

MICROGUIDE
FOR THE

DRAGON

Professor Peter Morse

Brian Hancock

London

© 1984 P. Morse and B. H;mcock

CONTENTS

BASIC keywords 3

2 Conventions 5

3 Basic statements 7

4 Basic functions

(A) Numeric 12

(B) String 15

5 Control keys 17

6 System commands 18

7 Cassette recorder control statements 20

8 Printer control statements 22

9 Error codes 23

10 Graphics statements 25

1

SECTION 1

BASIC KEYWORDS

Keyword Brief meaning Section

ABS absolute value 4

AND logical AND 2

ASC american standard code 4

ATN arc tangent 4

AUDIO ON audio on 7

AUDIO OFF audio off 7

CRH$ character string 4

CIRCLE draw circle 11
CLEAR clear variables 3

CLOAD load from cassette 7

CLOADM load machine code from casette 7

CLOSE# close file 7

CLS clear screen 3

COLOR colour 11
CONT continue execution 6
cos cosine 4

CSAVE save on cassette 7

CSAVEM save machine code on cassette 7

DATA data 3

DEF define function 3

DEL delete lines 6
DIM dimensions array 3

DRAW draws line 11
EDIT edits line 6
ELSE else 3

END end of program 3

EOF(-1) end of file test 7

EXP exponential 4

EXEC execute machine code 3

FIX rounds down 4

FN function 3

FOR for loop 3

GET store graphics 11
GOSUB go to subroutine 3

GOTO go to address 3

HEX$ hexadecimal 4

IF if 3

INKEY$ gives character of the key pressed 4

INPUT inputs data 3

INPUT# inputs information from file 5
INSTR in string 4

INT integer 4

JOYSTK gives x and y values for the position 4

LEFT$ left string 4

LEN length of string 4

LET let 3

LINE draws line/rectangle 9
LINEINPUT inputs a line of text 3

LIST lists program on screen 1
LUST lists program on printer 1,6
LOG natural logarithm 4

MID$ middle of string 4

3

Keyword Brief meaning Section

MOTOR ON cassette motor on 5

MOTOR OFF cassette motor off 5

NEW erase old program 3

NEXT next 3

NOT logical inverse 2

ON GOSUB on condition go to subroutine 3

ON GOTO on condition go to address 3

OR logical OR 2

OPEN# opens cassette file 5

PAINT paint picture 9

PCLEAR reserve graphics pages 9

PCLS clear high-resolution screen 9

PCOPY copies one graphics page to 9

PLAY 8

PEEK 3,4

POINT point colour (low-resolution) 4

POKE poke 3,4

POS print position 4

PPOINT point colour (high-resolution) 4

PRESET reset high resolution point 9

PRINT prints to screen 3

PRINT# writes to file or printer 5,6

PRINT@ controlled print to screen 3

PRINT USING formatted print to screen 3

PRINT#, USING formatted print to file or printer 6

PSET sets high resolution pixcell 9

PUT puts stored picture on the screen 9

READ read data 3

REM remark 3

RENUM renumber 1

RESET reset low-resolution cell 9

RESTORE restore data pointer 3

RETURN return from subroutine 3

RIGHT$ right string 4

RND random number 4

RUN executes program 1

SCREEN selects screen 9

SET sets low-resolution cell 9

SGN sign 4

SIN sine 4

SKIPF skips program on tape 5

SOUND sound 8

SQR square root 4

STEP step 3

STOP stops execution 1

STR$ string representation 4

STRING$ multiple strings 4

TAB tabulation 3

TAN tangent 4

TIMER timer 4

TRON program trace on 1

TROFF program trace off 1

USR user 3

VAL value 4

VARPTR variable pointer 4

4

SECTION 2
CONVENTIONS,

Arithmetic operators
Symbol Operation
+ Addition

Subtraction
Multiplication
Division
Unary minus
Exponentiation

The only operator that can be used with strings is "+". This is
used to join strings together, and the process is known as
concatenation.

Expression
Any legal combination of constants, variables, functions, and
arithmetic operators.

Line number
Any number between 1 and 63999 at the beginning of the line
which serves to identify the information on the line as a
statement.

List

A one dimensional array.
eg A(15), A$(15) contain 16 numbers and 16 strings respectively.

Logical operators

Symbol Operation
AND logical AND
eg IF A=0 AND B=0 THEN PRINT "ZERO"
NOT logical NOT
eg If NOT A=0 PRINT "NOT EQUAL TO ZERO"
OR logical OR
eg PRINT "NOT A TEENAGER"

Number
A positive or negative decimal quantity which is significant to
about 8 digits, and whose magnitude is between an approximate
minimum of:
±3x10-39

and maximum of:
±10+38

Numeric expression
An expression having a numeric value. When an integer is
required, the number represented by the expression is truncated
to give an integer value.

