The Dragon 32

Dragon Companion

M.Jarvis

0 O W

10
12
14
17
18
19
20
21
22
23
24
25
26
27
28
29
33
35

37
39
40
41
43

45
47

49

50

CONTENTS

FOREWORD
LOW RESOLUTION MODE 4
LOW RESOLUTION MODE 6
LOW RESOLUTION MODE 8
LOW RESOLUTION MODE 12
LOW RESOLUTION MODE 24

64 BY 64 FOUR COLOUR
128 BY 64 TWO COLOUR
128 BY 64 FOUR COLOUR
128 BY 96 TWO COLOUR
128 BY 96 FOUR COLOUR
128 BY 192 TWO COLOUR
128 BY 192 FOUR COLOUR
256 BY 192 TWO COLOUR
VDG MEMORY MAPPING AND MODE SELECTION
VIDEO MEMORY BASE-PAGE LOCATION
PROCESSOR SPEEDS

LOADING MORE THAN ONE PROGRAM FROM TAPE
A 6809 DISASSEMBLER
USEFUL ROUTINES IN THE BASIC ROM
BASIC STORAGE
EASIER INPUT OF MACHINE CODE
ADDING COMMANDS TO BASIC
TOKEN TABLE 1
TOKEN TABLE 2
CHARACTERTABLE
NOTES ON CHARACTER TABLE
EXTRA INFO ON SAM CONTROL BIT AREA
PlAs
CARTRIDGE EDGE CONNECTOR PIN DESCRIPTION
SOUND OUTPUT SELECTION
NOTES 1. GRAPHICS MODES

2. PROCESSOR SPEEDS

MEMORY MAP

Foreword

The Dragon 32 is much more versatile and powerful than the manual supplied with
the machine would suggest. | was amazed to find extra graphics modes hidden
within the computer which appear to have been completely ignored by the
manufacturers. It is a simple task to access these extra modes, but far from simple
to use them. In order to utilise them fully a set of graphics commands would have
to be written (preferably in machine code) which would provide the same sort of
commands already in Basic eg CIRCLE, SET etc. As you can imagine this is not a
trivial exercise and would no doubt form the basis of another book.

If speed is not important then the Basic POKE and PEEK commands can be used to
give a little variety to your graphics programs using the simple driver routines
included in this book. Nothing like moving graphics will be possible though
because of the time involved in working through a whole screen full of data (try
running the Low Resolution Mode 24 routine).

This situation can be improved slightly by increasing the processor clock rate as
described later in the Dragon Companion Book. (Try the same Low Resolution
Mode 24 routine again but this time at the faster clock rate).

When you have finished experimenting with graphics using Basic you might like to
look at the way the Basic interpreter is written. The Disassembler program gives
you the means of seeing what a really large machine language program looks like.
With it you can disassemble the Basic rom and search for the many useful
subroutines which must be hiding in there but have not yet been discovered. It may
be possible, for instance, to find some graphics primitives which would greatly
improve the speed of the extra graphics modes already described.

When you have found these routines or written them yourself, you can add
commands to Basic and so extend the language in whichever way you like. The
possibilities are bounded only by your imagination and expertise.

For the less adventurous there is a simple way of building up a library of useful
subroutines which can be stored on tape and added to programs when needed.
The method described here in this book enables you to add a routine from tape to
the end of a program already in memory, ie the use of CLOAD need not destroy
what is already there in the machine.

| hope this book provides you with the sort of information you need and that you
enjoy reading it—| have certainly enjoyed researching and writing it.

Extra Graphics Modes

The Dragon uses a Motorola 6847 video-display-generator to control the colour
graphics and text screens. It is a versatile chip capable of some amazing displays
but unfortunately is not fully utilised by the version of Basic on the machine.
According to the manual supplied with the Dragon there are five graphics modes
Plus the text and low resolution graphics modes available to the user giving seven
in all. There are in fact another seven modes hidden in the machine which are really
quite easy to manipulate even without the sophisticated commands provided
through Basic.

We can take control of the VDG by poking values into the SAM bits (synchronous
address multiplexer) towards the top of the Dragon’s memory. The mode is
selected through location 65314 and the memory mapping for that mode is
governed by locations 65472 to 65477. The mode selection procedure is
summarised at the end of this section.

The following pages describe each mode in some detail and can be used as
reference guides.

TEXT MODE

There is a one to one correspondence between text screen locations and video
memory locations which means that characters can be poked onto the screen. The
character set is built into the VDG and has one or two peculiarities. Firstly, there
are no lower case characters (except when using a Printer) —you choose between
inverted and non-inverted text. Secondly, the code used to represent the
characters is a modified version of the ASCII standard. The characters and their
codes are shown in character table 1. Each character is represented by an eight bit
byte the most significant bit of which is always zero. The second most significant
bit governs whether the character is inverted or not.

The text screen is divided into 512 locations (16 rows of 32 columns) and its normal
address space is from 1024 to 1535.

LOW RESOLUTION GRAPHICS MODES

| have used the name ‘low resolution’ to signify that these modes rely on dividing
each character position on the screen into a number of elements called pixels
(picture elements).Each mode is numbered according to the number of pixels to
each character position. Only one low resolution graphics mode is implemented in
the Microsoft Basic on the Dragon but there are in fact five modes available.

LOW RESOLUTION MODE 4

This is the only low resolution mode supported by Basic and is normally
manipulated by SET, RESET etc. Text and graphics characters can be freely mixed
on the screen in this mode. Graphics characters are distinguished from text
characters by setting the most significant bit to one. In this mode any byte with bit
7 set to a one is interpreted by the VDG as a graphics character.

Each byte is divided into a number of sections which govern the colour for the ‘on’
pixels and also which pixels will be ‘on’.

ONE CHARACTER ONE BYTE
i Pl 1 [c2|ci|{co|rP3|P2|P1]|PO
PIXEL [PIXEL COLOUR PIXEL ON/OFF

A one in any of the lower four bits will light that pixel on the screen to the
colour indicated by the code in bits 4, 5 and 6.

All eight colours can be specified (‘off’ pixels are always black). The colours are
selected using the following code: —

000 GREEN

001 YELLOW

010 BLUE

011 RED

100 BUFF

101 CYAN

110 MAGENTA

111 ORANGE

There are 512 character positions on the screen and as each character can be
divided into 4 pixels this mode has a resolution of 64 by 32.

This, together with the text mode, is the default one which is selected whenever a
return to Basic command level is made. Should you wish to select the mode other
than through the commands provided in Basic the example program shows how to
go about it.

1960 REM

1816 REM LOW RES. MODE 4

1828 REM

1635 REM SET UP VIDEQ MEMORY WMAPFIMNG FOR MODES

1949 FOKE £5472.1 FOKE £5474.1 POKE AS47TR,1

1650 REM ZELECT THE MODE

1E5A POKE £5314.0

1876 FOR 1= T0 S11

1830 X=128+RND: 127) ¢ RAMDOM WALLE FOR PISELS AMD COLOURS
16360 REM PUT THE FINELS RAMDOMLY QW THE ZCREEH

1166 POKE 16244RNDCS11 2.4

1118 HEXT I

1128 FOR T=1 TO S88 MEXT T * SMALL DELAY

113a FOR I=8 T0 15 * HMUMBER OF ROWS

1149 FOR =6 TO 31 * HUMEER OF COLLIMNE

1158 REM HORIZOHTAL LIMES

116R POKE 1224+1432+d, 0128 + RHDO127 00

1178 NEXT J.1

1128 FOR T=1 T0 SR8 HEXT T ' =ML DELAY

113@ FOR I=& T 15 ' ROWS

1200 H=123+RHDC 1275 2 VALLE FOR FIXELS AHD COLDIRS

1218 FOR J=2 TO 31 ¢ COLLMNE

1228 REM THIS TIME THE WHOLE R WILL BE THE SAME CHARRCTER
1230 POKE 16024+1%32+.1.7%

1240 HEAT 4.1

1250 FOR T=1 TO @0 HEST T 1 3MALL DELRY

1268 EEM THIS TIME FILL THE SCREEM WITH WERTICAL LIHMES

: FOR J=f TO 231 ¢ CCLUMHE

3 FOR 1= TO 1S 7 ROWS
3 K=1ZR+RHDC 127 WALLE FOR PINELS MMD COLCHRE

+AoA 0 PUT IT OM THE = i

HEXT I..
9 FOR T=1 TO @8 KEXT T ° LASZT DFELAY

LOW RESOLUTION MODE 6

Each character position in this mode is divided into six pixels and one byte of
memory is used to govern both colour and whether they are lit. The increase in
resolution without using more memory than mode 4 is paid for by cutting down on
the number of colours available.

Each byte is divided as follows: —

ONE CHARACTER ONE BYTE |
R P'zEL 1 |co|Ps|P4a|pP3|P2|P1|PO
PIXEL | PIXEL COLOUR PIXEL ON/OFF

3 2
PIXEL | PIXEL
1 0

Notice that the colour defining field is bit 6. This means that only 2 colours can be
selected but to make things a bit better the possible colours are divided into two
groups. Each group is selected by toggling bit 4 in address 65314. A zero in this
position selects blue or red while a one selects magenta or orange.

Colour codes for the field in the video memory bytes are: —

® MAGENTA or BLUE
1 ORANGE or RED

Mode 6 has a resolution of 64 by 48.

1000 REM

1010 REM LOW RES. MODE 6

1020 REM

1030 INPUT "COLOUR SET (1/2) "; S

1040 IF S=1 THEN C=8 ELSE IF S=2 THEN C=0 ELSE GOTO 1030
1050 REM SET UP VIDEO MEMORY MAPPING
1060 POKE 65472,1 : POKE 65474,1 : POKE 65476,1
1070 REM SELECT THE MODE

1080 POKE 65314,16+C

1090 REM HORIZONTAL LINES

1100 FOR I=0 TO 15 STEP 2

1110 LI=32*1

1120 FOR J=0 TO 31 STEP 2

1130 POKE 1024+LI+J,25+128

1140 POKE 1024+LI +J+1, 25+128+64

1150 NEXT J, I

1160 FOR I=1 TO 15 STEP 2

1170 LI = 32*1

1180 FOR J=0 TO 31 STEP 2

1190 POKE 1024+LI+J,38+128

1200 POKE 1024+LI +J+1, 38+128+64

1210 NEXT J, I

1220 FOR T=1 TO 500 : NEXT T: ' SMALL DELAY
1230 REM VERTICAL LINES

1240 FOR J=0 TO 31

1250 FOR I=0 TO 15

1260 LI=32*1

1270 POKE 1024+LI+J,128+RND(127)

1280 NEXT I,J

1290 FOR T=1 TO 500 NEXT T:' SMALL DELAY
1300 GOTO 1100

LOW RESOLUTION MODE 8

The space corresponding to one character position on the text screen is divided
into eight pixels in this mode. It is easier to visualise the effects of mode 8 if we now
think about rows and columns. The resolution in this mode is 64 by 64 pixels with
each byte of video memory controlling two adjacent pixels on the same row. This
requires 2048 bytes to control the whole screen and enables all eight colours to be
specifi;ad (the two pixels controlled by the same byte obviously being the same
colour).

