INVITATION TO

FORTRAN

FOR-THE

INVITATION TO
FORTRAN
FOR THE
TRS-80

FOR THE

Lawrence L. McNitt

= ,
PBI
a petrocell]
book
new york //prlﬂ(e(on

Copyright © 1983 Petrocelli Books, Inc.
All rights reserved.

Designed by Diane L. Backes
Typesetting by Backes Graphics

Printed in the United States of America
12345678910

Library of Congress Cataloging in Publication Data

McNitt, Lawrence L..
Invitation to FORTRAN for the TRS-80.

Includes index.

1. TRS-80 (Computer)—Programming. 2. FORTRAN
(Computer program language) |. Title. |1, Title:
Invitation to FORTRAN for the TRS-80.
QA76.8.T18M373 1983 001.64'2 83-8113
ISBN 0-89433210-4

Contents

Preface

SIMPLE COMPUTATIONS
1.1 Primitive Output

1.2 Number Representation
1.3 Messages

1.4 White Space

1.5 Documentation

1.6 Exercises

ITERATION

2.1 Do-loop

2.2 Indentation

2.3 Sequences

2.4 Series

2.5 Round-off Errors
2.6 Exercises

CONDITIONALS

3.1 Generalized Conditional
3.2G0TO

33I1F...GOTO

3.4 Conditional Termination of a Loop
3.5 Exercises

BUILT-IN FUNCTIONS

4.1 SQRT, ABS, SIGN

4.2 Exponential and Logarithmic
4.3 Trigonometric

4.4 Function Library

4.5 Exercises

vii

11
15
18
20
24

27
27
34
37
41
45
49

51
51
56
57
62
65
67
67
72
78
81
82

SEQUENTIAL FILES

5.1 Writing a Sequential File
5.2 Reading a Sequential File
5.3 Interactive Data Entry
5.4 Sequential File Processing
5.5 Exercises

SUBSCRIPTED VARIABLES
6.1 One Dimension

6.2 Two Dimensions

6.3 Labeled Data File

6.4 In-memory File Maintenance
6.5 Exercises

SUBROUTINES

7.1 Function Subroutines
7.2 Subprograms

7.3 Subroutine Libraries
7.4 Top-down Design

7.5 Exercises

MATRIX METHODS

8.1 Matrix Manipulation

8.2 Subroutine Package

8.3 General Purpose Program
8.4 Simultaneous Equations
8.5 Exercises

RANDOM FILES

9.1 Relative Access

9.2 Update in Place

9.3 Online Inquiry

9.4 Sequential Processing Economies
9.5 Exercises

Index

85
85
91
93
98
102

105
105
113
118
124
134

135
135
144
148
162
163

165
165
168
181
198
202

205
205
210
219
224
230
231

Pretace

FORTRAN was one of the first higher-level languages. Its purpose
was to lighten the burden of writing programs for numerical cal-
culations. It is still the primary programming language for scien-
tific computing. FORTRAN was also one of the first languages
implemented on more than one computer model, as transporta-
bility of programs from one computer model to another is one
of its primary virtues.

FORTRAN use spread quickly throughout the late 1950s
and early 1960s as many computer manufacturers included
FORTRAN on their systems. Advocates of other languages point
to the primitive nature of the early FORTRAN implementations
while downgrading the usefulness of the language. Periodic revi-
sions to the language result in a language with a remarkable sur-
vival rate.

PL/I, BASIC, APL, and PASCAL have all gained acceptance
in the scientific community. PL/I and PASCAL were supposed
to bury FORTRAN in the archives of ancient history, but FOR-
TRAN lives on. Most existing scientific software uses FORTRAN.
New applications continue to use FORTRAN.

FORTRAN is widely available, There is a high degree of
standardization for the versions of the language implemented by
the computer manufacturers, The scientific community is familiar
with the language. Most scientific organizations have an existing,
comprehensive library of FORTRAN subroutines.

FORTRAN is available for most microcomputers that have
disk drives. These versions are quite complete with the exception
of complex number representation. They include the microcom-
puter, PEEK and POKE capability, and a choice of eight-bit or
16-bit binary integers. They provide standard single and double
precision floating point numbers.

This book introduces the concepts and practices of FOR-
TRAN programming in the context of Microsoft FORTRAN for

Vil

Viii/INVITATION TO FORTRAN

the RADIO SHACK TRS-80. This book does not duplicate the
FORTRAN manual that comes with the FORTRAN software,
It is a learning tool that presents the material in a step-by-step
fashion. Included are numerous examples illustrating features
of the language. The example programs demonstrate program-
ming methods and style. This book is a valuable aid for self-study,
and is useful as a supplementary text in computer science, en-
gineering, mathematics, and applied science disciplines.

The examples demonstrate the usefulness of FORTRAN for
realistic problem situations. FORTRAN is at its best when used
with a comprehensive scientific subroutine library. Included are
discussions relative to the development and use of such libraries.
The discussions do not presume an extensive background in
mathematics. On the other hand, the book does not ignore im-
portant mathematical applications such as solving simultaneous
linear equations.,

1.1

1 Introduction

O\/ER\/IE FORTRAN is an algebraic language

for numerical computing. Simple
computations involve addition, subtraction, multiplication, divi-
sion, and exponentiation. Complex calculations involve long se-
guences of these simple calculations.

Using FORTRAN on any computer requires some experi-
ence with the computer system. Steps in the programming pro-
cess include creating the source program, compiling it, and run-
ning the program.

The program should produce readable output that is easily
understood. The source program must be readable by both the
machine and the programmer. The machine compiles the source
program to obtain the object program. Other programmers may
be called to modify it at some later date.

L]

Primitive Output

SIMPLE ARITHMETIC

Simple computations include addition, subtraction, multiplica-
tion, division, and exponentiation (powers and roots). The fol-
lowing table lists the FORTRAN symbols for these operations:

+ Addition

- Subtraction

* Multiplication
/ Division

** Exponentiation

2/INVITATION TO FORTRAN

The expression
2,75 % 14.3

computes the product of 2,75 and 14.3. The expression
988 «+ 16

raises .988 to the 16th power.

PRECEDENCE ORDERING

FORTRAN follows the traditional precedence ordering of arith-
metic operations. Exponentiation takes precedence over multi-
plication and division which take precedence over addition and
subtraction, The expression

3#4-27/3
subtracts the ratio 27/3 from the product 3 * 4,

PARENTHESES

Parentheses override the precedence ordering. The expression
3+(8-4)/6

performs the operation within the parentheses first. Operations

on a given precedence level proceed from left to right.

UNARY MINUS

The unary minus negates avalue or an expression. The expression
3% 4 /-(1+5)

negates the result in the parentheses. Some FORTRAN compilers
do not permit two operation symbols to be adjacent. The outer
parentheses in the expression

3#4/(-(1+8))

are necessary for those systems.

VARIABLES

FORTRAN variables contain values for use in the program. These
may be initial values {parameters) describing the problem situa-

Introduction/3

tion or they may be computed values (solution) for the problem.
They may be intermediate computed values needed temporarily
during the solution process.

FORTRAN variable names consist of from one to six sym-
bols. The first symbol must bea letter, and the following symbols
can be letters or digits. The name should reflect the intended use
of the variable, but any name is possible.

INTEGER VERSUS REAL

FORTRAN distinguishes between integer and real values. The
expression

12.89 * 43,5
computes the product of two real values. The expression
12 *+ 43
computes the product of two integers. The expression
12.89 * 43

is a mixed-mode expression.
FORTRAN programs should not contain mixed-mode ex-
pressions except for exponentiation. The expression

12,75 *» 4

is acceptable. Notall FORTRAN compilers translate mixed-mode
expressions into efficient machine instructions.

VARIABLE NAMES
FORTRAN variable names beginning with the letters / through

N are integers. Names beginning with other letters are real. The
names

APPLE GRAPES X123 TOTAL

designate real values. The names

NUMBER INDEX KTOT L12

designate integers.

4/INVITATION TO FORTRAN

TYPE SPECIFICATION

FORTRAN allows variable type specification. The specification
command comes at the beginning of the program. The command

INTEGER APPLE, GRAPES, TOTAL
overrides the naming convention for real variables. The command
REAL NUMBER, INDEX, L12

overrides the naming convention for integer variables.
Readability is extremely important. The distinction be-
tween integer and real variables is significant. If type specifica-
tion is used, then all variables should be typed and this practice
followed for all programs. Overriding the naming conventions for
just two or three variables in a large program will result in a pro-
gram that is extremely difficult to debug and to modify later.

PROCESSING STEPS

Three steps are necessary in preparinga FORTRAN program for
execution. The first step involves the creation and editing of the
FORTRAN source program. The second step uses the FORTRAN
compiler to create a relocatable object program. The third step
uses the linkage editor to convert the relocatable object modules
to executable command module form for immediate execution
or for later execution.

EDITING

The Microsoft FORTRAN package for the Radio Shack TRS-80
computers includes an EDIT program for creating and editing
the source programs. More sophisticated editors such as SCRIP-
SIT are much easier to use for this purpose. SCRIPSIT requires
the S,A option giving the ASCII storage mode. The SCRIPSIT
command

S,A PROG/FOR

Introduction/b

saves the file in the workspace as file PROG/FOR in ASCII form
acceptable to the FORTRAN compiler.

FORTRAN programs follow a strict layout. Columns 1
through 6 are reserved for statement numbers, comment symbols,
and continuation symbols. The letter C in column 1 designates
acomment line for documenting the source program. Any symbol
in column 6 designates a continuation of the previousline. FOR-
TRAN program statements reference other lines through state-
ment numbers. The statement numbers may be located within
columns 1 through 5.

FORTRAN program statements begin on or after column 7.
Many FORTRAN programmers begin the command portion of
the line in column 8 or 10. This aids readability and reduces the
potential confusion with the continuation symbol in column 6.

FORTRAN source programs should have the file extension
FOR. The file name

PROG/FOR

is typical.

COMPILATION

The FORTRAN compiler reads the source program and creates
the corresponding object program. The Microsoft FORTRAN
compiler has the command file name F80. The command

F80 PROG=PROG

is typical. This calls the compiler, compiles the source program in
PROG/FOR, and places the relocatable object program in PROG/
REL. The compiler expects the standard file name extensions.
The Microsoft compiler will create a listing file for those
familiar with assembly and machine languages. The command

F80 PROG,PROG=PROG

6/INVITATION TO FORTRAN

reads the source program from PROG/FOR, places the relocat-
able object program into the file PROG/REL, and places the
FORTRAN listing into the file PROG/LST.

LINKAGE EDITOR

The linkage editor (Linker) creates an executable program from
the relocatable object modules. L80 is the name of the TRSDOS
command file containing the linker. Both the compiler and the
linkage editor contain switches designating options. Three
switches are necessary for the linker:

G Execute the program
N Save program as command file
E Exit tinker to TRSDOS

The command
L80 PROG-G

reads the relocatable file PROG/REL, forms the executable pro-
gram, and executes it.

The usual practice is to save the executable program as a
command file. The command

L80 PROG-N,PROG-E

reads the relocatable file PROG/REL, places the executable pro-
gram into the command file PROG/CMD, and then exits the
linker. While in TRSDOS the command

PROG

loads and executes the command file PROG/CMD.

COMMENTS

Compiled languages require extra steps compared to interpreters
such as BASIC. Most systems require the two-stage compilation
involving the initial compiler and the following linker. Linking

Introduction/7

subroutines into the main program requires the linking step. Large
programs may contain several separately compiled subroutines.
The linker combines the main program relocatable with the sub-
routine relocatables to form the complete, executable program
load module. The command

L80 PROG-N,SUB1,5UB2,PROG-E

combines the relocatables PROG/REL, SUB1/REL, and SUB2/
REL to form the executable load module PROG/CMD.

The compilation and linkage stages are time-consuming for
large programs. The steps of editing, compiling, and linking be-
come tedious during the debugging process. The resulting object
program, however, executes much more quickly than interpreted
programs. This is its greatest asset.

The original documented source program is not in memory
at run time. Commerical software packages may contain only the
executable command files. Software piracy is a difficult problem
to address with microcomputers. A secondary benefit of compiled
programs is the separation of source programs from object pro-
grams. Competitors will not have easy access to the source pro-
grams to adapt for their own products.

READING AND WRITING

Input and output consist of reading and writing files. The state-
ment

READ(9,124) APPLES, NUMBER

is a typical read statement. The names APPLESand NUMBER are
variable names. The read operation places values in thosevariables.

The read statement contains one or more parameters. The
first parameter is a unit number. The system relates the unit num-
ber to a particular device or external file. The Microsoft FOR-
TRAN for the Radio Shack TRS-80 uses the following convention
for unit numbers:

1,3,4,5 Terminal screen or keyboard
2 Line printer

8/INVITATION TO FORTRAN

Disk file FORTO6/DAT
Disk file FORTO7/DAT
Disk file FORTO8/DAT
Disk file FORTO9/DAT
0] Disk file FORT10/DAT.

— O 0 N O

There are other ways of linking disk data files in addition to these.

The second parameter within the parentheses designates an
optional format statement number. The format statement speci-
fies the exact format of the data. If omitted, the data is in an in-
ternal unformatted form. All numerical data sent to the printer
must be formatted. Other optional parameters will be discussed
later.

SIMPLE FORMATTING
Microsoft FORTRAN uses standard format statements. The most

common numeric formats use the / symbol for integer and the
F format for real values. The expression

110

defines an integer field of ten positions. The expression

F10.2

defines a field of 10 positions for a real number. The decimal

point will be two places from the right.
Each expression may be repeated. The expression

5110

specifies five fields of 10 columns each for integer data. The ex-
pression

3F15.5

introduction/9

specifies three fields of 15 columns each with five digits to the
right of the decimal point.

The specification fields are in any order and size. The ex-
pression

15,F12.2,3110

defines an integer field of five positions, a field of 12 positions
for a real value, and three fields of 10 positions each for integer
data.

The symbol X specifies empty space and may be repeated.
The expression

15,6X,F10.2
separates the integer field and the real field with five blank
positions.

The FORMAT statement includes the statement number
given as the first parameter of the READ or WRITE statement.
The statement

124 FORMAT (F10.2,5X,15)

is typical.

AREA AND CIRCUMFERENCE OF A RECTANGLE

The area of a rectangle is the product of the length and the width.
The circumference is twice the sum of the length and width. Let
L be the length and W the width. The expression

A=L*W

gives the area A. The expression

C=2+*(L+W)

gives the circumference C.

10/INVITATION TO FORTRAN

FORTRAN VARIABLE NAMES

Good practice requires selecting names that are meaningful. Vari-
able names should follow the FORTRAN naming conventions
for variable types. If the data values or their intermediate results
include fractions, then the variables and constants should be real.

The name AREA is natural for the area of the rectangle. The
name CIRCUM is possible for the circumference. FORTRAN
limits the size of the name to a maximum of six symbols.

COMPUTATION

A rectangular garden plot has a length of 40 feet and a width of
30 feet. The statement

AREA = 40.0 * 30.0

computes the product and places it in the variable AREA. The
statement

CIRCUM = 2.0 + (40.0 + 30.0)
places the value of the circumference into the variable CIRCUM.

OUTPUT

The unit number 2 designates the line printer. The two output
variables are AREA and CIRCUM. The two statements

WRITE(2,10) AREA,CIRCUM
10 FORMAT{2F10.2)

print the results on the line printer. The output will consist of
two fields of 10 columns each with two values to the right of the
decimal point.

STOP AND END

The last line of the FORTRAN program consists of the END
statement. The last executable statement is the STOP state-
ment. These statements should be included in each program.

1.2

Introduction/11

FORTRAN SOURCE PROGRAM

The following is the complete FORTRAN source program com-
puting the area and circumference of a rectangle having length
40.0 and width 30.0:

AREA = 40.0 » 300

CIRCUM = 2.0 * (40.0 + 30.0)

WRITE(2,10) AREA,CIRCUM
10 FORMAT{(2F10.2)

STOP

END

OUTPUT

The resulting output is sent to the line printer:

1200.00 140.00

This primitive program illustrates the rudiments of FORTRAN
programming. The assignment statements perform calculations
and place the results into the variable specified to the left of the
equals symbol. The output statements include the WRITE com-
mand and the FORMAT statement.

Number Representations

PRINTING SYMBOLS

Most computers use eight-bit bytes to represent basic symbols
for input, output, and communication. These symbols include
upper and lower case letters, numeric digits, special symbols,
and control characters.

INTERNAL NUMBERS

Internal numeric quantities do not generally use the printable
numeric digits. Internal representations include signed binary
integers and real numbers which include single and double pre-
cision. Microsoft FORTRAN also includes three sizes of signed
binary integers.

12/INVITATION TO FORTRAN

BINARY INTEGERS

The standard binary integer for Microsoft FORTRAN is the 16-
bit integer. The value must fall between -32768 and 32767. The
standard integer contains two bytes. An extended integer contains
four bytes or 32 bits. The specification statement

INTEGER*4 NUMBER, ITOTAL

designates the variables NUMBER and ITOTAL as extended
integers.

Another representation specifies an integer of byte length
(eight-bits). The value must fall between -128 and 127. Bytes
take much less room in storage than standard or extended in-
tegers. The value must fall within a limited range. The specifica-
tion statement

BYTE NUMBER, KETTLE

defines the variables NUMBER and KETTLE to be byte length.

TWO’'S COMPLEMENT

Microsoft FORTRAN uses two's complement binary integers.
The following table gives the representations for byte-length in-
tegers near zero:

Number Byte-length binary number
-3 11111101

-2 11111110
-1 Mmmnmn
0 00000000
1 00000001
2 00000010
3 00000011

REAL NUMBERS

Real numbers are in an internal scientific notation form. Each
number contains a mantissa giving the fractional part of the

Introduction/13

number and an exponent. Single precision real values require
four bytes of storage. They provide the equivalent of seven sig-
nificant decimal digits of precision.

Double-precision real numbers require eight bytes of storage
and provide the equivalent of 16 digits of precision. In either case
the value must fall within the range 10**-38 and 10%#38 in
magnitude. The specification statement

DOUBLE PRECISION APPLES, VALUE

assigns the type specification double precision to the variables
APPLES and VALUE.

NUMERIC LITERALS

Literals appear as numbers within the program listing. The values
123 -12425 13000 -14

are literal integers. The values
12.75 3.6 19.2356

are real literals.

Scientific notation is also possible for numeric literals. A
symbol represents the start of the exponent portion of the num-
ber. The letter E specifies single precision and the letter D speci-
fies double precision. The value

3.45E6

represents the value 3.45 times 10 to the sixth power in single
precision form. The value

1.23145D-5
represents the value 1.23145 times 10 to the -bth power in
double precision form.
OUTPUT TO VIDEO SCREEN

The typical microcomputer system using the FORTRAN language
will include two disk drives, a printer, and a terminal facility
containing video screen and keyboard. Any output to be saved

14/INVITATION TO FORTRAN

should be printed. The user, however, sits at the terminal typing
in commands and watching the screen. Programs running in this
manner may send output to the screen rather than to the printer.

In Microsoft FORTRAN for the TRS-80 unit, number 2
designates the printer and unit number 1 designates the terminal.
The program of this section sends the output to the terminal
rather than the printer.

PROGRAM

The following program sends the output to the terminal and uses
integer variables:

LENGTH = 40
LWIDTH = 30
LAREA = LENGTH * LWIDTH
LCIR = 2 * (LENGTH + LWIDTH)
WRITE(1,200) LAREA, LCIR
200 FORMAT(2110)
STOP
END

TEST RUN

The following shows the video output generated during the test
run:

P0102
1200 140
STOP

DUAL COMMAND

Radio Shack TRSDOS contains the DUAL command which du-
plicates the video screen output with the printer to obtain a
permanent copy. This is a useful command. It reduces the need
for two versions of the program—one for the video screen and
the other for the printer.

1.3

Introduction/ 15

Messages

LABEL OUTPUT

All output to the terminal or to the printer must be labeled. This
reduces the risk of misinterpreting the output. The programs of
the first two sections compute the area and circumference of a
rectangle. Somebody unfamiliar with the program could easily
confuse the two values.

Label messages for output values consist of short names or
explanations. The labels “AREA" and “"CIRCUMFERENCE" are
sufficient. Labels and messages form another data type for FOR-
TRAN., They may be called alphabetic data or character strings.
FORTRAN S string literals are enclosed in single quotes. The strings

'HELLO’ 'THE ANSWER 18’
are typical.
FORMAT STATEMENTS

String literals are part of the FORMAT statement. The statement
10 FORMAT({" AREA’,F10.2)

places the identifying label AREA in the field defined by the first
five positions. The following ten positions will contain the value
of the real variable specified in the corresponding WRITE com-
mand,

An alternate form

10 FORMAT(5H AREA,F10.2)

accomplishes exactly the same thing. The H indicates Hollerith
data. This form clearly specifies the length of the string, but it
requires more work initially. For complex FORMAT statements
having many entries, it may save time during the debugging of
the program.

16/INVITATION TO FORTRAN

CARRIAGE CONTROL CHARACTERS

The first character sent to the printer is a carriage control charac-
ter. A space results in printing on the next line. A value of zero
results in skipping one line before printing. The value 1 advances
the printer to the top of the next page. These are the universal
symbols employed by FORTRAN for most computer systems,

These characters may not work for sending output to the
video screen. The space and zero options will work for the Radio
Shack FORTRAN. The option advancing to the next page will
not work with the video terminal.

FORTRAN FORMAT statements include another method
for advancing printer lines. The slash, '/, begins the next line.
A series of slashes together, '///"', advances the stated number
of lines.

The FORMAT statement

10 FORMAT(" AREA,F10.2)

prints the result on the next line. The statement
10 FORMAT('OAREA',F10.2)

skips a line before printing. The statement

10 FORMAT(/" AREA’,F10.2)

also skips a line before printing. The statement
10 FORMAT{///" AREA',F10.2)

skips three lines before printing.

CONTINUATION LINES

Any character in column six signifies a continuation of the pre-
vious line. The primary use is for continuing FORMAT state-
ments. Common practice is to include a numeric digit as the con-
tinuation symbol, but any symbol will work.

Introduction/17

The following FORMAT statement prints the area and cir-
cumference with labels on two lines:

10 FORMAT(' AREA ‘,F10.2
2 /" CIRCUMFERENCE 'F10.2)

The WRITE command
WRITE(1,10}) AREA, CIRCUM
references the FORMAT statement.

IDENTIFYING MESSAGE

Printed output should also contain identifying messages. These
may include the name of the program and a statement of its
purpose. |f the output is to be filed away for reference, these
messages are vital.

The program name should follow the conventions of the
organization for its program libraries. The program library may
contain hundreds of programs. An index to those libraries will
list the programs by names and include a short statement of
purpose for each. This aids in locating the needed program.

Problems will arise. At times it may appear that the program
has finished when it has not. Ashort message signifying the normal
end of the program gives reassurance to the user.

DESTINATION OF MESSAGES

Typically, the program name, statement of purpose, and final
message go to the video screen. Sometimes they are sent to the
printer, and sometimes they may be routed to both the screen
and to the printer.

PROGRAM

The following program includes the initial and final messages
and sends them to the printer.

WRITE(2,10)
10 FORMAT(' PROGRAM P0103')

1.4

18/INVITATION TO FORTRAN

WRITE(2,20)
20 FORMAT(" COMPUTE THE AREA'’
/" AND CIRCUMFERENCE’
3 /" FOR A RECTANGLE.")
ALNGTH = 40.0
WIDTH = 30.0
AREA = ALNGTH * WIDTH
CIRCUM = 2.0 » (ALNGTH + WIDTH)
WRITE(2,30) AREA, CIRCUM

N

30 FORMAT{ AREA ,F10.2
2 /" CIRCUMFERENCE ‘,F10.2)
WRITE(2,40)
40 FORMAT{" END OF PROGRAM’)
STOP
END

PRINTED OUTPUT
The following is the printed output produced by the program:

PROGRAM P0103

COMPUTE THE AREA

AND CIRCUMFERENCE

FOR A RECTANGLE.

AREA 1200.00
CIRCUMFERENCE 140.00
END OF PROGRAM

White Space

READABILITY

Output that is too dense or jumbled together is hard to interpret.
Readability is an important goal. Output will naturally fall into
distinct sections. Blank lines between sections draw attention to
these natural divisions and enhance the readability of the output.
The resulting white space gives a neat, pleasing appearance to
the output. Organized output is easier to interpret.

PAGING

Another technique is to advance to the top of the next page for
major divisions in the output. Using the digit 1 as the carriage

Introduction/19

control character accomplishes the page eject on the printer. This
technique should not be used excessively. The output could be-
come distributed over too many pages with few items per page.

PROGRAM

The following program includes blank lines for white space:

WRITE(1,10)
10 FORMAT(' PROGRAM P0104)
WRITE(2,20)
20 FORMAT("1PROGRAM P0104’
2 /'0COMPUTE THE AREA’
/" AND CIRCUMFERENCE’
4 /" FOR A RECTANGLE.")
ALNGTH = 40.0
WIDTH = 30.0
AREA = ALNGTH * WIDTH
CIRCUM = 2.0 » (ALNGTH + WIDTH)
WRITE(2,30) AREA, CIRCUM
30 FORMAT('0AREA ',F10.2
/" CIRCUMFERENCE ',F10.2
/'0END OF OUTPUT !
4 1)
WRITE(1,40)
40 FORMAT(" END OF PROGRAM'/)
STOP
END

w

W N

The carriage control character ‘0’ skips a line before printing.

TEST RUN VIDEO OUTPUT

The following gives the video output of the test run:

PROGRAM P0104
END OF PROGRAM

TEST RUN PRINTED OUTPUT

The following gives the printed output of the test run:

PROGRAM P0104

15

20/INVITATION TO FORTRAN

COMPUTE THE AREA
AND CIRCUMFERENCE
FOR A RECTANGLE.

AREA 1200.00
CIRCUMFERENCE 140.00

END OF OUTPUT

Documentation

READABLE PROGRAMS

FORTRAN source programs must be readable by both the
computer and the programmer. Readability is just as important
for source programs as it is for printed output. The program
naturally divides into sections just as the printed output does.

SECTION IDENTIFICATION

White space works well with printed output. Another technique
calls attention to sections within a source program listing. This
technique consists of naming each section of the source program
and placing a box of asterisks around each section name. The
goal is to make the program easy to read. This makes the pro-

gram organization highly visible.

COMMENT LINES

FORTRAN comment lines start with the letter C in column 1.

The comment lines

C COMPUTE THE AREA
C AND CIRCUMFERENCE
C FOR A RECTANGLE

are typical.

The following is a typical section name surrounded by a

box of asterisks:

C LR R AR SRR S S L EEEEEEEREEEREEEEEEERSENXES?

C » INITIAL MESSAGE

C LR R R R R E R EEERRERERERERERXERZEEFEREES

introduction/21

Readability is enhanced by drawing attention to the sections of
the program.

VARIABLE DICTIONARY

FORTRAN limits variable names to a maximum of six characters.
This limits the meaning of the names. A variable dictionary is
highly recommended. This dictionary gives an expanded explana-
tion for each variable in the program. Although many program-
mers omit this documentation, it does help those programmers
who may need to modify the program later.

STATEMENT OF PURPOSE

A short statement of purpose is helpful. This is placed as a
comment together with the name of the programmer and other
identifying information at the beginning of the source program.

COMPUTER SYSTEM

If all the computers were entirely consistent in their use of FOR-
TRAN, it would be convenient, but each system has its quirks.
A short statement giving the computer system for which the
source program was written and tested is desirable. Some changes
may be necessary before the programwill run on another machine.

DOCUMENTATION

Documentation is essential for any program that will be used by
various people at different times. The most important part of
any documentation package is a listing of the source program.
This source program should contain extensive comments giving
the statement of purpose, variable dictionary, and section names.

The documentation will also include test runs giving results
for known problems. These test runs form an important part of
any conversion effort. After modifying the program or converting
the program to run on another computer, the test runs validate
the converted program.

The documentation package may also include a user’s guide
giving instructions to new users. Complex systems may include
an operator's manual if the program is normally executed on a
central computer by the regular staff of computer operators.

22/INVITATION TO FORTRAN

PROGRAM

The following program includes extensive comments identifying
program sections and giving information about the program:

IEETEEEETEER R R EEEEE SRR EERERE R EREE RS

+ PO105 »
PRER T REEREREEEEEEEEEEREEESEEERERSEEENR]
AUTHOR
COPYRIGHT 1982
BY LAWRENCE MCNITT.
PURPOSE
AREA AND CIRCUMFERENCE
FOR A RECTANGLE.
SYSTEM

MICROSOFT FORTRAN

RADIO SHACK TRS-80.

MODEL II1.
PEEEREREEEREEEEEEEERERE R XX XX RS K EEREERJEJES.]
* ORGANIZATION »
FREE R EREEEREREEEEEREEE R X E XX E XN EEEERNEEXZE.]

INITIAL MESSAGE
PROCESS
OUTPUT

FINAL MESSAGE

EEXEE R EREEEEEEEEEEEE R R R R RN EREEEREREJSS]

OO0 OO00000000O000O000000

* VARIABLES *
EEREREEEEREREEXEEEREE RS EERESEEIEERERERESEIES.]
ALNGTH LENGTH OF RECTANGLE
WIDTH WIDTH OF RECTANGLE
AREA AREA
CIRCUM CIRCUMFERENCE
EEEEEEEEEEEEEEEEEE R N EEEEEEREEEEELS NSNS
* INITIAL MESSAGE *
IR EZIEEEEEFEEESEESEE R EEEEEEEEEEREENESSE]
WRITE(1,10)

10 FORMAT(' PROGRAM P0105°)
WRITE(2,20)
20 FORMAT("1PROGRAM P0105’
2 /'0COMPUTE THE AREA’
3 /" AND CIRCUMFERENCE’
4 /" FOR A RECTANGLE.")

Introduction/23

LR R EEEREEEEEEEEEEEEEEEEEEEEREEEREREESESSE]

* PROCESS *
LR R E R EEREREEREEREEREEREEEEESEEERSEEEXEXZE:X;:]
ALNGTH = 40.0
WIDTH = 30.0
AREA = ALNGTH = WIDTH
CIRCUM = 2.0 = (ALNGTH + WIDTH)
LA R R R E S EEREEEEEEEE RS EEEEREREREXESERES)
* OuUTPUT *
LR AR RS EEXEEESEEEEEEEEREEEREREREEE SR ERESS)
WRITE(2,30) AREA, CIRCUM
30 FORMAT('0AREA 'F10.2
2 /" CIRCUMFERENCE 'F10.2)
LR R E R EEEEREEEEESEEEEEEEEEEEEEREREE N EERES]

* FINAL MESSAGE *
R R R O IR R R O O R LN R IR I R I U Y
WRITE(2,40)
40 FORMAT{'0END OF OUTPUT
2 /1)
WRITE(1,50)
50 FORMAT(" END OF PROGRAM' /)
STOP
END

OO0 OO0

eNeoNe!

Documentation is essential for production programs that are to
be used repetitively.

OUTPUT FOR VIDEO TERMINAL

The following gives the output to the video terminal:

PROGRAM P0105
END OF PROGRAM

In this case the video output provides a record of the running of
the program,

PRINTED OUTPUT
The following gives the printed output:

PROGRAM P0105

24/INVITATION TO FORTRAN

COMPUTE THE AREA

AND CIRCUMFERENCE

FOR A RECTANGLE.

AREA 1200.00
CIRCUMFERENCE 140.00

END OF QUTPUT
The printed output includes blank lines for readability.

Exercises

1. Write a documented program computing the velocity in feet
per second and distance in feet of an object accelerating at
the constant rate of eight feet/sec/sec for 20 seconds. The
formula

V=A«x«T
gives the velocity in feet per second and
D=5+A«*T %2
gives the distance in feet.

2 Write a documented program computing the future value of
$1,275.25 at the end of five years in an account earning in-
terest at the rate of 7.75 percent compounded quarterly. The
formula

F=Px+(1+R/ Q) »+(Q*N)

gives the future value assuming compouding Q times per year
and an interest rate of R.

3. A cylindrical water tank is 10 feet long and six feet in dia-
meter. Write a documented program computing the contents
in gallons and the net weight in pounds. The formula

A =3.14159 » R » R

gives the area of the end of the tank asa function of the radius.
Multiplying this by the length gives the volume in cubic feet.
Multiplying by the number of pounds per cubic foot of water
gives the net weight in pounds.

Introduction/25

. The cost is $24 per foot of fence for a garden plot. The dollar
yield for the plot will be $4.75 per square foot. Determine
the total cost of fencing and the total dollar yield for a garden
plot that is 40 feet long and 30 feet wide.

. A cylindrical tank is 10 feet long and six feet in diameter. Paint
for the exterior costs $8.75 per gallon. How many gallonsare
needed and how much will the cost be?

. The mathematical constant e is about 2.7183. The term
(1+1/N) N

approaches e as/V increases. Estimate the value of the constant
e using an V of 1000.

. Numerically estimate the slope of the function
Y =35 % X *x 2 -4+ X+ 25

at the point X = 2. Evaluate the function at the points X = 2
and X=2+D, giving Y1 and Y2, respectively. The term

(y2-v1 /0D

is approximately equal to the slope of the function at the
point in question.

2.1

2 |teration

O\/ERVIE Iteration is a powerful tool for com-

puter programming languages. All pro-
gramming languages provide statements for looping and repeating
a section of the program. The FORTRAN Do-loop provides itera-
tion capability.

This chapter explores looping in the context of mathe-
matical sequences and series. Again, the emphasis is on writing
readable programs. Even at best, iterative procedures are difficult
to understand. Every effort should be expended to improve
readability.

L]

Do-loop

REPETITION

All programming languages provide the capability of repeating
a section of the program. In FORTRAN the Do-loop performs
this task. The DO statement defines the beginning of the loop.
It contains a line number defining the end of the loop, an index
variable used for the looping process, and loop parameters con-
trolling the values assigned to the variable,

The statement

DO 1121 =1, 10

is typical. The scope of the loop includes all executable state-
ments through the statement numbered 112. Variable / is the
index variable. The value 1 is the first value, and 10 is the last
value, The increment is assumed to be 1. The loop is repeated

27

28/INVITATION TO FORTRAN

10 times with the variable / containing the value 1 the first time,
the value 2 the second time, etc.

The index variable and the loop parameters must be integers.
An optional increment can be included. The statement

DO 174 IVALUE = 10,805

sets IVALUE to the values 10, 15, 20, .. ., 80 in turn. The loop
parameters must be positive integers,

END OF THE LOOP

The statement number given in the DO command identifies the
end of the loop. The last line must be an executable statement
other than a branch or STOP. A CONTINUE statement is often
used for this purpose.

TABLE GENERATION

The first computer applications during World War 11 and im-
mediately following consisted of generating mathematical tables.
This is still an important application. The table consists of col-
umns of numbers with column and row headings which aid in
interpreting the table.

TABLE OF SQUARES

The simplest example of table generation consists of generating
a table of squares for the first few integers. The DO command

DO 20 IVALUE = 1, 10

performs the loop ten times, assigning the values 1, 2, ..., 10 to
the index variable IVALUE. Statement number 20 is the last line
of the loop.

The variable IVALUE is available for use by the program
but it may not be changed by statements within the loop. Failure
to follow this requirement will result in programs that will not
work reliably on different versions of the FORTRAN compiler.

Iteration/29

The following program section generates the table of squares
for the first ten integers:

DO 20 IVALUE = 1, 10
ISQUAR = IVALUE #+ 2
WRITE(2,10) IVALUE, ISQUAR
10 FORMAT(2110)
20 CONTINUE

The primary use of CONTINUE statements is as the last line of
the loop.

SUMMATION

Summing a set of values is a common task. One variable is chosen
to be the accumulator. The first task is to clear the accumulator
to zero. Then the values are summed by adding them to the ac-
cumulator. If ISUM is an integer accumulatorand IVALUE isthe
current value, then the command

ISUM = ISUM + IVALUE

adds the contents of IVALUE to the variable ISUM. This ex-
pression does not represent an algebraic identity. Within pro-
gramming languages, this indicates that the result should be placed
in the variable to the left of the equals sign.

The following loop illustrates the summing operation by
computing the sum of the squares of the first 10 integers:

ISUM = 0
DO 10 IVALUE = 1, 10
10 ISUM = ISUM + IVALUE *+ 2

This loop itlustrates using a statement other than a CONTINUE
as the last line of the loop.

COUNTER

The loop provides a mechanism for counting the number of re-
petitions of the loop. The statement

DO 24 | = 1, 100

30/INVITATION TO FORTRAN

performs the loop one hundred times. If the variable | is not
referenced inside the loop, then it serves as a counter. This is
used if a section of the program must be repeated a specified
number of times.

VARIABLES AS PARAMETERS

The loop parameters may be integer variables. The command
DO 124 IVALUE = ISTART, ISTOP, ISTEP

uses variables for all three parameters. The command

DO 640 ICOUNT = 1, NUMBER

performs the loop the number of times given in the variable
NUMBER.

Microsoft FORTAN for the Radio Shack TRS-80 does not
allow extended integers (32-bit) for the index variable of the Do-
loop.

NESTED LOOPS

FORTRAN allows nested loops. The inner loop must be entirely
nested within the outer loops. Both inner and outer loops may
have the same ending statement although this reduces readability.

FUTURE VALUE OF AN ANNUITY

Pension plans may consist of regular payments into an annuity.
The future accumulated value of the annuity is an important
consideration for those preparing for retirement. The deposits
are made regularly and earn compound interest.

Assume that monthly deposits of $50.00 are made into an
account earning 12.75 percent compounded monthly. What is
the future value of this account? Listing the future value at the
end of each deposit would give too much detail. Listing the ac-
cumulated value at the end of each year is reasonable.

Formulas exist for calculating the future value of an annuity
without tracing the individual deposits. To illustrate looping, the

Iteration/31

programs of this chapter calculate the interest with each monthly
deposit. This requires a nested Do-loop. The inner loop accumu-
lates each of the twelve monthly deposits during the year. The
outer loop processes each year.

The formula

A=B=+(1+.01*R/12)
gives the amount of interest for the month assuming a beginning
account balance of B and an annual percentage interest of R with
monthly compounding.
PROGRAM

The following program generates a year-end summary for an
annuity for each of the first ten years:

LEEEREREEEEE S EERSEERREEELERESEJEEEESEEES.]

* P0201 *
R XK R W N KRN N HRHNRENRERHARRRNER®ERRENN
AUTHOR

COPYRIGHT 1982

BY LAWRENCE MCNITT.
PURPOSE

FUTURE VALUE AT END

OF EACH YEAR FOR

REGULAR DEPOSITS.
SYSTEM

MICROSOFT FORTRAN

RADIO SHACK TRS-80

MODEL L.
ER R
* ORGANIZATION *

LA AR R R R R EREEESEREERSEREEEEEERERZZSEERLZIERJEH}.]
INITIAL MESSAGE
PROBLEM PARAMETERS
HEADING
PROCESS
FINAL MESSAGE

AR R R R R EREEERESEEEEREEEREEREEXES SRR RXXE]

* VARIABLES *

R R R R O R R R R R R R R R R R R R K KRR

cNeNeoRoNeoNsNesNsNoNsNoNoNsNoNesNoNeoNoNeoNeoNoNeoNeNeoNe]

32/INVITATION TO FORTRAN

C NYEARS NUMBER OF YEARS
c NPER NUMBER OF PERIODS PER YEAR
C IYEAR CURRENT YEAR
C IPER CURRENT PERIOD
Cc AMOUNT AMOUNT OF REGULAR DEPOSIT
C BAL CURRENT BALANCE
C YRATE YEARLY RATE (PERCENT)
C PRATE PERIOD RATE (FRACTION)
C AR EEREESEREEREREESE SR EEEEREREREERESEXEXR]
C = INITIAL MESSAGE *
C LR R L R G R R R U R R R U R R K LR
WRITE(2,100)
100 FORMAT("1PROGRAM’
2 /I' COMPUTE THE FUTURE VALUE’
3 /' AT THE END OF EACH YEAR’
4 /" FOR REGULAR DEPOSITS.")
C L R R R R R R R R R R R R K R R R R R LR
C = PROBLEM PARAMETERS *
C LR R E R EEEERERSERESEEEEREEEESERERRERXXS]
NYEARS = 10
NPER = 12
AMOUNT = 50.0
YRATE = 12.75

PRATE = .01 * YRATE / NPER

C AR EEE R A EREEEES S EEEEEEEEEEEE EEREEEE R X

C = HEADING *

C LR R R R R R RS R R R EEEREEEEREEEXEEXEE:.XEXSE]

WRITE(2,200) AMOUNT, NPER, YRATE
200 FORMAT(/" AMOUNT OF DEPOSIT PER PERIOD ‘,F10.2

2 /" NUMBER OF PERIODS PER YEAR ',17
3 /" ANNUAL INTEREST RATE ,F13.5
4 /I' YEAR BALANCE')
C LR R R R EEEREEREEEEEERE S EEREREREREXEREEZ N RS
C = PROCESS *
C (AR R R R E R EREEEEEEEAEIEEEEEEEEEREEEEETEEES
BAL = 0.0

DO 390 IYEAR = 1, NYEARS
DO 370 IPER = 1, NPER

370 BAL = BAL * (1.0 + PRATE) + AMOUNT
WRITE(2,380) IYEAR,BAL

380 FORMAT(15,F10.2)

390 CONTINUE

Iteration/33

EEEEEEEE R EEEEEEEEEEEE R EE SRR EREEEERESS.]

