DRAGON 32

programmer-s
reference guide

JOHN VANDER REYDEN

DRAGON 32

programmer°s
reference guide

DRAGON 32

programmer-s
reference guide

=& MELBOURNE HOUSE

Published in the United Kingdom by:
Melbourne House (Publishers) Ltd.,
Melbourne House,

Church Yard,

Tring, Hertfordshire HP23 5LU,
ISBNO-86161-134-9

Published in Australia by:

Melbourne House (Australia) Pty. Ltd.,

Suite 4, 75 Palmerston Crescent,

South Melbourne, Victoria, 3205,

National Library of Australia Card Number and
ISBN 0- 86759 - 136 - 6

Published in the United States of Americaby:
Melbourne House Software Inc.,

347 Reedwood Drive,

Nashville TN 37217.

This book was edited by John Vander Reyden.
With contributions from Denver Jeans.

Copyright (c) 1983 Beam Software

All rights reserved. This book is copyright. No part of this book may be
copied or stored by any means whatsoever whether mechanical or
electronic, except for private or study use as defined inthe Copyright Act.
All enquiries should be addressed to the publishers

Printed in Hong Kong by Colorcraft Ltd.
1st Edition

Contents

Introduction 1

What'sincluded s oo oo ev e dnimupume s oorereninecse 1

Howtousethisguidec.coiiiiiiiiiian... 2

Chapter 1

BASIC ..
Constants
Variables
AITAYS . . . sicsin s msims s it + o @ o v o 0 oo o o suasichlh
CONVBISION ,xicosuticeiivmsmvniii « « o o o« o o« wiaisiniats
Lines ismwiinas

BASIC Commands

BASIC Functions

ErrorsinBASIC ..ottt

Chapter 2

GRAPHICS 06 s s s aRsmaess e o oereonan 36
Pixels and Resolution covvvvivnenn..... 37
Modes susivhvsriis i T R - - . e e 37
VidEOMEMONYiviiiiiiiiiiiiiiniaieeenns 39

Lo Resolution Graphicsl 42
CLS i 43
SET/RESET cxmtumum cscecncactanacanssas 43
GraphicsusingSTRINGs 43

Hi Resolution Graphicscvviiiiiiiiiiiain,
Initialising commands
Producing Graphics

Assembler/Machine Code Graphlcs 54

GraphicSMOdescvivevineieeinininiaiaiies e 55

Chapter 3

Example programsc.ccoiiiiiiiiiiiiii 72

Chapter 4

MACHINE CODE 5.5, pssisissssid s s1sg siasie s i om =
Whatis Machine Code
TheCPU e e e
Registers s ot Hatst i Sl e s i -
AddressingModes ...
Using M/C programs onthe DRAGON 90
Handy ROMRoutinescoooia... 93
Handy Memory Locationscocoueua.n. 96

Now BASIC Stores Variables
String StaCk «vevissvesiosomimnsnasmssionanranssree
How Numerics are stored in the VariableBlock 98
How to access BASIC variabies from

Machine Languageprograms 99

Chapter 5

PERIPHERALS i 107
JOYSHEKS oconminm wimonsamin + + + e - 101
Printerol 101
Cassette 102
Monitor/TV ...l 102
Edge Connector 103

Chapter 6

HANDY ROUTINES and TIPS
Speeding thingsup
Disable/Enable break key
AutoKeyRepeat
Reading TwoKeys at Once
Recovering a Program after a NEW command 107
MEIQE . somsmmmmmimi i e e A aoad
Redefining BASIC Keywords . ..
PageSwapping
Various Circles
Lines .. iwasaiaiife. o ovenenins
SCrolls ...

Appendix A

Basic KeYWOIAS .iwicssmnsimmimss s s sk ks - 120
BasiC SYMDOIS .o ivammibamsmncsiss sias sram waceionn o5 s 66 » 122
Appendix B

Error MESSAGOS iwsizisersi:s i o i s e g i e + » + 123
Appendix C

MeMOrY Map oo imvasimmmpmmas s saism s g - 125
Appendix D

ColoUr COAES .+ . v vvi et 126
Colour-set Tablecovieiiuaeiinainaiinnaanns 127
Appendix E

Character Codes (CHR$ &ASC)ccvviviiinnnn.. 128
Appendix F

Prnt @ GRID .. i st d5m s 6 asin o b soin S0 s b s b 129
Appendix G

ASCIl Codesadisb i i s s i v .. 130
Appendix H

Character Codes (PEEK&POKE) 132
Appendix |

Base Conversionscocivieiiiniioii.....133
Appendix J

6809 Instruction Set 137

INTRODUCTION

This book has been developed as a reference source for people like you,
who want to get the most out their DRAGON. It contains the information
you need for your programs, from the simplest exercises right though to
complex business or game applicatons. The DRAGON
PROGRAMMERS GUIDE is designed so that everyone from the
beginning BASIC programmer to the professional experienced 6809
machine language programmer can get information to develop their own
creative programs. At the same time this book shows you just what your
DRAGON can do.

This PROGRAMMERS GUIDE is not designed to teach the BASIC
programming language to abeginner but as a reference to the DRAGON
which includes the DRAGON's BASIC language. If you have not already
done some programming, | suggest that you read the other book in this
series, THE COMPLETE DRAGON BASIC COURSE, which will teach
you the BASIC language.

The DRAGON PROGRAMMER'S GUIDE is just that; a guide. Like most
reference books, your ability to apply the information depends on your
knowledge of the subject. In other words, if you are a novice programmer
you will not be able to use all the facts and figures in this book until your
knowledge and experience increases.

What is in this book is a considerable amount of valuable programming
reference material written in easy to read English with the programming
jargon explained. On the other hand, the programming professional will
find all the information needed to use the capabilities of the DRAGON 32
effectively.

WHAT'’S INCLUDED?

e Complete “BASIC dictionary” includes the DRAGON BASIC

language commands, statements and functions, a detailed description of

each word and examples on how to use it, even the average time it takes

to execute each one, useful for “time critical” game programs.

® An introduction to machine code programming and how to use

machine code programs from BASIC.

® A complete listing of the 6809 instruction set.

® The peripherals chapter (Chapter 5) shows how the DRAGON can
communicate with the outside world via its ports.

e Useful routines and memory locations you can access from both

BASIC and machine code

e BASIC and machine code routines for you to type in yourself which will

make your program even more powerful and user friendly.

HOW TO USE THIS GUIDE

Throughout this manual certain conventional notations are used to
describe the syntax (programming sentence structure) of BASIC
commands to show both the required and the optional parts for each
keyword. The rules to use for interpreting statments’ syntax are as
follows :

e BASIC keywords are shown in capital letters. They must appear
where shown in the statement, entered and spelled exactly as shown.

e Parameter names are shown enclosed in square brackets ([]) and
these must be substituted with values. These can be either a single
constant, a single variable name or any complex expression unless
otherwise stated.

e TIME - Most commands have a time quoted for them at the end of their
description. This is the approximate average time that the command
takes to run, measured in seconds. Itis included to enable comparison of
different ways of performing a certain routine when programming time-
critical programs.

CHAPTER1

BASIC

This chapter is a reference guide to the DRAGON 32s BASIC. If you are
new to programming then | suggest that you use a book like THE
COMPLETE DRAGON BASIC COURSE which is written for people who
don’t have a lot of BASIC programming experience. If you are a
competent programmer but have not used BASIC before, this chapter is
probably sufficient to teach you the basics of the BASIC language.

CONSTANTS
DRAGON BASIC has two fundamental types of constants; string and
numeric.

String constants are made up of alphanumeric characters and are
enclosed in quotation marks (*”). A character string can be up to 255
characters long. A string which does not contain any characters is called
a "null string”.

Examples:

“DRAGON 32"

“n231

“m

*” - null string

Numeric constants can have three formats:

a) DECIMAL

These can contain the digits 0 through 9, adecimalpoint (.) and a sign
(+or—).

Example:

—2783.796, 1200

Decimal numbers can aiso be stored in EXPONENTIAL FORMAT and
are automatically displayed in this format for numbers greater than 1,000
million and less than 1 thousandth. The highest value the exponent can
take is 38; actually the largest number is about 1.1 x 10%. The
mantissa has a maximum of 9 digits.

Example:

9.76E13, —9.67E—-21

b) HEXIDECIMAL

These can contain the digits 0 through to 9, A through to F and a sign (+
or —), where:

A represents 10

B represents 11

C represents 12

D represents 13

E represents 14

Frepresents 15

“&H” is placed at the start of the number to indicate that it is in
hexadecimal format. If a sign is specified then it must come before “&H".
Example:

&H1A00, —&H1AOF

c) OCTAL

These can contain 0 through to 7 and a sign (+ or —). “&” or “&0" is
placed at the start of the number to indicate thatit is an octal number. If a
sign is specified it must be placed at the very head of the number.
Example:

&0707, —&0707, &147

VARIABLES

Again, the DRAGON has two types of variables, string and numeric, the
only difference being that all numeric variables are floating point. A
variable need not be declared unless it is an array with more than 10
elements.

Variable names have the following rules:

a) The first character must be alphabetic (A - Z) followed by
alphanumeric characters.

b) Up to 255 characters may be used as a name but only the first 2 are
used to identify the variable. Therefore, SNAKE and SNAP are
considered the same by the DRAGON.

c) Variable names cannot start with a BASIC keyword.

Examples:

ABCD, IDATA, INPRINT2 - correct

1DARE, DATA1, TOM - incorrect

String variables are signified by a dollar sign ($) added at the end of their
names. Up to 255 characters can be stored by any one string variable.

Whenever a program is RUN or changes made to the program, string
variables are initialized to the null string, and numeric variables to 0.

ARRAYS

An array is a group, or table of values with the same variable name.
Individual values (called elements) are referenced by subscript(s) of
numeric expressions. Multiple dimensioned arrays are available and the
number of subscripts must agree with the number of dimensions that the
array was declared with (see the DIM statement).

4

CONVERSION

When a constant of hexadecimal or octal format is assigned to a numeric
variable, or printed, it is automatically converted to a floating point
number. String constants or variables cannot be mixed directly with
numeric variables and constants but there are functions forthis purpose.

EXPRESSIONS

The following is the formal priority or execution sequence in BASIC
numeric expressions, their symbols and function:

1. Parenthesis () Give sub-expressions higher
execution priority
2. Functions (see pages 28-35)
3. Arithmetic + Exponentatione.g.2 T 3 =23
operators = make numbers negative
. Multiplication
/ Division
+ Addition
= Subtraction
4. Relational = Equivilence
operators Not equal
less than
greaterthan

< lessthan or equal to

,= > greater than or equal to

5. Logical Operators

NOT (negation) X NOT X
true (—1) false (0)
false (0) true (—1)

OR (logical add) X Y XORY
true (—1) true (—1) true (—1)
true (—1) false (0) true (—1)
false (0) true(—1) true(—1)
false (0) false (0) false (0)

AND (logical multiply) X Y X AND Y
true (—1) true (—1) true (—1)
true (—1) false (0) false (0)
false (0) true (—1) false (0)
false (0) false (0) faise (0)

The relational operators return a value of —1 (for true) or O (for false).

Example:

X=3

PRINTX=3;X > 4;X > =2-resultis—10-1

The logical operators use two byte 2s compliment numbers and do a full

bit by bit operation on these bytes. This means that not only can they be

5

used to connect relational operators in a condition but they can aiso be
used to set and reset specific bits without affecting the others.
Example:
7AND3 =3 7 — 00000000 00000111
AND
3— 00000000 00000011

3 — 00000000 00000011
70R8 =15 7— 00000000 00000111

8— 00000000 00001000
15—00000000 00001111

The OR operator is used to set specific bits. To set a particular bit,X, in a
variable, Y,ORitwith2 tX (e.g. tosetbit7,Y =YOR2 t 7).Thissets
up the second pair of bytes to contain all 0's except in the bit you specified
and when this is ORed with the original number, that bit is set and the
others are unaffected. Note that more than one bit can be set at the same
time.

Example:

Y=YOR2 t 7+2 t 3setsbothbits 7and 3.

To reset specific bits is a bit harder. The AND operator is used with a
number which has all its bits set except for the one you wish to reset.
Probably the easiest way to produce this number to be ANDed is to use
the NOT operator which simply sets all the bits reset, and resets all the
bits set. Therefore, to reset bit 7 in Y the expression, Y = Y AND NOT
2 t 7isused. Again as with the OR operator more than one bit may be
reset with the one AND operation.

The AND operator can also be used to check if particular bits are set, eg.
toseeifbit7issetin Ythen AND Ywith2 t+ 7.lfbit7issetthen2 + 7
will be returned otherwise 0 will be returned. As conditions are taken to
be true if the number is non-zero then this can easily be used in an IF
statement.

e.g. IF(YAND2 t 7)THEN PRINT “BIT 7IS SET” ELSE PRINT “BIT
7 ISNOT SET”

Numerics are stored as a 4 byte mantissa and 1 byte exponent (see
chapter 5) and are operated on in this format, but converted into two byte
2's complement format for comparison.

Possibly the best way to become familiar with the OR, AND and NOT
functions is to try out various examples and see what results you obtain.

6

Character strings canbe linked together with the operator * +". They
can also be compared using the same comparison operators as used
in numerics.

The comparison operators work on the character ASCI| codes for each
string. Strings are equal if all character codes are equal. The character
string first having an ASCII code smaller than the other is said to be less
than the other. If strings are the same except that one is longer then the
shorter one is considered to be the smailer.

Examples:

"ASM” > “ASB"

“"ASMT” < “ASMTQ”

“ALL” ¢ “ZERO”

LINES

BASIC statements can be executed directly from the keyboard or stored

in a program. If a statment is typed in preceeded by a line number

(0-63999) then the statement is automatically put in the program, sorted

in numerical order, otherwise it is executed immediately.

More than one BASIC statement can be on the same line, both for a

program or for immediate execution by separating them with a colon (:).

Spaces are optional in BASIC. Extra spaces between keywords, variable

names, symbols and constants are ignored and the only time a space is

required is if a BASIC keyword follows on from a variable name, these

must then have a space between them.

Example:

IF A=B THEN — correct

IFA=B THEN — correct

IFA = BTHEN — incorrect, as BTHEN would be regarded as a variable
name

BASIC COMMANDS

AUDIO
e Connect/disconnect cassette output to TV
®AUDIO ON

AUDIO OFF
e Connecting the cassette to the TV allows you to record sound effects
on tape then play them back under program control (see MOTOR) to add
special sound effects to programs.
e AUDIO ON .00050 sec.

AUDIO OFF .00044 sec.

CIRCLE

e Draw a circle on the graphics screen
® CIRCLE ([x][y]), [r]

CIRCLE ([x.[y]), [r], [attribute list]
where the [attribute list] is made up of some or all of the following options:
[c], [hw], [start], [end], separated by commas.
e This command will draw a circle on the current graphic page (see
PMODE, Chapter 2.)
Parameters are:
— x,y : position of the centre of the circle (x=0-255,y=0-191)
— r:radius of circle
— c : colour (0 - 8) optional, default is foreground colour
— hw : height-width ratio : (used for drawing elipses) optional. The width
of the circle is always two times the radius you specified. The height-
width ratio determines how high the circle is, default is 1
— start, end : starting and ending positions of the circle (0 - 1), position 0
of the circle is 3 o'clock, .25 is 6 o’clock position, etc. Whenever the
starting position is greater than the ending position, or when either start
or end is omitted, a complete circle is drawn. When the start and end
positions are specified the hw option must also be specified.

#CIRCLE (128, 96), 30
CIRCLE (128,96), 30,,0.5
CIRCLE (128,96),30,,1.25, .75

oCIRCLE (1,1),1—0.0958 secs
CIRCLE (1,1),1000—-0.1514 secs
CIRCLE (1,1),10,2,3.5—0.1125 secs
CIRCLE (1,1),10,2,3.5,.75-0.0812 secs

CLEAR

o |nitialize variables, reserve string space and set highest BASIC
address
o CLEAR [stringspace], [address]
® Sets all numeric variables to 0 and string variables to null strings. If the
[string space] is specified then that many bytes is reserved for string
storage space, defaultis 200. If the [address] is specified then that is the
highest address that BASIC will use, leaving a ‘safe’ area for machine
code routines. Note that if [address] is specified then [string space] must
also be specified
e CLEAR

CLEAR 100

CLEAR 300,10000

CLOAD

® Load a BASIC program from tape
e CLOAD

CLOAD*”

CLOAD “[filename]”
® Will load a program from tape in either token form or ASCil form (see
CSAVE). If [filename] is specified the program with that name will be
loaded otherwise the first program found is loaded. [filename] must be 8
characters or less.
e CLOAD

CLOAD “DRAGON 1"

CLOAD "

CLOADM

® |oad a machine code program from tape
e CLOADM

CLOADM™”

CLOADM"[filename]”

CLOADM™, [offset]

CLOADM [filename]”, [offset]
® This loads a machine code program (or block of memory — see
CSAVEM) from tape. If [filename] is specified the file with that name will
be loaded otherwise the first file found will be loaded. If the [offset] is
specified, this is added to the value of the addresses that were saved,
otherwise the original addresses are used.
e CLOADM

CLOADM “DRAGON M”

CLOADM “DRAGON M", 1024

CLOSE

e Closes open files or devices

e CLOSE [device-number]

where [device-number] is either #—1 or #—2

e When a cassette datafile (#-1) is CLOSE. if it has been used in
output mode, the data remaining in the buffer and an EOF marker is put
on the tape; if it has been used as input then the buffer is cleared; either
way the buffer is made available for another OPEN command.

There seems to be no effect when closing files for device #-2 (the
printer).

CLOSE with no parameter closes all currently open files.

(See OPEN#—-1)

e 0.00280 secs.

CLS
e Clear the screen and set background colour
e CLS [colour]
e Clears the screen and if [colour] is specified sets the screen to that
colour otherwise green is used by default.
e CLS
CLS 3
e CLS .00807 secs
CLS x .00997 secs

COLOR
e Set foreground and background colours on a graphic page.
e COLOR [foreground], [background]
e Set the foreground and/or the background colours (within limits - see
Colour Sets) for a graphic page.
Defaults are : [foreground] - lowest available colour
[background] - highest available colour
e COLOR3

COLOR 3.5
e COLOR x.00225 secs

COLOR xy .00412 secs

CONT

e Continue a program

e CONT

e After the BREAK key is pressed or a STOP or END statement is
executed, the program can be re-started from the next statement using
the CONT command. CONT will not work if any changes have been
made to the program (by EDIT or adding lines) or if another command
was entered incorrectly and an error message given between the
BREAK and CONT. CONT always resumes execution at the next
statement after the program was stopped.

e CONT

CSAVE
e Save BASIC programs on tape
® CSAVE

CSAVE "

CSAVE “[filename]”

CSAVE “* A

CSAVE “[filename]”,A
e Saves a BASIC program on tape either in token format (the internal
tokens are saved) or ASCII format (actual words saved) selected by
“A'at the end of the command. The program name can be up to 8
characters (any character except “ can be used).

10

Note: If ASCII formatis to be specified then the quotation (") marks must
be used, even if no program name is to be specified.
e CSAVE

CSAVE “" A

CSAVE “DRAGON 1"

CSAVEM
® Save a machine language routine on tape.
e CSAVEM “"[start][end], [entry]

CSAVEM “[filename]”, [start], [end], [entry]
e Blocks of memory are saved on tape. [filenamelis the name of the file,
[start] is the first address to be saved, [end] is the last address to be
saved and [entry] is the first address to be executed when the first EXEC
command is given after the program is reloaded.
e CSAVEM “SCROLL", 10000, 11000, 10100
Note: The parameters may be specified in decimal, hexadecimal or octal
by following the normal rules for numeric constants.

DATA
e Stores data in your program
e DATA [value], [value], ...
e The DATA statement allows you to keep both numeric and string data
in your program. Each piece of data is separated by a comma. If you
require a comma in your string then that piece of data must be enclosed
in quotation (“*) marks. If a piece of data starts with a quotation (*) mark
then every character (including commas) up to the next quotation mark
will be put in the string-variable.
e 10FORI=1TO5:READ X$:PRINTX$:NEXT|

20 DATA “,,10,” HELLO“DRAGON",10,HELLO,GOODBYE"
Result:

210,
HELLO“DRAGON"
10

HELLO
GOODBYE"

DEFFN

e Define numeric function

e DEF FN [name] ([var]) = [expression]

e This sets up a user defined function. [expression] may be any
mathematical expression and use any of the program variables. Note
that the variable defined in brackets (after the name) can only be used
inside the formula and will not affect a variabie of the same name outside
the definition. The function can then be called in your program like any

1

other BASIC function. If a functionis defined in two places of a program
then the last executed definition is used.
Note: DEF FN cannot be executed in immediate mode, only in a
program.
Example:
Y=10
10 DEFFNRR(X)=X/2+Y
15 PRINTFNRR(7)
Result- 13.5

DEFUSR

e Define machine language routine

e DEFUSRI[n] = [address]

e Specifies the starting address of a machine language routine (0 -
65535). You can specify up to 10 user machine language routines by
specifying [n] as 0 - 9, defaultis 0.

e 10 DEFUSR = 11000

DEL

e Deletes program lines

e DEL [lines-desc]

e Deletelines specified in [lines-desc]. Values of [lines-desc] are:
[n] — delete line [n]

[-] — delete entire program

[—n]— delete up to and including line [n]

[n—]— delete from line [n] including line [n]

[n1-n2] — delete from line [n1] to line [n2] inclusive

e DEL 10-50

DIM

e Define (dimension)one or more arrays

e DIM [name] ([dim-list]), [name]([dim-list]),...

e Define one or more arrays with the name [name] and size [dim-list].
When a single number is used in [dim-list] that is the upper bound of the
array and subscripts are in the range 0 to upper bound inclusive. Multi-
dimensional arrays are defined by separating each dimension upper
bound by a comma in the [dim-list]. Both constants and variables may be
used in [dim-list]

e DIM A(10), B(5,7), C(D), E$(7)

DRAW

e Draw aline on a graphic page.

o DRAW [command string]

e [command string] can be a constant string (enclosed in quotes) or a
string variable, or a combination concatenated with ‘+'.

[command string] may contain anyof the following:

12

COMMANDS:

M— movedraw position. Mx, y— position on screen (x = 0 — 255,y =0
—191). M + x, + y — move relativeto current position. Note that if it

is a positive offset the plus sign must be included.

U — move/draw position up. Ux go up x positions

D — move/draw position down. Dx godown x positions

L — move/draw position left. Lx go left x positions

R — move/draw position right. Rx go right x positions

E — move/draw position 45° angle x positions

F — move/draw position 135° angle x positions

G — move/draw position 225° angle x positions

H — move/draw position 315° angle x positions

X — execute a substring and return

MODES:

C — change colourto x

A — tilt everything at an angle. x = 0 — 3 means angle is 0°, 90°, 180°,
2700

S — change the scale of everything. x = 1 — 64 indicates the scale factor
inunitsof 1/4

Example:

x = 2 Scale factor2/4 or 1/2

x = 8 scale factor 8/4 or 2 (double)

OPTIONS:

B— immediately before any motion command, blanks that commandi.e.
move but notdraw.

N — immediately before any motion command, does not update position
i.e. draw but return to original cursor position.

®DRAW “BM128,96 ;C8 ; U25 ; R25 ; D25 ;L25
A$ ="U10;L10;D10;R10"
DRAWAS
B$ = “128,96"
DRAWAS + “M” + B$
DRAW “BM128,96 XA$;C8 U10L10D10 R10"

EDIT
® change program lines
e EDIT [line]

® After typing EDIT and a line number the line is displayed and the
cursor placed underneath the line : it is now ready for editing
Commands are:

nC— change n characters

nD — deletes ncharacters

| — insert new characters

H — deletes rest of lines and waits for new input

L — list current line and continue edit

nSc— searches for the nth occurence of the character ‘¢’

X — extend line; add new characters to the end of the line

SHIFT + — escape from sub command

n SPACE — move n spaces to the right

n -+ — move n spaces to the left

K — deletes rest of line— from current position

nKc — deletes the line up to the nth occurence of the character ‘c’

END

e Ends program execution

e END

e Terminates program execution. Program maybe restarted on the next
line with CONT. This is optional and, if not included, program execution
ends with the last BASIC statement.

EXEC

e Transfer control to machine language program

e EXEC [address]

e Control is passed to a machine code program starting at [address]. if
the address if not specified control passes to the address used in the last
CLOADM command. When the machine code program executes an
RTS command, control is returned to the next BASIC command (if
entered directly, to the command level)

e EXEC 10000

FOR

e Create aloopin the program
e FOR [variable] = [n1] TO [n2] ... /NEXT [variable]

FOR [variable] = [n1] TO [n2] STEP [n3] ... /NEXT [variable]
e Creates a loop which executes the commands between the FOR and
the NEXT commands. The variable specified in [variable] is initialized to
[n1]. Each time through the loop [n3] (default 1) is added to the [variable}
and the statements executed until [variable] equals or surpasses [n2].
When [variable] equals [n2] the statements are executed and control is
passed to the statement after the NEXT statements. If [variable] does not
equal [n2] (has incremented past [n2]) control is passed directly to the
statement following the NEXT statement.
Note:
The loop is always executed once.
10FORI=1TO5STEP2:X$(l) = “HELLO" + STR$(I) : NEXTI
20FORI1=1TO5
30 PRINT I, X$(1)

40 NEXT |

50FORI=5TO1STEP —3:PRINT I, X$(I) : NEXT|
Result:

1 HELLO1

2

3HELLO3
4

SHELLOS
SHELLOS5

2
e FORI=1TO10:NEXT |- 0.001868 secs per loop

GET

e Save arectangle of graphics screen
o GET ([x1],ly1]) — ([x2]ly2]), [variable]

GET ([x1]ly1]) — ([x2]ly2]), [varable], G
e Gets a rectangle of the screen specified by the diagonally opposed
corners, [x1),[y1] and [x2],[y2] and places it in the array [variable] (see
Chapter 2 for a full discussion). The syntax also allows for a ‘G’ to be
addeé:l at the end of the command to specify that fuligraphicdetailis to be
saved.
e GET (10,10) — (20,20), A
e GET (10,10) — (15,15), A- 0.01808 secs

GET (10,10) — (30,30), A - 0.03231 secs

GOSuB
e Perform a subroutine
o GOSUB [line-number]
e Control is passed to the BASIC line whose number is specified by
[line-number] and execution continues untila RETURN is encountered,
then controlis passed to the statement following the originating GOSUB.
10GOSUB 100
20 PRINT “HELLO™;
30END
100 PRINT “SAY "
110 RETURN
Result:
SAY HELLO
e GOSUB/RETURN - 0.00181 secs

GOTO

e Pass control of program to another line

e GOTO [line-number]

e Control is passed to the BASIC line whose line number is specified by
[tine-number] and execution continues fromthere.

15

10 GOTO 40

20 PRINT “THERE”
30 END

40 PRINT "HELLO";
50 GOTO 20
Result:

HELLO THERE

e 0.00093 secs

IF/THEN/ELSE
® Test relationships
o |F [condition] THEN [statements or line-number]
IF [condition] GOTO [line-number]
IF [condition] THEN [statements or line-number] ELSE [statements or
line-number]
IF [condition] GOTO [line-number] ELSE [statements or line-number]
e [condition] can be any numerical or relational expression and is said to
be true if it does not equal zero. If [condition] is true then the statements
following THEN (up to ELSE or the end of the line) are executed or
control is passed to the line having [line-number] after THEN or GOTO.
If [condition] is not true (false, zero) and there is an ELSE, the statements
following it are executed or control passed to the line having [line-
number] after ELSE.
If [condition] is false and there is no ELSE, control is passed to the next
BASIC line.
e A=27:B=16:X=11:A%$="YES"
IF A = BTHEN 200 ELSE300 - Next line executed is 300.
IF X GOTO 1000 - Next line executed is 1000.
IFA$ = “YES” THEN PRINT “OK" ELSE B$ = “NO":GOTO 20 - OK is
printed.
IFA < BTHENA = B:B = 0:GOTO 300 - Nothing will happen; next
line executed is the next
line number.
e 0.00274 secs

INPUT

e Enter data from keyboard

e INPUT “[prompt string]” ; [var1], [var2], ...

e When the INPUT command is executed the [prompt string] is
displayed (if one has been given) then a question mark and the computer
waits for the keyboard input.

The [prompt string] must be a constant in quotes. The question mark is
placed directly after the string with no blanks. Note that if {[prompt string]
is used it must be followed by a semicolon (*;). if no [prompt string] is
used, the quote marks (“”) are not required.

16

When multiple variables are to be entered on one line they can either be
entered one at a time with an ENTER keystroke after each one or all on
one line separated by commas.

e INPUT“TWO NUMBERS PLEASE” ;A, B

INPUT A$

INPUT “YES OR NO” ; ANS$

INPUT#-1
e Enter datafrom tape
e INPUT#—1 [prompt string] ; [var1], [var2], ...