The fields within each byte are: —

ONE CHARACTER FOUR BYTES

PIXEL | PIXEL 1 |[c2|c1|co|pP7|Ps|xx|xx
PIXEL | PIXEL 1 |c2|ci|co|ps|Pa|xx|xx
NSk ek 1 | c2|ct|co|xx|xx|p3|Pp2
o L 1 |c2|c1|co|xx|xx|P1]Po

COLOUR PIXEL ON/OFF

Colour codes are the same as for mode 4, ie.

000 GREEN
001 YELLOW
010 BLUE

011 RED

100 BUFF

101 CYAN

110 MAGENTA
111 ORANGE

10

1900 REM

1010 REM LOW RES. MODE 2
1920 REM

1630 REM SET UP YIDEOD MEMORY MAPPING
1040 POKE 63472,1 : POKE A5475,1 : POKE 65476,1
1050 REM SELECT THE MODE
1060 POKE 65314,0

1070 REM FILL SCREEN IN 4 PRSSES
1080 FOR I=0 TO 63 STEP 4
1090 ROW = I#32

1100 FOR J=0 TO 31

1110 C = RND:7)%16

1120 POKE 1024+R0OW+.1, 123+C+8
1136 NEXT J,1

1140 FOR I=1 TO A3 STEP 4
1150 ROW = I%32

1160 FOR J=@ TO 31

1170 C = RND(7 %16

1180 POKE 1024+ROW+J, 128+C+4
1190 NEXT J,1

1200 FOR I=2 TQ 63 STEP 4
1210 ROW = I%32

1220 FOR J=0 TO 31

1230 C = RND(7 %16

1240 POKE 1024+R0OW+J, 128+C+2
1250 NEXT J,1

1260 FOR I=3 TD £3 3TEP 4
1270 ROW = I%32

1280 FOR J=0 TO 31

1299 C = RND(7)%16

1300 POKE 1024+R0OW+J, 126+C+1
1310 NEXT J,1

1320 GNT01320

LOW RESOLUTION MODE 12

Each character position in this mode is divided into twelve pixels and, like mode 8,
each row of two pixels within a character position is represented by one byte in
video memory. Consecutive bytes in video memory represent consecutive double
pixeils across the screen (again like mode 8) so that the second row within a
character position is governed by the byte 32 further on in video memory.

A character position is made up as follows: —

ONE CHARACTER SIX BYTES

P'i<1EL P';<OEL 1 | c2|ci1|co|PifP10]| XX| XX
PI>§EL PI>éEL 1 | C2|C1|{CO|P9|P8|XX]| XX
Pl>;EL Pl>éEL 1 [C2|C1|{CO|P7]|P6B|XX| XX
Pl)éE'- P'EEL 1 |C2|C1|CO|XX|XX]|P5| P4
PI>§EL P'>§EL 1 |C2|C1|CO|[XX|XX]|P3| P2
e RIEL 1 [c2|c1|co|xx|xx|r1|Po

COLOUR PIXEL ON/OFF

As can be seen, it take six bytes to control a single character position. This mode
therefore requires 512 x 6 = 3072 bytes of video memory. The colour codes are the
same as for modes 8 and 4 giving an eight colour 64 by 96 mode, ie.

000 GREEN
001 YELLOW
010 BLUE

011 RED

100 BUFF

101 CYAN

110 MAGENTA
111 ORANGE

12

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1150
1160
1170
1180
1190
1200
1210
1220
1230

REM

REM LOW RES MODE 12

REM

REM SET UP VIDEO MEMORY MAPPING

POKE 65472, 1 : POKE 65474, 1 : POKE 65477, 1
REM SELECT THE MODE

POKE 65314, 0

REM FILL SCREEN IN 6 PASSES

FOR I=0 TO 5

FOR J=I TO 95 STEP 6

ROW = J*32

FOR K=0 TO 31

C = RND(7)*16

IF I<3 THEM N = RND(2)+6 ELSE N = RND(2) 1140 POKE 1024+ROW+K,
NEXT K,Jd, I

FOR T=1 TO 500 NEXT T: ' SMALL DELAY

REM VERTICAL LINES

FOR J=0 TO 31

FOR I=0 TO 95

POKE 1024+1*32+J, 128+RND(127)

NEXT I,J

FOR T=1 TO 500 NEXT T:' SMALL DELAY
GOTO 1080

13

128+C+N

LOW RESOLUTION MODE 24

This is the last of the low resolution graphics modes and it divides the character
position into twenty four pixels in the usual way ie. 2 by 12. It is an eight colour
mode and is very similar to modes 12 and 8 where each row in a character position
is represented by bytes thirty two addresses apart. The usual table follows: —

ONE CHARACTER TWELVE BYTES
ki 1 |C2|C1]|CO|P23|P22| XX | XX
PI§<1EL P';OEL 1 [C2|C1|cCO|P21|P20| XX | XX
PI$<9EL Pl;<8EL 1 [C2|C1|CO|[P19|P18|XX |XX
Pli<7EL Pl;<6EL 1 |C2|C1]|CO|[P17|P16] XX | XX
Pl;<5EL P';<4E'- 1 1c2|cr|co|Pi5|P14]| XX | XX
PI;<3EL P';<2EL 1 |c2[c1|colP13|P12]| XX |XX
P';%E'- P';(OEL 1 |c2|c1|co|xx|xx|P11|pP10
Pl)éEL Pl)éEL T|c2|c1|co|xx|xx| P9|Prs
PI>;EL PI)éEL T[(C2|C1|CO|XX|XX]|P7|P6
fFeL | PlEL 1 [c2|c1|co|xx|xx|ps|Pa
PI>§EL PI>§EL T|c2|ci|co| xx|xx|r3|P2
P'>1<EL PD(()EL 1|c2|c1|co|xx|xx|P1|Po

COLOUR PIXEL ON/OFF

Here we have an eight colour 64 by 192 mode which requires 6144 bytes of video
memory. The usual colour codes apply: —

000 GREEN
001 YELLOW
010 BLUE

011 RED

100 BUFF

101 CYAN

110 MAGENTA
111 ORANGE

14

199 REM
1814 REM LOW RES. MODE 24
20 REM
REM SET UF YIDED MEMORY MAPPIMG
472.1 - POKE £5475,1 : POKE A5477.1
LECT THE MOGE
1960 POKE €5314,6
1076 REM FILL 2CREEM IM 12 PASSES
1eg@ FOR I=2 TC 11
1638 FOR I=1 TC 131 STEP 12
1108 ROW = J432
1118 FOR k=8 T 31
1128 C = RHDCT 31S
1132 IF I<A THEM N = RND(2M& ELSE W = RHD(22
1149 POKE 1824+ROM+K, 122+4C+N
1156 HEXT kK.J, 1
11580 FOR T= ‘580 0 WEXT T - SMALL DELAY
1178 PEM FILL SCREEM WITH YERTICAL LIHES
1130 FOR J=@ TO 21
1130 FOR I=@ T0O 131
1200 POKE 1924+1432+.1, 128+RNDC 127 1
1218 HEXT 1.4
1220 FOR T=1 T0 50@ : NEXT T ’ SMALL DELAY
1239 GOTO 10234

MIXING TEXT AND GRAPHICS IN THE LOW RESOLUTION MODES

Text can be mixed with modes 8, 12 and 24. The method is quite simply to poke
the required ASCII value into a/l bytes governing a particular character position on
the screen. This means that 4, 6 and 12 pokes respectively for a single character.
The process is slow in Basic but would be acceptable in machine code.

Try the following short example:

1300 REM SELECT MODE 24

1016 POKEES472. 1 POKESS47S. 1 : POKERS477,) - POKEES314.0

1820 REM SELECT START OF A CHARACTER FOSITIOH

1039 FOR 5=iHAGA TO s&HALA

1349 REM POKE 3AME YALUE TO ALL BYTES IM THIZ CHARACTER FOSITIOH
1956 FOR I=9 TO 32#11 2TEP 22

1968 POKE S+1,4&H4%S

107@ HEXT 1.5

1839 COTO 1036

15

The remaining eight modes can be thought of as the true graphics modes in that
we no longer think in character positions. Only five of the eight are implemented in
Basic. | will describe each mode in turn indicating which are supported by Basic
and also how to control all of them without using the special Basic commands.

Bit mapping of the display follows the same conventions for each of the eight
modes | am about to describe. The modes are either two or four colour and so each
pixel can be represented by one or two bits respectively. This means that a single
byte can represent eight or four consecutive pixels on the same screen row,
depending on whether the mode is two or four colour, eg.

ONE BYTE ONE BYTE
TWO COLOUR DISPLAY FOUR COLOUR DISPLAY
ClEClE€lClE|ClE]E C1[{Co|Cr|co|cr|Co|C1|CO
Each bit represents a single Each set of two bits represents
pixel in one of two colours. a single pixel in one of four
colours.

The colour sets are:
Two-colour. . .BLACK and GREEN or BLACK and BUFF

Four-colour. . .GREEN, YELLOW, BLUE and RED, or BUFF, CYAN, MAGENTA
and ORANGE

16

64 BY 64 FOUR COLOUR MODE
(not supported by Basic)

This mode requires 1024 bytes of video memory to display a full screen. The sample
program gives all the information you need in order to select the 64 by 64 four
colour mode.

1000 REM

1010 REM 64 X 64 FOUR COLOUR MODE

1020 REM

1930 REM SELECT CORRECT VIDEQ MEMORY MAPPING
1040 POKE 65473,1 : POKE 65474.1 : POKE 65476,1
1050 REM SELECT 64 X 64 MODE

1060 REM COLOUR SET 19 SELECTED BY MAKING C = @ OR 8
1870 (=0

1080 REM CHANGE COLOLR SET

1099 IF C=0 THEM C=8 ELS5E C=8

1100 POKE 65314, 128+C

1110 FOR I=8 TD 1823

1128 POKE 1024+1.RPMNDC255)

1130 NEXT I

1140 FOR I=1 TO 1800 ' MNEXT I

1158 FOR T=1 TO 560 ' NEXT T ' SMALL DELAY
1160 REM VERTICAL LINES HOW

1170 FOR J=0 TO 31 STEP 2

1189 FOR I=0 TO 31

1198 REM RANDOM COLOURS

1200 %=RMD(235)

210 REM POKE THEM ONTD THE SCREEN

1220 POKE 1@24+1%32+J.%

1230 NEXT I.J

1240 FOR T=1 TO 50@ : MEXT T ’ ANOTHER DELAY
1250 GOTO 1990

128 BY 64 TWO COLOUR MODE
(not supported by Basic)

This mode uses 1024 bytes of video memory and again the example program gives
all the information necessary.

1aae REM

122 % 64 TWO COLDUR MOCE

EM SELECT CORRECY WILED MEMOPY MAFPIMNG

1a48 FOKE £S473.1 POKE £5474.1 POKE £5476.1
1956 REM SEILECT MODE

FEM COLOUR 2ET 12 SELECTED BY MAKING © = 0 OF

0

C=n

1100 E 01z
1118 FOR I= TO 16
1126 FOKE 1824+ RHON

1130 HEXT I

1148 FOR T=1 TO Zaa NEST T * SMALL BELAY
1158 REM VERTICAL LIMES

1166 FOR =€ 7O 15

1174]
11424

HEXT T AMDTHER DELAY

18

128 BY 64 FOUR COLOUR MODE
(not supported by Basic)

Double the number of colours over the 128 by 64 two colour mode means that this
mode must have 2048 bytes for a full video screen. A similar demonstration
program gives all the information on selecting the mode.