*+ FINAL MESSAGE *
EEEEEEEEEE R EREREREE R EREXE R EEREEREZEEXSZXE}E]
WRITE(2,410)
410 FORMAT(///' END OF OUTPUT’)
STOP
END

oNeoNe!

PRINTED OUTPUT FROM TEST RUN
The following is the printed output produced by the test run:

PROGRAM

COMPUTE THE FUTURE VALUE
AT THE END OF EACH YEAR
FOR REGULAR DEPOSITS.

AMOUNT OF DEPOSIT PER PERIOD 50.00
NUMBER OF PERIODS PER YEAR 12
ANNUAL INTEREST RATE 12.75000

YEAR BALANCE
636.33
1358.71
2178.78
3109.73
4166.56
6366.31
6728.28
8274.42
10029.63
12022.18

QWO ~NOO P WN =

-

END OF OUTPUT

READABILITY AND STYLE

[terative procedures can be difficult to understand. Every effort
is needed to make iterative programs readable, Both the program-
mer writing the initial program and later programmers modifying
the program should be familiar with the subject area. Style is as
important in writing programs as it is in writing articles for pub-

2.2

34/INVITATION TO FORTRAN

lication. Some features of style including documentation within
the listing have already been discussed. The next section intro-
duces indentation to aid in representing loops.

Indentation

READABILITY

Readability is crucial for FORTRAN source programs. One tech-
nique that aids readability is to indent the inner part of the loop
several spaces. This is easily done when writing the program. It
makes the scope of the loop much more visible.

NOT INDENTED

The following program generates a table of squares for the first
ten integers:

DO 20 IVALUE = 1, 10
ISQUAR = IVALUE =+ 2
WRITE(2,10) IVALUE, ISQUAR
10 FORMAT(2110)
20 CONTINUE
STOP
END

The inner part of the loop is not indented.,

INDENTED

The following program also generates the table of squares for the
first ten integers:

DO 20 IVALUE = 1, 10
ISQUAR = IVALUE =+ 2
WRITE(2,10) IVALUE, I1ISQUAR
10 FORMAT(2110)
20 CONTINUE
STOP
END

Iteration/35

The inner statements of the loop are indented several columns,
drawing attention to the statements that are repeated in the loop.

COMMENTS

Indenting is another technique for readability. The program will
not run any better. The purpose is to make the program more
readable for the maintenance programmers. Indenting helps the
person reading the program to find the end of the loop. Without
this visual tool the programmer must search for the statement
number defining the end of the loop. Consistent use of indenting
requires a CONTINUE statement defining the end of the loop.
This CONTINUE statement should be on the same level as the
corresponding DO statement.

PROGRAM

The following program computes the future values of anannuity
at the end of each of the first few years using loop indentingand
commenting for readability:

IEEEREEEREFEREEEREEEEEEEREEEEE RS R EERSS

* P0202 *
[EEEEEEEREREEFEREESEEEEEEEEERESELEES]
AUTHOR

COPYRIGHT 1982

BY LAWRENCE MCNITT.
PURPOSE

FUTURE VALUE AT END

OF EACH YEAR FOR

REGULAR DEPOSITS.
SYSTEM

MICROSOFT FORTRAN

RADIO SHACK TRS-80

MODEL 1l
P I T RS EEEE R R LR R R R
* ORGANIZATION *

P R RIS E TR R R R E R B R R R R R R R L RS
INITIAL MESSAGE
PROBLEM PARAMETERS
HEADING

0000000000000 0OO0OO0OO0

36/INVITATION TO FORTRAN

sNeoNeoNeNoNoNoNoNoNsNesNeNoNeNeNe

OO0 OO0

OO0

PROCESS
FINAL MESSAGE

* VARIABLES *

R A SRR EREEREEREEEEEEREEZEEEEEEEERESEREEE]

NYEARS NUMBER OF YEARS

NPER NUMBER OF PERIODS PER YEAR
IYEAR CURRENT YEAR

IPER CURRENT PERIOD

AMOUNT AMOUNT OF REGULAR DEPOSIT
BAL CURRENT BALANCE

YRATE YEARLY RATE (PERCENT)
PRATE PERIOD RATE (FRACTION)

AR LSS SRR EAREEEREEEEREEEREEREREEREEERFREZE

* INITIAL MESSAGE *
LE R EREEEEEREREEEEEERERERRERERZEREEN ERRRE]
WRITE(2,100)
100 FORMAT('1PROGRAM P0202'
2 // COMPUTE THE FUTURE VALUE’
3 /' AT THE END OF EACH YEAR’
4 /' FOR REGULAR DEPOSITS.’)

LA R A AR E S EREEEE RS EEEEEEEE R EEEEEREX RN EE]

* PROBLEM PARAMETERS *
W W I KK W R K KR K K WK R R KRN KRR
NYEARS = 10
NPER = 12
AMOUNT = 50.0
YRATE = 1275
PRATE = .01 * YRATE / NPER

ER K R R K O U R R R R R L R R R R SRR T gy

» HEADING *

M U I IR I A W 36 3 3F 36 36 3 3 3 3 6 K I W e W 36 K 3

WRITE(2,200) AMOUNT, NPER, YRATE

200 FORMAT(/ AMOUNT OF DEPOSIT PER PERIOD
2 /' NUMBER OF PERIODS PER YEAR
3 /" ANNUAL INTEREST RATE
4 //' YEAR BALANCE’)

AR EELE R SRR EEEEEE RS E R R EEER R FEEREREY]

* PROCESS *

LA A AL R AR EREEREEREEEEEEESE EEEEEREEREE ST

BAL = 0.0
DO 390 IYEAR = 1, NYEARS

',F10.2
17
',F13.5

2.3

Iteration/37

DO 370 IPER = 1, NPER
BAL = BAL * (1.0 + PRATE) + AMOUNT

370 CONTINUE
WRITE(2,380) IYEAR,BAL
380 FORMAT(I5,F10.2)

390 CONTINUE

FEEEERFEEIEEEE R R R R EEE R ERE R RS SRR RS SRS

* FINAL MESSAGE *
ER EEREEREEXREEER EEREEREEEE ERERJEERSERSES 33
WRITE(2,410)
410 FORMAT(///' END OF OUTPUT’)
STOP
END

[eNeoNe!

Notice the indenting of the nested loops of this program. The
inner loop is indented within the outer loop. For complex itera-
tive programs involving deeply nested loops, indentation greatly
helps readability. The output of this program is similar to that
of the previous program.

Sequences

DEFINITION
A sequence is a set of values derived according to some rule. The
sequence of numbers

1 2 3 4 5 6 7

isasimple example of a sequence. Each value constitutes one term
of the sequence. The fifth term of the sequence is the value five.

MATHEMATICS

The field of mathematics is rich in the definition and application
of sequences of numbers. The description of the behavior of
physical phenomena over time and space may involve sequences
of values. The future value of a savings account at the end of
each year constitutes a term of a sequence.

COMPUTATION

The computer is a fast and accurate computational engine. The
fastest computers can perform more calculations in one second

38/INVITATION TO FORTRAN

than a person could do in a lifetime. Computers play an impor-
tant part in the calculation of sequences of numbers.

CONVERGENCE

Some sequences converge to a specifice value. As n increases, the
nth term approaches the limiting value more closely. Some se-
quences are iterative in that the computational process must be
done on a term-by-term basis. Other sequences allow the compu-
tation of the nth term directly without using the previous terms.

ESTIMATING THE CONSTANT e

The constant e is one of the most important constants in the field
of mathematics. Its valueisabout 2.718. Like the constant pi, the
constant e is irrational. The sequence defined by the expression

(1+1/10) #= i

converges to the constant e for large values of /. This sequence
converges very slowly. Modifying the sequence slightly produces
faster convergence. The sequence defined by the expression

(1+ 1/ (10 % j)) =% (10 == /)
converges much more rapidly.

PROGRAM

The following program generates several terms of the sequence
that converges to the constante:

AR EEEEREEEEEEEEEEEEEREEREREEEE RN EEEEE R RS
» P0203 "
LA E A EE RN EEEEEEREEEEEEEER R R E EEEE L]
AUTHOR
COPYRIGHT 1982
BY LAWRENCE MCNITT.
PURPOSE
ESTIMATE THE VALUE
FOR THE CONSTANT E

aoooo00o0000

0000000000000 OOOOOO0

e NeNe!

USING A SEQUENCE.
SYSTEM

MICROSOFT FORTRAN

RADIO SHACK TRS-80

MODEL Iil.

e T T T EE R EE X R BN R R R R R R R R R

*+ ORGANIZATION *

INITIAL MESSAGE
PROBLEM PARAMETERS
HEADING
PROCESS
FINAL MESSAGE

P L EE A A R R X R R R R R

» VARIABLES *

NUMBER NUMBER OF TERMS
INDEX CURRENT TERM
BEGIN BEGINNING ARGUMENT

STEP MULTIPLIER FOR NEXT ARGUMENT

VALUE VALUE OF ARGUMENT
TERM VALUE OF CURRENT TERM

e Y TR AR R T R R R R R R R R R R A

» INITIAL MESSAGE *

WRITE(2,110)
110 FORMAT(‘1PROGRAM P0203’
2 //* ESTIMATE THE VALUE OF’
3 /" THE CONSTANT E USING’
4 /* A SEQUENCE.")

M R R Iz R R R R E R R SRR R R

* PROBLEM PARAMETERS *
M R IR E R R R R R R R R AR R
NUMBER = 10
BEGIN 1.0
STEP 20
VALUE BEGIN
I 2 R T E R R R E R EE R R R R R S R R
* HEADING *
Y ST R R R R R RS R R R B LR LE S &R
WRITE(2,310)
310 FORMAT(/ TERM ESTIMATE’)

1

Iteration/39

40/INVITATION TO FORTRAN

C He W e R H R N IR R KRR IR NN NN NN
C = PROCESS *
C ER KN
DO 430 INDEX = 1, NUMBER
VALUE = VALUE = STEP
TERM = (1.0 + 1.0 / VALUE) #** VALUE
WRITE(2,420) INDEX, TERM
420 FORMATI(I5,F12.7)
430 CONTINUE
C PR R R E SRR SRS EEEEEEEEEEEREXEEE R R EEEES S]]
C = FINAL MESSAGE *
C LR R L R R R R R R R R R R R R R R R R LR R R R RN
WRITE(2,5610)
510 FORMAT(///* END OF PROGRAM’)
STOP
END

PRINTED OUTPUT

The following is the printed output produced by the program:

PROGRAM P0203

ESTIMATE THE VALUE OF
THE CONSTANT E USING
A SEQUENCE.

TERM ESTIMATE
2.2500072
24414074
2.5657876
2.6379304
2.6769841
2.6973619
2.7076519
2.7127542
2.7156248
2.7172339

CWOOUNOOOOILHLWN=

—

END OF PROGRAM

24

Iteration/41

SEQUENCES FROM ELEMENTARY MATHEMATICS

Using the computer to generate the terms of sequences defined in
elementary college mathematics courses is a productive endeavor.
It provides practice in writing computer programs, and the out-
put from running the programs aids in understanding the theory
and application of mathematics.

Series

SUM OF A SEQUENCE

A series is the sum of the sequence. The arithmetic progression
is a series. It consists of the sum of the values beginning with

1 2 3 4 5 6 7.
The sum of the first seven terms of the arithmetic progression
1+2+3+4+5+6+7
is 28.

CALCULUS

Calculus defines the Taylor's and Maclaurin's series. These are
important in deriving series estimates of many functions. It is
not necessary to understand the theory behind these series to use
the computer to calculate series estimates.

CONVERGENCE

A series may converge to a limit just asaseguence may converge.
One of the requirements for a series to converge to a finite value
is that the corresponding sequence must converge to zero. The
series estimate provides a method of approximating function
values that would otherwise be more difficult to compute.

SERIES ESTIMATE OF THE CONSTANT e
The following series estimates the constant e:

1T+ 1/10 + 1/20 + 1/31 + /41 + ...

42/INVITATION TO FORTRAN

This series converges to the constant e very rapidly. The term 4!
means four factorial. This is the product of the first four integers.
For positive integers i1, the term n1! is defined to be n*(n-1)1 for
n =1,2,... . Thevalueof 0! isdefined to be one. The following
table summarizes the factorials for the first few integers:

factorial

n

0 1
1 1
2 2
3 6
4 24
5 120

ITERATIVE PRODUCTS

The sum of a set of values is formed by accumulating them one
at a time into an accumulator. Initially, the accumulator must
be cleared, i.e., set to zero. Forming the product of a set of values
requires a similar process. The initial value must be one rather
than zero. The iterative process involves multiplying the previous
product by the new term.

The following loop illustrates calculating n! (n factorial):

FACT = 1.0
DO 10 ITERM = 1, N
FACT = FACT = ITERM
10 CONTINUE

This can be included in the routine calculating the series estimate
of the constant e.

PROCEDURE

Consider using the previous series to estimate the constante. The
program can keep a running total of the series terms. It also
maintains the sequence of terms by calculating the next term
from the preceding term in an efficient manner.

iteration/43

PROGRAM

The following program calculates the terms of the sequence and
uses them to give the corresponding terms of the series:

PR YIRS A EEEE R LR EE R EERE R SRR RS S

* P0204 *
IEE R R EEREEESE SRR R R S EE R EEE S E NSRS SRR L
AUTHOR
COPYRIGHT 1982
BY LAWRENCE MCNITT.
PURPOSE
ESTIMATE THE VALUE
FOR THE CONSTANT E
USING A SERIES.
SYSTEM
MICROSOFT FORTRAN
RADIO SHACK TRS-80
MODEL Iil.

IEEEEEEREEE R EEEREREEEEEEEEEEEEEESEEEE B

*+ ORGANIZATION *
PREEEEEEEEEEREESEREREEEEREE SRR E X EREEE S EE SN
INITIAL MESSAGE
PROBLEM PARAMETERS
HEADING
PROCESS
FINAL MESSAGE

[EXEEEEERERERREEEE RN EEEEERXEERSEEEEEEE]

*+ VARIABLES *
R T A EEE E R EEE R E X R R KR E R R R EEX XSS
NUMBER NUMBER OF TERMS
INDEX CURRENT TERM
FACT VALUE OF FACTORIAL
TERM REAL VALUE OF TERM
SuUM SUM OF THE SERIES

X R EFEE TSR E R SRR R E R EE R EREEE R R R

» INITIAL MESSAGE *
R R R R EEERESEEEEEEEE XX R I N R XK X XX E BB KRR ES]
WRITE(2,110)
110 FORMAT(‘IPROGRAM P0204’
2 //' ESTIMATE THE VALUE OF’

0000000000000 OOOOOOO0

44/INVITATION TO FORTRAN

3 /" THE CONSTANT E USING’
4 /* A SERIES.')
C Fe W W W W M W I W W e M 3 M I A AL A A AL O AL O AL M AL 56 MM M AL S M
C * PROBLEM PARAMETERS *
C LR R EEEEEEEEEEREEEEEEE R E R FEE R R R]
NUMBER = 10
TERM = 0.0
FACT =10
SUM = 1.0
C LA R R EEEEEEEEEEEEEERERERREEENEREREEEEEEZES
C + HEADING *
C LA R R R EEREEEREESEREEESEREREERERE R EE N EEEEEE]
WRITE(2,310)
310 FORMAT(/* TERM ESTIMATE’)
C LA R A E R EE R R EEE R R E R E R R R L K]
C * PROCESS *
C Fo o R I e K e W W W I W W H W I W N NN KW R IR N KN
DO 430 INDEX = 1, NUMBER
TERM = TERM + 1.0
FACT = FACT * TERM
SUM = SUM + 1.0 / FACT
WRITE(2,420) INDEX, SUM
420 FORMAT(I5,F12.7)
430 CONTINUE
C LA A E R EEEE AR EEEEEEEEEEREREREEEERE RS EREEE X 3
C * FINAL MESSAGE "
C LR R B EEREREEEEEEEEEREEEEEEEREE Y EEEE X 3

WRITE(2,510)

510 FORMAT{(///' END OF PROGRAM’)
STOP
END

PRINTED OUTPUT

The following printed output results from the program giving
the series estimates of e for the first few terms:

PROGRAM P0204

ESTIMATE THE VALUE OF
THE CONSTANT E USING
A SERIES.

2.5

{teration/45

TERM ESTIMATE
2.0000000
2.5000000
2.6666667
2.7083335
2.7166669
2.7180557
2.71825641
2.7182789
2.7182817
2.7182820

O WOONOOUDHRWN—=

-—

END OF PROGRAM
Round-off Errors

PRECISION

Single precision real variables contain the equivalent of seven
decimal digits of precision. Seven significant digits are adequate
for most applications. Double precision real variables contain the
equivalent of 16 significant digits. They are sufficient for most
critical applications requiring high precision.

FINITE PRECISION

Computers provide finite precision. Many values are approxi-
mated to the stated number of significant digits. Small errors may
be introduced during the conversion to internal form. Further
errors may accumulate during the course of the calculations.

ERRORS INTRODUCED BY CALCULATION

Significant errors may result from aligning the values during the
calculation. Alignment errors are most evident in addition and
subtraction. For numbers of widely different magnitude the
computer aligns the decimal points before the operation. This
can result in the loss of significant digits.

The problem is worst when subtracting values that are
almost identical. Consider subtracting the value 456.1285 from

46/INVITATION TO FORTRAN

the value 456.1297. The difference is .0012. Each value had seven
significant digits but the result has only two significant digits.

Careful consideration should be given to the needs for pre-
cision for the application and its calculations. Double precision
variables require twice the storage space but give more than twice
the precision of single precision variables. Double precision arith-
metic takes longer than single precision arithmetic.

ESTIMATING THE SLOPE OF A FUNCTION

In calculus, the derivative is a function giving the slope of the
tangent line to another function at every point. The derivative
of a function at a point gives the slope of the tangent line at
that point. Let X be the point of interest. Let X’ be a second
point very close to the value of X. Let Y be the value of the
function at X and Y’ be the value at the point X’. The expression

(Y -Y) /(X - X

estimates the slope of the function at the point X.

This can be described in terms of a limiting process. Moving
the point X’ closer and closer to X results in an estimate that
converges to the true slope. This assumes that the function has
the necessary properties required for the slope to be defined. The
function must be defined at the point in question and be con-
tinuous in the neighborhood of that point. Certain other neces-
sary properties are given in elementary calculus.

This is a classic problem illustrating round-off errors. Both
the numerator and the denominator involve subtractions of values
that are nearly equal. Consider the function

Y =fX)=X+* X

giving Y as the square of X. This function has the slope 1 at the
point X =2.

The program in this section tries the sequence of values 2.1,
2.01,2.001, . .. for the X’ for making the estimate. Theestimate
of the slope improves for the first few terms. After that the es-
timate gets slightly worse for several terms and then theestimate
becomes meaningless. This results from the seven significant-digits
limit of single precision variables.

Iteration/47

Double precision variables would allow better estimates of
the slope at a point. Eventually problems will develop for any
level of precision. The choice for the limits for estimating the
slope depends on the magnitude of the value of the function and
on the precision of the number representation.

PROGRAM

The following program estimates the value of the slope at the
point X =2 for several limits:

LA A R R R A R R R R R EEE LR EEEEEEEEEREEEER

* P0205 *
A AR E R EE R EREEEEREEEEEEEEREREXXEZEEZRJEZEXEXEY.)
AUTHOR

COPYRIGHT 1982
BY LAWRENCE MCNITT.
PURPOSE
ESTIMATE THE SLOPE
OF A FUNCTION
AT A POINT.
SYSTEM
MICROSOFT FORTRAN
RADIO SHACK TRS-80

MODEL IIL.
LA AR R R AR R R ERESEEEEEREEEREREEREREEEREREREXE]
* ORGANIZATION *

LA R R R R E R ERERERESERESEEEEREREFERERRES)
INITIAL MESSAGE
PROBLEM PARAMETERS
HEADING
PROCESS
FINAL MESSAGE

LA AR R R R R L EREEEEEEREEEREREERREYXEEEREREEESE)

*+ VARIABLES *
LA EE R REREEREEREEEEREEREREEREEREE ERERREREREEE R RS
NUMBER NUMBER OF TERMS
INDEX CURRENT TERM
WIDTH WIDTH OF INTERVAL
X1 FIRST ARGUMENT
X2 SECOND ARGUMENT

NN NsNoNoNoNeNoNoNoNsNoNoNoNeoNeNeNeNe R R R R R o R R R e

48/INVITATION TO FORTRAN

OO0O0O00O00O0

Y1 VALUE OF FUNCTION AT FIRST ARGUMENT
Y2 VALUE OF FUNCTION AT SECOND ARGUMENT
SLOPE ESTIMATE OF SLOPE

LE R E R EREEEEREEEEEEEESERERRXSEERESESRSEJEXSEK.)

+ INITIAL MESSAGE *
R AR R REREEEEEEEEEREE EEREZLEXEXREEJZJKRZEEXE N3
WRITE(2,110)
110 FORMAT(“IPROGRAM P0205’
2 /" ESTIMATE THE SLOPE’
3 /* OF A FUNCTION’
4 /* AT A POINT.")

LA AR RS EEEREREEREEEEEREERESEESEREILEEZEREREXZ.]

* PROBLEM PARAMETERS *
LR R R R R R R R R R R R K R R R R K
NUMBER = 12
WIDTH =10
X1 = 5
Y1 = X1 * X1
E R R R R R R R R R R R R KRR R R R
*+ HEADING *

LR AR R SRR EREEREEEEEESEE R R ERERESEEEZJ:SESE;]

WRITE(2,310)

310 FORMAT(/ WIDTH SLOPE’)

PR R R R SRS E R EREEEEEERESEERSEESEREERREREE}R]

* PROCESS *

F R W W W R W W IR K RN KNI N R RN H N H NN R R R R

DO 430 INDEX = 1, NUMBER

WIDTH = WIDTH / 10.0

X2 = X1 + WIDTH

Y2 = X2 » X2

SLOPE = (Y2 - Y1) / WIDTH

WRITE(2,420) WIDTH, SLOPE
420 FORMAT(2F15.12)
430 CONTINUE

(AR EEEEELERESEREEEEE SRR SR L ESESESSERSEJE]

» FINAL MESSAGE *
R N R R R R R R R R R R R R R R R R R
WRITE(2,510)
510 FORMATI(/// END OF PROGRAM’)
STOP
END

2.6

PRINTED OUTPUT

The following printed output results from the program estimating

the slope at the point X=2:

PROGRAM P0205
ESTIMATE THE SLOPE

OF A FUNCTION

AT A POINT.

WIDTH
100000001490
.0099999899776
.000999999931
.000098999930
.000009999999
.000001000000
.000000100000
.000000010000
.000000001000
.000000000100
.000000000010
.000000000001

SLOPE
1.100000143051
1.009997725487
1.001000523567
1.000166058540
1.001358151436
1.013279080391
1.192093014717
0.000000000000
0.000000000000
0.000000000000
0.000000000000
0.000000000000

END OF PROGRAM

Exercises

Iteration/49

1. Write a program calculating the distance traveled in feet at the
end of each of the first 20 seconds for an object accelerating
at the constant rate of eight feet/sec/sec.

2. Write a program calculating the sum of the squares of the first
25 integers.

3. Modify the program estimating the slope of the function
Y = fiX) = X #+ 2

to use double precision. What interval width gives the best
estimate for the slope at the point X =2?

50/INVITATION TO FORTRAN

4. Write a program computing the future value of $1,275.25 at
the end of each of the first five yearsassuming an interest rate
of 12.75 percent compounded quarterly.

5. The sequence containing the nth term
(1+1/N) >N

converges to the constant e as NV increases. Write a program
estimating the constant e using the values N = 10, 20, 30, ...,
150.

6. Elementary calculus includes differential calculus and integral
calculus. One interpretation for a definite integral is as the
area under a curve. Let

Y = f(X) = X *x 2

be the function in guestion. Use numerical integration to es-
timate the area under the curve defined by the function be-
tween the values X = 1.6 and X = 2.5. Subdivide the interval
between X=1.6 and X=2.5 into 100 subintervals. Evaluate
flX) at the midpoint of each subinterval. The subinterval
times the value of F(X) gives an estimate of the area under
the curve within that subinterval. The sum of the areas defined
for all 100 subintervals estimates the area under the curve
between the limits X=1.5and X=2.5.

3.1

3 Conditionals

OVERVI E Conditional statements permit the

computer to be flexible, Notall prob-
lem situations need exactly the same analysis. Some situtations
require one set of instructions while other situations require
other approaches.

The IF statement is the primary conditional command. The
traditional method has been toemploy |F ... GO TO instructions.
The resulting branches are hard to follow. Recent versions of
FORTRAN include more general |IF statements that do not in-
volve branching.

[

Generalized Conditional

GENERALIZED IF

The generalized |F statement has a condition and an executable
statement. If the condition is true, the computer executes the
statement portion. If the condition is false, the computer does
not execute the statement portion.

CONDITION

The condition is contained within the parentheses immediately
following the IF keyword. The condition is a logical expression.
The expression

(A.LT.B)

returns the value 1" for true or "0’ for false.

51

B2/INVITATION TO FORTRAN

The following lists the relational operators for logical ex-
pressions;

.LT. Less than

.LE. Less than or equal to
.EQ. Equal to

NE. Not equal to

.GE. Greater than or equal to
.GT. Greater than

IF STATEMENTS
The IF statement

IF (A.LT.B) SUM = SUM + VALUE

adds the contents of the variable VALUE to the variable SUM if
the condition is true. The statement following the condition can
be any executable statement except the DO statement or another
fogical |F statement. The command

IF (VAL.EQ.2.0) WRITE(2,210) A, B,C

executes the WRITE command if the variable VAL contains the
value 2.0.

CALCULATED SUBEXPRESSIONS

The condition may include complex calculations along with the
relation operator. The command

IF { (INDEX/NUMBER) .GT. (1446+J)) KS=KS+1
uses expressions as part of the condition test.

LOGICAL EXPRESSIONS

Logical expressions consisting of “AND", "“OR", “NOT", and
“XOR" are also possible within |F statements. The command

IF (A.LT.B.AND.L.EQ.M) READ(6,124) A, B

Conditional/53

performs the READ only if both conditionsare true. The "XOR"’
operator is the exclusive or. The result is true if one of the logical
operands is true but not if both are true. The “OR’ operator is
the inclusive or. The result is true if at least one of the operands
is true.

READABILITY

FORTRAN follows a precedence ordering for complex logical
expressions. Arithmetic operations take precedence over rela-
tional operations which take precedence over logical operations.
Parentheses help avoid confusion. The command

IF ((A.LT.B) .AND. (L.EQ.M)) READ(6,124) A.B
illustrates this.

METRIC TO ENGLISH CONVERSION

The program of this section converts meters to feet and inches.
It illustrates the use of conditionals by printing the values for
feet or inches or both. A value of zero for either measure inhibits
its printing.

PROGRAM

The following program uses conditional statements in its OUT-
PUT section:

LR R R KRR R R R K R R R R R TR U I I T IR O R R
* PO301 »
LR EEEREREE R R R Ry R R E R R R EEEETES
AUTHOR

COPYRIGHT 1982

BY LAWRENCE MCNITT.
PURPOSE

METRIC TO ENGLISH

CONVERSION.
SYSTEM

MICROSOFT FORTRAN

RADIO SHACK TRS-80

sHeNsNoNoNsNeNesNeNeNeNa!

54/INVITATION TO FORTRAN

c MODEL 111,
C [P X E AR R R EE X R R EE R E R K E K EX X EREEE]
C = ORGANIZATION *
C AP SRR EE R E R RN R R R E R R REEXEE XX
C INITIAL MESSAGE
C PROBLEM PARAMETERS
C PROCESS
C OUTPUT
C FINAL MESSAGE
C PREREE R AR R R EEEEEEREEREEREERERERESEJEIEIE
C * VARIABLES .
C I EEXEEEEEEEEAEEE R E R E XX R EREE R KX REEERSEESEE]
C XMETER MEASUREMENT IN METERS
C FACTOR CONVERSION FACTOR
C IFEET NUMBER OF FEET
C XINCH NUMBER OF INCHES
C IR EEEEEERE R E R EREREREEE R EENENERXENZESEJEZSEXER.]
C * INITIAL MESSAGE *
C FAEFUE RN R R R R R R R E XX R R R R R EERERREREESZEJEE.]
WRITE(1,110)
110 FORMAT{(///* PROGRAM P0301’
2 //* CONVERT LENGTH IN METERS’
3 /* TO FEET AND INCHES.’)
C R K HERAEREXRERREFXEFXEXEFREXRXXERERRR R E RN
C + PROBLEM PARAMETERS -
C IZEEEREEEEESENEEEEEENEEEEEESEREEEREE RS S
FACTOR = 39.37
XMETER = 3.47
C FE N R I T R R K R R O
C * PROCESS .
C EE R R TR TR I I R R U R O O
XINCH = FACTOR * XMETER
IFEET = XINCH / 120
XINCH = XINCH - 12.0 * IFEET
C X E R R REREEREERERREERE B ERESEEREEREZE B E]
C * OUTPUT *
C PEEEEEEREEE R R R EERE KR E EEEEZLEREEREREZE XX

WRITE(1,310) XMETER
310 FORMAT{/' METERS = *,F10.5/)

IF (IFEET.GT.0) WRITE(1,320) IFEET
320 FORMAT(' FEET = 'I5)

IF {XINCH.GT.0.0) WRITE(1,330) XINCH

3.2

Conditional/bb

330 FORMAT(‘ INCHES = ‘,F10.5)

C LR AR R EEEEREEE R R R R R E R]
C = FINAL MESSAGE *
C LA R AR EEE EEREE Ry R R e s
WRITE(1,410)
410 FORMAT(/* END OF PROGRAM'/)
STOP
END
TEST RUN

The following shows the video output for the test run with the
program:

PROGRAM P0301

CONVERT LENGTH IN METERS
TO FEET AND INCHES,

METERS = 3.47000
FEET = 1
INCHES = 4.61389

END OF PROGRAM

GO TO

BRANCHES

A branch is a transfer of control from one place in the program
to another place. The simplest command is the unconditional
branch. The statement

GO TO 420

is typical. The program transfers control to the statement num-
bered 420.

CONDITIONAL BRANCH

The conditional branch transfers control only if the condition is
true. The command

IF (A.LT.B) GOTO 420

56/INVITATION TO FORTRAN

transfers control to the line numbered 420 only if the value of
A is less than the value of B.

PRIMITIVE BRANCH

The conditional and unconditional branch statements are primi-
tive branches. They are primitive in the sense that they can go
anywhere within the program. The change is abrupt. The complete
lack of control makes branches hard to understand. The program
becomes a complex maze. Some liken the program to a bow! of
spaghetti. Following the twisted paths through the program is
almost impossible.

CONTROLLED BRANCHES

Branches are necessary for some situations but they do not have
to be primitive, uncontrolled branches. The Do-loop mechanism
is a prime example of a controlled branching mechanism. The DO
statement contains a statement number identifying the last state-
ment of the loop. The DO statement itself calls the programmer’s
attention to the fact that a loop is involved.

The last statement of the loop includes an implied branch
back to the beginning of the loop if further iterations are neces-
sary. The Do-loop is easier to understand than alternative methods
using primitive GO TO and IF ... GO TO statements.

ELIMINATION OF THEGO TO

If the language includes certain commands, it is possible towrite
any program without primitive branches. The necessary language
constructs include a subroutine mechanism, a comprehensive
IF ... THEN... ELSE construct, and a DO-WHILE construct.
The ultimate goal is readability, not the elmination of all GO
TO statements.

FORTRAN AND THE GO TO

FORTRAN includes the computed Do-loop mechanism which
is more specific than the DO-WHILE. Most FORTRAN compilers,
including the one by MICROSOFT, do not include the compre-

33

Conditional/57

hensive |F ... THEN . .. ELSE construct. This is probably the
greatest limitation of existing versions of FORTRAN.

The latest FORTRAN standards do include these language
constructs and future compilers will begin implementing these
features. This illustrates the evolutionary upgrading of FORTRAN
during the last 25 years and is one of the reasons why FORTRAN
survives as an applications language.

iIF...GOTO

CONDITIONAL BRANCH

The conditional branch follows the GO TO path if the condition
is true. The statement

IF (A.LT.B) GOTO 420

branches to the statement numbered 420 if the condition is true.
The conditional branch is a primitive branch just like the uncon-
ditional GO TO statement.

READABILITY

The GO TOand the IF ... GO TO statements can result in unread-
able programs. Programs are usually more readable if they use
fewer primitive branches. Programmers should use controlled
branching mechanisms such as the Do-loop and the subroutine
call.

GENERALIZED IF

Thegeneralized |Fstatement provides flexibility without branches,
As newer compilers incorporate more comprehensive |F state-
ments this statement will increase in importance. This is one of
the most productive uses of the |F statement.

ARITHMETIC {F

The arithmetic |F statement is discouraged because of its three-
way branch. It includes three statement numbers and an integer

58/INVITATION TO FORTRAN

expression within parentheses. If the expression is negative, the
branch is to the first statement number. |f the expression is zero,
ihe branch is to the second statement number. If the expression
is positive, the branch is to the third statement number. The
statement

IF (K-2+L) 400,500,785
illustrates the arithmetic |F command.

CASE SELECTION

A problem may require special handling for each of several situa-
tions. Each case requires its own processing methods. One practice
is to define a variable to designate the case and code that variable,
letting the value 1 represent case 1, the value 2 represent case
2, etc.

A series of IF ... GO TO statements distribute the program
flow of control to the sections of the program handling the cases.
The following sequence of commands accomplishes this:

IF (ICASE.EQ.1) GO TO 1000
IF (ICASE.EQ.2) GO TO 1100
IF (ICASE.EQ.3) GO TO 1200
IF (ICASE.EQ.4) GO TO 1300
IF (ICASE.EQ.5) GO TO 1400

This may be tedious but the resulting program flow is evident.

After each case is processed, control flows back toacommon
collection point. Although these are primitive branches, they are
proper if used in a very controlled fashion. This control is im-
portant in the design of readable programs.

COMPUTED GO TO

The computed GO TO statement provides a shortened statement
accomplishing the same thing as the sequence of IF statements
illustrated above. The statement

GO TO (1000,1100,1200,1300,1400) ICASE

Conditional/59

selects the statement depending on the value of the variable
ICASE. If the variable contains the value 1, control goes to the
first statement number. If the value is 2, control passes to the
second statement number, etc.

If the variable contains a value less than one or greater than
the number of statement numbers within the parentheses, control
falls through to the statement following the computed GO TO.
If necessary, this contains an error routine.

PROGRAM

The program of this section illustrates the problems that result
from extensive use of GO TO and IF ... GO TO statements. It
comes from Chapter 2 and computes the accumulated value of
an annuity at the end of each of several years, assuming monthly
deposits.

The program implements the loops using primitive branches
instead of using nested Do-loops. The PROCESS section of the
program is much more difficult to understand than the equivalent
section using the DO mechanism. The program follows:

EEEEE R EREREER EREEEREEEE R EEEXERESEE S LERS.]

+ P0303 *
W W W N W W W W KW KN RN KK WA KN N RN NN R R RR N KRN
AUTHOR
COPYRIGHT 1982
BY LAWRENCE MCNITT.
PURPOSE
FUTURE VALUE AT END
OF EACH YEAR FOR
REGULAR DEPOSITS.
SYSTEM
MICROSOFT FORTRAN
RADIO SHACK TRS-80
MODEL 111
IR E R EREREREEREEE X ERE X E XX E R EEREXEE E 3B EJ}.
+ ORGANIZATION *
Weode K W W W W W N W W N W RN K H R RN NN AWK KRR KRR
INITIAL MESSAGE
PROBLEM PARAMETERS

0000000000000 00O00O00O0

60/INVITATION TO FORTRAN

OO0O00000O00O0O00O0O0O0O0

OO0 o000

OO0

HEADING

PROCESS
FINAL MESSAGE

[S 4 4 3 #w-Dev}

XX EREE R EREREEEEREEREE R EREEERKEEEKEJEESJESS;3

* VARIABLES *

EEEEEEREEEE R R EEEREER EESEEREEEEERLESEESE;]

NYEARS NUMBER OF YEARS

NPER NUMBER OF PERIODS PER YEAR
IYEAR CURRENT YEAR

IPER CURRENT PERIOD

AMOUNT AMOUNT OF REGULAR DEPOSIT
BAL CURRENT BALANCE

YRATE YEARLY RATE (PERCENT)
PRATE PERIOD RATE (FRACTION)
PR EE R R R ERE R EEEEEREERENEEREESERERESKESS;]
* INITIAL MESSAGE *
PR R R R R TR R R R R R R R R R R KGR K R R X KR
WRITE(2,100)
100 FORMAT(‘1PROGRAM P0303’
2 //' COMPUTE THE FUTURE VALUE’
3 /* AT THE END OF EACH YEAR’
4 /' FOR REGULAR DEPOSITS.’)

EE R EESEREEEEEEREEESEEEEE RS EEEEREELEEES]

» PROBLEM PARAMETERS *
PR R E R R R X R R R R R R U R L L
NYEARS = 10
NPER = 12
AMOUNT = 50.0
YRATE = 12.75

PRATE = .01 » YRATE / NPER

PR R R R R EEEREESEREEERESERESRERENEEESESE}R}.}

* HEADING *

PR X EEREREEEEEEEEREEEEEREEREREENEEEEREIERERRJES]
WRITE(2,200) AMOUNT, NPER, YRATE
200 FORMAT(/* AMOUNT OF DEPOSIT PER PERIOD ',F10.2

2 /' NUMBER OF PERIODSPER YEAR 17
3 /' ANNUAL INTEREST RATE ''F13.6
4 //' YEAR BALANCE')

LR AR R R R R E R EERESEEREESEEEESERSEEERESSSE]

* PROCESS *

LR R A R

Conditional /61

BAL = 0.0
IYEAR = 0
310 IYEAR = IYEAR + 1
iF {IYEAR.GT.NYEARS) GO TO 390
IPER = 0
320 IPER = IPER + 1
IF (IPER.GT.NPER) GO TO 370
BAL = BAL * (1.0 + PRATE) + AMOUNT
GO TO 320
370 WRITE(2,380) IYEAR,BAL
380 FORMAT(I5,F10.2)
GO TO 310
390 CONTINUE

C LA R R R R R R R R R EEREREREREZEXRXERREZXEXERE®EER
C * FINAL MESSAGE *
C LEEEREERENEREREEEEREREEXEREREREREREREFEEZTRESR)
WRITE(2,410)
410 FORMAT(//' END OF OUTPUT’)
sTOP
END

PRINTED OUTPUT FROM TEST RUN
The following is the printed output produced by the test run:

PROGRAM P0303

COMPUTE THE FUTURE VALUE
AT THE END OF EACH YEAR
FOR REGULAR DEPOSITS.

AMOUNT OF DEPOSIT PER PERIOD 50.00
NUMBER OF PERIODS PER YEAR 12
ANNUAL INTEREST RATE 12.75000

YEAR BALANCE

636.33
1358.71
2178.78
3109.73
4166.56
5366.31
6728.28

NO TR W=

3.4

62/INVITATION TO FORTRAN

8 8274.42

9 10029.63

i0 12022.18
END OF OUTPUT

Conditional Termination of a Loop

LACK OF DO-WHILE

Future versions of FORTRAN will include the generalized DO-
WHILE construct. The concern of this book is with the version
of Microsoft’'s FORTRAN implemented in Radio Shack com-
puters.

One approach for present versions involves initiatinga com-
puted Do-loop with a very large number of iterations. An IF . ..
GO TO from within the loop branches out of the loop when the
appropriate condition is sensed. Some call this a DO-forever
command. This method may be confusing because there is no
intention of repeating the Do-loop the specified number of times.
A conditional branch is used to break out of the loop.

SERIES ESTIMATE OF THE CONSTANT e

The program of this section uses the series estimate of the con-
stant e from the previous chapter. The program of that chapter
performed the Do-loop a predetermined number of times. The
approach of this section is to perform the loop until the last
term of the summation is suitably small.