Numeric variable
A variable name composed of a single letter or a single letter
followed by a single digit or a letter followed by another letter,

5

_

*
/

↑

which names a numeric value or a collection of numeric values. If
more than two characters are used, the characters after the
second one are used as reference by the programmer for
identifying the variable name. Care must be taken in naming a
variable, that is, the name should not contain any of the Dragon
basic commands. For example, TOTAL used as a variable name
will give SN error since T O ls a basic command.

Print-list
A list of items separated by comm�s, or semicolons. The items
can be variables, expressions or string constants.
eg A, AB, A1, SUM, NUMBER

Relational operators

Symbol Operation Priority
Equal to 5

< Less than 5

<= Less than or equal to 5

> Greater than 5

>= Greater than or equal to 5

<> Not equal to 5

String
A sequence of characters each of which is a letter, digit, space, or
some character other than a line terminator or carriage return.
ASCII code is used to represent these characters in computer.

String constant
A string enclosed in double quotes.
eg
"ENTER A NUMBER"

String expression
An expression having a string value.
eg
LETA$=B$+C$

String variable
Used to name a string or collection of strings. The rules for
naming string variables are similar to that of numeric variables
except that the variable name must be followed by a dollar sign
($).
eg
A$, AB$,A1$, SUM$, NUMBER$

Table
A two dimensional array.
eg
A(10, 10), A$(10, 10)

6

=

SECTION 3

BASIC STATEMENTS

Meaning

CLEAR n, ba
Clears all variables from memory and reserves n bytes of space
for string storage. The highest BASIC address is given by ba, after
which machine language routines will be stored.
eg 10 CLEAR 1000
clears 1000 bytes for string storage
10 CLEAR 1000, 14000
clears 1000 bytes and sets highest BASIC address to 14000

CLSc
Clears screen to the specified colour, given by c. The default value
is 1.
c Colour
o Black
1 Green
2 Yellow
3 Blue
4 Red
5 Buff
6 Cyan
7 Magenta
8 Orange

DATA data1, data2, data3 ..
Provides constant data (numbers or strings) for READ statements.
eg

5 DATA 35,-20, 7.25,-2.5, 18
10 FOR 1=1 TO 5
20 READ A(I)
30 NEXT I
will assign 35 to A(1), -20 to A(2), 7.25 to A(3). and so on.

DEF FNx (dummy variable)=Expression
Defines a user-specified function. x is any letter from A to Z, and
the dummy variable is a letter, which will be replaced by the
function argument when the function is called.
eg
10 DEF FNA(y)=y•y+1
30 LET x=3
40 LET B=FNA(x)
50 PRINT B
will print 10 on the screen. The reason for this is that the dummy
variable y is replaced by x when the function FNA is called at line
40.

DEFUSRn=address
Defines entry point for user defined machine language subroutine
n, where n=0-9 and the address is between 0-65535 and contains
the entry address for USRn.
eg
DEF USR1 =30000

7

DIM variable (subscript), ..
Specifies the space to be allocated for a list or a table. If a list or a
table is not specified in a DIM statement, the default dimension for
a list is 10 elements and the default for a table is 10 (rows) by 10
(columns).
ie
100 elements
eg
DIMA(5)
DIM x(10,20). xy$(10, 12), A(5)

END
Indicates the end of program and usually is the statement with the
highest line number (ie the end of program).
1000 END

EXEC address
Transfers control to machine language program at address
specified.
eg
50 EXEC 30000

FOR numeric variable = n TO m STEP s
Specifies a loop and must be used with a NEXT statement. The
loop is executed for a range specified by n and m. S indicates
increment in step (ie next n=n+s), if omitted increment is by 1. n,
m and s may be numbers or numeric expression.
eg

10 FOR 1= 1 TO 20 STEP 2
50 NEXT I

100 FOR J=0 TO 2 STEP 0.2
110 PRINT J
120 NEXT J

GOSUB line number
Enters a subroutine at the specified line. The subroutine is exited
from by executing a RETURN statement.
eg
100 GOSUB 1000

GOTO line number
Transfers control to the statement at the specified line.
eg
100 GOTO 500

IF condition THEN task1 ELSE task2

The condition is evaluated and control is transferred to THEN
portion (task1) if the condition is true. If condition is not true, then
the ELSE portion (task2) is executed. Omitting ELSE portion of the
statement will cause the control to be transferred to next
statement in the program if condition is not true.
eg
100 IF A$<> "END" THEN GOTO 10 ELSE STOP
180 IF A >=50 THEN LET A=2
190 LETA=A+1

8

INPUT "PROMPT"; variable, variable, ...
Allows data to be entered from the keyboard. This statement
causes a"?" to be output on the screen so that you can respond
by typing in values for the requested variables. When inputing a
string, leading spaces before first character will be ignored and if
a comma is entered as part of a string, the characters after"," will
be ignored.
eg
INPUT A.FRED, TEL$, B$
INPUT "ENTER VALUE FOR x";x
INPUT "ENTER NAME" A$

LET variable = expression
Assigns the value of the expression to the specified variable. The
word LET may be omitted.
eg
10 LET A=3.5
20 LET B=A*3+A2
30 D=A+B