INPUT#—1 [var1], [var2], ...
® Accepts data from tape that has been previously recorded using
PRINT#—1. Note that if the data on tape is of a different type or format
the program will halt with an FM, FD or IO error.
Ifa prompt string is used it is ignored and has no effect. It can be used as
a comment in the program. (see OPEN#—1)
e INPUT#—1“TAPEDATA”, AB$

INPUT#-1,A,B

LET

® Assign a variable a value.

e LET [var] = [expression]

e The LET keyword is an option when assigning variables values. It is
included because many version of BASIC require it and programs from
these machines can, at times, be used on the DRAGON without
extensive modification.

e LETA=34/X

e LET B$ = “DRAGON”

e LETBS$ = B$ + “ISHERE”

® 0.00157 secs

LIST

® List program on the screen.

® LIST [line-desc]

® List entire program or lines specified in [line-desc] onto the screen.
Format of [line-desc] is as follows:

n —listlinen

—n — listalllines up to and including n

n— —listall lines after n, including n

n1—n2 —listall lines betweenn1 and n2 inclusive

If no [line-desc] is given then the complete program is listed.
e LIST

LIST -30

LIST40-70

17

LLIST

e List program on line printer

LLIST [line-desc]

Same as LIST except the listing is done on the printer.
LLIST

LLIST 100—

LINE
e Drawsaline

LINE ([x1][y1]) — (>x2}[y2]). [a]

LINE ([x11ly1]) — (Ix2lly2]), [al, [b]
® Draws a line from the starting point [x1],[y1]to the end point [x2],[y2]. If
the starting point is omitted the ending point of the last LINE or DRAW
command is used or, if there isn't a previous LINE or DRAW command,
the line will start at (126, 96).

[a] must be either PSET or PRESET. If PSET is used then the line is
drawnin the foreground colour. If PRESET isusedthelineisdrawninthe
backgroundcolour,thatis, the lineis erased.

Either B (Box) or BF (Box Fitled) can be used as the [b] option. If B is
specified a rectangle is drawn using the start and end positions as two
diagonally opposed corners. If the BF option is used the rectangle is
drawn, then filled in with solid colour.
e LINE (0,0) — (100,100), PSET, B

LINE — (120,150), PSET

LINE (0,100) — (100,100), PSET
e LINE .03 secs

BOX .037 secs

BOXFILLED 4 secs

LINE INPUT

e Enter data from keyboard
e LINE INPUT “[prompt string]” ; [var]

LINE INPUT [var]
e The difference between INPUT and LINE INPUT is that LINE INPUT
will take the entire line including leading blanks and commas and place it
in a string variable. LINE INPUT cannot be used for numerical input and
has a maximum length of 255 characters. Only one variable may be
used. There is no question mark after the prompt string.
e LINE INPUT “HELLO LINE?” ; ANS$

18

MOTOR
e Turn the cassette motor on or off
e MOTORON
MOTOR OFF
e Allows the motor of the cassette to be controlled by a program for
creating special effects (see AUDIO)
e MOTOR ON 0.5272 secs
MOTOR OFF 0.0005 secs

NEW

e Clears the current BASIC program from memory. This does not
actually erase any of the memory but rather modifies the pointers to the
BASIC program so that it cannot be accessed.

ON..GOSUB

® Multibranch to subroutines

® ON [var] GOSUB [line-number1], [line-number2], ...

® This allows muitiple GOSUB commands on the one line. Depending
on the value of [var] abranch to a subroutine is executed. If[var]is 1, then
[line-number1]is used, if [var]is 2, then [line-number2] is used, etc. If [var]
is zero or greater than the number of line numbers specified then the
statement following the ON-GOSUB statement is executed. Negative
values of [var] will cause an error. Values of [var] that are not integers are
reduced to integers by removing the fraction.

e ON X GOSUB 100, 200, 300, 400, 500

® 0.00258 secs

ON..GOTO

e Multi-branches

e ON [var] GOTO [line-number1], [line-number2], ...

e Same as ON .. GOSUB except the branches are to lines not to
subroutines.

e ON X GOTO 10, 20, 30, 40, 70

® 0.00258 secs

OPEN

e Opens adatafile.

e OPEN “[a]",#—1, [filename]

e Opens a file on tape for either reading or writing. [a] determines
whether you can read or write. The legal values of [a] are ‘O’ and ‘I’ which
stand for Output and Input respectively.

When a file is opened a buffer of 255 bytes is set up in BASIC’s work
area. If the file was opened for input this will then be filled up with data

19

from the tape and whenever all the datais INPUT # —1ed from the buffer
itwill be filled again from the tape automatically. When a file is opened for
output and PRINT# —1 statements are executed the data does not
immediately get put onto tape, but rather, into this buffer and when the
buffer is full or the file is closed the data is transferred onto the tape.

e OPEN‘I",#-1, “ADDRESSES”

® 0.00387 secs

PAINT
e Paints a section of a graphics page.
e PAINT ([x].Iy])

PAINT ([x],[y]). [colour]

PAINT ([x][y]). [colour], [border]
e Paints a section of a graphics page, starting at position [x], [y], with
colour [colour]. If [colour] is not specified the current foreground colour is
used. The painting will be contained by a border of colour [border]. Note
that if there is any small gap in the border then the painting will ‘escape’
outside of the border and continue until it is contained by another border
or fills the whole screen. If [border] is omitted then the entire screen will
be painted, regardless of the valuesof x and y.
e PAINT (10,10), 3, 1

PAINT (100, 100)
® Time is approx. 4 secs for half a screen.
PCLEAR
e Reserve memory for graphics
e PCLEAR|[n]
e Reserve [n] pages for graphics memory. [n] can be in the range 1-8.
The contents of the memory reserved are not affected. This should be
done near the start of the BASIC program as there may be strange
side-effects if done in the middle.
This effects the amount of memory available for BASIC. For the
maximum memory available to BASIC use PCLEAR].
e PCLEARS Lo
® 0.00477 secs

PCLS
e Clearsgraphic pages
e PCLS|[n)
e Clears the current graphics page to colour [n). If[n] is not specified the
current background colour is used.
This should be done whenever PMODE selects a new graphics
resolution.
e PCLS
PLCS4
e 0.0274 secs

PCOPY

e Copy graphics pages
e PCOPY[n1]TO[n2]

e Copies the graphic page [n1]to the graphic page [n2].

e PCOPY2TO4

® 0.02605 secs for PMODE 1

PLAY

® Play music

e PLAY [command string]

e Play music as specified in [command string]. Commands in the string
are:

A-G notes

1-12 tones

On Octave n (0-5)default2

Vn Volume n (0-31) default 15

Ln Length of notes (1-255) default 1
Tn Tempo n (1-255)default 2

Pn Pause n (1-255)

Xn$ Executes string n$ and returns
#or + Sharp

= flat

. ¥2 as long again
For a more detailed explanatlon of the PLAY command see Chapter «.
e PLAY“A;B;C;D;E

PMODE
e Select resolution and graphic page
o PMODE [n1], [n2]
® Selectthe resolution to be [n1] and the starting graphic page to be [n2].
Defaults are 2 for resolution and the last page is used for start page.
e PMODE, 3
PMODE 1
PMODE 1,3
e 0.00448 secs

POKE

o Filla memory location with a specified value.

e POKE [address], [val]

e Setthe memory location specified by [address] (0 - 32538) to the value
specified by [val]. The value ‘poked’ is to be between 0 and 255 (one
byte).

e POKE 10000, 100

® 0.00931 secs

21

PRESET

e Setto background colour

e PRESET ([x]ly])

e Set a point on the graphic page to the background colour. The point is
specified by [x] (0 - 255) and [y] (0- 191).

e PRESET(10,10)

® 0.00477 secs

PRINT

e Display information on the screen

e PRINT [expression] [separator] [expression] [separator] ...

e Outputs character on the TV screen. When no expression is given, a
blank line is left. The [expression] may be any numeric or string
expression, including string constants. The legal values of the
[separator] are comma ‘' , semicolon ' , oraspace‘ ' .Ifa
comma is used the output will be in two columns, each 15 characters
wide. If the firstexpression is longer than 15 characters then the second
expression is printed on the next line down. If the second is too long it
‘wraps around’ onto the next line down.

With a semicolon, or a space, strings are printed next to each other and
numeric items have a space on either side of them. The semicolon holds
the cursorin its last position ready for the next PRINT statement.

Note that a question mark may be used instead of the PRINT keyword.
® PRINT “12345678910”

A$ = "“12345678910"

PRINT A$

?7A,B;

PRINT B§A

PRINT “12345678910" - 0.00506 secs

PRINT A$ - 0.004 87 secs

PRINT USING

e Formatted output

o PRINT USING [format string] [output list]

This outputs variables in a specified format. [format string] specifies how
the data is to be printed and can be either a string constant or string
variable.

[outputlist] is a list of variables to be printed separated by commas ().
[format string] may containthe following :

*’ - indicates the column in which the decimal point is to be displayed.
‘#' - indicates the column to display a digit.

The format creates a field which size should be the same as the number
of digits in the number to be printed. If the number to be printed has less

22

digits than specified it is right justified, ie., it is pushed to the right, up to
the decimal point or the end of the field. The remaining columns in the
field are filled with blanks. If there are no integer digits in the number, a
zero is placed to the left of the decimal point. If the number to be printed
has more digits than the specified field a ‘%’ is placed at the start of the
number and the compiete number is printed.

', - indicates that there is to be a comma to the left, of every third digit to
the left of the decimal point. The comma must be specified between the
start of the field and the decimal point.
** - placed at the start of a field specifies that all unfiled columns to the
left be filled with asterisks.
‘$’ - indicates that the number is to be preceded by a dollar sign at the
start of the field definition.
‘$$’ - indicates the dollar sign is to be on the immediate left of the number,
i.e. itis floating.
**$’ - indicates that the unused columns to the left of the floating dollar
sign will contain asterisks.
'+’ - placed at the startor end of a field specification will be printedas “+"
for positive numbers or “—" for negative numbers in the appropriate
place (indicates sign).
‘~' - placed at the end of a field specification will be printed “—" for
negative numbers and “ ” for positive numbers (indicates negative sign
only).

¢+ 1 tt -indicatesthatthe numberis to be printedin exponential form
(‘scientific notation’).
! - indicates that only the first character of the string is to be printed.
Y%spaces% - specifies the length of the string variable to be printed. If the
length of the string to be printed is smaller than the length of the
specification itis left justified, if itis greater then only the first characters -
up to the iength of the specification - will be printed.
Any other characters will be printed as they appear.
PRINT USING “## ###",66.2

PRINT USING “##;66.2 %66

PRINT USING “#.#",66.25 %66.3
PRINT USING “########,",1234567 1,234,567
PRINT USING “**####",66.2 ****66
PRINT USING “$####.##",18.6735 $ 1867
PRINT USING “$$### #.##",18.6735 $18.67
PRINT USING “**$.###";8.333 *$8.333
PRINT USING “+**###",6217 T +6
PRINT USING “####.#—",-8124.420 8124.4—
PRINT USING “## ####1t t 1 1 ",123456 1.2346E+05
PRINT USING “1";“ARITHMETIC" A

PRINT USING “% %";“NUMERALS" NUMERAL
PRINT USING “SCORE#### ##,";SC SCORE 1,000

PRINT USING “### IS LESS THAN ###";A,B 10 1S LESS THAN 11

23

PRINT @

e Place output at a specified location

® PRINT @ [expression], [print list]

e [expression) can be any numeric expression between 0 and 511 and
specifies where on the screen to start the printing (see Appendix H for
locations).

[print list] is the same as for anormal PRINT statement

e PRINT @ 192, “HELLO™”

® 0.00740 secs

PRINT #
e Output to other devices
e PRINT#-1, [print list]
PRINT#-2, [print list]
PRINT USING #—1, [format string] ; [print list]
PRINT USING #—2. [format string] ; [print list]
e Has the same function as other PRINT statements except output is
directed to: cassette for #—1, printer for #—2.

PSET

e Set a point on the graphic page to a specific colour.

o PSET ([x].lyl[c])

e Set a point on the graphic page to the colour specified by [c]. If [c] is
omitted then the colour is set to the foreground colour. The point is
specified by [x] (0 -255) and [y] (0 - 191).

® PSET (1,1,2)

® 0.00694 secs

PUT

e Puts the graphics stored in an array onto the graphic page.

o PUT ([x1]ly2]- [x2L.ly2]). [al [b]

e Puts the graphics stored in array [a] onto the graphic page at location
specified by [x1], [y1] (top left corner) and [x2], [y2] (bottom right corner)
with the action specified in [b].

Values of [b] can be:

PSET— setsallthe points setinthe array.

PRESET — resets all the points set in the array.

AND — sets all points that are set both in the array and on the screen,
otherwise reset the point. (Sets all points common to both.)

OR — sets all points that are setin either the array or the screen. (Sets all
points that are set).

NOT — reversesthe screen in the areaspecified regardless of what is in
the array. That is, all points set are reset and all points reset are set.
The array must be the correct size (see Chapter 2).

e PUT (10,10) — (20,20), A, PSET

® 0.01149 secs for a 10x10 array

24

READ
e Gets the next item from a DATA statement.
e READ [vari], [var2], ...
® Reads the nextitemof data from a DATA line and placesitin[var]. An
error results if there is no data to READ. A pointer is kept at the next
element to be read (see RESTORE).
e READA
FORX =1TO 10 : READ A :NEXT X
® 0.00998 secs

REM
® Remark
¢ REM

L

® Allows the use of comments in the program. Everything from the REM
to the end of the line is ignored.
e 10 ‘THIS IS IGNORED
20X =0 :REMINITIALIZE X
e empty -0.00042 secs
100 characters - 0.00485 secs

RENUM
e Renumbers the programlines
o RENUM [newline],[startline], [increment]
e Renumbers all program lines from [startline] to the end of the program.
[newline] is the value that the [startline] is renumbered to. All line
numbers after [startline] are incremented by the value of [increment]. All
line numbers embedded in the program (eg. GOTO 200) are changed
accordingly. All parameters are optional and the default value for atl
parametersis 10.
e RENUM

RENUM,,5

RENUM, 100, 100

RESET
e Set a point on the text screen to the background color.
® RESET ([x][y])
e Sets a point on the text screen to the background color, that is, erases
it. The point is specified by [x] (0 - 63) and [y] (0 - 31).
e RESET (0,0)
RESET (10,10)
® 0.00460secs

25

RESTORE

e Allow rereading of data

e RESTORE

e Restoresthe datapointerto the start of the DATA statements allowing
them to be reread.

e RESTORE

e (0.00039 secs

RETURN

® Return from subroutine
e RETURN
e Returns control to the main BASIC program after a subroutine has
been executed. Processing is resumed at the statement following the
last GOSUB executed. RETURN is the last statement in a subroutine.
e 10 PRINT “THIS IS A SUBROUTINE”

20 RETURN

RUN

e Startaprogram

e RUN line]

e Start the BASIC program executing at [line]. If [line] is omitted then
execution starts at the lowest line number. This can also be used inside a
program.

e RUN20

RUN

SCREEN
e Set graphics or text screen and colour set.
e SCREEN [type], [colour-set]
e The [type] parameter sets the type of screen to use either text (0) or
graphics (1). The [colour-set] determines the colour set tobeused and is
either 0 or 1. The colours available depend on the current PMODE
setting (for more information see Chapter 2, page 47 and Appendix D).
The default settings for both is 0. Note that at least one parameter must
be given.
e SCREEN 1

SCREEN, 1

SCREEN1,0
® 0.00476 secs

SET

e Set a point on the screen.
® SET ([xLlyllc])

26

e This sets a point on the text screen. The position of point set is [x] (O -
63) and [y] (0-31). The [c] parameter specifies the colour to use (0 - 8),
irrespective of the current colour set.
Note that the rest of the points in the character block that contains the
points that haven'tbeen specifically SET, arereset to black.
e SET(1,1,7)

SET(61,25,1)
® 0.00669 secs

SKIPF
® Move past a file ontape
e SKIPF

SKIPF «”

SKIPF “[filename]”
e If no name is given at the end ofthe command, one file is skipped, that
is, the tape runs through and stops at the end of the first file encountered.
If [filename] is specified the tape will run until the end of the file named. If
no file of the name is found the tape will run to the end.
e SKIPF
SKIPF “PROGRAM1”

SOUND

e Generate sound

e SOUND [pitch], [duration]

e [pitch] is a number between 1 and 255 with 1 being the lowest tone.
[duration] is a number between 1 and 255. A duration of 16 is
approximately 1 second. Notethatwhile the soundis beinggenerated no
other processing can be done and the program cannot be stopped with
the BREAK key.

e SOUND 100,100

STOP

e Terminate program execution.

e STOP

e The STOPcommandis the same as the END command exceptthata
“BREAK IN #" message is printed. The CONT command will start
execution at the next statement as for END.

e |F ANS$ = “N” THEN STOP ELSE 30

TRON/TROFF
e Turn trace mode on/off.
e TRON

TROFF

27

® Trace mode is switched on by TRON and off by TROFF. When a
BASIC program is executed in trace mode the line numbers of the
program are displayed as they are encountered. The numbers are
enclosed in square brackets (‘['and ‘]').
e TRON

TROFF
e TRON -0.00033 secs

TROFF - 0.00037 secs

BASIC FUNCTIONS

ABS

Absolute value

ABS ([argument])

Returns the absolute value, ie. regardless of + or — signs.
PRINT ABS(3 -2*B + 7)

0.00230 secs

ASC
e ASCllcode
® ASC (([string])
Returns the ASCII code of the first character in the [string] argument.
® 10 AS = ASC (“AND")
20 PRINT AS
® 0.00267secs

ATN
e Arctangent
e ATN ([argument])
e Returns the arctangent (inverse tangent) of the [argument]in radians.
e PRINT “ANGLE : " ; ATN(R3)
® 0.00622 secs for 0
0.05562 secs for 100

CHRS

e Character conversion

e CHRS$ ([argument])

e Takes the [argument] as an ASCI! code and returns the character
equivalent (see Appendix E for codes). The argument mustbebetween0
and 255.

e A$ = CHRS$(129)

® 0.00287 secs

28

Ccos

e Cosine

e COS ([argument])

e Returns the cosine of the [argument], which is assumed to be in
radians.

e CS = COS(X)

e 0.02856 secs

EOF

e End of file

e EOF ([file-number])

® Indicates whether the file specified has more data in it or not. If an
INPUT is given when there is no data in the file an error occurs.

e |FEOF(—1) THEN 150 ELSE INPUT#-1; A, B$

e 0.00292 secs

EXP

Natural exponential

EXP ([argument])

Raise e (natural logarithm) to the power [argument]. Inverse of LOG
A=EXP(2)+B

0.00547 secs for 0

0.03023 secs for 100

FiX

Truncate

FIX([argument])

Truncates (removes all digits to the right of the decimal point).
PRINT FIX (7.75)

0.00275 secs

HEX$

e Converts to hexadecimal

o HEXS ([argument])

e Returns a string containing hexadecimal digits 0—9 and A— F which
is the equivalent to the decimal [argument] (0— 65535).

e PRINT HEX$(15), HEX$(73)

e 0.00337 secs

INKEY$

e Character input from keyboard.

® INKEY$

e This returns the last key pressed that has not been INPUT. If no key
has been pressed since the last INPUT, LINE INPUT or INKEY$ a null
string is returned (ie. the keyboard has a one character buffer).

29

® ANSS = INKEY$
e 0.00167 secs

INSTR

e String search

o INSTR ([argument], [string1], [string2])

e Searches [string1] for [string2]. The search starts at the character
number, [argument] and returns either the starting position of [string2] or
0 if [string2] is not found.

e |FINSTR (1,“NYny”, ANS$) = 0 THEN 30

e 0.00358 secs

INT

e Converttointeger

o INT ([argument])

® Rounds [argument] downwards. Therefore if [argument] is positive the
function is the same as FIX.

e A=INT(B/2.3)

® 0.00340secs

JOYSTCK

® Find position of joystick

e JOYSTCK ([argument])

® Returns the current horizontal or vertical position of either the left or
the right joystick according to [argument]. Values of [argument] are:
0 — horizontal left joystick

1 — vertical left joystick

2 — horizontal right joystick

3 — vertical right joystick

e LX =JOYSTK (0)

® 0.00443 secs

LEFTS

o |eft part of string

e LEFTS$ ([string],[argument])

e Returns a string which contains the left characters of [string]. The
number of characters returned is specified by [argument].

e PRINT LEFT$ (“WILL NOT BE PRINTED", 4)

® 0.00498 secs for 5 characters

LEN
e Length of string

30

® LEN ([string])

e Returns the number of characters in [string] including characters that
are not displayed on the screen (ie. control characters put there either by
the system or by the CHR$ function).

e PRINTLEN (“FOUR")

e 0.00285 secs

LOG

e Natural logarithm

e LOG ([argument])

e Returns the natural logarithm of [argument] which must be positive.
e A=LOG (X/2)+ LOG(Y)

e 0.02651 secs

MEM

e Free memory

¢ MEM

® Returns the amount of memory that is not being used by the system
(ie., available for programs and data). MEM does not include the memory
needed for the screen and graphics pages etc.

e PRINT MEM

® 0.00159 secs

MID$
e Middle of string
e MID$ ([string], [argument1], [argument2])
® This returns a substring which is in the middle of [string]. [argument1]
specifies which character to start at and [argument2] specifies how many
characters are to be returned. If [argument2] is omitted, all the characters
from [argument1] to the end, are returned. Note that this can be used the
other way to replace characters in the middle of a string. The parameters
have the same function when it is used this way, except when
[argument2] is omitted the number of characters assigned is the length of
the string replacing the original string.
e PRINT MID$ (“THIS WILL NOT BE PRINTED!”, 1, 4)
A$ = "| AM VERY HAPPY” : MID$(A$, 6, 4) = “NOT " : PRINT A$
Results—THIS

| AMNOTHAPPY
® 0.00683 secs for 3 characters.

PEEK

® Returns contents stored in memory
e PEEK ([address])

e Returns the current value of memory location [address] (0— 65535).
e PRINT PEEK (15000)

® 0.00292 secs

31

POINT

e Check for dot on text screen.

e POINT ([x], [y])

e Testa position on the text screen. If the position is a text character, —1
is returned. If there is nothing there, 0 is returned, otherwise the colour (1
— 8) of the dot is returned. [x] is the horizontal position (0— 63) and [y] is
the vertical position (0 — 31).

e [FPOINT(X,Y) = C THEN 200

e 0.00509 secs

POS

e Current cursor position

e POS ([argument])

e Returns the current horizontal position of the cursor. Values of
[argument] are O for screen cursor or —2 for printer head.

e |F POS (0) = 31 THEN PRINT ELSE PRINT * "

® 0.00469 secs

PPOINT

e Check for dot on graphic screen

e PPOINT ([x], [y])

e Checks the position on a graphic screen as specified by [x] and [y] and
returns 0 if cell is off and its colour (1 — 8) if it is on.

e [FPPOINT < > OTHEN20

® 0.00469 secs

RIGHT$

e Right part of string

® RIGHTS ([string], [argument])

® Returns a substring which contains the right portion of [string]. The
number of characters in the returned string is specified by [argument].

e B$ = “HELLO”

PRINT RIGHT$ (B$,3)

Result— LLO

® 0.00472 secs for 2 characters

0.00751 secs for 20 characters

RND

e Random numbers

e RND ([argument])

e Returns arandom integer between 1 and[argument]. If[argument]is 0
then a real number between 0 and 1 is returned.

e B=A(RND(10))

® 0.01149 secsfor RND(1)

32

SGN

e Sign of argument

e SGN (argument])

® Returns the sign of [argument]. If [argument] is negative, —1 is
returned. If [argument] is positive, 1 is returned, otherwise [argument] is
0, in which case O is returned.

e |[FSGN (A) = —1 THEN PRINT “NEGATIVE"

e 0.00269 secs

SIN
e Sine value
e SIN ([argument])
e Returns the sine of [argument]. It assumes that [argument] is in
radians.
e PRINT X, “SINE = ";SIN (X)
e 0.00588 secs for 0
0.03374 secs for 2000

STRINGS

e String building

e STRINGS ([argument1], [argument2] or [string])

e Makes a string of length [argument1] which contains either the

character with the code [argument2] or the first character of [string].

e PRINT STRINGS (10, “AS”)

Result — “AAAAAAAAAA”

PRINT STRING$ (10, 45)

Result — “EEEEEEEEEE”

® 0.00423 secs for 1 character
0.00371 secs for O character
0.00847 secs for 100 characters

STR$
® Numeric to string conversion
e STR$ ([argument])
e Converts a numeric expression, [argument], to a string of digits (0 —
9). Note that the minimum length of the string returned is 2 as the first
character of the string is a blank (space).
e PRINTLEFTS$(STR$ (1/3),4)
Result—0.33
® 0.00292 secsfor0
0.00904 secs for 50

SQR

e Square root.
e SQR ([argument])

e Returns the square root (¥) of [argument]. If [argument] is negative
then the program halts with an error.
e PRINT SQR (16)
® 0.00245 secs for 0
0.06150 secs for 1,000,000

TAN
e Tangent of argument
e TAN ([argument])
e Returns the tangent of [argument]. It assumes that [argument] is in
radians.
e X=TAN(Y/2)
e 0.02824 secs for 0
0.05921 secs for 10,000

TIMER

e Setorreturntime

e TIMER

e TIMERacts as avariable in that you can both getits value andassignit
a value but itis continuously being incremented (approximately 50 times
asecond).

The maximum value of TIMER is 65535 and it is resetto O if this value is
reached.

e TIMER=0

PRINT TIMER

® 0.00185 secs

USR

e Call user defined routine.

e USR n ([argument])

e Calls a machine language routine that was defined earlier in the
program using DEFUSR. For details of machine language routines and
the argument see Chapter 4.

e X =USR(Y)

VAL

e String to number conversion

e VAL ([string])

e Returns the numeric equivalent of the digits (0 — 9) in [string]. If
[string] contains non-digit characters then only digits to the left of the first
non-digit character are converted; if there are no digits before the non-
digit character then O is returned.

Note that hexadecimal numbers can be converted also.

o B= VAL (“12345")

PRINT VAL (“&HFF*)

34

® 0.00337 secs for 1
0.00875 secs for 120,000

VARPTR

® Address of variable

e VARPTR ([argument])

® This gives the head address where the variable specified by
[argument] is located. To find the head address of array variables,
specific elements of the array must be passed, e.g. B= VARPTR (A(0)).
When one address is known the others can be calculated as each
consists of 5 bytes. For details of how variables are stored see Chapter 4.
e B = VAPPTR (A)

e 0.00223 secs

ERRORS IN BASIC

We have found one problem when executing BASIC programs andthis is
in floating point addition. The error is that if a number is the result of an
addition it does not always exactly equal the number displayed.

e.g. 53.74 does not equal 51 + 2.74

This can be demonstrated by the following program:

10X =53.74:Y =51 +274

20PRINTX, Y

30IF X =Y THEN PRINT “RIGHT” ELSE PRINT “WRONG"
The problemis caused by the last byte ofthe number (see section on how
numbers are stored) being rounded by the addition process and thus
there seems to be no set pattern to how the decimal representation is
affected (whether the above program, for different numbers, produces
RIGHT or WRONG). One way to overcome the problem is to convert the
numbers to strings; using STR$, and comparing these as it seems that
BASIC converts them into strings correctly.

For example, the above program wiil work correctly if an extra line is
added and line 30 changed. They should read.

15 X$ = STR$ (X) : Y$ = STR$(Y)

30 IFX$=Y$ THEN PRINT “RIGHT" ELSE PRINT “WRONG"

35

CHAPTER 2
GRAPHICS

Probably the most impressive and powerful feature of the DRAGON is
unfortunately also its most confusing; its graphics.

Powerful because of the many BASIC statements which can do just
about anything you want to on the high resolution screens but confusing
because of the multitude of modes the screen can be set in and the
various commands needed to set up these modes.

All these modes and commands are covered later in the chapter, but let
me give you a brief, simple (if that's possible) rundown on how the
DRAGON handles its graphics.

Basically there are two different things the screen can display; text
(normal writing etc.) and graphics (more on this later). The text screen is
the old familiar standard screen which you see when you switch most
computers on, ie. letters, numbers and the other symbols which also
appear on the keyboard. On the DRAGON this is green with a black
border and black writing.

The graphics are a littte more complicated (most of this chapter is
dedicated to it) but basically consists of lines, dots, circles, pictures, etc.

On the DRAGON, high-resolution graphics and text cannot be mixed on
the screen atthe same time but rather the text screenis displayed unless
a program specifies otherwise and even then the text screen will
automatically be displayed whenever BASIC references it (€.g. with a
PRINT, INPUT, error message or when a program finishes).

