created an OS9Boot file
with a ramdisk built in. Check memory to f ind r0, the ramdisk
descriptor:

089: mdir <ENTER>

4.2. Iniz and format /r0:
089: iniz /r0; format /r0 <ENTER>
Follow the prompts.

4.3 Now let’s check our new drive:
089: dir /r0 <ENTER>
089: free /r0 <ENTER>

4.4 We’re going to use dsave to generate a procedure file to
move the contents of /d0/CMDS to /r0. Then we’re going to use
edit to change the procedure file to copy over only those files
and commands we need.
0S9:chd /d0/cmds <ENTER>
08S9: dsave -s24 /d0 /r0/cmds > /d0/Move.to.ram
<ENTER>

4.5 When dsave finishes, we’ll edit the file Move.to.ram:
089: edit move.to.ram <ENTER>

4.6 Now, at the “E:” prompt, delete the lines which copy
commands you don’t normally need. Next, add a line at the
beginning of the the file to create /rO/CMDS with the makdir
command. Last, add a line at the end which copies Phone_LF to
the ramdisk.

E: <SPACE> makdir /r0/CMDS <ENTER>

Page 180

Tandy Color Computer 3

E: <SPACE> copyi#32k /dl/phone_If phone_If
<ENTER>
Quit the editor.

4.7 Assuming you’ve checked your work carefully, let’s
execute this procedure file:
08S9: chd /d0; Move.to.ram <ENTER>

4.8 When the work is done, change your current execution
and data directories:

08S9: chd /r0; chx /r0/cmds <ENTER>

4.9 Now tryGrep withyour phone list on the ramdisk:
08S9: grep bow phone_If <ENTER>
08S9: grep h-L phone_If <ENTER>
Amazing how fast it works!

STEP 5: SOME QUIRKS WITH
RAMDISKS AND WITH COPY

5.1 Ramdisks and their data are lost when you power down. If,
at the end of a work session, information in the ram disk is more
to your liking than the original inf ormation on the floppy disk
drive, you’ll have to copy the files from the ramdisk back to the
floppy. In this case, you might type:

0S9: copy /r0/phone_If /dl/phone_If <ENTER>
This assumes your data directory was changed to the floppy you

want to copy the file to. Then type “y” when the “Rewrite :”
prompt appears.

5.2 An even easier approach would be to enter the editor to
create a procedure file to do the same thing.
089: edit backup.ramdisk <ENTER>
E: <SPACE> echo “ * * * Copying phone list from
/r0 * * ¥ <ENTER>
E: <SPACE> echo “ * * * back to drive /d1 * * *
” <ENTER>
E: <SPACE> copy #32k /r0/phone_If /d1/phone_If
<ENTER>
E: <SPACE>y <ENTER>
E: <SPACE> echo “ * * * all done! * * *”
Stephen Goldberg’s version of the Copy command ask.s if you
want to rewrite an existing file. Since many of the files on drive
/10 exist on drive/d0, you must insert “y” after a line which
requests rewrite permission. At this point, quit the editor.

5.3 Test the new procedure file:
08S9: backup.ramdisk <ENTER>
Please experiment with the Goldberg utilities and all otheﬁ

Lo . 8l
Level 2 tools. You'll f ind it more fun than you ever 1rnagf§gd'!

Day ThirteenDay
Thirteen

Step 5. Some quirks
with ramdisks and
with copy

Day Fourteen

Getting started with
Tutorial Ten

Using startup to
streamline your wor

Redirection saves
the day

Mastering OS-9

GETTING STARTED WITH TUTORIAL TEN
Most people who buy computers start out using them for one
major application — just word-processing, just spread-sheeting,
or just games. At this point in their computer experience, multi-
tasking windows are more than they need.

When a computer user expands his or her software library, they
reach a bottle-neck since most computers only allow the
execution of one application at a time. This is true despite the
gallant efforts of top programmers.

Level 2 with windows on the CoCo 3 was designed from the
start to avoid barriers MS-DOS computer systems trip over.
Level 2 windows provide convenient access to many appli-
catlons at once. Level 2 thus provides a powerful solution to
computer users tired of ordinary PCs with ersatz windowing and
patchwork multitasking. Even though MicroSoft Windows does
multi-task, it doesn't do so as smoothly or in the same way as
0OS-9 systems.

After acquiring several applications comes the task of starting
each in its own window. This job can be delegated to the startup
file. In Tutorial 10, we show you how.

Another consequence of multi-tasking on a floppy disk-based
system is disk-swapping. Users who by habit put data disks in
drive /d1 must constantly switch disks in and out of that drive
when saving output from the several programs running on the
CoCo 3.

A solution to this is to use the ramdisk provided with “Mastering
0S-9” as a “data disk”Not only is a ramdisk convenient in a
disk-intensive operating system such as OS-9, it is fast. Just
make sure you copy data files from the ramdisk to a floppy
often enough to avoid severe depression in the event of a power
failure or you turn the computer off (no pwer and all data from
the ramdisk will be lost!).

In Tutorial 7 you learned that Wcreate creates a window of a
certain size with certain user-selectable colors. After creating
such a window you may start a Shell in it. From then on it acts
as another OS-9 Color Computer, ready to accept your com-
mands from the standard input path and ready to send output
and error messages to the standard output path.

Page 182

Tandy Color Computer 3

A program other than Shell can take control of that window
when you open the standard data paths between the window and
the application. For example, if you want the word-processor
WordKing to run in its own window you first create a window
without a Shell.

08S9: iniz /w7 <ENTER>
Then type the following command line:

089: wk < >> /w7& <ENTER>

The hieroglyphics between wk and /w7 actually make sense.
The first symbol (<) you probably recognize as the redirection
modifier associated with the standard input path. The following
symbols redirect the standard output and error paths. Thus wk
receives its input when you select /w7 with the <CLEAR> key
and start typing. Wk also sends its usual output and all errors to /
w7 for your viewing. The ampersand (&) forces wk to work as
a background (or f orked) process. The Shell which executes
the above command line is then free to continue other work.

In general, you can insert a command line similar to the one
above into your startup file (or into a procedure file called by
startup). Just replace wk with the name of the application you
wish to start automatically at boot.

We’ve mentioned a couple of times that a window created to
display an application through path redirection (as in the
command sequence above) should not contain a running Shell.

Consider what would happen if Window /w7 had a Shell
running in it when you executed the above command line. For
one thing, visual chaos would ensue as each program competes
in outputting information to your screen. Actions taken by your
commands would lead to confusing and perhaps disastrous
results. The basic problem is that the auto-executed application
AND the Shell are competing with each other for I/0. Be sure
not to redirect paths to a window which has a Shell already
present.

During Tutorial 9 you manually inized and formatted the
“Mastering OS-9” ramdisk. In this tutorial we create a procedure
file to automate the same job. Then we will edit startup to call
this file automatically. The ramdisk will then be ready for use
right after booting.

Page 183

Day Fourteen

Automating the ramdisk

This is personal
computing!

Tutorial 10
Step 1. Putting Phone
List on /r0

Mastering OS-9

We will also write a procedure file to copy your phone list to the
ramdisk. After hootup, phone numbers are seconds away from
your fingertips.

Incidentally, the ramdisk provided is large. You can alter the
size

of it with Kevln Darling’s dmode utility, also included on the
“Mastering OS-9” disk. Darling’s philosophy about ramdisks:
“They really shouldn’t be large because they should only be
used for temporary storage.” Use a large ramdisk and you risk
losing a lot of data. Be cautious! Make copies of ramdisk files
fairly often. You won’t need to copy your OS-9 commands back
to floppy, of course.

0OS-9 Level 2 gives you tools to get your work done quickly and
professionally. With a little preparation and the ideas offered in
“Mastering OS-9”, you are on your way to a work style that can
only inspire admiration. Personal computing standards are
higher than ever before and Level 2 is here to meet them.

TUTORIAL 10
STEP 1: PUTTING THE PHONE LIST ON
RAM DRIVE /R0.
1.1 Remove any write-protect tab on “Custom Disk #3
Backup”. Boot OS-9 with that disk.

1.2 Place “Phone List and other file Backup” in drive /d1.
Type the following lines:
089: chd sys <ENTER>
08S9: edit move.phone <ENTER>
E: <SPACE> * Moves phone list to ram disk
<ENTER>
E: <SPACE> * Make sure ram disk is inized and
<ENTER>
E: <SPACE> * formatted first <ENTER>
E: <SPACE> copy /d I/phone If /rO/phone
<ENTER>
E: <SPACE> echo “Phone list in ram”
<ENTER>
E:q <ENTER>

1.3 The above sequence creates the procedure file
“move.phone”. The comment lines spell out what it does.

Page 184

Tandy Color Computer 3

STEP 2: FORMATTING THE RAMDISK.
2.1 Type the following lines:

089: edit iniz.ram <ENTER>

E: <SPACE> t

E: <SPACE> * initialize r0 <ENTER>

E: <SPACE> iniz r0 <ENTER>

E: <SPACE> * format the ramdisk <ENTER>

E: <SPACE> * NEVER execute this proc file
<ENTER>

E: <SPACE> * if /r0 is not empty <ENTER>

E: <SPACE> * Otherwise, bye-bye data <ENTER>

E: <SPACE> format /r0 r “DarlingDisk”
<ENTER>

E: <SPACE> -t

E: q <ENTER>

2.2 Now we have a procedure file that initializes and formats
our ramdrive.

STEP 3: STARTING APPLICATIONS
THROUGH PATH REDIRECTION
3.1 Type the following lines:

089:edit app.start.5 <ENTER>

E: <SPACE> * Create window 5 <ENTER>

E: <SPACE> wcreate /w5 -s=2008024100
<ENTER>

E: <SPACE> echo Starting application in w5
<ENTER>

E: <SPACE> edit #32k < > > > /w5& <ENTER>

E: q <ENTER>

3.2 We now have a procedure file that creates an 80 column by
24 line window. The next to last line starts edit in this window.
When “app.start5” is run, a window will be opened and edit will
be started and ready to run.

When you buy an application which you want to run on startup,

put its name in place of edit’s in the last line. You may also have
to resize the window using wcreate.

Page 185

Step 2. Formatting
the ramdisk

Step 3 Starting Apps
with Path Redirection

Step 4. Putting it all
together

Mastering OS-9

STEP 4: PUTTING IT ALL TOGETHER.
4.1 Type: OS9: copy startup startup.old <ENTER>
Go ahead and rewrite Startup.old if copy asks.

4.2 Now let’s change startup:

089:edit startup <ENTER>

E: + * <ENTER>

E: - <ENTER>
Repeat until you place the edit pointer just after the current last
line in the file.

4.3 Once the pointer is properly placed, we can begin editing
the startup file:

E: <SPACE> sys/iniz.zram <ENTER>

E: <SPACE> sys/move.phone <ENTER>

E: <SPACE> sys/app.start.5 <ENTER>

E: - * <ENTER>

4.4 Check your work. Make any corrections necessary. Ensure
that iniz.ram appears in Startup bef ore any procedure f ile
which

relies on the ramdisk. Do you remember how simple the Startup
file used to be?

4.5 If the file checks out okay, we can quit the editor:
E: q <ENTER>

4.6 Test the disk by pressing the reset button to reboot. If all
works well, why not, just f or f lash, List your phone list to each
of the two side-by-side windows you included in your boot f ile.
Watch the list scroll simultaneously in both windows! You can’t
do that on just any computer...

Page 186

Tandy Color Computer 3

Wh ere To Go For M ore Information
Although Tandy has sold millions of Color Computers, support
for the Color Computer is surprisingly small in scope. Small,
yes, but mighty. There are still several user groups ranging from
small local organizations to nationwide services.

There is only one magazine in regular print now, and that is “the
world of 68 micros”. This magazine has been in existance for
about two years. It supports Disk Basic, and OS-9 on the Color
computer as well as OS-9/68000.

Books on OS-9 are rare. The excellent Tandy manual is required
reading. Since it is designed not as a tutorial but as a reference
manual, do not expect to understand everything. Keep coming
back to it as your OS-9 skills improve. You’ll get more and
more out of it each time.

The same is true of Kevin Darling’s book, “Inside OS-9”, once
available from FHL (its publisher). The more I come back to it,
the more I enjoy it. Although Kevin’s book is filled with charts
full of “hacker” information, he also takes the time to explain in
lay terms some confusing aspects of Level 2 and the CoCo 3’s
hardware. The book’s enthusiasm is infectious, too. It’s obvious
Kevin enjoys what he does.

Dale Puckett and Peter Dibble have written two books together
on OS-9. “The Rainbow Guide to OS-9” and “The Complete
Rainbow Guide to OS-9 Level 1I”, published by Falsoft, Inc., are
still available from the publisher. The first provides an overview
of Level One OS-9 (the predecessor to Level 2 on the CoCos 1
and 2) but also provides general information about Level 2 and
about the OS-9 Ethos — how it works and why it works. It is
safe to say that the majority of CoCo OS-9 users learned the
ropes from these books.