LINE INPUT "prompt"; string variable
Allows entry of an entire line (255 character long) into a string
variable from the keyboard. The text entered may contain leading
spaces and commas as they cannot be entered using INPUT
statement. Line is terminated by pressing (ENTER]. Only one
variable can be used.
eg
LINE INPUT "ENTER NAME AND ADDRESS";A$

ON expression GOSUB line number 1, line number 2, .
Jumps to subroutine at line given by line number 1 if the
expression evaluates to 1, and to subroutine at line given by line
number 2 if the expression evaluates to 2 and so on. If the value of
the expression is real (ie with decimal point), then the value is
truncated and the integer portion is considered.
eg

10 D=RND(5)
20 ON D GOSUB 1000, 2000, 3000, 4000, 5000

100 ON (x+3)/y GOSUB 500, 1000, 1500
If value is negative, an error message will result, if value = 0 or
value greater than the number of lines in the line number-list then
the statement will be ignored.

ON expression GOTO line number 1, line number 2,
As in GOSUB, Control is transferred to the statement at the line
given by line number-list depending on the value (1, 2, 3, ..) of
the expression.
eg

50 ON G GOTO 50, 80, 110, 140
100 On (x*3)/G GOTO 100,300

PEEK (address)
Returns the contents of the specified memory location. The
address is in the range of 0-65535.
eg
10 B=PEEK (65280)

9

20 PRINT B
assigns the contents of memory location 65280 which contains
the result of checking joystick button. If right joystick button is
pressed, the value will be 126 or 254, if left joystick button is
pressed, the value will be 125 or 253.

POKE address, value
Is a command that alters the contents of the specified memory
location (ie the specified value is put in memory location specified
by address). Value must be between 0-255.
eg
10 FOR 1�1024 To 1535
20 POKE 1,42
30 CONTINUE
will fill the screen with *.42 is the ASCII code for•, and 1024-1535
is the text screen memory.

PRINT print-list
Types out results of computation, messages, and/or types out a
blank line. The print-list consists of strings, variables, etc
separated by format control characters. The format control
characters are:
Comma(","):- causes the output to be printed in the next print
zone (each print zone = 16 character position).
Semicolon(";"):-causes the output to be printed in a close
packed form (ie print position remains in the current position).
Omitting print-list, prints a blank line.
eg
10 PRINT
20 PRINT A,B
30 PRINT "SUM=";S,"ITEM= ";IT$

PRINTTAB(C);
Moves the print position to specified column position.
eg
10 PRINT TAB(5);A;TAB(7);B $;TAB (S);C

PRINT USING "format"; output-list
Prints the output list according to the specific format. The format
consists of string of characters describing the form of the output
and placement of the output on the output device. If PRINT #-1
USING is used, the output device will be cassette recorder, if #-2
is used, the output will be printed on printer. Formats used are as
follows:

Formats numbers
eg PRINT USING "###";147·76 result 148

Decimal point
eg PRINT USING "###·#";147·76 result 147.8

Inserts a comma to the left of every third character.
eg PRINT USING "###,#";14776 result 14,776

10

Fills leading spaces with •
eg PRINT USING "**####·###";147·76 result 147-760

$
Places$ ahead of number
eg PRINT USING "$#####·#";147·76 result $'v'i7147·8

Prints in exponential form
eg PRINT USING "###·##"; 147-76 result 14·78E+01

PRINT@ location. output-list
Prints the output·list at specified location on the screen. Location
can be a number or an expression and must evaluate to a number
between 0-511.
eg
PRINT@68, "YOU HAVE";SUM;"DOLLAR"
PRINT@ C+32*L, "TEL. NO.";TEL
where c = column (0-31). L = line (0-15)
PRINT@) 5+32*2,"JOHN";AGE
prints at column 5, line 2 the prompt JOHN followed by his age.

READ variable, variable,
Assigns the data (numeric or string) in DATA statements to the
specified variables. This statement must be used with one or
more DATA statements.
eg
10 READ A, B, C$
20 PRINT A;B;"'v 'v";C$
30 DATA 10, 20, SUM

REM
Inserts comment lines in the program. Everything after REM is
ignored by the computer and its presence is to aid the user. Single
quotes (ie' obtained by pressing (SHIFTl(7)1 has the same effect.
eg
1000 REM START OF SUB1
1000 'START OF SUB1

RESTORE
Allows data in DATA statements to be read more than once. This
statement sets the data block pointer back to the beginning of the
collection of data values.
eg
80 RESTORE

RETURN
Exits the subroutine and directs BASIC to go to the statement
following the last GOSUB from which it transferred. A subroutine
must at least have one RETURN statement.
eg
1100 IF AN$="N" THEN RETURN

1200 RETURN

11

STOP
Stops program execution at line containing the STOP statement.
Program execution can be resumed by typing CONT (ENTER],
which will cause the program to continue execution at line
following the STOP statement.
eg
100 IFANS$<>"y"THEN STOP
110 LET I=I+1:GOTO 10