PROGRAM

The following program continues adding terms to the series esti-
mate of the constant e until the last term is less than a predefined
limit:

C IEREIEEREEEEEEERAEREEE SR EEREEREEREEESSESBES]]
C =« P0O304 *
C LE R EEE R R EEEEERESEEESESEESEZESEEESEEEXESSS
Cc AUTHOR

C

COPYRIGHT 1982

sNeNoNoNeNoNeoNoNsNoNoNsNoNeNoNeNoNeoNeNoNeNoNeNoNeoNeNeoNeNe]

Conditional /63

BY LAWRENCE MCNITT.
PURPOSE
ESTIMATE THE VALUE
FOR THE CONSTANT E
USING A SERIES.
SYSTEM
MICROSOFT FORTRAN
RADIO SHACK TRS-80
MODEL IIl.
ER R R R IR R R R ERERREEREREEREZERERE®R}RRJEXRJEX}]RX3
* ORGANIZATION *
L R R I R R K R I I R R I I I K U R R
INITIAL MESSAGE
PROBLEM PARAMETERS
HEADING
PROCESS
FINAL MESSAGE

LR R R R R R R R R R R R R R R R R X R E R R EREEEE]

* VARIABLES *
LR R R R R R R R R R R E R R E R R EREE R X R X ER R R XX
NUMBER NUMBER OF TERMS
INDEX CURRENT TERM
FACT VALUE OF FACTORIAL
TERM REAL VALUE OF TERM
CHECK CHECK FOR EXIT FROM LOOP
SUM SUM OF THE SERIES
EIR R R R R RO R R R
* INITIAL MESSAGE *
LK R R R R R R R K R R R R R R R R R R RN R R R R R
WRITE(2,110)
110 FORMAT(‘1PROGRAM P0304’
2 /I ESTIMATE THE VALUE OF'
3 /* THE CONSTANT E USING’
4 /* A SERIES.")

LA RS R ESEEXEERE RS E S A EEREEEREEREEERESYEES)

* PROBLEM PARAMETERS *
LA RS A E R EEEEE S EESEESEEEEREEREEREELEREXEXES)
NUMBER = 1000
TERM 0.0
FACT 1.0
SUM 1.0
CHECK = .0001

]

]

]

G4/INVITATION TO FORTRAN

C R % %% % 5 R KK KK KKK IR R KKK K
C = HEADING *
C KR K KR H K F NN KRR R KRR E R AR R R AR W I KRR R R R
WRITE(2,310)
310 FORMAT(/ TERM ESTIMATE')
C % %R R ERXRRERERE TR R FRRERH R R R R
C = PROCESS *
C ## %R A XFRERER RN RRERFERRERRRRR R RN R R
DO 430 INDEX = 1, NUMBER
TERM = TERM + 1.0
FACT = FACT » TERM
SUM = SUM + 1.0 / FACT
WRITE(2,420) INDEX, SUM
420 FORMAT(I5,F12.7)
IF (CHECK.GT.(1.0/FACT)) GO TO 440
430 CONTINUE
440 CONTINUE
G % a4 3 % 4 3 KR KR R R R R R
C FINAL MESSAGE *
C ##FRRRFRRRRRRRRERARERR R RS R IR H RS

WRITE(2,610)

510 FORMAT(///' END OF PROGRAM')
STOP
END

PRINTED OUTPUT
Thefollowing shows the printedoutput generated by theprogram:

PROGRAM P0304

ESTIMATE THE VALUE OF
THE CONSTANT E USING

ASERIES.

TERM ESTIMATE
1 2.0000000
2 2.5000000
3 2.6666667
4 2.7083335
5 2.7166669
6 2.7180557

3.5

Conditional /65

7 2.7182541
8 2.7182789

END OF PROGRAM

Exercises

1.

Write a program listing all the integers that divide evenly into
the value 12456.

Write a program listing all the prime factors of thevalue 12456.

. Write a program using a series to estimate the value of sin(X)

for X = .415 in radians. Terminate when the last term is less
than .00001. An elementary calculus textbook will discuss
the series estimate approach.

Write a program computing gross pay from the hourly pay
rate and the number of hours worked. Include time-and-a-half
for more than 40 hours.

Write a program that will search for the value X for which f(X)
= 0, Use the method known as bisection. Use the function

fIX) = XxX + 2+X - 3,

The value of f(X) for X = 1.5 is 2.25. The value of f(X) for X
=0 =-3, The function f(X) should become zero at least once
in the interval X =.6to X =1.5. Thisassumes that the function
is defined and is continuous throughout the region of interest.
Evaluate f(X) at the midpoint between 0 and 1.5. If thevalue
for f{X) is suitably close to zero, say .00001, terminate the
processing. Otherwise, let the midpoint become the new
boundary and inspect the value f(X) for the new midpoint.

Estimate the value of X for which the function
fIX) = X=X - 2+X + 3

is minimized. Search the points X=4, -3.99, -3.98, .. ., 4.
Print the value of X and the value of £{X) for the minimum.

4.1

4 Built-in functions

O\/ER\/IE The FORTRAN Compiler makes a
large number of built-in functions
available for incorporation into the program. These include trigo-

nometric functions, logarithmic functions, the square root func-
tion, and many general-purpose functions.

[

SQRT, ABS, SIGN

DEFINITION

A function is a built-in sequence of commands referenced by
name. It consists of the function name followed by one or more
data items enclosed in parentheses. A call to the function returns
a value which can be used as any data value in a FORTRAN ex-
pression.

SQRT

The SQRT function returns the square root of the argument en-
closed in parentheses. The expression

SORT (25.0)

returns the square root of the value 25. The argument must be a
single precision realvalue; it cannot be integer or double precision.
The expression

SQRT(VALUE)

returns the square root of the contents of the variable VALUE.

67

68/INVITATION TO FORTRAN

USE OF FUNCTIONS

The result of the function can be used as any value in other ex-
pressions. The statement

SOROOT = SQRT(VALUE)

places the square root of the variable VALUE into the variable
SQROOT. The statement

DATA = 5.75 » SQRT(VALUE)
uses the resultof the function in alarger expression. The statement
D1 = SQRT(PERT/100.0+START)

returns the square root of the result of the expression within
parentheses.

DATA TYPING

FORTRAN built-in functions presume the data type implied by
the function name. Function names beginning with the letters /
through N return integer results. Functions having names begin-
ning with other letters return single precision real values.

DOUBLE PRECISION

Functions having names beginning with the letter D are usually
double precision functions returning double precision results.
The argument is usually double precision as well.

The statement

DSQRT (2.0D2)

gives the double precision square root of the value 200. The
argument to DSQRT must also be double precision. Double pre-

Built-in functions/69

cision literals must be in scientific notation with the D symbol
identifying the exponent portion.

SIGN

The SIGN function for Microsoft FORTRAN requires two argu-
ments separated by commas. The function returns avalue having
the value of the first argument and the sign from the second
argument.

There are three SIGN functions. ISIGN requires integer
arguments and returns an integer result. DSIGN requires double
precision arguments and returns a double precision result. SIGN
requires single precision real arguments and returns a single pre-
cision real result.

The statement

VALUE = SIGN(1.0,-25.75)

places the value -1.0 into the variable called VALUE. VALUE
must be single precision. The statement

DATA = DSIGN(DATA,S11)

makes the variable called DATA have the same sign as the variable
called S11. The result and the arguments must be explicitly de-
fined as double precision. The statement

IVAL = ISIGN(144,IDATA)

places the value 144 into the variable VAL using the sign of the
value in IDATA.

ABS

The ABS function returns the absolute value of theargument. The
ABS function returnsasingle precision result and assumes a single
precision argument. The DABS function returns a double pre-
cision result and requires a double precision argument. The |ABS

70/INVITATION TO FORTRAN

function returns an integer result and requires an integer argu-
ment. The statement

XMAGN = ABS(VALUE)

returns the single precision absolute value of the single precision
argument VALUE.

NUMBER REPRESENTATIONS

These functions typify FORTRAN built-in functions available
for incorporation into programs. They are an important part of
the FORTRAN compiler and simplify the programming process.
They illustrate the emphasis that FORTRAN places upon number
representations. This is a curse to the beginning programmer but
is a blessing to the experienced programmer in the control that
it gives over storage efficiency, precision, and processing speed.

PROGRAM GENERATING SQUARE ROOT TABLE

The following program uses the SQRT function in the process
of generating a square root table:

LA A AR R AR E AR EREREEREEEEEEEEEEEEREXXER

* P0401 d
KW K KK K RN R NN N W KRN NN KR K KN WK KR K NN
AUTHOR

COPYRIGHT 1982
BY LAWRENCE MCNITT.
PURPOSE
GENERATE SQUARE
ROOT TABLE.
SYSTEM
MICROSOFT FORTRAN
RADIO SHACK TRS-80

MODEL I11.
LA AR A AR EEEREEEEEREEERERERREEREIX TIPS
* ORGANIZATION *

LA AR R RS RAEREEEEEEETEREREEEERERE R FE Y

INITIAL MESSAGE
PROBLEM PARAMETERS
PROCESS

[sReNsRsNeNesNesNeNeoNeNoNoNoNeoNoNoNeoNeNe!

OO0 OO0 O0OOO0O00OO0

OO0

Built-in functions/7 1

FINAL MESSAGE

R R R EEEEEE R EREE R R EEE R EREEEEEEEREE]

+ VARIABLES *
P R R R RS EEET R EE R R R R R R R RN R R R R R R
NUMBER NUMBER OF VALUES
ICOUNT COUNTER FOR VALUES
VALUE CURRENT VALUE
STEP STEP SIZE FOR VALUES
SOROOT ~ SQUARE ROOT

P R s TR R R R R E R R R R R R R R

» INITIAL MESSAGE *

WRITE(1,110)
110 FORMAT(/ PROGRAM P0401’
2 /" GENERATE SQUARE’
3 /* ROOT TABLE.")
WRITE(2,120)
120 FORMAT(‘1SQUARE ROOT TABLE’
2 //5X, 'VALUE' ,3X, 'SQUARE ROOT’)

PR EEEEEE R EEEEEE SR EEEREEERRESREREEE]

* PROBLEM PARAMETERS *
Y T RS R R
VALUE = 1.0
STEP 0.1
NUMBER = 10

I EEEEEEEEEREREETEEREERERESEERIEEEREE LR BN

» PROCESS *
R R R R EEEEEEE EEE R R E R EE R E XK EEEEE RS
DO 320 ICOUNT = 1, NUMBER
SQROOT = SQRT(VALUE)
WRITE(2,310) VALUE, SQROOT
310 FORMAT(2F10.5)
VALUE = VALUE + STEP
320 CONTINUE

[EEEEEESEEREEEEREEEEEEE S EEREEEEREEEEEE

«+ FINAL MESSAGE *
R AR R R R EEEE R R K NN R R IR R
WRITE(2,410)
410 FORMAT(///* END OF OUTPUT’)
WRITE(1,420)
420 FORMAT(/ END OF PROGRAM)
sTOP
END

i

1

4.2

72/INVITATION TO FORTRAN

PRINTED OUTPUT FROM TEST RUN

The following gives the printed output produced by the test run:

SQUARE ROOT TABLE

VALUE SQUARE ROOT
1.00000 1.00000
1.10000 1.04881
1.20000 1.09545
1.30000 1.14018
1.40000 1.18322
1.50000 1.22474
1.60000 1.26491
1.70000 1.30384
1.80000 1.34164
1.90000 1.37840

Exponential and Logarithmic

LOGARITHMS

A logarithm is an exponent. The base ten logarithm of the value
X is the exponent B for the value 10 which gives the resulting
value X. In the FORTRAN expression

X = 10.0 *+ B

the value in B is the base ten logarithm of the resulting value in
X. Ten raised to the Bth power is X, therefore, B is the base ten
logarithm of X.

For this to be true the value in X must be positive. A positive
value for B results in avalue of X greater than the value 1.0. A nega-
tive value for B results in avalue of X falling between 0.0and 1.0.

ANTILOG

The antilog reverses the logarithm process. If B is the logarithm
of X, then X is the antilog of B. Given a logarithm B, raising the
value 10.0 to that power gives the antilog.

Built-in functions/73

OVERFLOW AND UNDERFLOW

Microsoft FORTRAN on the Radio Shack TRS-80 represents real
values having a magnitude between 10%*-38 and 10**38. At-
tempting to represent any value greater than 10+*38 results in
overflow. Attempting to represent any value closer to zero than
10#**-38 results in underflow.

CALCULATION WITH LOGARITHMS

Calculation with logarithms reduces the risk of overflow and
underflow for some problems. Rather than form the product of
a series of terms, form the sum of their logarithms. Rather than
raise the value A to thenth power, computen times the logarithm
of A.

TRANSLATION

The final result of the calculation using logarithms is the loga-
rithm of the desired answer. If the answer does not overflow or
underflow, then raising the value 10.0 to the power given by the
final logarithm gives the desired decimal answer.

If overflow or underflow is possible, then the antilog re-
quires a two-step process. The integer part of the final logarithm
gives the exponent of the base ten result. The fractional part
becomes the base ten exponent for the mantissa of the result.
The program of this section uses this approach to avoid over-
flow problems.

LOG FUNCTIONS

The LOG functions include ALOG, DLOG, ALOG10,and DLOG-
10. ALOG is a single precision function returning the natural
logarithm of the argument. DLOG is a double precision function
returning the natural (basee) logarithm of the argument. ALOG10
is a single precision function returning the common (base ten)
logarithm of the argument. DLOG10 is a double precision func-
tion returning the common logarithm of the argument.

74/INVITATION TO FORTRAN

EXP FUNCTIONS

The EXP functions return the exponential value of the argument.
These functions raise the value e to the power given by the argu-
ment. This corresponds to finding the antilog of base ten loga-
rithms. EXP is a single precision function raising e to the power
specified by the argument. DEXP is a double precision function
raising e to the power given by the argument.

FACTORIALS

The value n! (called n factorial) is the product of the first n in-
tegers if n is greater than zero. The value of 0! is defined to be 1.

INTEGER CALCULATIONS

Integer calculations seem natural for factorials. The following
FORTRAN segment computes n!:

IFACT = 1
DO 110 ICOUNT = 1, N
IFACT = IFACT * ICOUNT
110 CONTINUE

This routine works for small nonzero values of n. Factorials be-
come very large for large n. Integers are inadequate for repre-
senting values of large magnitude.

REAL NUMBER REPRESENTATION

The real number representation allows values up to 10**38. Al-
though this is adequate for most problems, it still does not handle
n! for large n. The following FORTRAN program segment uses
real numbers to calculate n!:

FACT = 1.0
DO 110 ICOUNT = 1, N
TERM = ICOUNT
FACT = FACT * TERM
110 CONTINUE

Built-in functions/75

The statement
TERM = ICOUNT

converts the integer ICOUNT to the real variable TERM.
Most FORTRAN compilers will accept the statement

FACT = FACT * ICOUNT

which includes mixed data types in the expression to the right
of the equals sign. This is not good practice, but it works. The
computer converts integer values in mixed-mode expressions to
real format before doing the calculations.

A better approach is to use the FLOAT function which
returns the real form of the integer argument. The following
FORTRAN segment uses the FLOAT function:

FACT = 1.0
DO 110 ICOUNT = 1, N
FACT = FACT * FLOAT(ICOUNT)
110 CONTINUE

The reason why this is a better approach is that it signals the data
conversion that must take place.

CALCULATION WITH LOGARITHMS

Overflow is still a severe problem with real numbers. The value for
65! will overflow, for example. Calculating with logarithms in-
volves summing the logarithms of the first n integers rather than
forming the product of those integers. The result is the logarithm
of the factorial. Further calculations then use the log factorial.

The following program segment computes the base ten log
factorial:

FACT = 0.0
DO 110 ICOUNT = 1, N
TERM = ICOUNT
FACT = FACT + ALOG10(TERM)
110 CONTINUE

76/INVITATION TO FORTRAN

FACTORIAL TABLE FOR LARGE N

The following program generates a factorial table for large N,
extracting the exponent and mantissa and printing the two parts
separately:

LA A A R AR R EREEEE SR EEE SRR EEE SR EEEEREEERE]

+ P0402 *
LR R A EEEEEEEAEREEEEEEEEEREEREEREREREEREE RS
AUTHOR
COPYRIGHT 1982
BY LAWRENCE MCNITT.
PURPOSE
GENERATE FACTORIAL TABLE
USING LOGARITHMS.
SYSTEM
MICROSOFT FORTRAN
RADIO SHACK TRS-80
MODEL Iil.

LA A AR AR R RS EEEEEREE LS EREEEER RN XN R E R TR R

* ORGANIZATION *
LA SRR EEEEEEEREEEEREEEREREREERIE TR IR I I IR
INITIAL MESSAGE
PROBLEM PARAMETERS
PROCESS
FINAL MESSAGE

LA A A A S ERREREEEREEREREEEEEEREREJRERZERSEESE]

* VARIABLES *

LA R R R A R S R E LR R R R RN EE X

ICOUNT COUNTER FOR VALUES
ISTART STARTING POINT

ISTOP STOPPING POINT
VALUE CURRENT VALUE
FLOG LOG FACTORIAL
IEXP EXPONENT

FRACT MANTISSA

LA A R A RS R EREEEEE S S EEE R EEEEEEREREEEREY

sEeRrEoRcReNrNoRsNoNoNoNosNoNeoNeoNoNoNoNoNeNeNsNeoNoNoNoNoNeNeNe Re R

* INITIAL MESSAGE *
LA AR R LRSS SRR ERZEEE R RS EEREEEEEEEEEEE
WRITE(1,110)

110 FORMAT(/* PROGRAM P0402’
2 /' GENERATE FACTORIAL TABLE’

Built-in functions/77

3 /' USING LOGARITHMS.")
WRITE(2,120)
120 FORMAT(“1FACTORIAL TABLE’
2 //5X, "VALUE' 3X, "FACTORIAL’)
PR EX N E R R EREEERXIEE IR R R TR EEEXIXEREXEREXRJZE}.}
» PROBLEM PARAMETERS *
R E X R E EEEEREEREESEERERJRERJERJE®RJEZEZR®EJEJE}EZE;ESZ
ISTART = 100
ISTOP 110
VALUE = 0.0
FLOG 0.0
EE R R I N I N IR I I R I R R
* PROCESS *
ER R I R I R T I I O)
DO 320 ICOUNT = 1, ISTOP
VALUE = FLOAT(ICOUNT)
FLOG = FLOG + ALOG10(VALUE)
IF (ICOUNT.LT.ISTART) GO TO 320
IEXP = FLOG
FRACT = FLOG - FLOAT(IEXP)
FRACT = 10 ** FRACT
WRITE(2,310) ICOUNT, FRACT, IEXP
310 FORMAT(16,4X,F7.2,’ E *,15)
320 CONTINUE
N W W N K K KN K F NN R WK N K HH R E R H N KN RN NN R KRR
+ FINAL MESSAGE *
EE R R I R R R U
WRITE(2,410)
410 FORMAT(/// END OF OUTPUT’)
WRITE(1,420)
420 FORMAT{(/' END OF PROGRAM')
STOP
END

OO0

nou

[eNeNe!
]

OO0

PRINTED OUTPUT
The following printed output results from the test run:

FACTORIAL TABLE

VALUE FACTORIAL
100 933 E 157
101 943 E 159

4.3

78/INVITATION TO FORTRAN

102 062 E 161
103 990 E 163
104 108 & 166
105 1.08 E 168
106 115 E 170
107 1.23 E 172
108 1.32 E 174
109 144 E 176
110 159 E 178

END OF OUTPUT

Trigonometric

TRIG FUNCTIONS

Trig functions include sine, cosine, and arctangent. The argument
is an angle in radians. This angle must represent one revolution
or less. Converting angles in degrees to angles in radians uses the
fact that 360 degrees of the complete circle corresponds to 2pi
radians. The equation

D = 57.295781 » R
converts radians to degrees. The equation
R = D / 57.295781

converts degress to radians.

SIN, DSIN

SIN is a single precision function returning the sine of the argu-
ment angle. The angle is in radians and must be between the value
0 and pi. DSIN is a double precision function returning the sine
of the angle in radians.

COs, DCOS

COS is a single precision function returning the cosine of the
argument. The argument is an angle in radians falling between O
and pi. DCOS is the corresponding double precision function.

Built-in functions/79

ATAN, DATAN

ATAN is a single precision function returning the arctangent of
the argument in radians. The argument is the tangent computed
using the relationship

Tangent = SIN{X) / COS(X)

with.X the angle in radians. ATAN returns the angleresulting inthe
tangent. DATAN is the corresponding double precision function.

PROGRAM GENERATING TABLE OF SINES AND COSINES

The following program generates the table of sines and cosines:

IEEEEEREEEEEEEEEEEEEEREEEEEEEEKEERES:ESE.]

* P0403 *
EEE R EEEREEEREERE EREREEEESEEEEJEEEEENEEEJEIES]
AUTHOR

COPYRIGHT 1982
BY LAWRENCE MCNITT.
PURPOSE
GENERATE TRIGONOMETRIC TABLE
FOR SINE AND COSINE.
SYSTEM
MICROSOFT FORTRAN
RADIO SHACK TRS-80

MODEL I,
LEEEERESEEREREEEEREEREEERERESREREERESEESEEH’.]
* ORGANIZATION *

ERCE R
INITIAL MESSAGE
PROBLEM PARAMETERS
PROCESS
FINAL MESSAGE

EEREEREEREEEESEEE SRS EREREREREREEEESESES]

* VARIABLES *
EEEEEREEEEEEEE RS ERERERRERERERERZERJEXZRXJX]
ICOUNT COUNTER FOR VALUES
ISTART STARTING POINT
ISTOP STOPPING POINT

sNeNeNeoNoNeoNoNe NN NesEsNeNsNsNesNoNoNoNoNoNoNoNeNeNe!

80/INVITATION TO FORTRAN

OO0O0O0O00000

OO0

C

[eNeNe!

ISTEP STEP SIZE

DEGREE ANGLE IN DEGREES
RADIAN ANGLE IN RADIANS

IR YiaY ALY fS Wy

SINE SINE OF ANGLE
COSINE COSINE OF ANGLE

IEEEZEEEEEXEREEREEEEREEREEERENEEEERESESS.]

INITIAL MESSAGE *
N R AR ERAEEZERE X E R E RN RE N R X R RN EREERESZXZESE.]
WRITE(1,110)
110 FORMAT(/ PROGRAM P0403’
2 /I GENERATE TRIGONOMETRIC TABLE'
3 /' FOR SINE AND COSINE.’)

WRITE(2,120)
120 FORMAT('1TRIGONOMETRIC TABLE'

2 /I DEGREES' ,5X, "RADIANS’,
3 6X, 'SINE’ 4X, ‘COSINE’)
ETIE AR IR N R T T L O I R IR A U R U U I R
+ PROBLEM PARAMETERS *
EPE R I I AT R O R R R R R R R R R R
ISTART = 0
ISTOP = 100
ISTEP = 10
EE I R R I R R R R R R R R R R R R R R R R
+ PROCESS *

EEE R E R EEEXERZERERESEEEESEEERERESEEEES SR

DO 320 ICOUNT = ISTART, ISTOP, ISTEP
DEGREE = ICOUNT

RADIAN = DEGREE / 57.29578
SINE = SIN(RADIAN)
COSINE = COS(RADIAN)

WRITE(2,310) DEGREE, RADIAN, SINE, COSINE

310 FORMAT(2F10.5,2F10.7)
320 CONTINUE

X SR E R EERERESEEESEEEREREXESEESEESEEESESERSERES]

* FINAL MESSAGE *
EE R EEREEEEEREEEE SR RS E R SEXERERESEREEEESESES]
WRITE(2,410)

410 FORMAT{///' END OF OUTPUT')
WRITE(1,420)

420 FORMAT(/' END OF PROGRAM’)
STOP
END

4.4

Built-in functions/81

PRINTED OUTPUT

The following printed output results from the test run:

TRIGONOMETRIC TABLE

DEGREES RADIANS SINE COSINE
0.00000 0.00000 0.0000000 1.0000001
10.00000 17453 1736482 .9848078
20.00000 34907 3420202 .9396927
30.00000 .52360 .5000000 .8660254
40.00000 .69813 6427876 .7660445
50.00000 .87266 .7660445 .6427876
60.00000 1.04720 .8660254 4999929
70.00000 1.22173 .9396927 3420202
80.00000 1.39626 0848078 .1736483
90.00000 1.57080 1.0000001 .0000000
100.00000 1.74533 9848078 -.1736483

END OF OUTPUT

Function Library

ADDITIONAL BUILT-IN FUNCTIONS

The FORTRAN compiler includes many more built-in functions.
The list of functions tends to change somewhat with each release
of the language. The language reference manual will list these
functions. Review this document for those functions currently
implemented.

LIBRARY OF FUNCTIONS

The following functions are among the most useful:

IFIX Convert a real number to an integer

INT Truncate real argument giving integer

AINT Truncate real argument giving real

PEEK Peek at integer memory address

RAN Random number generator

AMOD Real remainder from dividing real
divisor (second argument) into real
dividend (first argument)

45

82/INVITATION TO FORTRAN

LOCAL INSTALLATION

Each local installation has its own needs. It should develop one
or more libraries of functions. These are in addition to the built-in
functions available with the compiler. These become powerful
tools for the development of programs. The chapter on subrou-
tines shows how this is done.

COMMENTS ON PROGRAM DESIGN

Functions demonstate some important principles concerning the
design of computer programs. Each function has only oneresult.
This is an important concept of computer science. The program
should be organized into sections. Each section should perform
one task. It is not wise to jam too much work into one section.
Multiple tasks require multiple sections.

The programmer is not concerned with how the function
works. The only concern is that it work. The function may be a
complex program with nested loops and many intermediate vari-
ables. This detail is not important from the standpoint of the
program that uses the function. The temporary variables are local
to the function, and are kept completely separate from the main
program. This ability to define local variables and complex pro-
cedures is an important factor in the design of complex, yet read-
able, programs.

Exercises

1. Check the accuracy of the SIN and COS functions. The fol-
lowing relationship should hold:

SIN(X)##2 + COS(X)#*x2 = 1,

2. Check the accuracy of the EXP and ALOG functions. Com-
pute a set of natural logarithms and use the EXP function to
return a value that should equal that of the original number.

3. Check the accuracy of the square root function by squaring
the result and comparing the square of the square root with
the original value.

4. The random number function is among the most interesting
to use. Use it to generate a set of random numbers.

Built-in functions/83

5. Use the random number function to simulate tossing a coin
1,000 times and counting the number of heads. |f the numbers
are random in the interval O to 1, let a value in the range 0-.5
correspond to a head and a value in the range .6-1 correspond
1o a tail.

6. The amount $2,500 is deposited into a savings account which
earns 7.75 percent interest compounded continuously. Com-
pute the future accumulated value at the end of 3.75 years.
This requires the EXP function.

7. The barrel of an artillery piece is at an elevation angle of 22
degrees with respect to the ground. The shell has a muzzle
velocity of 1,260 feet per second when fired. Estimate the
distance in feet to the point of impact, and the height in feet
for the highest point of trajectory for the shell. Disregard
wind resistance and factors other than the pull of gravity. Use
the trig functions to determine the horizontal and vertical
velocities and the laws of motion to determine the desired
results.

5.1

5 Sequential files

OVERVIEW Most computer files are sequential.

Sequential file processing is efficient
since processing speeds are faster than random access processing
if the file is processed from beginning to end. Sequential files
make efficient use of external storage. There is little or no wasted

space. This chapter covers the creation and processing of sequen-
tial files.

L]

Writing a Sequential File

SEQUENTIAL FILES

A sequential file stores data sequentially. Processing takes place
sequentially from beginning to end. Sequential processing is
usually faster than random access processing. Only if processing
involves a small fraction of the file is random access faster than
sequential access. Sequential files utilize disk storage space effi-
ciently. This chapter discusses sequential files; a later chapter
covers random access files.

BLOCKING

The Radio Shack TRSDOS operating system for the Model |11
allocates disk storage space on the basis of granules. One granule
contains 768 bytes consisting of three sectors of 256 bytes each.
The Model |11 diskette contains 40 tracks of 6 granules each. The
Model | and Model 1| employ different granule sizes. The granule

85

86/INVITATION TO FORTRAN

is the smallest unit of disk space for allocation purposes. The
sector size of 266 bytes is relatively standard across computer
models.

The operating system allocates space for a file in terms of
extents. An extent contains one or more physically contiguous
granules. A file contains one or more extents. Sequential file
processing proceeds, record by record, within a granule and, if
necessary, granule by granule within an extent. The system
automatically links extents together during processing.

The standard physical record size is the 256 byte sector.
The system efficiently processes any logical record size, auto-
matically blocking and deblocking file accesses. Blocking involves
packing multiple logical records per sector. Deblocking involves
unpacking logical records from sectors. |f necessary, the system
will span a record across sector boundaries.

DISK PERFORMANCE

The typical five-inch floppy disk revolves at the rate of 300 RPM
(revolutions per minute). This gives five revolutions per second
or .2 second per revolution, or 200 milliseconds. This is called
the latency of the disk drive, i.e., the latency is the time required
to make one revolution.

Each disk drive contains a moving head that can be posi-
tioned to read one of the tracks of data on the diskette surface.
Positioning the head takes time. Track-to-track access varies from
three to 40 milliseconds, depending on the disk drive and the
software controlling it. Additional time is required for the head
to settle down and begin reading data reliably.

From these measures, it is evident that the system cannot
make more than three or four disk accesses per second. The most
efficient file access methods are those that allow the system 1o
read and write large amounts of data per access. This is the reason
why sequential file processing is usually more efficient than ran-
dom file processing.

The most efficient sequential files are those consisting of
one extent. All granules are contiguous. Processing proceeds
sequentially from sector to sector within a granule, fromgranule
to granule within the track, and from track to track within the
extent.

Sequential files/87

DATA THROUGHPUT

Each track contains 4,608 bytes for the Radio Shack Model 111.
In theory the disk will transfer data at the rate of 23,040 bytes
per second. In practice, the throughput is much less than the
maximum. Most systems will not load the entire track at one time;
they will load a granule-sized block with one access. This permits
a data throughput of 3,840 bytes per second for sequential files.
The system must wait one full revolution before accessing the
next block.

Consider a file containing records of 64 bytes each. The disk
drive can average four accesses per second. Random access tech-
niques limit the data throughput to a maximum of 2566 bytes
per second. Sequential access techniqueswill allow a data through-
put of up to 3,840 bytes per second.

Theefficiency of disk 1/0 (input/output) is highly dependent
on the operating system. TRSDOS is the operating system de-
veloped by Radio Shack for their systems. The larger the block
size employed by the operating system for sequential files, the
faster the processing speeds can become. Large block sizes have
a significant disadvantage, however. They require more internal
memory to hold the block for the system. This internal memory
is called a buffer. Each file must have at least one buffer. Keeping
the buffer size within bounds limits the size of the block for
input/output transfers.

NEW TECHNOLOGY

Performance measures for external storage devices will continue
to improve. The concepts of access times and throughput will
remain valid for the new technologies. A few simple calculations
give measures predicting effective performance regardless of the
technology involved.

READ/WRITE COMMANDS

The WRITE command for writing to a disk file is the same as the
one for writing to the line printer. The command

WRITE(6,210) VALUE, RESULT

88/INVITATION TO FORTRAN

will write the values of the variables VALUE and RESULT to
unit number 6 using the FORMAT statement 210.

The READ command for reading from a disk file is similar.
The command

READI(6,320) VAR1, VAR2

reads values from the device specified by unit number 6 into the
variables VAR1 and VAR2. The FORMAT statement for the
READ command must be consistent with that used by theWRITE
command used to create the file.

OPENING AND CLOSING FILES

A file must be opened before it can be accessed by READ or
WRITE statements. The command

CALL OPEN(6,'DATA/DAT',20)

is a subroutine call. It calls the subroutine OPEN giving it the
parameters 6, 'DATA/DAT’, and 20.

The first parameter is the unit number 6. The second para-
meter is the disk data file name including the extension /DAT.
The third parameter specifies the record length in bytes.

The OPEN subroutine assigns the file name to the unit
number. The file name can also specify the disk drive number.
The command

CALL OPEN(9,’FILE1/DAT:1",60)

assigns the file named FILE1/DAT on drive 1 to the internal
FORTRAN unit number 9.
When finished, the file should be closed. The command

ENDFILE 6

closes the file that has been assigned to unit number 6.

Sequential files/89

CREATING THE SEQUENTIAL FILE

The program of this section generates a sequential file containing
a table of values and the squares of those values. The FORMAT
statement

310 FORMAT(15,2F10.4)

creates records of 25 bytes each. The first five bytes contain an
integer value. The following 20 bytes contain two fields of 10
bytes each for real values. There are four digits to the right of the
decimal point.

The following program creates the file named DATA/DAT.:

IR AR EEEREREEEEEFEEELEEEEEEE R E RN RN SN Y]

* PO501 *
EEE R R E R EREESEEEEEEEEEEEREERERESXEEEXXE]
AUTHOR

COPYRIGHT 1982

BY LAWRENCE MCNITT.
PURPOSE

GENERATE SEQUENTIAL

TEST DATA FILE.
SYSTEM

MICROSOFT FORTRAN

RADIO SHACK TRS-80.
LR R R KR R KRR R R RER R R R R EREEERRE R R X E R E
+ ORGANIZATION *
KRR RN HRH NN R HHHFRRRRNRRENHRENRRRRREN
INITIAL MESSAGE
PROBLEM PARAMETERS
PROCESS
FINAL MESSAGE
LR R R R R R R R E R E R R X REXERERERER I IR I I
*+ VARIABLES *
LA E R EREEEEEEEEREEEEEEREEREEEERERX R ER E R XX R X
NUMBER NUMBER OF VALUES
ICOUNT COUNTER
STEP STEP SIZE FOR VALUE
VALUE CURRENT VALUE

tEeNsNsNoNeNsNesNeoNosNoNoNesNeoNoNoNeoNsNoNesNoNoReNeoRoNe!

90/INVITATION TO FORTRAN

C SQUARE SQUARE OF VALUE
C [EEEEEEEREE X EEEREEREE R EE R R EREEIEENX LS KBRS
c = INITIAL MESSAGE &
C EEEESEEEE SRR R ERE RS E AR A RN R EEEEREELEES]
WRITE(1,110)
110 FORMAT(/" PROGRAM P0501’
2 //’ GENERATE SEQUENTIAL’
3 /' TEST DATA FILE.")
C EE R R EEEEE X ERERE R E B EREEERESEEEERERSEEEERS.]
C = PROBLEM PARAMETERS *
C EEEEEEEEEEEE R E R EEEEEEEESEEEEESEEEEES]
NUMBER = 10
VALUE = -5.0
STEP = 1.0
C LR R R R R R KR KRR R R R R R R R R R R R R R
C = PROCESS *
C EEEREREEREEEREEERERERXEERESERESEIEREJZSEREJLNES]
CALL OPEN(6,'DATA/DAT',25)
DO 320 ICOUNT = 1, NUMBER
VALUE = VALUE + STEP
SOUARE = VALUE * VALUE
WRITE(6,310) ICOUNT, VALUE, SQUARE
310 FORMAT(I5,2F10.4)
320 CONTINUE
ENDFILE 6
C PR R R R R R RS K ERERESEEEEREEREEREEEEEEREERREESE]
(I FINAL MESSAGE *
C HHHRERRHRHRIEREEEEXRXXEXEXERRERR KR KRKRN RN
WRITE(1,410)
410 FORMAT(/* END OF PROGRAM')
STOP
END
TEST RUN

The test run sends the following cutput to the terminal:

PROGRAM P0501

GENERATE SEQUENTIAL
TEST DATA FILE.

END OF PROGRAM

5.2

Sequential files/91

Reading a Sequential File

INITIAL FILE

Before it can be read, a sequential file must be created. Most text
editors including SCRIPSIT and EDIT do not create appropriate
FORTRAN sequential files. The best long-term solution is to find
a text editor that will create appropriate sequential files. Another
solution is to use interactive data entry from the terminal with a
FORTRAN program to create and edit specific files.

FORMAT STATEMENTS FOR READ COMMAND

FORMAT statements define how the data is organized within
each record. Integer fields are the same for both READ and
WRITE commands. There is a difference when using the F for
the format specification.

The WRITE statement uses the F10.4 command for a 10-
column field with four digits to the right of the decimal point.
The READ statement uses the F10.4 specification slightly dif-
ferently. To save storage space many files are created without
decimal points. The decimal point always occupies the same lo-
cation. The F10.4 specification on input specifies an assumed
decimal point four digit positions from theright of the field. Any
decimal point within the input field will override the assumed
location.

if decimal points within an input field are included and not
assumed, the field F10.0 is often used. If the input field contains
no decimal point, the number will have no fractional part.

END OF FILE

The READ command has an optional parameter specifying the
statement number if an end-of-file condition is detected during
the read operation. The command

READ(6,230,END=690) A, B, C

branches to the statement numbered 690 when the end of the
input file is detected.

92/INVITATION TO FORTRAN

Both the READ and WRITE commands allow a similar

option if the operation detects other file errors. The command

READ(6,230,END=690,ERR=275) A, B,C

branches 1o statement number 275 for any input error condition.

PROGRAM READING SEQUENTIAL FILE

The following program reads the sequential file created by the
previous program:

OO0 000000O0

RN R R R R R R R R R R R R R R R R R R R O

* P0502 *
EE X EREEEEERXEREEREEREEERERJEREJRESEJREJRESES;E.]
AUTHOR

COPYRIGHT 1982

BY LAWRENCE MCNITT.
PURPOSE

READ SEQUENTIAL

TEST DATA FILE.
SYSTEM

MICROSOFT FORTRAN

RADIO SHACK TRS-80.

EE NN ERREEXEEREEE R E R EEEEREELESREESESEESES]

* ORGANIZATION *
e e K WK W W R NI KKK KN R KK KN KR RN KW R RN W KRR
INITIAL MESSAGE
PROCESS
FINAL MESSAGE

ER R E R EREREEREERESEEEESEEEEESEREEZEESESESS.S

* VARIABLES ®
ERE X EREEREE RS EEEREEEESESREREEERSEEREEIEREE]
NUMBER NUMBER OF VALUES
IVALUE INTEGER VALUE
VALUE CURRENT VALUE
SQUARE SQUARE OF VALUE
PR EEE RS EREEEREEREEEEEEEEEEEEEERERIEREJ LSS
* INITIAL MESSAGE *

EEX E R R E R EREEXEREEEERERSEERSEREEEESE RS

WRITE(1,110)

5.3

Sequential files/93

110 FORMAT(/* PROGRAM P0502’
2 //' READ SEQUENTIAL’
3 /" TEST DATA FILE.)

LR R R KR R EEEEEEERE X X R R R SR gy

*+ PROCESS *

CALL OPEN(6,'DATA/DAT’,25)
300 READ(6,310,END=330) IVALUE, VALUE, SQUARE
310 FORMAT(I5,2F10.0)

WRITE(2,320) IVALUE, VALUE, SQUARE
320 FORMAT(I5,2F10.4)

GO TO 300
330 ENDFILEG

C LA AR R R R EEEREEEREE R N R L R

OO0

C =» FINAL MESSAGE *
C LE R E R R R EE SRR R R
WRITE(1,410)
410 FORMAT(/* END OF PROGRAM")
STOP
END

PRINTED OUTPUT

The following printed output results from the test run:

-4.0000 16.0000
-3.0000 9.0000
-2.0000 4.0000
-1.0000 1.0000
0.0000 0.0000
1.0000 1.0000
2.0000 4.0000
3.0000 9.0000
4.0000 16.0000
5.0000 25.0000

O WWOWONOOAHWN -

-

Interactive Data Entry

BATCH PROCESSING

Batch processing methods involve executing the program from
start to finish without human intervention. There may be some

94/INVITATION TO FORTRAN

interaction setting up the program and at the end. Except for
these, the program runs to completion automatically.

INTERACTIVE PROCESSING

Interactive processing involves man-machine interaction during
the running of the program. Interactive programs are usually easier
to use than batch programs. Users appreciate seeing the results
immediately rather than hours later as is typical with large batch
processing systems,

Batch processing methods make the most efficient use of
computer resources. Interactive processing consumes a significant
fraction of the computer system’s resources in terms of internal
memory and computer time. The result is often better use of
human resources.

Microcomputers are ideal for interactive processing. They
are so inexpensive that concern about the inefficiencies of inter-
active processing isvirtually eliminated. The efficient use of people
is more significant than the efficient use of the computer. Micro-
soft FORTRAN for microcomputers permits interaction between
the user and the computer at run time. This is a powerful tool
for creating software that is easy to use.

