oL

3
SHRE
3 :;?',‘:J

)

3 Jé:r -

A Pocket Handbook
for the Dragon

A Pocket Handbook
for the
Dragon

Peter Gerrard
&
Danny Doyle

Duckworth

First published in 1984 by
Gerald Guckworth & Co. Ltd.
The Old Piano Factory
43 Gloucester Crescent, London NW1

© 1984 by Peter Gerrard

All rights reserved. No part of this publication
may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording
or otherwise, without the prior permission of the
publisher.

ISBN 07156 1788 5

British Library Cataloguing in Publication Data

Gerrard, Peter

A pocket handbook for the Dragon.
— (Duckworth home computing)

1. Dragon 32 (Computer)

1. Title

001.64'04 QA76.8.D7

ISBN 0-7156-1788-5

Cover design: The Tab and the Arcuate stitching
pattern are, when applied to a pair of jeans, the trade
mark of Levi Strauss & Co., San Francisco, U.S.A.

Printed in Great Britain by
Redwood Burn Ltd., Trowbridge
and bound by Pegasus Bookbinding, Melksham

Contents

Preface

ASCll tables

ASCIll codes

Basic expressions
Basic keywords

Basic functions

Basic error messages
Cassette port
Centronics standards
Character codes
Colour codes

Disk commands

Edge connector

Flow charting
Graphics notes
Screens and pages
Screen start addresses
PMODES

Description of graphics modes
Hex/Dec convertor
Hyperbolic functions
Joystick slot

Low resolution grid
Print@ grid

6809 M/C instruction set
6809 mnemonics
Machine code register
Memory map
Memory architecture
Powers tables

Printer port

RS232 standards
Useful hints and tips

Index

Preface

This book is a collection of relevant facts and figures for your
Dragon 32 computer. Owing to the way the Dragon 64 has
been designed, a lot of this will apply to that newer model as
well.

In addition to memory maps, microprocessor instruction set,
detailed notes on the available {and unavailable and undocu-
mented) graphics pages, BASIC commands, error messages
{again a few that you won’t find in the Dragon manual but
which none the less exist), and more, this book contains just
about any fact or figure about the Dragon that you’ll ever need
to know.

In response to helpful suggestions from others (inciuding Peter
Worlock: thank you!), this handbook includes more than just
facts and figures. At the end of the book there is an eight-page
collection of useful hints and tips that make use of some of the
material contained in the rest of the book. This should make
the information contained here that little bit more accessible.

We'd like to thank anyone who, directly or indirectly, has con-
tributed material to us. As ever, your comments are most
welcome.

P.G.and D.D.

ASCIl tables

Standard ASCII characters (7-bit code)

. i 2 3 s 3 7
MSD
LSD 000 001 010 011 101 110 111
" -
o 0000 NUL DLE SP [} e P P
1 0001 SOH DC1 ! 1 a -} a q
2 oo10 STX DC2 L 2 B R b r
3 0011 ETX DC3 £ 3 c s c s
4 0100 EOT DC4 3 4 D T d E
s 0101 ENG NAK % s E u e u
6 o110 ACK SYN & 6 F v + v
7 o111 BEL ETB » 4 [5 "] 9 w
8 1000 BS CAN [[} H x h *
9 1001 HT EM) 9 1 Y i ¥
A 1010 LF suB . : 3 z i z
B 1011 vT ESC + 5 K 3 "
B 1100 FF FS ¥ < L 1
D 1101 CR 6s - = M o
E 1110 so RS B b N n
F 1111 ST us ’ k4 a o DEL
— -+
The ASCII symbols.
NUL - Null DLE - Data Link Escape
SOH - Start of Heading DC - Device Control
STX — Start of Text NAK - Negative Acknowledge
ETX - End of Text SYN - Synchronous Idle
EOT - End of Transmission ETB - End of Transmission Block
EN@ — Enquiry CAN - Cancel
ACK - Acknowledge EM - End of Medium
BEL - Bell (audible alert) SUB - Substitute
BS - Backspace ESC -~ Escape
HT - Horizontal Tabulation FS - File Separator
LF - Line Feed GS - Group Separator
VT - Vertical Tabulation RS - Record Separator
FF - Form Feed US - Unit Separator
CR - Carriage Return SP - Space (Blank)
SO - Shift Out DEL - Delete
SI - Shift In

Keyboard CNTL Sequences.