190@ REM

1919 REM 128 ¥ &4 FOUR COLOUR MODE

1920 REM

1930 REM SELECT CORRECT YIDEQ MEMORY MAPPIMG
104A POKE AT472,1 : POKE 65475.1 : FOKE A547E. 1
1059 REM SELECT MODE

1660 REM COLOUR SET I% SELECTED BY MAKIMG o= @ OF 2
1070 C=0

1980 REM CHAWGE COLOUR ZET

1998 IF C=0 THEM C=8 ELZE C=0

1199 POKE AS5314, 122432+

1118 FOR I=0 T0O 2047

1120 POKE 1024+ .RHD(255

1130 HEXT 1

1148 FOR T=1 TO S@A : NEXT T ’ SMALL [ELAY
1150 REM YERTICAL LIMES

1160 FOR J=0 TO 31

1170 FOR I=0 TO £3

1188 REM RANDOM COLOURS

1190 ¥=RND{255)

1208 REM POKE THEM DNTQ THE SCREEH

1210 POKE 1@24+1¥22+.1.%

1220 NEXT 1.J

1230 FOR T=1 TO 58@ - NEXT T " ANOTHER DELAY
124@ GOTO 1@3@

19

128 BY 96 TWO COLOUR MODE
(Basic—PMODE 0)

Memory requirements here are 1536 bytes per screen. This mode is fully supported
by Basic with PSET etc. but in order to make the information in this book complete
| will give the ‘manual’ method of selection.

1RA@3 REM

1410 REM 128 ¥ 36 TLO COLOUR MODE

1928 REM

1A3% REM SELECT CORRECT WIDED MEMORY MAPPING
1848 FOKE 65473, 1 FOKE A%475.1 POKE A547/.1
1859 REM SELECT MODE

1A88 REM COLOUR SET IS SELECTED BY MAKING C = 8 0R 3
179 C=h

1339 REM CHRMGE COLOUR ZET

1838 IF C=¢ THEN C=2 ELSE C=A

1190 POKE AS314. 123+32+1A+(

1119 FOR 1= TD 1535

1120 POKE 1824+1.RMN(2557

1130 HEXT 1

1140 FOR T=1 TO =00 NEXT T * SMALL DELARY
1158 PEM VERTICAL LINES

116 FOrR =8 TO 1S

1179 FOR 1=8 TO 95

115 REM RAHODOM COLOURS

1196 W=RND(255 3

1206 FEM FOKE THEM CHTO THE SCREEM

1218 POKE 1024+1%16+1.%

1220 HEXT 1,4

1230 FOR T=1 TD S9PA ¢ MEXT T * AMOTHER DELRY
1243 GOTO 1858

20

128 BY 96 FOUR COLOUR MODE
(Basic—PMODE 1)

3072 bytes per screen are required in this mode because of the doubling of the
colours available over the 128 by 96 two colour mode. The same simple program is
used to demonstrate calling the mode.

18600 REM

1816 REM 128 = 536 FOUR COLOUR MOCE

1028 REM

1824 REM SELECT COREECT VIDED MEMORY MAPFIHG
1048 POKE 65472,1 - POKE £5474.1 + POKE AS477.1
1858 REM SELECT MOCE

1A6A REM COLOUR SET IS SELECTED BY MAKIMG C = 2 0OR 2
1678 C=0

1988 REM CHANGE COLOUR ZET

16360 IF C=B THEW C=2 ELZE C=0

1193 FIOKE 85314, 128464+0

1118 FOR I=9 T0O 23871

1128 POKE 10R24+1.RHDL 255)

1132 MEXT I

1140 FOR T=1 TO SH@ « NEXT T ' 2MALL DELAY
1150 PEM WERTICAL LINES

1166 FOR J=8 TO 231

1170 FOR I=0 T 35

11289 REM RANDOM COLOURS

1190 X=RHD(255

1200 REM FOKE THEM 0OMTO THE SCREEN

1213 POKE 10924+1%32+.). %

1220 HEXT I,

1232 FOR T=1 TO SAG - HEXT T ' AHOTHER DELAY
1240 GOTO 1034

21

128 BY 192 TWO COLOUR MODE
(Basic—PMODE 2)

Half the colours available but double the vertical resolution means that this mode
has the same memory requirements as the 128 by 96 four colour mode.

1909 REM

1010 REM 128 ¥ 132 TWO COLOLR MODE

1028 REM

1030 REM SELECT CORPECT VIDED MEMORY MAPPIMNG
1040 POKE AS473,1 : POKE RS5474,1 : POKE 65477
185@ REM ZELECT MOCE

1060 REM COLOUR SET IS SELECTED BY MAKIMG C = @ 0R 8
1970 =0

1A8@ REM CHAWGE COLOUR SET

1038 IF C=0 THEW C=3 ELZE C=0

11890 POKE 55314, 128+64+16+0

111@ FOR I=0 TO 3071

1120 POKE 1024+1.RNDC255)

1138 NEXT 1

1148 FOR T=1 TO 3580 @ KEXT T * SMALL DELAY
1150 REM YERTICAL LIMESZ

1160 FOR J=@ TO 15

1178 FOR I=@ TO 191

1182 REM RANDOM COLOURS

1190 x=RMND(255)

1200 REM FPOKE THEM ONTD THE SCREEM

1210 POKE 1924+1%16+.1, ¥

1220 MEXT I..4

1230 FOR T=1 T0 508 ° NEXT T * ANOTHER DELRAY
1240 GOTO 1050

128 BY 192 FOUR COLOUR MODE
(Basic—PMODE 3)

Double the number of colours available over the previous mode makes a full screen
use 6144 bytes.

1000 REM

1210 REM 128 ¥ 132 FOUR COLOUR MODE

1826 REM

1030 REM SELECT CORRECT ‘YIDEQ MEMORY MRPPING
104@ POKE £5472,1 : POKE £547%,1 @ POKE 65477.1
1650 REM SELECT MeDE

1060 REM COLOUR 2ET IS SELECTED BY MAKING C = @ OR 3
1070 C=0

1039 REM CHAMGE COLOUR SET

1090 IF C=@ THEM C=2 ELSE C=0

1180 POKE 65314, 128+64+32+(

1110 FOR I=0 TO A143

1120 POKE 1024+1.RHDC 255 »

1130 NEXT 1

1149 FOR T=1 TO S0 ' NEXT T ° ZMALL DELAY
1156 REM VERTICAL LIMES

1160 FOR J=8 TO 31

1176 FOR I=0 TO 131

1180 REM RAHDOM COLOURS

1190 ¥=RND(255>

1260 PEM POKE THEM OMTO THE SCREEM

1210 POKE 1024+1%32+.J. %

1220 HEXT I..!

1230 FOR T=t TO 506G © MEXT T ' MHOTHER DELAY
1248 GOTO 1@364

23

256 BY 192 TWO COLOUR MODE
(Basic—PMODE 4)

This is the last mode available in the Dragon and requires 6144 bytes of video
memory for a full screen.

16826 REM

1018 REM 256 X 132 TWO COLOUR MODE

1920 REM

1030 REM SELECT CORRECT VIDED MEMORY MAPPIMG

184@ FONE £5472.1 « POKE £%475,1 « POKE AS477,1

1950 REM ZELECT MOGE

1060 FEM COLOUR SET IS SELECTED BY MAKIMG © = @ OR &
197a C=8

1630 RPEM CHANGE COLOLUR =2
1633 IF C=0 THEH C=3 ELS
1160 PCKE £5214.128+54+3
1118 FOR I=0 T0O &143
1129 FOKE 182441, RHDC 2550

1130 MERT 1

1146 FOR T=1 TD 500 - NEXT T ' SMALL CELAY
1156 REM VERTICAL L INEZ

116@ FOR J=0 TO 31

1170 FOR I=6 TO 131

1126 REM FAMDOM COLOURS

1130 ®=RHDC 255

1260 PEM POKE THEM OMTO THE SCREEH

1218 POKE 1024+14%32+], %

1226 HEXT 1.1

1233 FOR T=1 TO SAG « HEXT T * ANOTHER DEILAY
1240 GOTC 1634

ET
E C=9
2+C

24

VDG MEMORY MAPPING AND MODE SELECTION

The following tables summarise the information contained in the example
programs so far.

Pecimal addrees . . . Hex address . » Function
85472 w sia & & % e FROB, . e w w 5w CLEAR BIT @
65473 G Gonia ¥ oa w sz FREL., i & & % 4 SET RIT @
65474 4 .o n w8 wam & FFC2.. & & » . = CLEAR RIT 1
ASAPE & w ar v om oo FPGR . e e o w w SET BIT 4
GT47E % wow w5 w mow FFCAo. s & » w % CLERR BIT 2
G3477 5 woie: w wow e PPCSe . e w o« ouwow SET RIT 2

Table 1.—The six locations from 65472 to 65477 control the memory mapping
mode of the VDG. Table 2 explains the memory maps selected by the various bit
patterns.

VoG MEM. MODE BIT PATTERN BYTES PEP
n . . AnAa., i BELR
1. ' . 801, . 1AP4
2. . . . AN, . 2A4R
9 4 . « A L1y A e 1
4, : =100 ., . 2072
S % 5 ¢ 181 &5 . 2072
5 . 3 v i 11953 . F144

Table 2. — The bit patterns above are set up in the SAM bits by pekes into locations
65472 to 65477 as shown in Table 1.

MODE«BIT PRTTERN

TEXT < LOM RESOLUTION 4, 6 p @ G A G aQ
LOW RESOLUTION € , ., . . @RA1xAaAnaA
LOW RESOLUTION 2 . AnAAARRA
LOK RESOLUTION 12. Anaannnan
LW RESOLUTION 24, . , .A @@ AAQAN
64 BY 64 FOLR 0L, 1AAAYANDA
128 BY £4 WO COL. . . . 1 QA1 XNAD
128 BY 64 FALP PO . tAa1avAAn
128 B¢ 96 THO COL. 1a11%Ann
122 RY 26 FOUR COL . 110a%0a00
122 Ry 192 TWO COL . f1AaLrana
123 RY 192 FOUR £OL. 111a%aan
256 BY 192 TWQ COL . 1111%a0a

Table 3. —This table shows the bit patterns to be poked into location 65314 for
graphic mode selection. The X can be either 1 or @ and indicates the colour set
selected.

25

VIDEO MEMORY BASE-PAGE LOCATION

Now that we can select any of the fourteen modes provided by the VDG without
using Basic graphic commands we are in a position to be able to write our own
machine code programs which take advantage of them. There is, however, a very
important feature of the Dragon’s graphics still to be explained and that is the
specification of the start of video ram. This is important because several pictures
can be held in memory at the same time and a form of animation achieved by

switching rapidly between them.

The Dragon uses locations 65478 to 65491 to control a seven bit value in the SAM
bits which when multiplied by 512 gives the address of the start of the video ram.

Table 4 explains the functions of the

DECIMAL ADDRESS . . .

55478

65479 . .
£5480 .

65481

65482 .

65483

65484 .
65485
654386 .
RA5487 . .
55488 .
55489 |
55490 . . .

65491

locations.

. « HEX AGDRESS .