BINARY FILES

Using FORMAT statements for the creation of the sequential file
requires using matched FORMAT statements for reading that file.
The FORMAT statements define the external characteristics of
the data. They give the size of the field, the data type, and the
placement of the decimal point.

The primary use of formatted data is for printing. The data
are suitable for listing directly. Each digit requires one byte in
the file and one column position for the printer. Internal binary
number representations are entirely different. Internal binary
numbers cannot be printed without conversion. The FORMAT
statement specifies how the conversion is to take place.

Sequential files/95

A file created by one program for use by another program
should be in internal binary form. No conversion is necessary.
Number conversion is a time-consuming operation on any com-
puter system. Eliminating this step increases the processing speed
of the computer.

The unformatted READ and WRITE commands differ only
in the parameters within the parentheses. They do not include
a format statement number. The command

WRITE(6) A,B,C
writes three real values to the filein internal form. The command
READ(6) A, B,C

reads three values from an unformatted file.

The number of bytes per record depends on the sizes of the
data types. A standard integer requires two bytes. Single precision
real variables require four bytes. Double precision real values
require eight bytes each.

TEST SCORES

The application of this section and the following one involves
scores on two tests for each of several individuals. The test score
file will contain an ID number (integer) and two test scores (real)
for each individual. Each record contains 10 bytes of unfor-
matted data.

TERMINAL INPUT

Microsoft FORTRAN for the Radio Shack TRS-80 uses unit
number 1 for the terminal and unit number 2 for the printer.
WRITE commands using unit number 1 will write to the video
screen. READ commands using unit number 1 will obtain data
from the keyboard.

96/INVITATION TO FORTRAN

PROMPT MESSAGES

An identifying message should precede each keyboard entry. The

statements

310

320

WRITE(1,310)

FORMAT{’ ID NUMBER ? ')
READ(1,320) ID
FORMAT(13)

show how this is done.

PROGRAM

The following program uses interactive data entry to create the

sequential file of test scores:

OO0 O00O000O0O00O0

EEREEEE EEERE R REEREEEEEEEEEESEEREEERSEXRE]

* P0O503 *
B KR WK R R K K KN KR K R R R R KRR R
AUTHOR

COPYRIGHT 1982

BY LAWRENCE MCNITT.
PURPOSE

CREATE SEQUENTIAL

TEST SCORE FILE.
SYSTEM

MICROSOFT FORTRAN

RADIO SHACK TRS-80.

R R R R ERERENEREREREEXERZEREJRLSESXEEEERJESES LSS}

+ ORGANIZATION *
N W N KK R W W N KR KRR KR KRN R R R KN KN R KR
INITIAL MESSAGE
INITIALIZE
INPUT
OUTPUT
FINAL MESSAGE
ER IR R I I L R U
+ VARIABLES *

LR R R EREERESEREEEREEERESISEENRESEEESEEES}

O0OO0O0O000

[eNeNe!

Sequential files/97

1D ID NUMBER
SCORET1 SCORE FOR TEST 1
SCORE2 SCORE FOR TEST 2

AR EREEEEEEEEEESEE A EE R R EE R EREEREEEERRER]

* INITIAL MESSAGE *

LR R R R R R EEEEEREEE R EERESERERKEREEESEXSE:RE]

WRITE(1,110)
110 FORMAT{/" PROGRAM P0503'

2 //* CREATE SEQUENTIAL’

3 /* TEST SCORE FILE.")
WK K K K K K K N K NN W NN KWK R NN KR NN N KN N KRN
* INITIALIZE *

W WK KR K W W KK H KRR KRR K KRR KN KRR KK NN N RN
CALL OPEN(6, 'TEST/DAT',10)
WRITE(1,210)

210 FORMAT(/* FILE NAME: TEST/DAT')
WRITE(1,220)

220 FORMAT(/* USE ID NUMBER OF 0’

2 /" TO TERMINATE DATA ENTRY")

LR AR R EEEEEEERFEEEEEEEEEEEEE EEREEXEEE]

* INPUT *
AR RS EAREEEEEEREEEESEEEEEREE EEEEREESEEXEES
300 WRITE(1,310)
310 FORMAT(/ ID NUMBER ?)
READ(1,320) ID
320 FORMAT(I3)
IF (ID.EQ.0) GO TO 490
WRITE(1,330)
330 FORMAT(/ SCORE FOR'
2 /' TEST1 2)
READ(1,340) SCORE1
340 FORMAT(F4.0)
WRITE(1,350)
350 FORMAT(" TEST2 ? /)
READ(1,340) SCORE2
AR AR R EEEREREEEEEEEEEEEEEEEREE R ERE R EE.X]
+ OUTPUT .
LEE R E R EREEREEREEEREREREEEEREREERERERXERERERERREZE®)
WRITE(6) ID, SCORE1, SCORE2
GO TO 300
490 ENDFILE6

5.4

98/INVITATION TO FORTRAN

C LR R R R R R R R R R R R R R R R R R R K R R R

C =+ FINAL MESSAGE *
[L R R R R A R I Y
WRITE(1,510)
510 FORMAT{/' END OF PROGRAM")
STOP
END
TEST RUN

The following shows some of the interaction used in thecreation
of the test score file:

PROGRAM P0503

CREATE SEQUENTIAL
TEST SCORE FILE

FILE NAME: TEST/DAT

USE ID NUMBER OF O
TO TERMINATE DATA ENTRY

ID NUMBER ? 101

SCORE FOR
TEST1 ? 2575
TEST2 ? 26.75

ID NUMBER ? 117

ID NUMBER ? 0
END OF PROGRAM

Sequential File Processing

SEQUENTIAL PROCESSING

Sequential processing involves accessing the records one by one
from the beginning to the end of the file, This is the most effi-
cient method of accessing all of the records.

Sequential files/99

STATISTICAL PROCESSING

The records can be accessed in any order for many types of sta-
tistical analyses. Because of this sequential files are widely used
in statistical analysis and in business applications.

FILE MAINTENANCE

Consider a business accounts receivable system. Each customer
has a record giving the customer’s name, address, account balance,
and other information such as credit limit and amount past due.
The accounts receivable file contains the collection of customer
records.

The accounts receivable system requires normal updating
procedures. These consist of adjusting the account balance for
new purchases, merchandise returns, and customer payments,
The system will also provide procedures for inserting records for
new customers, deleting records of inactive customers, and chang-
ing the relatively permanent fields such as name and address.
These adjustments and changes to the file fall under the general
term of file maintenance.

UNIQUE IDENTIFIER

Each customer must be uniquely defined to avoid confusion. The
name and address are usually sufficient. Changes in address do
not, however, designate a change in customer. D numbers, called
keys, serve to precisely identify customers. These |D numbers
must be unique. One customer should not have more than one
ID number. Two or more customers should not share the same
ID number. File maintenance requires some means of uniquely
identifying the records to be changed, inserted, or deleted. File
maintenance is one of the more complex aspects of most business
systems, but is needed to keep the computer files up-to-date.

REPORT GENERATION

Another aspect of file processing is report generation. This in-
volves reading the file and producing a summary report. Sequen-

100/INVITATION TO FORTRAN

tial processing is the most efficient method for report generation

if the program must scan the entire file,

TEST SCORE REPORT

The following program processes the test score file computing
the average test score for each person and the average score for

each test.

QOO0 0O000O00O00O0

I EEE RS SRR R EEE R R R R E R SRR R E R SRR EEEREES

+ P0504 *
FEEEEESEEEEERE R R EEEEEEEEEERE RS EREEXESE.]
AUTHOR
COPYRIGHT 1982
BY LAWRENCE MCNITT.
PURPOSE
PROCESS SEQUENTIAL
TEST SCORE FILE.
SYSTEM
MICROSOFT FORTRAN
RADIO SHACK TRS-80.

A EEEEIEEEEEEEREE RS RS R EEEEE R R EREERSES]

* ORGANIZATION *
I EE X R ER R RREREEFEREEEEREEEEEREZRENRZEEEREREXENEJ

INITIAL MESSAGE

INITIALIZE

PROCESS

SUMMARY

FINAL MESSAGE
ER R IR KU I I R N R O I R L L I U L
« VARIABLES x
ERCRE R R R R R R R R R R R R R R IR N

NUMBER NUMBER OF RECORDS

XNUM REAL NUMBER

ID ID NUMBER

SCORE1 SCORE FOR TEST 1

SCORE2 SCORE FOR TEST 2

AVG AVERAGE TEST SCORE
AVG1 AVERAGE FOR TEST 1
AVG2 AVERAGE FOR TEST 2

TOTAL1 TOTAL FOR TEST 1
TOTAL2 TOTAL FOR TEST 2

OO0

OO0

o NeNe

OO0

OO0

Sequential files/ 101

R XK R EEEREERREERXEEESEEERESEEEJRERIEEJRESSJJES;;

* INITIAL MESSAGE *

PR R E R EREREEREREEXRSEREESEREEREZEEREEEEEJEJESE;]
WRITE(1,110)

110 FORMAT(/* PROGRAM P0503’

2 //* PROCESS SEQUENTIAL’

3 /" TEST SCORE FILE.")
LR R E R EEEREEE R EEEREREERZEEERIESZSEEEERESRSES]
* INITIALIZE *

HHHFREEXEERXREEAREERRKENTHRRRRRNRHRRRRN
CALL OPEN(6, ‘TEST/DAT’,10)
WRITE(2,210)

210 FORMAT(‘1 TEST SCORE SUMMARY"’

2 /' IDNUMBER AVERAGE’)
TOTAL1 = 0.0
TOTAL2 = 0.0
NUMBER = 0
ER I I I IR N L R O R R R
* PROCESS »

ERE R ER EREEEREERERSERSEESEEEEJEXSZEEESZIESZESE]

300 READ(6,END=400) ID, SCORE1, SCORE2

NUMBER = NUMBER + 1
AVG = (SCORE1 + SCORE2) / 2.0
TOTAL1 = TOTAL1 + SCORE1

TOTAL2 = TOTAL2 + SCORE2
WRITE(2,310) ID, AVG
310 FORMAT(/7X,13,F10.2)

GO TO 300
oW K K RN N R KN WK KK NN KRN KRR KN KRR R KRN
* SUMMARY *
IR AR EREEREERERESEEEELEEXERERERERENRERSEHXE)
400 XNUM = NUMBER

AVG1 = TOTAL1 / XNUM

AVG2 = TOTAL2 / XNUM
WRITE(2,410) AVG1, AVG2
410 FORMAT(///' AVERAGE FOR’

2 //* TEST 1 ',F10.4

3 /I TEST2 *,F10.4

4 //* END OF OUTPUT’)
L R R R I I R R
* FINAL MESSAGE *

HoWH K N W R K N R W N K NN KKK N R KK KN N R RN N NN

5.5

T02/INVITATION TO FORTRAN

WRITE(1,510)

510 FORMAT(/ END OF PROGRAM' /)
TOP
END

PRINTED OUTPUT FROM TEST RUN

The following printed output was produced from the test run:

TEST SCORE SUMMARY
ID NUMBER AVERAGE

101 26.25
103 38.00
117 28.35

AVERAGE FOR
TEST 1 30.0667
TEST 2 31.6667

END OF OUTPUT

Exercises

1. Write a program to generate a file of quiz scores using the
following information:

QUIZ SCORES
Student Quiz 1 Quiz2 Quiz3 Quiz4
104 8 6 9 8

107 7 4 10 8

12 8 7 9 9

1156 8 6 8 7

119 6 5 10 9

2. Write a program to read the file of quiz scores printing the
total of the scores for each student, the average score for each
student, and the average score for each quiz.

Sequential files/103
3. Write a program placing the following values into a sequential
file:

Customer Account Credit
1D number balance limit

101 78.856 200.00
112 0.00 200.00
114 24.25 100.00
142 176.45 400.00

4. Write a program that computes and prints the total of the
account balances for the file created by the previous program.

5. Write one program that generates 1,000 records of 20 bytes
each containing the values and square roots of the first 1,000
integers. Use the FORMAT statement

FORMAT(2F10.4)

for output. Write a second program to read the file. Use the
format statement

FORMAT(2F10.0)

for input. What is the minimum length of time needed to read
the 1,000 records?

6. Write one program that generates 1,000 records containing
the values and their square roots in internal real form for the
integers 1, 2, . . ., 1000. Write a second program to read the
unformatted data without doing any operation other than the
read. What is the minimum length of time needed to read the
1,000 records? (Each record contains two four-byte fields.)

6.1

6 Subscripted variables

O\/ER\/' E A vector contains a set of values. A

matrix is a two-dimensional table of
values. Subscripts locate particular values within the vector or
matrix. Applications include generating a vector of random values

and sorting them into order and computing row averages and
column averages for a matrix of text scores.

[

One Dimension

VECTOR

A vector is an ordered set of values. Individua! values are refer-
enced by relative position using subscripts. In FORTRAN and
many other programming languages subscripts are enclosed in
parentheses immediately following the vector name. The term
“array’’ applies to any subscripted variable regardless of the
number of dimensions. A vector isan array having one dimension.

NUMBER REPRESENTATION

FORTRAN naming conventionsapply toarrays. Integer variables
have names beginning with the letters / through V. Real variables
have names beginning with other letters. Arrays can be single
precision or double precision real values. They can be 16-bit
integers or 32-bit extended integers.

STORAGE ALLOCATION

FORTRAN requires that storage space be pre-allocated to arrays.
The DIMENSION statement is the usual method for allocating

105

106/INVITATION TO FORTRAN

space. Each variable is named and its maximum dimension speci-
fied. The statement

DIMENSION M({50),A(200)

allocates space for the integer array M containing up to 50 values
and the single precision real array A containing up to 200 values.
The array M consumes a total of 100 bytes for its 50 16-bit
integers. The array A requires 800 bytes for its 200 real values
of four bytes each.
Storage allocation is also specified in the variable type speci-
fication statements. The statement

INTEGER*4 KVALUE(200)

reserves 800 bytes for the 200 32-bit extended integers. The
statement

DOUBLE PRECISION X(200)
reserves 1600 bytes for the array of double precision values.

PROGRAM SIZE

Large arrays result in large programs. For those programs con-
taining large arrays only a fraction of the array is generally used.
The amount of memory used depends on the amount of data in
the problem. The array size is defined to be large enough to meet
the requirements of possible problems.

SUBSCRIPTS

A subscript is an integer specifying the relative position within
the vector. The subscript may be a numeric literal or a variable.
The expression

VALUE(3) = A #+ 2

Subscripted variables/ 107

places the square of the variable A into the third position of the
vector named VALUE. The expression

sum(l) = sum(l) + X

adds the value of the variable X to the /th location of the array
named SUM.

Storage space for all arrays must be reserved. The value of
the subscript must not exceed the maximum dimension of the
array. Most FORTRAN systems do not check bounds on com-
puted subscripts at run time. The program will not run reliably
if the array dimensions are exceeded. 1t is up to the programmer
to control the subscripting process.

READING AND WRITING ARRAYS

Reading and writing arrays isa common operation. The command
READ(6,210) VALUE(l)

reads a value from the file defined as unit number 6 and places
that value in the /th location of the vector called VALUE. The
following loop reads in a set of A/ values:

DO220 1 = 1, N
READ(6,210) VALUE(l)
210 FORMAT(F10.0)
220 CONTINUE

The READ command is executed V times, once each time through
the loop.

FORTRAN allows the looping mechanism to be imbedded
within the READ command. The command

READ(6,210) (VALUE(l), | = 1, N)

reads the NV values with one execution of the READ command.

108/INVITATION TO FORTRAN

If the number of values is the same as the dimension size
specified, then the command

READ(6,210) VALUE

fills the array VALUE with the required number of values from
the file defined as unit 6.

RECORD LENGTH

The FORMAT statement together with the WRITE statement can
define the record length for some systems. Other systems require
that the record length be the same for all records of the file.

Placing the READ or WRITE command within a Do-loop
results in one value per record. The following sequence of
commands does this:

DO220 1 =1, N
WRITE(7,210) VALUE(l)
210 FORMAT(F104)
220 CONTINUE

The following two commands also write one value per record for
most systems;

WRITE(7,210) (VALUE(l), 1 = 1, N)
210 FORMAT(F10.4)

The commands

WRITE(7,210) (VALUE(), |
210 FORMAT(6F10.4)

1, N)

generate records of 60 bytes each containing six fields of 10
bytes each.

Programs that read data from a data file must use READ
statements and FORMAT statements that are consistent with the
program that created the file. Some systems will permit the values
to spill over from one record position into the next on readsand
writes. Other systems require close control by the programmer.

Subscripted variables/ 109

Most FORTRAN systems require that each execution of a
READ command access the next record in the file. Each WRITE
command puts data into the next record. Control over blocking
multiple values per record requires use of the internal Do-loop
generating subscripts within the READ or WRITE command
itself.

SORTING

Sorting is a common processing task and may be either internal
or external. Internal sorting involves arranging the data values
into ascending or descending order within a vector. External
sorting involves placing the records of a file into ascending or
descending order within a file. The order of placement depends
on the values of one or more fields of the records. Numerous
utility packages accomplish external sorts and should be used
when needed. There is little value in writing special external sort
programs. Internal sorting is needed occasionally. It may be
necessary to include an internal sort routine within the applica-
tion program.

SORT BY SELECTION AND EXCHANGE

There are more than a dozen algorithms (methods) for internal
sorts. For small sets of data the choice of algorithm is not critical.
Large sets of data having more than 500 values require care in
the choice of algorithm. The most efficient algorithms for large
sets of data are complex and difficult to program.

Sorting by selection and exchange is one of the easiest
methods to understand. It works well for small sets of data. This
method involves successive sweeps through the remaining un-
sorted portion of the array. Each sweep locates the smallest re-
maining value and exchanges that value with the first element
of the unsorted portion. After the exchange it is in its proper
position in the sorted portion of the vector. The computer con-
tinues sweeping the remaining unsorted portion until the entire
array is in ascending order.

RANDOM NUMBERS

The FORTRAN function RAN(X) generates a single precision
real value in the range O-1. The argument controls the generation

110/INVITATION TO FORTRAN

process. An argument of 0.0 returns the last random number
generated. An argument of 1.0 returns the next random number
of the series. An argument of -1.0 returnsa random number from
a new series.

Proper control of the argument is one of the subjects of
computer simulation modeling. Computer simulation makes ex-
tensive use of the random number function. Another application
is that of generating data files for testing programs. Certain tests
may involve measuring program performance with large data
files. If the data does not already exist in computer readable form,
developing large test files can be tedious. Using the random num-
ber generator is a practical method for generating large test files.

The program of this section does not generate a separate
data file. It uses the random number generator to generate the
values for the vector to be sorted. The program requests the
number of values, generates those values, and sorts them into
ascending order. The program generates up to 200 elements and
sorts them into order.

PROGRAM

The following program generates a vector of values and sorts them
into ascending order:

AW K N K W N K I A I N IR R R K X IR R E KK N R R R
* P0BO1 *
EIE R I 2K R0 LIE IR IR I N R L R R A I O I R)
AUTHOR
COPYRIGHT 1982
BY LAWRENCE MCNITT.
PURPOSE
INTERNAL SORT BY
SELECTION AND EXCHANGE
SYSTEM
MICROSOFT FORTRAN
RADIO SHACK TRS-80.
X R N K K KN N KRR RN KRN KRR IR NN KR NN E R
* ORGANIZATION .

LA R R R R R R R R I O

INITIAL MESSAGE

OO0 0O00O00000000

sNeNoNeoNsNoNeoNeNoNesNeoNeReNoNeoNoNeoNeNe!

OO0

[eNeXe!

Subscripted variables/ 111

GENERATE
SORT

OUTPUT

FINAL MESSAGE

H R RN KRR R HRFRERH R NR K IR HRERKRRHERRHN

* VARIABLES *

LR IR R R R R R R R R R R R R R R R R R R
X(200) VALUES
NUMBER NUMBER OF VALUES
BEST BEST VALUE FOUND SO FAR
LBEST LOCATION OF BEST VALUE SO FAR
LoC CURRENT LOCATION FOR EXCHANGE
LTRY LOCATION FOR NEXT TRY

LSTOP LAST LOCATION FOR EXCHANGE
LSTART STARTING LOCATION FOR SEARCH
TEMP TEMPORARY VALUE FOR EXCHANGE

AR EREEREREREREREERERERERERERERJZXSERXZERESZEJEJEXZZX]

* INITIAL MESSAGE *
LR R R R R L R R R R R R R R R R R R R R R R LR
DIMENSION X(200)
WRITE(1,110)
110 FORMAT(/ PROGRAM P0601’
2 /" INTERNAL SORT USING’
3 /' SELECTION AND EXCHANGE.")
LR R R R R R R R R R R R R R R R R REERERERENERERNESENESEE?
* GENERATE *
LK I R G R R R R R R R I I Y
WRITE(1,210)
210 FORMAT(/* NUMBER OF VALUES TO GENERATE ?)
READ(1,220) NUMBER
220 FORMAT(I3)

DO 230 LOC = 1, NUMBER
X(LOC) = RAN(1.0)
230 CONTINUE
LA R SR EEEEREEEEEEEEEEEEEEEEEEEREEEERERE X
* SORT *

LR R E R EEEEREREEEE R EEEEEEE R EEREEEEEEERERE R
WRITE (1,310)
310 FORMAT(/* START OF SORT’)
LSTOP = NUMBER - 1
DO 330 LOC = 1, LSTOP
BEST = X(LOC)

112/INVITATION TO FORTRAN

LBEST = LOC

LSTART = LOC + 1

DO 320 LTRY = LSTART, NUMBER
IF {(X{LTRY).GE.BEST) GO TO 320
LBEST = LTRY

BEST = X(LTRY)

320 CONTINUE
TEMP = X(LOC)
X(LOC) = BEST

X(LBEST) = TEMP
330 CONTINUE

C EEEEE X EEEEEREREEEEE S EREEREENERESEEE RS

C OUTPUT *
(OB R R R X
WRITE(1,410)
410 FORMAT(/ RANDOM VALUES IN ASCENDING ORDER’ /)
LSTOP = O

420 LSTART = LSTOP + 1
LSTOP = LSTART + 5
IF (LSTOP.GT.NUMBER) LSTOP = NUMBER
WRITE(1,430) (X(LOC), LOC=LSTART,LSTOP)
430 FORMAT(6F10.6)
IF (LSTOP.LT.NUMBER) GO TO 420

C IR EEEREEEE R EE SRR SR E RS ERERESERSESEESLESZ

C FINAL MESSAGE *

C EE R R R EEENNEEEEERE X ERESEREEREEERERSEJEZE]ES.]
WRITE(1,510)
510 FORMAT(/* END OF PROGRAM')
STOP
END

TEST RUN

The following test run demonstrates the program.

PROGRAM P0601

INTERNAL. SORT USING
SELECTION AND EXCHANGE.

NUMBER OF VALUES TO GENERATE ? 200
RANDOM VALUES IN ASCENDING ORDER
.005426 .010518

6.2

Subscripted variables/113

Two Dimensions

MATRICES

A matrix is a two-dimensional table of values. Each element
is identified by its relative row and column location. The sub-
scripts are enclosed in parentheses and separated by commas.
The command

X(1,J) = 0.0

places the value zero into the position defined as the /throw and
Jth column of the matrix X.

STORAGE ALLOCATION

As with vectors, the DIMENSION statement is the primary state-
ment allocating storage space for matrices, The statement

DIMENSION X(200,20),B(50)

reserves 16,000 bytes for the matrix X. Matrix X contains a
maximum of 200 rows and 20 columns. There is space for 4,000
real values of four bytes each. Large arrays require correspon-
dingly large internal storage.

The type specification statements can also reserve space for
matrices. The statement

INTEGER*4 NUM(100,10)

specifies that the matrix NUM contains space for 100 rowsand 10
columns. Each element isa 32-bit extended integer. The statement

DOUBLE PRECISION TABLE(10,10)

allocates 800 bytes for the table of double precision real values
containing 10 rows and 10 columns.

NESTED DO-LOOPS

Operations on matrices usually require nested Do-loops. The Do-
loops generate the subscripts for accessing the table. The outer

114/INVITATION TO FORTRAN

loop controls the subscript for one of the dimensions. The inner
loop controls the subscript for the other dimension.

TEST SCORE ANALYSIS

A teacher needs to perform a test score analysis. The analysis
includes computing the total score and the average score for each
student. It also involves computing the average score for each
test. A nested Do-loop accomplishes the data entry. Each student
corresponds to a row of the matrix of test scores, and each test
corresponds to a column of the matrix. Each student has a total
test score and an average test score. The outer loop controls the
row (student) and the inner loop sums the test scores for the
student. The summary for each test consists of an average test
score. The outer loop controls the test. The inner loop sums the
scores for that test over all students.

PROGRAM

The following program uses interactive data entry for inputing
the test scores and prints the test summary for each student and
each test:

EREE R EEEREERESEREESEEREESREEEESEEEREREJESES.]S

* P0602 *
LR E R R RN R R E R R R R EEREEEREEEERESEE:RSESSRS.}
AUTHOR
COPYRIGHT 1982
BY LAWRENCE MCNITT.
PURPOSE
TEST SCORE ANALYSIS.
SYSTEM
MICROSOFT FORTRAN
RADIO SHACK TRS-80.
LR R R R R EEREEEEREEREESSEESEEEERESESESERZESIS]
* ORGANIZATION *
EE R R EERAERE R R EE AR ERESEEREREREEEESRSEEREEEN]
INITIAL MESSAGE
INPUT
STUDENT SUMMARY

OO0 0O0O000O000O00O0

[eNoNoNesNoNsNoNoNoNeoNoNoNeNe Ne)

Subscripted variables/115

TEST SUMMARY
FINAL MESSAGE

EE R R R ERE EREEEEEEREEREERERREERERXZEXERERE?

+ VARIABLES »
LR EEEREEEREEEEEEEEEEEEEEEREEEREREREREE XXX EE]
T(40,5) TEST SCORES
NROWS NUMBER OF STUDENTS
NCOLS NUMBER OF TESTS
| ROW SUBSCRIPT

J COLUMN SUBSCRIPT

SUM SUM OF THE TEST SCORES

AVG AVERAGE TEST SCORE
LR R R R R EE R EEEEREEEEREREEREXERNXRENSER)
* INITIAL MESSAGE *

AR R R EREEREEEEEEEEEREREEEEREEEEREE R EEE]
DIMENSION T(40,5)
WRITE(1,110)
110 FORMAT(/ PROGRAM P0602"
2 // TEST SCORE ANALYSIS’
3 /" GIVING SUMMARY FOR EACH STUDENT’
4 /* AND FOR EACH EXAM.")
LA R R S X EEREREEEEEERE R E XTI IR IR ORI
* INPUT *
LA R R R EREREEEEEREEEER R R R R R LR RS
WRITE(1,210)
210 FORMAT(/ NUMBER OF STUDENTS ?)
READ(1,220) NROWS
220 FORMAT(12)
WRITE(1,230)
230 FORMAT(’ NUMBER OF TESTS ?)
READ(1,240) NCOLS
240 FORMAT(I1)
WRITE(1,250)
250 FORMAT(/* SCORE FOR')
DO 290 | = 1, NROWS
WRITE(1,260) |
260 FORMAT(/* STUDENT *,12)
DO 280 J = 1, NCOLS
WRITE(1,270) J
270 FORMAT(* TEST *i1,” ? ')
READ(1,275) T(I,J)

116/INVITATION TO FORTRAN

275 FORMAT(F3.0)
280 CONTINUE
200 CONTINUE
C EE R EE R R ERE R R E X R R E RN R R R R
C =+ STUDENT SUMMARY *
C PE R EEL R R EE R R R IR R R I R R
WRITE(2,310)
310 FORMAT(‘1TEST SCORE SUMMARY’
2 //3X, 'STUDENT’ ,6X, 'TOTAL’ ;3X, 'AVERAGE’)
DO 340 | = 1, NROWS
SUM = 0.0
DO 320 J = 1, NCOLS
SUM = SUM + T(I,J)
320 CONTINUE
AVG = SUM / NCOLS
WRITE(2,330) I, SUM, AVG
330 FORMAT(8X,12,5X,F5.0,F10.5)
340 CONTINUE
C FAETIET IR S I I R T A I S R T T L L R R
C =+ TEST SUMMARY *
C ETE R I I T R R R R R I I O
WRITE(2,410)
410 FORMATI(///6X, "TEST’ ,3X, "AVERAGE’)
DO 440 J = 1, NCOLS
SUM = 0.0
DO 420 | = 1, NROWS
SUM = SUM + T(I,J)
420 CONTINUE
AVG = SUM / NROWS
WRITE(2,430) J, AVG
430 FORMAT(9X,11,F10.5)
440 CONTINUE
C W R W N N N R W K I I RN H K NN N WK N KRR NN RN
C + FINAL MESSAGE *
C W W W W KRN KRR K EH R FR KRR KR KRR KRR RR KR
WRITE(2,510)

510 FORMAT(///' END OF OUTPUT’)
WRITE(1,520)

520 FORMAT(/" END OF PROGRAM’)
STOP
END

Subscripted variables/117

TEST RUN

The following is a test run for the test score analysis program:

PROGRAM P0602

TEST SCORE ANALYSIS
GIVING SUMMARY FOR EACH STUDENT
AND FOR EACH EXAM.

NUMBER OF STUDENTS ? 5
NUMBER OF TEST ? 3

SCORE FOR
STUDENT 1
TEST 1 ? 95
TEST 2 ? 91
TEST 3 ? 92
STUDENT 2
TEST 1 ? 78
TEST 2 ? 74
TEST 3 ? 71

PRINTED QUTPUT
The following is the printed output generated by the program:

TEST SCORE SUMMARY
STUDENT TOTAL AVERAGE

1 278. 92.66666

2 223. 74.33334

3 189. 63.00000

4 250. 83.33334

5 198. 66.00000
TEST AVERAGE

1 76.20000

2 75.80000

3 75.60000

END OF OUTPUT

6.3

118/INVITATION TO FORTRAN

Labeled Data File

FILE MAINTENANCE

File maintenance includes the operations of inserting and deleting
records and changing values for existing records. There needs to
be provision for creating the initial data file and maintaining it.
File maintenance is an important part of any application requiring
data files.

UNLABELED FILES

Data files are usually unlabeled. Programs create the data file and
read the data file for processing. The programs that process one
file must be rewritten to access other files having different data
elements. The values are not meaningful when printed unless the
report program adds appropriate labels to the output.

GENERAL PURPOSE PROGRAMS

A general purpose file maintenance system is useful for many
applications. 1t can handle the file maintenance duties for many
diverse files. It reduces the need for special purpose file mainte-
nance programs.

The method described in this section and the following one
is a simple solution. The data file includes structural information
giving the file size and the variable names. The program uses the
variable names to assist the user in updating the proper values.
The file size parameters permit the program to maintain many
diverse files.

DATA TYPES

The most complex systems of this nature allow the definition
and use of all possible number representations. Such programs
will be very large and complex. The program of this section uses
only single precision real variables to keep the programming
simple. It illustrates the concept of a general purpose file main-
tenance program.

Subscripted variables/119

UNFORMATTED FILES

The files are unformatted to eliminate the burden of formatting
the data during input and output. This also provides a consistent
word length. Each variable requires four bytes in binary form. If
this were not the case the field lengths would vary from one to
16 bytes. The formatting information would then need to be
included for each variable.

PROCESS DATA IN MEMORY

Processing large files is on a record-by-record basis. Very few
records are in memory at one time. Most of the records are on
disk. The program of this section uses an in-memory file main-
tenance scheme. Loading the entire file into memory simplifies
the updating of sequential files.Many texteditors use this method.
The user saves the updated version after changes are made. The
updated version may be under the old name or under a new name.

The method will gain in popularity with the continuing de-
cline in internal memory costs. Small computer systems will
provide efficient, high-speed sequential file load and save opera-
tions. Updates to the filewill take place in memory. When finished,
the file will be saved.

CREATING THE INITIAL LABELED DATA FILE

The program that creates the initial labeled data file establishes
the number of values per record and generates the initial records.
The generalized file maintenance programs of this chapter allow
variable labels from one to 12 characters each.

ALPHABETIC FORMATTED INPUT AND OUTPUT

The numeric integer format expression uses the / formatting
symbol. The standard real format using the F formatting symbol
has a fixed decimal point location. The scientific notation real
format symbol is £. The symbol A designates alphabetic symbols,
The expression A3 designates an alphabetic variable of three
character positions. The expression 3A4 designates three alpha-
betic variables of four bytes each.

120/INVITATION TO FORTRAN

Single precision real variables contain four bytes. Standard
practice is to use real variables to store alphabetic information.
The size is consistent among most brands of computers. Itis also
possible to store alphabetic data in standard 16-bit integer vari-
ables. Such variables cannot contain more than two alphabetic
characters.

FILE ORGANIZATION

The labeled file contains data in records of four bytes each. The
first four-byte record contains two 16-bit integers in internal
binary form. The first integer gives the number of records, and
the second gives the number of variables per record. The label
for each variable contains 12 bytes. These are contained in three
words of four bytes each. They are written from the real variables
one word at a time. The data follows the labelsand are in internal
single precision real form.

PROGRAM

The following program creates the initial labeled data file using
interactive data entry:

*******%*******%******%*************

* P0603 *
*%**********************************
AUTHOR

COPYRIGHT 1982

BY LAWRENCE MCNITT.
PURPOSE

GENERATE LABELED FILE.
SYSTEM

MICROSOFT BASIC

RADIO SHACK TRS-80.

FHRRH R R R RE R RERERRREHHERTERRERE RIS

* PROGRAM ORGANIZATION *

INITIAL MESSAGE
GET FILE SPECIFICATIONS
GET VARIABLE NAMES
GET DATA

D000 DDODNOOOOOO0

cNeEeoNoNoNsNesNsEsEoNeNoNesNosNoNoNoNoNeNoNoNsRosNeNoNeNoNeNeoNe!

Subscripted variables/121

WRITE FILE
FINAL MESSAGE
L IR I IR ORI N IR I I IR IR I O IR R R R
+ FILE ORGANIZATION *
ER R R K R IR R R R R R R O R R R R R R R
NUMBER OF OBSERVATIONS (2 BYTES, INTEGER)
NUMBER OF VARIABLES (2 BYTES, INTEGER)
LABEL FOR VARIABLE 1 (12BYTES, ALPHANUMERIC=REAL)
LABEL FOR VARIABLE 2 (12BYTES, ALPHANUMERIC=REAL)
ETC.
VALUE FOROBS 1, VAR 1 (4 BYTES, REAL)
VALUE FOR OBS 1, VAR 2 (4 BYTES, REAL)
ETC.
VALUE FOR OBS 2, VAR 1 (4 BYTES, REAL)
VALUE FOR OBS 2, VAR 2 (4 BYTES, REAL)
ETC.

ER R R KR R R R R R R R R R R R R K R KRR KR R R R

» VARIABLES *
EE RN R R I R I O U R
X(200,20) DATA MATRIX OF VALUES
VNAMES(20,4) VARIABLE NAMES
FNAME(4) FILE NAME
NOBS NUMBER OF OBSERVATIONS
NVARS NUMBER OF VARIABLES
[ROW SUBSCRIPT

J COLUMN SUBSCRIPT

K LABEL SUBSCRIPT
LR R R R SR EEEEREEEEEEREEERXEREEXERERESEXEX]
* INITIAL MESSAGE *

LRI R R R R IR R R R R R R R R R R R R
DIMENSION X(200,20), FNAME(4), VNAMES(20,3)
WRITE(1,110)

110 FORMAT{/* PROGRAM P0603’

2 //* CREATE INITIAL LABELED’
3 /" DATA FILE FOR STATISTICAL’
4 /* ANALYSIS.")

LEEEEEREEEEEEEEEEEEEEEEEEREER N R EEEEEER]

* GET FILE SPECIFICATIONS *

R R R R R R R R R R R R R R X N R R
WRITE(1,210)

210 FORMAT(/ NAME FOR FILE 2
READ(1,220) FNAME

122/INVITATION TO FORTRAN

OO0

220 FORMAT(4A4)
WRITE(1,230)

230 FORMAT(" NUMBER OF OBSERVATIONS ? ‘)
READ(1,240) NOBS

240 FORMAT{I3)
WRITE(1,250)

250 FORMAT(" NUMBER OF VARIABLES ?)
READ(1,260) NVARS

266 FORMATI(i2)

EEEEZEREREEREEEEE KRR EESERENXERRLEERESSESSS]

» GET VARIABLE NAMES »
PR RE R R R R R R R R K R KRR R R
WRITE(1,310)
310 FORMAT(/ VARIABLE NAMES MAY HAVE'
2 /* UP TO 12 CHARACTERS'
3 //* NAME FOR’)

DO 340 J = 1, NVARS
WRITE(1,320) J

320 FORMAT(* VAR ',12, ? ')
READ(1,330) (VNAMES(J,K}),K=1,3)
330 FORMAT(3A4)

340 CONTINUE
IEEEREREEEREERE R E R ERE SR XX EEERRE R IR X LIRS B
+ GET DATA *
PR R EEEEE R R RN ZI R R ERE RN X R RN R R E RS
WRITE(1,410)
410 FORMAT(/ ENTER DATA VALUE’)
DO 460 | = 1, NOBS
WRITE(1,420) |
420 FORMAT(/* OBSERVATION ,12/)
DO 450 J=1, NVARS
WRITE(1,430) (VNAMES(J,K),K=1,3)

430 FORMAT(1X,3A4, ? ')
READ(1,440) X(1,J)

440 FORMAT(F10.0)

450 CONTINUE

460 CONTINUE

IEE R R ESEEESEE SRR R R R SRR EEREEEESES,]

* WRITE FILE *

EEREEFREESEREE R EEEEEEREEE R EEREESESEEEESJES]

CALL OPEN(6,FNAME,4)
WRITE(6) NOBS, NVARS

Subscripted variables/123

DO 520 J = 1, NVARS
DO510 K =1, 3
WRITE(6) VNAMES(J,K)
510 CONTINUE
520 CONTINUE
DO540 | = 1, NOBS
DO 530 J = 1, NVARS

WRITE(6) X({1,J)
530 CONTINUE
540 CONTINUE
ENDFILE®6
C R R R LR R R R R I R R R O
c « FINAL MESSAGE *
C LR R R R R R R R R R R R R R R R R R
WRITE(1,610)
610 FORMAT{/* END OF PROGRAM’)
STOP
END
TEST RUN

The following program illustrates using the program to define
and create the initial labeled data file:

PROGRAM P0603

CREATE INITIAL LABELED
DATA FILE FOR STATISTICAL

ANALYSIS.

NAME FOR FILE ? FILE/DAT
NUMBER OF OBSERVATIONS ?5
NUMBER OF VARIABLES ?3

VARIABLE NAMES MAY HAVE
UP TO 12 CHARACTERS

NAME FOR

VAR 1 ? PRE-TEST
VAR 2 ? MID-TERM
VAR 3 ? FINAL-EXAM
ENTER DATA VALUE

6.4

124/INVITATION TO FORTRAN

OBSERVATION 1
PRE-TEST ? 7N
MID-TERM ? 87
FINAL-EXAM ? 93
OBSERVATION 2
PRE-TEST ? 56

COMMENTS

The test run creates an initial file with the file name FILE/DAT.
It contains five records of three variables each. The labels for the
three variables are PRE-TEST, MID-TERM, and FINAL-EXAM.
The first record contains the values 71, 87, 93. The values for the
other records follow.

In-Memory File Maintenance

SEQUENTIAL FILE MAINTENANCE

Sequential files must be created and read in strict sequential order.
This usually requires copying an old file to a new file, making
changes to those records that need changing. Changes to existing
records must be made in the order that the records appear in
the file.

A simpler approach is possible with files small enough to be
loaded into internal memory. The entire file is loaded into and
changes are made in internal memory. After all the changes are
made, the file is written back to external storage. This requires
sufficient internal memory to contain the entire file at one time.

Large sequential files require a more complicated approach.
The records are copied one at a time from the old file to the new
file. Changes are made to records as they are copied. Keeping
the input file, output file, and the update procedure synchronized
makes this approach more complex. The program cannot reverse
itself and make changes to records that have already been copied
to the new sequential file.

Subscripted variables/ 125

MEMORY TECHNOLOGY

Technological advances have been rapid in the computer’s inter-
nal logic and memory circuits. This has resulted in rapid decreases
in memory costs. The cost of internal memory was $1.00 per
byte in 1965. By 1983 internal memory cost $.0005 per byte.
In-memory file maintenance was not practical in 1965 because
only a limited amount of costly internal memory was available.
In-memory file maintenance is gaining acceptancewith computers
that have inexpensive, high-capacity internal memory.