The second book by Puckett and Dibble is oriented more for the
beginning user, as it takes you on a casual, hands-on guide to
windows. Readers have found “The Complete Rainbow Guide”
the best book by these two authors yet. It covers windows and
BasicO9 programming under Level 2.

For information on telecommunicating, you can’t beat Alfred
Glossbrenner’s “The Complete Handbook of Personal Computer
Communications” (St. Martin’s, 1985). It is a fountain of useful
and entertaining information. It includes information on Delphi,
one of the newer information service whose most active

Page 187

Mastering OS-9

participants are arguably CoCoists. 1t offers ease-of-use, low
prices, and a wide range of databases and forums, including
Dow Jones and online shopping. Danny Goodman’s “DELPHI:
The Official Guide” is required reading.

If you can get to a CoCoFest, do it. Take along some cash and
be prepared for an onslaught of fine products. I have never met
anyone who regretted going to a CoCoFest. There are currently
two held annually. The largest is held in Elgin, Chicago near the
end of April/first of May. Contact the Glenside CoCo Club for
information. The Atlanta Computer Society sponsors the Atlanta
CoCoFest each October.

Above all else, join a CoCo Club — or start one yourself. One of
the most surprising facts about the Color Computer is that so
many were sold and so few CoCoists know other CoCoists! The
chances are good that other CoCo owners live just around the
corner — and one of them might just be adept at OS-9!

Page 188

Tandy Color Computer 3

Hardware for Your CoCo 3/ OS-9 Level 2 System
(c) Sept. 1988 by Marty Goodman
Updated by F.G. Swygert, 1995

0OS-9 is uniquely suited to easy adaptation to a wide variety of
CoCo hardware set-ups. Once proper device drivers and device
d escrlptors have been devised for a given hardware item it can
often be used with any existing OS-9 application. n this respect,
0OS-9 is considerably superior to the primitive operating system
erringly referred to as “RS-DOS” (the built-in Disk Basic CoCos
come with). This is not really an operating system at all, just a
set of patches to BASIC that allow access to a disk drive.

Let’s look at a variety of hardware accessories and means of
adding them.

Floppy Disk Controllers

The one essential add-on card for running OS-9 is a Floppy Disk
Controller, which enables your computer to be attached to disk
drives. There are a great number of different Floppy Disk
Controller (FDC) cartridges available. The Tandy FD502
cartridge combined with a double sided disk drive was originally
designed for the CoCo 3. All previous Tandy controllers
EXCEPT their earliest (Cat No. 26-3022) will work fine with a
CoCo 3 OS-9 system and any standard 5.25" or 3.5" disk drive.
You CANNOT use the Cat No. 26-3022 disk drive cartridge
with a CoCo 3. This cartridge requires 12 volts which is not
supplied from the CoCo2 or 3 cartridge port. While an MPI will
supply the necessary 12 volts, the cartridge will not tolerate
running at high speed. OS-9 Level 2 runs at double speed all the
time. This cannot be disabled or the cartridge easily modified.

A lot of other companies have made disk controllers for the
CoCo. Hard Drive Specialists and J&M Systems have delivered
thousands of economical and reliable disk controllers. CRC /
Disto made a Super Controller that functions perfectly well as an
FDC but also provides a minibus, described below. CRC/Disto
also made a copy of the Tandy controller, the Disto Mini
Controller.

No Halt Controllers

The original design for CoCo disk controllers allowed the disk
controller to completely halt the operation of the 6809 during
parts of the operation of the disk controller. Under Disk Basic
this wasted a little time but was never much of a problem.

Page 189

Mastering OS-9

However, under OS-9 this became unpleasant and, for many,
unacceptable. It meant that during floppy disk access no other
processes could operate. Characters being typed at the keyboard
would be dropped, data arriving at the serial port(s) would be
missed and so on. This problem was addressed by the makers of
sophisticated “No Halt” controllers. Such controllers do NOT
interrupt the operation of the 6809, and so provide considerably
faster, cleaner operation under OS-9.

Note that these controllers typically offer no special advantage
under Disk Basic. They operate just like the older controllers.

Three companies have made No Halt floppy disk controllers:
Sardis (the first to do so), Performance Peripherals, and CRC /
DISTO. Performance Peripheral’s boasts low power consump-
tion and exceedingly fast operation. The Disto controller is also
low power, and boasts support for the Disto Mini Bus array of
add-on cards.

Adding Expansion Capability to your CoCo 3

MultiPak Interface:

The MultiPak is a device that plugs into your Color Computer’s
40 pin expansion port. It adapts the CoCo to accept up to four
different plug-in cards.

Internally, the MultiPak provides “buffering” for the fragile
address and data lines coming out of the CoCo 3. It also
provides added power allowing extra cards to run on the CoCo
3. To use most add-on interface cards with a CoCo, a MultiPak
Interface is required. This especially includes most brands of
hard disk drive adaptors and many varieties of serial and parallel
ports and real time clocks.

Catalog number 26-3024 type MultiPaks will need to be
“upgraded” by the addition of a new CoCo 3-compatible PAL
chip, available from Small Graf-X Etc. Catalog Number 26-3124
type MultiPaks require the addition of a satellite board, which
can be done by Tandy repair or by referring to a schematic in
the October 1988 issue of Rainbow Magazine or FARNA
Systems' excellent CoCo reference book, “Tandy's Little
Wonder” .

Catalog Number 26-3124A MultiPaks do not require any
upgrade in order to work with the CoCo 3. Pricing on the
MultiPak will likely range widely, from $20 for an older model
if you can find one, to as much as $70 for the 26-3126A model.

Page 190

Tandy Color Computer 3

The MultiPak Interface hardware, under software control,
switches around the *CART interrupt line from slot to slot. Some
sophisticated OS-9 hackers may want to defeat that slot select
hardware and simply “hard wire” all *CART interrupts from all
four slots direct to the *CART line. This may prevent occasional
subtle problems with some OS-9 hardware.

Y Cable:

Some folks try to “economize” on money or space by using a Y
cable instead of a MultiPak Interface. I personally do NOT
recommend Y cables because they have on occasion been
associated with causing unreliable disk I/0. The CoCo was never
designed to run its system bus over ribbon cable. However,
some folks are able to use them, especially if the Y cable is short

Disto Super Controller Mini-Bus:

CRC/Disto sold two types of Disk Controllers and one ramdisk
board that supports a special mini-bus onto which one can plug
one of several Disto / CRC add-on cards. Such cards can
provide support for hardware RS232 ports, parallel ports, real
time clocks, and/or Hard Disk adaptors.

What is especially important is that, if you use a Disto/CRC
controller with the custom Disto/CRC minibus cards, you will
not have to purchase a MultiPak.

Add On Options

RS-232 hardwareports:

Although the CoCo 3 comes with a kind of “serial RS-232 port”
on the main box, this port is almost useless under OS-9. The
reason is that the CoCo 3 has no hardware to handle conversion
of parallel to RS-232 serial data, a conversion which requires
careful timing. Instead, such conversion must be done by the
6809 inside the CoCo, eating up an unacceptable amount of
processor time under OS-9.

The main application for that “bit banger” serial port under
0S-9 is driving a serial printer. The CoCo basically only
communicates with a printer “one way”, so the load on the
processor is not as great as in true “duplex” communication.
For other serial communications, particularly telecommunica-
tions via modem,you must acquire an add-on hardware UART-
based RS-232 port.

Page 191

Mastering OS-9

The original means of adding such a port was that of plugging a
“Deluxe RS232 Pak” (cat no. 26-3226) into your MultiPak.
Years ago, PBJ Corp. offerred their “2SP Pak” that provided two
hardware serial ports. CRC/Disto offered a plug-in card that
works with a MultiPak and functions about the same as the old
Tandy “Deluxe RS-232 Pak™. Disto also offers serial port
capability in the form of an option on one or more of their
custom minibus cards. CoCoPro! once sold a converted Modem
Pak that worked as a basic RS-232 port. Plans for converting a
Modem-Pak are still available.

The only RS-232 port currently in production is made by
CoNect. They have a standard port, a double port, and a special
high-speed serial port (also available as a double port).

Parallel Ports:

Many printers come with only a parallel port. Color Computer
users have grown accustomed over the years to purchasing a
serial to parallel converter in order to use their paralel-only
printer with the “bit banger” (4 pin DIN) serial port on the

main Color Computer. Under OS-9, however, printer output can
easily be re-directed to any hardware card. Many OS-9 users
have taken advantage of this to install a parallel port on their
computer.

J&M systems made a disk controller that had a parallel
port built in. Disto/CRC made an add-on parallel card and
several models of mini-bus cards that have a parallel port.

Real Time Clocks:

One of the desireable features of OS-9 is the fact that files are
marked with the time of their latest update. But this also means
that the system needs a means of knowing what time it is. It is
rather a nuisance to enter the date and time at each boot-up.

Real time clocks solve this problem. They use an ultra low
power clock, typically powered by a long life lithium battery.
Once set, such a real time clock remembers the time even when
the main power is off. Via software, that clock can be pro-
grammed to supply OS-9 automatically with the correct minute,
hour, day, and date every time you boot up.

Disto/CRC made several mini bus cards that have a real-time

clock. Spectro Systems supplies a Dallas Semiconductor
“SmartWatch”. OS-9 drivers are available for down-loading on

Page 192

Tandy Color Computer 3

Delphi or from FARNA Systems on their “Patch OS-9” disk.
Floppy Drives (the physical drive):

The original Color Computer came with a 156K 35 track 5.25"
single sided disk drive. Over the years, 40 track single, then
double sided disk drives became standard for OS-9 systems.

Then OS-9 users began to switch to the higher density 0 track
double sided 5.25" drives. Many have since converted to using
the now increasingly standard 3.5" 80 track double sided drives.
These 720K drives do come in handy with OS-9, especially if
one doesn't have a hard drive. Note that the older, now rare
5.25" 720K drives are electrically identical to the 720K 3.5"
drives. The difference is that the 5.25" modles can be “double-
stepped” to read standard 360K double sided and 156K single
sided 5.25" disks. Note also that the newest 1.44MB drives will
work as 720K drives. “Real” 720K 3.5" drives are getting more
difficult to find every day.

All of these drives can be controlled by the SAME disk drive
controller. I recommend, however, keeping in your system at
least one 40 track double sided 5.25" drive, to be able to both
read from and write to disks made by other OS-9 users.

In general, the 1.2 megabyte 5.25" drives and the 1/4 megabyte
3.5" drives cannot be used on the CoCo (though one VERY
“high end” system was engineered by Hemphill Electronics that
actually supports such drives on the CoCo.)

Fans:

While a properly designed linear power supply of the sort used
by the Color Computer should NOT need a fan, but should
rather cool adequately by convection, some owners of CoCo 3’s
do find that their machines overheat.

The easiest fix for this is adding a fan. Typically a low power
AC brushless motor fan works fine. These are often available at
electronic surplus stores for $5 or less each.

Hard core hardware tinkerers will, instead, want to consider
removing the less than adequate power transistor Tandy uses on
the 5 volt supply of the CoCo 2, and instead hook up a 2N3055
mounted on a massive, finned heat sink. This should cure any
tendency of the power supply to give out due to overheating,
unless the problem is in the transformer or capacitor.

Page 193

Mastering OS-9

Note that often merely opening up the CoCo will allow it to cool
sufficiently better that no further manipulations are needed. A
small table-top fan lightly blowing across the CoCo and the disk
drives will also help greatly.

Many hardware hackers have removed their CoCos from their
naitve cases and transplanted them into PC type cases. When
this is done, a PC type, fan cooled power supply is used. While
transferring the CoCo to a PC case is beyond the scope of this
book, details are given in some back issues of “the world of 68’
micros” and FARNA Systems’ “Tandy's Little Wonder”.

CoNect sells a custom made case for the CoCo that uses a
separate power supply. They will mount your CoCo in the case
for you or take your system in trade for an already mounted
system.

CoCo Keyboard Extenders:

Most computer users would prefer to have the keyboard in their
lap and put most of the mess of their system off to one side of,
or above, or below, their main work area. This is accomplished
by adding an extension to the keyboard. An extension cable is
available from HawkSoft that allows using the original CoCo 3
keyboard away from the computer.

The most elaborate and intriguing keyboard extender product is
the Puppo Keyboard Adapter, sold by FARNA Systems. This
device plugs into the CoCo mother board where the keyboard
belongs, and allows you to plug in and use a standard IBM PC/
XT type keyboard.