. FUUNCTION

ot wogowowia & o oa FFCBL @@y e @ o & @ CLEAR BIT O
e:a & % W w o FFC?, i w e aw =+ SET BIT @
e« ¢ o o v o o oo FFCB, 4 &« o 4. & s« « » CLEAR BIT 1
T e w FFE9a w = u 0 o ¢ m » "9ET BIT {1
e« v s s s s e ss FFCA. & o+ o & « o .« CLEAR BIT 2
G W e e FECB. o & @ 7 %v i « @ /SETBIT 2
+ s o o« s o« FFCC. « ¢ o« s &« » s CLEAR BIT 3
v oom % mme w9 FFCO. o w 4w » p.w » s SET BIT 3
AR R Y w FFCE. 4. = w s = »: w w CLEAR BIT 4
£ W i » « FFCF. « % W s s & SET BIT 4
Q@ el oW o ¢ FFDB. ¢ & & « « . CLEAR BIT 5
Wb s d b ml & ow & FEDL ¢ %9 o wow s SET BITS
¥ 5 e Wes e A FEC2.. .. , T . « CLEAR BIT 6
. o KW v v v FFD3. « 5 5 v « « SET BIT 6

Table 4. —The Dragon calculates the video base-page location by multiplying the
seven bit number contained in the SAM bits by 512.

The two short example programs give good examples of the power of this feature.

1000 REM
1010 REM THIS ROUTINE SHOWS THE DRAGON’S ZERD PAGE LWORK AREA
1620 REM
1030 REM PRESS ’BRERK' TO RETLIRN TO NORMAL
1940 POKE %HFFC8,0
1058 GOTO 1950

19606 REM

1010 REM VIDEO BASE PAGE SWITCHING USING £4 X 64 FOUR COLOUR MODE
1020 REM

1930 POKE £5473.1 ¢ POKE £5474,1 : POKE A5476.1

1040 POKE £5314,122

1050 FOR 1=0 TO 1023 * SET UP TWO PAGES

1066 POKE 1024+1.8H3B : POKE 2842+1.RNDC 2550

1979 NEXT I

1880 POKE £5433,1 @ POKE €548@.1 ' SWITCH TO 2ECOND PAGE
1090 FOR I=0 TO 188 : NEXT I

1100 POKE 65481.1 : POKE 65482,1 ' SWITCH BACK TO FIRST FAGE
1118 FOR I=6 TO 106 : NEXT I

1129 G0TO 1030

26

PROCESSOR SPEEDS

Another feature of the Dragon which is very interesting, and indeed can be
extremely useful, is the fact that it has a variable processor clock rate. For those of
you who do not understand about clock rates a simple explanation is that the
central processing unit (in this case the 6809E) receives a regular tick from a timer
which tells it to move on to the next stage of obeying an instruction. These ticks
are measured in megahertz (millions of ticks per second) and the faster the tick the
faster the computer works. In the Dragon’s case the clock rate is controlled by
SAM bits in locations 65494 to 65497. These four locations control two SAM bits
which should give us four clock rates. Table 5 sets out the functions of the
locations.

DECIMAL ADDRESS HEX ADDRESS FUNCTION
65494 4 4w s x % won e s FFDB. ¢ « » & .o = & « CLEAR BIT @
63495 o v v w8 v owon v FFD?, o o 4 o« & ¢ « SET RIT 9
65496 v wiw v w3 @0 W ¥ FFDS. & & 5 4 s & » @ CLEAR BIT 1
BI497 . <0 w4 ws v s s FFD9. & 5 . v v « = v SET BIT 1

Table 5.

Two bits should give four speeds but the Dragon appears only to respond to three.
The default speed, set on switching on, is the slowest with both SAM bits cleared
(poking any value to 656494 and 65496 achieves the same effect). The next faster
speed is set by poking to 65495 and results in the execution of programs being 50%
faster. The slowest two speeds are the only ones which can be used and still retain
video synchronisation.

The next increase in speed is achieved by setting bit 1 and clearing bit @. Execution
speeds are 100% faster than the default speed but video synchronisation is lost.
This speed would be useful if a program involves large amounts of computation
and where video is not important. Video synchronisation can always be regained
by slowing the processor down again after the burst of computation.

The final speed should be achieved when both bits are set but as | have said, the
Dragon does not appear to respond (see the example program).

One thing to remember about the faster speeds is that the cassette interface will
only work at the default speed so make sure you save your programs at the correct
speed.

The following routine gives examples of the various speeds. Notice that the
SOUND command has constant parameters as does the delay subroutine in line
3000. Listen to the note change and watch the delay fall by 50% each time. The
third and fourth speeds appear to be the same.

27

1GO0 FEM

1018 REM PRCCESSOR SPEEC DEMOD

1220 REM

1333 PEM 3TART WITH DEFALILT =2PEEDL SET

1340 GOSR 2080 GOSUR 38383 - GOSUR 2607

1ASA FOKE A5435,1 + GOSUB 2986 « GOSUR 20@a GOSLR 2660
1956 FOKE £5434,1 POKE AS437.1 GOZUR 2032 - GASUR 3386 - GOSUR 2006
1478 PLOKE AS455.1 GOSUR 2000 - GOSUE 263 : GOSUR 2RAA
1RRA POKE RS434, 1 FKE AS43K,1 EME

Zann SOUHD 18,10 - RETLIRH

@A FOR I=1 TO 16AAQ : WEAT I : RETLRH

LOADING MORE THAN ONE PROGRAM FROM TAPE

Dragon’s Basic has fairly sophisticated and reliable tape handling facilities but there
is one limitation —only one Basic program can be loaded at a time. If a second
program is loaded it overwrites the one already in memory. As you progress with
your programming you will no doubt collect quite a number of routines which
could be used in more than one program so to save constant retyping | have
included a method of appending programs. The process can be broken down into a
number of steps:

1....Make sure that the line numbers of the program on tape start at a higher value
than the highest line number of the program already in memory.

2....PEEK at the contents of locations 25 and 26 (19 and 1A HEX) and note the
values. These two locations are used as a pointer to the start of the program in
memory.

3....Execute the following—POKE 25, PEEK (27): POKE 26, PEEK (28)-2. This
alters the pointer so that it now points to the end of the program.

4....Use CLOAD to bring into memory the program from tape.

5....POKE into locations 25 and 26 the values noted in step 2 above.

The second program is now appended to the first—use LIST to check.

The only thing to watch for in this process is that subtracting 2 from PEEK (28) in
gtf)3:3_above does not result in a negative number. If this does happen replace step
POKE 25, PEEK (27)—1:POKE 26, 256-PEEK (28)

There is no reason why the above process cannot be repeated any number of times

to take advantage of a whole library of subroutines provided there is enough
memory available.

28

A 6809 DISASSEMBLER

This program was developed to aid me in writing this book. | have found it so
useful that | have included it for your use.

Screen output is restricted to the address of the instruction being disassembled
and any data in hex format followed by the mnemonic representation. | used a
book by Lance Leventhal called 6809 ASSEMBLY LANGUAGE PROGRAMMING,
published by Osbourne/McGraw-Hill, as a reference for this program.

Printer output includes all of the above plus a further field which unfortunately
cannot fit onto the screen at the same time as the rest of the information. This field
is the ASCII representation (where it exists) of all the bytes just read. This is useful
for deciphering data areas of programs.

On running the program there will be a short delay while data structures are
initialised followed by the prompt ‘START?".

Reply to this with the address at which you want disassembly to commence - try
&HB8000 to see the beginning of Basic. Next the prompt ‘PRINTER (Y /N)?" will
appear. Type "Y' if you want printed output. Having replied to these questions the
first fifteen lines of disassembled program will appear on the screen. The computer
will then wait for a keypress before giving the next fifteen lines. Any portion of the
area to be disassembled which is not understood by the program will result in a
question mark appearing in the mnemonic field.

Should you wish to start disassembly again from another address type ‘S’ when at
the end of a fifteen line screenful. This will give the 'START?" prompt again.
Another command is ‘C" which cancels the wait between screenfuls ie. you get a
continuous disassembly.

160 REM £203 DISASSEMBLER
20 CLEAR 2000
20 GOTD 1430
40 IF PEEK(S3<16 THEM M&=Mg+"o"
50 ME=MS+HEASCPEEK 252 RETIURM
&0 Z=PEEK(S):IF Zi16 THEN P$=F%+"Q"
70 PE=PH+HEHS(2}
80 IF Z¥H7F THEM 2=2-%4H20
90 IF 2<%H20 THEH 2=&H2@
100 Te=TE+LHRS(2): RETURN
116 PRINT USIMG L%iR$. P$.C%, M
120 IF PR=1 THEH PRINT #-2,USIMG J$:R%.P%, CH. M. TH
120 A%= un, P5=" " :C$=" [M§=" ", T="": S=S+1 . GDTD:‘.‘@E‘
S=C+1ME=Mb+"$" : GOSIB4E : GOSURED: GOTO1 1A
S0 S=5+1:ME=MS+"#%$" : GOSIR40: GOSLUBAA: GOTAL1D
160 S=5+1 :Me=M$+"#45" : COSUB40: GOSUREA: S=5+1 : GOSLIR4A: COSLREA: GOTO 10
170 5=5+1:Me=M$+"$" : GUSUR4MA: GOSIIBED : 5=5+1 : GOSLR4Q : COZLREA: GOTOI 1R
188 CLS:L=0:H=B
190 INPUT"START ":S: INPUT"PRINTER 7 /N ":1%:IF I%$="%" THEH PR=1 ELSE FR=i
200 N=M+1:IF L=1 THEN 220 ELSE IF H=15 THEN M=8 ELZE 22@
210 1$=1HKEr$: IF I1$="C" THEN L=1 ELSE IF I$="" THEM 2164 ELSE IF I%="S" THEH 138
220 X=PEEK(S): A$=HEX${ 5) GOEUBEA
230 IF MM K=" THEM M$=M$+CHRS X1 :0e="7":50T0I1A

29

A THEW GOTORSA
THEH 320

THEM 148

238 IF Kf&HI‘ R #=%H13 OF X=2HID 0P C¥SLH32 ANG XOHZ0Y OR CXMLHID AND #<8HER 3

THEW 114@
290 IF ¥=XH1& OR ¥=tH17 THEN 3=5+1 GOSUEEQ:S=2+1:GOSURAD: =

30 IF CKEHLIF AND LHR[THEH 428
3 IF ¥ 10 (IF
R CRAAHBF AND ¥C2HC3 0 OR (X58HD3 RMD X/2HCC 0 THEM 154
32e IF "&HIE OR H=3HIF THEM |
33@ IF X»LH33 AHD X<&H22 THEH

HAF AN HCeHAA Y OF (X>8HCF AND XILHEM) THEM 140

H23 5 OF:

CHYEHER AND A<aH2A0 R CXIEHAF AND XEAHCAY OR ¥
3@ IF « H2F RH
HOF AHD #<&HFB X THEH 468 .
330 DISFLACEMEMT=FEEK! S+1 M 2SF+PEEKS S+2 0
g IF DI»=%H2009 THEM [I=DI-&HFFFF - |
480 S5=5+2 DI=DI+3+1:IF OI>2HFFFF THEN DI=DI-#HFFFF - |
415 ME=M$+"$"+HEXS(D] »: GOTOL10
20 DI=PEEK(Z+17
43ﬁ IF DI>=%H28 THEM DI=0DI-2HFF - 1
440 S=5+1:ME=M+"$" : GOSLIBED
450 DI=DI+5+1 Me=MS+HEXS DI 5:GOTO11@
480 S=5+1: PO=PEEK() ME=MS+POSCP O
47 GOSLRERA: NB= PE(PGW
483 IF MRXQ THEM 3=5+1:GOSUBER: HB=HE-~{
433 IF MBX3 THEM S=5+1:G0SUREE

506 U=IHSTRCL, M$, "MM" 0 IF LK THEM M$=LEFT$ M$. -1 +RIGHTS(F%.4

M% o~11-35:GOTO119

3C OR CRSAHVFE AMD XSaHE35 0OR (X

2HE2 AND XCaHSC)

%HB? OF ¥=tHBC R A=8HRE OR X=RHC3 OR ¥=2HCIC OR XstHCE THEN 160
YYHEF THEN 170
H24 3 OR CAXHSF AMD Z<8H7Q) OR (XXH3F AND XCRHRA Y DR (X5

I+RIGHTSC M%, LEHK

518 U=IHETR 1 MS "MH" 5 IF 1< THEN M$=LEFTSC M, LI-1 +RICHTSC P$, 2 1+RIGHT S M$, LENC

Mg =-1i-13

=°g GOTOL1A

S=5+1 - GOZURED: PO=PEEK(S Y

IF PO AMD 3H2A THEM REGH=REGSH+"PC."