CNTL
CNTL
CNTL
CNTL
CNTL
CNTL
CNTL
CNTL
CNTL
CNTL
CNTL
CNTL
CNTL
CNTL
CNTL

@TMMOO @D~

H/BS
1/TAB
J/LF

M/CR
N

DLE - CNTL P
DC1/2/3/4 - CNTL Q/R/S/T
NAK - CNTL U

SYN - CNTL ¥

ETB - CNTL W

CAN — CNTL X

EM - CNTL Y

SUB - CNTL Z

ESC - ESC

FS - CNTL BACKSLASH

G5 - CNTL *

RS - CNTL =

us — CNTL -

SP - Space

SI - CNTL 0

ASCIl codes

ASCI1 Codes for kevys

- KEY HEX # DECIMAL # -
- Unshifted Shifted Unshifted Shifted =
= BREAK 03 03 03 03 -
- CLEAR ocC - 12 - =
- ENTER oD oD 13 13 -
= SPACE 20 - 32 - -
= ! 21 - 33 - -
= " 22 - 34 - -
= * 23 - 35 - =
- s 24 - 36 - -
- % 25 - 37 - -
- & 26 = 38 - =
o ' 27 = 39 = -
- € 28 - 40 - -
- ¥ 29 - 41 = -
- * 2A - 42 - -
= + 28 - 43 - =
L . 2C = 44 = =
= - 2D = 45 - -
- . 2E - 46 - -
i / 2F = 47 & =
- (e} 30 12 48 12 -
- 1 31 = 49 = =
- 2 32 - 50 - =
- 3 33 - 51 - -
- 4 34 = 52 e =
= S 35 - s3 - =
=. & 36 - 54 - -
- 7 37 - 55 - -
= 8 38 - 56 - -
- 9 39 = 57 = -
- B 3A - S8 - -
2 1 3B - 59 - =
= < 3C - 60 = =
- = 3D = 61 - =
- > 3E - 62 iy =
- ? 3F 63 = -
- a 40 13 64 19 -

= KEY

HEX #

DECIMAL #

Unshifted Shifted

Unshifted Shifted

= =
- A 61 41 97 65 -
- B 62 42 98 b6 =
= o] 63 43 99 67 -
= D 64 44 100 68 -
- E 65 45 101 69 -
- F 66 a6 102 70 =
had 6 67 47 103 71 -
= H 68 48 104 72 =
= 1 69 49 105 73 -
= J 6A aA 106 74 =
- K)] 4B 107 75 -
- L 6C ac 108 76 -
= M 6D 4D 109 77 -
- N 6E 4E 110 78 -
-] 6F 4aF 111 79 =
= P 70 S0 112 80 -
= Q 71 S1 113 81 Ld
- R 72 52 114 82 -
- S 73 S3 115 83 -
- T 74 5S4 116 84 -
- u 75 S5 117 85 -
- v 76 Sé6 118 86 -
= W 77 57 119 87 =
= X 78 S8 120 88 -
- Y 79 59 121 89 -
- 4 7A SA 122 90 -
- LCul SE SF 94 95 =
- icpl 0A SB 10 91 -
- [CLl o8 15 8 21 -
- {CR] 09 SD 9 93 -
Note : CU is the up-arrow key

CD is the down-arrow key

Cl is the left—-arrow key

CR is the right-arrow key

10

Basic expressions

In Dragon Basic, numeric expressions are carried out with
the following priority.

1) Brackets () gives expressions within
brackets higher priority.

2) Functions see section on BASIC functions.
3) Arithmetic exponentiation
operators - negation
- multiplication
! division
+ addition

subtraction

4) Relational = is equal to
operators <> not equal to
< less than
> greater than
<= less than or equal to
>= greater than or equal to
5) Logical

operators

These, and the rslational operators, return a value of (-1)
if the result of an expression is true, or (0) if it is
false.