Now, “IBM type” keyboards come in a vast variety of styles,
with great variation in key texture, tension, sculpting, travel, and
positioning. This allows the end user to choose exactly what
combination of these characteristics please him or her the most.
Naturally, this IBM keyboard adaptor is the most expensive
approach. But it may also be the best.

Monitors:

If you are using your computer solely for text, the sharpest
display possible will be that you will get using composite video
output from the CoCo and a composite monochrome monitor.

Note that the IBM style TTL monochrome monitor will NOT
work with a Color Computer! But some will want to avail
themselves of the different color possibilities afforded by the
RGB monitor.

Page 194

Tandy Color Computer 3

RGB monitors for the CoCo will cost roughly 4 to 6 times more
than a monochrome monitor. So you’d better decide you

REALLY want color. If you do, the most cost effective monitor
to get is the Magnavox 1CM135 (approximate cost: $270 new).

These monitorsoffer RGB analog, composite video, and RGB I
(IBM CGA type) inputs, making them versatile. This, and their
better resolution and brighter image and antl-glare properties
make them a much preferred choice over the Tandy CM8.

Commodore monitors for the Amiga are similar to the 1CM135,
and may be used with the CoCo. Monitors for the Atari ST can
also be adapted for use with the CoCo, but you must invert

the CoCo’s sync pulses. The Atari puts out NEGATIVE separate
sync, while the CoCo puts out POSITIVE separate sync.

When using the CoCo with some Sony monitors, you need to
combine and invert its sync pulses. I do this in the Sony cables I
designed for the CoCo using a single NOR gate on 74LS02 chip.
All analog multisync monitors can be made to work with the
CoCo if the right cable is constructed. For example, the older
NEC Multisync monitors could be hooked up directly to the
CoCo, by just matching the names of the input pins on the
monitor to the output pins on the CoCo.

For those monitors that do not support audio, you may want to
add a little speaker and amplifier and drive that from the CoCo’s

audio output.

More detailed hardware information can be found in FARNA
Systems’ book “Tandy's Little Wonder”

Telecomputing and OS-9

Page 195

Mastering OS-9

Bill Brady

Right away you may wonder about that title above. I mean, waht
is different enough about OS-9 that telecomputing deserves a
mention here? Well, there is a significant difference, and it goes
to the heart and soul of the Operating System.

The Story so far...

First. let me dive into a very brief discussion of the current state
of affairs. Telecomputing has evolved into two broad categories.
The first is the host/terminal connection, the second is the
bridge.

For the host/terminal connection, one device is assumed to have
all of the computing power. This is the host. The second device,
the terminal, is assumed to be an input/output device only.
Inherently, OS-9 always assumes that it is the host and that the
primary I/O devices connected to its hardware are all terminals.
This can be seen from the line editing capabilities built into
SCFMan, backspace-delete for example.

Bridges and Interconnectivity

The second broad category, the bridge, assumes -- even
requires-- that computing power exists on both sides. Bridges
are slowly emerging that allow the computer on one end ot the
bridge to extend certain operating system and application
features right into the computer on the ‘other end’. Today, when
a Macintosh computer and IBM PC compatible are bridged, the
Mac an ‘open a folder’ and ‘see’ files inside -- icons and all --
even though that folder actually exists on the PC’s hard disk!
This is good in business applications where different types of
computers often need to be connected together.

Bridges, such as Microwar’s “UniBridge”, exist today primarily
to facilitate special functions; software development for process
control computers, for example. In this instance, a developer
creates software on a full blown computer system that is
destined to run on a dedicated ‘target’ system.

Hosts and Terminals
We as personal computer users will soon become more

interested in the bridge. For now, let’s look closely at the host/
terminal interconnect.

Remember that OS-9 wants to be the host in this arrangement.

Page 196

Tandy Color Computer 3

When we ask OS-9 to become the terminal, we are actually
reversing the roles. This is done by running a program under
0OS-9 which makes the computer emulate in software the
behavior of a hardware (dumb) terminal. Such terminal program
sof tware re-arranges data flow within the computer so that this
role reversal takes place. Data (usually just text characters) that
would normally be routed from the host to a program are sent
instead your screen. This part is wonderfully easy to do with OS-
9 with its implementation of data paths and processes. This is
why there are so many terminal programs for OS-9.

But there is one characteristic of terminals that is not as easy

to ‘emulate’ under OS-9. It’s difficult to emulate terminal
hardware, dedicated to the sole task of being a terminal on an
inherently multi-tasking computer. OS-9 is multi-tasking and
multi-user; when you ask it to become a terminal it refuses to do
only that no matter what you do. OS-9 is always looking for
business to take care of elsewhere, for other users to service.

Making good terminal software

The second nut to crack is to create a terminal program that

1) lets both OS-9 and the host think that each is the boss of the
‘terminals’, and 2) preserves OS-9 multi-tasking ability. Once
you do ‘crack that second nut’ then a wonderful thing happens.
You can have your cake and eat it too! To see the advantages of
a “multi-tasking terminal program”, let’s look at the reasons that
you may want to telecompute.

First and probably foremost, telecomputing opens to you a
world of free (or almost free) information including software,
digital pictures and music. These are accessible as files in other
computers that you can ‘read” or down load to your computer.
Such files are found on telecomputing services such as Delphi,
on local Bulletin Board Systems, or in a friend’s computer
system across town. To gain access all you need is a terminal
program, a serial port, and a modem.

Here’s the problem. Many of the files you will want are large
and take a lot of time to download. When you run a terminal
program on most computers (PC clones and the Macintosh for
example) the download process completely ties up the
computer. To be fair, the occasional terminal program allows
you to do some work on your computer while you download “in
the background”. Even in these cases. the software places severe
retrictions on what you can do while a file is downloading. For
example, it may allow you to run that program’s integrated text

Page 197

Mastering OS-9

editor but not your favorite word processor.

In contrast, with a properly written OS-9 terminal program, and
windows, all you need do is pop over to another window and
you can run ANY properly written OS-9 program of any type.
[The extendable interface for WizPro allows the addition of any
number of your favorite OS-9 applications to a WizPro menu.
So, while you’re online, just choose the application you need
whenyou need it. This is especially ideal when using hard disks.
They easily store all your programs and can load them into your
CoCo on demand without haltingyour CPU. — PKW]

Conferencing by modem.

Another reason for telecomputing is conferencing. It is not only
fun, but can be immensely informative. n a conference,
messages from many people are combined and echoed back to
the group as a whole.-1t’s like a conversation where everybody
can talk at the same time, yet the individual messages don’t get
mixed up, except ... you may have someone else’s message pop
up right in the middle of the one you are currently typing. This
is easy to fix under OS-9. Your terminal program can create a
separate ‘device’, or window, for you to type in. On WizPro, for
example, this is called the Conference mode.

With conferencing, as with downloading, the multi-tasking
ability of OS-9 again shows its differences. Say someone in the
conference asks a question which, for you to answer it, requires
that you list a file stored elsewhere on your system. With Level 2
and windows, you only need switch to another window

to list the file.

How to start telecomputing.

At this point, you may be wondering how to get involved in
telecomputing with your OS-9 computer. Here are some tips and
information:

Serial ports: you want serial port hardware that will work with
the standard port driver supplied with OS-9, AciaPak and STCio,
for example. Don’t buy port hardware that requires a special
driver even if that driver is supplied.

Modems: Get a Hayes’m or compatible. Unless you know what
you are doing and have a specific need to go faster, stick with a
2400 baud modem. And buy a modem/telephone line ‘spike
protector’ at the same time as you buy the modem.

Terminal programs: here, a reversal applies. You want a terminal

Page 198

Tandy Color Computer 3

program that uses a terminal oriented port driver, and not the
one supplied with OS-9. Why? The standard drivers are
designed to talk to a terminal on the other end... not to a host
computer.

Commercial terminal programs: The best commercial terminal
program is InfoXpress. This is available from Wittman Com-
puter Products. This program allows one to set up a time and
date to automatically log on and grab all your favorite forum
messages, savethem to disk, and allow you to read and reply to
them at a later time offline! Saves a lot of time and expense.

Shareware or freeware terminal programs: There are a number of
good terminal programs that are either free or require only a
modest fee. WizPro, a shareware program I wrote, is on the
“Mastering OS-9” disk.

In general, choose one that uses SAcia or a similar driver. Look
for one, too, that has ‘been around’ for a while. Pay close
attention to signs that it is being supported and updated. You
will need a program that supports Xmodem since this transfer
method is so widely used. Ymodem would also be nice.

Look for a program that has a built-in conference mode; if one
you like does not include this feature, make sure it can be
configured to read from and write to separate device windows
which you set up yourself.

One problem you’ll have with these ‘free’ programs is getting
one in the first place. If you plan on downloading one, you’ll
need a terminal program to download the terminal program. A
good plan is to log on to a BBS or service, and leave the
following quetion: “Can anyone supply me with an address
where I might send $10 or $20 and get a complete OS-9
shareware terminal program?”

I believe TelStar and XCom9, two popular terminal programs,
are offered this way. Both work with SAcia.

Hard Drive Systems f or the Tandy Color Computer

Page 199

Mastering OS-9

Kevin Darling (Updated by F.G. Swygert)

0OS-9 is a disk-intensive operating system. While this kind of
operating system has many advantages, constant disk access can
slow down a system. particularly on a Color Computer. Even
with patches to speed up track-to-track access time, f loppies are
slow compared to your CPU’s ability to process data. Plus, your
CPU typically stops doing any work while a f loppy disk is
being read.

Two chief solutions to the disk access bottleneck are: buy a
no-halt f loppv disk controller (this doesn’t speed disk access
but at least it doesn’t halt the CPU); and buy a hard disk. Hard
disks are shockingly quick and marvelously convenient.

Since many OS-9 users eventually investigate purchasing a hard
drive system I asked Kevin Darling f or permission to reprint in
“Mastering OS-9” some of his comments and advice on CoCo
hard drives.

He addresses hardware and software issues in terms which may
be bscure f or computer novices so I have made slight editions
to improve its readability by beginners. — PKW

The basic parts of hard drive Kits.
Hard drive system hardware is fast and intelligent. While there
are some differences between hard drive systems, performance
is excellent compared to floppies.
All hard disk systems consist of:

Power supply

Hard drive (s)

Hard drive controller

HCA - Host ComputerAdapter

(Hard Disk Interface Pak)

On other computers such as IBM compatibles, connecting a hard
drive is relatively simple and elegant thanks to discreet slots in
the back of the CPU case.

On the CoCo, most require a MultiPak Interface. All hard disk

types discussed here involve an MPI except the Ken-Ton, which
will work equally well with an MPI or Y cable.

Page 200

Tandy Color Computer 3

Now let’s discuss a few arcane details about hard drives such as
how large the platters are, how fast they rotate, how much
storage they provide, and so on. We also explain some of the
abbreviations you may see in hard drive systems advertising.

Size — Most drive platters are either 5.25" (full or 1/2 height), or
3.5". As you might guess, full and 1/2 height hard drives take up
the same space that full or 1/2 height floppies occupy.

Rotation speed and saf ety— Hard drives rotate at 3600
revolutions per minute (RPM). Compare this rate with your
floppy drive’s 300 RPM. The heads “fly”” at 18 millionths (or
less) of an inch above the coated aluminum disks (platters),
which are sealed in a containment cover.

The extreme speed of platter rotation and the critically small
distance between the heads and the platter make for a delicate
machine. Do NOT move a hard disk while it’s rotating. You can
cause the heads to gouge into the surf ace of the platter!

Many drives have a safe landing zone on the innermost
cylinders, thus some people use a Park command to move the
heads-assembly there before shutting off their drive. Check
around different information services for a Park command for
your system if one is not provided. Most drives made over the
past three to four years have an auto-parking feature, making
parking programs unnecessary.

Advertising Lingo — What it means to you.

A hard drive is most often advertised as being one of three
types: IDE, SCSI, MFM, or RLL. IDE drives won’t work with the
CoCo, so we won’t bother to discuss them..

The MFM and RLL reference simply refers to the way data is
stored on the drive. Both are older technologies that have been
around for a long time. These drives will require a separate
controller card. If you get an RLL certified drive, you will need
an RLL controller to take full advantage of the added capacity.
With a standard MFM controller, you will only get about 2/3 the
RLL formatted capacity. Note that an MFM drive will format
with an RLL controller and increase in size by 1/3, but it won't
Hind|Drivies the Hooking amderthiechpedod. May work fine for
two or three months, then you boot one morning and get lots of
errors!

Page 201

Mastering OS-9

The Small Computer System Interface (SCSI) was designed to
support many different peripherals, not just hard drives.
Macintosh computers use a SCSI port instead of expansion slots.
SCSI drives have a controller built into them, meaning that a
separate controller is unnecessary.