On the other hand anything can be put on any particular graphic screen
without effecting any of the others or what is being displayed (unless that
screen is currently being displayed) at any time. This allows many things
to be done ‘behind the user’s back’ on the graphics screen, for example,
while he is busy with the text screen, etc.

Not only can the program be setting up pictures on a high resolution
screen while the user sees a text screen but also while the user is looking
at other high resolution screens. This means that the user may not see
the pictures while they are being drawn but instead sees the finished
product. Also several high resolution screens can be drawn each one
only slightly different. When these are changed at high speed it will
appear as if the objects on the screen are moving.

36

PIXELS AND RESOLUTION

In computer graphics (similar to photographs and printed pictures) the
different shapes are made up by many small dots. Each of these dots can
be made to be one of several colours and when seen with the other dots
around, it creates a picture. These are called picture elements or ‘pixels’
for short. It is the number of these pixels which control the resolution.
Resolution is a measure of the ‘quality’ of the picture. The higher the
resolution (the more pixels) the better the quality of the picture (e.g.
photographs have higher resolution than newspaper print which has
higher resolution than most computers).

Obviously the higher the resolution, for a given number of colours, the
more memory needed to store the information. so there must be a
trade-off between the resolution and the amount of memory to be used or
the number of colours on the screen. There is also a trade-off between
speed and resolution as the more pixels there are, the longer it will take to
change themall.

MODES

When the BASIC interpreter was written for the DRAGON the designers
decided to implement 1 semigraphic mode and 5 high resolution modes.
What they didn't tell you is that the VDG (Video Display Generator) chip
that they used is capable of handling 14 different modes; 5
semigraphic and 8 true graphic plus the standard text mode! However,
most of these extra modes are not really useful (which is probably why
they didn't bother to implement them).

TEXT
The text mode is the old standard that you use for most of your
programming. This is the mode you use to type in, run and edit your
programs as well as INPUT, PRINT, etc. from inside your BASIC
programs. The text mode also incorporates semigraphic 4 as shown
below.

SEMIGRAPHIC

Semigrahic modes are so called as each character block is divided into a
number of elements (pixels). The number of elements per character
block is used to name the mode, i.e. Semigraphic 4 has four elements per
character block, Semigraphic 8 has eight elements per character block,
etc.

Semigraphic 4 is not really a seperate mode as it is available at the same

time as the text mode and is the only semigraphic mode implemented by
BASIC.

37

The other semigraphic modes use the same area of memory as the text
mode so that when using these modes the text screen is not preserved.

However information can be put onto the text screen while the graphics
screen is being displayed by using POKE. Using the POKE to put
information on the text screen is quite simple as the following program
demonstrates.

10CLS

20A$ = “THIS ISPRINTED OUT"

30 FOR | = 1 TO LEN (A$)

40 A = ASC (MID $ (A$,1,1))

501FA < 330rA > 128 THEN A = 96

60IFA<64THENA=A + 64

70 POKE 1151 + I, A

80NEXT |

Lines 50 & 60 ensure that no inverse, control or graphic characters are
printed. Remove these lines if these characters are desired.

GRAPHIC

The true graphic modes are of much higher resolution and arebased on
dot graphics. The graphic modes implemented by BASIC are the higher
resolution graphic modes of the VDG and have very powerful BASIC
commands such as LINE, CIRCLE, etc. as well as the low level PSET
and PRESET dot graphic commands.

A table comparing the differentmodes and their attributes is givenbelow.
A more detailed description as well as how they are stored in memory
and how to set the screen to these modes is given at the end of the
chapter.

The graphic modes which are not directly implemented by BASIC are
probably not as useful or practical as those that are. These ‘non-mode’
modes can be set up by a series of PEEKs and POKEs and are
cumbersome to set up and use.

Possible applications for all the modes are given below:

Semigraphic 4 — for crude figures and solid blocks of colour, where
multiple colours, speed and the ability to mix in text is important.
Semigraphic 6-24 — for higher resolution (in the vertical axis); could be
good for accurate bar charts but can be quite wasteful on the space it
uses.

Graphics 7-9 — where the amount of memory used by each screenis of
paramount importance, e.g. whenthe program s very large and/or many
pages of graphics are used.

38

Graphics 10,11 — when resolution has to be reasonable but time and the
amount of memory used is still important.

Graphics 12,13— probably the most useful mode as resolution is quite
good and speed and memory size is stillacceptable.

Graphics 14 — for very high resolution graph plotting such as cos, sin
and complex 3-D graphs; could also be used in games where speed and
memory size are not important; limited however in that only two colours
are available.

T
MODE RESOLUTION IMPLEMENTED HEBER NUggER
P coLouRs avTEs
X Y SCREEN SCREEN
1. Alphanumeric 32| 16 YES 2 512 (0.5K)
2. Semigraphic 4 64| 32 YES 8 512 (0.5K)
3. Semigraphic 6 64| 48 NO 4 512 (0.5K)
4. Semigraphic 8 64| 64 NO 8 2048 (2K)
5. Semigraphic12 | 64| 96| NO 8 [3072 (3K)
6. Semigraphic24 | 64192 NO 8 [6144 (6K)
7. Graphic 64| 64| NO 4 1024 (1K)
8. Graphic 128| 64 NO 2 1024 (1K)
9. Graphic 128| 64| NO 4 [2048 (2K)
10. Graphic 128| 96 YES 2 1536 (1.5K),
11. Graphic 128| 96| YES 4 |3072 (3K)
12. Graphic 128/192| YES 2 |3072(3K)
13. Graphic 128[192| YES 4 |6144 (6K)
14. Graphic 256|192 YES 2 6144 (6K)

VIDEO MEMORY
Video memory is the area of RAM used for storing the information to
display on the screen.

The area is from 1024 (&H400) upwards. The minimum size for this area
in BASIC is 2048 (2K) bytes (enough for the textscreen and one graphic
page) and can be expanded up to 12800 (12.5K) bytes by using the
PCLEAR command. This area can be shrunk down to 512 (0.5K) bytes
and expanded up to the top of RAM by setting the Start of BASIC pointer
and the Start of Free Memory pointer before loading the program. These

39

pointers are located at 25 (&H19), 26 (&H1A)and 31 (&H1F), 32 (&H20).
To reduce this area to 0.5K bytes these pointers must be set to 1536
(&H600) by the following:

POKE 25,6

POKE 31,6

SCREENS AND PAGES

The video memory area is further divided into two sections; the text
screen section and the graphics section. The graphics section is again
divided this time into 8 pages, each 1536 (1.5K) bytes.

13824 3600 _
Pags 8 }PMDDEOSCIEW\E
12288 3000 PMODE 142 Screen 4
Page 7 «
10752 2A00 > PMODE 344 Screen 2
Pages
9216 2400 PMODE 182 Screen 3
Pages .
7680 1E00 —
Page 4 . 1 B
6144 1800 PMODE 182 Screen2
Page3 o J
4608 1200 PMODE 384 Screen 1
Page 2 }PMODE 0Screen2
3072 0Co0 = PMODE 182 Screen 1
Page 1 }PMODED Screen 1
1536 0600 | _J
1024 0400 Text Screen Standard - Textand
Semigraphics 4

Video Memory

The above diagram shows how the video memory is divided up into
pages and screens for the different modes.

PAGE SWAPPING

Apart from having all these different modes, the VDG also has the ability
to have the screen displaying the contents of any section of memory
This is limited to a certain number of pages (depending on the resolution)
in BASIC but by following the instructions below (setting up addresses
&HFFC6 to &HFFD3) or the program Listing 1 the screen can display any
section of memory you want to.

Listing 2 demonstrates this by cycling through the entire memory.

40

LISTING 1

This routine allows easy setting of the start of display area for
initialization prior to doing graphics work. Before using this program set
the variable S to the address to start, the bottom 9 bits of this address are
ignored as addresses can only be multiples of 512.

100 S = INT(S/ 512)

110 FOR | = &HFFC6 TO &HFFD2 STEP 2

120R =S - INT(S/2)*2:S=INT(S/2)

130 POKE | + R, 0

140 NEXT |

LISTING 2

1 I=0:GOSURLCO

2 60702

9 PRINT"FRESS ANY KEY TO MOVE ONTO THE MEXT BLOCE ©
10 FORI=270128

20 GOSUE10(:

30 AS=INKEYS$: IFA$=""THENZ(

40 NEXTI

50 FORI=0T02

60 AS=INKEY$: IFA$=""THENG(

70 GOSUE100

80 NEXTI

20 END

100 “%% SET UF START OF SCKEENM
105 PRINT "UF TO"HEX$(IX5127

106 A$=INKEY$:IFA$=""THEN10A
110 §=1/2

120 FORK=8HFFC6 TO &HFFDZ STERC
130 P=8~INT(S/2)&2:6=INT(S/2}
140 FORE K+Fp (e

150 NEXTK

160 RETURN

There is a 7-bit register inthe VDG which controls the start address of the

screen. The number in this register is multiplied by 512 to give the actual
starting address.

U

To set this register there are 14 different memory locations, two for each
bit.

The relationship between the locations and the register is shown below.

4

FFD3 (65491) SET
FFD2 (65490) RESET BIT6
FFD1 (65489) SET

—FFDO (65488) RESET BITS
—————————FFCF (65487) SET
FFCE (65486) RESET BIT4
FFCD (65485) SET
——————FFCC (65484) RESET BIT3
FFCB (65483) SET
FFCA (65482) RESET BIT2
FFC9 (65481) SET
FFC8 (65480) RESET BIT1
——FFC7 (65479) SET
FFC6 (65478) RESET BITO

0
| * 512 = ADDRESS OF START
OF SCREEN

Either a 1 or 0 may be POKEd into the above locations to achieve the
appropriate setting or resetting of the bit according to the location. For
clarity it is best to use POKE [address], 0 when resetting the bit and
POKE [address], 1 when setting the bit.

In BASIC this can be achieved with the PMODE command but only over
a limited range of memory. Using this feature can greatly speed up
programs which need fast, repetative movement on screen. Youcanset
up in advance stightly different pictures in different areas of memory and
cycle throught them rapidly to create the effect of movement.

The rest of this chapter looks at each BASIC graphic command in detail
and finishes with a summary of the modes and how to select them.

LOW RESOLUTION (SEMI) GRAPHICS

Unfortunately this is the only resolution in which you can mix graphics
and text freely and have all 8 colours on the screen at once. Unfortunate
because the resolution is too low (64x32) for any serious picture or

42

games graphics, and even lower (32x16) if you are not using a black
background (see SET/RESET). Because of these limitiations it is only
suitable for work such as bar charts, crude block figures, etc. The only
real advantages of this resolution are that text can be intermingled with
the graphics and it is simple and therefore can be fast.

CLS

This command is used to set the entire screen to a particular colour. Note
that it does not make this colour the background colour but rather sets all
the colour bits to the particular colour and sets all the on/off bits on. When
text is put on screen after a CLS [n], wherever the text appears, it is the
familiar black on green.

The two exceptions to this are: a CLS without any parameter — this
reverts to the standard black on green — and a CLS 0 simply causes all
the on/off bits to be off (ie. 0).

SET/RESET

The SET command sets one element to a specified colour. However,
there are some surprises. Because the semigraphic 4 mode (standard)
has each byte containing four elements, only two colours can exist in the
same block (the size of a character) and that is black (i.e. the on/off bit's
off) and the color specified in the color bits (i.e. the on/off bit's on).
Therefore, when one individual element is turned on the others are
turned off. If you are not using a black background you get a big black
block with a quarter of it the colour you specified. If any other SETs are
done in this block the old one will change to the new one’s colour.

The easiest way (but not necessarily the best) to overcome this problem
is to only turn the complete block on and off but this reduces the
resolution dramatically (to 32x16).

The RESET command simply sets the on/off bits so that that particular
element is turned off.

GRAPHICS USING STRINGS

Another way of producing graphics in all the semigraphics modes is to
use strings and PRINT them on the screen. By using the CHR$ function
with codes greater than 128 (see table below) and adding these together
to form strings, pictures can be built up.

43

GRAPHICS CHARACTERS FOR SEMIGRAPHICS 4

128 l—q 132 F_I 136 H 140
] 129 ﬂ 133 E 137 u 141
E 130 E 134 ﬂ 138 n 142
E 131 n 135 n 139 . 143

The filled in elements represent those that have their on/off bit set to 1
(i.e. a colour); the other elements have their on/off bits set to 0 (i.e.
black).

The above codes represent the filled in elements being green. For
different colours add the numbers shown below.

+16 — yellow
+32 — blue
+48 —red
+64 — buff
+80 —cyon

+96 — magenta

+112— orange

Example:

CHRS (131) bl green
CHR$ (131 +80) Il cyan
CHR$ (142 +32) HEM blue

The advantages of using strings to produce graphics is the speed and
comparative ease of production and manipulation of shapes (using string
handlers such as LEFT$, MIDS, etc). To give some idea of the time
saved by using strings, take a shape with 10 charactersin it, and in such
awaythatone PRINT will do all ten. The PRINT statement takes
approximately 0.00487 seconds to execute. Each SET statementtakes
approximately 0.00669 seconds therefore between 10 and 40 SETs
(each character can set up to 4 elements) takes between 0.0669 and
0.267 6 seconds!

Note that when a PRINT statementis executed, no matter what mode the
screen has been set to, it will revert to the standard black on green
alpha/semigraphic 4 mode. Strings can still be used in other modes by

44

doing all the PRINTing on the standard screen before settingthe screen
to a different mode.

Note also that for different modes the CHR$ function wil produce
characters (see byte mapping for the various modes at the end of this
chapter).

SET/RESET VERSUS STRINGS

Here are two programs to demonstrate the speed advantage of strings,

using the old favorite, INVADERS.

Version 1

10 ALl$=CHR${ 128 }+CHR$(L33 }+IHRE(138 +THR :

20 B14$=CHR$C 128)+CHRS(142)+CHRSC 141 »+C) 28)

30 A%$=Al$:E$=R14%

40 FORI=1TOS

50 A$=A$+AL$sES=E$+R1Y

60 NEXT

70 CLSC(:

80 FORI=64T072

90 FPRINTRIsA$F:IFRINTRI+Z2¢R%*

100 FORJ=1TO&0:NEXT

110 NEXT

120 FORI=71T065 STEF -1

130 FRINTRI»A%7 IFRINTAI+324B4H

140 FORJ=1TO60:NEXT

150 NEXT

160 GOTN 80

Version 2

10 CLS

20 FORJ=1TO14:GOSURSOINEATS

30 FORJ=13TO2STEF~1 2 GOSURSCNEXT

40 GOT020

50 FORI=1T048 STEFE

60 RESET(J+I-1s4 jRESET(J+i-1,8 52 RESETV(4Lt
REGET(J+1-1+72

70 RESET(J+Is4):RESET(J+1s5

30

90 SET(4+Isé+0
SET(J=i+2eb00
100 RESET(J+I+1s7 ¥RESET(J+I+2:7}
110 SET(J+I+3+670)2GET(41434740
120 RESET(J+I+354 }*RESET(J+1+3,5 JIRESET(J+I+ 42601
RESET(J+I+457 1

45

130 NEXTI
140 RETURN

Obviously neither of these would be used for a serious INVADERS
program but it demonstrates the speed which can be acheived using
strings.

Note also the ease with which indivual invaders can be removed from
strings — simply use the MID$ function to change the middle of the string.

HIGH RESOLUTION GRAPHICS

Altogether there are 15 BASIC commands which work on the hi-res
graphic modes. 6 of these are for initializing and manipulating complete
screens, 3 for dot graphics and 6 high level graphics commands.

INITIALIZING COMMANDS

SCREEN

The SCREEN command sets the display to either text or the current
graphics page as well as selecting the colour set to use. The format of
SCREEN is:

SCREEN [type],[colour-set]

Where [type] is O for text and 1 for current graphics and [colour-set] is
either 1 or 0. The colours available for each colour set depends on the
current mode (see below for colours available). The SCREEN command
can be used anywhere in a BASIC program but the screen is
automatically set to text and color set 0 whenever BASIC has text to
display, e.g. PRINT, INPUT, errors, etc.

PCLEAR

The PCLEAR command is used to reserve up to 8 pages of graphic
memory. The memory immediately after the graphics pages reserved is
used for your BASIC program. For this reason if PCLEAR is to be used it
should be close to the beginning, otherwise there may be strange results.
There are four pages of graphics reserved when BASIC is initialized.
Each page is 1536 bytes long. PCLEAR is used to either increase the
number of graphic pages allowing more to be ‘flipped through’, or to
decrease the number of graphic pages leaving more RAMspace for your
BASIC programs.

46

PMODE

The PMODE command is used to change the current resolution and
starting page of the display. Only modes 10 through 14, and pages 110 8,
can be selected by PMODE. For imformation about setting other modes
and pages see the end of the chapter. PMODE can be used at any time to
change the resolution of the screen (note that the SCREEN command
must be given to actually see the current page). Below is a table which
shows the colours that are available for the various page and colour-set
combinations.

PMODE #| COLOUR-SET| COLOURS AVAILABLE
4 0 BLACK/GREEN
1 BLACK/BUFF
3 0 GREEN/YELLOW/BLUE/RED
1 BUFF/CYAN/MAGENTA/ORANGE
2 0 BLACK/GREEN
1 BLACK/BUFF
1 0 GREEN/YELLOW/BLUE/RED
1 BUFF/CYAN/MAGENTA/ORANGE
0 0 BLACK/GREEN
1 BLACK/BUFF

PMODE is also used to set the starting mode of the screen display so it
can be usedto ‘flip through’ pages of graphics giving a movement effect.

Below is a table showing how many pages are needed for each mode
and therefore how many different screens can be stored simultaneously.

MODE Pages/Screen # of Screens

4 4 2
3 3 2
2 2 4
1 2 4
0 1 8

Note that if PMODE is used to change resolution or starting pages, even
though you may already be in graphics display mode the SCREEN
command selecting graphics display mode must be given again as this
initializes the variables needed by BASIC to work on the screen. If the
SCREEN command is not given after a PMODE strange things will
happen to the screen and to how it is accessed.

47

PCOPY

The PCOPY command is used for copying one graphics page onto
another. This allows multiple pages of the same picture or multiple
pictures on the same screen by copying a page into the page above it
then a high resolution mode is used to display the page.

PCLS

The PCLS command clears the current graphic screen to the specified
colour. If the specified colour is notin the current colour set or the colour
has not been specified then the current background colour is used. Note
that the entire screen is cleared, which may contain more than one page.

COLOR

The COLOR command allows the background and foreground colours to
be set The border (in graphics) is either green or buff and if we set the
background to this colour the border disappears. The foreground colour
is used as the default colour in other graphic commands.

PRODUCING GRAPHICS

PSET AND PRESET

So much for initializing the screen, now to actually put something on it.
The simplest way to produce something on the screen is to use PSET
and PRESET. As you may have guessed they are the same as SET and
RESET except they work on the graphics screen. Instead of having only
64x32 addressable points on the screen you have 256x192 on the
highest resolution and 128x96 on the lowest resolution. It does not
matter what resolution is set, the co-ordinates are always 0— 255 on the
horizontal axis and 0 — 191 on the vertical axis. The difference between
the resolutions is the size of the points that can be turned on and off. In
the lower resolutions there will be more than one co-ordinate that refers
to the same point on the screen.

The PSET command is useful for drawing curves such as SIN etc. as the
program below shows.

10 PMODE0, 1

20PCLS

30 SCREEN 1, 1

401=0

50 SS = SIN (1)

60 CS = INT (SS * 80) + 96

70PSET (120 - 0, CS)

801 =1+0.01
90IFI < 127THENS0
100 GOTO 100

Try this program changing the resolution of the graphics in line 10. See
how the curve stays the same but it becomes smoother as the resolution
gets higher.

PPOINT

The other low level graphiccommandis PPOINT whichsimply samples a
particular pixel and returns the colour the pixel is set to.

HIGH LEVEL

So far we have discussed dot graphics which is OK for curve plotting and
simple pictures, etc. but why spend useful time on something that is
already done for you?

The BASIC high level commands LINE, CIRCLE and DRAW produce
shapes for you without all the complex functions, loops, data, etc. (for
examples of the use of these commands see the chapter on handy
routines).

LINE

The LINE command not only draws lines, boxes and filled in boxes but
also erases lines, boxes and filled in boxes. The format of the LINE
commmand is

LINE ([x1hy1]) — ([x2lly2]). [fn1], [n2)]

Execution of LINE produces a line that runs from the first co-ordinates
through to the second co-ordinates. The colour of the line drawn
depends on [fn1]. This is either PSET or PRESET (sound familiar?). If
PSET is specified then the line is drawn in the the current foreground
colour (set with the COLOR command) and if PRESET is specified the
current background colour is used, effectively erasinga line.

[fn2] is an optional function and can be either B or BF, specifying Box or
Box Filled. When this option is used a box (rectangle) is drawn with its
diagonally opposite corners on the two co-ordinates specified. If the B
option is used the box is a line, one graphic element wide, if the BF option
is used the box is a solid colour.

CIRCLE

The CIRCLE command, like the LINE command, does more than draw
circles; it also draws arcs and elipses. To draw a plain circle the formatis:
CIRCLE ([x]ly]). [} [c]

Were [x] and [y] are the co-ordinates (same as PSET) of the centre of the

circle and [r] is the radius. The legal values of [x] are 0— 255and [y] are 0
—191.

49

The radius is specified by [r], [r] can have any value. Any part of the circle
that happens to go outside the screen area is ignored. The [c] parameter
specifies the colour that the circle is drawn in. If [c] is omitted the current
foreground colour is used and if [c] is set to the background colour the
circle is effectively erased.

To make the circle an elipse there is an option which allows you to
change the height/width ratio. T his optionimmediately follows the colour
option. If you are using the H/W parameters but not the colour option, a
comma must still be used (e.g. CIRCLE (10,10),10,,3 signifies no colour
specified by a height/width ratio of 3). When using the height/width
option the width of the elipse produced is as specified by the radius
parameter, and the height is changed accordingly.

The next and final option availble on the CIRCLE command controls the
start and end position of the circle allowing arcs to be drawn. Both start
and end values must be between 0 and 1. The way this relatestodegrees
is shown below:

12 o’clock
00
0.75
9o'clock 3 o'clock
2700 90°
0.5 Oand1
6 o’clock
180°
0.25

To calculate the parameter (0— 1) using degrees divide by 360 then, if
the result is negative, add 1.

If the end point is smaller than the start point, or either start or end is
omitted then a complete circle is drawn starting from the start point and
going clockwise. So the final format of circle is:

CIRCLE ([xlly]), [r}, [c]. [H/W], [START], [END]

When the start/end options are used the H/W option must also be
specified (use 1 for true circles).
Using the CIRCLE command with different radii, H/W ratios and start/
end option, almost any curve can be drawn. (See the program on page
110, Circle Example Program.)

50

DRAW

Another very powerful graphic command available from BASIC is DRAW
and it would take a chapter on its own to describe fully.

The DRAW command takes a string (either constant or variable) which
contains the commands for DRAW. The commands that can appear in
this string are given below:

MOTION
M = Move to an absolute position, x,y.
U=Moveup 1t

D = Move down +

L = Move left +

R = Move right -+

E = Move 45 »

F = Move 135° «

G= Move 225° ¥

H =Move315° ~

MODE

C = Colour change

A = Angle change

S = Scale change

OPTIONS

N = draw but don't move starting position
B = move starting position but don’t draw
OTHER

X = execute substring

The way that the DRAW command works is by having a current starting
position that it remembers but you cannot see. Whenever any of the
motion commands are encountered in the string this starting position
moves either to an absolute position on the screen (same co-ordinates
as PSET, x = 0— 255,y = 0— 191) or relative to its current position and
as it moves, it leaves a trail behind it. Therefore a string,
“U10L10D10R10", will draw a closed in box and the start position will be
the same as when it started. Before any motion commands have been
executed the start position is in the centre of the screen (128, 96). As
always there are exceptions to this rule and they are the two options N
and B. N causes the line to be drawn as normal but the starting position
does not move so that the next command starts from the same position.
B causes the starting position to move as normal but it doesn’t leave its
trail behind.

In reality the B option is not ‘move but don't draw’ but draw in background

color (similar to PRESET) so that if its path takes it over the top of another
line, it effectively erases it.

51

The main difficulty encountered when using the DRAW motion
commands is that the commands that move at an angle (E, F, GH)use a
different scale than the others. These lines are approximately 1.42 times
longer than those in the horizontal and vertical planes. Therefore, to draw
a perfect triangle you use the string “R50U50G50" and you have a
perfect triangle but the line that runs at 45¢ is actually 71 units long.

The mode commands allow the ‘current’ settings to be altered. When a
program is run the current colour is the current foreground colour, the
current angle is 0 and the current scale is 4. The colour command (C) can
change the current colour to any in the current colour set. The angle
mode (A) allows you to rotate what is being drawn 0 — 3 times 45%
For example, after the command A1 is given then the motion command U
will draw a line left while an L command gives a line down, etc.

The scale mode (S) is not as simple as it looks. The number directly
following the S (1 — 62) indicates the scaling factor, howevereach unit of
scale represents 0.25 or a quarter, thus 1 = 0.25: 1 scale, 4 = 1: 1 scale
and 10 = 2.5 : 1 scale, therefore S4 has no effect, S1 — S3 make things
smaller and S5 — S62 make things bigger.

The final command available in the DRAW command string is X for
eXecute substring. This has an effect similar to GOSUB in that it
branches to different commands and then returns to the same spot to
continue execution. The command X is followed immediately by the
name of the substring to execute. Thisis a string variable which hasbeen
previously assigned a string of DRAW commands. This allows all the
basic shapes, e.g. letters, men, etc, to be defined as substrings and
these to be executed (drawn) at any time/place in the program. It even
allows the size, angle and color of the basic shapes to change from one
execution to the next.

Any of the commands may be separated by a semicolon for clarity (eg.
U10;L10) but the X command must be followed by a semicolon even if it
is the last comand in the string.

An example of the DRAW command showingmostofits features is given
below.

10D0 =2

20 PMODE 1, 1

30 PCLS : SCREEN 1,1

40 B$ = “C4R90C2U10L30D10BL60"

50 DRAW “A0;XB$;A1;XB$;A2;XB$;A3;XBS;”

60 DRAW “S2”

70D0 =DO -1

80IFDO > OTHEN 50 ELSE 80

52

PAINT
The PAINT command does exactly what you think it would do, thatis fill in

the screen with a specific color. The format of PAINT is:
PAINT ([x]{y]). [c], [b]

Where [x] (0 — 255) and [y] (0 — 191) are the standard graphic co-
ordinates and specify where the painting is to start from; [c]is the colour
thatthe areais to be set to and [b] is the colour of the border of the area to
be painted. [c] and [b], like all the other colour definitions can be any of
the 8 colours but depend on the current colour set. What happens when
the PAINT command is executed is that the screen is painted within the
confines of the boundary, the colour specified by [c]. If the boundary has
the smallest of gaps in it (ie. one element) then the entire screen will be
painted.

The boundary can be defined by LINE, DRAW, CIRCLE or by PSETinga
shape. The painting starts at the point specified and paints over
everything but the border colour.

GET AND PUT

The last two BASIC graphic commands are used together and form a
very powerful combination for animated drawings. Basically what they do
is get and put sections of the screen into and out of an array. The GET
command is the one to use first. This gets the data off the screen and puts
itinto an array. The format of GET is:
GET ([x1L.ly1]) — (Dl.ly2), [al, G

Where the co-ordinates [x1], [x2], [y1] and [y2] define a rectangle the
same as for LINE, [a] is the name of the array in which the data is to be
stored and ‘G’ is an option which specifies full graphic detail (this seems
to have no effect, except slightly less space is needed). The size of the
array to hold the data must be set by a DIM statement. The array must
have two dimensions which between them have enough bytes to contain
allthe data.

The easiest way to work out the dimensions is make the first dimension
equal to [x2] — [x1] and the second dimension {y2] — [y1]. This method is
quick to calculate but wastes space. To calculate the most efficient array
storage use the one dimension 0 and the other calculate as below.

1. Find the number of elements to be stored
x2 -x1*y2 -yl

2. If using PMODE 4 or 3 divide this by 8.

If using PMODE 2 or 1 divide this by 16.

If using PMODE 0 divide this by 32.

Round up.

3. Divide this by 5 and round it up again.

53

The numberyou have now should be right but may need adjustment by 1,
either up or down. Try this number; if you get a FC error when you try the
GET command increase the number in the DIM statement by 1, and try
again.

Using this saves quite a bit of memory. Forexample, in PMODE 4, with
the G option, if the rectangle being ‘got’ from the screen was (10, 10)
(30, 30), the first method requires an array DIM (20, 20) or 1210bytes but
the second method requires an array DIM (0, 11) or 11 bytes, less than
10% of the first.

The PUT statement has much the same format as GET.