ADVANTAGES

There are several advantages to in-memory file maintenance. The
sequential file is loaded and written out at the fastest possible
file transfer speed. This may be from two to 100 times the speed
of the most efficient random access disk files.

The data is treated as if it is a random access file while it is
in internal memory. The data consists of a large matrix. Each row
constitutes a record, and each column is a variable. Processing
does not have to proceed record by record sequentially. Updates
may be in any order. The program can quickly scan all of the
records for particular values or when computing totals and other
statistical measures.

When the changes have been made, the file is written back
to disk. It may be written over the old file or created as a new file.
The best approach is to write the file back into a new region with
a new name. The old file remainsasa backup in case of problems.

MENU SELECTION

The update program gives the user several options. These options
include adding new records to the file, changing existing records,
displaying the contents of existing records, and listing the file to
the line printer. The program displays a menu of the optionsand
has the user select the desired option by number.

CASE SELECTION

The computed GO TO statement distributes the program control
to the routines handling the options. These routines return con-

126/INVITATION TO FORTRAN

trol to the menu selection routine. The term “‘case selection”
applies to this process. The program chooses one of the cases and
performs the routine for that case. Case selection isan important

concept from the field of computer science.

The routine for terminating the updating gives the user the
option of saving the updated file. If it is to be saved, the program
asks for the new file name and then saves the file information

including labels.

PROGRAM

The following program reads in the sequential labeled file, per-
forms the desired operations on the file, and then writes the up-

dated file back to the disk:

OO0 OOO00O000O00O0

PR R EETREE R RN E R R R R R R R R R R E R RN R R

* P0G04 *
IZEETEFEREFFEFEEEEEEEEEEREEREEREREEER S
AUTHOR

COPYRIGHT 1982

BY LAWRENCE MCNITT.
PURPOSE

UPDATE CONTENTS

OF LABELED FILE.
SYSTEM

MICROSOFT FORTRAN

RADIO SHACK TRS-80.

XX R EEEEEEEEEEREEREEEEREEREEEEERERENEERES]

* PROGRAM ORGANIZATION *
EREE R R REE N R R R R R R R R R R X R EEEEEEJRESS.]

INITIAL MESSAGE

LOAD FILE

MENU

ADD OBSERVATIONS

CHANGE VALUES

DISPLAY OBSERVATION

PRINT FILE

WRITE FILE

FINAL MESSAGE

LR E N E R EEREEEEEEEE EEREEEREERLEELRSEERSES S

* FILE ORGANIZATION *

LR R E R E R RN EEEEEEEEEEEESEEREEEEREES IS &3

sHeNeNsNeNoNeNoNoNesNoNoNoNoNoNeoNeNoNoNe RN s R R R R N N D)

e NeNe)

Subscripted variables/127

NUMBER OF OBSERVATIONS (2 BYTES, INTEGER)
NUMBER OF VARIABLES (2 BYTES, INTEGER)

LABEL FOR VARIABLE 1 (12 BYTES, ALPHANUMERIC)
LABEL FOR VARIABLE 2 (12 BYTES, ALPHANUMERIC)
ETC.

VALUE FOROBS 1, VAR 1 (4 BYTES, REAL)

VALUE FOROBS 1, VAR 2 (4 BYTES, REAL)

ETC.

VALUE FOROBS 2, VAR 1 (4 BYTES, REAL)

VALUE FOR0OBS 2, VAR 2 (4 BYTES, REAL)

ETC.

LR R R R R EEEREEEREEREERERERERZEREREJRESEEJREYSSZ]

* VARIABLES *

EE R R I R R I O O R R R O R R R
X(200,20) DATA MATRIX OF VALUES
VNAMES(20,3) VARIABLE NAMES
FNAME(4) FILE NAME
NOBS NUMBER OF OBSERVATIONS
NVARS NUMBER OF VARIABLES
NADD NUMBER OF OBSERVATIONS TO ADD
I CURRENT OBSERVATION

J CURRENT VARIABLE

K LABEL INDEX

ISTART STARTING OBSERVATION

ISTOP LAST OBSERVATION

IRESP USER RESPONSE CODE
LR R R R R R R R R R I IR IR IR A R Y
* INITIAL MESSAGE »

LR R R R R R ERREEREEEREEEEREREREEREZEEERXEREES]
DIMENSION X(200,20), VNAMES(20,3),FNAME(4)
WRITE(1,110)

110 FORMAT{/* PROGRAM P0604’

2 /' UPDATE DISK DATA FILE’
3 /" CONTAINING LABELED’
4 /* VARIABLES.)

AR AR R R EREREEESEEEEEEEEREEEREEREEEEFERY

* LOAD FILE *

LA R R EEREEEEREEREEEREEEERERIEE RIS R gy
WRITE(1,210)

210 FORMAT(/* NAME OF DATA FILE ?)
READ(1,220) FNAME

220 FORMAT(4A4)

128/INVITATION TO FORTRAN

CALL OPEN(6,FNAME,4)
READ(6) NOBS,NVARS
D0 240 J = 1, NVARS
DO230 K =1, 3
READ{(6) VNAMES(J,K)
230 CONTINUE
240 CONTINUE
DO 260 | = 1, NOBS
DO 250 J = 1, NVARS
READ(8) X(1,J)

250 CONTINUE
260 CONTINUE
ENDFILE®
C [T R R R A R R R E R ER R R R R R R R R R
C = MENU *
C PR T T T E E R A E R E R R R R R R ER R EE R
300 WRITE(1,310)
310 FORMAT(/* OPTIONS'
1 / 1 ADD NEW OBSERVATIONS'
2 / 2 CHANGE EXISTING VALUES’
3 / 3 DISPLAY OBSERVATION’
4 / 4 PRINT CONTENTS OF FILE’
b /' 5 TERMINATE PROCESSING’
6 //" OPTION NUMBER ?)
READ(1,320) IRESP
320 FORMAT(I1)
GO TO (1000,2000,3000,4000,5000), IRESP
WRITE(1,330)
330 FORMAT(/* INVALID RESPONSE’)
GO TO 300
C A R LR A R X R R R R R R R R EEE R R R
C = ADD OBSERVATIONS *

C P R A AR E R R R R R EEEE R LR SRR ES

1000 WRITE(1,1010)

1010 FORMAT(/* NUMBER OF OBSERVATIONS TO ADD ? ')
READ(1,1020) NADD

1020 FORMAT(I3)
ISTART = NOBS + 1
ISTOP NOBS + NADD
NOBS ISTOP
DO 1070 | = ISTART, ISTOP

WRITE(1,1030) |

fi

OO0

1030

1040

1050
1060
1070

Subscripted variables/ 129

FORMAT(/ OBSERVATION 13
/I VALUE FOR’ /)
DO 1060 J = 1, NVARS
WRITE(1,1040) (VNAMES(J,K),K=1,3)
FORMAT(1X,3A4," ? ')
READ(1,1050) X({1,4)
FORMAT(F10.0)
CONTINUE
CONTINUE
GO TO 300

LR EE R R E KR EERERERERSEESESEEEEEREXERESEEREZSEZS]

*

CHANGE VALUES *

LR R R R R R R R R R R R R R R R R R R

2000
2010
2
2020
2030
2040
2050
2060

2100
2110

2120

2130

2140

2150

2200
2210

WRITE(1,2010)
FORMAT(/* CHANGE EXISTING VALUES'
/* OF OBSERVATION NUMBER ? ')
READ(1,2020) |
FORMAT(13)
WRITE(1,2030)
FORMAT(/* NO. NAME CURRENT VALUE')
DO 2050 J = 1, NVARS
WRITE(1,2040) J,(VNAMES(J,K),K=1,3),X(1,J)
FORMAT(I3,2X,3A4,F12.5)
CONTINUE
WRITE(1,2060)
FORMAT(/* USE VAR. NO. OF 0 TO TERMINATE
CHANGES' /* TO THIS OBSERVATION’)
WRITE(1,2110)
FORMAT(/* NUMBER OF VARIABLE TO CHANGE ?)
READ(1,2120) J
FORMAT(12)
IF (J.LT.1) GO TO 2200
WRITE(1,2130) (VNAMES(J,K) ,K=1,3),X(1,J)
FORMAT(1X,3A4,” OLD VALUE ',F12.5)
WRITE(1,2140)
FORMAT(13X,"” NEW VALUE ?)
READ(1,2150) X(l,J)
FORMAT(F10.0)
GO TO 2100
WRITE(1,2210)
FORMAT(/* CHANGE ANOTHER OBSERVATION (Y/N)?’)
READ(1,2220) IRESP

130/INVITATION TO FORTRAN

C
C
C

OO0

2220

FORMAT(A1)
IF (A.EQ.'Y") GO TO 2000
GO TO 300

IEREEREFEEEREEREE SR EEES KR SR EIERE RN ERIESZESEES]

*

DISPLAY OBSERVATION *

IXEEEEEZEERE SRR SN R R EREREEEEEEEEEEEENZESE]

3000
3010

3020

3030

3040

3050

3060

WRITE(1,3010)

FORMAT(/* DISPLAY OBSERVATION NUMBER ?)

READ(1,3020) i

FORMAT(13)

DO 3040 J = 1, NVARS
WRITE(1,3030) (VNAMES(J,K),K=1,3),X(1,J)
FORMAT(1X,3A4,2X,F12.5)

CONTINUE

WRITE(1,3050

FORMAT(/" DISPLAY ANOTHER OBSERVATION (Y/N)?’)

READ(1,3060) IRESP

FORMAT(A1)

IF (IRESP.EQ.Y’) GO TO 3000

GO TO 300

EEEEEEEEEREEESESEESE R RS REEEEEREEESERES:SE]

#*

PRINT FILE ®

(AR R RS EEEREREEEEREESS R RN EESEEE R EEREEEE}

4000
4010

4020
4030

2
3

4040
4050

4060

4070

WRITE(1,4010)

FORMAT(/* LIST ON PRINTER")

WRITE(2,4020)

FORMAT('1FILE CONTENTS')

WRITE(2,4030) NOBS, NVARS

FORMAT(i5,” OBSERVATIONS'

/15," VARIABLES’
//" VAR NO LABEL’)

DO 4050 J = 1, NVARS
WRITE(2,4040) J,(VNAMES(J,K),K=1,3)
FORMAT(5X,12,3X,3A4)

CONTINUE

DO 4100 | = 1, NOBS
WRITE(2,4060) |
FORMAT(/" OBSERVATION *,13)
ISTOP = 0
ISTART = ISTOP + 1
ISTOP = ISTART + 5

Subscripted variables/131

IF (ISTOP.GT.NVARS) ISTOP = NVARS
WRITE(2,4080) (X({l,d) ,J=ISTART,ISTOP)

4080 FORMAT(1X,6F12.5)
IF (ISTOP.LT.NVARS) GO TO 4070
4100 CONTINUE
WRITE(2,4110)
4110 FORMAT{(///* END OF OUTPUT’)
GO TO 300

EEEEXEEEEEERERE R R EXE R EEEEELEREREEESS:E.]

* WRITE FILE *

IEEEREEREEREEEREEEREEEEEEEEREESRSESSESEEESE]

5000 WRITE(1,5010)
5010 FORMAT(/* SAVE FILE TO DISK (Y/N) ? ')
READ(1,5020) IRESP
5020 FORMAT(AT)
IF (IRESP.EQ.'N’) GO TO 6000
WRITE(1,5030)
5030 FORMAT{/* NAME FOR DISK FILE ? ')
READ(1,5040) FNAME
5040 FORMAT(4A4)
CALL OPEN(6,FNAME 4)
WRITE(6) NOBS, NVARS
DO 5060 J = 1, NVARS
DO 5050 K = 1, 3
WRITE(6) VNAMES(J,K)
5050 CONTINUE
5060 CONTINUE
DO 5080 | = 1, NOBS
DO 5070 J = 1, NVARS
WRITE(6) X{l,J)

5070 CONTINUE
5080 CONTINUE
ENDFILE 6
X ERREEES R SR SRS R EE R X ER SRR R RS LA N EREE]
* FINAL MESSAGE *

I S R R E R SRR R R SRR R EE R R R E R LR A

6000 WRITE(1,6010)

6010 FORMAT(/* END OF PROGRAM’)
STOP
END

132/INVITATION TO FORTRAN

TEST RUN

The following test run illustrates the use of the program for in-
memory file maintenance:

PROGRAM P0G04

UPDATE DISK DATA FILE
CONTAINING LABELED
VARIABLES

NAME OF DATA FILE ? FILE/DAT

OPTIONS
1 ADD NEW OBSERVATIONS
2 CHANGE EXISTING VALUES
3 DISPLAY OBSERVATION
4 PRINT CONTENTS OF FILE
5 TERMINATE PROCESSING

OPTION NUMBER ? 3
DISPLAY OBSERVATION NUMBER ? 1

PRE-TEST 71.00000
MiD-TERM 87.00000
FINAL-EXAM 93.00000
DISPLAY ANOTHER OBSERVATION (Y/N) ? N
OPTIONS

1 ADD NEW OBSERVATIONS
2 CHANGE EXISTING VALUES
3 DISPLAY OBSERVATION

4 PRINT CONTENTS OF FILE
5 TERMINATE PROCESSING

OPTION NUMBER ? 2

CHANGE EXISTING VALUES
OF OBSERVATION NUMBER ? 3

NO. NAME CURRENT VALUE
1 PRE-TEST 42.00000
2 MID-TERM 49.00000
3 FINAL-EXAM 63.00000

USE VAR. NO. OF 0 TO TERMINATE CHANGES
TO THIS OBSERVATION

Subscripted variables/ 133

NUMBER OF VARIABLE TO CHANGE ? 2

OLD VALUE 49.00000
NEW VALUE ? 59.00000

NUMBER OF VARIABLE TO CHANGE ? 0
CHANGE ANOTHER OBSERVATION (Y/N) ? N

OPTIONS
1 ADD NEW OBSERVATIONS
2 CHANGE EXISTING VALUES
3 DISPLAY OBSERVATION
4 PRINT CONTENTS OF FILE
5 TERMINATE PROCESSING

OPTION NUMBER ? 4
LIST ON PRINTER

OPTIONS
1 ADD NEW OBSERVATIONS
2 CHANGE EXISTING VALUES
3 DISPLAY OBSERVATION
4 PRINT CONTENTS OF FILE
5 TERMINATE PROCESSING

OPTION NUMBER ? 5

SAVE FILE ON DISK (Y/N)? Y
NAME FOR DISK FILE ? FILE1/DAT
END OF PROGRAM

PRINTED OUTPUT

The following printed output resulted from the program run:

FILE CONTENTS
5 OBSERVATIONS
3 VARIABLES

VAR NO LABEL
1 PRE-TEST
2 MID-TERM
3 FINAL-EXAM

OBSERVATION 1
71.00000 87.00000 93.00000

6.5

134/INVITATION TO FORTRAN

OBSERVATION 2

56.00000 74.00000 86.00000

Exercises

1.

Write a program that reads the labeled data fileand computes
the row sums, row averages, and column averages for the test
score data illustrated for the general purpose labeled file
system.

Use the general purpose program to create a file containing
the following data together with fabels:

Age Weight Blood pressure

43 164 121
59 186 146
37 153 114
46 193 125
64 179 162

. Use the general purpose file maintenance system to create and

maintain an accounts receivable master file. The variables
should include an ID number, account balance, and credit
limit.

. Use the general purpose file maintenance system to create and

maintain an inventory control system master file. The variables
should include an inventory item ID number, balance on hand,
number of order, reorder point, and order quantity.

. Write a program that generates 1,000 random numbers and

computes the minimum, maximum, and average of those
numbers.

. Write a program that generates 1,000 random numbers and

sorts them into order. How long does the sorting operation
take?

7.1

7 Subroutines

O\/ ER\/'EW There are two types of FORTRAN

subroutines, function subroutinesand
called subroutines. Function subroutines are similar to built-in
functions except that they are developed by the user. Called
subroutines do not return avalue as functions do. The calling pro-

gram and subroutine pass information back and forth through
the parameter list.

[

Function Subroutines

RESULT OF FUNCTION

The result of the function call is one value. This value may be
integer or real. It may be single or double precision. The numeric
type is specified either implicitly by the variable name or expli-
citly. The command

SQROOT = SQRT(VALUE)

places the square root of the contents of VALUE into the vari-
able SQROOQT. The built-in function SQRT has one argument.

USER-DEFINED FUNCTIONS

FORTRAN provides a complete facility for creating and em-
ploying user-defined functions. Their use is the same as for built-in
functions. User-defined functions are created and compiled in-
dependently of the program using them. The compiler creates a
relocatable object program. A separate step links the function
relocatable and the main program relocatable to form a com-
mand file. The command file is loaded and executed directly.

135

136/INVITATION TO FORTRAN

SPECIAL FORTRAN STATEMENTS

The first statement within the function is the command FUNC-
TION followed by an argument list. The command

FUNCTION DIAG(ALNGTH,WIDTH)

tells the compiler that this is to be the function named DIAG and
that it will use two real arguments. The names ALNGTH and
WIDTH are dummy variables. The names are local to the func-
tion but their values come from the program that uses the func-
tion. The program using the function passes the addresses of the
variables.

The program may include the command

XLEN = DIAG(A,B)

which uses the function DIAG with the variables A and B of the
calling program. This facility allows the main program to define
its own variable names independently of those defined within
the function. This feature makes functions easily reusable by
many programs.

Functions use the RETURN command rather than the STQP
command. The RETURN command returns control to the calling
program. The END statement is the last line of the function.

RESULTS

The result of the function is placed in a variable using the same
name as the function name. The calling program accesses this
value. The following example illustrates this feature.

The length of the diagonal of a rectangle is the square root of
the sum of the squares of its length and width.The following FOR-
TRAN function illustrates the form of the function subroutine:

FUNCTION DIAG(ALNGTH,WIDTH)

SQR1 = ALNGTH * ALNGTH
SQR2 = WIDTH * WIDTH
SUMSQR = SQR1 + SQR2

DIAG = SQRT(SUMSQR)
RETURN

END

Subroutines/ 137

The result is placed in the variable DIAG having the same name
as the function. The variables ALNGTH and WIDTH aredummy
variables whose values come from the calling program. The vari-
ables SQR1, SQR2, and SUMSQR are local to the function.

COMPOUND INTEREST

Deposits left in savings accounts earn compound interest. The
FORTRAN statement

ENDBAL = BEGBAL * (1.0 + RATE) ** NYEARS

gives the ending balance at the end of NYEARS for a deposit
of BEGBAL earning interest at the rate of RATE compounded
annually. The statement

ENDBAL = BEGBAL * (1.0 + RATE)

gives the ending balance at the end of the first year.

PRESENT VALUE

The present value of an investment is the beginning value which
will grow to a specified future value in a given period of time.
The statement

BEGBAL = ENDBAL / (1.0 + RATE) ** NYEARS

gives the present value of the amount ENDBAL to be received
in NYEARS assuming a discount rate of RATE. The statement

BEGBAL = ENDBAL / (1.0 + RATE)

gives the present value of the amount ENDBAL to be received
in one year.

DISCOUNTED CASH FLOWS

Many investment problems involve an initial cost followed by
one or more years of further costs and returns. The costs and

138/INVITATION TO FORTRAN

returns are reduced to a series of annual net cash flows. Thesum
of the present values of these annual cash flows constitutes the
present discounted value of the investment.

DISCOUNT RATE

The discount rate represents the rate of return (interest rate
equivalent) of alternative investments. A negative present value
results if the proposed investment does not provide the profit-
ability of the alternative investments. A positive net present value
results if the proposed investment provides a better return than
the alternative investments.

INTERNAL RATE OF RETURN

The internal rate of return is that discount rate which results in
a discounted net present value of zero. A set of potential invest-
ments can be ranked by their respective internal rates of return.
The most desirable investments are those having a high rate of
return.

Solving for the internal rate of return requires a trial-and-
error process. Bisection is an efficient algorithm to use in this
search. Starting with two discount rates that bracket the internal
rate of return, the method bisects the interval to obtain a new
discount rate. The process continues bisecting the interval until
the interval containing the rate of return is sufficiently small.

A positive present value results if the discount rate is too
low. A negative present value results if the discount rate is too
high. Select a new discount rate exactly midway between the two
discount rates that bracket the internal rate of return. Inspect
the sign of the present value. The new discount rate becomes
one of the boundaries for determining the new midpoint.

PROGRAM DESCRIPTION

The program of this section estimates the internal rate of return
for a series of net cash flows. The program searches for two dis-
count rates that bracket the desired internal rate of return. The
program then continues the search using the method of bisection.

The main program calls the user-defined function PVALUE
which computes the present value of the net cash flows for a

Subroutines/ 139

specified discount rate. The function is called from several loca-
tions within the main program.

SYSTEM COMMANDS

The Microsoft FORTRAN system for the Radio Shack TRS-80
includes a compiler (F80) and a linker (L80). The command

F80 P0701=P0701

compiles the source program contained in P0701/FOR and
creates the relocatable for PO701/REL. The command

F80 S0701=80701
compiles the source program contained in S0701/FOR and

creates the relocatable for SO701/REL.
The command

L80 PO701-N,S0701,P0701-E

creates the command file PO701/CMD using the subroutine re-
locatable SO701/REL and the main program relocatable PO701/
REL. If a program uses several subroutines, the files containing
the relocatables are given to the linker. The command

L80 PROG-N,51,52,53,PROG-E

illustrates the format.

PROGRAM COMMAND

The FORTRAN main program can be named using a command
similar to that naming the function. The command

PROGRAM PROG1

assigns the name PROG1 to the main program. The default name
is MAINS.

140/INVITATION TO FORTRAN

MAIN PROGRAM

The following program estimates the internal rate of return for
a series of net cash flows:

PROGRAM P0701

(AR AR R ERESEEEEEEEEEEEEEREREE R EEX ERESE]

* P0701 *
LA R R R R EEESEEEE R EE R R R R AR EEEEEE R ERE R R X
AUTHOR
COPYRIGHT 1982
BY LAWRENCE MCNITT.
PURPOSE
INTERNAL RATE OF RETURN
FOR A SERIES OF ANNUAL
CASH FLOWS.
SYSTEM
MICROSOFT FORTRAN
RADIO SHACK TRS-80.

LA AR E RS ESE RS EE R R EEEREERREREEE R Y E X

* ORGANIZATION *
LR SRR R R EEEEEE R R EEE R R R R R]
INITIAL MESSAGE
PARAMETERS
PROCESS
FUNCTION PVALUE
OUTPUT
FINAL MESSAGE
LA R E R A EEREEEEEEEEE R E R EREREEEE R RN R]
» VARIABLES »
(A EE R EEEEEEEEEREEREESE ERE RN S s R R
FLOW(50) ANNUAL CASH FLOW
NUMBER NUMBER OF ANNUAL CASH FLOWS
IYEAR CURRENT YEAR
RATEL LOWER BOUND FOR RATE
RATEU UPPER BOUND FOR RATE

RATE CURRENT RATE FOR PRESENT VALUE
PRVAL PRESENT VALUE USING CURRENT RATE
MAX MAXIMUM NUMBER OF LOOPS

ILOOP CURRENT LOOP
IRESP USER RESPONSE (Y/N)

tReNsNes RN NeNsNsNoNoNoNoNeNoNoNoNoNoNoNoNoNeNoNoNe NoNe NeNe Ro Ne NP KO

OO0

Subroutines/141

LA EEE R R EREEEEEEEEEREEEEEREREE X ERERJESEE:EE]

* INITIAL MESSAGE *
KRR R I IR O I R R R R O O)
DIMENSION FLOW(50)
WRITE(1,110)
110 FORMAT(/' PROGRAM P0701’
2 //* ESTIMATE THE INTERNAL RATE’
3 /' OF RETURN GIVING A ZERO'
4 /' NET DISCOUNTED CASH FLOW"
5 /' FOR A SERIES OF ANNUAL'
6 /' CASH FLOWS.")

LA R R EEEREREEEREEEREREEEREERESEREEEEXEEREERE-R)

* PARAMETERS *
ER R R R O R R R I I I I
200 WRITE(1,210)
210 FORMAT(/ NUMBER OF ANNUAL CASH FLOWS ? ‘)
READ(1,220) NUMBER
220 FORMAT(I2)
WRITE(1,230)
230 FORMAT(/* CASH FLOW FOR' /)
DO 260 IYEAR = 1, NUMBER
WRITE(1,240) IYEAR

240 FORMAT(* YEAR ",12, ? ')
READ(1,250) FLOW(IYEAR)
250 FORMAT(F10.0)

260 CONTINUE

AR R EEEEEREEEREEERESEESREEEEERERJEJEJEJXJE:ES.]

+ PROCESS *
EE IR R I IR I O R R R L
RATEL = 0.0
PRVAL = PVALUE(RATEL,NUMBER,FLOW)
IF (PRVAL.GT.0.0) GO TO 320
WRITE(1,310)
310 FORMAT(/* SUM OF CASH FLOWS LESS THAN ZERO’
2 /' DISCOUNTING NOT MEANINGFUL’)
GO TO 500
320 RATEU = RATEL + 2
PRVAL = PVALUE(RATEU,NUMBER,FLOW)
IF (PRVAL.LT.0.0) GO TO 330
RATEL = RATEU
GO TO 320

142/INVITATION TO FORTRAN

330 MAXL = 30
DO 340 ILOOP = 1, MAXL

RDATE = (RATE] + RATEL)/

TR R (SR RS T Vi =) V)

PRVAL= PVALUE(RATE,N MBER FLOW)
IF (PRVAL.GT.0.0) RATEL = RATE
IF (PRVAL.LE.0.0) RATEU = RATE
IF {ABS(PRVAL).LT.1.0) GO TO 400
340 CONTINUE

C [EEEEEEEEEEEEEREEEEREEREEEREEEEREERXSEEEES]
C + OUTPUT *
C oW K W W W W K W W N H N E NN K KN NE RN KRR R NN

400 RATE = 100.0 * RATE

WRITE(1,410) RATE,PRVAL
410 FORMAT(/* INTERNAL RATE OF RETURN’,F10.4
2 //* NET PRESENT VALUE " F12.2)

C LR IR R R RN R R R I R R N
C + FINAL MESSAGE *
C R R IR R R I R I R I R LI U Y

500 WRITE(1,510)
510 FORMAT{(/ TRY ANOTHER PROBLEM (Y/N) ? ')
READ(1,520) IRESP
520 FORMAT(A1)
IF (IRESP.EQ."Y’) GO TO 200
WRITE(1,530)
530 FORMAT(/* END OF PROGRAM'/)
STOP
END

SUBROUTINE PVALUE

The following subroutine computes the present value for aseries
of net cash flows using a specified discount rate:

FUNCTION PVALUE(RATE,NUMBER,VALUE)

R I R R R I A O
* 50701 *
LR R EERN XS EEEEREREEXEXERERENZEEREREEREERXREERERE?
AUTHOR

COPYRIGHT 1982

BY LAWRENCE MCNITT.
PURPOSE

OO0O0O0O00O0O0

sNeNoNoNeNeNsNoNoNeNoNoNeoNeNoNoNo Nl

Subroutines/ 143

COMPUTE THE NET DISCOUNTED

PRESENT VALUE FOR A SERIES

OF ANNUAL CASH FLOWS,
SYSTEM

MICROSOFT FORTRAN

RADIO SHACK TRS-80.

LR R R R R AR EEEEREEREREEEREREEEREREXEESILEESESS]

+ VARIABLES *
W W E N NN W N NK K F R KR NR NN R R KRN R KK KRN RN
VALUE(1) ANNUAL CASH FLOWS
NUMBER NUMBER OF CASH FLOWS
RATE DISCOUNT RATE
PVALUE NET DISCOUNTED PRESENT VALUE
IYEAR CURRENT YEAR
INDEX INDEX FOR LOOP
LK R R IR R R R K K
+ SUBROUTINE »
EE R R R I R R R R R R I
DIMENSION VALUE(1)
PVALUE = 0.0
DO 100 INDEX = 1, NUMBER
IYEAR = NUMBER - INDEX + 1
PVALUE = VALUE(IYEAR) + PVALUE /
(1.0 + RATE)
100 CONTINUE
RETURN
END

TEST RUN

The following is a test run using the program to estimate the in-
ternal rate of return:

PROGRAM P0701

ESTIMATE THE INTERNAL RATE
OF RETURN GIVING A ZERO
NET DISCOUNTED CASH FLOW
FOR A SERIES OF ANNUAL
CASH FLOWS.

NUMBER OF ANNUAL CASH FLOWS ? 3

7.2

144/INVITATION TO FORTRAN

CASH FLOW FOR
YEAR 1 ? 15000
YEAR 2 ? 10000
YEAR 3 ? 10000

INTERNAL RATE OF RETURN 21.5234
NET PRESENT VALUE .29

TRY ANOTHER PROBLEM (Y/N} ? N
END OF PROGRAM

Subprograms

CALLED SUBROUTINES

In a called subroutine there is no explicit result defined as there
is in a function. A function is limited to one result. Called sub-
routines may have several results. Both functions and called sub-
routine have argument lists. Both include the RETURN command
returning control to the calling program.

FORTRAN COMMANDS

The defining statement of the called subroutine contains the
command SUBROUTINE and the name of thesubroutineand its
argument list. The statement

SUBROUTINE SUB(N,A,B)

specifies the name SUB for the subroutine and the variables to
be supplied by the calling program.

The calling program uses the CALL statement to access the
subroutine. The command

CALL SUB(NUMBER,XSIZE,YSIZE)

illustrates a typical call to the subroutine. The variables from the
main routine and the subroutine are linked by position within
the argument lists. Numeric type specifications must be consistent
between the main program and the subroutine.

Subroutines/145

DATA ANALYSIS

The program of this section computes summary measures for a
set of real values. The main program obtains the values from the
terminal, uses a subroutine to compute the summary measures,
and then displays the measures.

PROGRAM

The following program obtains the data and controls the analysis:

PROGRAM P0702

LR R R R R E R E R EEEEEEEESREREXERE:RSIEES-.ESEHEZ:EXX;EX;]

+ P0702 *
LR K R R R I R R R R R R R
AUTHOR

COPYRIGHT 1982

BY LAWRENCE MCNITT.
PURPOSE

DESCRIPTIVE MEASURES

FOR A SET OF DATA.
SYSTEM

MICROSOFT FORTRAN

RADIO SHACK TRS-80.

LA R E R AR L EREEEEREEEEEEEEEEEEEREEREENXEXJ

* ORGANIZATION »
AR R R E R EREREEREEXEEREREERESRJZE®RRRERIEREXREZES
INITIAL MESSAGE
DATA ENTRY
PROCESS

SUBROUTINE STAT (S0702)
OUTPUT
FINAL MESSAGE
LE R EEEREEREEREEEREEREREREREREREEJERZSREFESEELEREREY
*+ VARIABLES *
(R R R EEESEEESEREEREEERNERERERE ERYEEFREEE XX EERY
DATA(200) DATA VALUES
NUMBER NUMBER OF VALUES
INDEX INDEX
XMAX MAXIMUM VALUE
XMIN MINIMUM VALUE

OO0 O00O0000O0000000000000O0

146/INVITATION TO FORTRAN

AVG AVERAGE
IRESP USER RESPONSE (Y/N)
R N N W S W M SR S0 4B R 5 SR 2E 3F 0 9% S0 R M B 3 O % AR 06 46 3 3 W 3 N N N
¥ INITIAL MESSAGE *
PR R XN R RN R R R R REE R REEE RN RERREENEREESJESE.]
DIMENSION DATA(200)
WRITE(1,110)
110 FORMAT(/ PROGRAM P0702’
2 //* COMPUTE THE AVERAGE,’
3 /* MINIMUM, AND MAXIMUM’
4 /" FOR A SET OF DATA.")

C LR R R R R R R R R R R R R R R R R R A R R R R

C = DATA ENTRY *
C EE R I I D I R U D O R R U U
200 WRITE(1,210)
210 FORMAT(/* NUMBER OF VALUES ? ')
READ(1,220) NUMBER
220 FORMAT(I3)
WRITE(1,230)
230 FORMAT(’ VALUE FOR'/)
DO 260 INDEX = 1, NUMBER
WRITE(1,240) INDEX

OOO00

240 FORMAT(* OBS "13,” ?)
READ(1,250) DATA(INDEX)
250 FORMAT(F10.0)

260 CONTINUE

C LR R

* PROCESS *

C A K R A W N R R R R K F R K H KR W IR KRN N KRR R R KKK

CALL STAT(NUMBER,DATA,XMIN,XMAX,AVG)

C R K N

* OUTPUT *

C R HH KRR K IR R RN R ® NI RNER X RE R NERNRSRHRN

WRITE(1,410) XMIN, XMAX, AVG
410 FORMAT(/* MINIMUM',F15.5

(o]

o

2 /I MAXIMUM',F15.5

3 /I' AVERAGE',F15.5)
C LA S SRR EEEEERERESEERESERESEEREREEREREJEJJIESSES]
C = FINAL MESSAGE *

C LR A R S N R AR R AR R R R EEEE R EEEE R EE]
WRITE(1,510)
510 FORMAT(/* TRY ANOTHER PROBLEM (Y/N) ?)
READ(1,520) IRESP

Subroutines/ 147

520 FORMAT(A1)
IF (IRESP.EQ."Y’) GO TO 200
WRITE(1,530)

530 FORMAT(/" END OF PROGRAM' /)
STOP
END

SUBROUTINE STAT

The following subroutine computes the minimum, maximum,
and average for a set of data:

SUBROUTINE STAT(N,X,XMIN,XMAX,AVG)

LR R R R R U R R R R R R R R R

+ 80702 *
EIE I I I IR L RGO IR I O R T L N T O T)
AUTHOR
COPYRIGHT 1982
BY LAWRENCE MCNITT.
PURPOSE
MINIMUM, MAXIMUM,
AND AVERAGE FOR A
SET OF DATA.
SYSTEM
MICROSOFT FORTRAN
RADIO SHACK TRS-80.

LR R R R R R R R R R R R R R R R R KRR EE RS XX]

[eReNeNeNoNoNeNoNeNoNoNoNoNoNoNoNeNeNeNeNeNe R R R R RS

* VARIABLES *
K IR I R U R R R R O T R L Y
X(1) DATA VALUES
N NUMBER OF VALUES
[SUBSCRIPT
Vv CURRENT VALUE
XMIN MINIMUM VALUE
XMAX MAXIMUM VALUE
SUM SUM OF THE VALUES
AVG AVERAGE
LR R R EEREEEEREEEEEEEEEEEEEEER E SRR EREXE
* SUBROUTINE *
EE R R O R R R R R R R R R R R R R R R T T
DIMENSION X(1)
XMIN = X(1)

XMAX = XMIN

148/INVITATION TO FORTRAN

SUM = XMIN

DO110 1 = 2, N
Vo= X(1)
SUM = SUM + V

IF (V.LT.XMIN) XMIN
IF (V.GT.XMAX) XMAX = V
110 CONTINUE
AVG = SUM / FLOAT(N)
RETURN
END

i
<

TEST RUN

The following program illustrates the use of the program com-
puting summary measures:

PROGRAM P0702

COMPUTE THE AVERAGE,
MINIMUM, AND MAXIMUM
FOR A SET OF DATA.

NUMBER OF VALUES ? 5
VALUE FOR

0oBS 1 ? 120

OBS 2 7 11.0

OBS 3 ? 19.0

0BS 4 ? 14.0

0BS 5 ? 15.0

MINIMUM 11.00000
MAXIMUM 19.00000
AVERAGE 14.20000
TRY ANOTHER PROBLEM (Y/N) ? N
END OF PROGRAM

Subroutine Libraries

REUSABLE SUBROUTINES

Subroutines are reusable. Once written and debugged, the same
subroutine can be linked to many programs. Many organizations

Subroutines/ 149

develop libraries of FORTRAN subroutines for use in the de-
velopment of FORTRAN programs.

MATHEMATICAL SUBROUTINE PACKAGES

The major computer manufacturers such as 1BM and UNIVAC
provide subroutine libraries containing hundreds of FORTRAN
subroutines for mathematical and statistical analysis. The user
does not need to reprogram these subroutines. Availability of
large subroutine libraries is one of the reasons why FORTRAN
retains its popularity.

MAIN PROGRAM

In some cases the main program becomes a sequence of sub-
routine calls. The main program reads the data and prints the
results. The subroutines perform the processing steps. The para-
meter lists document the information flow from main program
to subroutine and from subroutine to subroutine.

BINOMIAL DISTRIBUTION

The binomial distribution gives probabilities for the number of
successes r in n trials for which p is the probability of a success
on any one trial and g =1 - p is the probability of a failure. A coin
is tossed ten times. The binomial distribution gives the probability
of observing three heads in the ten tosses. The probability of a
head on any one toss is .b.

PROGRAM

The following program computes exact and cumulative binomial
probabilities using the subroutine BINOM defined in the next
section:

PROGRAM P0703

COPYRIGHT 1982
BY LAWRENCE MCNITT.

C LA AR AR R EEEREEREEEE RS Y L]
C = P0703 *
C AR R R R R EEEREEE R R R R N L EE]
C AUTHOR

Cc

C

150/INVITATION TO FORTRAN

0000000000000 OOO0O0

OO0

PURPOSE
PRINT PROBABILITIES FOR
BINOMIAL DISTRIBUTION.
SYSTEM
MICROSOFT FORTRAN
RADIO SHACK TRS-80.
PR R RS R R R E R EEE R R R R R R R LR R
* ORGANIZATION *
PRI F R E R E R R R R E R E R E R E R EREEEREEEE R
INITIAL MESSAGE
PARAMETERS
PROCESS
SUBROUTINE BINOM
OUTPUT
FINAL MESSAGE

e R R R R R R R R R R R R R R R RR R R R R

* VARIABLES *

P E SR TR R R E R R EEEEEEEEEEEEEEEEE LS

BPROB(200) BINOMIAL PROBABILITIES
NUMBER NUMBER OF TRIALS

PROB PROBABILITY OF A SUCCESS ON ANY ONE TRIAL
BIN BINOMIAL PROBABILITY
CUM CUMULATIVE PROBABILITY
NR NUMBER OF SUCCESSES
IRESP USER RESPONSE (Y/N)

#+ INITIAL MESSAGE *

DIMENSION BPROB(200)
WRITE(1,110)
110 FORMAT(/* PROGRAM P0703'
2 //' GENERATE EXACT AND CUMULATIVE'’
3 /" BINOMIAL PROBABILITIES.")
*****%******************************
+ PARAMETERS *

200 WRITE(1,210)
210 FORMAT(/ NUMBER OF TRIALS 2
READ(1,220) NUMBER
220 FORMAT(13)
WRITE(1,230)
230 FORMAT(* PROBABILITY OF A SUCCESS ?)

Subroutines/ 151

READ(1,240) PROB
240 FORMAT(F10.0)

C ***-)(-********************************

C +* PROCESS *

C ************************************
CALL BINOM(NUMBER,PROB,BPROB)

C **********-)(-*************************

C * OUTPUT *

C ************************************

WRITE(2,410) NUMBER, PROB
410 FORMAT('1BINOMIAL DISTRIBUTION’

2 //' NUMBER OF TRIALS 15

3 /' PROBABILITY OF A SUCCESS ‘,F10.6

4 s R P(X=R) P(X.LE.R)")
CuM = 0.0

DO 430 NR = 0, NUMBER
BIN = BPROB(NR+1)
CUM = CUM + BIN
WRITE(2,420) NR, BIN, CUM
420 FORMAT(I5,2F15.7)
430 CONTINUE
WRITE(2,440)
440 FORMAT(///' END OF QUTPUT")
C LA AR R SR EEEREEREEEE X R R R R I R g g g s
C =« FINAL MESSAGE *
C LR A AR R R EEEEEEEE ERE R E R
WRITE(1,510)
510 FORMAT(/ TRY ANOTHER PROBLEM (Y/N) ? ")
READ(1,520) IRESP
520 FORMAT(A1)
IF (IRESP.EQ."Y’) GO TO 200
STOP
END

TEST RUN

The following test run results from the program of this section:

PROGRAM P0703

GENERATE EXACT AND CUMULATIVE
BINOMIAL PROBABILITIES.

7.4

152/INVITATION TO FORTRAN

NUMBER OF TRIALS ?5
PROBABILITY OF A SUCCESS ? .2
TRY ANOTHER PROBLEM (Y/N) ? N
END OF PROGRAM

PRINTED OUTPUT

The following printed output resulted from the test run:

BINOMIAL DISTRIBUTION

NUMBER OF TRIALS 5
PROBABILITY OF A SUCCESS .200000
R P(X=R) P(X.LE.R)

0 3276844 3276844
1 4096056 7372900
2 .2048028 .9420928
3 0512007 9932935
4 0064001 9996936
5 .0003200 1.0000136

END OF OUTPUT
Top-Down Design

MODULAR PROGRAMMING

Modular programming involves dividing a program into a set of
cooperating modules. Each module performs one task or a closely
related group of tasks. The modules may be sections of one large
program. This is the approach used in earlier chapters. The
modules may consist of independently compiled functions and
subroutines. This is the approach used in this section.