SECTION 4

BASIC FUNCTIONS

Section A: Numeric Function

ABS(X)
Returns the absolute value of X, where X can be a number, a
variable, or an expression.
eg
PRINT ABS(-3.5) Prints 3.5
PRINT ABS (A)
PRINT ABS (A*B+3*C)

ATN(X)

Returns the arctangent (ie tan-1) of X in radians, where X canoe a
number, a variable or an expression.
eg
y=ATN (5.8)
PRINT ATN (x+5)

COS(X)
Returns the cosine of angle X given in radians.
eg
10 INPUT ANGLE
20 Pl=4*ATN(1)
30 PRINT COS(ANGLE*Pl/180)
line 20 gives value for PI = 3.1415927, and line 30 prints the cosine
of the given angle. ANGLE*Pl/180 convens from degrees to
radians.

EXP(X)
Returns the result of e to the power specified by X.
eg
PRINT EXP(0)
PRINT EXP(1)
PRINT EXP(2)

FIX(X)

prints 1 ie e0= 1
prints 2.71828183
prints 7.3890561

Returns the integer part of the number represented by X (ie
trancates all digits after the decimal point).
eg
10 LET A=FIX (3-999)
20 PRINT A (prints 3)

12

INT(X)
As in FIX if X is positive, if X is negative, it rounds it down.
eg
PRINT INT(3·99) prints 3
PRINT INT(-3·099) Prints -4

JOYSTK(X)
Returns the horizontal, or vertical coordinate of the left or right
joystick. X must have value between O and 3.
X= 0 gives horizontal Ix) coordinate of left joystick
X= 1 gives vertical (y) coordinate of left joystick
X=2 gives horizontal (x) coordinate of right joystick
X=3 gives vertical coordinate of right joystick
eg
10 LET HL=JOYSTK(0):LET VL=JOYSTK(1)
10 LET HR=JOYSTK(2):LET VR=JOYSTK(3)

LOG(X)
Returns the logarithm to the base E (ie natural log) of value
representing X.
eg
PRINT LOG(1·7)+3*LOG(2·8)

PEEK (address)
Returns the contents of the specified memory location.
eg
10 FOR 1=1024 TO 1535
20 PRINT I.PEEK (l):NEXT I
will print the contents of the text screen memory.

POINT (Xcoord, Ycoord)
Checks to see if the low resolution graphic/text cell at position
specified by Xcoord (ie horizontal coordinate, 0�63), and Ycoord
(vertical coordinate, 0�31) is on or off. If the cell is on, then the
colour code (0-8) of the cell is returned. If the cell is off (ie RESET),
then O is returned, and -1 is returned if the cell contains a text
character.
eg
10 SET (25,25,3)
20 P1 =POINT(25,25):P2=POINT(30,40)
40 PRINT P1, P2
50 RESET (25,25):P3=POINT(25,25)
60 PRINTP3
line 40 will print 3 and -1 respectively and line 50 switches the cell
off, and therefore O is printed as result of line 60.

POS (device)
Returns the print position of the specified device.
device=O screen display
device=-2 printer
eg
IF POS(0)>16 THEN PRINT, ELSE PRINT A
moves to next print zone if condition is true else prints value of A
at the same line.

13

PPOINT (Xcoord, Ycoord)

As in point, but a high resolution cell is checked to see if on or off.
Returns value 0 or colour code only, since text cannot be used in
high resolution graphics.
0,s;Xcoord,;127-255
0,s;Ycoord,;127-191

depends on mode used
eg
10 LET C=PPOINT (180-120)

RND(X)
Generates a random number according to the integer value given
by X. If X=0, the random number generated will be between 0 and
1 (ie 0� random number <1).

If X>1, then number generated will be between 1 and the
specified range (ie 1 � random number �X).
eg
LET D=RND(0)
LET D=RND(100)

SGN(X)
Returns value of 1 if the value representing X is positive, 0 if X has
value of zero, and -1 if the value of X is negative.
eg
10 IF SGN(A*B-6)=1 THEN PRINT "+VE" ELSE
IF SGN(a*b-6)=-1 THEN PRINT "-VE" ELSE
PRINT "ZERO"

SIN(X)
Returns the sine of angle X. (X is in radians). {X radians = 0
degrees *rr/180).
eg
10 INPUT ANGLE
20 Pl=4*ATN(1)
30 PRINT SIN(ANGLE*Pl/180)
line 30 converts angle given in degrees to radians and prints the
sine of the given angle.

SQR(X)
Returns square root of the value representing X.
eg
PRINT SQR(16)
LET R=(-B+SOR(B**2-4*A*C))/2*A

TAN(X)

Returns the tangent of the value representing X. X must be in
radians.
eg
PRINT TAN (ANGLE*Pl/180)

TIMER

Returns the contents of the timer which increases by one every
fiftieth (1/50) of a second. The reset the timer USE TIMER=0
eg

5 CLS

14

10 TIMER=0
20 TM= TIMER/50:PRINT@75,TM
30 GOTO 20
line 20 prints value of TM on the screen which is increment by 1
every second.