PUT ([x11ly1]) - ([x2lly2]), [a], [action]

Where [x1], [y1], [x2], [y2] and [a] all have the same meaning as for GET.
The [action] parameter can have the following values: PSET, PRESET
(our old friends), AND, OR or NOT.

With PSET the picture on screen is exactly as it was when the GET
statement was used, as would be expected. The PRESET options will
erase (PRESET) all the points that are set in the array.

The AND option performs an AND operation on the points set in the array
and the points on the screen, then any points setbothin the array and on
the screen it sets on the screen and all the rest are reset. This option can
be used to mask out certain areas of graphics.

The OR option performs an OR operation on the points seton screen and
the points set in the array and will set the points that are set in either the
screen or the array, resetting all others. this can be used to make two
shapes appear on the screen at once.

With the NOT option, it doesn't matter what is in the array even though
one must be specified. When the NOT option is used all points on the
screen inside the defined rectangle are reversed, ie set points are reset
and reset points are set. This can be used to get reverse video effects,
etc.

ASSEMBLER/MACHINE CODE GRAPHICS

Using graphics from assembler or machine code is quite a deal harder
but startling results can be achieved.

The first thing that must be done is set the mode you want by setting
memory location 65472 — 65477 as described at the end of the chapter.
Once one of the 14 modes and the starting address of the screen have
been set then there are many different methods to produce graphics.
One way could be to calculate each byte value and save this as datathen
all your program does is load it into the screen memory. This is a simple
program, but it is hard to create the ‘picture’. Another way would be to
write your own machine code routine to fake the BASIC commands
LINE, DRAW, PAINT, etc.

54

Whichever method you choose, graphics from machine code can be
both detailed and fast, much more so than from BASIC.

The following section has details on how each graphic mode stores the
pixels and how to use these modes from both BASIC and machine

language.

GRAPHICS MODES

This next next section is a description of the 14 graphic modes and how
to use them. This page is an explanation of the pages describing the
modes. It has the same format and headings but instead of data under
the heading it has an explanation of the heading.

MODE number and name of this mode.
ELEMENTS how may elements this mode has. horizontal x vertical
MEMORY MAPPING Where each element is stored

Addresses eo- _

from start +0

ie. “the contents of this address”

is the start +1 |

BYTES The number of bytes needed to hold one screen
ADDRESS How to calculate the address for each element. START is the
address which the screen starts at, see page 41.

BYTE MAPPING Whateach bitin eachbyte of memory relates to
COLORS Whichcolors are available
SELECT How to set the screen to this mode

NOTE: With byte mapping the elements name in a bit means thatif a 1 is
there the element is ‘ON’ and if a zero is there the element is ‘OFF’, an X
means that that bit is not used.

55

MODES

MODE 1
ALPHANUMERIC —NORMAL TEXT

ELEMENTS 32 x 16
Memory mapping

+0 LINE 1,CHARACTER 1
+1 LINE 1, CHARACTER 2

+32 LINE 2, CHARACTER 1
+33 LINE 2, CHARACTER 2

BYTES = 512
ADDRESS = 32*Y + X + START

BYTE MAPPING 7 0

[T TTTITT]

SEE APPENDIXH

COLOURS:

BORDER = BLACK

FOREGROUND COLOUR SET = 0— GREEN
COLOURSET = 1 —ORANGE

SELECT:

This is the standard screen.

56

MODE2
SEMI GRAPHIC 4

ELEMENTS 64 x 32
ELEMENT FORMAT
L | &
G | 1L
MEMORY MAPPING

+0 [LINE1,CHARACTER1 |
+1 | LINE 1, CHARACTER 2

4
+32 LINE 2, CHARACTER 1
+33 LINE 2, CHARACTER 2

BYTES = 512
ADDRESS =32"Y + X + START

BYTEMAPPING 7 0
[iTeTeTelulu]u]y)

COLOURS BORDER = BLACK
CcC = 000 GREEN

001 YELLOW
010 BLUE
(3] RED
100 BUFF
101 CYAN
110 MAGENTA
11 RED

SELECT:
SET/RESET when in TEXT mode
Alphanumeric and this mode are together

57

MODE 3

SEMIGRAPHIC6

ELEMENTS 64 x 48
ELEMENT FORMAT

T
L | L
L, LO

MEMORY MAPPING

+0
+1

+32
+33

I

|
y

LINE 1, CHARACTER 2

LINE 2, CHARACTER 1

LINE 2, CHARACTER 2

LINE 1, CHARACTER

L
]

BYTES =512

ADDRESS =32*Y + X + START

BYTE MAPPING 7

[ele]t]u]

COLOURS BORDER
CcC

SELECT:

o)

=00
01
10
1
00
01
10
1"

= BLACK

GREEN

YELLOW > COLOURSET =0
BLUE

RED

BUFF

CYAN COLOURSET =1
MAGENTA

ORANGE

A = PEEK (65314): POKE 65314, (Aand7) + 16 + X
Where X = 0 for colour set0

X= 8 for colour set 1
POKE 65476,0: POKE 65474,0 : POKE 65472,0

58

MODE 4
SEMI GRAPHICS 8

ELEMENTS 64 x 64

ELEMENT FORMAT
A LG
B [L, L
c [L L
-3 T LS

MEMORY MAPPING

+0 [ROWA LINET,CHAR1
+1 ROW A, LINE 1,CHAR 1

+32 ROW B, LINE 1, CHAR 1
+33 ROW B, LINE 1, CHAR 2

+128 ROW A, LINE 2, CHAR 1
+129 ROW A, LINE 2, CHAR 2

BYTES = 2048
ADDRESS = 128*Y + 32* ROW + X + START

BYTE MAPPING

7 0
A[1JCJCICILIL[X]X
B[1T [C|[CICILILI[X[X
C[I[C|ICIC[X|X|LIL
D[T[CJCICIX[X|LIL
COLOURS BORDER = BLACK
cce = 000 GREEN
001 YELLOW
010 BLUE
011 RED
100 BUFF
101 CYAN
110 MAGENTA
111 ORANGE
SELECT:

A = PEEK(65314) : POKE 65314, (AAND 7)
POKE 65475,0 : POKE 65475,1 : POKE 65472,0

59

MODE 5
SEMI GRAPHIC 12

ELEMENTS 64 x96

ELEMENTFORMAT A [L,[L,
B 'L
G [L [L
D [L[L
E[LTL
F [L 1L

MEMORY MAPPING

+0 ROWA, LINE 1,CHAR 1
+1 ROWA, LINE 1, CHAR 2

+32 ROWSB, LINE 1, CHAR 1
+33 ROWSB, LINE 1, CHAR 2

+192 ROWA, LINE 2, CHAR 1
+193 ROW A, LINE 2, CHAR 2

BYTES = 3072
ADDRESS = Y " 192 + ROW * 32 + X + START

BYTEMAPPING

7 0
AlTJClClC L XX
Bl1|c|c|C|L|L|Xx]|X
cli|clclclu|lL]|x]|Yy
pl1|c|clc|X|X|L]|L
El1|clc|c|x|x|L|L
Fli|clclc|x|x]|L |y

COLOURS BORDER = BLACK

cc = 000 GREEN
001 YELLOW
010 BLUE
011 RED
100 BUFF
101 CYAN
110 MAGENTA
111 ORANGE

SELECT:
A = PEEK (65314) : POKE 65314, (AAND7)
POKE 65477, 1: POKE 65474, 0 : POKE 65472, 0

60

MODE 6
SEMI GRAPHICS 24

ELEMENTS 64 x 192

ELEMENT FORMAT A Lys L
B | G | L
C LIQ L‘B
D L17 LIG
E L|5 LM
F L|3 L12
G | Ly | Lo
HO| L L,
I L7 Lﬁ
Jo| L L
K | L L
LG L

MEMORY MAPPING

+0 ROWA LINE1,CHAR 1
+1 ROWA, LINE 1, CHAR 2

+32 ROWB,LINE 1, CHAR 1
+33 ROWAB, LINE 1, CHAR 2

+384 ROWA, LINE 2, CHAR 1
+385 ROWA, LINE 2, CHAR 2

BYTES = 6144
ADDRESS =Y * 384 + ROW * 32 + X + STARTS

BYTE MAPPING

7 0
AfTJC[CTC L L|X X }
Fl1|c|cC|C|LyL,|X|X
Gl1|Cc|C|C|X|X |Ly Lol
L1 |clc|c|x|x|L|L

COLOURS BORDER = BLACK

cce = 000 GREEN
001 YELLOW
010 BLUE
011 RED
100 BUFF
101 CYAN
110 MAGENTA

11 ORANGE

61

SELECT:
A = PEEK (65314) : POKE 65314, (A AND 7)
POKE 65477, 1 : POKE 65475, 1 : POKE 65472, 0

MODE?7
GRAPHICS 64 x 64 FOUR COLOUR

MEMORY MAPPING
+0 [ROW 1, COLUMN 1—4
+1 | ROW 1, COLUMN 5—8

+16 ROW2, COLUMN 1—4
+17 ROW 2, COLUMN 5—8

+1022 ROW 64, COLUMN 57—60
+1023 ROW 64, COLUMN 61—64

BYTES = 1024
ADDRESS = ROW"* 16 + FIX ((COLUMN-1)/4) +START

HEEEEEEN
tCOLNﬂ%

COLN+2
COLN+1
COLN

COLOURS BORDER = GREEN COLORSET=0
BUFF COLOURSET =1

cc =00 GREEN
01 YELLOW)(COLOURSET =0
10 BLUE
11 RED
00 BUFF
01 CYAN _
o MAGENTA [COLOURSET = 1
11 ORANGE |

SELECT:
A = PEEK (65314) : POKE 65314, (AAND 7) + 128 + C
Where C = 0 for COLOUR SET 0
C = 8 for COLOUR SET 1
POKE 65473, 1 : POKE 65474, 0 : POKE 65476, 0

62

MODE 8
GRAPHICS 128 x 64 TWO COLOUR

MEMORY MAPPING
+0 ROW 1, COLUMN 1-8
+1 ROW 1, COLUMN 9-16

+15 ROW 1, COLUMN 120-128
+16 ROW2, COLUMN 1-8

+1022 ROW64, COLUMN 112-119
+1023 ROW 64, COLUMN 120-128

BYTES = 1024
ADDRESS = ROW*16 + FIX((COLUMN — 1)/8) + START
BYTE MAPPING 7 0
[c]c]c]c]c]c]c]c]
COLN+7
COLN+6
——— COLN+5
L > COLN+4
L5 COLN+3
L————————— COLN+2
COLN + 1
— ————— COLN
COLOURS BORDER = GREEN COLOURSET =0
BUFF COLOURSET =1
C=0 BLACK COLOURSET=0
1 GREEN
0 BLACK COLOURSET=1
1 BUFF

SELECT:
A = PEEK(65314) : POKE 65314, (AAND7) + 128 + 16 + C
Where C = 0 for COLOURSET =0

C = 8forCOLOUR SET =1

63

MODE 9
GRAPHICS 128 x 64 FOUR COLOUR

MEMORY MAPPING _

+0 [ROW1,COL1-4
+1 ROW 1, COL 5-8

+31 ROW1,COL 61 - 64
+32 ROW2,COL 1-4

+2046 ROW 64, COL 57-60
+2047 ROW 64, COL 61-64

BYTES = 2048
ADDRESS = ROW * 32 + FIX ((COLUMN-1)/4)
+ START
BYTE MAPPING 7 0
[ec]e[e]e[e]ele]
S
COLN + 3
COLN +2
t————COLN+1
-—————————————CO0L1
COLOURS BORDER = GREEN COLOURSET=0
BUFF COLOUR SET =1

CC =00 GREEN
01 YELLOW) COLOURSET =0

10 BLUE

" RED

00 BUFF

01 CYAN COLOURSET =1
10 MAGENTA

11 ORANGE

SELECT:
A = PEEK (65314) : POKE 65314,(AAND 7) + 128 + 32+ C
Where C = 0 for COLOUR SET =0
C = 8 for COLOUR SET =1
POKE65472,0: POKE65475,0 : POKE65476, 1

64

MODE 10
GRAPHICS 128 x 96 TWO COLOUR

MEMORY MAPPING
+0 [ROW1,COLUMN{-8 1
+1 ROW 1, COLUMN9-16

+15 ROW 1, COLUMN 120-128
+16 ROW 2, COLUMN 1-8

+1534 ROW96, COLUMN 113-120
+1535 ROW96, COLUMN 121-128

BYTES = 1536
ADDRESS = ROW * 16 + FIX ((COLUMN-1)/8) + START
BYTE MAPPING 7 0
[cTcTeele]c]c]c]
COLOURS BORDER = GREEN COLOURSET =0
BUFF COLOUR SET =1
C=0 BLACK COLOUR SET =0
1 GREEN
0 BLACK COLOURSET = 1
1 BUFF
SELECT:
PMODEO

or
A = PEEK (65314) : POKE 65314, (AAND7) + 128 + 32+ 16+ C
POKE 65476,0 : POKE 65475, 1 : POKE 65473, 1

65

MODE 11
128 x 96 FOUR COLOUR

MEMORY MAPPING

EACHBYTE HOLDS 4 COLUMNS

BYTES = 3072

ADDRESS = ROW * 32 + FIX ((COLUMN-1)/4) + START

BYTE MAPPING 7

0

lcclcclccjccj

COLOURS BORDER

CC =00
01
10
11
00
01
10
11

SELECT:
PMODE1
or

GREEN COLOUR SET =0
BUFF COLOUR SET = 1
GREEN

YELLOW 3 COLOURSET =0
BLUE

RED

BUFF

CYAN COLOUR SET =1
MAGENTA

ORANGE

A = PEEK (65314) : POKE 65314, (AAND7) + 128 + 64 + C
POKE 65477, 1 : POKE 65474, 0 : POKE 65472, 0

66

MODE 12
GRAPHICS 128 x 192 TWO COLOUR

MEMORY MAPPING
EACHBYTE HOLDS 8 COLUMNS
BYTES = 3072
ADDRESS = ROW * 16 + FIX ((COLUMN-1)/8) + START

PEEEEEER

COLOURS BORDER = GREEN COLOURSET =0
BUFF COLOUR SET =1
C=0 BLACK _
1 GREEN } COLOURSET =0
0 BLACK -
1 BUFF COLOUR SET =1
SELECT:
PMODE 2

or
A = PEEK (65314) : POKE 65314, (AAND 7) + 128 + 64 + 16 + C
POKE 65477, 1 : POKE 65474, 0 : POKE 65473, 1

67

MODE 13
GRAPHICS 128 x 192 FOUR COLOUR

MEMORY MAPPING
EACH BYTE HOLDS 4 COLUMNS
BYTES = 6144
ADDRESS = ROW * 32 + FIX ((COLUMN-1)/4) + START

BYTEMAPPING 7 0
[ccjcclcclcc]

COLOURS BORDER = GREEN COLOURSET=0
BUFF COLOURSET = 1
CC=00 GREEN
01 YELLOW | COLOURSET=0
10 BLUE
11 RED
0 BUFF
01 CYAN COLOURSET =1
10 MAGENTA
11 ORANGE J

SELECT:

PMODE 3

or

A = PEEK (65314) : POKE 65314, (AAND 7) + 128 + 64 + 32 + C
POKE 65477, 1: POKE 65475, 1 : POKE 65472, 0

MODE 14
GRAPHICS 256 x 192 TWO COLOUR

MEMORY MAPPING
EACH BYTE HOLDS 8 COLUMNS
BYTES 6144
ADDRESS = ROW * 32 + FI X ((COLUMN-1)/8) + START

BYTE MAPPING [?Z‘C]Cl(:lc]c'c'c(:)]

COLOURS BORDER = GREEN COLOURSET=0
BUFF COLOURSET = 1
C=0 BLACK
1 GReen) COLOURSET=0
0 BLACK
1 BUFF } COLOURSET = 1
SELECT:
PMODE 4

or
A = PEEK (65314) :POKE 65314, (AAND7) + 128 + 64 + 32+ 16+ C
POKE65477,1 : POKE65475, 1 : POKE 65472, 0

69

CHAPTER 3
SOUND

There are a variety of methods to make your DRAGON roar. There are
the two BASIC commands, SOUND and PLAY as well as generating
sound using a machine code routine.

The BASIC command SOUND s useful for creating sound effects in your
programs. You may want to prompt peoplethat they are required to enter
data, maybe even different tones for different types of data and another
when a mistake is made.

Try this line for when people make mistakes:

FORI1=150TO 10STEP —10 : SOUND |, 1 : NEXT

Sound is fine for special effects but what about some music. The PLAY
command is very powerful and designed for just that. The string of
commands needed for PLAY is very easy to produce from a sheet of
music. Notes, sharps and flats, length of notes and pauses are directly
converted, even the tempo and the volume can be changed.

Notes can be defined in different ways; by their letter (A — G) (with
sharps and flats) or by number. Using numbers is a more concise way of
defining notes but makes the string harder to read for those who are
musically minded. The relationship between number and letter is shown
in figure 4.1 and how both of these are related to a keyboard in figure 4.2

NUMBER | NOTE NUMBER| NOTE
1 C 7 F#/G—
2 C#/D—- 8 G
3 D 9 G#/A—
4 D#/E— 10 A
5 E/F- 11 A#/B—
6 F/E# 12 B

Figure 4.1 Musical Number/Note Table

2 4 iG 9 11

C D E F G A B C
1 3 5 6 8 10 12 1
Fig 4.2 Keyboard

70

Note thatC# isthe same note as D— and D#the sameas E— etc,, butbe
warned DRAGON does not recognise C— as being B or B# as being C.

The play command has a five octave range. When notes are played they
are played from the current octave (the initial current octave is 2).
Octaves are changed using the O option and once the octave has been
set it remains at that until either it is reset by another O option or the
machine is switched off. The same is true for volume, length and tempo.

The length of notes is selected by the L option. The value following L is
the reciprocal of the length of the note. Therefore, L2 means a half note or
2 notes per beat and L4 means a quarternote or 4 notes per beat, etc. As
in sheet music a note followed by a dot means that that note is to be half
as long again. For example, L2. specifies notes of three-quarters
duration (half + quarter).

The P option lets you pause between notes and the number which
follows the P has the same effect as in L options, the only difference
being you can’t add a dot at the end. To make a pause of half as long
again use two P's in arow. e.g. P2P4.

The T option lets you change the overall speed of music or how many
beats there are in every second. The number following T multiplied by 0.4
gives you how many beats thereare per second or 2.5 times the number
of beats per second you want gives you the value to use in the T option.

The PLAY command, like DRAW, has the ability to execute substrings.
This is done with the X option followed by the name of the string to be
executed. Note that a semicolon (;) must be placed after the dollar signin
the string name (it is optional between all other commands). After the
substring has been executed control returns to the option after the
semicolon.

Instead of using a number after some commands (T, V, L, O) one of the
following symbols may be used:
+ — increase the current value by one.
— — decrease the current value by one.
> — multiply the current value by two.
< — divide the current value by two.

Note that the program will halt with an error if the value of these options
goes outside their legal range (ie., T=1—255,V=0—31,L=1—
255,0 =1—5).

Here are a couple of songs, already programmed, to give you some idea.

71

10 “%% GOD SAVE THE QUEEN X¥-

20 A$="T37L3DVEL3.CRLADL3E"

3C BE="FHIAGLI.FRLOELSIELICHDF2Y

40 C%="L3AAALI. aLOLLIFBLG GL&FHLIE"
50 D$="L3FHLOGFHEDL I FKLAGL3A"

60 E$="LORGLIFRED"

70 PLAY AS+ES+CR+I$+ES

LG k% ENGLIGH COUMTRY GARDEN #%¢

20 A$="04T47L4CLOCUILBRLAAAGLALLEFLAE"

30 B$="LBEFL4GCLFLZELBOLIC!

40 C$="04L6CLEBILSTOILEALORLEBALAG"

S50 D$="04L4CL4CO3LBRLAADCNOZL2RLBALZE"

60 E$="03LLELBFL4GO4LACUZLBRL4AALSCLBALOLLBFLAE"
70 FLAY "XA$¥XR$3XASIKRS "

80 FLAY "XC%3XC$3 XD FXESFRps="

4
&l

Using Machine Language

Producing your own sounds from machine code programs is a little
harder to do. The only control you have over the sound is to switch the
speaker on and off. To produce audible sounds the speaker must be
turned on and off at certain rates (frequencies) approximately 20Hz —
18KHz, rembering the limitations of your speaker and ears.

The speaker is connected to the PIA and is controlled through the PIA
registers. These registers are located in memory from &HFFOO to
&HFF3F.

For sound we are only interested in &HFF22 and &HFF23. Bit 3 of the

&HFF23 register is the sound enable/disable register. To enable the
one-bit sound this bit must be set to 0. Bit-1 of the register 8HFF 22 is the

72

bit that actually controls the speaker. However, it must first be setto be an
output bit, not an input bit. The short assembly program below sets up the
PIA registers ready for production of sound.

7002 B6 FF23 LDA $FF23
7005 84 F3 ANDA #3$F3
7006 B7 FF23 STA $FF23
700A F6 FF22 LDB $FF22

700D CA 02 ORB #$02
700F F7 FF22 STB $FF22
7012 8A 04 ORA #$04

7014 B7 FF23 STA $FF23

After the PIA registers have been set up as above, then toggling bit 2 of
register &HFF 22 turns the speaker on and off. (Be careful that no other
bits are affected by toggling as they cotrol the VDG.) The easiest way to
accomplish this is shown below.

7055 B6 FF22 LDA $FF22

7058 88 02 EORA #$02

705A B7 FF22 STA $FF22

As you will no doubt have noted the addresses look like they come from a
bigger program. This program is in the HANDY ROUTINES CHAPTER
(called SOUND) and is quite good for all types of effects.

When using sounds in a BASIC games program it is best to keep the
sounds short as the processor is tied up producing the sound and the
program has to wait until it has finished.

When using sounds in machine language programs you can do some
processing in between the toggling of the speaker and so ‘longer notes
can be played without disturbing the flow of the game.

Reproducing Human Speech

Here is a program which allows you to store sounds in digital form.
Sounds are analysed and stored away to be replayed at a later date. Any
sound including music, noise and voices can be stored this way.

The heart of the program is a small machine language routine which
does the sampling, storing and replaying of the sounds. This is included
inassembler format as well as in aBASIC program as DATA statements.

The sounds are entered through your cassette player and replayed
through your TV set so no special equipment is needed.

Since the cassette port can have only one of two values (a high level (1)
and a low level (0)) the speech is stored as a series of values between 0
and 2565 (this range is used because it is the range of values that can be
stored in a single byte of the computer’s memory). Each value is simply

73

the length of time between changes of the level of the cassette port, ie.
suppose the cassette port is low (0) then we start counting until it goes
high (1) at this stage we save the count in memory and reset the counter
to zero. We then start counting again until the port goes low again save
the count, reset it to zero, etc. This process is continued until the
available memory is filled up.

The stored speech takes up 6K of memory and will last about 1 to 4
seconds depending upon the content.

HOW TO RUN THE BASIC PROGRAM

When the program is run there will be a short pause while the machine
code is putinto memory. It is placed atthe top of the available memory (at
locations 28672 onwards) and protected with a CLEAR statement. When
this is done a menu of options will be displayed and pressing one of the
keys |, O, R, A, S, L will select the option you desire.

|— INPUT SPEECH
The speech is input from the cassette port using one of two methods
described below.

When the | key is pressed the computer will display the message
“PRESS ANY KEY TO START", at this point the cassette should be
readied to send the speech to the computer. When all is ready press any
key and the computer will start to store the speech. The computer will
display a graphic screen which will fill up with what looks like rubbish but
is actually the values that make up the input speech. When the screen is
full the computer will return you to the menu.

Actually getting the speech to the computer is very simple and can be
done in one of two ways, both using your cassette recorder.

Method 1:

Prepare a cassette with the speech you want the computer to record
using either the built in microphone or an external microphone (note the
better the sound of this recording the better the results will be when the
computer plays back the speech, so it is usually best to use an external
microphone).

Once the cassette is ready it is simply played into the computerjust like a
program cassette. Note that since the program will not start the cassette
motor you should unplug the remote jack from the cassette recorder.

Method 2:
This is similar to the above except that you don’t need to record what you
want to say you just say it directly to the computer. Firstly your cassette

74

recorder must be able to send what it is recording to the external speaker
jack. If it can do this then all you need to do is put the machine into record
mode and talk into the microphone when the computer is inputting
speech.

To put the cassette recorder into record modewithout a cassette in it you
must open the cassette door and look inside. You should see a small
switch at the back left hand side. If this is pressed in then with the
RECORD and PLAY buttons pressed in the cassette will be in record
mode.

O — OUTPUT SPEECH

This will call the machine language subroutine o send the recorded
speech to the speaker in the television set. The graphic screen
containing the speech is displayed while it is talking and if you look
carefully you will see a small white line moving around the screen. This
line is tracing the speech on the screen as itis sent to the speaker.

R— REPEATED SPEECH OUTPUT
This is similar to O except that it will repeat the same speech over and
over until a key is pressed.

A— ANALYSE SPEECH

Since the sound is stored as a sequence of numbers we can draw a
graph of them and see the distribution of frequencies in what was said to
the computer. The graph is drawn on the highest resolution graphics
screen with the vertical scale being the total count that each number
occurs (ie. the higher the line the more times that number occured), while
the horizontal scale is the numbers (from 0 to 255, see above for how
these numbers are calculated).

When this graph is finished the screen will change colour and the
computer will wait until you hit a key. You will probably notice on this
graph that the left side of the screen is full of tall lines while the right side
of the screen is fairly empty. This is because in a given time interval you
can fit more short counts (hence small numbers) than long ones. To try
and correct this problem a new graph is drawn, after you press a key, in
which the vertical scale is the total time used by each interval length.
When this graph is finished the computer will again wait for a key to be
pressed at which time it will return to the menu.

S — SAVE SPEECH (to cassette)
This gives you the option to save the speech in the digital form the
computer uses to store it.

75

The computer will ask you for anameto use when itsaves your speech to
cassette. After you press ENTER it will save the speech in digitalformon
the cassette so make sure your recorder is ready and that the
microphone and remote plugs are back in.

L — LOAD SPEECH (from cassette)

This will load a previously saved block of data representing speech from
the cassette. The computer will prompt you for a name (optional). Note
this can only be used to load blocks previously saved with the S
command.

TIPS

To get the best results you will need to experimentwith the volume levels
on your cassette recorder. Since it may take a number of tries to find the
optimum setting we suggest that you make a recording of some speech
first and use method 1 to input the speech initially. Remember the better
the sound on the cassette the better the results will be.

On some cassette recorders the silences between words will have
enough background noise in them so that the computer will record the
noise. Since the computer is only using two levels when the speech is
outut this background noise will be reproduced at the same volume level
as the speech. This can be overcome somewhat by adjusting the volume
level but if you have a noisy cassette recorder you will have to live with it.
If your recorder does produce silent gaps between words you will notice
that no matter how long the gap between two words, when the speech is
played back the gap will have been cut to a much shorter value. This is
caused by having only values between 1 and 255 for the lengths between
changes.

MAKING OTHER PROGRAMS TALK

To use the machine code routines in your own program it would be
easiest to save the machine code together with the speech that you want
to use on tape.

RUN the above program then press BREAK when at the command
menu.

Prepare your cassette recorder for saving a program and typein:
CSAVEM “SCODE" &H7000,&H705D,&H7029
This will save the machine code to tape.

RUN the program again. Input the speech you wish to use and save it to

tape — note that you can save as many blocks as you like and include
them all in your program.

76

Now suppose you have saved the machine code and two blocks of
speech to tape, and you wish to have a program that puts these two
blocks at memory location &H4000 and &HS5800 respectively then in
your program you will need the following:

10 CLEAR 200, &H4000 : 'PROTECT MEMORY

20 CLOADM “SCODE" : 'LOAD MACHINE CODE

30 CLOADM “name1”, 8H4000—-&H0600
This line loads the first block of speech (with name name1) at location
&H4000 onward (the normal location is &HO0B00 so the offset to put it at
&H4000 is &H4000— &HO600).