NOT % NOTX
OR X A X DR Y
AND X Y X AND Y

To set a particular bit in a memory location, and keep the
rest as they were, vou must POKE (LOC),PEEK(LOC) OR X. X
must have one of the following values:

Value Bit set

To set more than one bit, use a combination of the above
values. To check if a bit in a memory location is set, you
must POKE (LOC),PEEK(LOC) AND X, where again X comes from
the above table.

11

Basic keywords

[X] indicates the name of a paramet

Connects or disconnects cassette output to TV, for recording
sound effects on tape to be played back later using MOTOR
command.

AUDIO ON
AUDIO OFF

CIRCLE

Draws a circle on the graphics screen.

CIRCLE ([X1,LY1),[R1,[list of attributes]

X indicates X co-ordinate of position of centre of circle.
Y indicates Y co-ordinate of position of centre of circle.
R indicates radius of circle.

[list of attributes] is made up as follows.
[C3,[HW],[STARTI,[END]

C indicates colour of circle.

HW indicates the height/width ratio (for ellipses).

START indicates starting position of circle.
END indicates end position of circle.

Resets all variabl to zero if numeric , or null strings if
string, reserves space for strings, and sets top of BASIC.

CLEAR [string spacel,laddress]

string space is the number of bytes reserved for strings.
address is the highest address that BASIC will use.

Loads BASIC program from tape in either ASCII or token form.
CLOAD

CLOAD ™"
CLOAD "“[filenamel”

12

CLOADM

Loads machine code program from tape.

CLOADM

CLOADM ™™

CLOADM “"[filenamel"

CLOADM "",[offset]

CLOADM "[filenamel",[offset]

offset moves program up in memory from the original saved
address.

Closes any open files or devices.
CLOSE [device number]

1f device number is not specified, all files currently open
are closed.

cLs

Clears the screen and sets the background colour.
CLS [colour]

COLOR

Sets the background and foreground colours on a graphics
page.

COLOR [foregroundl,[backgroundl
Note American spelling of colour!

CONT

Continues a program after execution has been halted. It
won't work if any program changes are made before issuing
the command.

CONT

Saves a BASIC program onto tape.

CSAVE

CSAVE ="
CSAVE "[filenamel"
CSAVE "",[A]
CSAVE "[file

"y [A]

The ‘A’ will save the program in ASCII format.

13

CSAVEM

Saves a machine code program onto tape.

CSAVEM "" ,[startl,lend],lentry]
CSAVEM "[filenamel",[start],lendl, [entryl

start indic first addraess to be s
end indicat 1 address to be saved.
entry indicates first address to be executed.

Stores data in program. Data can be either string or
numeric, and quotation marks are not for strings
unless you're using a comma within that string.

DATA [numberl,(stringl,["string"]

Defines a numeric function.

DEF FNLnamel ([varl)=[expressionl]

The variable (VAR) used will only affect the expression, and
won't change any variable of the same name elsewhere in the

program.

DEFUSR

Defines a machine code routine.

DEFUSRIn]=[addr 1

DEL

Deletes program lines.
DEL [X-Y1

De
Y.

tes from and including line X up to and including line

DEL [X-] deletes from line X onwards.

DEL [-Y] deletes from start of program to line Y.
DEL [-1] deletes the entire program.

DEL [X] deletes line X.

DIM

Dimensions a string or numeric array.
DIM [arrayl([sizel), [array]l([sizel)

This defines an array to hold (size) number of elements.
Arrays can be multi-dimensional (e.g. DIM A$(2,2,2,2)).

14

DRAW

Draws a line on a graphics page.

DRAW [list of parameters]

The
foll

Z DUDPOXI@TMMIrOCI

list of parameters may contain any or all of

the

owing, where X and Y are horizontal and vertical
co-ordinates and Z is simplv the number of positions to
moved:

move draw position (MX,Y or offset by M+X,+Y)
move/draw position up (UY)

move/draw position down (UY)

move/draw position left (UX)

move/draw position right (UX)

move/draw position at 45 degree angle (EZ)
ditto but at 135 degrees (F2)
ditto but at 225 degre {BL)
ditto but at 315 degrees (HI}
execute a substring and return
change colour to whatever

tilt everything at an angle
scale everything

before any movement command cea
moves

before any movement command doesn’'t update position
but returns to original cursor posmition

s to draw but still

Phew!