USR(X)
Transfers control from BASIC to a machine language routine. The
address at which the machine language starts is given by DEF
USR(X) statement. X is an integer value, refering to subroutine
number.

VARPTR (variable name)
Returns address of pointer to specified variable (eg a pointer to a
BASIC variable can be used as an argument by a US Rn function.
This would allow a USR function to access elements of an array).
eg
USR0(VARPTR(A))

SECTION 5

Section B: String Functions

ASC(string$)
Returns the ASCII code number for the first character of the string
variable.
eg
IF ASC(A$)>=48 AND ASC(A$)<=57 THEN
PRINT "NUMERIC CHARACTER"
checks to see if the character is a number between 0 and 9.

CHR$(n)
Returns the character whose code is given by n, where n is an
integer number between 0 and 255.
eg

5 CLS
10 FOR 1=32 TO 255
20 PRINT@96,"CODE=";l;"CHARACTER=";CH

R$(1)
25 FOR J=1 TO 500:NEXT J
30 NEXT!
This will print the printable character set of the Dragon, with a
delay loop at line 25 enabling you to see characters before they
change.

HEX$(n)
Returns the hexadecimal equivalence of n, where n is an integer
value.
eg
10 FOR 1=1 TO 16
20 PRINT HEX$(I)
30 NEXTI
prints Hex equivalence of 0-16; which is 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B,
C, D, E, F, 10

15

INKEY$
Checks the keyboard and returns the string character of the key
pressed. The string character returned is normally assigned to a
string character. This command is normally used in game
programmes to move an object, 'say a ship' around.
eg

10 LET A$=1NKEY$
20 IF A$=CHR$(8) THEN X=X-2

100 IF A$="S" THEN STOP

INSTR(n, string$, substring)
Searches within the string specified by the string$ for the
specified substring and returns the position number of the first
character of the match. The n specifies the character position in
string$ at which search begins. Zero returned if there is no match.
eg
10 LET F=INSTR (5, "ABCDEFGH", "FH")

F will be assigned value 6.
10 LET A$="ABCDEFGH"
20 LET F=INSTR (5. A$, "FG")

LEFT$(String$,n)
Returns a substring of the specified string. The substring begins at
the leftmost character of the string$ and contains the number of
characters specified by n, where n is an integer value.
eg
10 LET A$="ABCDEFGH"
20 PRINT LEFT$(A$,5)

Prints ABCDE
30 PRINT LEFT$("ABCDEFGH",5)
will also print ABCDE.

LEN (String$)
Returns the number of characters in the specified string (ie length
of the string).
eg
10 LET A$="ABCDEFGH"
20 PRINT LEN(A$)

Prints 8
30 PRINT LEN ("ABCDEFGH")

also Prints 8.

MID$(String$, n, ml

Returns the substring of the specified string, starting at character
position specified by n, and containing the number of characters
specified by m, where n and m are both integer values. Omitting
m will cause the substring to continue to the end of the specified
string.
eg
10 LET A$="ABCDEFGH"
20 PRINT MID$(A$,3,6)

Prints CDEF

RIGHTS(String$, n)
Returns a substring of the specified string which ends at the right
most character of the string and contains the number of

16

characters specified by n, whe.e n is an integer value.
eg
10 LET A$="ABCDEFGH"
20 PRINT RIGHT$(A$,2)

Prints GH

String$(n, String$)
Returns n copies of the first character of the specified string. It is
also possible to specify the ASCII code of the required character
instead of the string.
eg
10 PRINT STRING$(32,42)
20 PRINT STRING$(32,"*")
both lines print 32 asterisks.

STRS(n)
Returns the string representation of the integer value given by n
(ie converts numbers to strings).

eg
10 LET $="DECEMBER'v"+STR$(26) ('v =SPACE)

VAL (String$)
A$ will contain "DECEMBER 26". Returns the numeric characters
of the specified string as a number.
eg
10 LET NUM=VAL("123")
20 LET A$="111"
30 PRINT NUM+VAL(A$)

Prints 234

SECTION 6

CONTROL KEYS

[BREAK)
Stops program execution and transfers control to keyboard.

[CLEAR)
Clears the screen.

[ENTER)
Indicates the end of input.

[SPACEBAR)
Blank character (space).

c-1
Backspace. Rubs out last character input.

[SHIFT)[-)

Rubs out the whole line.

17

[SHIFT][@]
Causes execution of program to pause until a key is pressed. Used
to pause output to screen.

[SHIFT](0]
Pressed once switches to lower case (inverse video), press again
to switch to upper case.

SYSTEM COMMANDS

CONT

Continues program execution that is interrupted by either
pressing [BREAK] or as result of STOP statement in the program.
The execution continues from the line of interrupt.

DEL line number 1, line number 2

Deletes lines between the specified range.
eg
DEL 10
DEL 10-100
DEL -50
DEL 100-

deletes line 10
deletes lines 10 to and including 100

deletes from current line to line 50
deletes from line 100 to the end.