40 CLOADM “name?2”, &H5800— &H0600
Similarly for the second block.
When you want to output the first block of speech you should use
POKE &H7000,&H40 : POKE &H7001,0
EXEC &H7029
To output the second block you need the lines
POKE &H7000,&H58 : POKE &H7001,0
EXEC &H7029

THETALKING DRAGON

10 ’ SPEECH PROGRAM
20 * FOR THE DRAGON
30 PCLEAR 8: CLEAR 200, %H7000
40 CLS:PRINT" STORING MACHINE CODE"
50 DIM A(255)
60 SS=tHOLGO: SE=SS+LHI7FF
’ START & END OF SPEECH MEM
70 READ 1S,0S,I:IS=1S+I:0S=0S+I
80 READ P
92 IF P>=0 THEN POKE I,P:I1=I+1:60TO 80
100 7
110 > COMMAND LOOP
120 SOUND 4@, 1:AUDIO OFF:CLS:SCREEN 1,
130 PRINT"COMMAND KEYS:"
140 PRINT" I-INPUT SPEECH"
15@ PRINT" O-OUTPUT SPEECH ONCE"
160 PRINT" R-OUTPUT SPEECH REPEATEDLY"
17@ PRINT" A-ANALYSE SPEECH"
182 PRINT" S-SAVE SPEECH"
199 PRINT" L-LOAD SPEECH"
200 GOSUR 730
210 ON INSTR("IORSLA",AS$)
GOTO 260, 340,390,440,490,540
220 PRINT" MMW/290) aging"
230 GOTO 200
240 *
250 ° SPEECH INPUT
260 PRINT"PRESS ANY KEY TO START"
27@ PMODE 4,1:PCLS
280 AUDIO ON:GOSUR 730
290 SCREEN 1,1

77

I0@ EXEC IS” INPUT SPEECH
J1@ GOTO 120

I20

33@ ’ OUTPUT SPEECH ONCE

340 PMODE 4,1:SCREEN 1,1
350 AUDIO ON:EXEC 0S’ OUTPUT SPEECH
360 GOTO 120

370 *

38@ ’ OUTPUT SPEECH REPEATEDLY

390 PMODE 4,1:SCREEN 1, 1: AUDIO ON
400 EXEC 0S: IF INKEY$="" THEN 400
410 GOTO 120

420 *

430 ° SAVE SPEECH TO CASSETTE

440 INPUIT"NAME “;A%

450 CSAVEM A$, SS, SE, @

460 GOTO 120

470’

480 ’ LOAD SPEECH FROM CASSETTE
492 INPUT"NAME" ;A%

5@ CLOADM As

S1@ GOTO 120

530 ° ANALYSE SPEECH

549 PMODE4, S:PCLS:SCREEN 1,1

550 FOR 1=0 TO 25S:A(I)=0:NEXT I
S60 FOR 1=SS TO SE

570 P=PEEK (1)

580 IF A(P)<192 THEN PSET(P,192-A(P))
592 A(P)=A(P)+1

600 NEXT 1

610 SCREEN 1, 0:GOSUB 730

620 FOR I=1 TO 255

630 A(I)=A(I) $1’CORRECT VALUES

640 IF A(I)>P THEN P=A(I)

650 NEXT I

660 P=191/#

670 FOR I=1 TO 255

680 LINE(I,191)-<I,191-P$A(I1)),PSET
£90 NEXT 1

700 GOSUB 730

710 GOTO 120

720

732 * SUBROUTINE TO WAIT FOR KEY PRESS
7492 A$=INKEY$:IF A$="" THEN 740

750 IF ASC(A$)=3 THEN STOP

762 RETURN

770

780 * SPEECH ROUTINE OFFSETS FROM START OF CODE

79@ DATA 4,41

820 ~ CODE START ADDRESS

810 DATA %H7200

820 * SPEECH MEMORY START HIGH%LOW BYTES

870 DATA 6,0

840 > SPEECH MEMORY LENGTH HIGH&LOW BYTES

850 DATA 24,0

8960 ’ SPEECH SUBROUTINES

870 DATA 26,80,206,255,32,174,140,244, 16,174, 140,242

78

880 DATA 95,92,141,72,100,196,37,249,231,128,95,
2,141,62,100,196

899 DATA 36,249,231, 128.49,62,38,232,57, 26,89,
206, 255, 32, 204,52

999 DATA 63,167,93,76,167,95,231,67,174,140,197,
16,174,149, 195,230

910 DATA 128,99,132,134,128,167,196,141,19,99,38,
247,99,132,239,128

920 DATA 111,196,141,8,99,38,249, 49, 62,38,228,57,57

930 DATA —1

THE TALKING DRAGON MACHINE LANGUAGE ROUTINE

WRAL A NAM SFEECH
SFEECH [NF'UT AND OUTFUT ROUTINES
SUEROUTINE INPUT MONITORS THE
CASSETTE INFUT LINE AND RECORDS
THE LENGTHS OF THE HIGHS AND LOWS

SUERDUTINE QUTPUT TAKES THESE
LENGYHS AND OUTFUTS HIGHS AND
LOWS TO THE TV SET

THE SFEECH MERORY LOCATION AND
SIZE wRE SFECIFIED AT TSTART
AND LENGTH RESFECTIVELY

EACH LOOF IS 2.2 CYCLES LONG

LR A X)

waal FEDu FIA EQU $FFZ0 FIA LOCATION
® BIT @ IS THE CASSETTE INFUT LEVEL
& BEITS 7-1 CONTROL THE O/A CONVERTER

@INT MEG ORG $7900 START FROGRAM AT 7!
BRR4 TO0E ALHA TSTART FDE 32500 START OF TEXT
020G 7002 1800 LENGTH FDE $1890 LENGTH OF SFEECH

® INFUT SFEECH SUBROUTINE
Qisre 7004 INFUT
PaA7 7104 1ASA ORCC =$Sa DISAELE INTERRLFTS
»00g 7906 CEFF20 LOu #FTA FOINTER TO FIA
2009 7009 AEBCF4 LDt TSTART.FCR FOINTER 7O START OF MEMORY
0018 790C 1AAEBCF2 LDV LEMGTH,FCR MEMORY LEFT FOR SFEECH
2211 7010 ILOOF

¥ TIME HIGH SIGNAL
@012 7010 SF CLER RESET TIME COUNTER
@213 7a1t IH
@a14 7011 SC INCE INCREMENT TIME COUNTER
261S 7212 BD4B BSF DELAY DELAY
Q016 7018 64C4 LSK U TEST BITw OF FIA
2017 7016 TSF9 ECS IH LOOF IF STILL SET
»e18 7218 E789 STEe . x+ SAVE TIME COUNT

® TIME LOW SIGNAL
LRE

2219 791A SF RESET TIME COUNTER

Qaz2a 7218 IL

@021 701K SC INTR INCREMENT TIME COUNTER
@422 7HIC BDIE BSK DELAY DELAY

@227 7Q1E 64C4 LSF .U TEST EI1T® OF PIA

w224 7026 24F9 BCC IL LOOF IF STILL CLEAR

V25 7022 E780 SYR X+ SAVE TIME COUNT

@226 76:24 I1IE LEAY -2.¥ 2 BYTES OF MEMORY USED
@027 7926 26E8 ENE ILOOF LOOP IF NOT OUT OF MEMORY

79

»wa28

7028

7029
7029
722B
702
7931
7033
7034
7036
7038
703B
7@3F

703F
7041
7043
7043
7245
7047
7049
724A

704C

704E
7059
7059
7052
7054
7055
7057
7059
72SB

7@5C

RTS

3 QUTFUT SPEECH

ouTPUT
1A50 ORCC #$50
CEFF20 LDU #PIA
CC343F LDD #$343F
A75D STA -3,U
ac INCA
A75F STA -1,U
£743 STB 3,U
AEBCCS LDX TSTART,PCR
10AEBCCS LDY LENGTH,PCR

oLooP

* OUPUT HIGH SIGNAL
E680 LDB X+
384 com ,Xx

OH
8680 LDA #380
a7ca STA .U
8D13 BSR DELAY
sA DECB
26F7 BNE OH
6384 com L, x

* OUTPUT LOW SIGNAL
E680 LDB , X+

oL
&FCa CLR ,U
828 BSR DELAY
sA DECB
26F9 BNE OL
313 LEAY -2,Y
26E4 BNE OLOOP
39 RTS
39 DELAY RTS

END

80

DISABLE INTERRUPTS
POINTER TO PIA

SELECT DAC

BEING CAREFULL ABOUT
MODIFYING INTERRUPTS
SOUND ENABLE

POINTER TO START OF MEMORY
MEMORY FREE FOR SPEECH

GET TIME COUNT
FLASH NEXT BYTE(TO SEE IT)

OUTPUT LEVEL
SEND TO PIA
DELAY
DECREMENT TIME COUNTER
LOOP UNTIL @

RESTORE NEXT BYTE

GET TIME COUNT

SET OUTFUT LEVEL TO @
DELAY
DECREMENT TIME COUNTER

LOOP UNTIL @

2 BYTES OF MEMORY USED
LOOP IF MEMORY LEFT
RETURN TO BASIC

DELAY 12 CLOCK CYCLES

CHAPTER 4
WHAT IS MACHINE CODE?

At the heart of every micro computer, is a central microprocessor. It's a
special chip called the CPU (Central Processing Unit). This is the ‘brain’
of the computer. Each type of CPU has its own language and
instructions. These instructions go together to make up machine
language. In other words machine language is the only language which
the CPU can understand. It is the native tongue of the machine.

All the instructions are numbers of one or two bytes long. So how does
the DRAGON understand BASIC programming language?

To answer this question, you must first see what happens inside the
DRAGON. Apart from the CPU there are also two types of memory; RAM
and ROM. RAM (Random Access Memory) is the memory where the
programs you enter are stored.RAM is volatile, which means that unless
there is a power supply to the memory it ‘forgets’ everything. The other
type of memory is ROM (Read Only Memory). This type of memory has
the operating system in it. The operating system is a huge machine
language program stored in ROM (so that it can’t be changed and is
automatically run when the DRAGON is turned on).

The operating system is in charge of ‘organizing’ all RAM in your
machine for various tasks. It can be thought of as the ‘intelligence and
personality’ of the DRAGON as it does all the ‘talking’ to you.

All the commands that are available in BASIC are simply reorganized by
another big machine language program called the interpreter, which is
also stored in ROM.

The interpreter simply deciphers each BASIC statement one by one and
executes the appropriate machine language program, unless you do
something wrong in which case it puts an error message on the screen.
So why bother with machine language if somebody else has already
written these vast programs to make your computer ‘friendly’ and ‘talk’ a
language which is easy for you to learn?

Well, programs written in machine language are very fast, use less
memory and are usually more complex. You may have noticed with the
programs you have bought, those that were written in machinelanguage
have more graphical detail and run so much faster than those written in
BASIC.

81

if at this stage you are stitl interested in machine language programming
but don't really understand what | am talking about then probably the best
way to go about learning machine language is to read the other book in
this series DRAGON MACHINE LANGUAGE FOR THE ABSOLUTE
BEGINNER.

THE CPU

The CPU used in the DRAGON is the M6809, one of the most powerful
8-bit micros available today. The power of the M6809 over other 8-bit
CPUs is by specific improvements in architecture, software and
hardware over its predecessor, the M6800.

On the architectural side, the M6809 has a multitude of registers. Each
register will be discussed in detail later but basically they are:

-— two 8-bit accumulators, A and B, which can be used together to form
one 16-bit accumulator, D

— two 16-bitindex-registers, X and Y

— two 16-bit stack pointers, S and U

— one 8-bit Direct Page register, DP

— one 16-bit Program Counter, PC

— one 8-bit Condition Code register, CC

The software features are probably the main reason for the M6809's
power. The very complex addressing modes almost need a full chapter
by themselves to describe and | will introduce them to you briefly later on.
Specific instructions which are not common on 8-bit CPUs include:

— an 8x8 unsigned multiply which generates a 16-bit number.

— a 2-byte instruction to push or pull any or all of the registers onto or
from either stack (S or U).

— a 16-bit add, subtract, load, store and compare which uses the D
accumulator.

— instructons to add any of the accumulators (A, B, D) to any ofthe index
registers or stack pointers (X, Y, S, U).

— instructions for exchanges or transfers between any two like size CPU
registers.

The hardwareimprovementsover the M6800 include:

— either internal clock (M6809) or external clock (M6809E).

— FIRQ, Fast Interrupt ReQuest which doesn't save all the registers.

— BS, Bus Status and BA, Bus Available, used together to provide
interrupt acknowledge and bus status.

— Q and E, the clock lines. Q leads E by a quarter cycle (90°). These
two together provide 4 effective timing edges.

— MRDY, Memory ReaDY, for interfacing with slow memories.

— DMA REQ, Direct Memory Access REQuest, input control line to
suspend processor execution and free buses for direct memory access
such as a peripheral device, etc.

82

To show the relative power of the M6809 the table below shows time
comparisons for eight different softwareoperations on the popular CPUs

used today.

OPERATION CHARACTER| COMPUTED | DOUBLE SHIFT
CPU_ . |VOHANDLER| SEARCH GOTO RIGHT SBITS
68092 OMHz 28 2875 345 15
2804.0MHz 383 2205 733 41
950030 MHz 72 661 98 22
68002.0MHz 245 404 645 19

8080 3.0MHz 527 506.7 96.7 913

8085 2. 0MHz 79 760 145

16B(T
ADDS

83

REGISTERS

The internal register structure of the M6809 is shown below followed by a
brief description of what each register is used for.

(7 A ol B 0| 8-Bit Accumulators A& B
— or
15 o D_ o _0 16-Bit Accumulator D
[J 5 X OJ Xindex register
| 15 Y 0 | Y index register

Eg_ = o U 0 J U stackpointer

{1 5 S 0 | S stack pointer
7 DP E] Direct Page Register
1
| 15 PC 0| Program Counter
| Sl B ———
E|F|H|I|N|Z I V| C| Condition Code Register
ENTIRE STATE SAVE CARRY (FROMBIT 7)
FAST INTERUPT MASK OVERFLOW
HALF CARRY (FROM BIT 3) ZERO
INTERUPT MASK L - NEGATIVE
ACCUMULATORS

There are two 8-bit accumulators which are used to hold the current data
towork with. These two can be combined to form one 16-bit accumulator,
the D accumulator. Almost every instruction uses one of these registers
and most data manipulation instructior:s (ADD, SUB, etc.) work only on
the accumulators.

84

INDEX REGISTERS

These two 16-bit registers are used mainly to ‘point' to sections of data
and can be accessed automatically during load and store instructions
(see Indexed Addressing Mode) with all sorts of fancy tricks to make
large data manipulation very fast. They can also be used to store 16-bit
numbers temporarily while the accumulators are manipulating other
data.

STACK POINTERS

The M6809 is one of the few 8-bit CPUs to have two stackpointers. With
most CPUs, if the user wanted to implement a stack he would have to do
some very tricky manoeuvering because the stack pointer is needed for
interrupts and other system usage. With the two stack pointers, one can
be used solely for the system leaving the other for the user’s use.

DIRECT PAGE REGISTER

This register has very few instructions that can access it directly, namely
EXG and TFR but it is accessed automatically every time direct
addressing mode is used (see appropriate section).

PROGRAM COUNTER

The program counter controls the execution of a program and contains
the address of the next instruction to be executed. This register cannot
be accessed directly but is automatically changed during branching
operations, etc. The program counter can be used with an offset in
indexed addressing mode allowing position independent code.

CONDITION CODE REGISTER

This register contains the ‘status’ of the last operation. Most instructions
will modify some bit of this register and conditional branches use these
bits for their decision on whether to branch or not.

ADDRESSING MODES

You are about to see what makes the M6809 such a powerfull CPU. The
addressing modes of the M6809 is one of the main factors in the M6809's
power. The M6809 has 59 different instructions which utilize 10
fundamental addressing modes bringing the total number of unique
instructions to 1464. An addressing mode describes how the data, that
the instruction is going to use, is to be found.

INHERENT

This is sometimes calledimplied addressing and is the simplestmode as
the instructions which use this mode do not need any data. Instructions
such as INC, DEC and ASL work on the accumulators only and do not
need any data.

85

IMMEDIATE

Immediate addressing is where the data to be used with the instruction
immediately follows the instruction. The analogy in BASIC would be a
constant, whereas the other modes that follow are analogous to various
types of variables.

EXTENDED

This mode of address requires two bytes, following the instruction, which
contain the address of the data to be used. With extended addressing a
full 64K of memory can be accessed.

DIRECT ADDRESSING

This is a limited form of extended addressing and only requires one byte
to follow the instruction. This is sometimes called zero page addressing
as only the first 255 bytes of memory can be accessed but reduces the
time and space that a program needs to run in as only the low byte needs
to be specified. The advantage of the M6809 over most other CPUs is
that it allows this ‘zero page’ to be moved about in memory by setting the
Direct Page register which in effect becomes the high byte of the
address.

OP CODE (1 or 2 bytes)] OP CODE (1 or 2 bytes)| | OP CODE (1 or 2 bytes)
HI ADDRESS BYTE
DATA OPERAND (1 or2 byxes)‘ LOW ADDRESS BYTE | | LOW ADDRESS BYTE

(A) IMMEDIATE ADDRESSING (B) EXTENDED (C) DIRECT ADDRESSING
ADDRESSING NOTE: HIADDRESS IS IN
DP REG.

RELATIVE ADDRESSING

There are two main types of relative addressing: Branch Relative and
Program Counter Relative and using the two aliows completely
relocatable code to be written.

BRANCH RELATIVE

There are two types of branch instructions, short and long, both of which
use atwo’s complement (signed) relative address offset. Upon execution
of the branch the offset is added to the program counter’s contents to
form the address of the next instruction to be executed. Note that when
the instruction is executing the program counter is already pointing to the
next sequential instruction. The short branch uses one byte offset which
allows a branch length of —128 through to +127, whereas the long
branch uses a two byte offset allowing branches of -32768 through to
+32767 in length.

86

PROGRAM COUNTER RELATIVE

This is really an indexing mode but is covered briefly here as it, in
combination with branch relative addressing, is needed to write
relocatable code. Basically, what is done is to use the index addressing
mode which allows you to have a 16-bit register and an 8- or 16-bit offset
field and specify the PC as the register to use (see constant offset
indexed addressing).

INDEXED ADDRESSING

There are four basic forms of index addressing, each of which can use
the four pointer registers (X, Y, S, U). They are: zero-offset, constant
offset (which can also use PC), accumulator offset and auto-increment/
decrement.

| OP CODE {1 or 2bytes)

[POSTBYTE |
OFFSET (0, 1 0r 2bytes)

GENERAL INDEXED ADDRESSING INSTRUCTION FORMAT

As you can see the instruction is always followed by the post byte which
specifies the form of indexing to use and register to use as the pointer
that will be used in determining the effective operand address. The post
byte may or may not be followed by an offset.

ZERO-OFFSET INDEXING

This type of indexing uses the pointer registers as the effective operand
address, with no offset. The post byte specifies the zero-offset mode and
which register to use.

CONSTANT OFFSET INDEXING

This type of indexing is similar to other machines’ indexing modes as any
of the pointer registers (X, Y, S, U, PC) can be used and the signed offset
can be 5, 8 or 16 bits. The post byte contains the pointer register and
offset size. When a 5-byte offset s used this is included as part of the post
byte and therefore is the most efficient as it uses less bytes and CPU
cycles compared to other constant offset modes

ACCUMULATOR-OFFSET INDEXING

This form of indexing is similarto the constant offset form except thatthe
contents of one of the accumulators (A, B, D) is added to the specified
index register (X, Y, S, U). The obvious advantage of this is that the offset
can be calculated just prior to the indexing operation.

87

AUTO-INCREMENT/DECREMENT INDEXING

This mode of indexing is a blessing as it eliminates the need to
increment/decrement the index register with a separate instruction when
stepping through memory or moving blocks of memory. When
incrementing, the register is changed after the contents have been used
to find the effective address and when decrementing,the register is
changed before the contents are used. So it is post-increment and
pre-decrement. The post byte specifies the auto-imcrementing/
decrementing, the pointer register to use and the amount to increment/
decrement by (1 for 8-bit data or 2 for 16-bit data).

POST-BYTE REGISTERBIT INDEXED
— ADDF '
7 6] 5| 4 I 3 \ 2 l 1 { 0 MODE
0 R R OFFSET EA=R+4 bit offset
1 R R 0 0 0 0 0 R+
1 R R " 0 0 0 1 R++
1 R R 0 0 0 1 0 -R
1 R R * 0 0 1 1 --R
1 R R 0 1 0 0 EA=R+0offset
1 R R L 0 1 0 1 EA=R+ACCB offset
1 R R 0 1 1 0 EA=R+ACCA offset
1 R R 1 0 0 0 EA=R+7 bit offset
1 R R 1 0 0 1 EA=R+15bitoffset
1 R R # 1 0 1 1 EA=R=D offset
1 X X 1 1 0 0 EA=PC+7 bitoffset
1 X X 1 1 0 1 EA=PC+15bitoffset
oo 9, 1 L..] 1 1 1, INDIRECT EXTENDED
[——————3 ADDRESSING MODE
R
4-BIT OFFSET
- INDIRECT FIELD *
OR
SIGN BIT FOR 5-BIT OFFSET
_—m - REGISTERSELECT

00=X
0o1=Y
10=U
11=8
X =NOTUSED
= FIVE BIT OFFSET FIELD

0 = FIVE BIT OFFSET
1 = OTHER MODE SEE
ADDRESSING MODE FIELD

*INDIRECT FIELD (see next section)

88

INDIRECT ADDRESSING

With indirect addressing the operand’s address (where the data is
stored) is contained at the location specified by the operation. Indirect
addressing can be used with any of the indexing modes except for
auto-increment/decrement by 1 (see table above) as well as with
extended addressing. To specify indirect addressing in the indexing
modes, set bit 4 of the post byte. To get indirect addressing using
extended mode the post byte must have:

bit 7 = 1 — not 5-bit offset mode
bit6, 5 = 0 — no register used
bit 4 = 1 — indirect field

bit 3-0 = 1 — extended mode

When using indirect extended mode the opcode (for indexing mode) is
followed by the post byte (&H9F) followed by the address which contains
the address of the operand.

REGISTER ADDRESSING

The last addressing mode covered is register addressing which is used
on the EXT and TFR instructions. With these instructions the post byte
contains two fields: bits 0 — 3 specify the destination register and bits 4
— 7 specify the source register.

|
|__EXG or TFR OPCODE !7|615‘4J3‘2|1’ 0
POSTBYTE

SOURCE DESTINATION
(A) INSTRUCTION FORMAT REGISTER REGISTER
(B) POST BYTEFORMAT
(C) FIELD DESIGNATIONS
| 4BITFIELD REGISTER

0000 ACCD

0001 X

0010 Y

0011 u

0100 s

0101 PC

1000 ACCA

1001 ACCB

1010 cc

1011 DP

89

USING MACHINE LANGUAGE PROGRAMS ON THE
DRAGON

ENTERING AND RUNNING MACHINE LANGUAGE PROGRAMS.
There are only two ways to enter information directly into memory:
POKEing and CLOADMing. These two commands allow you to actually
set memory locations to certain values.

If you are not going to be writing a multitude of machine language
programs the easiest way to store, enter and run your programs, while
they are being developed, is to have them as DATA in aBASIC program.
This makes editing them quite simple especially if you use a convention
such as only have one instuction/operand per DATA statement. When
your program is finished, immediately after doing a RUN in BASIC,
CSAVEM your program for future use. Remember, whenever you are
mixing BASIC programs with machine code programs, to set the upper
limit that BASIC can use with the CLEAR statement, otherwise the
programs can destroy each other.

On the other hand if you are going to be doing a lot of machine language
programming then you need a monitor program, or better still a full
Assembler/Editor. If you look around you will find a few assembler/
editors on the market but if you want to get out of it cheaply, | have
included a simple monitor program with which you can enter, modify, and
display parts of memory as well as find a string of characters in memory,
execute a machine language program and convert numbers from
hexadecimal to decimal and vice-versa.

The commands, their format and a description of each is given below
followed by the program listing and a brief outline of how the program
works.

M — M[address] — Memory examine and change.

— when this command is used, the address, the contents of the
address and a hyphen are displayed. The two arrow keys on the left,
display the next higher or lower address respectively. If at any time you
want to change the contents of a memory address hit C and enter the
value (in hex.). To return to command level, key ENTER directly after a
hyphen.

D— D[address] — Display memory.

— This will display the memory in groups of four bytes followed on the
same line by the four characters which represent by the memory’s
contents. After one screen full of memory is displayed, the listing waits for
you to enter— a space will give you another screen full of information
— any other key will return to the command mode.

90

F — F[b address] [e address] [string] — Find a string in memory.

— This searches memory beginning at [b address] through to [e address]
for the character string, [string]. All the addresses which point to the start
of the string, if there are multiple strings, are displayed. If [string] is not
found, nothing is printed.

C — C D [number]
- — C H[number]
— This converts the number [number] to either hex ordecimaldepending

on whether H (decimal to hex) or D (hex todecimal) is specified.

J— J[address] — Jump to Machine Language Program.
— This causes the machine language program starting at [address] to be
executed.

E — E — Exitto BASIC.

NOTE: All addresses must be four hex digits.

Formats must be exactly as shown, ie. no spaces between the command
letter and the first address (except for C) and 1 space between all other
parameters.

LISTING

10 7%% MACHINE ¢
20 PRINT “CUMMAND
30 INPUT CL#:C
40 IF CT$="" THEN
50 CT=INSTR("MOFCOE s (T4 +
40 IF CT=0 THEN 20

70 ON CT GOSUB 100 200400y
30 GOTOZ0
100 BA=VAL(MEH"+MIDS(CLEZ
110 IF BAG OR BAXEHFFFFE THEN %¢
120 AC=FEEK{ BA »
130 PRINT HEX$(RA)" "HE
140 MCH=INKEY $2 i FMCe=""THE
150 MC=ASCIMC%?

160 IF MC=94 THEN Ba=RA+]
170 IF MC=10 THEN BA=RA-
180 IF MC=12 THEN PRINTIRETLRN

190 IF MC#<"C" THEN 140

200 INFUT MC#

210 NB=VAL{"EH"+MC% 12 IFNRCO O NEDR
220 FOKE BAsNE

ACC 700

FOTHEN PRINTsRETUSN

91

230 RBA=BA+1:GOT!
300 BA=VAL{"2H"
IF BCO OR BaXl

CLifslsdl
FOTHEN 700

HE‘(%(BA)

LEER

th R A N

T TERPRINTY O

i Ba+ D)) sNEXTIeF
345 Bﬁ BAM:
350 IF CNT{12 THEN CNT=CNT+1:0(0T032%
360 FPRINT: CN(—

400 BA=VAL("EN'"+RIDY

420 IF BA{O OR
430 FS$=MID$CTL
440 FORI= EA T‘J

Yy O g

500 IF MIDS{CL$
510 FRINT VAL("
520 IF MI b
$30 FRINMT HE
600 BA=UAL(AN HINS T
610 IF BA(C OR BA
620 EXEC BA

630 RETHRM

700 EN

200 F I % I

910 RETUIRN

VARIABLES

AC — Address Contents
BA — Begin Address
CL$ — Command Line
CT,CT$.— Command Type
EA — End Address

FL — Find string Length
FS$ — Find String (string searched for)
MC, MC$ — Modify Command
NB — New Byte

92

10 INITIALIZE

20-80 MAIN CONTROL LOOP
100-230 MEMORY EXAMINE AND MODIFY
300-380 DISPLAY MEMORY
400-490FIND A STRING
500-5630 CONVERT NUMBERS
600-630 JUMP TO MACH INE LANGUAGE PROGRAM

700END

900-910 ERROR IN ADDRESS

This is only a sample of what a machine language monitor can do. Other
functions which are very useful (but outside the scope of this book) are an
assembler, disassembler, block moves, etc.

HANDY ROM ROUTINES

These following routines are included in your DRAGON's ROM and can
easily be used in your machine language programs.

Each routine has a name which is used to identify it followed by an entry
address in hexadecimal. However, an EXEC or a USR function call will
not invoke all of these routines correctly. Some need entry conditions
such as having the A accumulator and the X index register initialized.

A brief summary of what the routine does and what the entry and exit
conditions are, is also included. At the end of the section there is a list of
the variables (memoty locations) that are used in the routines and a brief
word on what they do.

INIT &HBB40

Initialize hardware interfaces such as printer, cassette, video, memory,
etc.

Shouldn't be used except for auto-start cartridge programs.

SETUP &HBB88

Sets up BASIC system variables such as keyboard debounce, cassette
leader length, printer variables, etc.

BLINK &HBBBS

Decrements location 008F and when this counter reaches zero the
cursor is toggled from black to green or vice-versa.

TOUCH &HB8E12
Write the character in the accumulator A onto the cassette.

93

BYTE-IN &HBDAD
Gets 8 bits off the cassette and puts them into the A accumulator.

BIT-IN &HBDAS
Gets the next bit on tape and puts it into the carry bit.

BLKIN &HB93E

Reads a block from cassette

CONDITIONS

ENTRY — cassette must be on and in bit synchronization (see
CSRDON)

e CBUFAD(7E) contains the buffer address.

EXIT — BLKTYP(7C) contains the block type

— BLKLEN(7D) contains number of data blocks in the block (0 — 255).
—Z =1,ACC = 0if no errors CSRERR(81) =0

— 2 =0, ACC = 1 if checksum error CSRERR(81) = 1

— 2 =0, ACC = 2 if memory error CSRERR(81) = 2

— Unless there was an error X points to the last byte in the buffer

— U, Y preserved, all others changed.