Data Storage Capacity

The bottom line for most users is the number of megabytes of
storage a hard disk provides. The number of megabytes
available for storage is not the only yardstick. Other measures of
capacity are number of heads (or sometimes platters) and
number of cylinders.

Usually, when formatted, you will use 32 sectors on each
cylinder for each head. Each sector contains 256 bytes (the
equivalent of about four lines of text on your monitor screen).
How does all this add up?

Example: Suppose you buy a 10 megabyte hard drive. Suppose
further that it offers 2 metal platters or disks. (It might also be
advertised as a “4 head” drive because there is one head per
platter side.) Chances are that the ad also mentions that the drive
has 306 cylinders. As we noted above, when the disk if
formatted you will have 32 sectors for each cylinder.

With 4 tracks each with 32 sectors, you have 4 #*32 = 128
sectors available without moving the heads to another cylinder.
Of course you CAN move to another cylinder — to 306 of them
in this case. So for this example, (4 heads/cylinder * 32 sectors/
head * 306 cylinders) = 39,168 sectors * 256 bytes/sector = 10
Megabytes.

Controllers -- General Operation

Hard disk controllers are very intelligent devices. They essen-
tially have both a microcomputer and some RAM on board.
They also contain digital to analog circuitry needed to control
the drive. The microcomputer receives a simple command from
the host computer (such as “read sector”, “seek”, etc.) and then
interprets the command into the data it needs to carry out the
instruction. This all happens incredibly fast. The RAM is used as
a buffer to store one or more sectors of data. Thus the host
computer is free to do something else while the controller does
the hard work. This is very handy under OS-9, and many hard
drive users don't bother with no-halt floppy controllers as the
hard drive is in effect a no-halt device. Most controllers will
handle two hard drives.

Page 202

Tandy Color Computer 3

The HCA side of a controller resembles a set of addressable
read/write registers. So an interface generally consists of an
address decoder to place the interface within a certain range of
CPU addresses ($FF70-77 is a favorite range for this). An
interface also features a bidirectional byte-wide data buffer and
buffers for Select, Read; Write, and Register Select address lines
going to the controller.

In most regards the controller board is just like any other device
that you might interface to your CoCo such as clock chips,
P1A’s, ACIA’s, A/D converters and so on. The HCA or interface
pak would be different for an Apple, for instance. But the
controller and drives could stay the same.

Note that I am NOT necessarily saying that you could drag your
hard drlve setup from computer to new computer. You’d
probably have to build an interface and write your own
software.

CoCo Hard Drive Interfaces

This is the computer-specific part of the hardware. Each
computer, depending upon its bus or ports, will use a different
hardware method of interfacing to the hard disk controller.

The CoCo Hard Disk Interface available from Radio Shack is
one example. It interfaces to a WD1010 controller (I suspect it
might be useable with the WD1002 since Western Digital tries to
keep its interfaces and software upgradeable). This particular
interface is not a good one to try to use. The drivers are located
in the OS-9 Level 1 Development Pak. They will only support a
10, 15, or 30 meg hard drive. They may work with others, but
they were written for old drives available from Tandy.

The most popular interface for the CoCo was the Burke&Burke
CoCo/XT and CoCo/XT-RTC. These are basically an interface
adapter which converts the CoCo 40 pin bus to accept a
standard eight-bit PC/XT hard drive controller card. Since eight-
bit PC controllers and hard drives were some of the cheapest,
this was a good way to go when it was first introduced. And it is
still a very reliable system -- an excellent choice.

Several manufacturers built SCSI interfaces for the CoCo,
including Disto, J&M, and LR-Tech. All of these are good
systems, especially when used wit h a SCSI drive with built-in
controller. Some were sold with SCSI controller boards that
controlled MFM or RLL drives. These attach between the

Page 203

Mastering OS-9

interface and drive and are harder to package neatly.

The Disto is a small SASI/SCSI interface board that mounts in a
Super Controller or RAMDisk. An adapter was available to
mount the board in a MultiPak Interface. The only disadvantage
to this device is that it would control only one drive at a time.
An embedded controller SCSI drive can be used or a separate
SASI/SCSI controller board.

The only interface currently in production is the Ken-Ton SCSI
interface. This is a premium unit that will control up to six SCSI
drives. It will also handle other SCSI devices, but drivers would
have to be written for them. These are only available from
FARNA Systems.

Power Supplies

Controller boards require 5 volts at around 3 amps maximum.
Drives require 5 and 12 volts at varying amperage. Check
specifications if you are “rolling your own”. One thing to note is
that drives can take up to 20 seconds to get to speed. During the
first part of this powerup, the 12 volt amperage needed can be
quite high. Don’t skimp. A power supply with a fan is the best
way to go to guarantee things stay cool and reliable.

My experience with hard drives.

I originally had a hard drive (19XS) that supported both OS-9
and DECB. Not many DECB programs worked with that drive,
so I soon wished I had set it up entirely for OS-9.

Storage needs seem to grow. I started with a 5 meg drive, which
seemed like a lot to me. It was filled up sooner than I thought, so
I went to a 10 meg. Nice try. Now I’'m running a setup with both
a 20 and a 10 meg drives, and still want more storage!

Actually, 20-30 megs should be adequate for most users. It is
difficult to find small drives now, so get the best value for your
money. Even though you may not need it, OS-9 will support up
to 134 megs unmodified. It can be modified to support up to 4
gigabytes, but I don't know of anyone who has more than 350
megs on a CoCo. No need for that much storage unless you run
a BBS!

Conclusion

This is just SOME information on hard drives. I hope it serves to
answer your questions. Based on the information presented,
you should be able to narrow down which drive systems you
might be interested in picking up. Good luck!

Page 204

Tandy Color Computer 3

Start BasicO9!
Dale L. Puckerr

When Paul Ward asked us to write this appendix for his fine OS-
9 book, we jumped at the chance to introduce you to one of the
best kept secrets in the microcomputer world today — BasicO9!

The inspiration for this short piece was created long, long ago
(nine years seems like an eternity in the computing arena!) in a
galaxy far, far away. Its birth in Iowa verifies the latter part of
our infamous introduction.

The revolution hasn’t begun — it’s already here!

If you survey the magazines that serve the competitive personal
computing world today, you’ll find more than one rave review
of True BASIC or ZBASIC as packaged for the IBM and
Macintosh computers. Writers are heralding these new BASCs
and proclaiming the birth of a new generation of programming
tools.

Yet, the new features being strutted before an unsuspecting
audience today are nothing new to seasoned OS-9 enthusiasts.
They found these features in a revolutionary language from
Microware Systems Corporation in Des Moines, lowa in 1979
and have been taking advantage of them ever since.

After you read this appendix, we hope you will be inspired
enough to start BasicO9. Then you can take advantage of this
language’s state-of-the-art features too. After all, the price is
right. Tandy includes BasicO9 free in every OS-9 Level 2
package it sells.

Once you start, where to go for help.

We often hear people with Color Computers say they don’t use
BasicO9 because it’s too difficult to learn. Yet, they’ve never
tried. To these people we say, “BasicO9 is not difficult. It’s
different!” After you run your first BasicO9 program and look
back at your first modern BASIC code we think you’ll agree that
BasicO9 is indeed much easier to understand and use than the
Microsoft BASIC interpreter built into the Color Computer 3.

If you are looking for a plain language introduction to BasicO9,
we hope you’ll pick up a copy of The Off icial BasicO9 Tour
Guide. Commissioned by Microware, the book is a perf ect
balance between completeness and accessibility. Highly

Page 205

Mastering OS-9

recommended. In it, you’ll find a friendly, plain language
introduction to this fantastic language and many examples. We
also invite you to check out the many Color Computer 3 /
BasicO9 programming examples published in the KISSable
0OS-9 column in The Rainbow back issues and some of the
articles currently in “the world of 68’ micros” by Chris Dekker..

BasicO9 Advantages

When you start BasicO9, you’ll discover for yourself that
BasicO9 has many advantages when you write your first
program. But since we don’t want to keep you in suspense, we’ll
give you a sneak preview in this appendix.

First and foremost, BasicO9 is not the same old line-number-
encumbered BASICyou learned in school. Rather, BasicO9 is a
modern programming language that closely resembles Pascal. In
fact, you’ll find that translating most Pascal programs to
BasicO9 is an easy chore.

Yet, while BasicO9 delivers Pascal’s outstanding structural
qualities, it is far less rigid. Since BasicO9 lets you create well-
structured programs without line numbers, your programs will
be easier to understand. You won’t get lost following 15
“GoTo” statements-to meaningless line-number locations during
your debugging sessions.

Speaking of understanding, you’ll find that BasicO9 programs
are very readable. While this may not seem important t-you
now, it will be six months from now when you need to go back
and change your program to incorporate new data.

And while you’re writing or running BasicO9 programs you’ll
still have all the power of OS-9 Level 2 atyourflngertips. For
example, if you forget the name of a file stored earlier, you need
only type a dollar sign, $, followed by the word d ir and then
strike the <ENTER> key to cause a listing of all the files in your
current data directory to appear on the screen. You can do this
from BasicO9’s command mode and from its debug mode. Dir
isn’t the only command you can summon in this manner. You
can run every OS-9 command in your current execution
directory just as easily.

Level 2 offers yet another way to access your OS-9 command

set. Simply strike the <CLEAR> key on your CoCo 3 keyboard.
This will take you to another window where you’ll find an OS-9
prompt waiting for you. The prompt is there because you started

Page 206

Tandy Color Computer 3

an immortal Shell in that window earlier.

Easy to use AND Powerful?

I can almost hear the objection: “A programming language this
easy to use can’t be very powerful!” Not so!

Look closely at a few of the commercial OS-9 Level 2 software
packages you may have purchased. You'll most likely notice
that several of them are stored in Basic09 I-code modules. This
means they were generated with Basic09. Many of Bob van der
Poel’s programs were written under Basic09.

You have access to the same programming language that
commercial programmers use. And you received it virtually free
with OS-9 Level 2.

Proof is in the Pudding

We’ve run out of room for the commercial already and haven’t
even mentioned Basic09’s fantastic data typing capability. And
since we wouldn’t want to tease you too much we’ll throw in a
short example later.

But first, let’s see if we can come up with a few lines of code
that prove Basic09’s claim to readability. We’ll start with a
standard line-number BASIC program:

10 REM THIS IS THE OLD WAY

100 INPUT "PLEASE TYPE A NUMBER: ", X
110 IF X > 0 THEN 150

120 IF X < 0 THEN 170

130 PRINT "THE NUMBER IS ZERO"

140 GOTO 180

150 PRINT "THE NUMBER IS POSITIVE"
160 GOTO 180

170 PRINT "THE NUMBER IS NEGATIVE"
180 END

Now let’s do the same thing using a Basic09 procedure:

PROCEDURE OurWay

(* Sbow how BasicO9 control structures can make

(* your programs easy to read and understand. This

(* program will produce the same results on your Color
(* Color Coputer screen as the program above.

DIM number: INTEGER

INPUT “Type a number: ”,number

PRINT

Page 207

Mastering OS-9

IF number > O THEN
PRINT “Your nunber is positive.”
ELSE
IF number < O THEN
PRINT “Your number is negative.”
ELSE
PRINT “Your number is zero.”
ENDIF
ENDIF
PRINT
END

Enough said? I’ll bet you love BasicO9 already! If you can still
honestly say that the first listing is easier to understand after
reading both, perhaps BasicO9 isn’t for you.

If we may be allowed another commercial break, we typed the
bottom listing with all lowercase letters. Later when we listed it,
BasicO9

automatically typed its keywords in all UPPERCASE letters. It
also automatically indented its control structures. All of this
pretty printing is free. It’s a bonus you get every time you write
a program with BasicO9.

Data types and BasicO9 —

Something to write home about.

Earlier we mentioned BasicO9’s powerful data typing ability.
Now, we show you a simple example that demonstrates why this
feature is something to rave about.

When you turn it on, BasicO9 knows five data types BYTE,
INTEGER, REAL, STRING and BOOLEAN. Don’t say it!
You’re right, that’s no big deal since almost every BASIC today
knows about at least three of these data types.

No, the big deal with BasicO9 revolves around another BasicO9
keyword, TYPE. First, to review:

* A BYTE is a data type that can be stored in a single memory
cell in your computer; a cell is exactly eight bits or one byte.

* An INTEGER variable is stored in a memory cell 16 bits or
two bytes wide.

* A REAL number is a “floating point number”, stored in a
series of memory cells designed to hold floating point numbers
(five bytes in BasicO9).

Page 208

Tandy Color Computer 3

* A STRING variable stores English language characters and
words that you can read on the screen. In BasicO9, strings can
be any length if you have enough memory. You assign the
amount of memory each STRING variable will use with a DIM
statement.

* And finally, a BOOLEAN variable is stored in a single byte
that can have only one of two values. A variable of type
BOOLEAN must be either TRUE or FALE.