Much has been written on how to organize large programs
so that they will be easy to read, easy to modify, reliable, and
efficient. The recurring theme is that large programs should be
hierarchical in nature with a main routine accessing subsidiary
routines which access still lower-level routines, etc. The routines
should be as independent of each other as possible. Data in the

Subroutines/ 1563

form of argument lists should provide the interface between
routines. Information is passed back and forth through the means
of argument lists.

FORTRAN subroutines and modules are a natural vehicle
for creating hierarchically organized programs. The main program
calls subroutines, and higher-level subroutines call lower-level
subroutines. The main program and the higher-level driver sub-
routines contain calls to lower levels. Most of the actual process-
ing is done at the lowest levels.

MODULE SIZE

The choice of module size differs from organization to organiza-
tion. Some prefer small modules, others prefer large ones. Small
modules are easier to understand and to debug on an individual
basis, but there are more of them to fit together to form a pro-
gram. Large modules are more complex and more difficult to
debug, but there are fewer of them to integrate into a working
program,

EFFICIENCY

Formal subroutines require a certain amount of overhead in
terms of internal memory and compute cycles. The amount of
overhead varies from computer model to computer model. It
is usually influenced by the number of addressable registers
available to the machine language programmer. Overhead used
in callingand returning from a subroutine increases for computers
having more addressable internal registers. This results from
having to save all or part of these registers with each subroutine
call and then having to restore their contents after returning from
the subroutine.

MONOLITHIC PROGRAMS

Large, monolithic programs perform all tasks within the program
without the use of subroutines. Large programs have a large
number of variables. Each task has itsvariables devoted to house-
keeping and variables holding temporary values needed during

154/INVITATION TO FORTRAN

the course of the computations. Inventing unigue names for the
large number of variables required becomes a chore.

LLarge, monolithic programs include numerous branching
statements. The conditional IF ... GO TO statementand theun-
conditional GO TO statement are the primary means of control-
ling the flow of the program. The resulting program can be com-
pared to a bowl! of spaghetti. The twisted and turning paths of
program flow become impossible to understand.

FLOWCHARTS

Flowcharts are a visual tool designed to bring order out of the
chaos of unrestrained branching. Even large, complex flowcharts
will not bring order to the largest monolithic programs.

DISCIPLINED PROGRAMMING

Discipline and restraint are required in writing any large program.
A few simple rules help. The program should consist of a hier-
archical structure of modules. The upper levels consist of calls
to subroutines. The lowest levels consist of processing statements
performing the elementary reading, writing, and computing.

Each module has one entry point and one exit point. This
rule alone brings order out of the chaos of random branches. The
flowcharts themselves become modular. A separate flowchart
describes the logic for each module. Each box used in a higher-
level module expands into a separate flowchart for the module
identified.

TOP-DOWN DESIGN

Top-down design is the term used for a method of writing modular
programs. It involves subdividing a task into subtasks, and sub-
dividing each subtask into more elementary subtasks, until the
most elementary subtasks can be programmed completely with
simple, easy-to-understand modules.

The resulting program structure is hierarchical in nature. The
program easily translates into a main program calling subroutines
which can call lower-level subroutines. Each subroutine contains

Subroutines/ 165

its own local variables for temporary results and housekeeping.
The argument list provides the interface between the calling
program and its subroutines.

BINOMIAL DISTRIBUTION

The programs of this section and the previous section compute
binomial probabilities. In this sense they are similar. The differ-
ence lies in the increased use of independently compiled called
subroutines that are for the program of this section.

MAIN PROGRAM

The main program consists of calls to subroutines to perform the
following tasks:

Display initial message
Get parameters describing distribution
Compute probabilities

> wn -

Print exact and cumulative probabilities
5. Display final message

Also included are branching statements controlling the flow of
control among the subroutine calls.
The following is the main program:

PROGRAM P0704

LA R E AR EREEREEEEERREERERERE X EREXENRESEESEESY)
* P0704 *
LA E R E R EEEEEEEEREEEEEEEEEEREEE RERSE XS
AUTHOR

COPYRIGHT 1982

BY LAWRENCE MCNITT.
PURPOSE

PRINT BINOMIAL

PROBABILITY TABLE.
SYSTEM

MICROSOFT FORTRAN

RADIO SHACK TRS-80.

OO0O0O0O0O000000O00

156/INVITATION TO FORTRAN

T E IS XS EE R EE R EE R EE R LK R EEEE R
* ORGANIZATION *
HHEA KRN KRR ARRARRFRAFRR TR FRRFFFREE SR
MAIN PROGRAM

SUBROUTINE INIT

SUBROUTINE PARAM

SUBROUTINE BINOM

SUBROUTINE TABLE

SUBROUTINE FINAL

XS EEEEEEEERE R R R SRR R R R R AR E R ERE R EE RS

» VARIABLES *
PREEEEREEEEE EEEERERERZEERE R EEEESEJEBERJX.;J
BPROB(200) BINOMIAL PROBABILITIES
NUMBER NUMBER OF TRIALS
PROB PROBABILITY OF A SUCCESS ON ANY ONE TRIAL
IRESP USER RESPONSE

IFEREEEFEFEEEFEEREEEEEEEEEEEEEEEEEREES LSS

x MAIN PROGRAM »
PRI E R R R RS R EEEEREEE R E RN R REEEEEENXREX.J
DIMENSION BPROB(200)
100 CALL INIT(IRESP)
IF (IRESP.EQ.'N’) GO TO 110
CALL PARAM(NUMBER,PROB)
CALL BINOM(NUMBER,PROB,BPROB)
CALL TABLE(NUMBER,PROB,BPROB)
CALL FINAL(IRESP)
IF (IRESP.EQ."Y’) GO TO 100
110 STOP
END

OO0 0O000O0

SUBROUTINE INIT

The following subroutine displays the initial message for the
binomial distribution program:

SUBROUTINE INIT(IRESP)

IXEF RN EREEEEEEEERE R R EEEEESEEEEERELEREY

* S0704A *

XX EREERFEEETIEZEEEEEEEERE R E R EEES S ERE.
AUTHOR

COPYRIGHT 1982
BY LAWRENCE MCNITT.

OO0O00O000

Subroutines/ 157

PURPOSE
DISPLAY INITIAL MESSAGE
FOR BINOMIAL DISTRIBUTION.
SYSTEM
MICROSOFT FORTRAN
RADIO SHACK TRS-80.

AR AR R A EEREEREEEEEEEEEEEEEEE RS EEEEES Y

* VARIABLES *

AR R R REREREEEEEEEEEEEEEEEEEEEERE NS ERE]

IRESP USER RESPONSE

LA AR R R SRR EEEEEEEEEEEEEEREREEEEREREEYR XX

*+ SUBROUTINE *
LR R AR R EEEEREEEEEEEREEEEERERERREEREEZEEEE R RS
WRITE(1,110)
110 FORMAT(/ PROGRAM P0704’
2 //* PRINT TABLE OF PROBABILITIES’
3 /' FOR THE BINOMIAL DISTRIBUTION.")
120 WRITE(1,130)
130 FORMAT{/’ DO YOU WANT TO CONTINUE (Y/N) ?)
READ(1,140) IRESP
140 FORMAT(A1)
IF (IRESP.EQ."Y".OR.IRESP.EQ.‘N') GO TO 150
GO TO 120
150 RETURN
END

[eNeoNeoNeoNsNeoNoNeoNesNoNeNeNe!

SUBROUTINE PARAM

The following subroutine gets the parameters for the specific
binomial distribution of interest:

SUBROUTINE PARAM(NUMBER,PROB)

LR R R EER R EEREEEEEEEEEEEEEEREE EREE SR ER XX

* 507048 *
LA R R R R A EEEEEEEEEEEEEEREEREEREERENEEEEE)
AUTHOR
COPYRIGHT 1982
BY LAWRENCE MCNITT.
PURPOSE
GET PARAMETERS FOR
BINOMIAL DISTRIBUTION.
SYSTEM

[eNeNeNoNsNesNeoNeoNeoNe!

168/INVITATION TO FORTRAN

c MICROSOFT FORTRAN

c RADIO SHACK TRS-80.

C ER R W TR I R K O R R R IR R R I KR R
C * VARIABLES *
C IR E R REEFEEREREE R EEE R E X EEEEE XX ERJERZXNENJ]E.}
C NUMBER NUMBER OF TRIALS

C PROB PROBABILITY OF A SUCCESS

C PE X EEEREREEER XN EEEREEREEEEEEERESRENRJEZR}EJESS;
C * SUBROUTINE *
c

LR R R E R X EREEERERERESEREESEEEEREERES KRS}
WRITE(1,110)

110 FORMAT{(/’ NUMBER OF TRIALS ?)
READ(1,120) NUMBER

120 FORMAT(I3)
WRITE(1,130)

130 FORMAT(’ PROBABILITY OF A SUCCESS ? ')
READ(1,140) PROB

140 FORMAT(F10.0)
RETURN
END

SUBROUTINE BINOM

An efficient recursive algorithm generates the binomial proba-
bilities. The binomial distribution gives probabilities for X
successes in n trials for which the probability of a success is p
and the probability of a failureis g =1-p for any one trial. The
probability of X=0 successes is g**n. The recursive formula

PX) = PX=1)*(n-X+1)%/{X*q)

gives the probability of X successes as a function of the proba-
bility of X1 successes.

Logarithms reduce the chance of underflow that would
otherwise be a problem during the calculations. The expression

n * log(q)

gives the logarithm of the binomial probability of X=0 successes.
After that, the expression

log(P(X}) = log{X-1) + log((n-X+1)*p/{X*q))
gives the logarithm of the binomial probability for X=1,2,...,n.

sNeoNeoNoNoNoNeoNeoNsNoNoNeoNoNoNeNoNoNeoNeoNsNoNoNeNe NN e NN N

Subroutines/ 159

The following program generates the binomial probabilities:

SUBROUTINE BINOM(NUMBER,PROB,BPROB)

R R R R R R R R K K
* S0704C *

LR EE R EREEEEERSEERREEEREREESERERESERESIE RS

AUTHOR

COPYRIGHT 1982

BY LAWRENCE MCNITT.
PURPOSE

GENERATE PROBABILITIES FOR

BINOMIAL DISTRIBUTION.
SYSTEM

MICROSOFT FORTRAN

RADIO SHACK TRS-80.

LR R R KR R R R R R R R R R R R R R R R REEXE X EXREEXEE;]

» VARIABLES *
LR EE R EREREEXEREREENREEEEREREREREXREZRRNREXENXXERE]
BPROB(1) BINOMIAL PROBABILITIES
NUMBER NUMBER OF TRIALS
XNUM NUMBER OF TRIALS (REAL)

PROB PROBABILITY OF A SUCCESS ON ANY ONE TRIAL
FAIL PROBABILITY OF A FAILURE ON ANY ONE TRIAL
BLOG LOG OF BINOMIAL PROBABILITY
ALOG LOGARITHM CURRENT TERM
ATERM CURRENT TERM FOR RECURSIVE FORMULA
BIN BINOMIAL PROBABILITY
NR CURRENT NUMBER OF SUCCESSES
XNR CURRENT NUMBER OF SUCCESSES (REAL)

LR E R E R XN ERERERREREREERERERERZEE X XN R EE W IR

* SUBROUTINE »

LE AR A EEEEEEREEREEREEREEEEEEE EREREREREEREREESE?

DIMENSION BPROB(1)

FAIL 1.0 - PROB

XNUM NUMBER

BLOG = XNUM * ALOG(FAIL)

DO 110 NR = 0, NUMBER
IF (NR.EQ.0) GO TO 100
XNR = NR
ATERM = (XNUM-XNR+1.0) * PROB / (XNR=*FAIL)
BLOG BLOG + ALOG(ATERM)

]

[

I

160/INVITATION TO FORTRAN

100 BIN = 0.0
IF (BLOG.GT.-50.0) BIN = EXP(BLOG)
BPROB(NR+1) = BIN
110 CONTINUE
RETURN
END

SUBROUTINE TABLE

The following subroutine prints the exact and cumulative proba-
bilities:

OO0 000000000000000000O0

SUBROUTINE TABLE(NUMBER,PROB,BPROB)

LR R R RO R R R R R R R R R A KRR R R R R

* S0704D *
LR R R R R G D I U R
AUTHOR
COPYRIGHT 1982
BY LAWRENCE MCNITT.
PURPOSE
PRINT EXACT AND CUMULATIVE
BINOMIAL PROBABILITIES.
SYSTEM
MICROSOFT FORTRAN
RADIO SHACK TRS-80
MODEL Iil.
M E R NN R KK NN RKHHXHEARKT XN RXRHRRR NN
* VARIABLES *
HoW N N KK W XK NN W R KN FE KK R KKK N KRR KN NN R
BPROB(1) BINOMIAL PROBABILITIES
NUMBER NUMBER OF TRIALS

PROB PROBABILITY OF A SUCCESS ON ANY ONE TRIAL
BIN BINOMIAL PROBABILITY
cuM CUMULATIVE PROBABILITY
NR CURRENT NUMBER OF SUCCESSES
R R R I R R I I O R R R
« SUBROUTINE *

R R R R RS EEREEEEEEEEREERENEEEREERESERZEEX!]

DIMENSION BPROB(1)
WRITE(2,110) NUMBER, PROB
110 FORMAT(‘1BINOMIAL DISTRIBUTION'
2 //" NUMBER OF TRIALS 15

Subroutines/161

3 /" PROBABILITY OF A SUCCESS’,F10.6
4 /1 R P(X=R) P(X.LE.R) ")
CuM = 0.0

DO 130 NR = 0, NUMBER
BIN = BPROB(NR+1)
CUM = CUM + BIN
WRITE(2,120) NR, BIN, CUM

120 FORMAT{/15,2F15.7)

130 CONTINUE
WRITE(2,140)

140 FORMAT(///* END OF QUTPUT")
RETURN
END

SUBROUTINE FINAL

The following subroutine displays the final message for the bi-
nomial distribution program:

SUBROUTINE FINAL(IRESP)

I SRS E SRS ST RS R SRR E R ERE B A SRR EE &

« SO704E *

AUTHOR
COPYRIGHT 1982
BY LAWRENCE MCNITT.
PURPOSE
FINAL MESSAGE FOR
BINOMIAL DISTRIBUTION.
SYSTEM
MICROSOFT FORTRAN
RADIO SHACK TRS-80.

RS I AR R EE R R R R R R R R R R LR R

* VARIABLES *

IR EEESIEEEE SRR SRR R R R R EE R EEE LSRR A A A

IRESP USER RESPONSE

IXEEEEFER RS FEFEEEEEEEEEREREREEE R B S S

» SUBROUTINE .

PR RN YT SR E RS E R E R RN E NN R R R R R R

100 WRITE(1,110)

110 FORMAT(/ TRY ANOTHER PROBLEM (Y/N) ?)
READ(1,120) IRESP

OO0

162/INVITATION TO FORTRAN

120 FORMAT(A1)
IF (IRESP.EQ.’Y'.OR.IRESP.EQ.'N') GO TO 130

on TeM 1 G

L= LV RV
130 RETURN
END
TEST RUN

The following test run illustrates the use of the program of this
section:

PROGRAM P0704

PRINT TABLE OF PROBABILITIES
FOR THE BINOMIAL DISTRIBUTION.

DO YOU WANT TO CONTINUE (Y/N) ? Y
NUMBER OF TRIALS ?5
PROBABILITY OF A SUCCESS ? .2

TRY ANOTHER PROBLEM (Y/N) ? N
END OF PROGRAM

PRINTED OUTPUT

The following printed output resulted from the test run:

BINOMIAL DISTRIBUTION

NUMBER OF TRIALS 5
PROBABILITY OF A SUCCESS .2
R P(X=R) P(X.LE.R)
0 3276844 3276844
1 4096056 7372900
2 2048028 9420028
3 0512007 .9932935
4 0064001 .9996936
5 .0003200 1.0000136

7.5

Subroutines/163

Exercises

1.

Write a function computing the minimum of a set of data.
Write another function computing the maximum of a set of
data. Write a third function computing the average of a set
of data. Write the main program using these three functions
to compute the minimum, maximum, and average for the set
of data.

Modify the program of exercise 1 to include called subroutines
for the other tasks of data entry and output.

. Write a hierarchically organized, modular program using the

random number function to generate a matrix of 20 rowsand
40 columns. Compute and print the row sums and averages
and the column sums and averages. Use called subroutines.

. Write a program that generates 1,000 random numbers, sorts

them into order, and prints them out in compact form. Use
called subroutines.

Write a general purpose file maintenance system similar to
that discussed in Chapter 6. Make the programs hierarchical
in nature using called subroutines.

. Write a program that generates a loan payment schedule giving

the amount of payment applied to the principal, the amount
applied to interest, and the remaining balance of the loan. Test
using a beginning loan balance of $10,000, monthly pay-
ments of $200, and an interest rate of 10.75 percent. Make
the program hierarchical using called subroutines.

8.1

8 Matrix methods

O\/ ER\/ | E A matrix is a table of values. Matrices

are very important in the field of
mathematics. Common matrix operations include scalar and
matrix addition, scalar and matrix multiplication, transposition,
and inversion. FORTRAN subroutine libraries include routines
for these matrix operations. This chapter describes several sub-
routines that could be part of a subroutine library and shows how
to define and utilize the subroutines.

]

Matrix Manipulation

DEFINITION

A matrix is a two-dimensional table of values. Each element is
identified according to its row and its column position. The value
X(l.J) is the element in the /th row and theJth column. A matrix
that has N/ rows and M columns has a total of M/ times M elements,
A matrix of 20 rowsand 30 columns has 20 * 30 =600 elementary
values.

The FORTRAN main program allocates space for the entire
matrix. A matrix of 600 single precision real values requires 2400
bytes using four bytes for each value. A matrix of double pre-
cision values requires eight bytes per value.

EXAMPLE MATRICES

The following example matrices are used in the following dis-
cussion:

A:

oW

1
4
1

A ON

165

166/INVITATION TO FORTRAN

(] X

i it
NS WwN
N — OO
- W

SCALAR ADDITION

A scalar is added to each element of the matrix in scalar addition.
Adding the scalar 2 to the matrix A results in

2+A=38 4 5
6 7 8

SCALAR MULTIPLICATION

Each element of the matrix is multiplied by a scalar value in scalar
matrix multiplication. Multiplying the matrix A by the scalar 2
results in

TRANSPOSITION

Transposition is the exchanging of columns and rows of a matrix.
The first row becomes the first column. The second row becomes
the second column, etc. The matrix B is the transposition of the
matrix A.

MATRIX ADDITION ’

Matrix addition is the element-by-element addition of two ma-
trices having the same dimensions. Both matrices must have the
same number of rows and the same number of columns. Forming
the sum of the two matrices A and C results in

A+B=5 3 6
6 7 7
MATRIX MULTIPLICATION

The matrix product of two matrices computes the value for the
element in the /th row and Jth column of the resulting matrix

Matrix methods/167

as the sum of the products of the elements in the /th row of the
first matrix and theJth column of the second matrix. The number
of columns of the first matrix must equal the number of rows
of the second matrix. The number of rows of the first matrix
becomes the number of rows of the product matrix. The number
of columns of the second matrix becomes the number of columns
of the product matrix. The matrix product A+*C becomes

A=x C=14 32
32 77
IDENTITY MATRIX

A square matrix has the same number of columns as rows. An
identity matrix is a square matrix with the value 1.0 down the
diagonal and 0.0 everywhere else. The following is an identity
matrix:

/=10
0 1

For any square matrix D, the following matrix products hold:
D«1=D
! *D=2D

INVERSION

The inverse of the square matrix D is that matrix which gives the
identity matrix when multiplied by D. If Inv(D) is the inverse
of the matrix D, then the relationships

D * Inv(iD) = [

]

and

i
-~

Inv(D) » D

are both true.

The inverse does not exist for every matrix. Such matrices
are called singular. The determinant of a square matrixisa measure
that identifies singularity. A determinant of zero signifies singu-
larity. A determinant that is almost zero gives a warning that
singularity is possible. Round-off problems are greatest with
matrices having determinants near the value zero.

8.2

168/INVITATION TO FORTRAN

PROCESSING METHODS

The operations of addition, multiplication, and transposition
are straightforward. Inverting a matrix is not. The best-known
method is Gaussian elimination which is the method used in this
chapter.

Elementary mathematics courses discuss the Gaussian elimi-
nation method starting with the original matrix D and the identity
matrix of the samesize. Row transformations convert the original
matrix into an identity matrix. The same row transformations
on the initial identity matrix result in the inverse matrix. The
original matrix becomes an identity matrix. The original identity
matrix becomes the inverse matrix. If internal memory is limited,
the method can be adjusted to form the inverse in place within
the space containing the original matrix.

Subroutine Package

SUBROUTINE LIBRARIES

There are many FORTRAN subroutine packages for large com-
puter systems. These include routines for matrix manipulations.
These subroutines can be adapted for use by microcomputers.
They may also include matrix inversion methods other than
Gaussian elimination which reduce round-off errors.

DIMENSIONS

One of the problems with any subroutine library is a consistent
dimensioning of the matrices. If the main program uses one set
of dimensions and the subroutines use another set, there will be
problems. The subroutine library of this chapter assumes that all
matrices are defined with a maximum of 10 rowsand 10 columns.
This is adequate for small problems. lLarge matrices of widely
differing dimensions require special handling.

Many subroutines redefine the matrix as a one-dimensional
vector. Each matrix access requires calculation to convert the
row and column subscripts to the appropriate location. The main

Matrix methods/169

program defines the matrix as two-dimensional. The subroutine
call gives the starting address of the matrix and the matrix di-
mensions in the parameter list. The subroutine uses that infor-
mation 1o calculate the relative position.

SCALAR ADDITION

The following subroutine adds a scalar and a matrix:

SUBROUTINE SADD(SCALAR,NROWS,NCOLS,
AMAT,RMAT)

LACR R R R EXSREREEEEREREEREEREEEREREREEEJ:SEJRSEZSE.]

+ SO8A »
L IR L N N I R IR I I I L R
AUTHOR
COPYRIGHT 1982
BY LAWRENCE MCNITT.
PURPOSE
ADD A SCALAR
TO A MATRIX.
SYSTEM
MICROSOFT FORTRAN
RADIO SHACK TRS-80.
LA EREREEEEEEEEREEEEREERERERERENEREZRERESEE}E®EXESE]
*+ VARIABLES "
N W KWW K KWW RN KWK KRN KR KRR KRR R KR KF N NR
AMAT(10,10) ORIGINAL MATRIX
RMAT(10,10) RESULT MATRIX
SCALAR VALUE OF SCALAR
NROWS NUMBER OF ROWS
NCOLS NUMBER OF COLUMNS
[ROW SUBSCRIPT
J COLUMN SUBSCRIPT

LR R R REREREEEREEEEEEEERERERLEEREXRERES:ESXZRXE.]

* SUBROUTINE *
L R SR)
DIMENSION AMAT(10,10),RMAT(10,10)
DO 120 | = 1, NROWS
DO 110 J = 1, NCOLS
RMAT(l,J) = SCALAR + AMAT(L,J)

sNeNsEoRsEsNoNoNoNoNoNoNoNsNoNoNoNsNoNeNoNeoNoReoNe)

170/INVITATION TO FORTRAN

110 CONTINUE
120 CONTINUE
RETURN
END

SCALAR MULTIPLICATION

The following program forms the product of ascalar and a matrix:

SUBROUTINE SMULT(SCALAR,NROWS,NCOLS,
AMAT,RMAT)

EEREEE R EEEEREEREEERESEREEREREEERESERSELS]

* 508B *
XXX R R R R EREREEEREREEEEEEREEEREEREREXEREREEXSZE]
AUTHOR
COPYRIGHT 1982
BY LAWRENCE MCNITT.
PURPOSE
MULTIPLY A SCALAR
AND A MATRIX.
SYSTEM
MICROSOFT FORTRAN
RADIO SHACK TRS-80.

[EEEEEEESEREEEEEREEEREEESESEEEEEREESERES]

* VARIABLES *
W W R I W I I A B R I I N I 3 3 NN N R
AMAT(10,10) ORIGINAL MATRIX
RMAT(10,10) RESULT MATRIX
SCALAR VALUE OF SCALAR
NROWS NUMBER OF ROWS
NCOLS NUMBER OF COLUMNS
| ROW SUBSCRIPT
J COLUMN SUBSCRIPT

X R E R R EEEEERE S EREEE S EEEREERESRNEESESE LSS LSS

+ SUBROUTINE *
LA E SR X EREEEEEREERSEEEEEEERE SR E LN LSRN N EXRZS.]
DIMENSION AMAT(10,10),RMAT(10,10)
DO 120 | = 1, NROWS
DO 110 J = 1, NCOLS
RMAT(1,J) = SCALAR * AMAT(l,J)

OO0 0O0000O0

Matrix methods/17 1

110 CONTINUE
120 CONTINUE
RETURN
END

TRANSPOSITION

The following subroutine transposes a matrix:

SUBROUTINE TRAN(NROWS,NCOLS,AMAT,RMAT)

LA R AR EEEREREEEEEEEEEEEEEEEE R EREERRESESSE]

* S08C *
LA R E R EREEREREEEEREEREERENREEREERERESERSEXRREZES]
AUTHOR
COPYRIGHT 1982
BY LAWRENCE MCNITT.
PURPOSE
MATRIX TRANSPOSITION.
SYSTEM
MICROSOFT FORTRAN
RADIO SHACK TRS-80.

LA E R R R R EREEEEEERE S R LSS EEEERENXEREE R KRR

* VARIABLES *
LA E R R EREEAEEEEEEREEEEEEEEEERE EEEEEEE X X
AMAT(10,10) ORIGINAL MATRIX
RMAT(10,10) RESULT MATRIX
NROWS NUMBER OF ROWS
NCOLS NUMBER OF COLUMNS
[ROW SUBSCRIPT
J COLUMN SUBSCRIPT
AR R R R R R R REREEREREERERESEEXSEEREREERIERERERERERX
* SUBROUTINE *
AR R EEREEEEEEEEEEEE R SR EEE R EEEEE K R R

DIMENSION AMAT(10,10),RMAT(10,10)

DO 120 | = 1, NROWS

DO 110 J = 1, NCOLS
RMAT(J,1) = AMAT(1,J)

sNeNeNoNoNosNosNoNoNoNsNeNeNoNeoNoReoNeoNeoNoNeNeoNe

110 CONTINUE
120 CONTINUE
RETURN

END

172/INVITATION TO FORTRAN

MATRIX ADDITION

The following subroutine performs matrix addition:

SUBROUTINE MADD(NROWS,NCOLS,AMAT,BMAT,RMAT)

LA R AR E RS EEE R EEREEEREEREEERERENXERESEESXEZES:]

* S08D *

LR R R R AR R R R R R R R RS R R E R R R X NN

AUTHOR

COPYRIGHT 1982

BY LAWRENCE MCNITT.
PURPOSE

ADDITION OF

TWO MATRICES.
SYSTEM

MICROSOFT FORTRAN

RADIO SHACK TRS-80.

LR R AR EREREREEEEEEEEREEREEREEEELERRESEESESZSZ]

* VARIABLES *

LA R R R R EEEEE R EEESERESEERERESRZEZE®RESJEZE}ES;]

AMAT(10,10) FIRST MATRIX
BMAT(10,10) SECOND MATRIX
RMAT(10,10) RESULT MATRIX
NROWS NUMBER OF ROWS
NCOLS NUMBER OF COLUMNS
| ROW SUBSCRIPT

J COLUMN SUBSCRIPT
WA R KKK KK KK KKK KRR KK KRR KK KKK
* SUBROUTINE *

OO0 OO0 OO0 OO0 OO0

R R W R KN W IR KR KKK N HH KRR KRR R NN R NN RN

DIMENSION AMAT(10,10),BMAT(10,10),RMAT(10,10)
DO 120 | = 1, NROWS
DO 110 J = 1, NCOLS
RMAT(1,J) = AMAT(l,J) + BMAT(1,J)

110 CONTINUE
120 CONTINUE
RETURN

END

Matrix methods/173

MATRIX MULTIPLICATION

The following subroutine performs the matrix multiplication:

COOO0OO0OO0OO0OO0 OO0

sEeNesNesNoNoNeoNsNeNeoNoNoNeNeNoNeNe!

SUBROUTINE MMULT(N1,N2,N3,AMAT,BMAT,RMAT)
EE R EEEEEEXEEEEEEEEREEEREEE RN EEEE R EE LN S
+ SO8E *
EE R EREEEEEEEEEERESEEEEEEEEEEEREE R X R XN EKEXR]
AUTHOR
COPYRIGHT 1982
BY LAWRENCE MCNITT.
PURPOSE
MATRIX MULTIPLICATION.
SYSTEM
MICROSOFT FORTRAN
RADIO SHACK TRS-80.
L3RI R I L IR R I O I R
* VARIABLES *
R R R R R R I R I I I IR I R
AMAT(10,10) FIRST MATRIX
BMAT(10,10) SECOND MATRIX
RMAT(10,10) RESULT MATRIX

N1 NUMBER OF ROWS OF FIRST MATRIX
N2 NUMBER OF COLUMNS OF FIRST MATRIX
AND ROWS OF SECOND MATRIX
N3 NUMBER OF COLUMNS OF SECOND MATRIX
[SUBSCRIPT
J SUBSCRIPT
K SUBSCRIPT
SUM SUM OF PRODUCTS
R IR K L R I I R R R L
*+ SUBROUTINE *

LR R R AR SRR E R EEREEERLEREREESERREEERZE-RJEEJ:JES:]

DIMENSION AMAT(10,10),BMAT(10,10),RMAT(10,10)
DO 130 | = 1, N1
DO120 J = 1, N3
SUM = 0.0
DO 110 K = 1, N2
SUM = SUM + AMAT(,K) * BMAT(K,J)

174/INVITATION TO FORTRAN

110 CONTINUE
RMAT(l,J) = SUM
120 CONTINUE
130 CONTINUE
RETURN
END
INVERSION

Gaussian elimination is a complex process. For further specifics
refer to a textbook on linear algebra or college mathematics. The
operations are time-consuming to carry out by hand, butare easily
performed by the computer. The operations for Gaussian elimi-
nation are done row by row, transforming the original matrix into

the inverse matrix.

The following subroutine uses Gaussian elimination to invert

a matrix:

OO0

SUBROUTINE MINV(NSIZE,AMAT,RMAT,DET)

LR ERREEEREEREEERESEERESEEREEEEEESESEES.

SO8F *
AR R R EREEEEREREREEEEEEEELEEESERESERNEJEES:.;Z
AUTHOR

COPYRIGHT 1982

BY LAWRENCE MCNITT.
PURPOSE

MATRIX INVERSION.
SYSTEM

MICROSOFT FORTRAN

RADIO SHACK TRS-80.
EE AR TR TR TR T T R I I T I L 2R
*» VARIABLES *
ECE R 0 2 I I A R I O R R R IR
AMAT(10,10) ORIGINAL MATRIX
RMAT(10,10) RESULT MATRIX

LROW({10) LOCATION VECTOR FOR ROWS
ROW(10) PIVOT ROW

coL(10 PIVOT COLUMN

DET DETERMINANT

NSIZE MATRIX DIMENSION

OO0 oNeoNeNoNoNoNoNoNoNoNoNeoNe]

[eNeoNe!

Matrix methods/175

| SUBSCRIPT
J SUBSCRIPT
K SUBSCRIPT

IPIVOT PIVOT ROW AND COLUMN INDEX
LPIVOT LOCATION OF PIVOT ROW
PIVOT PIVOT ELEMENT

IROW ROW INDEX
JROW ROW INDEX
TEMP TEMPORARY VALUE

LTEMP TEMPORARY VALUE

AR R R R R EEEEREEEEEEEEEEE R R ERIEIIEPE I

* SUBROUTINE *
W W W W N NN R H W R KK N KWW W NN RN NN K KRR NN
DIMENSION AMAT(10,10),RMAT(10,10),

2 COL(10),ROW(10),LROW(10)

* INITIALIZE WORK AREAS »

DO 120 | = 1, NSIZE
DO 110 J = 1, NSIZE
RMAT(1,J) = AMAT(1,J)
110 CONTINUE
120 CONTINUE
DO 130 | = 1, NSIZE
LROW(I) = |
130 CONTINUE

AR R R R R R R R EEEE R EE R R R I S S R)

* GAUSSIAN ELIMINATION *
HH K W K KW R KWK KK K R KKK KKK KKK KK KRR RN H K ®
DET = 1.0

DO 190 IPIVOT = 1, NSIZE

LR AR R R EREEEEERE R R TR ERE RN R

* SELECT PIVOT ROW *
LR AR R R E R EEREE R R TR R R R RE
PIVOT = 0.0
DO 140 | = IPIVOT, NSIZE

J = LROW(l)

TEMP = RMAT(J,IPIVOT)

IF (ABS(TEMP).LLE.ABS(PIVOT)) GO TO 140

PIVOT = TEMP
IROW = |

176/INVITATION TO FORTRAN

140 CONTINUE
LPIVOT = LROW(IROW)

EE X R R R R R R EE R E R R EERE R R E B RS

+ SAVE PIVOT COLUMN *

IEEERE R R ESEENEE X EEREXKXENESEEES]

DO 145 | = 1, NSIZE
COL(l} = RMAT(LIPIVOT)
RMAT(LIPIVOT) = 0.0
145 CONTINUE
RMAT({LPIVOT,IPIVOT) = 1.0
LR R R R R R R E R E R EEEREEEIE R LR

CHECK FOR SINGULARITY «
EEE R R e R R LR R
DET = DET * PIVOT

IF (DET.EQ.0.0) GO TO 999

IR RE R E R EE XN N EEEXEERENEXESSZSES]

* TRANSFORM PIVOT ROW *

EERE X E R R R KR E R EEERENEEESE LSRR

LTEMP = LROW(IPIVOT)

LROW(IPIVOT) = LROW(IROW)

LROW(IROW) = LTEMP

DO 150 J = 1, NSIZE
ROW() = RMAT(LPIVOT,J) / PIVOT
RMAT(LPIVOT,J) = ROW(J)

150 CONTINUE
EE R R RCE R R R R R KR R R R R R

* SWEEP MATRIX *

EEER R R X R R R R R R R R R R O

DO 170 | = 1, NSIZE

IF (1.LEQ.LPIVOT) GO TO 170

TEMP = COL{l)

DO 160 J = 1, NSIZE

RMAT(l,J) = RMAT(l,J) - TEMP » ROW(J)

160 CONTINUE
170 CONTINUE
190 CONTINUE

IEEREEEEEEEE SIS E SRS AR RS SRS SRS SR EES

* INTERCHANGE ROWS AND COLUMNS =

Ak W KK W K KWK KN KKK KR KR KR KWK KR KRR FF

OO0

OO0

OO0

OO0

OO0

Matrix methods/177

DO 940 | = 1, NSIZE

IROW = LROW(I)

IF (IROW.EQ.l) GO TO 940

DO 910 J = |, NSIZE
JROW = LROW{)
IF (JROW.NE.I} GO TO 910
LROW(J) = IROW
LROW(l) = JROW

GO TO 920
910 CONTINUE
920 DO 925 J = 1, NSIZE

TEMP = RMAT(IROW,J)
RMAT(IROW,J) = RMAT(JROW,J)
RMAT(JROW,J) = TEMP
925 CONTINUE
DO 930 J = 1, NSIZE
TEMP = RMAT(J,IROW)
RMAT({J,IROW) = RMAT(J,JROW)
RMAT{J,JROW) = TEMP

930 CONTINUE
940 CONTINUE
999 RETURN
END
MATRIX INPUT

The following is a general-purpose read routine for obtaining
matrix information from the terminal:

SUBROUTINE MREAD(NROWS,NCOLS,RMAT)

LR R L EEEREREEEEEEEEEEEEEEEEEEEEEEEEES
* S08G *
LA R AR KRR EREEEAEEEEREEEEEREREEREREREEESXNE)
AUTHOR

COPYRIGHT 1982

BY LAWRENCE MCNITT.
PURPOSE

INTERACTIVE DATA

ENTRY FOR MATRIX.

OOCCOO0O0O0O0O00

178/INVITATION TO FORTRAN

OO0 O0O00

OO0

SYSTEM

MICROSOFT FORTRAN
RADIO SHACK TRS-80,

Verbs i0s Oy ss e

e T T T T E R R T E R E R Y R E R EE EEEEEER S LR

» VARIABLES *

RMAT(10,10) RESULT MATRIX
NROWS NUMBER OF ROWS
NCOLS NUMBER OF COLUMNS
[ROW SUBSCRIPT
J COLUMN SUBSCRIPT
PR R YT EE R EEEE R R R R R E R R E X R R X EE RS
* SUBROUTINE *
EE S S I I R I O R R U R R R LR R A R R
DIMENSION RMAT(10,10)
WRITE(1,110)
110 FORMAT(/* ENTER VALUES FOR MATRIX'’
2 //* NUMBER OF ROWS ?)
READ(1,120) NROWS
120 FORMAT(12)
WRITE(1,130)
130 FORMAT(’ NUMBER OF COLUMNS ? ')
READ(1,120) NCOLS

[T EEEEEEE R EREE R EE S EEEERE LR SRR EESRELSS

*» GET MATRIX VALUES *

WRITE(1,210)
210 FORMAT(* VALUE FOR' /)
DO 260 | = 1, NROWS
WRITE(1,220) |
220 FORMAT(" ROW *,12/)
DO 250 J = 1, NCOLS
WRITE(1,230) J

230 FORMAT(" cOL i2/? ")
READ(1,240) RMAT(i,J)
240 FORMAT(F10.0)
250 CONTINUE
260 CONTINUE
RETURN

END

Matrix methods/179

MATRIX PRINT SUBROUTINE

The following is a general-purpose routine for printing the con-
tents of a subroutine:

sNeoNeoNoNsNeNsNeoNsNeNeoNoNesNoNoNesNeNoNeNoNoNoNe N

SUBROUTINE MPRINT(NROWS,NCOLS,RMAT)

IEEXE R EE R EREEREERESEEREEREREEREREERESESSES.S

x SO08H *
LR R R X R R R R EE R E R R R R EE XX RREERERE®EJEJEXEJESE.]
AUTHOR
COPYRIGHT 1982
BY LAWRENCE MCNITT.
PURPOSE
PRINT CONTENTS
OF DATA MATRIX.
SYSTEM
MICROSOFT FORTRAN
RADIO SHACK TRS-80
MODEL I11.
ER R R IR R R R R R R KRR R R R R R R R R R R R R R E R R
» VARIABLES *
L EEE S EREREEEEENEEEEREREEERER XX ENREREREEJEZEEXE.]
RMAT(10,10) DATA MATRIX
NROWS NUMBER OF ROWS
NCOLS NUMBER OF COLUMNS
[ROW SUBSCRIPT
J COLUMN SUBSCRIPT

E R R R R R R R R R R R R R R R R K R R R

*+ SUBROUTINE *
EE R I R R R R R R R R K I R R KR KRR
DIMENSION RMAT(10,10)
WRITE(2,110)
110 FORMAT(///' CONTENTS OF MATRIX’)
DO 140 | = 1, NROWS
WRITE(2,120) |

120 FORMAT(/" ROW ’,12)
WRITE(2,130) (RMAT(1,J),J=1,NCOLS)
130 FORMAT(5F16.6)
140 CONTINUE
RETURN

END

180/INVITATION TO FORTRAN

MATRIX MOVE

The following subroutine moves a matrix from one location

to another:

OO0 OO0 000 OO0 OO0

SUBROUTINE MOVE(NROWS,NCOLS,AMAT,RMAT)

LE R R R R R EREERLESEERESSESESSERREEEE IR EE L]

* S08! *

AR SRR R EE EEEREREREEREREEERLEEEEEEREERESE RS

AUTHOR

COPYRIGHT 1982

BY LAWRENCE MCNITT.
PURPOSE

MOVE ONE MATRIX TO

ANOTHER LOCATION.
SYSTEM

MICROSOFT FORTRAN

RAD!0 SHACK TRS-80.