IF PO AMD %H4D THEN REG$=RECE+"1I/3,"
IF PO AHD &H20 THEH REGH=REGH+"Y."

IF PO AMD 3H10 THEM REG#=REGH+"X,"

30 IF PO AND &H@2 THEM RECS=REGH+"[F,"
€50 IF PO AHD 2HEB4 THEH RPEC$=REGH+"E."

&0 IF PO AHD &HG2 THEN REGH=RECS+"M,"

£10 IF PO AMD %4HA1 THEN REG$=REGH+"CC"

A26 ME=M$+REGS:REGS="":G0T0110

R3O0 S=%+1:G0SUBKA: PO=PEEKC S) : Me=MS+FO%(P)
240 HB PBfPD) G0TN 430

550 S=S+1 M=PEEK(Z2):GOSUBED

[={25) IF n,&H”e FAND ¥<&H30 THEM CH=(B%(X-8H20> ELSE A20
£20 q_b+1 GOSLIBAG : 5=5+1: GASLIBED : 5=5-Z : GNTOIRA
588 IF X=%H3F THEHN rs-"°u12"-:=3+1 GOTO119
90 IF %=&H83 THEH C$="CMPD":GOTO1A2

720 IF A=%H3C THEW C$="CMPY":GOTN1AQ

710 IF A=%H3E THEN C#$="LDY":GOTO1£0

726 IF #=2H33 THEH C%$="CMFD":G0OT0140

730 IF A=2HOC THEW C&="CMPY": GOTO140

740 IF X=&HSE THEN C$="LDY":G0OT0N140

758 IF X=2H3F THEM C$="STV":G0T0N140

768 IF X=&HA3 THEN C$="CMPD":GOTNA30

770 IF ¥=3HAC THEHW C$="CMPY":GOTOA3Q

780 IF X=tHAE THEM C%="LDY":GNT0630

7?30 IF X=%HAF THEN C$="STY":G0OT0A3Q

4

S

6

n U|

r_n fJ\ ' -_r\
h) ,_9 o x:,

@O

30

R '3 THEW C%="CHMRL" - GOTOLTE
210 © THEMW CH="CHPv": GOTO170
320 THEH Cé="LD%" :GOTO1P0

THEN C#="ST%":GOTO176
THEH (EOTRLER
THEW GOTOL46E
THEH Ls-“’ ENLGOTO149
THEW C$="L SGOTOSER
THEM %= (GOTO4E0

Hal C THEN C8="LDE" :G0T01 7
g THEH C$="S SEOTOL7S
-1:G0T011A

3 : EEA
H“F THFN rs—"‘ul'”:’—u+1 GATO146
H32 THEHW C%="CHFU":GATO153
3C THEM C#="CMPS":GOTO1E8
THEH Ce="CHMFLI":5G0T0140
THEM C#="CMP2":G0TO144
'p THEH rs—"ﬁMPU">EDTD468
C$="CHP3" : GOTO469
d =MCHPLY GOTOL TR
1916 THFN 1$‘”IMP'" GRTOLTA
| S-1:G0T01 1@

A e @ ¢

£
BRI EIA]

LD 0
Iy o
o &

— e Ry
(Ve "y
L)

oD

1846 RI=IHTOH-16
1050 IF Ri=0 THEM REFs—F}—_F$+”D,. "GOTOLLSR
1060 IF R1=1 THEM REG&=REGS+"X.":GOTO1154

1875 IF R1=2 THEH REGH=RECH+"Y.":GOTO1154

1930 IF R1=3 THEM REG$=REGE+"I1.":GOTO1154
1438 IF Ri=4 THEMN REG$=REG#+"Z,":GOTO11%53
110@ IF R1=5 THEH REGH=REGE+"PC.":GOTO115A
111A IF R1=8 THEN REGC$=RECE+"A.":GOTO115A
1128 IF P1=3 THEN PEG=REGCS+"B.":GOTO1154
1130 IF R1=18 THEH REGE=RECE+"CCR,":GOTO115

1149 IF Fi=11 THEM REG$=REGH+"[P."
1158 IF R1=R2 THEW 118A EILSE R1=R2:GOTO1ASA
1160 Me=M$+RECE RECS="":GOTO116G

1179 DATA MEG. . .COM.LSE. .ROR.ASR.ASL ROL.DEC, , INC. TST, JMP L CLR HUIL . HUL . HOP , SYHC . .
.LERA,LB3F, .DAA
11:38 DATA ORC, . AMDCC, SEX L EXG. TFR.BRABEN, BHI . BLS. BLC . RCE, BNE . BER . BYC . RS EBPL . BMI
JBGE.BLT.BGT.BLE

11“0 DATA LEAX, LERY . LEAZ, LEALL. FSHS, PUILS, PSHULFULY, , RTS, ABRY, RTT . CHAT MUL ., SWT HEG
A .. COMA,LSRA. , RORA

1202 DATA RSRA.ASLA, ROLR.CECA. . INCA. TSTA. . CLRA.MEGR. . . COMB. L5RE. , RORB . ASRE . RALE,
FOLE.DECE. . INCB

1218 DATA TETR, , CLRE,HEG, , , COM, LR, ROR. AR, ASI RO, BEC, . TMC. TST. IMF.CLR.MEG, . . €
oM. LER. «ROR. ASR

1220 DATA ASL.ROL.DEC, . IHC, TST. IMP.CILR, SURA. CHPR, 2BCH, SLURBL . AHDAL BITA, LDA. , ENRA. A
DCA, ORA, ADDA. CMPX

123@ DHTH B'F LDA, , ZUBA, CMPA. SBCA, SURC, ANGA. BI TR LDA. STA, ENRA. ADCA . ORA . AUDA . CHMPX
L3R LDK. BT, SURA

1240 DATA CNPﬂ4:BLH,3UBDJHNDH,BITH,LDR,ETH;EORH,HDCRIDRH,HDDH.EMPH,JSRJLDH,STX.S
LBA . CMPR. SBCH. SIRD

1250 DATA AHDA.BITA,LCOA. STA, EORA. ADCA, ORA. ADDA. CMPY. JSR, LDK, ST, SUBE, CMPR. SBCR.A
00D, AMDB,EITR

126@ DATA LOB, .EORB. ADCE. ORR. ADCR. LDD, , LLLL, » SIJBR, CHMPR, SBCR, ARLL: . AHDE . BITA, LDR, 5T
B.EORR.ACCE..ORE

278 DATA AGDR, LLD . 2T0. LOU. STU, SUBR. CMPE, 2BCR, ALLD . ANDB. RITE. LOB. STR, EORE, RDCE, 0
PB.ADDB.LDD, 5TD

1280 DATR LDL, 2TL. 2UBB, CMPR. SRCB, ALDD, ANDR . BITR. LDB. STR, EORR. ALCE, ORR. ACCR. L0 S
7O, LD ST
31

1230 DATA 3.5 108 2.0, 205 4, 408 M, A T X, B0 80 1004, 1L 12080 130 14 A 150 M,

-16.4,-15,5,-14.

1308 DATA =134, ~12. 8 =11 %, ~1A M. ~0. %, =0 6, =7, ~B. 2, =0, M, =4, =R =2, K. -1, 5.8
1.7.2.%

1310 DATA 2.7, 4.7, 5.7 8. 7.7 8.7 3, 18,7, 1LY 12,7 12, 14, Y 18,7, ~16, Y. =15, Y

1400 =120 =12,y

1320 DATA 11,7 =10 =3, =R =P =R =5 =4 =30, =20 =1 B, L 1 L 20000 3

g s e,

1228 DATA 2. UL 30103, 01800 1L 12,0 1230 14, 0 1S 0 =18 L =150~ 14, 1, -13, 1. -12,

.-11.4,-16. 4

1349 DATA =3, UL =R, L =P 0 =6, L =5 U =4 1, =3, 0, -2, 0, -1, 03, 5.1,5.2,.8,3.5.4,5,5.5.6

o = e
5,7.5.8,5.3.5

R‘G DARTA lL.
3 T
1*60 DATR -b.
#, DY NN.PC
1378 DATA MMNM.PC., . L ¥++1, .C. =3, 0, X1, LB, ¥3. CA. ¥, . [NN, ¥3, CMMHNN, <], €0, X3, BN
PCI,EMMNNLPCT

1320 DATA LEMMNHT. Y4 Y4+ =7 == Y B Y R MM Y MMNML Y L DL WL P MMNML, P
L4+, C -]

1390 DATA LC.Y1.CR.YJ.CA.YX. .INN, YT, CMMNN. ¥, L0, YI.CNNLPCT CHMMNN, PO EMMHNDL L U+
T (]|

1400 DATA 0LB. 1 Auide oHNL L MMHM, L By 1 NML PG MMNNG PG o0 C U443, € -=03, C 10D EB. 1
3.CA. U, ,CHH. L]

1418 DATA CMMNH, L. . C0L U, CHNLPCT CMMNN, PCY L CEMMHNT . 24 (544, =S, . =-5, LS. B, 5.0, 5
S NNLGSOMMHN, 2, 0D 2

1420 DATA MM PC.MMMMLPC, ., 5++], . C.~=23.C. 5. CR. S1.[A. 2], . CHH. S0, CHMHH, 3. . ED.
S, CNHLPCT, CMMHML PCD, CMMHHD

A11.2.12.2,12.5, 14,815, 5. -1A,. 5, -15,2,-14, 2, -13. 2, -12.5. ~11. 5. -1@,

".“J o

5.8, -4.C, =208, =205, =1L S sk Kb =R =L LGB RGEL G HML L PN,

1438 DATA 0.0.0.9.9. 8 9.9.9,8,2.0,0,90.2.0.0.0.0.0.0.3.2.0.0,0.9.0.0.4,9.3.4,4.4,

9,0,0.0,9.0.2.2.0.2.90,0.0.2.0.7.0.0.72.2,.2,.7.3.2.9.2,8.9.92.6.7.0.0.0.0,6.0,2.4,0,

a

1440 DATA 9,2,0.02,2.0.0.9,(.4.8,0,0.9.2.2,2.7.8,3.0.9.2.4.4,4,0,8 2.0.73,2.0.4.9,

2.4.0.7,0.0.0.0.0.8.0.0.0.0.0.0.7

14'” DATR 7,0.9,6.0,8.0.2.1,2.0.9.1.2,2.0.0.0.0.0.8.0.0.0.1.2.2,0.1.2.60.2.0.0.4
2,0,4,0,2,1.2.2,0,1,2.9.2,2.92.0,7.92,0.2,7.1.2.2,0,1.2.2.2.9.0,4,9.0,0.0.2.1,2.1,

B
1460 DATA 1,2A0,B,ﬁ, 0 Z
9.0.9.6,3,0.0,9.0.1,2.0.0.1.
1470 LATA LBRM,LBHI, L L?.LBH
LEBLE

1480 DIM MNSC&HFF ¥ POSC&HFF . LIRS &HF 1. PR{&HFF Y
1490 FOR I=0 TQ 2ZHFF:REAC MN$C T 5:HEXT 1
1566 FOR I=06 T0O 8HFF:READ PO$(I X:HEXT I
151Q FOR 1= TO &HFF:READ PRSI 3:HEXT 1
1520 FOR I=1 T 2HF:READ LB$C I 5:NEXT 1
1520 L$="% “%n % %
1540 J$="%
1550 FOTHIRB

A,2.9.2.0,0,0.0,2,4,1,2.0.6.1,2.0,

)\'

. @, .@.1.2.8.0,1.2
Q. 2

“’.J@

E_D LBHE., LBEG, LRYC. LEYE, LBPL. LBMI . LBCE. LRLT.LRCT.