Interrupts are masked.

BLKOUT &HB999

Writes a block to cassette

CONDITIONS

ENTRY — Tape should be up to speed

— a leader of &H55's should have been written if this is the first block to
be written after motor on

— CBUFAD(7E) — buffer address

— BLKTYP(7C) — contains block type

— BLKLEN(7D) — contains number of bytes in block
EXIT — X points to last byte in buffer

— All registers modified

Interrupts are masked.

WRTLDR &HBE6A

Turns cassette on and writes a leader.
CONDITIONS

ENTRY — none

EXIT — U preserved, all others modified.

CSRDON &Hg021

Turns cassette on and gets in bit sync.
CONDITIONS

ENTRY — none

EXIT — FIRQ and IRQ are masked.
— U, Y preserved, all others modified.

CHROUT &HB54A

Outputs a character

CONDITIONS

ENTRY — DEVNUM(6F) set to —2 (printer) or O (screen).
— A character to be used.

EXIT — All registers except CC preserved.

JOYIN &HBD52

Sample joystick ports

CONDITIONS

ENTRY — none

EXIT — Y preserved, all others changed.

— POTVAL (15A) through to POTVAL + 3 (15D) contain the position of
joysticks.

POLCAT &HBBES
Polls keyboard for a character
CONDITIONS
ENTRY — none
EXIT
—Z=1,A=0—nokeypressed.
— Z =0, A = key code — if key seen.
— B and X preserved, all others modified.
VARIABLES FOR ABOVE ROUTINES
BLKLEN(7D) length of cassette block
BLKTYP(7C) type of cassette block
0 = File Header
1 = Data
FF = End of File
CBUFAD(7E) cassette buffer address
CSRERR(81) cassette error type
0 = no errors
1 = checksum error
2 = memory error
DEVNUM(6F) device for CHROUT
—2 = printer
0 = screen
POTVAL(15A) 4 bytes holds current joystick position
15A = left joystick up/down
15B = left joystick left/right
15C = right joystick up/down
15D = right joystick left/right

95

HANDY MEMORY LOCATIONS IN THE DRAGON

START ADDRESS DESCRIPTION END ADDRESS
DEC HEX DEC HEX
00025 0019 Address of start of BASIC program 00026 001A

00027 001B Address of Start of variable storage
also address —1 is end of Basic program 00028 001C

00029 001D Address of start of array storage 00030 O001E
00031 001F Address of start of free memory 00032 0020
00033 0021 Address of start of string stack 00034 0022
00035 0023 Address of BASIC upper limit 00036 0024
00039 0027 Highest available RAM address 00040 0028

00108 006C Current column position of cursor
00111 006F Device number DEVNUM
00113 0071 Warm start flag RSTFLAG
&HO = Condition before cartridge program
Starts created by BASIC
&H12 = Do warm start
&H55 = If RSTVEC points to a NOP
then execute from address
RSTVEC else start BASIC
00114 0072 Warm start Vector RSTVEC 00115 0073
00116 0074 Highest physical memory address 00117 0075
00124 0076 Block type BLKTYP
0 = file header
1 =data
FF = end of file
00125 007D Bytesin biock BLKLEN
00126 007E Buffer address CBUFAD also program 00127 007F
end +1 after CLOADM
00128 0080 Checksum
00129 0081 CSRERR
00140 008C Sound frequency

00141 008D Sound duration 00142 00BE
00157 009D Transfer address after CLOADM 00158 009E
00182 00B6 CurrentPmode

00256 0100 SWI3vector 00258 0102
00259 0103 SWI2 vector 00261 0105
00262 0106 SWI 1 vector 00264 0108
00265 0109 NMI vector 00267 010B
00268 010C IRQ vector 00270 O010E
00271 010F FIRQ vector 00273 0111

00289 0121 Pointer to BASIC command Token Table 00290 0122
00290 0123 Pointer to BASIC command Jump Table 00292 0124
00294 0126 Pointerto BASIC functionTokenTable 00295 0127
00296 0128 Pointerto BASIC function Jump Table 00297 0129
00337 0151 KEYBOARD Recover Table 00345 0159

96

00337 0151 Bitcleared if any bitin same columncleared

7 6 5 4 3 2 10
00338 0152 ENTER X P H @ 8 0
00339 0153 cLEAR Y Q 1 A 9 1
00340 0154 z R J B x 2
00341 0155 ‘T S K (o} 3
00342 0156 4 T L D 4
00343 0157 + U M E — 5
00344 0158 -+ \ N F = 6
00345 0159 spaceW O G 7
00346 015A Joystick 0 — left x position
00347 015B Joystick 1 — lefty position
00348 015C Joystick 2 — right x position
00349 015D Joystick 3 — righty position
00466 01D2 CASSETTE file name 00473 01D9
00474 01DA CASSETTE buffer 00731 02D8
00485 O01E5 Transfer address used in CSAVEM 00486 O1E6
00733 02DD Keyboard buffer 00988 03DC
01024 0400 Textscreen memory 01535 OSFF
01536 0600 GRAPHICS Screen memory (in 8 pages

of 1536 bytes each) 13823 35FF
03072 0C00 User RAM note can start 32767 7FFF

anywhere between 03072 (0C00)

and 13224 (3600) depending

on graphics pages.
32816 8033 BASIC command word table 33064 8128
33108 8154 BASIC command jump table 33225 81C9
33226 81CA BASIC function word table 33359 824F
33360 8250 BASIC function jump table 33427 8293
33449 82A9 BASIC error message table 33499 82DB
33504 82E0 BASICinterpretor 49151 BFFF
49152 CO000 cartridge slot 65279 FEFF
65280 FFO0 PIA (Parrallel I/0 Adapter) 65521 FFF1
65522 FFF2 SWI 3 vector (contains 0100) 65523 FFF3
65524 FFF4 SWI2vector (contains0103) 65525 FFFS
65526 FFF6 FIRQ vector(contains 010F) 65527 FFF7
65528 FFF8 IRQ vector (contains 010C) 65529 FFF9
65530 FFFA SWI 1 vector (contains 0106) 65531 FFFB
65532 FFFC NMIvector (contains 0109) 65533 FFFD
65534 FFFE RESET vector (contains B3B4) 65535 FFFF

HOW BASIC STORES VARIABLES

At the top of user RAM a space is reserved for the string stack. This
space can be increased or decreased by the CLEAR command. Possible
reasons for changing the size of the stack are:

Increase — you have a short program which uses a lot of strings and
string manipulations.

97

Decrease — you have a large program (ie. running out of memory for the
program itself) that does not use many strings.

Immediately below this space is the variable stack.

For every new variable used the variable stack grows downwards 6 bytes
and contains — for:

Strings : byte 1 — length of string

bytes 2, 5, 6 — reserved for system

bytes 3, 4 — address, in string stack, of the first byte of the string
Numerics : byte 1 — exponent

bytes 2-5 — mantissa

byte 6 — reserved for system

STRING STACK

Whenever a string variable is made, even if it is for the same variable
name, itis put on ‘top’ of the stack. So when a string variable is assigned
a different string, the new string is put on ‘top’ of the stack and the
address in the variable stack is updated. Note that the old string is still in
the string stack but cannot be accessed. This means that a program that
does a lot of string manipulations, wastes a lot of space on the string
stack.

10 A$ = “HELLO”

20 B$ = “DRAGON”

30 A% = AS + BS

nTmN

7
F
F
9

> TN

Stack Adr- | F 8 76543210
Afterline 10 | H
Afterline 20 | H

Afterline 30 | H

mmmm7 T~
FrrlonTmN
FrrrjlomnTmN
OO0 OmTM™MN

O O

EXAMPLE OF HOW THE STRING STACK ‘GROWS’

After line 10, A$’s pointer will be 7FFF

After line 20, A$'s pointer will be 7FFF and BS$’s pointer will be 7FFA.
After line 30, A$’s pointer will be 7FF4 and B$’s pointer will be 7FFA.

HOW NUMERICS ARE STORED IN THE VARIABLE STACK

Numbers are stored in 5 bytes, 1 byte exponent and 4 bytes mantissa.
The most significant bit of the most significant byte of the manitissa is
assumed to be 1 (as floating point mantissas are always normalized),

98

and this bit is used to store the sign of the mantissa (positive = 0,
negative = 1).

To convert a decimal number (X) into the internal representation follow
the simple procedure below.

1. If X = Othen all bits are set to 0.

2. Convertdecimal to binary — leave decimal pointin its place.

3. Exponent (1 byte)

If there are any digits to the left of the binary point then the exponent
equals the number of digits to the left.

If the first digit on the right is a one then the exponent is zero

otherwise the exponent equals the complement of the number of zeros,
going left to right, up to the first digit.

Add hex 80 to the exponent calculated so far.

4. Now remove the binary point and all leading zeros and add zeros to the
end until there are 32 digits in all.

5. If the original number was positive, change the first 1 to a 0.

6. Group into 8 groups of 4 and convert to hex.

HOW TO ACCESS BASIC VARIABLES FROM MACHINE
LANGUAGE PROGRAMS

The first thing that has to be done if you are going to mix machine
language and BASIC is to reserve a space at the top of memory by using
the CLEAR command. Failure to reserve space may lead to BASIC
programs ‘destroying’ your machine language programs or vice-versa.

After reserving space for your program it must then be put into memory.
This can be done by CLOADM, POKEs or a BASIC program.

There are two ways to start it; EXEC and USR. The main difference
between the two commands is that with USR you can pass parameters
from BASIC to machine language and have values returned from
machine language to BASIC.

Using EXEC simply causes a jump to a memory address. When the
machine language program executes an RTS, control will be returned to
BASIC at the next command if inside a program, or atcommand level if
the EXEC was entered directly.

On the other hand, USR is used as a normal BASIC function, ie A =
USR1(B). The advantage of using a USR call to start up the machine
language program is that it allows data to be transferred. After a USR call
the A register contains the type of data thatwas used in the call (A = 0—
numeric data, A = non-zero — string data) and the X register points to
the actual data.

For numeric data the X register points to the FAC (Floating point
ACcumulator) which contains the number in the format described above.

99

It is possible to convert this to an integer by calling the ROM routine
INTCNV (hex 8B30) which returns a 16-bit two's compliment integer in
the D register. If the data was a string, INTCNV causes an overflow error
and control is returned to BASIC.

For string data the X register points to the 5-byte descriptor as described
above.

The USR function always returns at least one value to BASIC. If the
machine language program does not explicitly return a value, the value is
the same one as that passed to the program. In general, the type of data
returned is the same as that passed, in the same location and inthe same
format.

However, regardless of the original data, an integer may be returned by
loading the D register with a 16-bit two’s compliment integer and calling
the ROM routine GIVABF (hex 8C37).

There are a few rules when modifying string variables and returning them
to BASIC.

The length of the string may be changed by changing the length byte in
the string's descriptor. Strings may be shortened by this but a USR
routine should never lengthen a string. To allow variable length strings to
be returned, the string should be forced to a maximum length of 255
before the USR call. For example:

A$ = USRO (STRINGS (", 255))

The starting address may be modified by changing the address in the
descriptor. However, the new address should generally be that of a
memory location contained in the original string and the length reduced
by the appropriate amount. It is possible to swap the addresses of two
strings which would be useful for a fast string sorting routine.

The GOLDEN RULE when modifying strings is to never let two strings
intercept.

Apart from using the USR call it is possible to transfer data to and from
machine language programs by POKEing data into memory locations
reserved by the CLEAR command. The address to POKE into is also
known by the machine language routine and can be used and modified in
any way and then left to be PEEKed at by the BASIC program after the
machine language routine has finished.

100

CHAPTER 5

PERIPHERALS

JOYSTICKS

The two ports marked for joysticks are really four analogue to digital
converters. One left/right right converter, one up/down right converter,
one left/right left converter, and one up/down left converter. These ports
are accessed in BASIC by the command JOYSTK with the parameter O
— 3 selecting which AD converter to sample. Memory location 65280
indicates if the fire buttons have been pushed. The values of the location
are: 255 means no buttons pushed, 254 means the right button, 253 the
left and 252 means both fire buttons have been pushed.

Apart from plugging joysticks into these ports, other analogue devices
may be used and the information converted to digital form.

GND

FIRE
|

Figure 6.1

Figure 6.1 gives details for the pin connections when joysticks are used
and using this diagram and some initiative virtually any analogue device
could be connected. Useful devices to interface could be a thermister for
a digital thermometer, multi-turn potentiometers for a trackball or with
strings and pullies for a pen tracer. The possibilities are endless, the only
limitations being your imagination and initiative.

PRINTER

The parallel printer port can be used from BASIC by the LLIST command
and also the PRINT#—2 command. The port can be used not only for
printer connections but also other devices that accept parallel data such
as a down loader etc. Pin connections for the printer port are shown in
Figure6.2.

101

ACK D7 D6 Ds D4 D3 D2 D1 DO STB

19 e L] L] . L] . . L] . e 1
20 o ° 2

T|f" |

BUSY GND +5V
Figure 6.2

CASSETTE

The cassette port is used from BASIC by the commands reiating to
saving and loading programs and the INPUT#—1 and PRINT#—1
commands. Having the ability to switch the motor on and off could be
used with another relay to control home electrical appliances. This could
be a heater and using a thermister wired into a joystick port your
DRAGON could be used as a thermostat for energy saving. The pin
connections for the cassette ports are shown in Figure 6.3

l mic jack

ear jack i

remote control jack

FIGURE 6.3

MONITOR/TV

There are two ways to get video signals on a screen. There are
connections for a standard UHF TV or an RGB monitor. When an RGB

102

monitor is being used the sound can be heard from the cassette
interface, via the lead normally connected to the microphone socket. If a
TV is being used it should be tuned to approximately channei 44UHF.

EDGE CONNECTOR

The edge connector is designed for using ROMpack games, disk drives,
memory expanders, etc but could also be used for any hardware that you
can think of to interface. Building circuitry with address decoders etc.
would allow you to have memory mapped /O, program and use your

own EPROMs etc.

The connections of the board edge are shown in Figure 6.4

Figure 6.4

PIN

—12v

+12V

HALT

NMI

RESET

E(6809 CLOCK)
Q(6809 CLOCK)
CcB1

+5V

CONOOAWN =

103

DO — D7
R/W
A0 —A12

C000— FEFF (chip select)
ov

Analogue in

FF40 — FF5F select
A13— A15

Turn off internal ROM

CHAPTER 8
HANDY ROUTINES AND TIPS

SPEEDING THINGS UP

There are three different speeds at which the DRAGON can run:
0.9MHz, 0.9/1.8MHz and 1.8MHz. The standard speed at which the
DRAGON runs is 0.9MH z. The faster speed of 0.9/1.8MHz is achieved
by having the CPU operate at0.9MHz when accessing RAM and 1.8MHz
when accessina ROM. This means when running BASIC programs
where most of the processing is done in ROM, and RAM is only used for
data and programs, etc. the program will run quite a bit faster. However,
machine language programs which operate almost entirely in RAM do
not achieve an equivalent step up in speed. The 0.9/1.8 speed can be
activated by POKEing 65495 with 0 and can be returned to normai by
POKEing 65495 with 126.

The 1.8MHz speed will effectively double the speed of both BASIC and
machine language programs alike. The problem with this speed is that
the VDG (Video Display Generator) gets out of synchronization with the
CPU and the display turns to rubbish. This simple machine language
routine will get the CPU and VDG back into synchronization.

B7 FFD8 STA $FFD8 Exit1.8 MHzmode

13 SYNC Synchronize CPU & UDG

39 RTS Return

This should be entered, saved on cassette and tested before trying to
enter the 1.8MHz mode. Even though the display is meaningless while
the DRAGON is in the 1.8MHz mode, anything put on the screen can be
viewed once 0.9 MHz mode is returned. The 1.8MHz can be entered by
POKEing 65497 with zero and exited as described above.

The characteristics of the three modes are:

MODE
0.9 MHz 0.9/1.8 MHz 1.8 MHz
SPEED 1.0 < 1.35 20
display yes yes no*
cassette yes no yes™*
printer yes no yes**
sound yes yes yes
joysticks yes yes yes
graphics yes yes no*

* — output viewed upon returning to 0.9 MHz mode
** — baud rate doubled

104

NOTES:

1. When the reset button is pushed while in 1.8MHz mode the
computer may or may not return to 0.9MHz mode even though the CPU
and VDG will still be out of sync.

2. Some of the CPUs produced by Motorolla may not be capable of
handling the extra speed so we do not recommend that you use thisas a
rule.

DISABLE/ENABLE BREAKKEY

It is often handy to disable the BREAK key. Here are two ways of
accomplishing it: one is short but can only be entered directly from the
keyboard (not from a program), the other can be placed inyour programs
but is quite a bit longer.

To disable the BREAK key enter the following commands, directly from
the keyboard.

POKE 411, 228

POKE 412, 203

POKE 413, 4

POKE 414, 237

POKE 415, 228

Then to turn the BREAK key on and off use:

POKE 410, 236 to turn it of f

POKE 410, 57 to turn t on

Below is a machine language routine which will allow you to turn the
BREAK key on and off from you program. To make things easier there is
a BASIC program to put this routine into high memory, which you can
then save with a CSAVEM “BREAK", &H7FEQ, &H7FF$, &H7FEO to be
used with other programs.

10 CLEAR 300, &H7FEO

20 FOR AD = &H7FEQ TO &H7FF4

30 READ B$: B = VAL (“&H" + B$)

40 POKE AD, B

50 NEXT AD

60 POKE &H019B, &H7F : POKE &H019C, &HEO

70 PRINT “BREAK DISABLED" : POKE &HO019A, &H7E

80 FOR | =1 TO 2000 : NEXT

90 PRINT “BREAK ENABLED" : POKE &HO19A, &H39
100 FOR | = 1 TO 2000 : NEXT
110 GOTO 70
120 DATA 32,62,1C,AF,BD,80,06,26,07,81,13,26,03
130 DATA 7E,85,2B,97,87,7E,84,A6

105

7FEO 32 62 START LEAS 2,S

7FE2 0C AF ANDCC #$AF
7FE4 BD 8006 JSR $8006
7FE7 26 07 BNE A
7FE9 81 13 CMPA #3$13
7FEB 26 03 BNE 1
7FED 7E 8528 JMP $8528
7FFO0 97 87 1 STA $87
7FF2 7E 84A6 JMP $84A6

SET/RESET FOR SEMIGRAPHIC MODES

This allows the SET/RESET comands to be implemented for

semigraphics. First set the mode (see MODE CHANGES) and the

appropriate variables. The variables are: X — horizontal co-ordinate; Y

— vertical co-ordinate; C — color (1 — 8); SR = 1 — RESET-SET; ST =

startof display array.

100 IFSR=0THENM =128+ (C—1)*16:IF (XAND 1) =0THENM
=M+ 10ELSEM=M+5

110IFSR=1THENM = 128 + (C — 1)*16:IF(XAND 1) = OTHEN N =
5 ELSEN =10

120 AD = ST + Y * 32 + INT(X/ 2)

130 IF SR=0THEN A = (PEEK (AD)AND 15) : A= AOR M : POKE AD,

A
140 IF SR =1 THEN A = (PEEK (AD) AND N) : A= AOR M : POKE AD,
A

AUTO KEY REPEAT

The problem with using the DRAGON keyboard, especially for action
type games, is that you cannot tell if someone is holding down one key or
if a key is pushed while another is being held down. A very simple way to
overcome this is to use the keyboard rollover table located in memory
addresses 337 (&H0151) — 345 (&H0159)

i

ADDRESS BITS
DEC HEX 7 6 5 3
337 0151
338 0152 ENTER X
339 0153 CLEAR Y
340 0154 z
341 0155 t
342 0156 +
343 0157 -
344 0158 -+
345 0159

<cHuwiIpUT *
0ozgrxe—I

eTMmMUVODEE N
NOORrWN=O o

(2
R
>
Q
m
b3

106

When there are no keys pressed this table is completely filled with 1's.
Whenever a key is pressed its corresponding bit in the table is reset to 0.
e.g. when A is pressed bit 2 of memory location 339 (0153hex) is 0.
Memory location 337 (0151hex) has the property that if any bit in the
same column in the table is O then it will be 0. This is the reason that when
a key is held down and another pressed then the first released (if both
keys are in the same column of the table) the second key does not
register as being pressed. To overcome this problem simply POKE 337
with 255 immediately before an INPUT or INKEY$ command.

To allow keys to be repeated when a key is pressed and held down, then
each time an INKEYS$ callis made the key value is returned, set the entire
table to 1’s before each INKEY$. For example:

10 FOR| = 337 TO 345 : POKE I, 255 : NEXT

20 AS = INKEY$

30 PRINT A$

40 GOTO 10

This program will continue to print the key held down. if you now change
line 10 to contain a REM then the program will only print the key once —
no matter how long you hold it down.

READING TWO KEYS AT ONCE

Reading two keys pressed simultaneously can be done by reading the
keyboard rollover table. When you want to check if a particular key is
pressed or not (for action type games) the best way to accomplish this is
by POKEing 337 with 255 then PEEKing at the appropriate location and
checking to see if the appropriate bit is set or reset. This will tell you if the
key is pressed no matter if it has been held down for a while or if any
number of other keys are pressed at the time. Forexample, to check if the
up arrow is pressed try this program:

10CLS

20 PRINT@0O, "

30 POKE 337, 255

40 IF PEEK(341) AND 32 THEN PRINT “NOT PRESSED" ELSE
PRINT “PRESSED”

50GOTO 20

If line 30 is removed then if two keys in the same column of the roliover
table are pressed at the same time then only the first will be recorded in
the table.

RECOVERING A PROGRAM AFTER ANEW COMMAND.

After a NEW command has been executed but before any new BASIC
lines are added or variables defined the previous program may be
restored by the following machine language program.

107

9E 19 LDX $19

BD 83F3 JSR #83F3
30 02 LEAX 2,X

9F 1B STX $1B
9F 1D STX $1D
9F 1F STX $1F
37 RTS

This program may be entered by the following BASIC program
10 CLEAR 200, 32753
20 FOR | = 32754 TO 32767
30 READ X : POKE I, X
40 NEXT |
50 END
60 DATA 158,25,189,131,243,48,2,159,27,159,29,159,31,57

After running this program and saving it, type NEW; then LIST, then
EXEC 32754, then LIST. If everything was correct your program should
be the same as the original program you just entered.

If you have inadvertantly keyed in NEW and you wish to restore your
program DO NOT type in the BASIC program above as it will destroy your
original program. If you have not CSAVEMed the machine language
program then you will have to POKE each number in the DATA
statementintoits right address (startat 32754 and add 1 foreach number
POKEGd). | recommend that you type in this program now and CSAVEM
it, then it can be ready for use whenever you need it (use CSAVEM
“UNNEW", 32753, 32767, 32753 and CLOADM whenever you need it)
or have this routine at the start of each of your programs.

MERGE

Often it is handy to merge two or more BASIC programs together. For
example, you might have a standard sorting routine or a standard menu
controller. Merging two programs can be accomplished by the following:
CLOAD one of the programs

FOR | =25TO 28 : PRINT |, PEEK(!)

POKE 25, (the numberbeside 27)

POKE 26, (the numberbeside 28 — 2)

Now write down 25 and 26 and numbers beside them

CLOAD the second program

. Make sure all line numbers are greater than those in the first program
(see below)

8. POKE 25, (the number you wrote beside 25)

9. POKE 26, (the number you wrote beside 26)

NoaswN o

Step 7 (above) is essential otherwise your program line numbers will be

108

out of order and BASIC won't be able to follow them properly so strange
things may occur.

There are several ways to ensure that the line numbers are correct.

1. Write all your standard routines with very large numbers (e.g. 10,000
onwards) or small (e.g. less than 100) and write your programs
inbetween.

2. After loading in the second program but before the POKEs in steps 8
and 9, RENUMber. At this stage it will only change the line numbers of
the second program.

REDEFING BASIC KEYWORDS

By shifting the token table and jump tables out of the ROM into some high
RAM locations, resetting the pointers in &H121,122 (token table),
&H123,124 (command jump table) and &H126, 127 (function jump table)
and substituting the addresses of your own command handling routines
in the appropriate place of the jump table, you can easily redefine the
action to take place when a BASIC keyword is executed.

By taking a careful look at the structure of these tables and expanding
them so that their layout is still the same (just bigger) you can even define
new BASIC keywords and appropriate actions to take place on their
execution.

Below is a small machine language routine which redefines the SOUND

command (this could use the machine language program in the sound
chapter (4)).

7000 10BE 7DIF START LDY #$7D9F

7004 BE 8033 LAY #4033
7007 10BF 01Z1 STY 0121
7008 A6 82 Loop DA X+
7000 A7 O STA ¥+
700F BC 8293 CHPY #8298
7012 20 7 BLT LOOF
7014 BE T7ECO LDY #$7ECO
7017 BF 0123 STY 40123
7014 BE 7F3 LDX #$7F36
7010 BF 0126 ST #30126
7020 BE 7FRC LDX #47FRC
7023 BF 0128 STX 40128
7026 BE 2 LDX "START OF SOUND ROUTINE"
7029 BF 7EBC §T¢ $7EGC
7026 39 RTS

* Depends on where you load your sound routine

109

BOXES SHOWING PAGE SWAPPING

This program, afthough not very useful, shows just how fast pages of

screen can be swapped to make fast animation.

10 FCLEAR &

20 FOR FD=1T U6

30 FMODE GsFPI:

40 PCLS

50 SCREEMOs(

40 LINEC12B-11%F th_» LERED~C 128412
® 03sFg !

ool

70 NEXT FD

80 I=i:5F=1

90 I=1+SF

100 IF I4=1 OR I=>8 THEN
110 FMODEGYI

120 SCREEN1,9

130 GOTO 9C

VARIOUS CIRCLES
This program shows the power of the CIRCLE command and produces
some quite nice pictures.

%k MAIN FROGRAM ®K

10 CLS

20 PRINT@42,"CIRCLEE"

30 PRINTO9E:"r - F{aNDiJM“
40 FRINTRLS2:"T

50 FRINTEZ2 br“a -k
40 FRINTR290y s TPACMANT
70 FRINTR3S4:"a € FARCEY
80 FPRINTR450y"FRESS OME OF THE Al
90 FRINTR4B2y "enter T0 RETURM TR
100 A$=INKEY$:IF A%="" THEN 100

110 A=INSTRO"RFGHA"»AS ¢

120 IF A=0 THEN 100

130 FHODE3y15PCLYG*STUREEM L,

140 ON A GOSUB 200+300+4009500:4£00

150 GOTOLC

199 “%Xx RANOM CIRCLES x®’

200 FCLS

210 CIRCLE(RNDC25G 1y RNDCIRO)y ENICTO de e NI 43
220 FORI=1T0R200sMEXTI

110

A$=INKEY$:1FAS="" THEN 20C

IF ASC(A% =13 THEM RETURM ELSE 20(
%% OWN @FTIONS %%’

CLE

INFUT"CO-ORDINATES] Xs7 j" 35X a7
INFUT"RADINIUS" i

INFUT"COLORC 0-7 3"3
INFUT"HEIGHT--WIBTH RAYLOL G—4 ' fHE
INFUT"STARTC O-1 335

INFUT"ENDCO-1 ¥ &

FMODE3y LiFEL REENL»O

CIRCLEC XY 1yRyCsHbl»Syic
AS=INKEY$:1F Ag="" THEN 390

IF ASCCA% =13 THEM RETURMN ELSE 390
XK FIE GRAFH %X~
CIRCLEC(11891062:6090r 100y
CIRCLE(13ByB6&3:60s0r1v. 7501
LINEC118y106 +~(11Bs46 2 FSET

LINEC 1189106 3-£ 1785 L1063 FSET

LINEC 138986 1~ 13826 19 FSET

LINEC 138986 1= 19886 1y FEET
FAINT(149y75 3: Gy &

AS=INKEYSILF A$="" THEN 470

IF ASC(A% ;=13 THEN RETURN ELSE 470
XK FACK HAN XX

CIRCLEC(128+98 1:80sCr1:.069.94
CIRCLE(148:50):9s0
LINEC12B996 3-(200065 1y f
LINEC 128y 94 1-(200119 32 FSET
FAINT(120920 32 G 0
AS=INKEYS$2IF As="" THEN =50

IF ASC(A% =13 THEM RETURM ELSE S5(
X% A FACE *x¥
CIRCLE(12B+963970sCr1.2
CIRCLE(S0+96)+10+0:3

CIRCLE(207 996 79102Cr3
CIRCLE(100+70)912+0+.7
CIRCLEC1562703912+0Cy .7
CIRCLE(128+96)9610+3
CIRCLEC(1289130)9455Cr 7908
CIRCLEC1289130)94790e.25505.5

o

11

680 FAINTC128,154):040
690 A$=INKEY$:IF A$="" THEN &90C
700 IF ASC(A% }=1X THEN RETURN ELSE 6%(:

LINES

This program, like the last few, is not particularly useful but demonstrates
the power of the graphics and produces some interesting effects.
i¢ CLS

20 FMODE4s15FCLS

30 FI=3.141592454

40 R=180/F1

50 SX=192/42747

60 SY=255/4274%

70 INFUT“STER SIZE":I

80 IF I=0 THEN END

90 FCLS:SCREENis1

100 A1=12B%R1=9%¢

110 A2=128¥R2=9¢4

120 FORK=1 TU 16000 STEF I
130 I=R/R

140 XCOSC I 3¥EY+AL

150 KSINC I 3KEX+RD

160 LINECA»B)~(ALyBL & FEET
170 Al=A*Ri=R

180 NEXTKN

190 A$=INKEY$*IFA$=""THEN1?C
200 GOTO7C

SCROLLS
Here are some machine language programs to scroll the text screen.