[EEERREEEREEEEE RS EE R EREEEREEREREEEERSERESE;]

»+ VARIABLES *
EE R ERREEFFEEEEEEEEREEEEEREERREX XX EREXRRXE.]
AMAT(10,10) ORIGINAL MATRIX
RMAT(10,10) DESTINATION
NROWS NUMBER OF ROWS
NCOLS NUMBER OF COLUMNS
| ROW SUBSCRIPT
J COLUMN SUBSCRIPT

ER R R EIRE R RN R R R R R R R R R R R R R

* SUBROUTINE *

EEEREEEEREEREEEEEREEREESEESEEREESESEEJLSESEJEIS,

DIMENSION AMAT(10,10),RMAT(10,10)
DO 120 | = 1, NROWS
DO 110 J = 1, NCOLS
RMAT(1,J) = AMAT(l,J)

110 CONTINUE
120 CONTINUE
RETURN

END

83

Matrix methods/181

General Purpose Program

MATRIX MANIPULATION

Most programs using the subroutine tibrary perform their own
input of the data and the printing of the results. They use only
those subroutines needed for the analysis. Top-down design and
modular programming techniques encourage the use of sub-
routines for data entry and printing as well.

GENERALIZED MATRIX PROCESSOR

This section illustrates a general-purpose program for manipulat-
ing matrices. It is primitive in nature. Each matrix must contain
no more than 10 rows and 10 columns. The program can store
no more than four matrices at one time.

The user can enter values for a matrix from the keyboard,
control the matrix processing, and display the contents of any
of the four matrices. The purpose is to show how to incorporate
the subroutines into working programs and to test the operation
of the subroutines.

PROGRAM

The following program is a general-purpose program for mani-
pulating matrices:

PROGRAM P0803

oW K N R W W W RN W N KK KRR NN KRR RN KK KN NN NN
» PO803 »
Lk K K R I R L R A IR I YR R R R RS N NN Y
AUTHOR

COPYRIGHT 1982

BY LAWRENCE MCNITT.
PURPOSE

GENERAL-PURPOSE

MATRIX PROCESSOR.
SYSTEM

MICROSOFT FORTRAN

OO0OO0OO0O0O0O00O00

182/INVITATION TO FORTRAN

0000000000000 0O0O0OO0O0

RADIO SHACK TRS-80.

M R A EEEX S E R R R R R R R KRR R

+ ORGA

NIZATION *

IXEEETEEFEEEREEXEE R E R ERE R E RS R EEEE LS EER

INITIAL MESSAGE
COMMAND

HELP

SCALAR ADDITION
MATRIX ADDITION
SCALAR MULTIPLICATION
MATRIX MULTIPLICATION
TRANSPOSITION
INVERSION

MOVE
READ
PRINT

FINAL MESSAGE

IR REFTFEFEEIEIEEEEEEEEREEERE R SR EREEE R RSN

» VARIABLES *
PETEEEEEEEEEELEREE R ERE EEXE R E R B EEX BN B EXE.]
A(10,10) MATRIX 1
B(10,10) MATRIX 2
C(10,10) MATRIX 3
D(10,10) MATRIX 4
X(10,10) TEMPORARY MATRIX
Y(10,50) TEMPORARY MATRIX
NROW({4) VECTOR OF ROW DIMENSIONS
NCOLV(4) VECTOR OF COLUMN DIMENSIONS
IRESP USER COMMAND AND OPERANDS
NROWS NUMBER OF ROWS
NCOLS NUMBER OF COLUMNS
NROWS2 NUMBER OF ROWS
NCOLS2 NUMBER OF COLUMNS
ICODE CODE NUMBER FOR COMMAND
DET DETERMINANT FROM INVERSION
MATI INDEX FOR FIRST OPERAND
MAT2 INDEX FOR SECOND OPERAND
MAT3 INDEX FOR THIRD OPERAND
SCALAR VALUE OF SCALAR
PEXEREREEEREEREEEREEEEEEREEEREEE R EXEEJEXJX}J;.]
+ INITIAL MESSAGE "

XX R R ER RN X EEXEREEREERREERREESEESESKESZ 3]

C
C
C

Matrix methods/183

DIMENSION A(10,10),B(10,10),C(10,10),D(10,10),

2 X(10,10),Y(10,10),NROWV(4),NCOLV(4)
WRITE(1,110)

110 FORMAT(/ PROGRAM P0Q803’

2 /' GENERAL-PURPOSE MATRIX'

3 /* MANIPULATIONS.'

4 //* GIVE COMMAND HELP’

5 /* TO DISPLAY INSTRUCTIONS.")

LEE X ERE X EREERREEERERERESEEERSSESEESEE LRSS

« COMMAND »
IEREEREERERXEREREREREEEEXEERJEEKENEJEJR}EJEJESE.}
200 WRITE(1,210)
210 FORMAT(/* COMMAND ?)
READ(1,220) IRESP, ICODE
220 FORMAT(2A2)
ICODE = 0
IF (IRESP.EQ'HE’) ICODE =
IF (IRESP.EQ.'SA") ICODE =
IF (IRESP.EQ.'MA’) ICODE =
IF (IRESP.EQ.'SM’) ICODE =
IF (IRESP.EQ.MM’) ICODE =
IF (IRESP.EQ.'TR’) ICODE =
IF (IRESP.EQ.IN’) ICODE =
IF (IRESP.EQ.MO’) ICODE =
IF (IRESP.EQ.'RE") ICODE =
IF (IRESP.EQ.WR’) ICODE = 10
IF (IRESP.EQ.'ST’) ICODE = 11
GO TO (1000,2000,3000,4000,5000,6000,7000,

©oO~NO s WN

2 8000,9000,10000,11000), ICODE
WRITE(1,230)
230 FORMAT(/ INVALID COMMAND NAME’)
GO TO 200
EIE I I IR I R R R I I R R R
» HELP *

LR R
1000 WRITE(1,1010)
1010 FORMAT(///* COMMAND EXPLANATION’
/" HELP DISPLAY INSTRUCTIONS’
/" SADD SCALAR ADDITION’
MADD MATRIX ADDITION’
/" SMLT SCALAR MULTIPLICATION’
/ MMLT MATRIX MULTIPLICATION’)

oo b wWwN
=

184/INVITATION TO FORTRAN

WRITE(1,1015)
1015 FORMAT{’ TRAN TRANSPOSITION'
2 [INVT INVERSION'
3 // MOVE MOVE MATRIX’
4 /" READ READ MATRIX’
5 /" WRIT WRITE MATRIX’
6 /' STOP TERMINATE PROGRAM'
7 / TYPE THE VALUE 1 TO CONTINUE)

READ(1,1020) RESP
1020 FORMAT(4A4)
WRITE(1,1030)
1030 FORMAT(/* THE FOUR AVAILABLE MATRICES ARE’
2 /' NUMBERED 1, 2,3, AND 4. THE’
3 /* COMMAND NAME CONTAINS FOUR LETTERS.")
GO TO 200

T EE RS EREREREENEREEREREEREEEJESEJIIEERESERES.

» SCALAR ADDITION *
PR T E R R R R E R R R R R R KRR R
2000 WRITE(1,2010)
2010 FORMAT(/* SCALAR ADDITION’
2 //* MATRIX NUMBER ? ')
READ(1,2020) MAT1
2020 FORMAT(I1)
IF (MAT1.LE.4) GO TO 2100
WRITE(1,2030)
2030 FORMAT(/ INVALID OPERAND’
2 //* OPERATION NOT PERFORMED’)
GO TO 2999
2100 WRITE(1,2110)
2110 FORMAT(/ VALUE OF SCALAR ?)
READ(1,2120) SCALAR
2120 FORMAT(F10.0)
NROWS = NROWV(MAT1)
NCOLS = NCOLV(MAT1)
IF (MAT1.EQ.1) CALL SADD(SCALAR,NROWS,NCOLS,
AA)
IF (MAT1.EQ.2) CALL SADD(SCALAR,NROWS,NCOLS,
B,B)
IF (MAT1.EQ.3) CALL SADD(SCALAR,NROWS,NCOLS,
C.C)
IF (MAT1.EQ.4) CALL SADD(SCALAR,NROWS,NCOLS,
D,D)

OO0

OO0

Matrix methods/ 185

2899 CONTINUE
GO TO 200

EE X E X R E R X ERERRE SRR ERENREEXEEEEBEJENSEJE LS S.]

* MATRIX ADDITION *
WX KK H RN KN E N KRR K H R KRR R R R KN KK IR RN
3000 WRITE(1,3010)
3010 FORMAT(/ MATRIX ADDITION’
2 /A=A+ B
3 //* NUMBER OF MATRIX A ?)
READ(1,3020) MAT2
3020 FORMAT(I1)
WRITE(1,3030)
3030 FORMAT(* NUMBER OF MATRIX B ? ‘)
READ(1,3020) MAT1
IF ((MAT1.LE.4).AND.(MAT2.LE.4)
2 AND.(NROWV(MAT1).EQ.NROWV(MAT2))
AND.(NCOLV(MAT1).EQ.NCOLV(MAT2)))
4 GO TO 3100
WRITE(1,3040)
3040 FORMAT(/ INVALID OPERAND’
2 /* OPERATION NOT PERFORMED’)
GO TO 3999
3100 NROWS = NROWV(MAT1)
NCOLS = NCOLV(MAT1)
IF (MAT1.EQ.1) CALL MOVE(NROWS,NCOLS,A,X)
IF (MAT1.EQ.2) CALL MOVE(NROWS,NCOLS,B,X)
IF (MAT1.EQ.3) CALL MOVE(NROWS,NCOLS,C,X)
IF (MAT1.EQ.4) CALL MOVE(NROWS,NCOLS,D,X)
IF (MAT2.EQ.1) CALL MADD(NROWS,NCOLS,X,A,A)
IF (MAT2.EQ.2) CALL MADD(NROWS,NCOLS,X,B,B)
IF (MAT2.EQ.3) CALL MADD(NROWS,NCOLS,X,C,C)
IF (MAT2.EQ.4) CALL MADD(NROWS,NCOLS,X,D,D)
3999 CONTINUE
GO TO 200

IR R EEREREEREEEEEEEEEEEEEEREEREERERSESES,]

*+ SCALAR MULTIPLICATION *
IEEERE R EEEEEEEEEE R E R XX E X E N XX EREEEREEXE.]
4000 WRITE(1,4010)
4010 FORMAT(/* SCALAR MULTIPLY"
2 //* MATRIX NUMBER ? ')
READ(1,4020) MAT1
4020 FORMAT(I1)

w

186/INVITATION TO FORTRAN

OO0

4999

IF (MAT1.LE.4) GO TO 4100
WRITE(1,4030)
FORMAT{/' INVALID OPERAND’
/' OPERATION NOT PERFORMED’)
GO TO 4999
WRITE(1,4110)
FORMAT(/* VALUE OF SCALAR ? ')
READ(1,4120) SCALAR
FORMAT(F10.0)
NROWS = NROWV(MAT1)
NCOLS = NCOLV(MAT1)
IF (MAT1.EQ.1) CALL SMULT(SCALAR,NROWS,NCOLS,
AA)
IF (MAT1.EQ.2) CALL SMULT(SCALAR,NROWS,NCOLS,
B,B)
IF (MAT1.EQ.3) CALL SMULT(SCALAR,NROWS,NCOLS,
C.C)
IF (MAT1.EQ.4) CALL SMULT(SCALAR,NROWS,NCOLS,
D,D)
CONTINUE
GO TO 200

LR A R R RS R EREEEEEEAE R AR R ERESEREESSEEEXES.

*

MATRIX MULTIPLICATION *

IEE R R EEESEEEEEAEEEEREERSEEEREEERERSEERX:E:]

5000

5010
2
3

5020

5030

5040

WRITE(1,5010)
FORMAT(/ MATRIX MULTIPLICATION’
/" A=B=*C
//" NUMBER OF MATRIX A ?)
READ(1,5020) MAT3
FORMAT(I1)
WRITE(1,5030)
FORMAT(* NUMBER OF MATRIXB ?)
READ(1,5020) MAT1
WRITE(1,5040)
FORMAT(* NUMBER OF MATRIX C ?)
READ(1,5020) MAT2
NROWS = NROWV(MAT1)

NCOLS = NCOLV(MAT1)
NROWS2 = NROWV(MAT2)
NCOLS2 = NCOLV(MAT2)

IF ((MAT1.LE.4).AND.(MAT2.LE.4).AND.(MAT3.LE.4)

Matrix methods/187

2 .AND.(NCOLS.EQ.NROWS2)) GO TO 5100
WRITE(1,5050)
5050 FORMAT(/' INVALID OPERAND’
2 /' OPERATION NOT PERFORMED’)
GO TO 5999
5100 IF {MAT1.EQ.1) CALL MOVE(NROWS,NCOLS,A, X)
IF (MAT1.EQ.2) CALL MOVE(NROWS,NCOLS,B,X)
IF (MAT1.EQ.3) CALL MOVE(NROWS,NCOLS,C,X)
IF (MAT1.EQ4) CALL MOVE{(NROWS,NCOLS,D,X)

IF (MAT2.EQ.1)

2 CALL MMULT(NROWS,NCOLS,NCOLS2,X,A,Y)
IF (MAT2.EQ.2)

2 CALL MMULT(NROWS,NCOLS,NCOLS2,X,B,Y)
IF (MAT2.EQ.3)

2 CALL MMULT(NROWS,NCOLS,NCOLS2,X,C,Y)
IF (MAT2.EQ.4)

2 CALL MMULT(NROWS,NCOLS,NCOLS2,X,D,Y)

IF (MAT3.EQ.1) CALL MOVE(NROWS,NCOLS2,Y,A)
{F (MAT3.EQ.2) CALL MOVE(NROWS,NCOLS2,Y,B)
IF (MAT3.EQ.3) CALL MOVE(NROWS,NCOLS2,Y,C)
IF (MAT3.EQ.4) CALL MOVE(NROWS,NCOLS2,Y,D)

NROWV(MAT3) = NROWS
NCOLV(MAT3) = NCOLS2
5999 CONTINUE
GO TO 200
X EERREEREEEREREEREREZR XX EEIEREXXNESSEREEZESE;X]
+ TRANSPOSITION *

IEEEEEREREEEREEEEEEEEEEEEEEEEEEEREESESE]

6000 WRITE(1,6010)
6010 FORMAT(/* TRANSPOSITION’
2 // A = TRN(B)'
3 /I NUMBER OF MATRIX A ? ')
READ(1,6020) MAT2
6020 FORMATI(I1)
WRITE(1,6030)
6030 FORMAT(* NUMBER OF MATRIX B ? ')
READ(1,6020) MAT1
IF (MAT1.LE.4.AND.MAT2.LE.4) GO TO 6100
WRITE(1,6040)
6040 FORMAT(/* INVALID RESPONSE’
2 /' OPERATION NOT PERFORMED’)

188/INVITATION TO FORTRAN

6100

6999

*

OO0

7000
7010

7020

7030

7040

7100

7120

2
3

GO TO 6999
NROWS = NROWV(MAT1)
NCOLS = NCOLV(VIATI)

IF
IF
IF
iF
IF
IF
IF
IF

(MAT1.EQ.1)
{(MAT1.EQ.2)
(MAT1.EQ.3)
(MAT1.EQ.4)
{(MAT2.EQ.1)
(MAT2.EQ.2)
(MAT2.EQ.3)
(MAT2.EQ4)

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

TRAN{(NROWS,NCOLS,A,X)
TRAN(NROWS,NCOLS,B,X)
TRAN(NROWS,NCOLS,C,X)
TRAN{NROWS,NCOLS,D,X)
MOVE(NCOLS,NROWS,X,A)
MOVE(NCOLS,NROWS,X,B)
MOVE(NCOLS,NROWS, X,C)
MOVE(NCOLS,NROWS,X,D)

NROWV(MAT2) = NCOLS
NCOLV(MAT2)
CONTINUE
GO TO 200

INVERSION

WRITE(1,7010)
FORMAT(/* MATRIX INVERSION'

/" A = INV(B)

/I' NUMBER OF MATRIX A ? ')
READ(1,7020) MAT2
FORMAT(i1)
WRITE(1,7030)
FORMAT(" NUMBER OF MATRIXB ? ')
READ{1,7020) MAT1
NROWS = NROWV(MAT1)

NCOLS = NCOLV(MAT1)

IF ((MAT1.LE4).AND.(NROWS.EQ.NCOLS))

GO TO 7100

WRITE(1,7040)
FORMAT(/" INVALID OPERAND’

/' OPERATION NOT PERFORMED’)
GO TO 7999
IF (MAT1.EQ.1) CALL MINV(NROWS,A,X,DET)
IF (MAT1.EQ.2) CALL MINV(NROWS,B,X,DET)
IF (MAT1.EQ.3) CALL MINV(NROWS,C,X,DET)
IF (MAT1.EQ.4) CALL MINV(NROWS,D,X,DET)
WRITE(1,7120) DET
FORMAT(/ DETERMINANT ’,F15.5)
IF (DET.EQ.0.0) GO TO 7999

= NROWS

M N I K W KN NN R NN KH K R K KKK KR NN NN R

*

R R R R R R SRR R R R R R R R R R

OO0

Cc
C
C

7999

Matrix methods/189

IF (MAT2.EQ.1) CALL MOVE(NROWS,NROWS,X,A)
IF (MAT2.EQ.2) CALL MOVE(NROWS,NROWS,X,B)
IF (MAT2.EQ.3) CALL MOVE(NROWS,NROWS,X,C)
IF (MAT2.EQ.4) CALL MOVE(NROWS,NROWS,X,D)
NROWV(MAT2) = NROWS

NCOLV(MAT2) NROWS

CONTINUE

GO TO 200

EREEEEEEEEEEEEEEEEEEEEEEEEESEESEEEEREES

*

MOVE *

EEXEE EREEEREEESEEREEREERSEESREESEEELELERESS

8000

8010
2
3

8020

8030

8040

8100

8999

WRITE(1,8010)
FORMAT(/ MOVE MATRIX'

/" A=18

//* NUMBER FOR MATRIX A ?)
READ(1,8020) MAT2
FORMAT(I1)
WRITE(1,8030)
FORMAT(" NUMBER FOR MATRIX B ? ')
READ(1,8020) MAT1
tF (MAT1.LE.4) GO TO 8100
WRITE(1,8040)
FORMAT(/' INVALID OPERAND’

/* OPERATION NOT PERFORMED")
GO TO 8999
NROWS = NROWV(MAT1)
NCOLS = NCOLV(MAT1)
IF (MAT1.EQ.1) CALL MOVE(NROWS,NCOLS,A,X)
IF (MAT1.EQ.2) CALL MOVE(NROWS,NCOLS,B,X)
IF (MAT1.EQ.3) CALL MOVE(NROWS,NCOLS,C,X)
IF (MAT1.EQ4) CALL MOVE(NROWS,NCOLS,D,X)
IF (MAT2.EQ.1) CALL MOVE(NROWS,NCOLS,X,A)
IF (MAT2.EQ.2) CALL MOVE(NROWS,NCOLS,X,B)
IF (MAT2.EQ.3) CALL MOVE(NROWS,NCOLS,X,C)
IF (MAT2.EQ.4) CALL MOVE(NROWS,NCOLS,X,D)
NROWV(MAT2) = NROWS
NCOLV(MAT2) = NCOLS
CONTINUE
GO TO 200

EEXEREE R EEREREEREERRERERERSEEERESERSEJEESJE.]

*

READ *

E R

190/INVITATION TO FORTRAN

9000
9010

9020

9060

9100

9999

)
ra

WRITE(1,9010)
FORMAT(/* READ MATRIX’
//* NUMBER OF MATRIX 7 1)
READ(1,9020) MAT1
FORMAT(I1)
IF (MAT1.LE.4) GO TO 9100
WRITE(1,9060)
FORMAT(/* INVALID PARAMETERS’

/* OPERATION NOT PERFORMED’)

GO TO 9999

IF (MAT1.EQ.1) CALL MREAD(NROWS,NCOLS,A)
IF (MAT1.EQ.2) CALL MREAD(NROWS,NCOLS,B)
IF (MAT1.EQ.3) CALL MREAD(NROWS,NCOLS,C)
IF (MAT1.EQ4) CALL MREAD(NROWS,NCOLS,D)

NROWV(MAT1) = NROWS
NCOLV(MAT1) = NCOLS
CONTINUE
GO TO 200

C LA R SRR RS L RS EEEEE SR EEEE R EEEEEREEEREEX R

C =

WRITE *

C LA R A RS R ELEEEEEEREEEEEEE S EEEEEEEEEX R R

10000
10010
2

10020

10030

10100
10110

10999

WRITE(1,10010)
FORMAT(/* WRITE MATRIX'
/I NUMBER OF MATRIX ?)
READ(1,10020) MAT1
FORMATI(i1)
NROWS = NROWV(MAT1)
NCOLS = NCOLV(MAT1)
IF ((MAT1.LE.4).AND.(NROWS.LE.10)
.AND.{NCOLS.LE.10)) GO TO 10100
WRITE(1,10030)
FORMAT(/* INVALID OPERAND’

/" OPERATION NOT PERFORMED’)

GO TO 10999
WRITE(2,10110) MAT1
FORMAT{///' MATRIX ",12)

IF (MAT1.EQ.1) CALL MPRINT(NROWS,NCOLS,A)
IF (MAT1.EQ.2) CALL MPRINT(NROWS,NCOLS,B)
IF (MAT1.EQ.3) CALL MPRINT({NROWS,NCOLS,C)
IF (MAT1.EQ.4) CALL MPRINT(NROWS,NCOLS,D)

CONTINUE
GO TO 200

Matrix methods/191

C Y T E R EE AR E X R R R R EEE R ER R R

Cc FINAL MESSAGE *

C R XIS T E SRR E R R R R R E R R ER R R

11000 WRITE(1,11010)

11010 FORMAT{(/* END OF PROGRAM' /)
STOP
END

TEST RUN |

The following test run illustrates the matrix transposition, and
matrix multiplication operations:

PROGRAM P0803

GENERAL-PURPOSE
MATRIX MANIPULATIONS.

GIVE COMMAND HELP
TO DISPLAY INSTRUCTIONS.

COMMAND ? HELP

COMMAND EXPLANATION
HELP DISPLAY INSTRUCTIONS
SADD SCALAR ADDITION

MADD MATRIX ADDITION

SMLT SCALAR MULTIPLICATION
MMLT MATRIX MULTIPLICATION
TRAN TRANSPOSITION

INVT INVERSION

MOVE MOVE MATRIX

READ READ MATRIX

WRIT WRITE MATRIX

STOP TERMINATE PROGRAM

TYPE THE VALUE 1 TO CONTINUE 1

THE FOUR AVAILABLE MATRICES ARE
NUMBERED 1, 2, 3, AND 4. THE
COMMAND NAME CONTAINS FOUR LETTERS.

COMMAND ? READ

READ MATRIX

NUMBER OF MATRIX ? 1
ENTER VALUES FOR MATRIX

192/INVITATION TO FORTRAN

NUMBER OF ROWS ? 2
NUMBER OF COLUMNS ? 3
VALUE FOR
ROW 1

CoL 1?1

CcoL 27?2

cCoL 37?3
ROW 2

CoOL 17?4

COL 27?5

COL 37?6
COMMAND ? TRAN

TRANSPOSITION
A = TRN(B)

NUMBER OF MATRIX A ? 2
NUMBER OF MATRIX B ? 1
COMMAND ? WRIT

WRITE MATRIX

NUMBER OF MATRIX ? 2
COMMAND ? MMLT

MATRIX MULTIPLICATION
A=B+*»C

NUMBER OF MATRIX A ? 3
NUMBER OF MATRIXB ? 1
NUMBER OF MATRIXC ? 2
COMMAND ? WRIT

WRIT MATRIX

NUMBER OF MATRIX ? 3
COMMAND ? STOP

END OF PROGRAM

Matrix methods/193

PRINTED OUTPUT

The following is the printed output from the test run:
MATRIX 2

CONTENTS OF MATRIX

ROW 1

1.000000 4.000000
ROW 2

2.000000 5.000000
ROW 3

3.000000 6.000000
MATRIX 3

CONTENTS OF MATRIX

ROW 1

14.000000 32.000000
ROW 2

32.000000 77.000000
TEST RUN ||

The following test run illustrates the move command, the scalar
add and the scalar multiply:

PROGRAM P0803

GENERAL-PURPOSE MATRIX
MANIPULATIONS.

GIVE COMMAND HELP
TO DISPLAY INSTRUCTIONS.

COMMAND ? READ

READ MATRIX

NUMBER OF MATRIX ? 1
ENTER VALUES FOR MATRIX

194/INVITATION TO FORTRAN

NUMBER OF ROWS ? 2
NUMBER OF COLUMNS ? 3
VALUE FOR
ROW1

coL 1?21

CoL 27?2

CoOL 37?3
ROW 2

CcoL 17?4

CoL 27?5

COL 3?6
COMMAND ? WRIT
WRITE MATRIX
NUMBER OF MATRIX ? 1
COMMAND ? MOVE

MOVE MATRIX
A=8

NUMBER FOR MATRIX A ? 2
NUMBER FOR MATRIXB ? 1
COMMAND ? SADD
SCALAR ADDITION

MATRIX NUMBER ? 2
VALUE OF SCALAR ? 5
COMMAND ? WRIT

WRITE MATRIX

NUMBER OF MATRIX ? 2
COMMAND ? SMLT

SCALAR MULTIPLICATION
NUMBER OF MATRIX ? 2
VALUE OF SCALAR ? 2
COMMAND ? WRIT

WRITE MATRIX

Matrix methods/195

NUMBER OF MATRIX ? 2
COMMAND ? STOP
END OF PROGRAM

PRINTED OUTPUT

The following printed output resulted from the test run:
MATRIX 1

CONTENTS OF MATRIX

ROW 1

1.000000 2.000000 3.000000
ROW 2

4.000000 5.000000 6.000000
MATRIX 2

CONTENTS OF MATRIX

ROW 1

6.000000 7.000000 8.000000
ROW 2

9.000000 10.000000 11.000000
MATRIX 3

CONTENTS OF MATRIX

ROW 1

12.000000 14.000000 16.000000
ROW 2

18.000000 20.000000 22.000000
TEST RUN (1

This test run inverts a square matrix and tests the inverse by taking
the product of the original matrix and its inverse:

PROGRAM P0803

GENERAL-PURPOSE MATRIX
MANIPULATIONS.

196/INVITATION TO FORTRAN

GIVE COMMAND HELP
TO DISPLAY INSTRUCTIONS.

COMMAND ? READ
READ MATRIX
NUMBER OF MATRIX ? 1
ENTER VALUES FOR MATRIX
NUMBER OF ROWS ? 2
NUMBER OF COLUMNS ? 2
VALUE FOR
ROW 1

coL 1?74

coL 27?2
ROW 2

coL17?2

cCoL 27?4
COMMAND ? INVT

MATRIX INVERSION
A = INV(B)

NUMBER OF MATRIX A ? 2
NUMBER OF MATRIXB ? 1
DETERMINANT 12.00000
COMMAND ? MMLT

MATRIX MULTIPLICATION
A=B+C

NUMBER OF MATRIX A ? 3
NUMBER OF MATRIXB ? 1
NUMBER OF MATRIXC ? 2
COMMAND ? WRIT

WRITE MATRIX

NUMBER OF MATRIX ? 1
COMMAND ? WRIT

WRITE MATRIX

NUMBER OF MATRIX ? 2
COMMAND ? WRIT
WRITE MATRIX

NUMBER OF MATRIX ? 3
COMMAND ? STOP

END OF PROGRAM

PRINTED OUTPUT

Matrix methods/197

The following printed output results from the test run:

MATRIX 1

CONTENTS OF MATRIX
ROW 1

4.000000
ROW 2

2.000000
MATRIX 2

CONTENTS OF MATRIX

ROW 1
.333333

ROW 2
-.166667

MATRIX 3

CONTENTS OF MATRIX

ROW 1
1.000000

ROW 2
0.000000

2.000000

4.000000

-.166667

333333

0.000000

1.000000

84

198/INVITATION TO FORTRAN

Simultaneous Equations

SOLVING EQUATIONS

One of the tasks of elementary algebra consists of solving alge-
braic equations. The equation

a*x = b
has the solution
x = {1/a)*b,

The expression 1/a is the reciprocal of @ and is called the multi-
plicative inverse of a.

SIMULTANEOUS EQUATIONS

Solving equations extends to systems of simultaneous equations.
The following equations represent a system of three simultaneous
linear equations in three unknowns:

3X1 + BX2 - 7X3 = 20
4X1 - 2X2 + 4X3 = 16
X1 + 2X1 + 3X2 = 24

A unigue solution may exist for sets of simultaneous linear equa-
tions if the number of equations exactly equals the number of
unknowns. The solution does not always exist. The equation

ax*x = b

does not have a solution if a=0. A system of simultaneous equa-
tions may not have a solution for similar reasons.

MATRIX FORMULATION.

Matrix algebra provides a simple representation for the set of
equations. Let the matrix A contain the coefficients on the left.

3 5 -7
A=4-2 4
15 3

Matrix methods/199

The matrix B is a column vector containing the constants from
the right as its only column.

20
B = 16
24

The matrix X is a column vector containing the values for the
unknowns as its only column:

X1
X = X2
X3
The matrix equation
Ax*» X =8B

represents the simultaneous linear equations.

MATRIX SOLUTION

Pre-multiplying both sides of the matrix equation by the inverse
of A gives

X = Inv(A) = B

which solves for the values of the unknowns. If the matrix A is
singular {determinant zero) there is no unigue solution. This
corresponds to 8=0 in the equation

a*x = b.

PROGRAM

The following program uses the subroutines of the previous sec-
tions to perform the processing steps for solving a set of simul-
taneous linear equations:

PROGRAM P0804

C LA S R RS R E R R EEEREREEEERERESEEREEERERESEEEEE]

C = Po804 *

C LR R R R R R R KRR R R R R R R R R R R R R R R R

200/INVITATION TO FORTRAN

OO0

[eNeNe!

AUTHOR

COPYRIGHT 1982

BY LAWRENCE MCNITT.
PURPOSE

SOLVE SIMULTANEOUS

LINEAR EQUATIONS.
SYSTEM

MICROSOFT FORTRAN

RADIO SHACK TRS-80.

X RS EEEEE R R R EEE R EREREREREESERRESEEXEESES.

+ ORGANIZATION *
PR R R R RN ERREE R TN R R R X EREERXENXEREEREREEZ:H}]
INITIAL MESSAGE
INPUT
PROCESS
S08F: MATRIX INVERSION SUBROUTINE
OUTPUT
FINAL MESSAGE

EEZEREEEEEEEEREEE R ERERERESEREXESESEEREESS.]

VARIABLES *

IEE RS EEREEEEEEEEEE S EEE LSRR EEEREREEREESS]

A(10,10) MATRIX OF COEFFICIENTS

V(10,10) INVERSE OF A
B(10,10) CONSTANTS FOR EQUATION AX=B
X(10,10) SOLUTION VALUES
NSIZE NUMBER OF EQUATIONS AND UNKNOWNS
DET DETERMINANT
| ROW SUBSCRIPT
J COLUMN SUBSCRIPT
IRESP USER RESPONSE
EUR I R R TR I R R R RO U
+ INITIAL MESSAGE "

(E R EEESEEEEEEREREEREERERERERESESESEX:ES]
DIMENSION A(10,10),B(10,10),V(10,10),X(10,10)
WRITE(1,110)

110 FORMAT{(/ PROGRAM P0804'

2 /I SOLVE A SET OF N SIMULTANEQUS'

3 /* LINEAR EQUATIONS IN N UNKNOWNS.’)
EEEREEE EEEREEEZERERERZERSEREZEXRERNERZEEEZRJZ]
+ INPUT *

LR R E R EEREEEREEEEEEEEREEREEESESEEEESSEEJEES.]

200 WRITE(1,210)

[eNeNel

OO0

Matrix methods/201

210 FORMAT(/" NUMBER OF EQUATIONS ?)
READ(1,220) NSIZE
220 FORMATI(i2)
WRITE(1,230)
230 FORMAT(’ VALUES FOR'/)
DO 290 | = 1, NSIZE
WRITE(1,240) |
240 FORMAT(" EQUATION ’,12/)
DO 270 J = 1, NSIZE
WRITE(1,250) J

250 FORMAT(" VAR "12) ?)
READ(1,260) A{lJ)

260 FORMAT(F10.0)

270 CONTINUE
WRITE(1,280)

280 FORMAT(* CONSTANT ?)
READ(1,285) B(l,1)

285 FORMAT(F10.0)

290 CONTINUE

FRAEREEARRERREEERREREARE LR R RN RN RN

» PROCESS *
IR RS R EREEEREEEERERES EREREXEREJEREJERE®RSXZEXZE X
CALL MINV(NSIZE,A,V,DET)
WRITE(1,310) DET
310 FORMAT(/ DETERMINANT = ’,F15.5)
IF (DET.EQ.0.0) GO TO 500
CALL MMULT(NSIZE,NSIZE,1,V,B,X)
IR EE R EREEREEREREENEERERERIEERZNERRE®EEJER}EXNEXERZZE]
*» OUTPUT »
EE XL R R R R R R R R R R W N R
WRITE(1,410)
410 FORMAT(/ VAR VALUE’)
DO 430 | = 1, NSIZE
WRITE(1,420) 1,X(1,1)
420 FORMAT(2X,12,F15.5)
430 CONTINUE
LR R R R R EERERXERERERERERZEZEZENESEERZEIRERERE®RS
*+ FINAL MESSAGE *

LA AR E R SRR EEEEEREREREEEREREESEEEERSEEJEJRSEJES]

500 WRITE(1,510)

510 FORMAT(/* TRY ANOTHER PROBLEM (Y/N) ?)

READ(1,5620) IRESP

8.5

202/INVITATION TO FORTRAN

520 FORMAT(A1)
IF (IRESP.EQ."Y') GO TO 200

WRITE(1,530)
530 FORMAT(/’ END OF PROGRAM/')
STOP
END
TEST RUN

The following test run resulted from running the program:

PROGRAM P0804

SOLVE A SET OF N SIMULTANEOUS
LINEAR EQUATIONS IN N UNKNOWNS.

NUMBER OF EQUATIONS ? 2
VALUES FOR
EQUATION 1

VAR 1?4

VAR 2 ? 2

CONSTANT ? 20
EQUATION 2

VAR 1 ? 2

VAR 2 ? 4

CONSTANT ? 30
DETERMINANT 12.00000

VAR VALUE
1 1.66667
2 6.66667

TRY ANOTHER PROBLEM (Y/N) ? N
END OF PROGRAM

Exercises

1. Implement the general-purpose matrix manipulation program

together with its subroutines.

2.

Matrix methods/203

Implement the program and its subroutines for solving simul-
taneous linear equations.

Use the random number function to generate a set of values
for a 10-row by 10-column matrix. Invert that matrix using
the matrix inversion subroutine.

Use matrix multiplication methods to determine the total
labor cost per job given the following matrix of times by each
worker on each job and the column vector of hourly payrates
for the workers:

TIME IN HOURS PAY RATE

Job Employee Employee Rate
1 2 3 1 8.76

1 12 0 156 2 6.26

2 8 20 6 3 4.80

3 10 8 12

4 0 15 18

For an inverse to exist, a matrix must be square and nonsin-
gular. A singular matrix will result if two rows are equal or if
one is a multiple of another. The following matrix issingular:

3 4 -5
3 4 -5
2 1 3

Test the matrix inversion routine with this matrix.

9.1

9 Randomfiles

OVER\/,E Random files overcome some of the

deficiencies of sequential files. Rec-
ords can be assessed in any order, and can be updated in place.
This eliminates the need of processing the entire file in order to
change a few records. Random files are not perfect. Processing

the entire random file takes longer than processing the entire
corresponding sequential file.

[

Relative Access

RELATIVE FILE ORGANIZATION

Microsoft FORTRAN for the Radio Shack TRS-80 provides
random access methods for disk files. Sequential disk files include
an end-of-record code for each record. This adds one byte to the
record size. Random access files do not include this end-of-record
code. Random access files append a special end-of-file record at
the end of the file.

STORAGE ALLOCATION

Relative files should consist of one extent on the disk drive. An
extent is a contiguous region of the disk. Sequential files may
consist of several extents scattered over the disk. An extent con-
tains one or more granules. A granule for the Radio Shack Model
[l contains three sectors of 256 bytes each. File access methods
for sequential files will automatically link from extent to extent.
This linking of noncontiguous extents is not practical for relative
files. The CREATE utility creates a pre-allocated region for the
file specifying the record size and the number of records.

205

206/INVITATION TO FORTRAN

FILE OPERATIONS

Necessary file operations include initializing the file, inserting
and deleting records, changing values for existing records, and
inspecting the contents of records. This chapter illustrates these
operations using several example programs.

STATISTICAL DATA BASE

The programs of this chapter illustrate the development and use
of a general-purpose statistical data base system for creating and
maintaining a file of numerical data. A previous chapter used
sequential files for this purpose. Those programs loaded the entire
file into memory for modifications.

Using random files for the statistical data base eliminates
the need of loading the entire file. Updating individual records
from the terminal is fast and simple. There is a penalty in the
processing speed for those programs that scan the entire random
file. Reading an entire sequential file is faster than reading an
entire random file.

SPECIFICATION FILE

The system includes a specification file giving the maximum
number of records for the file and the labels identifying the vari-
ables. These labels can be added to printed output to enhance
readability.

The specification file is sequential. Each record contains
13 bytes including the end-of-record code. The first record con-
tains the maximum size of the file. The first five positions give
the maximum number of records. The next five positionsare un-
used. The next two bytes give the number of variables for the file.

The following records give the labels in the 3A4 format.
There is a separate record for each label. The 16th byte is the
end-of-record marker.

DATA FILE

The data file contains one record for each data record. There
may be up to 64 values per record. Each record contains a two-

Random files/207

byte code giving the record number (relative location) for each
valid record in the file. A negative record number signifies an
empty record. If NVARS gives the number of variables, the
expression

LENGTH = 2 + 4 » NVARS

gives the number of bytes per record.

All quantities are unformatted. This eliminates the need for
number conversion for input/output with the data file. The record
number is a two-byte integer. Each data value is a four-byte real
value.

INITIALIZING THE FILES

The following program initializes the specification file and the
data file for the statistical data base:

PROGRAM P0901

HREHE TR K H R RR TR TR R R R K HHE XA RN RRN

* P0901 *
LA R LR R R R R R R R R R R R IR RS g e
AUTHOR

COPYRIGHT 1982

BY LAWRENCE MCNITT,
PURPOSE

INITIALIZE SPECIFICATION FILE

AND DISK DATA FILE REGION.
SYSTEM

MICROSOFT FORTRAN

RADIO SHACK TRS-80.