If you were forced to work with data in one of these five shap-
es, your universe would have a narrow scope and you would
find it difficult to get anything done. No wonder many people
hate BASIC!

You’re more fortunate, however. You have BasicO9 with its
unique TYPE statement on your side. If the readability examples
above didn’t win you over, perhaps an example or two featuring
a few homemade Basic09 data types will do the trick.

Data types and a mailing list.

We’ll begin with a real world example that could easily become
the heart of a tool needed by most of us at one time or other.
Imagine that you are the secretary of the local Lions club and
you must set up a mailing list that you can us to print mailing
labels and maintain information about everyone in the local
club.

First, you must tell BasicO9 what kind of information you want
to print on your mailing labels. Of course, we feel the best and
one of the easiest ways to do this is to use a BasicO9 TYPE
statement. Something like this should work handily.

PROCEDURE LionsLabels

(* Show how to use a BasicO9 TYPE statement

TYPE label=firstname:STRING14]; middleinitial: STRING(I];
lastname: STRING[20]; street, city: STRING[24]; state:
STRINGI2]; zip: REAL

In the TYPE definition above we told BasicO9 to reserve 14
bytes to hold a members first name. Likewise, we reserved one
character for a middle initial and 20 characters for a last name.
Then, we set aside 24 bytes for the first two lines of our
member’s address, two characters for the member’s state and
five bytes for a REAL number to store his zip code.

Page 209

Mastering OS-9

In this particular example, we reserved 90 bytes of memory for
each member of the club. Just remember, you don’t have to use
our definition for your mailing label. With BasicO9’s TYPE
statement you can have your labels your way.

Once we define our new data type, we must set aside memory to
use it. We do this with the DIM statement. For example, if we
have between 90 and 100 members in our Lions Club, we will
probably want to reserve enough memory to hold the names and
addresses of at least 100 members. This line will do the job:
DIM LionList (100): label

Here we have set aside 9,000 bytes of memorv to hold the
information needed to print up to 100 mailing labels — 90 bytes
per label times 100 labels.

To store our names and addresses in the array of 1()() mailing
labels, we can use any one of a number of techniques. In all
cases, we start with the knowledge that the name of our array IS
LionList.

We also know that each element or member in our array of
mailing labels has a number of fields. We defined these fields in
our TYPE statement above. This means that the first mailing
label in our list can be initialized with the following information:

LionList(l).firstname:=Dale LionList(l).middleinitial:=L.
LionList(l).lastname:=Puckett LionList(l).street:=805 West
Edmonston Drive

LionList(l).city:=Rockville LionList(l).state:=MD
LionList(l).zip:=20852

Your array can be initialized with straight-forward assignment
statements like those above. Or, you can use a standard loop
structure to write information about all of your club members to
the list at the same time. The loop can get the information from
your keyboard or another disk file.

GET that data and PUT it here!
Once you have entered your data you’ll be in mailing label
heaven. You’ll also be able to take advantage of Basic09’s GET

and PUT statements(Extended Color Basic, eat your heart out!).

For example, to print the first mailing label in your array to the

Page 210

Tandy Color Computer 3

screen, all you need to do is use the following line:

PUT 1, LionList(l)

If you’ve entered all the names and you want to print a hardcopy
of your entire mailing list, all you need is the code below:

DIM printer:BYTE
OPEN #printer,"/p”
PUT #printer, LionList
CLOSE #printer

While we were developing our KISSDraw tutorial series for The
Rainbow, we used a similar technique with Basic09 data TYPEs
and PUT statements in a drawing program. We called it
KISSDrawPut.

Because no data conversion is needed with the with the GET
and PUT statements, we were ahle to substantially increase the
speed of our program. With GET and PUT, an exact copy of the
bytes in your structure is written to the screen.

GET and PUT also gave us a way to store pictures so we could
save them to a disk file and reload them later. Increased speed
came from the BasicO9 GET and PUT statements.

What is a line?

To show you how we can can apply the techniques used in the
mailing list above to a drawing program, let’s define and draw a
line.

To draw an object that looks like a line we need a “tool” — a
pen perhaps. Imagine a pen drawn on your computer screen
whose pen point always marks where drawing can take place.

For now, we’ll assume the line starts where the pen is resting. It
runs to another location on the screen which can be defined by a
horizontal and vertical pixel address. [A pixel is an element of
your screen display which the computer can address. The word
pixel is shorthand f or “picture element. “ — PKW]

The first thing we need is a data TYPE definition for our line.
Since we knew we also wanted to draw bars, boxes and circles,
etc., we kept our definition generic. We defined a data type

named Object:

TYPE object=DCode,HorP,VerP:INTEGER

Page 211

Mastering OS-9

Then, we reserved a place in memory to store it. We used the
DIM statement and called our new variable Pen. It seemed like a
good metaphor since we often draw with a pen in the real world:

DIM pen:object

We now had a place to store a pen we could use to draw a line.
To use it we had to define our line and initialize it in memory.

Within OS-9, all drawing primitives are defined by the escape
code, $1B followed by an additional byte. To put a line on the
screen, we had to send $1B followed by $44. That means — in
0S-9 speak — $1B44, followed by a coordinate pair, IS a line.

pen.DCode:=$1B44
pen.HorP:=100
pen.VerP:=50

We now have a line stored in a memory variable named pen
waiting to happen. To make it happen, we must PUT it on the
screen:

PUT #1, pen

Since we wanted to redraw that same line later, we needed to
save a starting location. We named a new data type Orgin to
complete the mission. We named our variable Handle..

TYPE orgin=DPSCode,HanX,HanY:INTEGER
DI Handle:orgin

The data field named DPSCode holds the OS-9 code required to
position the data pointer on your screen, $ 1B40. The fields,
HanX and HanY store the starting location of our line. After we
had reserved a place in memory, we stored the starting point for
our new line:

Handle.DPSCode:=$1B40
Handle.HanX:=0
Handle.HanY:=0

We then drew our line with two lines of code.

PUT #1, Handle

Page 212

Tandy Color Computer 3

PUT #1, Pen

Since that was too complicated, we designed a new data type to
hold the starting location, the pen and the end point of our line.
Since the two lines above drew a line on the screen when we ran
them, Drawing seemed like a natural name for our new data

type.
TYPE Drawing=Loc:orgin; tool:object

We named the field containing the starting point Loc (short for
location) since that what it contains. Likewise we called the field
that holds our pen a tool.

After we defined the objects we would be drawing, we needed a
place to store our artwork. We called our work a Picture. It
consisted of an array of Drawing(s):

DIM Picture(100):Drawing

This statement reserves 1200 bytes of memory for a picture
made up of up to100 individual objects. Now, here’s the magic.
To draw your picture, all you need to type is:

PUT 1, Picture
Time to GET out of here.
What you’ve read here only scratches the surface. BasicO9 is

indeed a powerful language. It is easy to use and it’s fast.
We hope you’ll join us.

Page 213

Mastering OS-9

Syntax and Usage for the Stephen Goldberg
Utilities Provided With “Mastering OS-9”

CLS clears the screen of your monitor. It can be executed from
the command line by entering CLS or it can be called from a
Basic-O9 procedure with the command ‘SHELL “cls™.

COPY uses exactly the same syntax as your original Copy
utility that comes with your operating system (see your OS-9
Commands manual): COPY < source > < destination > [-s]

The enhancements include the ability to overwrite a file that has
the same name as your chosen destination filename. You can
now copy an updated file to the older version without first
deleting the old one. If you attempt to copy your file to one that
already exists, you will be prompted with the question:
Rewrite? (y/n):
If your answer is ‘N’, the copy will terminate at that point. If
answered ‘Y’, the contents of the existing file will be replaced
by the contents of your source file.

This version of copy will automatically delete a defective
destination file. This can occur because of a read or write error
or due to insufficient disk space. You will not be left with a
faulty file to be deleted manually.

The last improvement is for single drive system users. It is a
drag copying files from disk to disk with only one disk drive.
The enhanced copy will reduce the disk swaps required by at
least two exchanges.

Lastly, remember that you can increase the buffer size by using
the command line modifier ‘#’. This will speed copying files and
reduce disk exchanges. If the buffer is large enough to hold the
entire file, disk to disk copies can be made with just a single
exchange on one drive systems.

COUNT counts the number of characters, words and lines in a
text file. May be used with input redirection or in a pipeline.
COUNT [-opts] [filename]

The -1 option displays a count of the file lines.

The -w option counts the words in a file.
The -c option displays a file’s character count.

Page 214

Tandy Color Computer 3

Omit options to display all three totals.
If no filename is present on the command line, the standard
input path is employed permitting input redirection.

Example: count textfile <ENTER>
reads ‘textfile’ and displays the number of characters, words and
lines contained in the file.

Example: list chapter] chapter2 chapter3 ! count -lw <ENTER>
displays the number of lines and words in three files. If no
filenameparameter is entered with Count, lines can be accepted
through a pipeline. All counts given when specifying more than
one file given are totaed and the total is displayed.

Example: count -w -c < letter <ENTER>
counts the number of words and characters in the file ‘letter’.

D displays an unformatted list of all filenames in your current
directory, one filename on a line, if no oFtions are listed. The
standard output of D is generally used to feed a plpeline.

D [-][name.option]

You can selectively display only those filenames desired by
entering your criteria following D on the command line. You
may use ‘Wild Card’ options in order to select the desired file
names. The question mark (?) is used to denote a single
character. The asterisk (*) indicates any number of characters.

The wild cards, * and ?, can replace characters at any position in
a filename. For example, ‘joker’ may be represented as *r or
*ker or j * or j*r or *k *. If you want to represent single
characters you can use ?oker or j?k?r or ??77?. All of these
choices as a file-option will cause the filename ‘joker’ to be
displayed.

The ‘-* option is entered directly before your file selection

criteria with no space following it if you want all file names
EXCEPT those matching your criteria to he displayed.

Example: d <ENTER>
displays the filenames in the current working directory.

Example: d ! sort <ENTER>
sorts the filenames in the current directory to the screen.

Page 215

Mastering OS-9

Example: d *.c ! count -1 <ENTER>

counts the encoded files in your working directory. Your
encoded filenames all end with ‘.c’. By using the option * *.c’,
all filenames in your directory consisting of ‘.c’ preceded by any
number of any other characters (*) will be found and piped to
count. The number of lines counted will be the number of
encoded files.

Example: d 777? ! sort >/p <ENTER>
finds and sorts all four letter filenames in the directory and
redirects the sorted list to the printer.

Example: d-*.c ! list <ENTER>
finds all filenames that do NOT end in ‘.c’ and lists the files.

GREP scarches the indicated file or files for the search string
and displays all lines containing that string. The string will will
be found regardless of the case of the string’s characters.

To use, type grep followed by the string to be found then the
name(s) or pathlist (s) of the file(s) to be searched then any
desired options. If the filename is omitted grep will accept lines
via the standard input.

If the search string contains a sace, then it must be enclosed in
delimiters. You may use a quotatlon mark (“) or slash (/) as a
delimiter. Both start and close delimiters must be the same and
may not be included in the search string.

The -c option causes grep to search for the string exactly as
entered on the command line, matchin the case of the string
characters exactly.

The -n option provides the fllename and line number of each
line

displayed for easier location in the file.

The -t option displays totals of lines read, the number of lines
containing the search string and the number of occurrences of
the string in the file(s) searched after the display of lines
containing the seach string.

The -0 option displays only the totals not the lines.

The -v option causes only those lines that do NOT contain a

Page 216

Tandy Color Computer 3

match to be displayed.

Example: grep jones addresses <ENTER>
will search the file ‘addresses’ for jones, JONES, Jones etc. and
display all lines containing that string on the screen.

Example: grep -t jones filel file2 file3 <ENTER>

searches three files for jones etc. and displays all lines as above.
The -t option is used to obtain a count of lines and occurrences
of the string.

Example: grep -o jones filel file2 file3 <ENTER>
as above but does not display the lines, only the totals.

Example: grep -nc Jones personnel payroll <KENTER>

displays filenames and numbered lines containing ‘Jones’. Only
those file entries matching ‘Jones’ exactly will be listed because
of the choice of the -c option.

Example: dir e letters ! grep 84/09 <ENTER>

will find all files in the ‘LETTERS’ directory which were last
updated during September 1984. If no filename(s) are entered
on the command line, grep can be used as a pipeline filter.

Example: grep /new jersey/ addresses <ENTER>

finds the people living in ‘new jersey’ in the ‘addresses’ file.
Because of the space between ‘new’ and ‘jersey’, delimiters are
required to define the total string.