7000 e 01 LEFT DB #01
7002 BE 0460 1 LEX #6400
7005 A5 85 12 LDA B
7067 SA DECE

7008 A7 BS STA B
7008 50 INCE

T00E 30 88 20 LEAY 32X
700E BC 0800 CHEX #8400
70812 F2 BT 12
7013 50 INCE

112

7014 C1IF CHPR 431
7016 2F EA BLE !
7018 39 RTS

7019 Ca IE RIGHT LDR 430

701R BE 0400 :1 DX #8400
T01E A6 89 12 LA By
7020 i€ INCB

7021 A7 8BS STA B!
7023 9A DECR

7024 30 BB 20 LEAY 32X
7027 8C 0600 CHPX #8400
7026 20 F2 BLT :2
7026 9A DECR

7020 Ci FF CHPR #4FF
T02F 26 EA BNE !
703 39 RIS

7032 BE 0400 P LD #$400
7035 10AE 88 20 :1 L7 32,

7039 i0AF 81 STY X+
703C BC 0600 CHPX #8600
703 20 F4 BLT 1
704 19 RTS

7042 BE O0SE2 GOWN LDY #SGEZ
7045 10AE 83 i Loy X

7048 10AF 88 20 STY 32X
704C BC 0400 CHPX #4400
704F 2E F4 BET 1
7081 39 RTS

NOTE: Thesescrollroutinesleavethe lastline to be scrolled (e.g. right:
the far left column, up: bottom line) untouched. This meansthatrepeated
calls to these routines will fill up the screen with the last line.

To use these routines in a game for scrolling; as soon as these routines
have finished then fill in that last line with the new information to goon the
screen.

To use these routines on the graphics screens the starting and ending
addresses need to be changed as well as the ‘gap’ between each line.
On the text screen the ‘gap’ is 32, the start address &H400 and end
address &H600.

113

MOVEMENT

There are two main ways to produce movement from BASIC. The
combination of the GET and PUT commands and writing-overwriting-
writing. The second method is okay if the object being moved is not very
complicated, just a few lines, but would be too slow for complicated Hi
Res graphics. Using GET/PUT can move quite complicated graphics
very quickly. An example of just how fast this is is given below:

10 FMODE4s1

20 SCREENLsC

30 PCLS

40 DIM V(0.3

50 SP=1:1=0

60 CIRCLEC20520):3
80 GET(15y15)-(25y
20 FUTC1S+Iy15+10
100 I=I+EF

110 IF 13150 OR I{0 THEM SP=-5Pkl.1
120 GOTO%0

Uyl
25+ 125+ 1y Vs PGET

After each ‘bounce’ the circle moves faster and as it moves faster
becomes jerky. If it is left running long enough, the new circle does not
erase all of the previous ones leaving ‘shadows’ behind.

SOUND IN MACHINE LANGUAGE

This machine language program uses the single-bit-sound (bit 1) in the
&HFF22 PIA register. There are three main routines; the first, START,
sets up the PIA chip ready for use by the other routines; the second,
CONTROL, handles the control of the sound; the third, SOUND,
produces the actual note.

The CONTROL routine takes four 16-bit numbers (which it assumes start
at &H7100) to control the sound. These numbers have the following
effect: the first, START, is the frequency at which to start; the second,
STOP, is the frequency at which to stop; the third, INCR, is the amount to
increment frequencies by between each note and the fourth, DURA, is
the length of time to play each note before moving on to the next. These
four numbers form a phrase and phrases are repeated, until a phrase
with a zero increment value is encountered.

Note that frequencies are back-to-front as the smaller the number the
higher the frequency, and because of this style of sound production, the
higher the frequency the shorter the note for the same duration value.

114

Below is an assembler listing followed by a BASIC program which will
load in the machine language program and prompt for phrases, and will
play these phrases when a terminating one is encountered.

Note that the start frequency value is destroyed during the running of the
program but all others are preserved.

7000 ORG $7000
7000 34 76 START PSHS D,X,Y,U
7002 B6 FF23 LDA $FF23
7005 84 F3 ANDA #$F3
7007 B7 FF23 STA $FF23
700A F6 FF22 LDB $FF22
700D CA 02 ORB #$02
700F F7 FF22 STB $FF22
7012 8A 04 ORA #$04
7014 B7 FF23 STA $FF23
7017 8D 03 BRS CONTROL
7019 35 76 PULS D,X,Y,U
701B 39 RTS
701C CE 70F8 CONTROL LDU #$70F8
701F 33 48 NEXT LEAU 8,U
7021 AE 44 LDX 4,U
7023 27 26 BEQ RETURN
7025 AE C4 LDX)
7027 AC 42 CMPX 2,U
7029 27 F4 BEQ NEXT
702B 2C OF BGE BIGGER
702D 8D 1D SMALLER BSR SOUND
702F EC C4 LDD U
7031 E3 44 ADDD 4,U
7033 10A3 42 CMPD 2,U
7036 2C E7 BGE NEXT
7038 ED C4 STD U
703A 20 F1 BRA SMALLER
703C 8D OE BIGGER BSR SOUND
703E EC C4 LDD U
7040 A3 44 SUBD 4,U
7042 10A3 42 CMPD 2,U
7045 2F D8 BLE NEXT
7047 ED C4 STD U
7049 20 F1 BRA BIGGER
704B 39 RETURN RTS
704C AE 46 SOUND LDX 6,U
704E 10AE C4) LDY U
7051 31 3F 2 LEAY =gy
7053 26 FC BNE 2

7055 B6 FF22 LDA $FF22

115

7058 88 02 EORA #8302

705A B7 FF22 STA $FF22
705D 30 1F LEAX -1,X
705F 26 ED BNE 4
7061 39 RTS

The BASIC program below loads the machine language program in, sets
up its parameters, then runs the routine.

It asks:

NEW PHRASE: If you answer Y then you can define a new lot of
parameters.

If you answer N then the set previously defined is used.

The Parameters: These are all 4 digit numbers so you must include
leading zeros to make them 4 digits long.

MORE: If you answer Y then you are asked ‘NEW PHRASE?’ and the
processing continues.

If you answer N then the current phrase is played and you are asked
‘NEW PHRASE?’ etc.

Here are some examples to get you going.

Start Frequency 0400

End Frequency 0000

Increment 0001

Duration 0010

Start Frequency 0400 0300

End Frequency 0300 0600

Increment 0001 0001

Duration 0080 0010

Start Frequency 0200 0400 0400
End Frequency 0400 0400 0000
Increment 0010 0001 0005
Duration 0010 0090 0010

116

L0 CLEAR_Z00s 3
20 AD=ZH7100
30 FORI=&H7000 TGO EH70&1

40 READ X$rx=VUALL"SH"+X$ HFPORE Ls¥
50 CHEUN=CSUH+X

&0 NEXTI
7O IF CBUM{»12446 THED
80 CLE:PRIMT * %%
90 PRINT "NEW PHR
100 A%=IN
110 IF Ag=UN©

THEM 100
THEN 100

170 IF LEN(F
180 INFUT "DURA
190 IF LENCFR$
200 PR$(3
FRQ("

HOU PRECE G0TO 220

(3

) FOKE AD+
260 NEXTI
270 Ab=AL+E
280 PRINT "HOR
290 AS=INKEYS2IF aAg="" THENZ®O
300 IF Af="Y" THEM ELGE IF A%{:UN'Y THEM 290G
310 FOKE AD+4s N
320 EXEL &H700C
330 0T0 80
340 END
350 DATA >
360 DATA
: DATA

2F s Dath;Lqr”U P1,39 ﬁ>-4a lU-Htr'%vdl-
CeReeFF e

400 DATA
EV v 26

117

CHARACTERS IN HI-RES GRAPHICS

Most characters on computers are defined by dots. This means that
although BASIC does not allow text on the hi res screens, you can define
and print your own.

The first thing to do is define your characters. Use graph paper or draw up
your own grids. When 5x7 dot-matrix characters are used (example
below), there is room for 42 characters accross and 24 down, allowing for
a separation space of 1 pixel between characters. Larger matrices 6x8
give better resolution but less characters on the screen.

5

N\

N

xxv L71 ‘('
Once you have designed your characters, the problem is to hold them in
memory and display them on the screen. If you are using BASIC there
are two main methods to accomplish this.

One is to use the DRAW command. Here is an example of how to use
DRAW to produce characters.

DRAW “L6R4D8U8R4” : REM T

DRAW “D8U4R6D4U8” : REM H

DRAW “D8R6BU4L6U4R6 : REM E

DRAW “D8R4E2U4H2L4BR6” : REM D

The other way is to hold your characters in an array and use GET to store
them and PUT to display them on the screen. Most computers use an 8x8
grid for their character block as this gives a fair trade-off between
readability and the number of characters that can fit on the screen. Also,
using 8 pixels accross the character allows 8 bytes to hold 1 character
without any wasteage. In the hi res modes this gives you 32 characters
by 24 lines on the screen.

The first step to defining your own character set is as above and if using

the 8x8 grid you should leave a one-bit-buffer on one side of the
character and either on the top or the bottom of the character. The usual

118

way is to leave the bottom line and the right line free. In effect his gives
you a 7x7 area for your character.

After drawing all your characters up on graph paper it is time to enter and
store them in the computer. This can be done by PSETting the
appropriate points on the screen to build up the character, then GETting
that character off the screen and into an array. The array must be of DIM
(0,2) for an 8x8 character grid. This means there is plenty of room in
memory for a complete 96 upper and lower case ASCII character set.

119

APPENDIX A

TABLES

BASIC KEYWORDS

WORD
ABS
AND
ASC
ATN
AUDIO
CHR$
CIRCLE
CLEAR
CLOAD
CLOADM
CLOSE
cis
COLOR
CONT
cos
CSAVE
CSAVEM
DATA
DEF FN
DEFUSR
DEL
DIM
DRAW
EDIT
ELSE
END
EOF
EXEC
EXP

FIX
FOR/TO/STEP/NEXT

ET
GOsuB
GOTO

HEX$
IF/THEN/ELSE
INKEY$
INPUT
INPUT#—1
INSTR

INT
JOYSTK
LEFT$
LEN

LET

LIST

DESCRIPTION

Absolute function

Logical operator

Function to return ASCII codes

Arctangent function

Switch cassette-to-TV on and off

Function to return characters from ASCII codes
Draw a circle on a graphic screen

Initialize variables and reserve memory
Load a BASIC program from tape

Load a machine code program from tape
Close open files or devices

Clear display to specified color

Set foreground and background colours
Restart program execution

Cosine function

Save BASIC programs on tape

Save machine code programs on tape
Store data inside programs

Define numeric function

Define entry point for machine code routine
Delete BASIC program lines

Define array dimensions

Draw lines on a grahics screen

Change program lines

Options with IF statements

End a program

Returns whether afile is at the end or not
Transfer control to a machine code program
Natural Exponentiation of a number
Truncates real numbers to give integers
Control a loop with a control varaible

Store a rectangle of graphics screen into an array
Transfer execution to a subroutine
Transfer execution to the specified line
Computes hexadecimal values

Test relationships

Return last key pressed

Accept data from keyboard

Accept data from tape

String search function

Converts number to integer

Sample joystick ports

Returns left portion of string

Returns the number of characters in a string
Assignment statement option

List specified lines on screen

120

LLIST List specified lines on line printer

LINE Draws a line on a graphic page

LINE INPUT Accepts a complete line from keyboard

LOG Returns the natural logarithm

MEM Returns the amount of free memory

MID$ Returns or assigns a substring in a larger string
MOTOR Turns the tape motor on and off

NEW Erases BASIC program

NEXT End of FOR loop

ON...GOSuUB Multi-branch to subroutines

ON...GOTO Multi-branch to line numbers

OPEN Prepares files or devices for use

PAINT Paints a portion of a graphic screen

PCLEAR Reserves memory for graphic pages

PCLS Clears a graphic page

PCOPY Copies one graphic page to another

PEEK Returns the contents of a memory location
PLAY Plays music

PMODE Specifies resolution and starting page of graphics
POINT Returns attributes of a character cell

POKE Sets a memory location to a specified value
POS Returns current cursor position

PPOINT Returns atttributes of a cell on a graphics page
PRESET Sets a cell to background color

PRINT Puts a message on the screen

PRINT#—-1 Puts data on tape

PRINT# -2 Prints on the line printer

PRINT TAB Moves cursor to specified column before printing
PRINT USING Prints data in the specified format

PRINT @ Starts printing at the specified position on screen
PSET Sets point to specified colour

PUT Displays graphic data from an array on a graphics screen
READ Reads data from the DATA statements

REM Allows insertion of comments

RENUM Renumbers the lines of a BASIC program
RESET Set specified cell to background color
RESTORE Set pointer to first item of DATA statements
RETURN Returns control after a subroutine call
RIGHT$ Returns the right portion of a string

RND Returns random numbers

RUN Executes a BASIC program

SCREEN Specifies type of screen and colour set

SET Set a dot on screen to the specified colour
SGN Returns the sign of a number

SKIPF Skips a file on tape

SIN Sine function

SOUND Plays a sound

STEP Option for FOR loops

STOP Stops execution of a BASIC program
STRING$ Build a string of characters

STR$ Convert a number to a string

SQR Returns square root of a number

TAN Tangent function

TIMER Returns contents of, or sets, the timer

TO Part of the FOR loop

TROFF Turn off program tracer

TRON Turn on program tracer

121

USR Calls machine language routine

VAL Converts a string to a number

VARPTR Returns the start address of a BASIC variable
BASIC SYMBOLS

SYMBOL PURPOSE

+ Addition of numbers and strings; sharp of a note in PLAY
- Subtraction; flat of a note in PLAY; minus print in USING
* Multiplication

/ Division

= Equals

> Greater than

< Less than

>=or= > Greater than or equal to

<=or=< Less then or equal to
<>»or >< Notequalto

! Abbreviation of REM

? Abbreviation of PRINT

b Denotes a string constant

: Separates multiple BASICstatements on the same line
1 Raises numbers to powers, eg.3 t 5=3°
SPECIAL KEYBOARD KEYS

KEY PURPOSE

- Backspace cursor and erase last entry

ENTER Tell computer end of data input has been reached
BREAK Stops program execution

SHIFT @ Pause program execution (any key to continue)
CLEAR Clears the screen

122

APPENDIX B
ERROR MESSAGES
MESSAGE

/0

A0
BS

CN

DD
DN

DS
FC
FD

FM

LS
NF

NO
oD

EXPLANATION

Division by zero

Attempting to open a file which is already open
Bad Subscript. Trying to use an array subscript
outside the range it was defined as. Sometimes if
a computer cannot recognize a function this
message is given.

Can't Continue. When you use the CONT
command after making changes to the program
or the program is at the end.

Trying to dimension the same array more than
once.

Device number error. There are only three
device numbers. —0 — standard, screen,
keyboard; —1 — tape; —2 — printer.

Direct Statement. This occurs if a direct
statement is in a data file on tape.

llegal Function Call. Thisoccurs when a function
or statement parameter is out of range.

Bad File Data. This occurs when the wrong type
of data is being read from a file, that is if numeric
data is being INPUT into a string variable and
vice-versa.

Bad File Mode. This occurs when you try to
INPUT data from a file OPEN for OUTPUT or
vice-versa.

llegal Direct Statement. For example, when an
INPUT statement is executed outside a program.
Input Past End of File. Use EOF to check for the
end of the file.

Input/Output Error. Often caused by bad tapes,
i.e. when the DRAGON cannot understand what
is on the tape.

String too Long. A string can only have 255
characters in it.

NEXT without FOR. Occurs when a NEXT
statement is encounteredwithouta
corresponding FOR statement.

File Not Open. You cannot access a data file
without first opening it.

Out of Data. When a READ statement is
executed and there are no elements left in any
DATA statements.

123

0os

ov

RG

SN

ST

™

UL

Out of Memory. All available memory has been
used or reserved.

Out of String Space. There is not enough space
for string operations. You may be able to CLEAR
more space.

Overflow. A number has been made too long for
the computer to store. The range of numbers
available is +1.7E+38.

RETURN without GOSUB. A RETURN
statement has be encountered without a
previous GOSUB statement.

Syntax Error. This message is given whenever
the DRAGON cannot understand the command.
May result from misspelling the word or incorrect
number of parameters, etc.

String formula too complex.Break up the
formula into shorter steps.

Type Mismatch. This occurs when numeric data
is assigned to a string variable (e.g. AS = 8) or
vice-versa.

Undefined Line Number. This happens when any
command references a line number which does
not exist.

124

APPENDIXC

MEMORY MAP

DECIMAL ADDRESS CONTENTS HEX ADDRESS
0—1023 System Work Area 0—3FF

1024 — 1535 Text Screen 400 — 5FF
1536 — 3071 Graphic — page 1 600 — BFF
3072 — 4607 Graphic — page 2 C00— 11FF
4608 — 6143 Graphic — page 3 1200 — 17FF
6144 — 7679 Graphic — page 4 1800 — 1DFF
7680 — 9215 Graphic — page 5 1E00 — 23FF
9216 — 10751 Graphic — page 6 2400 — 29FF
10752 — 12287 Graphic — page 7 2A00 — 2FFF
12288 — 13823 Graphic — page 8 3000 — 35FF
13824 — 32767 Program and Variables — user's | 3600 — 7FFF
32768 — 49151 BASIC ROM 8000 — BFFF
49152 — 65279 Cartridge Port C000 — FEFF
65280 — 65535 Input/Output FF00 — FFFF

125

APPENDIXD

COLOUR CODES

These are codes for each of the nine colours you can create

Code Color
Black
Green
Yellow
Blue
Red
Buff
Cyan
Magenta
Orange

ONOOEWND =0

The colour may vary in shade from these, depending on your TV. Colour
0 (Black) is actually an absence of colour.

126

COLOUR-SET TABLE

PMODE Two Color Four Color
Color Set C inati Combination
4 0 Black/Green —
1 Black/Buff —
3 0 S Green/Yellow/Blue/Red
1 — Buft/Cyan/Magenta/Orange
2 0 Black/Green —
1 Black/Buff =
1 0 S Green/Yellow/Blue/Red
1 — Buff/Cyan/Magenta/Orange
[¢] 0 Black/Green == |
1 Black/Butf X

127

APPENDIX E

CHARACTER CODES
For use with CHR$ function and ASC function.

HEX 20 30 40 50 60 70
DEC| 32 48 64 80 96 112

0 0 0 @ P @ P

1 1 ! 1 A Q A Q

2 2 ” 2 B R B R

3 3 # 3 C S C S

4 4 $ 4 D T D T

5 5 % 5 E u E u

6 6 8 6 F \ F \

7 7 : 7 G w G w

8 8 (8 H X H X

9 9) 9 | Y | Y

A 10 " T J z J z

B 11 + : K [K [

C 12 ! = L + L -+

D 13 — = M 1 M]

E 14 L 4 N = N 3

F 15 / ? (e] — (¢] —

NOTE:

1) The last two columns are the lower case values of the previous two
columns and will be shown as inverse video on the screen.

2) Characters 0 — 31 are ASCII control characters and have no effect on
screen. Two exceptions are 8 which is backspace and 13 which is
carriage return.

128

APPENDIX F

PRINT @ GRID

§

129

APPENDIX G

ASCII CODES FOR KEYS
Key Hex # Decimal #
Unshifted Shifted Unshifted Shifted
03 03 03 03
oc - 12 o
oD oD 13 13
20 = 32 32
- 21 33 o
- 22 34 —
- 23 35 —_
_ 24 36 o
o 25 37 —_
55 26 38 o
- 27 39 -
(S 28 40 =
} S 29 41 —
* S 2A 42 —
+ - 2B 43 —
- 2D — 45 Ll
. 2E = 46 —
! 2F — 47 —
0 30 S 48
1 31 55 49 o
2 32 55 50 o
3 33 = 51 —_
4 34 — 52 -
5 35 — 53 =
6 36 e 54 =
7 37 — 55 -
8 38 e 56 e
9 39 - 57 —_
: 3A — 58 =
H 3B == 59 S
< 3c - 60
= 30 = 61 o
> 3E — 62 -
? 3F = 63 -
@ 40 13 64 19
A 61 4@ 97 65
B 62 42 98 66
C 63 43 99 67
o] 64 44 100 68
E 65 45 101 69
F 66 46 102 70
G 67 47 103 7
H 68 48 104 72
| 69 49 105 73
J 6A 4A 106 74
K 6B 4B 107 75
L 6C 4C 108 76
M 6D 4D 109 77

130

Key Hex # Decimal #
Unshitted Shitted Unshifted Shifted |

N 6E 4E 110 78
1) 6F aF 1 79
P 70 50 12 80
Q 7 51 113 81
A 72 52 114 82
s 73 53 115 83
T 74 54 116 84
u 7 55 17 85
v 76 56 118 86
w b 57 119 87
X 78 58 120 88
Y 79 59 121 89
Z 7A SA 122 90
O] SE SF 94 95
@ OA 58 10 91
® o8 15 8 21
@® 09 sD 9 93

Note: For characters A through Z, press the key combination of SHIFT 0
to utilize the upper/lowercase option. The unshifted codes will then

apply.

131

APPENDIX H

CHARACTER CODES

For use with PEEKs and POKEs direct to the text screen.

o~
Qi |oranmsvworo®k Il Fo
318 —: AR, ——e t. e~
R 8|a0cw-ro>3x>Nt |
23| ®<o0owL T _5x 1220
S|Q| oraumrswono® .. ok ke
IS L %e R, —ms t. e~
olela0xnFd>3x>Nt —4 |
o|lo|®«moowWL BT _5¥ 1220
Q| oraumsvonooo-rNnT 0w
A 2R R=r
x
u o-ramswoOoNOOIDOAWL

132

APPENDIX |

BASE CONVERSIONS

The following table lists base conversions for all one-byte values.

| _DEC. | BINARY | HEX. | OCT. DEC. | BINARY | HEX. | OCT.
3 00000000 | 00 | 000 30 | oco11110 | 1E | 036
| 1 00000001 o1 001 31 00011111 1F 037
2 eococote | 02 | eo2 32 | oeio0000 | 20 | 040
| 3 00000011 | 03 | 003 33 | coteocor | 21 | 041
4 00000100 | 04 | 004 34 | oo100010 | 22 | o042
{ 5 00000101 () 005 35 00100011 23 043
6 00000110 [06 | 006 36 | 00100100 | 24 | 044
1 7 00000111 o7 o7 37 00100101 25 045
| o 00001000 | 08 | 010 36 | 00100110 | 26 | 046
| 9 0001001 (-] 011 39 00100111 27 047
| 10 00001010 0A 012 40 00101000 28 050
n" 00001011 oB 013 41 00101001 29 051
| 12 00001100 oc 014 42 00101010 2A 052
13 00001101 1] 215 43 00101011 2B 053
14 00001110 OE 016 44 00101100 2C 054
| 15 00001111 oF 017 45 00101101 20 055
.16 0010000 10 020 46 00101110 2E 056
17 00010001 1 021 a7 00101111 2F 057
18 00010010 12 022 48 00110000 30 060
19 00010011 13 023 43 00110001 31 061
| 20 00010100 14 024 50 00110010 32 062
| 2 00010101 15 025 §1 00110011 33 063
| 22 00010110 16 026 52 00110100 34 064
23 00010111 17 027 53 00110101 35 065
24 00011000 ‘ 18 030 54 00110110 36 066
25 00011001 19 031 55 00110111 37 067
26 00011010 1A 032 56 00111000 38 070
27 00011011 ‘ 1B 033 57 00111001 39 071
28 00011100 1c 034 58 00111010 3A 072
29 00011101 | 1D eas\J 53 | 00111011 ' 38 | o73

133

| DEC BINARY HEX. OCT. DEC. BINARY HEX. OCT.
60 00111100 3C 074 94 01011110 SE 136
61 00111101 30 075 95 01011111 SF 137
62 00111110 3E 076 96 01100000 60 140
63 00111111 3F 077 97 01100001 61 141
64 01000000 40 100 98 01100010 62 142
65 01000001 41 101 99 01100011 63 143
66 01000010 42 102 100 01100100 64 144
67 01000011 43 13 101 01100101 65 145
68 01000100 44 104 102 01100110 66 146
69 01000101 45 105 103 01100111 67 147
70 01000110 46 1060 104 01101000 68 150
Il 01000111 a7 107 105 01101001 69 151
72 01001000 48 110 106 01101010 6A 152
73 01001001 49 1m 107 01101011 68 153
74 01001010 4A 112 108 01101100 Bc 154
75 01001011 48 13 109 01101101 6D 1550
76 01001100 4aC 114 10 01101110 6E 156
77 01001101 4D 115 m 01101111 6F 157
78 01001110 4E 118 112 01110000 70 160
79 01001111 4F 1z 13 01110091 Il 161
80 01010000 50 120 14 01110010 72 162
81 01010001 51 121 115 01110011 73 163
82 01010010 52 122 18 01110100 74 164
a3 01010011 53 123 n7 01110101 75 165
84 01010100 54 124 118 01110110 76 166
85 01010101 55 125 19 01110111 77 167
66 01010110 56 128 120 01111600 78 170
a7 01010111 57 127 121 01111001 79 m
88 01011000 58 130 122 01111010 7A 172
89 01011001 59 131 123 01111011 7 173
90 01011010 SA 132 124 01111100 7C 174
9t 01011011 58 133 125 01111101 70 175
92 01011100 5C 134 126 01111110 7E 178
93 01011101 sD 135 127 01111111 7F 177

134

DEC. BINARY HEX. | OCT. OEC. BINARY HEX. | OCT.
128 10000000 80 200 162 10100010 A2 242
129 10000201 81 201 163 10100011 A3 243
130 10000010 82 202 164 10100100 A4 244
131 10000011 83 203 165 10100101 AS 245
132 10000100 84 204 166 10100110 A6 246
133 10000101 85 205 167 10100111 A7 247
134 10000110 86 206 166 10101000 A8 250
135 10000111 87 207 169 10101001 A9 251
136 10001000 88 210 170 10101010 AA 252
137 10001001 89 2n 171 10101011 AB 253
138 10001010 8A 212 172 10101100 AC 254
139 10001011 8B 213 173 10101101 AD 255
140 10001100 8C 214 174 10101110 AE 256
141 10001101 8D 215 175 10101111 AF 257
142 10001110 8E 216 176 10110000 Bo 260
143 10001111 8F 217 177 10110001 B1 261
144 10010000 90 220 178 10110010 B2 262
145 10010001 91 221 179 10110011 B3 263
146 10010010 92 222 180 10110100 B4 284
147 10010011 93 223 181 10110101 BS 265
148 10010100 94 224 182 10110110 B6 266
149 10010101 95 255 183 10110111 B7 267
150 10010110 96 226 184 10111000 B8 270
151 10010111 97 227 185 10111001 B9 27
152 10011000 98 230 186 10111010 BA 272
153 10011001 99 231 187 10111011 BB 23
154 10011010 9A 232 188 10111100 BC 274
155 10011011 9B 233 189 10111101 BD 275
156 10011120 9C 234 190 10111110 BE 276
157 10011101 90 235 191 1011111 BF 277
156 10011110 9E 236 192 11000000 ce 300
159 10011111 9F 237 193 11000001 C1 301
160 10100000 AD 240 194 11000010 Cc2 302
161 10100001 A1 241 195 11000011 Cc3 303

135

DEC. BINARY HEX. OCT. DEC. BINARY HEX. OCT.
196 11000100 C4 304 227 11100011 E3 343
197 11000101 Cs 305 228 11100100 E4 344
198 11000110 Ccé 306 229 11100101 ES 345
199 11000111 Cc7 307 230 11100110 E6 346
200 11001000 cs 310 231 11100111 E7 347
201 11001001 c9 311 232 11101000 E8 350
202 11001010 CA 312 233 11101001 E9 351
203 11001011 cB 313 234 11101010 EA 352
204 11001100 cc 314 235 11101011 EB 353
205 11001101 CcD 315 236 11101100 EC 354
206 11001110 CE 316 237 11101101 ED 355
207 11001111 CF 317 238 11101110 EE 356
208 11010000 oo 320 239 11101111 EF 357
209 11010001 D1 321 240 11110000 Fo 360
210 11010010 D2 322 241 11110001 F1 361
2n 11010011 D3 323 242 11110010 F2 362
212 11010100 D4 324 243 11110011 F3 363
213 11010101 Ds 325 244 11110100 F4 364
214 11010110 D6 326 245 11110101 FS 365
215 11010111 D7 327 248 11110110 F6 368
218 11011000 D8 330 247 1111011 F7 367
217 11011001 o] 33 248 11111000 F8 370
218 11011010 DA 332 249 11111001 F9 37
219 11011011 [o]:3 333 250 11111010 FA 372
220 11011100 DC 334 251 1o FB 373
221 11011101 DD 335 252 11111100 FC 374
222 11011110 DE 336 253 11111101 FD 375
223 11011111 DF 337 254 11111110 FE 376
224 11100000 EQ 340 255 mnmnm FF 377
25 11100001 E1 341

228 11100018 E2 342 |

136

APPENDIX J

QP MNEM MO #|or wnEm MODE «|aF MuEM WODE .
80 NEG DIRECT 6 2| 1C ANDCC IMMED 3 2[2€ BGT AELATIVE 1 2
83 com 6 2|10 sEx INHERENT 2 1 [2F BiE AELATVE 3 2
84 LsA w2 € ExG [8 2[3 Leax NDEXED 4
e AoA & 2w T INHERENT 7 2|31 Leay 2
o7 AsA & 2w mE RELATIVE 3 2[32 LEAS J i oz
e AsLASL 6 2|21 mmw 3 (s = INDEXED 4 2
89 ROL 6 2|22 8w 3 2f2 eses INHERENT 5 2
e DEC 6 2|2 8L 3 2fas eus s 2
6C INC % 2|24 ensicC 3 2|3 PSHU 5 7
8D TST & 2|25 BLOBCS 3 2fw euw L]
BE UMP 3 3| e 3 23 ars o
oF CuR omecr 6 2|27 eE0 3 2|3 asx L
L INHERENT 2 1|28 BVC 3 2|: An 6115 1
1 EYNC INHERENT 2 1|38 B 3 2[3C cwa 21 2
© LBRA RELATWE & 3|24 &AL 3 afwm M "o
17 LesR RELATWE 8 3|28 @i 3 a|w sw [
19 DAa INHERENT 2 1|2 BGE 3 2fe weoa 2 9
A ORCC 1aE 3 2|20 mr MELATIVE 3 2|41 CcOMA INGERENT 2 b
OF NEM MODE = e|oP wmEw MODE ~ o|0F MNEM MOOE -

s LSRA INHERENT 2 1 |sp TsTe INHERENT 2 1|77 asR EXTENOED T 3

46 RORA 1|8 crs INHERENT 2 1 | 7R ASLASL 13

at AsRA 2 1 |m nec INDEXEO & 2|t mOL T 3

48 ASLALSLA 2 1|e cowm & #fm oec 73

49 ROLA 2 1 |m A 6 2[c mc i 3

4 DECA 2 1|e ROR & 2|m TST ¥y

4C INCA 2 1|67 asm & aftE ame a3

4 TSTA @ 1 |es asiast s 2|F ae EXTEMOED T 3

4F cLAA # 1[es ROL 6 2[e0 suBa e 2 2

5 NEGB 2 t|es oec 61w cues 2 2

53 CcomB 2 1 fe wo B #|m seca 2 2

54 LsAB @ |0 vsr 6 r|ws susp a3

56 ROAR R R 3 @ |m anow LI]

57 asma 2 t|ef qA INDEXED 6 7 |B8 BITA 2 2

50 ASLBASLE 2 ifm wea EXTEMDED T 3 |86 (DA LI |

53 ROLe 2 1|m com T afes eoea 12

SA DECH 2 1|74 1SR 7 3|es aDCa 2 2

SC INCB INHERENT 2 1 |76 ROR EXTENDED 7 1 |8A ORA MMED 2 2

137

MOoE

MODE .