HH KN N KN KW KK K R KN RN R KRN KN K KR KRR KN R

* ORGANIZATION *

INITIAL MESSAGE

GET FILE NAMES

GET FILE SIZE

GET VARIABLE NAMES

SPECIFICATION FILE

DATA FILE

END OF PROGRAM

s NsNoReNoNosNoNoNoNoReNoNeNoNe o Ro R Ro N2 NS

208/INVITATION TO FORTRAN

FETEEREE R EEREREEEEEEEREEEEREESERSEERSES]

* VARIABLES *
P e R R R L LR R R
VNAMES(64,3) VARIABLE NAMES
VALUES(64) INITIAL DATA VALUES
FNAME1(4) SPECIFICATION FILE NAME
FNAMES2(4) DATAFILE NAME
MAXOBS MAXIMUM NUMBER OF OBSERVATIONS
IREC CURRENT RECORD NUMBER
NIREC NEGATIVE OF CURRENT RECORD NUMBER
NVARS NUMBER OF VARIABLES
IVAR CURRENT VARIABLE
LENGTH NUMBER OF BYTES PER RECORD
J INDEX
R K I K A KNI IR K K I KKK R K I K
* INITIAL MESSAGE *
A Ry R R
DIMENSION VNAMES(64,3),VALUES(64),
2 FNAME1(4),FNAME2(4)
WRITE(1,110)
110 FORMAT(/* INITIALIZE SPECIFICATION FILE’
2 /* AND DISK DATA FILE REGION.")
C % #he et R ERHRRRRRHR R AR R LR TR RE R R R SRR X
C = GET FILE NAMES *
C Rtk R R R R R KRR R R R R R R e
WRITE(1,1010)
1010 FORMAT(/ NAME OF DISK DATA FILE ?)
READ(1,1020) FNAME2
1020 FORMAT(4A4)
WRITE(1,1030)
1030 FORMAT{" NAME OF SPECIFICATION FILE ?)
READ(1,1020) FNAME1
K KU K KKK K I K KK R R KRR R R R KRR KR
* GET FILE SIZE *
R R R R R)
WRITE(1,2010)
2010 FORMAT(" MAXIMUM NUMBER OF OBSERVATIONS ? ')
READ(1,2020) MAXOBS
2020 FORMAT(I5)
WRITE(1,2030)
2030 FORMAT(" NUMBER OF VARIABLES ? ')
READ(1,2040) NVARS
2040 FORMAT(12)

OO0 OO00

OO0

C
Cc
C

C
C
C

C
C
C

C
C
C

Random files/209

LR R R R R R R R R R R R R R N O R R R SR SR gy

*

GET VARIABLE NAMES *

LR R R R R R EE R R T R IR AN IR R I N SR SRR

3010
2
3

3020

3030
3040

WRITE(1,3010)
FORMAT(’ VARIABLE NAMES MAY HAVE’
/' UP TO 12 CHARACTERS EACH'
/I' NAME FOR’ /)
DO 3040 IVAR = 1, NVARS
WRITE(1,3020) IVAR
FORMAT(* VAR "12, ?)
READ(1,3030) (VNAMES(IVAR,J),J=1,3)
FORMAT(3A4)
CONTINUE

AR AR R R EEEEEEEEEEEEE S FEE R Y R]

*

SPECIFICATION FILE *

LA R E R R R EREEEEEEREREREEREERERREREREE TR R

4010

4020
4030

LENGTH = 13
CALL OPEN(6,FNAME1,LENGTH)
WRITE(6,4010) MAXOBS,NVARS
FORMAT(15,5X,12)
DO 4030 IVAR = 1, NVARS
WRITE(6,4020) (VNAMES(IVARJ),J=1,3)
FORMAT(3A4)
CONTINUE
ENDFILE 6

LA R R R R E R EE EEEEEEEEEEE REE RN R Y

*

DATAFILE *

LA R AR AR EEEREEEEREEREEE R EREREREEREFR TR RS

5010

5020

2

LENGTH = 4 » NVARS + 2

CALL OPEN(7,FNAME2,LENGTH)

DO 5010 IVAR = 1, NVARS
VALUES(IVAR) = 0.0

CONTINUE

DO 5020 IREC = 1, MAXOBS
NIREC = -IREC
WRITE(7,REC=IREC) NIREC,

(VALUES(IVAR),IVAR=1,NVARS)
CONTINUE
ENDFILE 7
R R KRR REERERERR RN KR TN R NH RN NERENNHERR
END OF PROGRAM *

*

LR R R R R R R I E R R R YRR

WRITE(1,9010)

9.2

210/INVITATION TO FORTRAN

9010 FORMAT(/* END OF PROGRAM' /)
sTOP

mnt
END

TEST RUN

The following test run initializes the specification file SPEC/DAT
and the data file FILE/DAT:

INITIALIZE SPECIALIZATION FILE
AND DISK DATA FILE REGION.

NAME OF DISK DATA FILE ? FILE/DAT
NAME OF SPECIFICATION FILE ? SPEC/DAT
MAXIMUM NUMBER OF OBSERVATIONS ? 10
NUMBER OF VARIABLES ? 3

VARIABLE NAMES MAY HAVE
UP TO 12 CHARACTERS EACH

NAME FOR

VAR 1 ? ERRORS
VAR 2 ? AGE
VAR 3 ? TIME
END OF PROGRAM

Update in Place

RANDOM ACCESS

Random access files allow updating in place. The record is loaded
from the disk, changed, and written back to its prior location.
This feature eliminates the need for processing the entire file
when only a small fraction of the records need attention.

FILE MAINTENANCE

File maintenance operations include inserting new records, de-
leting old records, and changing values associated with existing
records. This requires that the system recognize when any record
location contains data and when it is empty of data.

Random files/211

The method chosen is to include a record number with each
record location in the file. A positive value signifies valid data. A
negative value signifies an empty record location.

PROGRAM

The following program performs the file maintenance operations
for the statistical data base system:

PROGRAM P0902

LA AR AR R R ELELEEEEEEEEEEEREEEEREEEENSERES)

+ P0902 *
LR O G I R B IR R R I L R U R L
AUTHOR
COPYRIGHT 1982
BY LAWRENCE MCNITT.
PURPOSE
UPDATE CONTENTS OF
DISK DATA FILE.
SYSTEM
MICROSOFT FORTRAN
RADIO SHACK TRS-80.
EE R R RS EEEEEEEREEEREREREEEREERXESEE RN ENEE XN
*+ ORGANIZATION *
L R R I K R R R R R R R R R KR N R R R R R
INITIAL MESSAGE
SPECIFICATION FILE
MENU
ADD NEW OBSERVATIONS
CHANGE VALUES
DELETE OBSERVATIONS
LIST VALUES
END OF PROGRAM
IEE EEEE R EEEEEEEEEEEEEREEEEREEEEEEERER)
+ VARIABLES *
LR A E R EREREREEEEREEESEEERE SRR EREERREEEEERE®R
VNAMES(64,3) VARIABLE NAMES
VALUES(64) VALUES FOR CURRENT RECORD
FNAME1(4) NAME OF SPECIFICATION FILE
FNAME2(4) NAME OF DATA FILE
MAXOBS MAXIMUM NUMBER OF OBSERVATIONS

sNeReNsRoNoNoNosNoNoNoNoNoNoNoNoNoNeNoNoNoNoNoNoNsNo N NoNoNo N 9!

212/INVITATION TO FORTRAN

OO0 O00OO0O0O0

OO0

NVARS NUMBER OF VARIABLES

IVAR
IREC
NIRE
J

CURRENT VARIABLE

CURRENT RECORD NUMBER
Cc

INDEX

LENGTH NUMBER OF BYTES IN RECORD
IRESP USER RESPONSE

NADD NUMBER OF OBSERVATIONS TO ADD
ISTART STARTING RECORD NUMBER

ISTOP LAST RECORD NUMBER

ICOD

X K K ¥

E CHANGE CODE

EE RN EEREEREEREESEEREIEEERESEESESERS]

* INITIAL MESSAGE *

* X KK H

2

110
2
3

* K K K ¥

PR R R E R R X R EE R EREREREEEEERESERSEE]
DIMENSION VNAMES(64,3),VALUES(64),
FNAME1(4),FNAME2(4)
WRITE(1,110)
FORMAT(/’ PROGRAM P0902’
/I’ UPDATE DISK’
/' DATAFILE.)

IR EEEREERE S EEERESEEESESERIERESESES]

* SPECIFICATION FILE *

LR KRR

210

220

230

240

250
260

EE R R E R B RS REERERES SR EEEEEIESEESIINEEES]
WRITE(1,210)
FORMAT(/* SPECIFICATION FILE NAME ?)
READ(1,220) FNAME1
FORMAT(4A4)
WRITE(1,230)
FORMAT(' DATA FILE NAME ?)
READ(1,220) FNAME2
LENGTH = 13
CALL OPEN(6,FNAME1,LENGTH)
READ(6,240) MAXOBS, NVARS
FORMAT(I5,5X,12)
DO 260 IVAR = 1, NVARS
READ(6,250) (VNAMES(IVAR,J),J=1,3)
FORMAT(3A4)
CONTINUE
ENDFILE 6
LENGTH = 2 + 4 » NVARS
CALL OPEN(7,FNAME2,LENGTH)

NEGATIVE OF RECORD NUMBER IF EMPTY

Random files/213

C L R R R R R R R R R R EREREREEREEERR R IRETI R
C *» MENU *
C LA EEEREEEX EERERERERERE SRR ERERERRIEE TR E TR
300 WRITE(1,310)
310 FORMAT(/* OPTIONS'
/1 ADD NEW OBSERVATIONS'
/2 CHANGE EXISTING VALUES'
/3 DELETE OBSERVATIONS'
/4 LIST VALUES FOR OBSERVATION’
/5 TERMINATE PROCESSING’
//* OPTION NUMBER ? ‘)
READ(1,320) IRESP
320 FORMAT(I1)
GO TO (1000,2000,3000,4000,5000), |RESP
WRITE(1,330)
330 FORMAT(/ INVALID OPTION NUMBER’)
GO TO 300
C ************************************
C * ADD NEW OBSERVATIONS »
C ************************************
1000 WRITE(1,1010)
1010 FORMAT(/ ADD NEW OBSERVATIONS'
2 /' NUMBER OF OBSERVATIONS TO ADD ? ')
READ(1,1020) NADD
1020 FORMAT(I5)
WRITE(1,1030)
1030 FORMAT(* STARTING OBSERVATION ?)
READ(1,1040) ISTART
1040 FORMAT(I5)
ISTOP = ISTART + NADD - 1
DO 1150 IREC = ISTART,ISTOP
WRITE(1,1050) IREC
1050 FORMAT(/* OBSERVATION ",I5)
READ(7,REC=IREC) NIREC
IF (NIREC.LT.0) GO TO 1100

D WN -

1060 WRITE(1,1070)
1070 FORMAT(/ RECORDALREADY CONTAINSVALUES.’
2 /' DO YOU WANT TO OVERRIDE THEM (Y/N)
?)

READ(1,1080) IRESP
1080 FORMAT(A1)

214/INVITATION TO FORTRAN

OO0

IF (IRESP.EQ."Y’) GO TO 1100
IF (IRESP.EQ.N') GO TO 1150

WRITE{1,1080)

1090 FORMAT(/* INVALID RESPONSE’)
GO TO 1060

1100 WRITE(1,1110)

1110 FORMAT(/" VALUE FOR’/)

DO 1140 IVAR = 1, NVARS
WRITE(1,1120) (VNAMES(IVAR,J),J=1,3)

1120 FORMAT(1X,3A4," ? ')
READ(1,1130) VALUES(IVAR)
1130 FORMAT(F10.0)
1140 CONTINUE
WRITE(7,REC=IREC) IREC,
2 (VALUES(IVAR),IVAR=1,NVARS)

1150 CONTINUE

GO TO 300
PR EEE R ERE X EREREEEEE R E XX KN R EREEEER]
* CHANGE VALUES *

SIS E I EE ST RS E R AR E R R R E R EE R KRR LS
2000 WRITE(1,2010)
2010 FORMAT(/ CHANGE EXISTING VALUES’
2 /* OBSERVATION NUMBER ? ')
READ{1,2020) IREC
2020 FORMATI(I5)
READ(7,REC=IREC) NIREC,
2 (VALUES(IVAR),IVAR=1,NVARS)
IF (NIREC.GT.0) GO TO 2040
WRITE(1,2030)
2030 FORMAT(/* OBSERVATION NOT INSERTED YET’
/* USE THE ROUTINE TO ADD’
3 /* OBSERVATIONS TO THE FILE.")
GO TO 2110
2040 DO 2100 IVAR = 1, NVARS
WRITE(1,2050) (VNAMES(IVAR,J)},J=1,3),

N

2 VALUES(IVAR)
2050 FORMAT(1X,3A4,F15.5)
WRITE(1,2060)
2060 FORMAT(" CHANGE VALUE (Y/N) ? ')
READ(1,2070) ICODE
2070 FORMAT(A1)

IF (ICODE.EQ.'N’) GO TO 2100

Random files/215

WRITE(1,2080)

2080 FORMAT(* NEW VALUE ? ")
READ(1,2090) VALUES(IVAR)
2090 FORMAT(F10.0)

2100 CONTINUE
WRITE(7, REC=IREC) IREC,
2 (VALUES(IVAR),IVAR=1,NVARS)
2110 WRITE(1,2120)
2120 FORMAT(/* CHANGE ANOTHER OBSERVATION (Y/N)
')
READ(1,2130) IRESP
2130 FORMAT(A1)
IF (IRESP.EQ.”Y’) GO TO 2000

GO TO 300
R I "
* DELETE OBSERVATIONS *

AR R E R R EREESEEEEEEE R R EEEE R R R R R Y T
3000 WRITE(1,3010)
3010 FORMAT(/* DELETE OBSERVATION ? ')
READ(1,3020) IREC
3020 FORMATI(I5)
READ(7,REC=IREC) NIREC,
2 (VALUES(IVAR),IVAR=1,NVARS)
IF (NIREC.GT.0) GO TO 3040
WRITE(1,3030)
3030 FORMAT(‘ RECORD DOES NOT CONTAIN DATA’

2 /' NO NEED TO DELETE’)
GO TO 3100
3040 WRITE(1,3050)
3050 FORMAT(/ VARIABLE VALUE’)

DO 3070 IVAR = 1, NVARS
WRITE(1,3060) (VNAMES(IVAR,J),J=1,3),
2 VALUES(IVAR)
3060 FORMAT(1X,3A4,F15.5)
3070 CONTINUE
WRITE(1,3080)
3080 FORMAT(/' STILL WANT TO DELETE (Y/N) ? ')
READ(1,3090) ICODE
3090 FORMAT(A1)
IF (ICODE.EQ.N) GO TO 3100
NIREC = -IREC
WRITE(7,REC=IREC) NIREC,

216/INVITATION TO FORTRAN

2 (VALUES(IVAR),IVAR=1,NVARS)
WRITE(1,3110)
FORMAT{/" DELETE ANGCTHER RECCRD (V/N ? ')
READ{1,3120) IRESP
3120 FORMAT(A1)
IF (IRESP.EQ."Y’) GO TO 3000
- GO TO 300

IEEEEEEEEFT I EEEEEEE R R E R R EE L EEEREREE.]

» LIST VALUES *
PR R R R R R RIS E LR EE R R R R R R R
4000 WRITE(1,4010)
4010 FORMAT(/* LIST VALUES OF VARIABLES'
2 /' FOR OBSERVATION ?)
READ(1,4020) IREC
4020 FORMAT(I5)
READ(7,REC=IREC) NIREC,
2 (VALUES(IVAR),IVAR=1,NVARS)
IF (NIREC.GT.0) GO TO 4040
WRITE(1,4030)
4030 FORMAT(’ OBSERVATION IS EMPTY’)
GO TO 4070
4040 DO 4060 IVAR = 1, NVARS
WRITE(1,4050) (VNAMES(IVARJ),J=1,3),
2 VALUES(IVAR)
4050 FORMAT(1X,3A4,F15.5)
4060 CONTINUE
4070 WRITE(1,4080)
4080 FORMAT(/* LIST CONTENTS OF ANOTHER'
2 /* OBSERVATION (Y/N) ? ‘)
READ(1,4090) IRESP
40900 FORMAT(AT1)
IF (IRESP.EQ.'Y") GO TO 4000

W w
b
- O

o

<

OO0

GO TO 300
C %% %% kR R R R IR IR RN R RN
C =« END OF PROGRAM *
C ¥ % F R AR RERRREERERRRR R R RN RN R H N
5000 ENDFILE 7
WRITE(1,5010)
5010 FORMAT(/* END OF PROGRAM')
STOP

END

Random files/217

TEST RUN

The following set of test data is used for the test run:

Errors Age Time

12 2 6
15 4 6
18 5 4
19 3 2
22 6 3

The following test run illustrates the initial data entry and steps
used in modifying the data file:

PROGRAM P0902

UPDATE DISK
DATA FILE.

SPECIFICATION FILE NAME ? SPEC/DAT
DATA FILE NAME ? FILE/DAT

OPTIONS
1 ADD NEW OBSERVATIONS
2 CHANGE EXISTING VALUES
3 DELETE OBSERVATIONS
4 LIST VALUES OBSERVATION
5 TERMINATE PROCESSING

OPTION NUMBER ? 1

ADD NEW OBSERVATIONS

NUMBER OF OBSERVATIONSTO ADD ? 5
STARTING OBSERVATION ? 1
OBSERVATION 1

VALUE FOR

ERRORS ? 12
AGE ? 2
TIME ? 6

OBSERVATION 2

218/INVITATION TO FORTRAN

VALUE FOR

ERRORS ? 15
AGE ? 4
TIME ? 6
OBSERVATION 3
VALUE FOR

ERRORS ?7 18
AGE ? b
TIME ? 4
OBSERVATION 4
VALUE FOR

ERROR ?19
AGE ?3
TIME ? 2
OBSERVATION 5
VALUE FOR

ERRORS ? 22
AGE ? 66
TIME ? 3
OPTION

1 ADD NEW OBSERVATIONS

2 CHANGE EXISTING VALUES

3 DELETE OBSERVATIONS

4 LIST VALUES FOR OBSERVATION
5 TERMINATE PROCESSING

OPTION NUMBER ? 4

LIST VALUES OF VARIABLES
FOR OBSERVATION ? 5

ERRORS 22.00000
AGE 66.0000C
TIME 3.00000

LIST CONTENTS OF ANOTHER
OBSERVATION (Y/N)? N

OPTIONS
1 ADD NEW OBSERVATIONS

9.3

Random files/219

CHANGE EXISTING VALUES
DELETE OBSERVATIONS

LIST VALUES FOR OBSERVATION
5 TERMINATE PROCESSING

OPTION NUMBER ? 2
CHANGE EXISTING VALUES
OBSERVATION NUMBER ? 3

HWN

ERRORS 22.00000
CHANGE VALUE (Y/N) ? N
AGE 66.00000

CHANGE VALUE (Y/N) ? Y
NEW VALUE ? 6.0

TIME 3.00000
CHANGE VALUE (Y/N) ? N

CHANGE ANOTHER OBSERVATION (Y/N) ? N

OPTION
1 ADD NEW OBSERVATIONS
2 CHANGE EXISTING VALUES
3 DELETE OBSERVATIONS
4 LIST VALUES FOR OBSERVATION
5 TERMINATE PROCESSING

OPTION NUMBER ? b
END OF PROGRAM

Online Inquiry

ONLINE PROCESSING

Online processing involves interactive processing with control of
the steps from a computer terminal at the time of the processing.
This is one of the prime benefits of microcomputers. Large time-
sharing systems provide this capability, but at high cost per work
station. Microcomputers provide this capability at an affordable
cost per station. The tasks may include insertions, deletions, and
changes.

BATCH REPORTS

Traditional batch processing systems perform weekly or monthly
updates of the computer files. During or after the update runs,

220/INVITATION TO FORTRAN

detailed reports give the new record values as well as summary
reports measuring trends and totals.

The detailed reports for large files can be voluminous. These
serve as archival records for legal and reference purposes. The
reports give the record values as of the last update.

FORTRAN and COBOL have been the primary languages
used by large computers for batch processing. BASIC and other
languages can also function in this mode. Although microcom-
puters typically run in an online mode, they also can operate in
batch mode. Batch mode operation does not require operator
intervention during the course of the run.

INTERACTIVE INQUIRY

Random access files and computer terminals offer an alternative
to batch processing. Users can access the file with an inquiry
program which displays the current record contents. The user
need not wait for some distant computer to print the report at
its convenience. The user sees the information displayed im-
mediately. This reduces the need for detailed listings. It also
makes much better use of the user’s time.

ONLINE UPDATE

Interactive processing from computer terminals also allows up-
dates to be made to the file at any time. The organization does
not need to accumulate transaction data for the monthly or
weekly update run. The update may be made once a day or several
times a day. With frequent updating the computer files better
reflect the current status of the organization.
Alongwithimproved flexibilityand responsivenesscomesthe
need for greater control over access and update capability. Infor-
mation that is more readily accessible is more readily mishandled,

REAL TIME SYSTEMS

A real time system updates the computer files at the time of the
actual transaction. This may be considered as a batch of size one.
Online updating in real time requires random access files. Online
updating does not necessarily have to be done in real time. Real
time systems, however, require online updating.

Random files/221

ONLINE INQUIRY SYSTEMS

Online inquiry systems are useful regardless of the frequency of
updating. Updating may be in batch mode. If the files allow
random access, then online inquiry is possible. The purpose of
online inquiry is to allow the user to inspect the contents of the
current computer file.

RESTRICTIONS

Information in the computer files is usually restricted. Selected
employees are permitted to access sensitive computer files. Even
more stringent restrictions are made on those to have update
capability. Few employees are authorized to make changes to
those files. Online inquiry programs provide read-only access to
files for those who need information from the files but who are
not permitted to make changes to the files. Read/write access is
needed by those who are allowed to make changes.

PROGRAM

The following program illustrates an online inquiry program for
the statistical data base:

PROGRAM P0S03

AR R AR EEEEREEEEE AR EEEEEEREEREREEXERENXE.])

+ P0903 *
LR R R R R R R R R R R EE X ERE R R R R TR IR R
AUTHOR
COPYRIGHT 1982
BY LAWRENCE MCNITT.
PURPOSE
ONLINE INQUIRY FOR
DISK DATA FILE.
SYSTEM
MICROSOFT FORTRAN
RADIO SHACK TRS-80.

LR AR SRR LSS XA EEEEEEERE R Y REEEEE X R E XS

* ORGANIZATION *

LR R R R R R R R EEEEEEEEEEEREEEEEEEREXESE)

INITIAL MESSAGE
SPECIFICATION FILE

s EesEeoNesNsNoNeNesNeoNoNoNoNeoNoNeoNeNe!

222/INVITATION TO FORTRAN

PROCESS
END OF PROGRAM

LR R R R EEEERERREREEEESEEEEEESEIREXEESESES.]

* VARIABLES *

AR R EEAEREERESESERESEERRESEERESEREEJLSEJESS;]

VNAMES(64,3) VARIABLE NAMES
VALUES(64) VALUES FOR RECORD
FNAME1(4) NAME OF SPECIFICATION FILE
FNAME2(4) NAME OF DATA FILE
MAXOBS MAXIMUM NUMBER OF OBSERVATIONS
NVARS NUMBER OF VARIABLES
IVAR CURRENT VARIABLE
IREC CURRENT RECORD
NIREC NEGATIVE OF CURRENT RECORD IF EMPTY
J INDEX
LENGTH LENGTH OF RECORD IN BYTES
IRESP USER RESPONSE
o W N N N R KN W NN K KN H R RN E N KK KRN R
» INITIAL MESSAGE *
BR W R R K KRN W N KN NI K R KWK NN K H R E R NN KK NR
DIMENSION VNAMES(64,3),VALUES(64),
2 FNAME1(4), FNAME2(4)
WRITE(1,110)
110 FORMAT(/ PROGRAM P0903’
2 //* ONLINE INQUIRY SYSTEM’
3 /* FOR DISK DATA FILE.")
R P e W NN N WK K KN N R W N H NN NI KRR KK KRN NN N R NN
+ SPECIFICATION FILE "
EE 3 K K R I R I L R I R R U
WRITE(1,210)
210 FORMAT(/ NAME OF SPECIFICATION FILE ?)
READ(1,220) FNAME1
220 FORMAT(4A4)
WRITE(1,230)
230 FORMAT(’ NAME OF DATA FILE ? ')
READ(1,220) FNAME2
LENGTH = 13
CALL OPEN(6,FNAME1,LENGTH)
READ(6,240) MAXOBS, NVARS
240 FORMAT(I5,5X,12)

sNeoNsNeNEsErEeNeoNoNsNoNoNoNoNe o Ne NI Ne)

s NeNe)

[eNeNe!

Random files/223

DO 260 IVAR = 1, NVARS
READ(6,250) (VNAMES(IVAR,J),J=1,NVARS)

250 FORMAT(3A4)
260 CONTINUE
ENDFILE 6

LENGTH = 2 + 4 » NVARS
CALL OPEN(7 FNAMEZ,LENGTH)
P R R E R R R X E]

* PROCESS *

EEEEEEEEEEEEEE S SR EEEEEEE R E R EEREERERSES

WRITE(1,310)
310 FORMAT(/* GIVE RECORD NUMBER’
2 /* OF RECORD TO DISPLAY.’
3 //’ USE RECORD NUMBER OF O’
4 /* TO TERMINATE.')
320 WRITE(1,330)
330 FORMAT(/ RECORD NUMBER TO DISPLAY ?)
READ(1,340) IREC
340 FORMAT(I5)
{F (IREC.EQ.0) GO TO 400
READ(7,REC=IREC) NIREC,
2 (VALUES(IVAR),IVAR=1,NVARS)
IF (NIREC.GT.0) GO TO 360
WRITE(1,350)
350 FORMAT(/* RECORD IS EMPTY’)
GO TO 390
360 DO 380 IVAR = 1, NVARS
WRITE(1,370) (VNAMES(IVAR,J),J=1,3),
2 VALUES({IVAR)
370 FORMAT(1X,3A4,F15.5)
380 CONTINUE
390 GO TO320

IZEEEE RS SRR ESEAEEE R EEEEEE R LR E S B0 0]

* END OF PROGRAM *

IR R RSN EEEEE RS RS R X EEEE R EE R EEEERS B S

400 ENDFILE?
WRITE(1,410)

410 FORMAT(/* END OF PROGRAM' /)
STOP
END

9.4

224/INVITATION TO FORTRAN

TEST RUN

The following test run illustrates the use of the online inquiry
program:

PROGRAM P0903

ONLINE INQUIRY SYSTEM
FOR DISK DATA FILE.

NAME OF SPECIFICATION FILE ? SPEC/DAT
NAME OF DATA FILE ? FILE/DAT

GIVE RECORD NUMBER
OF RECORD TO DISPLAY.

USE RECORD NUMBER OF 0
TO TERMINATE.

RECORD NUMBER TO DISPLAY ? 3

ERRORS 18.00000
AGE 6.00000
TIME 3.00000

RECORD NUMBER TO DISPLAY ? 0
END OF PROGRAM

Sequential Processing Economies

DISK FILE ORGANIZATION

The Radio Shack TRSDOS operating system for the Model |11
organizes the diskette into tracks, granules, sectors and records.
Each sector contains 256 bytes. Each granule contains three
sectors, and each track contains six granules. The five-inch floppy
disk for the Model 111 contains 40 tracks.

Access 10 an adjacent track takes from three to 20 milli-
seconds depending on the disk controller system and make and
model of disk drive. The diskettes spin at 300 revolutions per
minute. This translates to five revolutions per second or 200
milliseconds per revolution. One millisecond is one thousandth
of a second.

Random files/225

DISK ACCESS TIMES

The disk access time is the most important measure of perform-
ance. The computer will make no more than five disk accesses
per second. Online systems involve interactive dataentry and file
updating. The random access capability of the disk drives is suf-
ficient from the standpoint of the user sitting at the keyboard if
the computer obtains the record on the first few attempts. This
is true of the statistical data base system. The record number gives
the relative position of the desired record. The system uses this
to calculate its exact location and obtains the desired record on
the first attempt.

SEARCHING

Searching or scanning a file can be very time-consuming. If the
search involves randomly jumping from location to location
within the file, the disk drives will not support more than five
accesses per second. The random access file system requires one
disk access per record during the search.

The statistical data base system uses records of 14 bytes
each. Five disk accesses per second vyielding 14 bytes per access
gives 70 bytes per second throughput. This is slow if the file
contains very many records.

BLOCKING

The standard block of data for floppy disk systems is 256 bytes.
Data on the diskette surface is organized into sectors of 266 bytes
each. The system automatically blocks sequential fileswith several
records per sector. The data is densely packed and automatically
spans from one sector to the following one.

The system makes one access per sector. |t does not make
one access per record. Some systems may even make one access
per granule or one access per track. The bigger the block of data
moved during the disk access, the greater the data throughput
for sequential processing. This also increases the amount of sys-
tem storage required for containing physical blocks of data.

If the system accesses one 256-byte sector per disk access,
then the throughput will be about 1,250 bytes per second. If the

226/INVITATION TO FORTRAN

system accesses a three-sector granule at a time, the throughput
will almost triple. It will fall short of this because a small amount
of time is needed (11 milliseconds per sector) during the disk
revolution to transmit the data.

SEQUENTIAL PROCESSING EFFICIENCY

If processing involves reading the file from beginning to end,
seguential processing is usually faster. It may be more than 100
times faster than random access processing if the record size is
very small. This is the reason why sequential processing methods
retain their popularity.

There are two efficiency considerations. Sequential pro-
cessing usually makes more efficient use of the computer, but
often does not make efficient use of the people who use or up-
date the data. Batch reports reflect what happened last month
or last week but executives need current information. Efficient
use of people suggests online systems with immediate access to
information and immediate processing capability. There will be
increasing use of computer terminals and online systems for this
reason.

TRENDS

The choice between computer efficiency and personnel efficiency
requires a compromise. Computer hardware costs are dropping
rapidly, and personnel costs are rising rapidly. The inevitable re-
sult is a shift from emphasizing computer efficiency toward em-
phasizing personnel efficiency and overall performance of the
system. The microcomputer is a prime mover in this shift.

SEQUENTIAL PROCESSING OF RANDOM FILES

Some systems including Microsoft FORTRAN for the Radio
Shack TRS-80 provide efficient sequential access to random files.
For those systems that have thiscapability, processing speeds and
data throughput will approach those for true sequential files. This
provides the benefits of both worlds. They provide high-speed
sequential access of the entire relative file, and online inquiry and
update in place of a random file. As microcomputers become
more sophisticated, this capability will become more widespread.

Random files /227

PROGRAM LISTING CONTENTS OF A RANDOM FILE

The following program illustrates sequential access of the random
file by printing the contents of the file:

OO0

PROGRAM P0S04

EETEEREEEEFEEREEEEEEEEEEREEEE RS SR EE S R

+ P0904 »
FE E E E R LRSS EEEE S E R R R R R X R B R R E X E S K]
AUTHOR
COPYRIGHT 1982
BY LAWRENCE MCNITT.
PURPOSE
PRINT CONTENTS OF
DISK DATA FILE.
SYSTEM
MICROSOFT FORTRAN
RADIO SHACK TRS-80.

IEEEREREEEREEEREEREERE R EEE R ERER R KRR EEE L E R

» ORGANIZATION *
IR R EREEETEEEEERE R E TR R E R SR E R E B EEERRE R ER]
INITIAL MESSAGE

SPECIFICATION FILE

PRINT HEADING

PRINT RECORDS .

END OF PROGRAM

IEEREF SIS R R EEEEEE R EE R EREEEREZSSE.:.

» VARIABLES *
ERE R RN ER IR R R R R R R N R R R
VNAMES(64,3) VARIABLE NAMES
VALUES(64) VALUES FOR RECORD
FNAME1(4) NAME OF SPECIFICATION FILE
FNAME2(4) NAME OF DATA FILE

MAXOBS MAXIMUM NUMBER OF OBSERVATIONS

NVARS NUMBER OF VARIABLES
IVAR CURRENT VARIABLE
IREC CURRENT RECORD

NIREC NEGATIVE OF CURRENT RECORD IF EMPTY

J INDEX
LENGTH LENGTH OF RECORD IN BYTES

IEEEEEEEEREEREEEREREEREREEEEEESERESEEREEE]

* INITIAL MESSAGE *

IEEEREEREEEEEEEE R EEE R R R EREERERJRERSESSES]

228/INVITATION TO FORTRAN

[eNeNe!

OO0

OO0

2

110
2
3

DIMENSION VNAMES(64,3),VALUES(64),
FNAME1(4),FNAME2(4)
WRITE{1,110)
FORMAT(/* PROGRAM P0904’
/' PRINT CONTENTS OF’
/' DISK DATA FILE.)

LR R R R R R R R R R R R R R X IR I R SR S gy

#*

SPECIFICATION FILE *

LR R A R R R R R R R R R EE R R R R R R R R R SRRy

210

220

230

240

250
260

WRITE(1,210)

FORMAT(/* NAME OF SPECIFICATION FILE ?)

READ(1,220) FNAME1

FORMAT(4A4)

WRITE(1,230)

FORMAT(* NAME OF DATA FILE ?)

READ(1,220) FNAME2

LENGTH = 13

CALL OPEN(6,FNAME1,LENGTH)

READ(6,240) MAXOBS, NVARS

FORMAT(15,6X,12)

DO 260 IVAR = 1, NVARS
READ(6,250) (VNAMES(IVAR,J),J=1,NVARS)
FORMAT(3A4)

CONTINUE

ENDFILE 6

LENGTH = 2 + 4 * NVARS

CALL OPEN(7,FNAME2,LENGTH)

AAR SRR E R LRSS EEE R Y)

*

PRINT HEADING *

AR R AR R R R R R R R Y A L)

310
2

320

2
330

WRITE(2,310) FNAME1, FNAME2
FORMAT('1SPECIFICATION FILE ’4A4
/" DATAFILE "4A4)

WRITE(2,320)

FORMAT(/* VARIABLE NAMES')

WRITE(2,330) ((VNAMES(IVAR,J),J=1,3),
IVAR=1,NVARS)

FORMAT(4(3X,3A4))

LA A AR R R R R R R R R R R R R R R RN v

#*

PRINT RECORDS *

L R R R R R LR R R R R R R R U N R R RV g ey

DO 430 IREC = 1, MAXOBS

Random files/229

READ{7,REC=IREC) NIREC,

2 (VALUES(IVAR),IVAR=1,NVARS)
IF (NIREC.LE.O) GO TO 430
WRITE(2,410) IREC

410 FORMAT(/* RECORD ’,15)
WRITE(2,420) (VALUES(IVAR),IVAR=1,NVARS)
420 FORMAT(4F15.5)

430 CONTINUE
WRITE(2,440)
440 FORMAT(///' END OF DATA’)
PERERE R R R R R EREREEEEEEERXERXEIR R RESJEJEKEZEJE}RE.]
+ END OF PROGRAM *
ERE R EEREENR R ER R R R R R R R R R R R R
ENDFILE 7
WRITE(1,510)
510 FORMAT(/ END OF PROGRAM’ /)
STOP
END

OO0

TEST RUN

The following test run resulted from running the program:

PROGRAM P0904

LIST CONTENTS OF
DISK DATA FILE.

NAME OF SPECIFICATION FILE ? SPEC/DAT
NAME OF DATA FILE ? FILE/DAT
END OF PROGRAM

PRINTED OUTPUT

The following printed output resulted from the test run:

SPECIFICATION FILE SPEC/DAT

DATAFILE FILE/DAT
VARIABLE NAMES

ERRORS AGE TIME
RECORD 1

12.00000 2.00000 6.00000

9.5

230/INVITATION TO FORTRAN

RECORD 2

15.00000 4.00000 6.00000
RECORD 3

18.00000 5.00000 4.00000
RECORD 4

19.00000 3.00000 2.00000
RECORD 5

22.00000 6.00000 3.00000
END OF DATA
Exercises
1. Implement the programs of this chapter using random file

techniques for the statistical data base.

. Write a program that computes the average for each variable

in the statistical data base.

Use the methods of this chapter to create and maintain a
simple accounts receivable system, Each customer account
should have an account balance, amount of purchases made
during the month, amount of payments made during the
month, and credit limit.

. Write an online inquiry program for sales clerks to use to see

if the current purchase will cause the current amount out-
standing computed as

balance + purchases -~ payments

to exceed the credit limit. If the sale is authorized, add the
sales amount to the purchases.

. Write a customer payment program that allows the clerk to

call up a customer account and add the amount of the pay-
ment to the amount of payments.

. Writeasummary program that updates the accounts receivable

balance using the formula
new balance = old balance + purchases - payments

Clear the purchases field and the payments field to zero for
the following accounting cycle.

Index

A

access times, 225
accumulator, 29

address, 136

algebraic language, 1
alignment errors, 45
allocation, 105, 113
alphabetic data, 15
annuity, 30

antilog, 72

argument, 69, 135
argument list, 136
arithmetic IF, 67
arithmetic progression, 41
array, 105

assignment staterment, 11
ASCII, 4

B

batch processing, 93
batch reports, 219

binary files, 94

binary integers, 12
binomial distribution, 149
bisection, 138

blank lines, 18

blocking, 85, 109, 225
branch, 55

built-in functions, 81, 1356
bytes, 11

C

calculus, 41
CALL, 67, 144
called subroutines, 144

231

carriage control characters, 16
case selection, 58, 125
character strings, 15
CLOSE, 88

column headings, 28
column layout, 5
comment symbol, B
comment lines, 20
compiler, 1,5, 135
computed GO TO, 58, 125
computer operators, 21
conditional branch, 55, 57
conditional statements, 51
contiguous, 86
continuation, 5, 16
CONTINUE, 28
convergence, 29

counter, 29

C0s, 78

D

data typing, 68
deblocking, 86
debugging, 15
degrees, 78

deletion, 118
derivative, 46
detailed reports, 220
determinant, 167
dimension, 105, 168
DIMENSION, 106, 113
discount rate, 138
disk accesses, 86

DO loop, 27, 56
documentation, 20

232/INVITATION TO FORTRAN

documentation package, 21
documented source program, 7
doubie precision, 13, 46

DO WHILE, 62

DUAL command, 14

dummy variables, 136

E

EDIT, 4

editors, 4

end of file, 91

END, 10
ENDFILE, 88
errors, 45
executable command module, 4
EXP, 74
exponential, 74
exponentiation, 1
expression, 2
extended integer, 12
extent, 86, 205
external storage, 85

F

F80, 5, 139

factorial, 42, 74
factorial table, 76
fields, 8

file, b

file extension, b

file maintenance, 99, 124, 210
file name, b

file organization, 224
final message, 17
floppy disk, 86

flow of control, 155
flowchart, 164
FORMAT, 9

format statement, 8, 15
format symbols, 8
FORTRAN, 1

function, 67
function subroutine, 135

G

generalized IF, 51, 57
generalized matrix processor, 181
GO TO, 55

granule, 85, 205

Gaussian elimination, 168, 174

H

hierarchical organization, 1562

identifier, 99

identifying message, 17
identity matrix, 167

IF, 51

IF GO TO, 65, 57
increment, 27
indentation, 34

index variable, 27, 30
initial file, 91

insertion, 118

interactive data entry, 93
interactive inquiry, 220
integer variables, 3
interface, 153

internal rate of return, 138
internal numbers, 11
interpreters, 6

iteration, 27

iterative products, 42

K
keyboard, 7

L

L80, 6, 139
label output, 15

labeled data file, 119
library of functions, 81
line printer, 7

linkage editor, 4, 6
literals, 13

local variables, 154
LOG functions, 73
logarithms, 72, 168
logical expressions, 51
loop parameters, 28, 30
looping, 27

M

main program, 139, 1563

maintenance programmers, 35

mathematical subroutine package,
149

matrix, 113, 165

matrix addition, 166, 172

matrix inversion, 167, 174

matrix multiplication, 166, 173

matrix solution, 199

memory technology, 1256

menu selection, 1256

millisecond, 86

mixed mode expression, 3

modular programming, 152

monolithic program, 153

N

nested loops, 30, 113
number representations, 70
numeric literals, 13

o

object program, 1
online inguiry, 219
online processing, 219
online update, 220
OPEN, 88

Index/233

operators, 21
overflow, 73, 76
overhead, 1563

P

page eject, 19

paging, 18
parentheses, 2

piracy, 7

precedence ordering, 2
precision, 45

primitive branches, 56
primitive program, 11
printer, 7

printing symbols, 11
program, 1

program design, 82
program flow, 58
program name, 17
program organization, 20
program readability, 4
programmer, 1
programming, 1
prompt messages, 96

R

radians, 78

RAN, 109

random access, 85
random files, 205
random numbers, 109
readable programs, 20
readability, 4, 18, 34, 56
reading files, 7

real variables, 3

realtime systems, 220
record, 86

relational operators, 52
refative access, 205
relocatable object programs, 4, 135
repetition, 27

234/INVITATION TO FORTRAN

report generation, 99
RETURN, 136
roundoff errors, 45
row headings, 28

S

scalar addition, 166, 169
scalar multiplication, 166, 170
scientific notation, 13, 69
SCRIPSIT, 4

searching, 225

section identification, 20
sector, 86, 225

sequences, 37

sequential file, 85
sequential file maintenance, 124
series, 41

simultaneous equations, 198
SIN, 78

single precision, 12, 46
singular matrix, 167
skipping lines, 16

slope, 46

software packages, 7
software piracy, 7

sorting, 109

source program, 1

statement numbers, B, 8, 55
statement of purpose, 21
storage allocation, 105, 205
STOP, 10

string literals, 15

style, 33

subprogram, 144
subroutine, 148

subroutine libraries, 148, 168
subscripts, 105

summation, 29

symbols, 3

system commands, 139

T

table generation, 28

TAN, 78

terminal screen, 7

test run, 14

throughput, 87, 226
top-down design, 152, 154
track, 86

transposition, 166, 171
trigonometric functions, 78
transfer of control, 55
TRSDOS, 6

two's complement, 12
type specification, 4, 106

U

unconditional branch, 55
underflow, 73
unformatted files, 119
uniary minus, 2

unit numbers, 7

unique identifier, 99
update in place, 210
user’s guide, 21

\

validate, 21

variable dictionary, 21
variable names, 3, 10
variable type specification, 4
variables, 2

vector, 105

video output, 14

w

white space, 18
workspace, 5

" Petrocelli’s
“INVITATION TO” Series

Invitation to MAPPER:
A Pragmatic Approach to
End-User Computing-Book I

by Harry Katzan, Jr.

Invitation to FORTRAN for the TRS-80
Invitation to COBOL for the TRS-80

by Lawrence L. McNitt

Invitation to Ada & Ada Reference Manual
Invitation to FORTH
Invitation to PASCAL

by Harry Katzan, Jr.

Invitation to BASIC Fitness
by Stephen J. Mecca & Cemal Ekin

| . 089433-210-4 .