Example: d ! grep -v afile ! grep -v bfile ! list <ENTER>
filenames of the current data directory are sent through a
pipeline to grep which passes all but ‘afile’ to grep again in
order to ellminate ‘bfile’ and on to list which lists all files except
those deleted by the -v option. The output of Grep is via the
standard output path and can be redirected or used to feed a
pipeline.

Example: grep jones addresses > jonesfile <ENTER>
redirects the output of grep to ‘jonesfile’ on disk.

Example: grep 11714 addresses ! sort > /p <ENTER>
prints a sorted list of those living in the 11714 zip code area.

SORT is an in-memory ASCII sort for files, directories etc. The

input and output of sort are via the standard paths and can be
redirected or sort may be used as a pipeline filter.

Page 217

Mastering OS-9

The sort buffer is approximately 3.5K. Its size can be increased
for larger files with the use of the ‘# command line modifier.

If the sort buffer is not large enough to accomodate all of the
linesto be sorted, the sort will abort and a buffer overflow notice
is sent out the standard error path. You may then re-sort with a
larger buffer. The size of the file to be sorted is limited only by
the memory available.

Example: sort < namelist <KENTER>
displays on screen the sorted entries of the file ‘namelist’.

Example: sort < address > sortedadr #30k <ENTER>
sorts a large address file to the diskfile ‘sortedadr’.

Example: grep jones address ! sort > jonesfile <ENTER>
finds the addresses for all the ‘jones’ and sorts them alpha
betically and saves the sorted list on disk in ‘jonesfile’.

Sort can also be used to sort entries from the keyboard:

sort <ENTER>. Type in the list to be sorted. When done, you
press <ESCAPE> (<CLEAR> <BREAK> on the CoCo) and the
list will be sorted.

You may redirect the sorted output of the keyboard entries:
sort > /p <ENTER> or sort > /d 1 /newfile <ENTER>. This
permits printing or saving to the disk your sorted keyboard
entries.

UNIQ [-c] deletes repetitive entries from sorted lists. The
standard input and output paths permit its use as a pipeline filter.
The ‘-c’ option provides a count of each sorted item. Only one
of each duplicated line is displayed staring with the count.

Example: sort <namelist ! uniqg <ENTER>
sorts all names in the file ‘namelist’ and Uniq passes only one
copy of any duplicated names.

Here is a simple example of the use of the ‘-c’ option. Each time
a customer places an order with you, you add his name to a
‘customer” file. At the end of the month, you would like to see
which accounts are most active. The file contains:

Smith Jones Smith Williams

Roberts Peters Jones Smith
Williams Smith Williams Jones

Page 218

Tandy Color Computer 3

Sort the file and pipe the sorted list to uniq, using the ‘-c’ option
and the sorted list looks like this:

sort < customers ! uniq -c <ENTER>

3 Jones

1 Peters

1 Roberts

4 Smith

3 Williams

Page 219

Mastering OS-9

The standard output of uniq can be redirected to another file or
to the printer.

0S-9 and Music
Michael J. Knudsen

One of human kind’s most glorious and mysterious activities is
making music. Music can be at turns explosive and serene,
calming and terrifylngly transforming.

The subtleties of music perception fascinates many music
professionals and educators. colleges and universities spend
increasing amounts of time measuring the way we hear and
understand sound. Computers and music synthesizers are ideal
tools to aid this pursuit.

Two educators interested in music perception are Jack Taylor,
professor of Music at Florida State University since 1970 and
Steven Newcomb, also at FSU. During the Seventies, Taylor’s
interest in musical applications of digital technology led him to
organize conferences around the country. At these conferences
researchers and educators kept abreast of developments in the
field. One topic of chief interest at these conferences was
electronic music synthesis which naturally attracted synthesizer
pioneer Sherwin Gooch. Taylor and Newcomb developed a
reationship with Gooch who donated to Taylor and FSU an
advanced synth and composition device named Platypus.

In 1980 he and colleague Newcomb founded the pioneering
Center for Music Research at FSU. One of the first of its kind,
the Center developed technological approaches to studying
music perception — and to studylng music in eneral, including
composition.

“The timing was right at FSU,” says Newcomb. “We had a new
dean who was receptive to the idea of usin the latest digital
technology.” This support along with Gooch’s gift kicked off
the Center to a great start. Now, the center boasts dozens of
custom digital synthesizers and an 30-terminal system for
student use.

0OS-9 is central to that terminal system. How it came to be central
to CMR’s work is ironic: one of the CoCo 3’s competitors in the
entry-level computer market, the Atari ST, introduced Newcomb
to OS-9. Newcomb wouldn’t even have gone looking for OS-9

for the ST except that the existing software and operating system

Page 220

Tandy Color Computer 3

performed poorly.

According to Newcomb, he chose Atarls “because they have the
biggest bang for the buck. The problem was that GEM just
doesn’t work.” GEM, the Graphics Environment Manager, offers
a point-and-click environment for the ST series that has sadly
been plagued with problems since its introduction. “We also
found the hard disk interface to be unreliable and it’s just too
hard to back up floppies,” adds Newcomb. Plus, GEM and
existing ST software didn’t offer the programming maturity the
Center was looking for. The purchase of STs was beginning to
seem like a mistake.

Then, while Newcomb attended the 1986 X3D1.8M ANSI
conference he received a call from David Kaleita, then president
of the OS-9 Users Group. “Dave said, ‘You know, OS-9 is
coming out for the ST soon.” I decided to try it,” Newcomb
reports. He bought Personal OS-9 for the ST and ran it through
some paces. He was astounded. OS-9 was software of
“incredibly high quality”. Even more, it performed in a UNIX-
style fashion. Since CMR had just installed a Sun workstation
running UNIX for students and researchers, using OS-9 meant
an easier learning curve for students.

Since starting with OS-9, Newcomb has developed a music
software writing curriculum based on the OS-9 C compiler,
which Newcomb admires. “It has the best error messages of any
C compiler, period.” Because it is exacting in syntax it’s a great
educational tool. “I like it because it’s persnickety,” laughs
Newcomb.

When asked about why OS-9 was a good choice for CMR,
Newcomb said, “OS-9 gives us a reliable platform on which to
do serious work. The operating system always does what it’s
supposed to do.” Still, OS-9 doesn’t carry all the weight at CMR.
Some GEM-based applications are still used and their new
Macintosh 1I gets a workout.

One problem with developing OS-9 based musical applications
on the ST, Newcomb notes, is that the MIDI port built into the
ST is not currently implemented under ST OS-9. The problem is
that “the keyboard, mouse and the MIDI port all use the same
interrupt level.” This hurdle is about to be jumped, says
Newcomb, without disclosing details.

Page 221

Mastering OS-9

0OS-9 and music have gone hand in hand for longer than one
might expect. Years ago Eric Miller of Microware developed
MIDI sequencing software for OS-9 which he reports is “rock
solid” and completely suitable for live stage performance. David
Kaleita also uses OS-9 sequencing software when he composes
on his own synthesizers.

Will advanced OS-9 sequencers ever be made commercially
available? There are rumors, especially from Florida, that OS-9
may suddenly jump into everyone’s musical consciousness very
soon — but further details are confidential.

Before we move on to our discussion of OS-9 musical aplica-
tions on the CoCo, it should be noted that one of the most
advanced series of musical workstations, the Fairlight, has run
0OS-9 for as long as the 6809 CPU has been around. The first
Fairlights used OS-9 and several 6809s. Now Fairlights come
equipped with 68000-family microprocessors, still running OS-
9.

In olden times, a synthesizer converted voltages into notes. To
get two synths to work together was difficult and crude. One
synth could force another to play along with it by transferring
voltages corresponding to its notes to the other synth.

A wide varlety of technical problems, including the inability to
alter each synth’s patches through one keyboard, discouraged
synth connectivity. Often it was more trouble than it was worth.

But it worked. It was such a tease to be able to “layer” your
synth sounds that the electronic music industry responded.
Synth manufacturers, led at first by Roland and later fully
supported by dozens of others, developed a standard computer
code for inter-synth communication. This standard code allowed
synths of ALL manufacturers to communicate note and
“volume” (key velocity data as well as patch change, pitch
change, and so on.

This code — the Musical Instrument Digital Interface Specifica-
tion 1.0 (MIDI) — has held sway for over half a dozen years. It
has caused a revolution in how synths and other electronic
devices speak to each other. One keyboard can have fine-tuned
control over an entire multi-keyboard setup. This allows a
musician to provide musical nuance and technical flexibility
undreamed of ten years ago.

Page 222

Tandy Color Computer 3

MIDI consists of digital data. This is what computers eat for
breakfast. And computers can produce MIDI data too. This
allows musicians to use computers for composition and
arranging. Musicians can alter the tones a synth produces by
moving a mouse around their computer screen. Entire keyboard
setus involving dozens of tones and digital compositions can be
initiatec with a button press.

Sound exciting? Sound difficult to do on a Color Computer 3?
Exciting, yes; hard to do on your CoCo, no. MIDI data is
transferred at over 31,000 bits per second. This is 31 kilobaud,
or simply 31K baud. While this may seem extremely quick (it
is!), most computers — even the older Color Computers at 1
MHz — can easily handle the transmission rate. The Color
Computer 3, at 2 MHz, makes the job even easier. In fact,

one first step has been completed by a programmer and CoCo
aficianado, Michael J. Knudsen. Knudsen has had a MIDI
sequencer for the CoCo 3 called UltiMusE III out for some time
now. This package is derived from his shareware program
UltiMusE available for free download on Delphi. There is also
an OS-9/68000 version available for the MM/1. Both packages
are currently available from Northern Xposure.

Few people are as knowledgeable about MIDI programming on
the OS-9 CoCo 3 Knudsen, so I turned to him to find out his
perspectives on MIDI and the CoCo 3. Here is a summary of
comments he left on Delphi:

MK: (on whether a MIDI product f or the 8-bit CoCo can
compete with Ataris and Amigas): First of all, MIDI data streams
in all 8-bit bytes. This makes 8-bit computers a natural. In fact, a
16 or 32 bit micro [as in the Atari and Amiga] is overkill. Being
the best of the 8-bitters, the 6809 is plenty ood enough for MIDI
work. The 6809 has predictable instruction executlon times
(given the clock frequency) so is good for

timing loops. It has three interrupt inputs so can handle real-time
events well when recording keyboard performance on MIDL

PW: Supposeyou’re trying to record MIDI data intoyour CoCo
under OS-9. The OS-9 operating system takes such control over
the interrupts maintain multitaskin; how could it keep up with 31
Kbaud data input?

MK: OS-9 systems, ateast the CoCo, have a hard time recording
MIDI and time-stamping events because the interrupts are not as
available to the programmer as they could have been (thanks to
the Multi-Pak, mostly). Having a real-time millisecond clock

Page 223

Mastering OS-9

chip would help. But given some external hardware aid, such as
a real-time stamper and buffer such as a Roland MPU-401, MIDI
recording under OS-9 is a snap.

I want to point out that OS-9 is already excellent for MIDI
playing, as the sleep) call can time between note on/off events to
1/60th second accuracy.

PW: Still, what would inspire a programmer to write a MIDI
programming for an 8-bitter like the CoCo 3?

MK: Multi-tasking. OS-9’s multi-tasking is an untapped gold
mine for MIDI. You could have a score notation player (like
UltiMusE) in one window, a,patch librarian for your synthesizer
in another, and a recording sequencer In a third.

The neat thing is that none of these programs have to be
designed or coordinated to work together (as they woud on a PC
or ST). You just move among different windows to get the one
you need at the moment. Tweak your synth patches in one
window, then go play your score in another.

PW: How does this differ from what electronic musicians are
doing now ?

MK: There’s a big difference. Already MIDI musicians are
wishing they could patch all their equipment from one common
computer screen. On any other OS, you’d have to dump your
Yamaha patch librarian and boot your Roland one and so on.
But under OS-9 you can have them all in different-windows,
maybe several on one screen. This will be especially nice on a
screen with resolution such as on the Atari ST. Maybe when
OSK-ST [Personal OS-9/68000] gets a CoCo 3 type windowing
system we’ll get this. But, of course, it’s easy to do on the CoCo
3, too!

PW: Why have there been so f ew MIDI programs f or the CoCo
?

MK: No good reason. The CoCo has a lot of catching up to do
in the MIDI software race — the lowly Commodore 64 has been
way out ahead of us for years. But OS-9’s multi-tasking could
turn out to be our secret weapon to get musicians into OS-9
computers. I’'m proud to be the first to contribute music software
for OS-9/6809, but I hope I won’t be the last.

Page 224

Tandy Color Computer 3

COCO-3 BOOT LIST ORDER BUG (BLOB)
Facts, fixes and theories
Kevin Darling & friends

Some owners have it, some have never seen it. Ordering of
modules in a bootlist for 0s9gen seems to affect it. Adding new
devices may cause it to show up. What causes it? It’s past time
to lay out both what has been conjectured and what is truly
known so far.