32

USEFUL ROUTINES IN THE BASIC ROM

When you start writing your own machine code programs you will want at some
stage to use routines which can be found within the Basic rom. For instance, it
would be a waste of time to write a routine for reading the keyboard when such a
routine already exists. | have included specifications of the ones | have managed to
find —there are probably many more.

All numbers in this section are given in hexadecimal form.

The names used for all registers and condition code flags are the standard 6809
ones a full explanation of which can be found in any reference book.

Some zero-page locations are used by these routines the more important of which
are: —

6F — Device specification for character output (@ to the screen and -2 to the
printer).

7C —Block type for tape routines (@ =file header, 1=data, FF =end of file).
7D —Block length for tape routines {less than or equal to FF).
7E/7F—Buffer address for tape routines.

Locations ADOO to ADOD contain the addresses of the following routines. They can
be called from machine code programs by an indirect jump instruction.

eg. JSR [A000]

1....[A000] = POLKBD

This routine looks at the keyboard for a keypress and if there is one its value is
returned in the accumulator. It can be thought of as the same as INKEYS$ in Basic.

Entry conditions— None.

Exit conditions. —Z2=1, A=0 if no key pressed.
........................ Z=0, A=key code if key pressed.
........................ All registers except B and X are modified.

2....[ADD2]=0OPCHR

This routine outputs the character whose code is in the accumulator to the device
specified by location 6F (@ to the screen, —2 to the printer).

Entry conditions— Character to be output is in the accumulator.
Exit conditions. — Only the condition code register is modified.

3....[A004] = CASSON
A call to CASSON starts the cassette motor and gets the machine into
synchronisation ready for data transfer.

33

Entry conditions— None.

Exit conditions. — All registers except U and Y are changed.
........................ FIRQ and IRQ are masked.

4....[A006)=RDBLK
RDBLK reads a block of data from the tape.

Entry conditions—CASSON must have been called and the buffer address (7E)
must have been initialised.

Exit conditions.— Location 7C (block type) will contain the code for the data just
read.

........................ Location 7D (block length) will contain a count of the number
of bytes in this block.

........................ Z2=1, A=0—no errors.

........................ Z=0, a=1—checksum error.

........................ Z2=0, A=2—memory error.

........................ If a memory error occurs then the X register points to just
after the bad address, otherwise the X register contains the buffer address plus the
block length.

........................ All registers except U and Y are modified.

........................ Interupts are disabled.

5....[AD08] = WRBLK

WRBLK writes a block of data to tape.

Entry conditions— Block type, block length and buffer address should have been
initialised.

........................ If this is the first block to be written then it should have been
preceded by WRLEAD (7).

Exit conditions. —All registers are changed.
........................ Interupts are disabled.
........................ X register = buffer address + block length.

6....[ABOA]=JOYSTK

JOYSTK examines the joystick ports and stores the values read in locations 15A to
15D.

Right joystick 15A —right/left
Right joystick 15B —up/down

Left joystick 15C—right/left

Left joystick 15D —up/down

Entry conditions—None

Exit conditions. —All registers except Y are modified.

7....[A0OC]=WRLEAD

WRLEAD turns the cassette motor on and writes a leader of 55's to the tape.
Entry conditions—None.

Exit conditions—None.

The first few bytes of the basic rom contain a number of jump instructions. They
point to entry points for various subroutines the more useful of which can be
incorporated in machine code programs using a subroutine call:

JSR $8006 POLLS THE KEYBOARD (SEE PREVIOUS EXPLANATION OF
POLKBD)

JSR $8009 BLINK THE CURSOR

JSR $800C OUTPUT A CHARACTER (SEE PREVIOUS EXPLANATION OF
OPCHR)

JSR $8015 TURN ON CASSETTE MOTOR

JSR $8018 TURN OFF CASSETTE MOTOR

JSR $801B PREPARE CASSETTE FOR WRITING

JSR $801E OUTPUT CHARACTER IN ACCUMULATOR ‘A" TO TAPE

JSR $8021 PREPARE CASSETTE FOR INPUT

JSR $8024 INPUT NEXT 8 BITS FROM TAPE TO ACCUMULATOR ‘A’

JSR $8027 GET NEXT BIT FROM TAPE TO CARRY FLAG

BASIC STORAGE

When you write a program in Basic on the Dragon you are in fact using an editor
which takes each line as you type it and converts it to a form which can be
understood by another program called the interpreter. All the reserved words in
Basic are converted into tokens which take up either one or two bytes of memory
instead of a byte for each letter of the word. This obviously saves space but much
more importantly it greatly increases the speed at which the interpreter can execute
programs. A list of the tokens used by the Dragon follows.

To get an idea of what a program looks like in memory type in and run the following
short routine.

10 ¥=PEEK(25)¥256+PEEK(26)

20 FOR I=0 TO 79

230 Z=PEEK(®+1)

5@ PRINT HEX®(Z);" "

60 MEXT I

When you run the program the screen of the Dragon will fill the numbers: —

1E 13 0 A 523 CB FF &C 23 32 35 23 £S5 32 35 35 C2 FF 8C 28 32 36 29 @ 1E 28 0 14
302043 CB 20 20 BC 2037 33 @ 1E 3¢ @ IE SR CBFF 30 28 S8 C3 45290 1E 47 9
32 67 20 FF 95 28 SA 25 3B 22 20 22 3B 0 1E 4F @ 3C 3B 20 42 0 0 ©

The first number is a zero—this is a line delimiter in the Basic program. The next
two numbers together are used to point to the start of the next line in memory.
Two more bytes follow which taken together give the number of that line. It is not
until after this that the program proper starts.

The first line of our program starts with ‘X’ which is stored as an ASCII
character—in this case 58 hex. Next comes ‘=" which happens to be a Basic
reserved word and so is converted into a token— CB hex. ‘PEEK’ is the next word
and it too is a reserved word so it is converted into a token—this time FF 8C hex.
The next four characters in the program are ‘(25)" and as these are not reserved
words they are stored in their ASCII formats.

35

We can continue this process until we reach the end of the line—signified by a
zero—at which point the whole thing repeats for the second line. The program end
is signified by three consecutive zeros.

Notice that the tokens can be split into two groups—single byte and double byte.
The reason for this is that the tables of tokens are stored in different parts of the
Basic rom and the interpreter needs to know which table to use. The FF hex prefix
to the token proper (which is always greater than 7F hex) indicates the second
table. The first table begins at address 8033 hex and extends to 8153 hex. The
second begins at 81CA hex and ends at 824F hex.

The interpreter uses the token’s position in the table as an index into a further
table —this time of addresses of routines to carry out the command indicated by
the reserved word. These tables of addresses follow the token tables.

EASIER INPUT OF MACHINE CODE

The more you program the Dragon the more you will want to write your own
machine code programs. Without the facilities of a good assembler this can be a
tedious if not impossible task. The following program helps to make the entering of
short routines a little easier but it is obviously no substitute for the real thing.

The program starts by asking for the address at which you want to begin entering
your code. It then outputs the address on a new line together with the present
contents of that location. It then waits for your input.

You can enter one or two bytes of data at a time. When you have done this and
pressed return the address is updated to the next free location and the process
repeated.

If you do not wish to alter a particular location enter a negative number in response
to the prompt.

1000 REM

1010 REM EASY MACHINE CODE INPUT

1020 REM

1038 IHPUT "STRART "i%

1848 PRINTHEXS(S)" " i HEXSPEEK(S) 3;

1650 IHPUT H

1060 IF N<@THEMZ=S+1:G0TN104@

1870 IF M>255 THEW POKE 5, IMTCH 25670 - N=aN-IHMTCH/256 256 « S=5+1
1928 POKE S,H : S=5+1

1@3@ GOTO1A4@

36

ADDING COMMANDS TO BASIC

The version of Basic supplied with the Dragon is a very comprehensive package
but no language can be all things to all men. It is often desirable to extend the
language if possible with customised commands which suit particular applications.
| will describe one way of doing this and give an example of a command which |
personally feel is missing from the Dragon.

Basic uses a self-modifying routine starting at address 9F hex which is used to load
the accumulator of the 6809 with the next byte to be processed. This byte usually
comes from one of two areas—the program storage space or the input buffer area.

The routine has the form: —

ne92 AO3F BCAT IHC $0ART
ABR3 ABAL 2602 BHE ®RBAS
ARRd ARA2 BLAL THC %8AAC
ARAS ArEARS BRIESD LR $1ESD
RAARE GRAR TEREZE IMP SRR

The instruction at address Ab hex does the loading of the accumulator while the
code immediately before it alters the address from where the loading takes place.
Once loaded, control is returned to Basic by a jump instruction at A8 hex. As this
whole routine is in ram we can alter it to suit ourselves and if instead of returning
control directly to Basic we make a slight detour to a routine of our own then we
have effectively extended the language.

The steps in the process are: —

1.:..Develop a routine which you would like to see added to Basic and enter it into
a safe area of memory (use the CLEAR command if necessary).

ii....Alter the JMP instruction at A8 hex to point to the new routine which should
eventually return control to Basic with a JMP to the original location pointed to by
addresses A9 and AA hex.

The following example can be entered using the EASY ENTRY program described
earlier.

The effect of the program is to reverse the actions of the NEW command —that is if
you type NEW and then decide that you want to regain the old program just type in
‘I’ {an exclamation mark). Provided that the old program has not been corrupted
for any reason then it will be restored.

| have chosen to have this command operate only in the direct mode, ie, an
exclamation mark in a program is treated as just another character. | have achieved
this by looking at location A6 hex. If this contains a 2 then the character just read
came from the keyboard buffer (and so must have come from the keyboard). This
shows that a program is not running and control is then passed to the routine to
restore the program.

If you study the program in conjunction with the section on how Basic is stored
you will see what is happening. A full explanation of the zero-page locations used
can be found in the memory map at the end of this book.