EDIT line number

Allows alterations to be made in the specified line. To enter EDIT
mode type:
EDIT line number [ENTER]
Once in this mode the following subcommands can be used to
alter contents of the line.

Subcommands

Cchar

Changes the current character to character specified by char.

nCchar

Changes the next n characters from the current position to the
specified character.

D

Deletes current character.

nD

Deletes the next n characters from the current position.

H

Deletes rest of the line from the current position, and goes to
insert mode (ie waits for you to enter new characters).

I chars

Inserts characters at the current position.

18

K
Deletes rest of the line from current position.

nKchar
Deletes characters from current position to nth occurrence of the
character specified by char.

L

Lists the current state of the line.

Schar
Searches for the first occurrence of the character specified by
char.

nSchar
Searches for the nth occurrence of the specified character.

X
Used to extend the line, the cursor moves to the end of the line
and waits for characters to be input.

[SPACE BAR)

Moves the cursor one position forward (ie to the right).

n [SPACEBAR)
Moves the cursor n positions forward.

1-1
Moves the cursor one position back (ie to the left). If in insert
mode deletes the character of the current position.

n(-1
Moves the cursor n positions backwards.

[SHIFT)[t I
Leaves insert mode and returns to edit mode.

[ENTER)

Leaves either, and stores the altered line.

LIST line number 1 - line number 2
Lists lines between the specified range on the screen. If line
number 2 is omitted, only line number 1 will be listed.
eg
LIST 10 lists line 10.
LIST 10-
LIST -100
LIST 110-310

lists lines 10 to the end of program.
lists from current line to line 100.

LISTS lines 110 to and including line 310.

LUST line number 1, line number 2
As in list, but listing will beon printer instead of screen.

NEW
Clears computer memory, ie deletes program and variables.

19

RENUM new start line, old line number, increment

Renumbers the lines of program from the specified old line
number to the end of program.
eg

renumbers entire program as: 10,20,30, .
renumbers the entire program as: 5,10,15,.

renumbers the entire program as:

RENUM
RENUM,,5
RENUM 100
100,110,120, .
REN UM 50, 10,5 renumbers the program as: 50,55,60,.

lines before 10 remain unchanged.

RUN line number
Executes program from the line specified. Omitting the line
number will execute the program from the lowest line number (ie
start of program). Direct command GOTO line number can also be
used to execute a program.
eg
RUN

RUN 100
GOTO 100

TRON

Used in debugging (ie finding bugs) in a program. It turns on
program flow trace, and causes the line number of the statement
being executed to be printed on the screen.

TROFF

Turns off the program flow trace.

SECTION 7

CASSETTE RECORDER CONTROL STATEMENTS

AUDIO OFF

Disconnects the cassette output to TV speaker.
eg
AUDIO OFF

AUDIO ON

Connects the cassette output to TV speaker. This enables you to
play music while playing a game or add comments to an
educational program. It can also be used to find a stored program
on tape if the name is specified by you before storing your
program.
eg
AUDIO ON

CLOAD "file-name"

Loads the specified file from cassette into computers memory. If
the file is not at the current tape position, it will search until the
name is encountered. At this stage, the Find cursor F will replace
the S cursor and OK message will appear after loading. Omitting
the file name leads the first file encountered on tape. The file

name must be up to 8 characters long.

20

eg
CLOAD " "
CLOAD "GAME A"

CLOADM "file name", offset
Loads the machine language program from cassette into memory
at an address given by start addres + offset.
eg
CLOADM"GAME A",1500

CLOSE #-1
Closes a data file that has been opened for either input or output.
eg
200 CLOSE #-1
line 200 closes input/output to a cassette.

CSA VE "file name"
Outputs the specified program to cassette recorder. If the cassette
recorder is in record mode, then a copy of the program will be
made on the tape provided the tone and volume of the recorder is
adjusted properly. File name must not be more than 8 characters.
NB Set tone to¾ of maximum and volume to just above½ the
maximum.
eg
CSAVE "GAME A"

CSAVEM "file name", start, end, entry
Outputs the specified machine language program to cassette
recorder. Start gives the starting address of program in memory,
end gives the last address occupied by the program and entry
gives the program entry point.
eg
CSAVE 3900,39FF,390F

EOF(-1)
Used when inputing data from cassette recorder. Checks to see if
the end of the specified file on cassette is reached. Returns true if
the end of file is reached.
eg
10 OPEN "I", #-1, "GAME A"
20 IF EOF(-1) THEN GOTO40
30 INPUT #-1, A,B:PRINT A,B:GOTO 20
40 CLOSE #-1

INPUT #-1, print list
Inputs data from cassette file. Before using this statement the
required file must be opened (using OPEN statement).
eg
10 OPEN "1",#-1, "GAME A"
20 INPUT #-1,A,B,.

MOTOR ON
Turns cassette motor on. This is useful if cassette recorder is
remote controlled lie EAR, AUX, and REM plugs are connected to
the computer). Another words it returns control to the cassette
keys.