AR R R R R R R RN NN 0RO N

DHEECT
DIRECT
WOEXED

INDERED

o ks R R R ERE RS R R LGOI
N h kA N AN N N R RN N R

EXTENDED §

EXTENDED
IMMED
IMMEO

D R N R

MODE T

T N

NN NN N WO N 0N

15

DHRECT
INDEXED

INDEXED

R L L L Y

INDEXED

INDEXED
EXTENDED

EXTENDED

MODE

OF MNEM

MODE ~

56)

L

QP MNEM
9 LD
9F &
A SUmA
Al ChRA
a2 sECA
A3 SUBD
A1 anDa
As BITA
A6 LOW
A7 sta
A8 EORAA
A9 ADCA
AR ORA
A ADDS
AL CMPE
D 154
AE DX
AF ST
OF MMEM
o7 sTe
08 EORB
08 ADCE
oA oap
DB ADDE
Dc LoD
op o sTo
DE LDW
OF 5T
[
E1 CMPB
E2 sece
€3 ADOD
E4 ANDR
ES ATE
€6 L0B
E7 sTe
€6 ECAR
0 MMEM
192E 1BGT
102F LBLE
193F SWi2
883 OMPD
108C CMPY
1DBE LOY
- CMen
AT CMRY
189E LDY
e STY
1A CMPD
TBAG MR
1PAE LOY
1DAF STY
1881 CuPED
188C CMPY.
1PBE LDY
19BF STY

RELATIVE
RELATIVE
INHERENT
IMMED

1
IMMEO
DEECT

DIRECT
INDEXED

|

INDEXED &
EATENDED B

EXTENDED 7

Kl

R K R
R L L SO

19CE
1BOE
190F
19EE
1BEF
BFE
FF
n3F
1183

1BC TP

193
19C

11AG
18y
1180

WMED &
DIRECT &
DIRECT &
NOEKED 6

&
EXTENDED 7
EXTENDED 7
INHERENT 20
WMED 5
MMED 5
GRECT 7
DIRECT 7
INDEXED 7
INNEXED T
EXTENCED B
EXTEMDED &

138

.

B M MO W W W A e N R T T R

R R R R T

INDEXED ADDRESSING
POST BYTE REGISTER

BIT ASSIGNMENTS
POST-BYTE REGISTER BIT AP EG

7]6]s|+]3]2][1]0 MODE

0| x| X |Xx| x| x| X|X|EA=,R=+4BITOFFSET

1|X|x|o]JojojofoO A+

1| X|X|x|J]ojofjo]|1 R4 4+

1|x|xfojofof1]|D ,~R

1 x|{x|{xJofof1]1 ,——R

1| x| x x| o] 1| ao|ea-.R=o0o0FFsET

| x| x [x[o] 1| a1 [eA=- A= ACCEOFFSET

1|X|xXx|x]of1 1|0 |EA = ,R+ ACCA OFFSET

T X[% [x[1| e] 0o |EA-,R=7BmoFFsET

1 x|{x|x|1|o]o|1|EA=.R=158TOFFSET

T x| X |x| 1] 0] 1] |EA=-.A=DOFFSET)

1 XX |[X]1]1]/0]0 IEA ,PC = 7 BIT OFFSET

T XX [x] 1|10t C - 156iT OFFSET

1T X X f1]1]1]1]1

" AobressinG MoDE FiELD

: INDIRECT
- SIGN BIT

PUSH/PULL POST BYTE

L. cen
“:’Q

DPR
X

Y
S/U
PC

TRANSFER/EXCHANGE POST BYTE

SOURCE DESTINATION

REGISTER FIELD
0000 = D (AB)
0001 = X
0010
oot
010
0101 = PC

1000 = A
1001 =B
1010 CR

1011 = DPR

139

6809 STACKING ORDER
PULL ORDER
1

cC

A

B
DP
X Hi
XLo
Y Hi
YLlo
U/SHi
uU/slo
PC Hi
PC Lo

+
PUSH ORDER

INCREASING
MEMORY

l

6809 VECTORS

FFFE
FFFC
FFFA
FFF8
FFF6
FFFa
FFF2
FFFO

Restart
NMI

swi

IRQ
FIRO
swi2
Swi3
Reserved

INDEXED ADDRESSING MODES

NON INDIRECT NDRECT
Post-8yte [+ [- [Assemoter| Post-Byte [+] +
TvPE FORMS Form | OP Code |- |# r #
CONSTANT OFFSET FROM R NO OFFSET R [1rrooioofofo| 1A [1AR10100[a[0

5B8ITOFFSET n A 1o defaulls 108-bit

8BIT OFFSET nA YRR01000(1|1 n.R| 4
16 BIT OFFSET n.A_|1ARD1001 /42| In.A] |1AATI001|7|2
[ACCUMULATOR OFFSET FROM R A—REGISTER OFFSET| AR 1RR0010[1 |0 I1A.R] |1RR10110(4 |0
B—REGISTER OFFSET| B, R 1RA00101[1 |0 1B.R}] [1RR10101/4 |0
D—REGISTER OFFSET| 0.R _|1RRo1011|al0| (D.R) |1AR1I011[7]0

[AUTO INCREMENT/DECREMENT R INCREMENT BY | R+ 0 not allowed
INCAEMENT BY 2 .R++ [1RR00001(3[0| [R++] |1RR10001|6|0|

DECREMENT BY 1 § 0 not aliowed
DECREMENT BY 2 .--R_|1RR00011|3|0| [.--RI |1RR10011]6|0
[CONSTANT OFFSET FROM PC 8 BIT OFFSET n PCR |1xx01100{ 11| In. PCA| [1XX11100(4]|1
16 BITOFFSET n. PCR [1xx01101|S5|2| |n,PCR| [tXX11101[8]2
[EXTENDED INDIRECT 16 BIT ADDRESS — — |-[=[i [roornimi|s]2

R=X.YUors
X . DONTCARE

NOTES

Given inthe fable arethe base cycles and byte counts To determine Ihe total cycles and byte counts add Ihe values

1

S

coNonaw

fromihe 6809indexing modes table

R1 and R2may beany par ol 8 bil or any par 0116 bit registers
The 8 bit registers are A. B. CC. OP

The 16 bit regislersare X. Y. U, S.D. PC

EAis Ihe effectiveaddress.

The PSH and PUL nstructions requrte Scycles plus 1 cycle for each byte pushed orpulied

5(6) means 5 cycles if branch not taken, 6 cycles il taken
SW1 sels 1&F bits SW12andSW13do notafrect I&F
Conditions Codes set asa direct result ofthe mstruction
Value ol hail-carry flagis undefined

Special Case—Carry set if b7 1s SET

LEGEND:

OP Operation Code (Hexadecimal).

zI | -

Zero (byte)
Number of MPU Cycies.
Number of Program Bytes.
Anihmetic Plus,

Carrylrom bit7

ccgs=nenN

Anthmetic Minus, Not Atlected

Multiply C Condition Code Register
Complement ot M Concatenation

Transfer it Logrcalor

Halt.carry from bst3, Logical and

Negative (sign bit) ¥ Logcal Exclusive or

140

Overllow. 2's complement

Testandset iftrue. cleared othecwise

6809 ADDRESSING MODES |
INHERENT| DIRECT [EXTENC IMEBIATE|INDEXED'| RELATIVE F'—'z 1
INSTRUCTION/
ms [op [[#for] T#lorT-T #for #[op #lor]-*[# [oESCRIPTION _ [HINZIVIGY
ABX a3 B+ X— x BEn
(UNSIGNED)
ADC ADCA 994 |2|B9|s|alag|z|2[afes2s A-meC—a [1]t]1f1]y
ADCB D94 |2|Fa|s|alco|z|2Eals. |2, B.M.C—B [1lt]t]1]1
ADD ADDA 984 |2]|ee|s|ales|z|2aBla+|2+ e WA HAEH
ADDB 08|4|2|FB|s|3e|z|2[eBlas|2s B+M—B R
ADDO o3[6 |2[Fa|7|3fca|a [a[Eale+f2+ D+mmt~0|tlftfi]t
AND ANDA 944 [2]Bs|5|afealz|2[Aalas|2s A M_A «t)tfo]-
ANDB Dafa|2[Fa|s|3|cs|z|2]|eafer|2- 8 M—B NHHNE
ANDCC |32 CC MM —cCC l
ASL ASLA (48 12 |1 A 8 1 11]]
ASLB (88 |2 |1 s} 0|8 11111]¢]
ASL o8|e|2(78|7|3 66 [6+2+ mlc b bo gl gy 1]t
ASR ASRA 47|21 A B
asR [s7 |21 B D Jeltlsl-|s
ASR o7 faf#|¥| 3 BT [f2- M b bo C g f1fe[t]
BCC BCC 24 3 |2[Branch C=0 [sfeles]s
Lecc 105(6)| 4 |Long Branch wlefef=]=
2 (=)
BCS BCS z5) 3 | 2[Branch C- 1 [efsfsfs
LBCS 10 [5(6)| 4 [LongBranch wfefafs
25 CER
BEO BEQ 27/ 3 |2 |Branch 2=0 |afefs|s
LBEQ 10/5(6} 4 |Long Branch wfefefs
27 Z-0
BGE BGE 20| 3 |2 |Branch = zero [+)+]s|s
LBGE 10/5(6) 4 |LongBranch = |s|«/+|
2c|
BGT BGT 2€| 3 [2|Branch > Zero [s[#s[s
LBGT 10[5(6)[4 JLong Branch > [#|+|s[s
2€| 280
BHI BHI 22| 3 |2 [Branch Higher | afs|s|s
LBHI 10|5(6{ 4|Long Branch wfefels
22 Higher
BHS BHS 24| 3 | 2[Branch Higher [s|sfsls
or Same
LBHS 10 [5(6)| 4 |LongBranch ofsfefs
24 Higher or Same
87T BITA 954 |2(85|5|3(85| 2| 2|As[as|2s Bit Test A(M A A) [+|1]1]o
8T8 Ds|a|2|Fs|s|alcs|a|2|Es|er|2e BitTestB (M A B) [+[1[1]0
BLE BLE 2F| 3 |2 (Brancn ¥ Zera -
LBLE 10|5(6{ 4[LongBranch < |a[s|s]s]s
2 Zero
BLO BLO 25| 3 |2 |Branch Lower
LBLo 10(5(6)| 4 |Long Branch
25 Lower
BLS BLS 23(3 |2|Banch Lower |«|s|s[s
or Same
LBLS 105(6)| 4 |Long Brancn wlefe|+
23 Lower or Same
BLT BLT 20(3 |2|Branch < Zero
LeLT 10 [5(6)| 4 [Long Branch <
20 Zero
BMI BMI 28| 3 |2 [Branch Minus
Lemi 10[5(6)| 4
28| Minus
BNE BNE 26 3 [2[Branch Z 20 ||s]s|s
LBNE 105(6)| 4 [LongBranch afafss
2 zz0
BPL BPL 2A| 3 |2 [Branch Plus
LBPL 10(5(6)| 4 |Long Branch
2A] Plus

141

. |INHERENT | DIRECT [EXTENDED|MMEDIATE] INDEXED' [RELATIVE 50
IS UL DO) |
FORMS OP [~ [#[OP [~ | #|oP # OP] - [# 0P| - | #|0P|-* | # [DESCRIPTION Hszﬂ
BRA BRA 20| 3 | 2[Branch Aways
LBRA w5 3L ofefo]
BRN BRN 21| 3 |2 [Branch Never wlefelefs
LBRN 10| 5 | 4|LongBranchNever [«|e|« [«
21
BSR ESR 80| 7 | 2[Branch to wlefele]
Subroutine
LBSR 17| @ |3 |Long Branch to
Subroutine
BVC BVC 28| 9 | 23ranch V=0
Leve 105(6)| 4 |Long Branch
28 Voo
BVS BVS 29[3 |2|Branch v =1
Levs 10|5(6]{ 4 |Long Branch
29 vt
CLR CLRA [¢F 2|1 0—a «|oj1fofo
CLRB [5F |2 |1 0—8
CLA oF[6|2f7F|7]3 6F 6 [2- 0-+M «|ojijofo
cMP CMPA 914 |2[Br|s|afs1|z|2z|ar(as|2s Compare Mtrom A8/ 1|1t
cMPB o1|af2|F1|s|afcr|2|2|erjar|2r (Compare Mrom 8 8|3 3|41
CMPD 0 [7[3fw0[8|af0]s|afiofr-[a+ Compare M: M + 1 +|[1]1]1
93 83 83 A3 trom D
cMPS 73| |e|afrifs |a]n|7+fas Compare M:M + 1 |t 1]1]t
9C BC sC AC from S
CMPU 17 |aftn|8|afinfs|anf7.]as Compare M: M + 1| t]1]1]1
99 B3 83 A3 from U
CMPX sc|6|2fec|7|ajec|s |ajac|e+|2+ Compare M: M + 1«[t]1]1]t
trom X
CMPY 10|7|3J10(8] a]|10f[5 | 4[10]7+]3+] Compare M: M + 1[=|$]1|]2
9C BC sC AC from ¥
COM COMA (43|21 A—A «|t{t]o[1
coms [s3f2 |1 58 “|1]t{ofr
coM oae|2|7a|7] 3 63 |6 [24] M —M BHEEE
cwal aC |20 2 CC MM —CC 1
Wart tor interrupt
DAA 1921 DecimatAdiustA |1 1]0[}
DEC DECA (4|21 A-1—A <[1l]1]-
DECB [sA|2| 1 B-1-8 NEERIN
OEC oale|2|7af7| 3 6A6-[2- M-1—m BHERER
EOR EORA 98| a|2[Be|s| afs|z|2|A8[a+|2y AvM—A «|ftlof!
EORB o8| 4|z|Fafs| ajcela|2Es|es|2+ 8 M—8 «|1f 1o
ExG RILA2 [1E|7|2 R1 — R2!
INC INCA [4C[2 |1 As1—A
INCB [sC (2] 1 B+1—8
INC oc|6|2|7c|7| 3 6C[6+| 2+ M+ 1—M
JMP OE| 3 |2|7E (4| 3 6E |3-[2- EA’ - PC
JSR 90| 7 | 2fe0|s| 3 AD|7+|2+ bumptoSubroutine
0 LDA s6| af 2|B6|s| a8s| 2| 2[as|a-2- M—A
Los 06| | 2|F6|s| afcelz 2|e6la-|z- M—B
LoD oc| = | 2|Fcfs| ajcc| 3| afec|s:|a- MM-1-D
Los wof&| 37| af0f] 4|10]6-|a-] MM+1—S
0 FE ce €€
Loy OE| 5| 2|Fef 6| alce|a| 3[eE]s- [z MM 1-<in fel1fg0e
Lox | 9€i 5 [2[BE| 6| 3[8E| 3| 3|AE|s-|2- MMorax (et
Loy 0| & | 3f 0 af10]| 4| 4|10(6-|=-] MM. 1% EUELE
€| 3 8 AE
i
LEA LEAS 32| 44/ 24 EA S o s efele
LEAU 33 |42+ EA = U o|#|=tel=
LEAX 30 [4+| 24 EA® - X }dINR
LEAY 31la+|24 EA —Y oleldfee

142

usvnuﬂ:ow: DIRECT EX DIATE INC ‘I:ELATIVE ;ul_l
s e T TalneT- T o e T = Ta e T Talrel = Ty pescaicien [rid JVic
LSL LSLA (e8| 2|1 A R KK
Lste [sefz |t B}D-Mm»odlll
Lst os|6|2[ma|7|a &8 . mic o 6o [og]gf4s
LSR LSRA (44|22 |1 A +[Of8]<]4
tsre [s4f2 |1 a}oﬂ[ﬂﬂl]—-ﬂ-nx-x
LSR oal6|2f74|7| 3 B4 (6|2 M b bo ofof]+]t
MUL || AxB—D RARAM
(Unsigned)
NEG NEGA 40|21 A+1—=A 1y
NEGB [50[2 |1 B+1—-8 8l3(1]t[t
NEG 00| 6|2f70|7|3 60|6+| 2 Mit1=mM 8114t
NOP 12| 2|1 No Operation
OR ORA 9A| 4| 2|BA| S| 3|8A| 2| 2[AAf44|24 AvM—aA | Ytjofe
ORB DA| 4| 2|Fa|s| 3[ca| 2 | 2|€a[ss|2. BuM -8 - 1{1fo]+
ORCC 1Al 3| 2 CC - MM —. CC| 7
PSH PSHS |34|s-4 2 Push Registe
S Stack
PSHU 365+ 2 PushRegisterson [e|e|sfe|e
U Stack
PUL PULS (35592 Putl Registers from| +[«| +| | +
S Stack
puLU |37 51 2, Pu»l Regters vom | o«
ROL ROLA (492 |1 ‘HH
ROLB |59 2|1 } 3 8[3[t
ROL 09| 6|2 79[7|3 69]6+| 2+ :m_ou.““
ROR RORA 46|21 [tefeft
RORB |36 |2 | 1 } = tt]e]t
ROR 06| 6| 2/76(7|3 66|64|21 c o b ELHEL
ATI 38 /15 1 Return From 7]
Interrupt
RTS 38 |5(1 ReturnFrom wlejelels
Subroutine
SBC SBCA 92| 4| 2[B2| 5| 3|82 2 2[A2|4+24) A-M-C—A |a|3f1[t]1
sece 02| 4| 2|F2| 5| 3|c2| 2| 2|E2[a+|20 B-M-C—B |8t
SEX 10|21 Sign Extend B |t{t]o]*
inloA
ST STA 97| 4| 2|B7|5| 3 A7 |4+ 24 A—=M o/ titlofe
sT8 o7| 4| 2[F7|5) 3 E7[a4|24 B—M B L
STD oofs | 2(Fo|6f 3 ED[5+|2+ oMMt |o1iofs
sTS 10| 6| 3f10|7] 4 10643+ S—MMer |olttfols
OF| FF EF)
STU OF| s | 2|FF|&| 3 EF|5+]29) U—=MM+1 «|t18(0]«
STX oF| s | 2|eF|a| 3 AF[5+) 2 X—MMs1|elttlole
STY 10| 6 07| 10 Y=MM+1 EE kLA
o BF AF[6+]3
SuB SUBA 90| 4 | 2|B0|%| 3|80| 2| 2/A0|4¢)2+ A-M—A 8ttt
suss Do| 4 [2|Fo|5| 3|co| 2| 2|€E04. (24 B-M —8 1
SUBD 93(6| 2(B3| 7| 3|83| 4 | 3[a3le.|2 D-Mm.1-0pft|tf1l
SWi swie |9F [19] 1
Swi2e | 10 |20} 2 Sohware P! ool
3F
swizr |1 [20] 2 Sottwarelnterrupt3f o| o[of s
3F
SYNC 0 2|1
Intetrupt
TFR R1.R2 [F |72 Al A2 ==+~
ST TSTA [aD |2 |1 Test A «1t]o|+
7518 |50 [z |1 Test8 +|1ft]of+
TST ool 6] 2|70| 7| 3 E Test M PEELS

143

Arlays ¥ i

ASCI ... ;
Assembler graphics .
Assemblersound _.

Autokey repeat ..

B
BoseConversions
BASIC
— address space .
—commands
—constants ...
—error messages . .
—expressions
— keywords .
—lines ...
— symbols
—variables . .
BLINK
BLKIN .
BLKOUT .

Boxes
BYTEIN

11,1719, 24 27,29, 102
44,128, 132

c

Cassette recorder ...
CharacterCodes
Characters in hi-res

ColourCodes .
Colour Set .
Conditions

Convevsnon -
0S .

C P.U.
CSAVE .
CSAVEM

CSRDON

D
DATA .. R -1

Direct Addressing . EFa 86
Disable/Enable BREAK Key ... Gk

12,51, 118

.......... 103

13

EOF

Errors in BASIC

Enor messages
EXEC. ...

EXP
Expoential Format ...
Extended Addressing ..

F
Files ..
FIX iipniic

FOR/TO/NEXT

G
GET J
GOSUB/HETUF\N

Grapm
— Hi-res

: 36,38, 46-54
—Lo-res .

.. 37,4246
137,39, 55-69
434

—Modes ...
— Using Strings

H

HEXS

Hexadecimal .
High Resolution graphics .-

iy 3,29
36,38, 46-54

1
IF/THEN/ELSE . [.
Immediate Addressing ; :
Indexed Addressing .
Indrect Addressing
Inherent Addressing ..

Joysticks

K

Keywords L e 2,109, 120, 121
L

LEFTS a0
LEN.

LET.

LINE .
LINEINPUT 18
LIST a7
LLIST . 17
Low-resolutiongraphics-- L. 37,4246
M
Me809

— instructionset ..., AT

— routines ..

PRINY USING
PRINT@ .

—grid
PRINT#
PSET

R

READ
Reading two keys atonce . .
Recovering fromaNEW
Redefining BASIC keywords .
Register Addressing .
Registers— C.P.U
Rolative Addressing . .
REM

RENUM
RESET L
Resolution ...
RESTORE
RETURN .
RIGHT$

AND
ROM Routines .
RUN

37,.42-46

Semigraphics

SpeachReproducion
Sposding Thngs up ...

Slalko'screen memory

TRONTRGHE
u
USA .

v
VAL .
Variable
— names ..
— stack
VAHPTR
D.G.

Video Memory

w
WRTLDR .

DRAGON 32

programmer-s reference guide
REGISTRATION CARD

Please fill out this page and retum it promptly in order that we may keep
you informed of new software and special offers that arise. Simply cut
along the dotted line and retum it to the correct address selected from
those overleaf.

Where did you leam of this product?

[J Magazine. {fso, whichOne?ccoeiiiiiiiiininaiiainins
[J Through a friend.

[Saw itin a Retail Store

[J Other. Please SPecifycvuurerieiraneninmnnnsnenmnnns
Which Magazines do you purchase?

Regulanty: ...
Occassionally: . . .iisas.ssassi Gam s ine s i em siasae s e s e
What age are you?

[J]10-15 [J16-19 []20-24 [Over 25
We are continually writing new material and would appreciate receiving
your comments on our product.

How would you rate this book?

[] Excellent [Value for money
Good [J Priced right
[Poor [] Ovemriced

Please tell us what software you would like to see produced for your
DRAGON.

ZENOSVHG

bo.id

“aminG 33u313131

ishers
\boume\-\ousePub\\s
‘\\Q& 861611349

{

0

§
2
S
| =
n
g
2

	1
	lc-n001
	lc-n003
	lc-n004
	lc-n005
	lc-n006
	lc-n007
	lc-p001
	lc-p002
	lc-p003
	lc-p004
	lc-p005
	lc-p006
	lc-p007
	lc-p008
	lc-p009
	lc-p010
	lc-p011
	lc-p012
	lc-p013
	lc-p014
	lc-p015
	lc-p016
	lc-p017
	lc-p018
	lc-p019
	lc-p020
	lc-p021
	lc-p022
	lc-p023
	lc-p024
	lc-p025
	lc-p026
	lc-p027
	lc-p028
	lc-p029
	lc-p030
	lc-p031
	lc-p032
	lc-p033
	lc-p034
	lc-p035
	lc-p036
	lc-p037
	lc-p038
	lc-p039
	lc-p040
	lc-p041
	lc-p042
	lc-p043
	lc-p044
	lc-p045
	lc-p046
	lc-p047
	lc-p048
	lc-p049
	lc-p050
	lc-p051
	lc-p052
	lc-p053
	lc-p054
	lc-p055
	lc-p056
	lc-p057
	lc-p058
	lc-p059
	lc-p060
	lc-p061
	lc-p062
	lc-p063
	lc-p064
	lc-p065
	lc-p066
	lc-p067
	lc-p068
	lc-p069
	lc-p070
	lc-p071
	lc-p072
	lc-p073
	lc-p074
	lc-p075
	lc-p076
	lc-p077
	lc-p078
	lc-p079
	lc-p080
	lc-p081
	lc-p082
	lc-p083
	lc-p084
	lc-p085
	lc-p086
	lc-p087
	lc-p088
	lc-p089
	lc-p090
	lc-p091
	lc-p092
	lc-p093
	lc-p094
	lc-p095
	lc-p096
	lc-p097
	lc-p098
	lc-p099
	lc-p100
	lc-p101
	lc-p102
	lc-p103
	lc-p104
	lc-p105
	lc-p106
	lc-p107
	lc-p108
	lc-p109
	lc-p110
	lc-p111
	lc-p112
	lc-p113
	lc-p114
	lc-p115
	lc-p116
	lc-p117
	lc-p118
	lc-p119
	lc-p120
	lc-p121
	lc-p122
	lc-p123
	lc-p124
	lc-p125
	lc-p126
	lc-p127
	lc-p128
	lc-p129
	lc-p130
	lc-p131
	lc-p132
	lc-p133
	lc-p134
	lc-p135
	lc-p136
	lc-p137
	lc-p138
	lc-p139
	lc-p140
	lc-p141
	lc-p142
	lc-p143
	lc-p145
	lc-p146
	lc-p151
	z