37

The routine first of all sets up a pointer in the X-register which indicates the start of
Basic storage. This value is always contained in addresses 19 and 1A hex. It then
skips through memory until it finds the first zero after ensuring that the X-register
points to the location following the initial zeros of Basic’s area. When found, the
zero indicates the end of the first line and the address now in the X-register is the
start of the second line. This value is stored in the first pointer position of the Basic
program. The final thing to do is to update locations 1B and 1C hex which indicate
the end of the Basic program. Three consecutive zeros mark the end of the
program so the routine skips through memory again until it finds them.

Once the routine is finished, control is restored to Basic by a jump to the start of
the self-modifying routine so that the next character can be read.

The routine becomes operable as soon as EXEC &H7000 is typed in.

0002 7000 CC7a06 LDD #%7604
Q003 7003 DOA3 ATC %$RAAR3
AOd4 7OS 33 RTS

APOS 7H0R 2121 CMPA #%21
AGO6 7003 2602 BHE %7@12
0007 700R 36A6 LDA $6Gam&
03 780C 3102 CHMPR #%02
0003 700E 2705 BEQ #7015
0818 710 8621 LDA #%21
0011 7012 7EBB2A M $BR2€
212 7015 3410 F3aHS
0013 7017 9E19 LD¥ #3013
0014 7015 3003 LEAX 3.¥
0015 701B AE30 LLR X+
0916 701D 26FC BNE %701B
0017 701F AFSFVO19 ATx [$0919]
0018 7023 A6BA LDA . ¥+
0019 7025 26FC BNE 7023
0020 7027 AEBO LDA , ¥+
0021 7029 26F8 BHE %7023
0022 702B A680 LDA . X+
0023 702D 26F4 BNE %7022
0024 702F SF1B ST¥ $001R
0025 7031 3310 PULS X
0026 7033 OESF IMP $009F

TOKEN TABLE 1

Res. Word................. Token
FOR..cvviiiiii i, 80
GO .vrr 81
REM. .o, 82
L 83
[84
IF 85
DATA. ..o, 86
PRINT ..., 87
ON.v 88
INPUT .., 89
END ..o, 8A
NEXT ..o 8B
DIM.. oo 8C
READoviviiiin 8D
LET o 8E
RUN...cov 8F
RESTORE................. 90
RETURN..........oovveil 91
STOP..cvvviiiiin, 92
POKE...coviiiie . 93
CONT ..o 94
LIST e, 95
CLEAR......ccooiiin. 96
NEW. ... 97
DEF..oiiiiiiii 98
CLOAD......ccvvieens 99
CSAVE.....cciiiennn . 9A
OPEN.....ccovviiin, 9B
CLOSE.......ovvivne. . 9C
LLIST v aD
SET i 9E
RESET .o 9F
CLS. i, AQ
MOTOR........cevveneenn Al
SOUND.......cevvvenn A2
AUDIO........ceevveen A3
EXEC.vviiiiiiiiinnns A4
SKIPF..ovviiin Ab
DEL...ooviiiiiiiians A6

39

Res. Word................. Token
EDIT e, A7
TRON .o A8
TROFF .o A9
LINE.....oiii AA
PCLS.....oiiiis AB
PSET ..o, AC
PRESETcevviinnnns AD
SCREEN.......ccccvvene. .. AE
PCLEAR ... AF
(61010] = BO
CIRCLE......ccvvvveina B1
PAINT....oviiiinns B2
GET .o, B3
PUT. B4
DRAW ... B5
PCOPY...ovviiiiinn... B6
PMODE.................... B7
PLAY ..o, B8
DLOAD.....cc.oveeenae... B9
RENUM. ...t BA
TAB(.o, BB
TO o BC
SUB ..o, BD
FN .o BE
THEN.....oviiiine BF
NOT .o Cco
STEP ..o C1
OFF. ., Cc2
o C3
- C4
e C5
............................. C6
R Cc7
AND..coovviii Cc8
OR .o C9
D CA
T CB
< CcC
USING......ccovnen CD

TOKEN TABLE 2

f>— - —N<XXS<KCHODOTVOZEIrAC—IOTMIO®>H

CHARACTER TABLE ONE

CHR$

LOWER CASE
POKE CHR$ POKE
CHARACTER DEC HEX DEC HEX CHARACTER DEC HEX DEC HEX

0 00 SPACE 32 20

1 01 97 6 | 33 21 N
2 02 98 62 “ 3 22 0
3 03 99 63 + 3B 23

4 04 100 64 $ 3% 24 L
5 05 101 65 % 37 25 0
6 06 102 66 & 38 26 W
7 07 103 67 ' 9 27 E
8 08 104 68 (20 28 R
9 09 105 69) 41 29

10 OA 106 6A . 2 2A C
11 0B 107 68 + 43 28 A
12 0C 108 6C a4 2C S
13 0D 109 6D 45 20 E
14 O0E 110 6E . 46 2F

15 OF 111 6F / 47 2F A
6 10 112 70 0 48 30 S
17 11 113 7 1 49 31 C
18 12 114 72 2 50 32 |
19 13 115 73 3 51 33 |
20 14 116 74 a 52 34

21 15 117 75 5 53 35 E
2 16 118 76 6 54 3 Q
2B 17 119 77 7 55 37 U
24 18 120 78 8 56 38 |
2% 19 121 79 9 57 39 V
% 1A 12 7A : 58 3A A
27 1B 123 78 ; 59 3B L
28 1C 124 7C < 60 3C E
29 1D 125 7D 2 61 3D N
0 1E 126 7E > 62 3E T
31 1F 127 TF > 63 3F

41

CHARACTER TABLE ONE

UPPER CASE
POKE CHR$ POKE CHR$
CHARACTER DEC HEX DEC HEX CHARACTER DEC HEX DEC HEX

64 40 64 40 SPACE 9% 60 32 20
65 41 65 41 ! 97 61 33 21

66 42 66 42 " 98 62 34 22
67 43 67 43 99 63 35 23
68 44 68 44 $ 100 64 36 24
69 456 69 45 % 101 65 37 25
70 46 70 46 & 102 66 38 26
77 47 71 47 ’ 103 67 39 27
72 48 72 48 (104 68 40 28
73 49 73 49) 105 69 41 29
74 4A 74 4A * 106 6A 42 2A
75 4B 75 4B + 107 6B 43 2B
7% 4C 76 4C 108 6C 44 2C
77 4D 77 4D . 109 6D 45 2D
78 4E 78 4E ’ 110 6E 46 2E
79 4F 79 4F / 111 6F 47 2F
80 50 80 50 0 112 70 48 30
81 51 81 b1 1 113 71 49 31

82 52 82 52 2 114 72 50 32
83 53 83 53 3 115 73 51 33
8 54 84 H4 4 116 74 52 34
8 55 85 b5 5 17 75 53 35
86 56 86 56 6 118 76 54 36
87 57 87 57 7 19 77 55 37
88 58 83 58 8 120 78 56 38
8 59 89 59 9 1217 79 57 39
90 5H5A 90 bHA ; 122 7A 58 3A
91 5B 91 5B ; 123 7B 59 3B
92 5C 92 5C < 124 7C 60 3C
93 56D 93 5D = 126 7D 61 3D
94 bHE 94 b5E > 126 78 62 3D
9% b5F 95 b5F ? 127 7F 63 3F

} > —N<XXS<CHONITPUVOZE2rXC—IOTMUO®>D

42

NOTES ON CHARACTER TABLE ONE

As mentioned earlier in the book the video display generator uses a modified ASCII
character set. This setis shown in the columns headed ‘POKE’—a character can be
placed on the Dragon screen by poking the appropriate value to screen ram.

Basic strings are stored as true ASCII values and the CHR$ function demands true
ASCII. What this means is that the true ASCII value is converted by the Basic
interpreter before a character is displayed on the screen. The true ASCII values
handled by Basic are shown in the columns headed ‘CHR$’.

The two simple routines below will show the characters produced by various
values.

10 REM CHR$ VALUES

20 CLS

30 PRINT@®O, “VALUE";:INPUT V

40 PRINT@016, CHR$(V);:PRINT@8, “ i
50 GOTO30

10 REM VDG CHARACTER SET

20 CLS

30 PRINT@O. “VALUE";:INPUT V
40 POKE1038, V:PRINT@8, * -

50 GOTO30

EXTRA INFORMATION ON SAM CONTROL BIT AREA

PAGE SELECT (paged memory when implemented)

FFD4 (clear) normally O for page 1
FFD5 (set)

MEMORY SIZE 4k 16k 32/64k ?
FFDA (clear bit zero) 0 1 0 1

FFDB (set bit zero)

FFDC (clear bit one) 0 0 1 1
FFDD (set bit one)

MAP TYPE (when implemented—0=ram+rom, 1=all ram)

FFDE (clear) normally 0
FFDF (set)

PlAs

The Dragon uses 2 6821 Parallel Interface Adaptors for the control of its 1/0
functions. Each PIA occupies 4 memory locations in the section of the Dragon
memory map reserved as the I/0 area.

The first uses locations FF00 - FFO3 hex.
Details of the individual bits within these locations follows:
Locations bit functions

FFOO 0 keyboard row 1 and joystick switch
1 keyboard row 2 and joystick switch
2 keyboard row 3
3 keyboard row 4
4 keyboard row 5
5 keyboard row 6
6 keyboard row 7
7 input for joystick comparison
FRa] (1) ; Rapid IRQ
2 usually set to 1 (governs function of FFQ0)
3 least significant bit of multiplexer select lines
4 set to 1 always
5 set to 1 always
6
7
FFO02 0 keyboard column 1
7 keyboard column 8
FFO3 (1) ; Slow IRQ, Timer, Play, etc.
2 usually set to 1 (governs functions of FF02)
3 most significant bit of multiplexer select lines
g ; always set to 1
6
Z

45

The second PIA occupies FF20 - FF23 hex.
Details of the individual bits:
Location bit function

FF20 0 cassette input
1 printer strobe
2 D/A least significant bit
3
7 D/A most significant bit
FF21 0
1
2 usually set to 1 (governs function of FF20)
3 cassetts motor control
4
5 ; always set to 1
6
7
FF22 0
1
2 ram size
3 VDG control
4 VDG control
5 VDG control
6 VDG control
7 VDG control
FF23
? ; cartridge FIRQ
2 usually set to 1 (governs function of FF22)
3 six bit sound enable (TV)
4
B ; always set to 1
6
7 flag—-cartridge interrupt

46

CARTRIDGE EDGE CONNECTOR PIN DESCRIPTION

1 (TOP RIGHT)
2 (BOTTOM RIGHT)

39 (TOP LEFT)
40 (BOTTOM LEFT)

—12v
+12v
Halt input to CPU

- Non maskable interrupt to CPU

Reset
E (Main CPU Clock (0.89 MHZ))

" Q (Quadrative Clock Signal) (leads 6))

Cartridge interrupt input
+ 5v

Data bit 0

Data bit 1

Data bit 2

Data bit 7

R/W - CPU read/write signal
Address bit 0

Address bit 1

Address bit 12

Cartridge select

ground

ground

Sound input

Spare select signal

Address bit 13

Address bit 14

Address bit 15

Devise selection disable input

47

SOUND OUTPUT SELECTION

Sound enable multiplexer select lines Sound source
(FF23 bit 3) (FFO1 bit 3) (FFO3 bit 3)

1 0 0 6 bit D/A

1 1 0 cassette

1 0 1 cartridge connector
1 1 1 unused

The 6821 PIA is a versatile chip which is able to perform many /0
functions. In order to understand it more fully | would recommend
LEVENTHAL'S ‘6809 ASSEMBLY LANGUAGE PROGRAMMING" .