21

MOTOR OFF
Turns cassette motor of (ie returns to remote control mode).

OPEN "1",#-1, "file name"
Used before inputing data from a cassette file, and opens an input
channel to cassette recorder. The file must be closed after end of
file is reached.
eg
OPEN "1",#-1, "GAME A"

OPEN "0",#-1, ''filename"
Used before outputing (ie creating data file) data to cassette
recorder. This creates a data file whose name is given by file
name. When inputing (ie OPEN "I") the same lilename must be
used.
eg
OPEN "O", #-1, "GAME A"

PRINT #-1, print list
Writes the data representing print list to a file named by OPEN
"O" statement on cassette recorder.
eg
10 OPEN "O",#-1, "GAME A"
20 PRINT#-1,A,B

SKIPF "file name"
Skips to end of the specified program. Omitting file name, will
make the cassette head SKIP to the end of next program on the
tape.
eg
SKIPF" "
SKIPF "GAME A"

SECTION 8

PRINTER CONTROL STATEMENTS

LLISTn-m
Prints lines of program from line n to line m on the printer.
Omitting n and m will cause the entire program to be printed on
the printer.
eg
LLIST prints entire program
LLIST 100- prints all the lines from line 100
LUST 10-200 prints from line 10 to line 200

OPEN "0",#-2,"lile name

Used before outputting data (results) to printer, and opens output
channel to printer.
eg
10 OPEN "O",#-2, "GAME A"

22

PRINT #-2, output-list
Outputs data representing output list to printer. Channel must be
opened before outputing.
eg
100 OPEN "O",#-2, "GAME A"
110 PRINT #-2, A,B

PRINT #-2, USING "format"; print-list
Used to output results on printer in the form specified by format.
The format is as in PRINT USING statement.
eg
PAINT #-2, USING"###·##"; A, 8+0·6556

SECTION 9

ERROR CODES

10
Dividing by 0. Attempting to divide a number by zero.

AO

Already Open. Trying to open a file that is already open. Normally
caused by stopping a program before the end of an opened file is
reached, and executing the program again will produce this error.
Use direct command close #-1 to close the file.

BS

Bad Subscript. Value of the subscript is greater than the declared
dimension.

CN

Can Not Continue. Trying to continue execution of program (ie
using CONT) after program has reached the end. CONT can only
be used as result of pressing [BREAK! key or using a STOP
command in the program.

DD

Trying to redimension an array. Arrays can only be dimensioned
once.

DS

Direct Statement. This type of error is normally caused by trying
to CLOAD a data file.

FC

Illegal Function Call. The specified parameters are too large or of
wrong variable type.

FD

Faulty Data. Trying to assign string data to numeric variable or
vice versa, when loading data from a data file.

23

FM

Bad File Mode. Trying to output to a file that is designated as an
input file, or to input to a file that is designated as an output file.

ID

Illegal Direct statement. Caused by using a statement as a direct
command, where it can only be used as a statement in program,
eg using INPUT with no line number will give 10 error.

IE

Attempting to input data after the end of the specified data file.
The statement IF EOF(-1) is used to avoid such error.

10

Input/Output error. Caused by several factors, such as:
1 cassette tone and vOlume not adjusted properly (adjust tone to

¾ of maximum and volume to just above½ of maximum).
2 The cassette head is not positioned at the start of program.

LS

String too Long. Trying to input a string that is more than 255
characters long (ie maximum allowable string is 255 characters).

NF

NEXT without FOR. This occurs when the FOR statement of a
FOR ... NEXT loop is missing.

NO

File Not Open. Trying to read or write a data file that is not
opened.

OD

Out of Data. Trying to read more data when the data block pointer
has reached the end of data.

OM

Out of Memory. All available RAM is being used or has been
reserved. Use pclear to release some pages of graphics memory
that are not required.

OS

Out of String space. Use CLEAR n statement to reserve more
string storage if available.

ov

Overflow. Number too large to be handled with computer.
maximum value =±1038

RG

Return without GOSUB. Caused by using a GOTO statement
which branches into a subroutine.

SN

Syntax error. Caused by typing errors or incorrect punctuations.

24

colour
2 -{ Black

Green

{
Green

3 Yellow
Blue
Red

4 -{ Black
Green

eg
20 colour 5,7

DRAW "string"

code
0
1
1
2
3
4
0
1

colour code
{ Black 0

Buff 5

{
Buff 5

Cyan 6
Magenta 7
Orange 8

{ Black 0
Buff 1

Draws lines according to commands contained in the
specified string. The draw commands are as follows:

M Xcord, Ycord
Moves to the specified point, drawing a line from last position
to the new position.

Un

Moves Up n points

On

Moves Down n points

Ln
Moves Left n points

Rn

Moves Right n points.

En

Moves 45° n units. 0=degrees

Hn

Moves 135° n units.

Gn
Moves 225° n units.

Fn

Moves 315° n units.