At first, the OS-9 kernel itself was blamed. We’ve been pretty
sure now for a long time that it is NOT at fault. All the modules
are position-independent, and have been gone over very closely
by several of us, looking for anything that could cause a
problem. We have found no software cause at all (with the
exception of the disk driver - see below).

Instead, hardware and timing discrepancies in the CoCo-3 and
peripherals have been found almost always to be at fault. In fact,
it’s often possible to pinpoint the exact cause of a particular
problem, with enough information.

Enough preliminaries. Here are most of the confirmed and
unconfirmed symptoms and possible reasons, including things
that act like BLOB:s...

FLOPPY FORMATTING HALTS IN FIRST FEW TRACKS;
READ/WRITES ARE OFF BY A BYTE:

Ken Schunk, myself, and others long ago found that the halt
method used by CC3Disk (and some DECB drivers in programs)
has a problem with some disk controllers (apparently mostly
pre-1985 1773’s). The usual method is to wait for the FDC
(floppy disk controller) to indicate it is ready to exchange

a byte of data, and then have the CoCo go into the halt mode.
What will happen is that the first byte transfer gets lost, and this
is returned as a “Read Error” by the driver.

For reasons as yet unknown, this “data lost” sequence
sometimes “seems” to be driver position dependent. I would
guess that most boot failures are caused by this one, especially
with older controllers (although I've seen it happen on newer
ones, too). The drivers can be fixed, and we should be able to
post patches later.

Page 225

Mastering OS-9

READS/WRITES GO TO WRONG LSN:

Actually, they go to the wrong TRACK, which is also always the
wrong LSN. Usually caused by using disk drives that are set to
turn on their motors only with drive select, instead of the
required method of all motors on with the motor-on signal. All
drivers assume that if one motor is on, ALL are on. Because of
this assumption, and especially because the drive READY line
isn’t usually available on the CoCo setup, the FDC will send
stepping commands to a drive that is still spinning up again
when selected (it takes about 1/2 second to be actually
“ready”).... and those stepping pulses are totally ignored by
drives not spun up. So while the FDC _thinks_ it’s stepped the
head to a new track, in fact either some or all of the step pulses
have been lost. Worse, the 1773 FDC seems to ignore the
imbedded track information on the disk itself (contrary to docs)
and so as long as the sector number matches up, the data is read/
written... to whatever track the head happens to be over!

So make sure your drive motors all come on at the same time.

SPEED AND BAD CHIPS:

Testing and experiences by several people has shown that the
American semiconductor industry has gotten pretty bad over the
last few years as far as quality goes. Or perhaps retailers are
selling more reject chips that they buy on the grey market. In
any case, some failures of chips used in add-on devices have
been found to be brand dependent.

For example, some of the LS245 data buffers inside CoCo-3’s
seem to fail to pass true data at times. Replacing this chip with a
Japanese brand will usually cure this particular problem.
Motorola chips seem to be the worst bet. Symptom is that an
instruction loop reading from the MPI sometimes sees bits set
that it shouldn’t. Solution is to replace the chip or slow down the
loop.

Speedwise, many people use hardware designed and built for
1Mhz operation from the CoCol/2 days. A common problem is
with RS232 paks... they may need the 6551 replaced with a
higher speed version.

INTERRUPTS:

Boot problems also sometimes appear when a device’s interrupt
line isn’t correctly reset. I've had several 6551 ACIAs (used in
RS232 paks, etc) that decided not to clear their interrupt line just
by resetting the CoCo. This leaves an interrupt hanging and can
mess up a machine trying to boot OS-9.

Page 226

Tandy Color Computer 3

It’s also been found that some RS232 paks were built with the E
clock tied to the IRQ line... this can abort a boot also.

Stuck interrupts are covered in the various “IRQ HACK” files
available on most networks, as are files on the RS232 pak.

MULTIPAK UPGRADE:

A non-upgraded MPI definitely causes problems. At the least, it
can cause wrong information to be read from the crucial GIME
interrupt status port.

The most common rumor we see on BBS’s is that the MPI
upgrade “isn’t needed”, because “my machine runs fine without
it”. DO NOT LISTEN TO THESE PEOPLE.

PLEASE EXPLAIN TO THEM THAT THEY ARE STUPID.
While we can’t swear that you WILL hurt your GIME if you
don’t upgrade, we can certainly say that it does make electronic
sense to DO the upgrade (plus Tandy sold the upgrades at

first cheaper than their cost, which alone would make one think
there’s a good reason for having it, eh?).

The electronic reason for the upgrade is this: a READ from
$FF80-9F will turn on BOTH the GIME data bus AND the MPI
data bus. (In addition, really old MPIs ghost their slot select at
$FF7F and $FFIF, which causes problems.) It’s never a good
idea to have two devices trying to put data on a bus at the same
time... one of them could get hurt (usually the GIME, in reported
experiences). Especially under OS-9, where the interrupt register
at $FF92 is read at least 60 times a second, it makes sense to not
have that data be corrupted by bogus MPI data coming on at the
same time. So UPGRADE YOUR MULTIPAK !

E-CLOCK SYNCHRONIZATION:

All accesses to peripherals need to use the 6809 E clock to
validate the transfer of data (especially at 2Mhz!). A few early
versions of third-party devices accidentally were made with
registers that didn’t do this. All have been fixed for a year now,
as far as [know.

The boot-order side of this came about whenever a device
register was accessed at an odd/even address, and then the next
cpu instruction fetch was at the opposite even/odd address...
which meant the AO address line (or sometimes Al and maybe
A2 also) would change after the E cycle ended and thus cause
wrong device register addressing. This was shown on scopes as
a small (around 10-ns) glitch.

Page 227

Mastering OS-9

So the *position* of the driver I/O access instructions in
memory was very important, and was a true common “boot
order” trouble causer (and may still be with older devices made
in the pre-CoCo3 days).

GIME S0-3 DECODING:

A variation of E-gating is that the SCS external select line is
generated inside the CoCo-3 without being E-gated. This could
possibly mean that while the GIME is decoding a different I/O
selection, the SO-2 GIME lines decoded by the 74L.S138 in the
CoCo could easily wobble between outputs, possibly randomly
enabling ROMs, PIAs, etc and placing bogus data on the bus. It
also may be one cause of the video “sparklies”.

Again, using the E gating on devices should mostly solve this,
altho it’s also recommended that if you have problems you
should gate the 138 with the E clock (Roger Krupski came up
with the easiest method: inside the CoCo on the cartridge port,
simply tie the E clock to the SLENB line.

DOUBLE INTERRUPTS:

This is an oddball one. Sometimes people notice that their boot
fails, or that their software clock runs at double speed while
within a VDG screen. Quite by accident, I stumbled across
evidence that certain address bit combinations in these situations
causes double the vertical interrupts to be generated. No solution
except to boot to a real window always, and if you have this
clock problem to change the order in which you start up a game,
so that it’s video address can be moved somewhere “safe”. This
also seems to be GIME dependent. Non-upgraded MPIs can
cause this also, I think.

OTHER HARDWARE PROBLEMS:

Bad connections. Bad connections. Bad connections. Clean all
your contacts regularly. The cartridge port, the MPI and slot
pins, all rompak devices, disk drive cables, and even yank your
GIME and swab it with alcohol if need be, although sometimes
just pushing/tapping on it cures many oddball troubles. Make
sure your drives don’t have something covering the write-
protect detect LEDs. In general, just keep everything clean!

It’s also about now that many disk drives in use for years, are

wearing out or becoming misaligned. Heads become a lot
weaker, and data becomes flaky.

Page 228

Tandy Color Computer 3

We’ve also seen cases where a new cordless phone, or appliance
on the same circuit breaker, can screw up floppy or hard disk
transfers. Even satellite dish downfeeds running by the
computer. If you start to have problems, ask yourself “did
anything change here lately?”

OTHER SOFTWARE PROBLEMS

More and more often, we find that many supposed boot list
problems often have an unrelated simple explanation... such as
making a new boot and forgetting that you patched some
modules or used old ones; the common “oops forgot to put
Grfdrv and Shell in the CMDS directory” gotcha; leaving out a
module. Very often it can be caused by not having the latest
drivers for a device. It’s important to keep updated with the
newest software made available.

Also, sometimes a module (especially os9p1) will get hit by an
errant program, and then you os9gen a new disk... which gets
perpetuated with the bad 0s9pl from then on through new
os9gens. We also find that people often reverify a bad module
quite by accident using disk editors on their bootfile, thus hiding
future trouble. Keep a log of all changes you make, and CRCs!

MISC THEORIES

Most other problems fall into the mystery section (meaning we
don’t have a firm handle on the cause yet). I have two pet ideas
that may or may not make sense, but which are bolstered in part
by experiences by myself and others.

One is that since interrupts cause the internal BASIC ROM to
turn on (to get the interrupt vectors), the ROM stays on a bit too
long and corrupts the data bus at times. Probably a dumb theory.

The other is that the dead cycles within many instructions have
an effect. During the dead cycle the address bus contains $FFFF
(which turns on the ROM!) and again, perhaps this data sticks
around, or the address lines change too fast enough once in a
while from true address to FFFF. This ties in with partial
evidence that some 6809s at 2Mhz will start changing their
address lines immediately after the end of an E cycle, perhaps
even before E-gated devices finish up. We do know that oddball
reads/writes occur at times to strange addresses, and this might
explain them.

A third theory gaining some acceptance (but we just don’t know

Page 229

Mastering OS-9

how the GIME works internally) is that the GIME, like the SAM
chip, powers up using either the up or down side of the main
oscillator clock (remember hitting reset on SAM machines to get
the right red/blue fake color phase? like that). Perhaps

one side is better than the other. Certainly powering down
sometimes cures a boot or other problem. So who knows?

We also know that changing cpu brands, and sometimes
switching GIMEs, will often cure timing problems and the
sparklies. Not always, though.

FAULTY DISK CONTROLLER CHIPS:

Replacing the 7406/7416 chips in older floppy disk controllers
with a different brand can help. Three people have called lately
with info that some of the Fairchild chips have nasty waveforms.

CONCLUSIONS

We’re still gathering data, and occasionally do run across
something unexplained. For the most part though, BLOBs have
become fairly rare. This may be because people have more L-II
experience, or newer hardware, or a combination.

OS-9 itself is not at fault, and note that even DECB applications
can and do suffer from the same symptoms. The basic answer is
that we moved up to a faster machine, while still using older
peripheral equipment.

The order of the bootlist CAN affect the symptoms (as we’ve
seen), but this is simply software showing up hardware bugs,
and is NOT the fault of OS-9 itself. So the final word is this: our
best evidence is that there really isn’t a boot list order bug. Look
to your hardware instead.

The above information has been gleaned over the past two years
from personal experience, many phone calls and network
messages, and the work of Bruce Isted, Tony DiStefano, Chris
Burke, Roger Krupski, DP Johnson, Dave Wiens, Ken Schunk,
and many others.

NOTE: A complete set ofpatches known to cure most BLOB
problems are available from Sub-Etha Software.

Page 230

Tandy Color Computer 3

MISCELLANEOUS BLOB TIPS
Michael Shell

Here’s a bunch of odd ball items that you might find helpful:

1. In case anybody is wondering who turns up the speed, one of
the last things the boot module does is to put the CoCo into the 2
Mhz mode.

2. If you have test code within a device driver and you want it to
send you a “signal”, try poking values into the border register at
$FF9A. OS-9 won’t mind a bit.

3. If your disassembler is the type that misses IRQ routines and
printsthem as a bunch of fcbs, try this trick:

a. Disassemble the code.

b. Put in long branch subroutines (Ibsr) to the beginning of
each IRQ routine that the disassembler missed. The best
place to do this is in the last instructions that the
disassembler picked up:

decb

bne L004b

clrb

1ts

* end of code here

Becomes:

decb

bne LO04b note that the lbsrs are in a “path of
clrb execution”

Ibsr DO100 branch to IRQ#1 that disa missed
Ibsr D02£0 branch to NMI that disa missed
Ibsr DO1a0 branch to IRQ#2 that disa missed
Its

* end of code

c. Assemble the code with asm.

d. Disassemble the resulting object code.

e. Remove the statements that you added. Remember that
the offset labels to code after your inserted code will no
longer be valid as offsets from the start of the module. If
you have no labels after the place where your lbsrs were,
then this will not be a problem.

f. Presto, fully disassembled code!