NOTES
1. GRAPHICS MODES

Programs using the method of selecting graphics modes by poking to
location 65314 may have problems if the bit patterns of table 3 are used.
The reason is that the least significant 3 bits in this location control other
functions and should not be changed. If you encounter difficulties then
use something like:

POKE 65314, (PEEK(65314) AND 7) +128+C

This particular example is for the 64 by 64 four colour mode but is easily
modified to cover all other modes. Having said all this | must say that |
have not yet had any problems using straightforward pokes.

2. PROCESSOR SPEEDS

It has come to my attention that not all Dragons will respond to increasing
the clock rate. If this is the case with your machine than | am afraid | know
of no way of rectifying the situation.

49

MEMORY MAP

POINTER TO START OF BASIC

POINTER TO END OF BASIC/START OF VARIABLES
POINTER TO START OF ARRAY POINTER TABLE
POINTER TO END OF RAM IN USE

POINTER TO TOP OF STACK

POINTER TO TOP OF STRING SPACE

POINTER TO TOP OF RAM

POINTER TO NEXT STATEMENT TO BE EXECUTED
WARM START POINTER FOR RESET

LINE NUMBER OF CURRENT DATA

POINTER TO DATA

INPUT POINTER

CURRENT LINE NUMBER BEING EXECUTED
OUTPUT DEVISE NUMBER (0 = SCREEN,
—1=CASSETTE, —2=PRINTER)

EOF FLAG

RESTART FLAG

RESTART POINTER

CASSETTE STATUS (0 =CLOSED, 1=INPUT,
2=0UTPUT)

BLOCK TYPE (CASSETTE)

NUMBER OF DATA BYTES (CASSETTE)

BUFFER ADDRESS (CASSETTE)

CHECKSUM (CASSETTE)

CASSETTE ERROR CODE—IF @ THEN NO ERRORS
FREQ COUNT FOR INPUT BIT (CASSETTE)

LAST KEY PRESSED

POINTER TO CURRENT CURSOR POSITION

LEADER BYTE COUNT (CASSETTE)

USUALLY 12 HEX—ON INPUT OF A SINGLE BIT FROM
TAPE, LOCATION $82 CONTAINS A ROUGH MEASURE
OF THE BIT'S FREQUENCY AS THE NUMBER OF TIMES
THE INPUT PORT HAD TO BE POLLED BEFORE
DETECTION. IF THIS VALUE IS GREATER THAN OR
EQUAL TO THE VALUE IN $92 THEN THE BIT IS A ZERO
OTHERWISE IT IS A ONE.

CASSETTE MOTOR DELAY

POINTER TO EXEC ADDRESS

SELF-MODIFYING ROUTINE

POINTER TO USR ADDRESS TABLE

FOREGROUND COLOUR

BACKGROUND COLOUR

ACTIVE COLOUR

50

B6
B7/B8
B9

BA/BB
BD/BE
BF/CO
112-114
120
121/122
123/124
125
126/127

128/129
134-147
149
14A-14F
150-159
15A-15D
15E-1AF

167-169
16A-16C
182-184
18B-18D
18E-190
194-196 19A-
19C 1A3-
1A5 A6-1A8
.

400-5FF
600-7FFF

8000-BFFF
C000-DFFF

U]
N
n
-
n
w

" nn nnnn
"nm n nnn
nmnoy

© @ fn

—T1 ' 1]
2T

n nal

© ol

GRAPHICS MODE

TOP OF CURRENT GRAPHICS SCREEN

NUMBER OF BYTES PER ROW OF CURRENT GRAPHICS

SCREEN

BASE OF CURRENT GRAPHICS SCREEN

CURRENT X POSITION ON SCREEN

CURRENT Y POSITION ON SCREEN

TIMER

NUMBER OF NORMAL RESERVED WORDS

POINTER TO START OF NORMAL RES. WORDS LIST

POINTER TO START OF ENTRY ADDRESSES

NUMBER OF FUNCTION RESERVED WORDS

POINTER TO START OF FUNCTION RESERVED WORD

LIST

POINTER TO START OF FUNCTION ENTRY POINTS

USR ADDRESS TABLE

ALPHA LOCK FLAG

END OF LINE SEQUENCE FOR PRINTER

KEYBOARD ROLLOVER TABLE

JOYSTICK BUFFERS

VECTOR TABLE FOR USER EXTENSIONS TO

BASIC—DEFAULT RTS IN ALL BYTES. SOME

ROUTINES USING THIS TABLE ARE: —

INPUT A CHARACTER

OUTPUT A CHARACTER

READ INPUT LINE

EVALUATE EXPRESSION

ERROR HANDLER

RUN

READ NEXT STATEMENT

CONVERT RES. WORDS TO TOKENS

CONVERT TOKENS TO RES. WORDS

DEFAULT TEXT SCREEN

BASIC WORK AREA
SCREENS/PROGRAM/VARIABLES

BASIC ROM

CARTRIDGE ROM

PIA 1

PIA 2

SAM CONTROL BITS

CPU VECTORS (SET FROM BFFO-BFFF)

RESERVED

SWi13

SWi12

FIRQ

IRQ

51

FFFA-FFFB SWI
FFFC-FFFD NMI
FFFE-FFFF RESET

52

0

2

0 2 4 6 810 122 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62

00 2 4 6 8101214 16 18 20 2224 26 28 30 32 34 36 3840 42 44 46 48 50 52 54 56 58 60 62

24
27
30

36

39
42

00 2 4 6 810 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62

b R O&

a8

55

30
36
42

60
66

72

78

00 2 4 6 8101214 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 6

O0 2 4 6 810121416 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62

24

36

N3

& ¥

B8

K

3

\
] b

P
L

57

20
24
28
32
36
40

52
56

0 48
0

12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96100

108

116

124

0

>

[e¢]

"8 b 88

#

4 8

121620 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100

108

116

124

59

12

24

36
48
60
72
84
9%

108

120

132

144

168

180

192

0
0

4 8

12 1620 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100

108

116

124

s S

60

00 8 16 24 3240 4856 64 72 8088 96104 120 136 152 168 184 200 216 232 248

24

36

48

60

72

84

96

108

120

132

144

156

168

180

61

	The Dragon 32 - Dragon Companion - Jarvis (1982)_Page_01
	The Dragon 32 - Dragon Companion - Jarvis (1982)_Page_02
	The Dragon 32 - Dragon Companion - Jarvis (1982)_Page_03
	The Dragon 32 - Dragon Companion - Jarvis (1982)_Page_04
	The Dragon 32 - Dragon Companion - Jarvis (1982)_Page_05
	The Dragon 32 - Dragon Companion - Jarvis (1982)_Page_06
	The Dragon 32 - Dragon Companion - Jarvis (1982)_Page_07
	The Dragon 32 - Dragon Companion - Jarvis (1982)_Page_08
	The Dragon 32 - Dragon Companion - Jarvis (1982)_Page_09
	The Dragon 32 - Dragon Companion - Jarvis (1982)_Page_10
	The Dragon 32 - Dragon Companion - Jarvis (1982)_Page_11
	The Dragon 32 - Dragon Companion - Jarvis (1982)_Page_12
	The Dragon 32 - Dragon Companion - Jarvis (1982)_Page_13
	The Dragon 32 - Dragon Companion - Jarvis (1982)_Page_14
	The Dragon 32 - Dragon Companion - Jarvis (1982)_Page_15
	The Dragon 32 - Dragon Companion - Jarvis (1982)_Page_16
	The Dragon 32 - Dragon Companion - Jarvis (1982)_Page_17
	The Dragon 32 - Dragon Companion - Jarvis (1982)_Page_18
	The Dragon 32 - Dragon Companion - Jarvis (1982)_Page_19
	The Dragon 32 - Dragon Companion - Jarvis (1982)_Page_20
	The Dragon 32 - Dragon Companion - Jarvis (1982)_Page_21
	The Dragon 32 - Dragon Companion - Jarvis (1982)_Page_22
	The Dragon 32 - Dragon Companion - Jarvis (1982)_Page_23
	The Dragon 32 - Dragon Companion - Jarvis (1982)_Page_24
	The Dragon 32 - Dragon Companion - Jarvis (1982)_Page_25
	The Dragon 32 - Dragon Companion - Jarvis (1982)_Page_26
	The Dragon 32 - Dragon Companion - Jarvis (1982)_Page_27
	The Dragon 32 - Dragon Companion - Jarvis (1982)_Page_28
	The Dragon 32 - Dragon Companion - Jarvis (1982)_Page_29
	The Dragon 32 - Dragon Companion - Jarvis (1982)_Page_30
	The Dragon 32 - Dragon Companion - Jarvis (1982)_Page_31
	The Dragon 32 - Dragon Companion - Jarvis (1982)_Page_32
	The Dragon 32 - Dragon Companion - Jarvis (1982)_Page_33
	The Dragon 32 - Dragon Companion - Jarvis (1982)_Page_34
	The Dragon 32 - Dragon Companion - Jarvis (1982)_Page_35
	The Dragon 32 - Dragon Companion - Jarvis (1982)_Page_36
	The Dragon 32 - Dragon Companion - Jarvis (1982)_Page_37
	The Dragon 32 - Dragon Companion - Jarvis (1982)_Page_38
	The Dragon 32 - Dragon Companion - Jarvis (1982)_Page_39
	The Dragon 32 - Dragon Companion - Jarvis (1982)_Page_40
	The Dragon 32 - Dragon Companion - Jarvis (1982)_Page_41
	The Dragon 32 - Dragon Companion - Jarvis (1982)_Page_42
	The Dragon 32 - Dragon Companion - Jarvis (1982)_Page_43
	The Dragon 32 - Dragon Companion - Jarvis (1982)_Page_44
	The Dragon 32 - Dragon Companion - Jarvis (1982)_Page_45
	The Dragon 32 - Dragon Companion - Jarvis (1982)_Page_46
	The Dragon 32 - Dragon Companion - Jarvis (1982)_Page_47
	The Dragon 32 - Dragon Companion - Jarvis (1982)_Page_48
	The Dragon 32 - Dragon Companion - Jarvis (1982)_Page_49
	The Dragon 32 - Dragon Companion - Jarvis (1982)_Page_50
	The Dragon 32 - Dragon Companion - Jarvis (1982)_Page_51
	The Dragon 32 - Dragon Companion - Jarvis (1982)_Page_52
	The Dragon 32 - Dragon Companion - Jarvis (1982)_Page_53
	The Dragon 32 - Dragon Companion - Jarvis (1982)_Page_54
	The Dragon 32 - Dragon Companion - Jarvis (1982)_Page_55
	The Dragon 32 - Dragon Companion - Jarvis (1982)_Page_56
	The Dragon 32 - Dragon Companion - Jarvis (1982)_Page_57
	The Dragon 32 - Dragon Companion - Jarvis (1982)_Page_58
	The Dragon 32 - Dragon Companion - Jarvis (1982)_Page_59
	The Dragon 32 - Dragon Companion - Jarvis (1982)_Page_60