AK

Changes Angle of drawing. K=0=0°. K=1 =90°, K=2= 180°,
K=3=270°.

Cn

Changes the Colour of a point to the colour specified by n
(0-8).

Sn

Changes the scale of drawing to n/4, where n is a value
between 1 and 62.

N

No update of position at the end of the line. ie the end of the
line is not used as the new position.

26

B
No line will be drawn by the next move. The N and B
commands can be used anywhere in the draw string. For
example BM50,50, will move to position X=50, Y=50 without
drawing a line from the last position to the new position.

eg
DRAW "BM100, 100;U40E30F30D40L40"
DRAW "BM150, 135;NU40ND40NR. NL"

GET (X,, Y1)-(X2, Y2), array name, G
Reads an area of the screen enclosed by the rectangle whose
coordinates are given by (X1 , Y1) and (X2, Y2) into the specified
array. The (X1 , Y1) gives the top left coordiantes of the
rectangle and IX2, Y2) gives the bottom left coordinates. The G
parameter is optional and determines the amount of picture
stored, it is necessary to include G when using PMODEs 0, 1
and 3.

eg
GET 1100, 100)-(150, 135),A,G

LINE (X,, Y,)-(X2, Y2),a,b
Draw lines from point IX,, Y,) to IX,, Y2). If IX,, Y,) is omitted,
last end point is used as the start point. The a) parameter must
be either PSET or PRESET. If PSET is used, the line is drawn in
the current foreground colour. If PRE SET is used, then the line
is drawn in the background colour. The b) parameter is
optional. If used it can be either B (a rectangle is drawn) or BF
(a rectangle is drawn and filled with foreground colour).

eg
LINE 1100, 100)-(150, 135),PSET, BF
LINE l100,100H150,1351,PSET, B
LINE I10,10)-(35,35),PSET

PAINT (X, Y), C1,C2
Paints picture starting at point given by (X,Y) with colour
specified by C1 and stopping at the border of the drawing
whose colour is given by C2•

eg
PAINT 1100,125),4,1

PCLEARn
Reserves specified number of graphics memory pages. (n has
value of between 1-8). The default value of n is 4.

PCLSC
Clears the high resolution graphics screen to colour specified
by C 10-8).

PCOPY P, TO P2
copies the contents of page P, to Page P2 (P1 & P2 must be a
number between 1 and 8, and should refer to pages reserved
with PCLEAR command). This is used to produce a number of
displays all of which are based on the original display.

27

PMODE mode. start page
Determines the high resolution modes (0-4). The value of start
page determines which page (1-8) in memory will be affected.

no.of

PMODE pixels pages used screen 1,0 screen 1, 1

0 128x96 1 Black. Green Black, Buff
1 128x96 2 Green, Yellow, Buff, Cyan.

Blue, Red Magenta, Orange
2 128x192 2 Black, Green Black, Buff
3 128X192 4 Green, Yellow Buff, Cyan

Blue, Red Magenta, Orange
4 256X192 4 Black, Green Black, Buff

PRESET (X, Y)
Resets the specified high resolution graphics point to
background colour.

PSET (X. Y. C)
Sets the specified high resolution graphics point to the
specified colour.

PUT (X1 • Y,HX2, Y2). array name, action
Puts the contents of the specified array as graphics points into
the rectangle whose top left hand point is given by (X,, Y 1) and
the bottom right hand point is given by (X2, Y 2). The parameter
'action' is optional and if specified, must be one of the
following words:

PSET
Sets points to their original colour.

PRESET
Resets each point that is set in the original picture (ie reserves
the foreground and background colours.)

AND
Sets a point if the pointis already set and was set in the
original picture (ie if source AND destination points are both
set it sets that point).

OR
Sets a point if the point is already set or was set in the original
picture.

NOT
Reverses each point in the display area.

RESET(X,Y)
Sets low resolution graphics cell at (X,Y) to background
colour.

SCREEN type, colour set
Selects screen type (see COLOR command)
type=0, for text
type= 1, for graphics

28

SET(X,Y,C)

Sets low resolution graphics cell at (X,Y) to the specified
colour(C).

29

Copyright© Peter Morse and Brian Hancock 1984

All rights reserved

The authors gratefully acknowledge the permission of Dragon
Data Ltd. to include the copyright material from their User Guide

pages 136 and 143

First published in Great Britain in 1984
by Century Communications Ltd

Portland House, 12-13 Greek Street,
London W1V 5LE

ISBN O 7126 0352 2

Printed in Great Britain

	0
	lc-p001
	lc-p002
	lc-p003
	lc-p004
	lc-p005
	lc-p006
	lc-p007
	lc-p008
	lc-p009
	lc-p010
	lc-p011
	lc-p012
	lc-p013
	lc-p014
	lc-p015
	lc-p016
	lc-p017
	lc-p018
	lc-p019
	lc-p020
	lc-p021
	lc-p022
	lc-p023
	lc-p024
	lc-p025
	lc-p026
	lc-p027
	lc-p028
	lc-p029
	lc-p030