Page 231

Mastering OS-9

3. The magnetic zones on a disk tend to repel or attract each
other depending on their respective polarities, just like little
magnets. Thus, the ones and zeros on a disk tend to “move” a
bit depending on the adjacent bits. If pronounced enough, this
effect can lead to read errors. This is particularly true on the
inner (high #) tracks where the bits are closer together. Write
precompensation is a process in which the position of the bits is
shifted during writes to compensate for the natural “wandering”
of the bits. As Kevin Darling mentioned in his book “Inside OS9
Level II” (p 3-5-3), cc3disk never activates the 1773’s built in
write precomp circuits. However, I found unused, leftover code
in cc3disk that is designed to activate write precomp. Talk about
skeletons in the closet! Perhaps future patches could

renable precomp on the inner tracks. A small improvement in
read relability could be realized especially by those using older
drives.

4. If you are experiencing I/O errors with a MPI, especially with
the buffered mode of the SCII, try changing IC1 on the older
MPI or IC2 on the newer MPI. These chips handle the E clock
and some other signals. I have seen a case in which a bad chip
caused some of the address lines to bounce with transitions of
the E clock -> bad news!

5. The owner’s manual of my Disto SCII has a mistake in table
2. The register addresses are listed backwards. Here’s the
corrections:

Table 2 - SCII registers

Location Description
Hex Dec

FF77 65399 FF76 mirror
FF76 65398 write: DO = 0 FDC write operation
*1
=1 FDC read operation *1
D1 = 0 normal mode
= 1 buffered mode
D2 = 0 normal NMI
= 1 masked NMI
D3 =0 no FIRQ (masked)
= 1 FIRQ enabled
read: D7 = FDC INTRQ status (inverted)

FF75 65397 FF74 mirror

Page 232

Tandy Color Computer 3

FF74 65396 Read/Write buffer *2
*1: In the buffered mode.
*2: Any write to $FF76 or $FF77 clears the buffer counter.

Note that the data buffer mirror allows std and 1dd for pseudo
16 bit transfers.

Also, there are a few corrections needed to the SCII schematics:
On V1.3:

a. There should be an inverter in series with the line that leads
to the counter (between pin 18 of U6 and pin 1 of U7). This is
the small “hack” that you see on the “wrong” side of the PC
board near the CoCo connector.

b. The address line pins of U6 should read: 1,3,5,7,2,4,6,8 not
8,7,6,5,4,3,2,1 as given.

On V1.4:
c. Pin 1 of U8 should be shown connected to GND not VCC.

On both versions:
d. Pin 10 of U8 connects to pin 12 of U13, NOT to pin 13 of
Ul13.

6. Concerning GIME S0-S2 hacks: Four signals are produced by
IC9 on the CoCo3 motherboard. They are SCS (which helps
decode I/0O devices), CTS (which turns on the cartridge ROM),
ROM (which turns on the motherboard ROM), and the signal
which decodes the PIAs which I’ll call PIA. These signals
belong to two different groups.

a. Address Decoding Signals (ADS). SCS and PIA belong to this
group. These signals are used in conjunction with the address
lines to decode an address. The E clock is then used to actually
turn on the device.

b. Chip Select Signals (CSS). CTS and ROM belong to this
group. When these signals are active, the devices turn on
regardless of the E clock.

The problem many hackers see with all this is that CTS and
ROM do not APPEAR to be gated with E (unless the GIMEs do
this internally). So, a ROM device could start outputting junk
onto the data bus without checking E. Since ROMs tend to be a
bit slow, this could cause a collision on the data bus. The result
is a BLOB causer. As a solution, many hackers rigged U9 so

Page 233

Mastering OS-9

that ALL FOUR signals were gated with the E clock. This is fine
and well for CTS and ROM, but I don’t think this is a good idea
for SCS and PIA. The ADS signals should be stable BEFORE E
becomes high in order to give the address decoding logic
enough time to stablize prior to E becoming high. If SCS
changes with E, a logic race condition could occur in some
CoCo accessories. This could cause I/O glitches. So, I suggest
that any E gating hacks should be confined to CTS and ROM. A
74LS157 (or 74ACT157 if you want the best) should do the job
nicely (E clk to A/B select; A inputs go to VCC; B inputs go to
CTS and ROM; outputs are new, gated CTS and ROM).

Since CTS is hardly ever used under OS9, but ROM is used for
every interrupt, you can try a simpler hack that affects the ROM
on the motherboard only. Using an inverter, make an inverted E
clock and then route this signal to pin 22 (OE, active low) of the
ROM. Be sure and remember to cut the trace that currently
grounds pin 22.

As a final note, all of this address decoding appears to have
been done correctly with the SAM chip in the CoCo2. However,
without knowing how the GIME generates S0-S2, we can’t be
sure that it is done correctly in the CoCo3. Note that the GIME
probably does SOME additional processing of these signals. For
example, R/W is probably taken into account to prevent the CPU
from trying to write to a ROM and thereby creating the mother
of all bus collisions. If the GIME does indeed consider E and R/
W properly in developing SO-S2, then no hack should be needed
at all. Gating SCS with E, as most “improper” hacks do, delays
the enable of the 1773 chip by a few nanoseconds. This could
affect the 1773 BLOB problem. Thus, many SO-S2 hacks may
appear to fix GIME problems, when in fact, the 1773 was the
problem all along. Time spent with a logic analyzer could settle
this issue once and for all.

NOTE: A complete set ofpatches known to cure most BLOB
problems are available from Sub-Etha Software.

Page 234

Tandy Color Computer 3

0S-9 Users Group M embership Information
(data accurate as of 04/15/95)

The OS-9 Users Group is an international non-profit organiza-
tion devoted to exchanging and distributin information about,
and public domain software for, all available versions of the OS-
9 Operating system.

The OS-9 Users Group periodically publishes a newsletter
entitled M OTD (Message of the Day) which contains many
useful articles, software listings, and other information

helpful in keeping OS-9 computing enjoyable and rewarding.
Other membership benefits include free technical help referrals
(by mail or electronic BBS) and significant discounts on the
purchase of individual volumes of the OS-9 Users Group Public
Domain Software Library.

One year memberships in the group cost $25.00 and includes a
one year subscription to the MOTD newsletter and the right to
purchase additional disks of software at a very reasonable cost.

The group’s public domain software library currently has over
56

individual volumes of software comprised of almost 300
individual programs. The library is constantly growing due to
the group’s policy of sending one volume (disk) from the library
free for each individual program donated by a member.

For more complete information on the OS-9 Users Group,
including a complete catalog listing of (and ordering information
for) all currently available volumes in the Group’s public
domain software library, visit the OS-9 Forums on either the
CompuServe or Delphi electronic networks.

To join the OS-9 Users Group, send a check or money order to:

The OS-9 Users Group
6158 West 63rd Street, Suite 109
Chicago, IL 60638
USA

Memberships run from 01 January until 32 December. Send an
SASE for a membership kit which will include a membership
form and more information about the User’s Group as we'],l as 4

. s . . age 235
pro-rated price for joining the Group in mid-year.

Mastering OS-9

Page 236

Tandy Color Computer 3

Page 237

Mastering OS-9

Page 238

Tandy Color Computer 3

Page 239

Mastering OS-9

Page 240

	Cover
	Mastering OS-9 on the Tandy Color Computer 3
	Acknowledgements
	Foreword
	Preface
	Table of Contents
	Welcome to OS-9 Level 2
	Introduction
	Day One: The OS-9 Ethos
	Summary of OS9BOOT Section
	The OS-9 Kernel
	Summary of Kernel Section

	IOMAN: Input and Output Unification
	IOMAN Summary

	The Shell: Guide and Intermediary
	Shell Summary

	Notes On the Kernel, IOMAN, & the Shell

	Day Two: Introducing the OS-9 Directory System
	Path Name Summary
	Data Directories: Keeping Data Organized
	Data Directory Summary

	Execution Directories: Where the Action Is
	Execution Directory Summary

	Command Syntax: Get It Right!

	Day Three: Preparing For the Tutorials
	Getting Started With Tutorial 1
	Notes:
	Tutorial 1
	Step 1: Booting OS-9
	Step 2: Formatting Disks
	Step 3: Backing Up The System Master
	Step 4: Backing Up The "Mastering OS-9" Distribution Disk
	Step 5: Backing Up The Boot/Config/BASIC09 Disk
	Step 6: Configuring A Custom Disk With CONFIG
	Step 7: Adding Commands to the New Boot Disk
	Step 8: Testing the New Disk - Disk Drives
	Step 9: Testing the New Disk - Pipes
	Step 10: Testing the New Disk - Windows
	Step 11: Closing Down Shop

	Day Four: Getting Started With Tutorial 2
	Tutorial 2
	Step 1: Transferring SYS and Handy Files
	Step 2: Backing Up the Custom Master
	Step 3: Exploring the Directory System with CHX and CHD
	Step 4: Getting Help with Commands and Error Messages
	Step 5: Investigating the Startup File
	Step 6: Investigating Directories and Subdirectories
	Step 7: A Practical Application of the Directory System
	Step 8: Closing Down Shop

	Day Five: Getting Started With Tutorial 3
	Tutorial 3
	Step 1: Creating Directories
	Step 2: Working with File Attributes
	Step 3: Renaming Files and Directories
	Step 4: One Last Exercise With File Attributes

	Day Six: Getting Started With Tutorial 4
	Tutoriial 4
	Step 1: Inserting text with Edit
	Step 2: Using Edit Commands
	Step 3: Moving the Edit Pointer
	Step 4: Deleting text
	Step 5: Changing Text
	Step 6: Building a Phone List
	Step 7: Using the List Tmode Commands

	Day Seven: Getting Started With Tutorial 5
	Tutorial 5
	Step 1: Creating a Second Copy of the Startup File
	Step 2: Customizing Startup Message and Baud Rate
	Step 3: Testing Startup and Playing with Xmode
	Step 4: Adding Windows in the Startup File
	Step 5: Altering Key Repeat and Disk Drive Step Rate
	Step 6: Adding to the Phone List

	Day Eight: Application Programs for OS-9 on the Color Computer
	Word Processors
	Spreadsheets
	Databases
	Languages
	Utilities
	OS-9: Origins, Directions
	Motorola and Microware: Planning Ahead for the 6809

	The Future of the Color Computer

	Day Nine: Hexadecimal Numbers and Boolean Algebra
	Do I really have to Learn Hexadecimal?
	Compact Disk-Interactive: OS-9 In Every Pot

	Day Eleven: Getting Started With Tutorial 7
	Tutorial 7
	Step 1: Booting Up
	Step 3: Editing Startup on the New Master Disk
	Step 4: Testing the New Windows

	Day Twelve: Getting Started With Tutorial Eight
	Tutorial 8
	Step 1: Saving Your Custom Boot and Using Dsave
	Step 2: Testing the New Disk
	Step 3: Phone List

	Day Thirteen: Getting Started With Tutorial 9
	Tutorial 9
	Step 1: Using Count
	Step 2: Using Grep and Sort
	Step 3: Checking for Duplicates

	Day Fourteen: Getting Started With Tutorial Ten
	Tutorial 10
	Step 1: Putting the Phone List on Ram Drive /R0
	Step 2: Formatting the Ram Disk
	Step 3: Starting Applications Through Path Redirection
	Step 4: Putting It All Together

	Appendix A - Where To Go For More Information
	Appendix B - hardware For Your CoCo3/OS-9 Level 2 System
	Floppy Disk Controllers
	No Halt Controllers

	Adding Expansion Capability
	MultiPak interface
	Y Cable
	Disto Super Controller Mini-Bus

	Add On Options
	RS-232 Hardwware Ports
	Parallel Ports
	Real Time Clocks
	Floppy Drives
	Fans
	CoCo Keyboard Extenders
	Monitors

	Appendix C - Telecomputing and OS-9
	The Story so Far...
	Bridges and Interconnectivity
	Hosts and Terminals
	Making Good Terminal Software
	Conferencing by Modem
	How to Start Telecomputing

	Appendix D - Hard Drive Systems for the Tandy Color Computer
	The Basic Parts of Hard Drive Kits
	Size
	Rotation Speed and Safety

	Advertising Lingo - What It Means to You
	Data Storage Capacity

	Controllers - General Operation
	CoCo Hard Drive Interfaces
	Power Supplies
	My Experience with Hard Drives
	Conclusion

	Appendix E - Start BASIC09!
	The Revolution hasn't begun - It's Already Here!
	Once You Start, Where to Go For Help
	BASIC09 Advantages
	Easy to use AND Powerful?
	Proof is in the Padding
	Data Types and BASIC09 - Something to write home about.
	Data Types and a Mailing List
	GET that data and PUT it here!
	What is a line?
	Time to GET out of here.

	Appendix F - Syntax and Usage for the Stephen Goldberg tilities Provided With 'Mastering OS-9"
	CLS
	COPY
	COUNT
	D
	GREP
	SORT
	UNIQ

	Appendix G - OS-9 and Music
	Appendix H - CoCo-3 Boot List Order Bug (BLOB)
	Appendix I OS-9 USers Group Membership Information