EDIT

Goes into edit mode.

EDIT [linel

In edit mode, there are a number of commands that can

be

be

used:

xC 1 change x characters

xD 1 delete x characters

H 1 delete rest of line and await new input

I 31 insert new characters

K 3 delete rest of line from current position

xKc : delete rest of line up to xth occurrence of
character ‘c”

L : list current state of line

xSc 1 search through line for xth occurrence of
character ‘c*

X 1 extend line and await new input

xSPACE 1 move along x spaces

x (CCLD) 1 move left x space (CL is left arrow

SHIFT(LCUY1) : leave insert mode and return to edit mode

ENTER : leave edit mode and store line.

To recall a line as it was before you edited it, press

SHIFT(ICUY), then press A and ENTER.

ELSE

See IF

END

Halts program execution.

END

Transfers program execution to machine code routine.
EXEC {address]
Go to the address specified.

FOR

Start of a program loop.

- NEXT ({variablel

FOR [variablel=[x13TOLx2ISTEPLx%31 .

Set the variable equal to xl1. Increment it in steps of »3
{(if omitted, this defaults to 1), and repeat it wuntil the
variable is equal to x2 plus x3. Program execution is then
transferred to the statement immediately after the NEXT
statement.

If %1 is less than x2, then STEP must be used, and x3 must
be a negative number. The variable is then decremented on
each pass through the loop.

GET

This saves a rectangle of a graphics screen and stores it in
a variable array for later recall (see PUT).

BET ([X11,LY11)-([X21,LY2]),[variablel,B

This saves the rectangle from the diagonally opposed corners
X1,Y1 and X2,Y2. The G specifies ‘save full graphic
detail . It may be omitted.

BOSUB

This performs a subroutine.

GOSUB [line number]

This transfers program execution to [line numberl, where
execution continues until a RETURN statement is encountered.

When it is, the program returns to the statement following
the GOSUB.

16

This transfers program execution to another line.
GOTO [line number]

IF

This indicates the start of a conditional relationship.

IF [condition] THEN [result) ELSE {another resultl]

If a condition is true. then we can either execute a
statement or branch to another line number. If it isn’t,
program execution continues at the line after the IF
statement, unless the optional ELSE is used, in which case
the statement or line number specified after the ELSE is
executed.

INPUT

Used for getting data from the user via the keyboard.

INPUT “[promptl”;lvariablell,[variable2],etc..

When this is used, program execution halts until the user
types something in and presses ENTER. If no prompt is
given, the semi-colon after it must be omitted.

INPUT#-1

Inputs data from tape.
INPUT#-1,[variablell,[variable2l,etc....

This gets data from tape that has previously been saved
using PRINT#-1.

LET

This assigns a value to a variable.
LET [variablel=lexpressionl
The use of LET is optional.

LIST

This lists a program onto the screen. is displayed at
great speed, and can be halted using the SHIFT and ‘@ keys
together.
LIST [X-Y1

This follows the same procedures for X and Y as DEL, except
that to list an entire program you must iust enter LIST.

17

This lists a program onto a line printer.
LLIST [X-Y1

This follows exactly the same procedures for X and Y as
LIST.

LINE

This, amazingly enough, draws a line!
LINE (CX13,CY11) - ([X21,C[Y21),Cal,[(b]

This draws a line from Xi,Y1l to X2,Y2. If X1,Y1 is omitted,
the end point of the last LINE or DRAW is used as the
starting point. If there hasn't been a previous LINE or
DRAW, then X1,Y! is assumed to be (126,96).

fal is either PSET or PRESET. If PSET, then the line is
drawn in the foreground colour, if PRESET then the line is
drawn in the background colour and is thus effectively
erased.

(bl is either B or BF. I1f B, then a rectangle is drawn
using X1,Y1 and X2,Y2 as the two opposing corners. If BF,
then a rectangle is still drawn, but it is also filled in
with the current foreground colour.

LINE INPUT

This allows data to be entered from the keyboard.

LINE INPUT “[prompt stringi”;[variablel
LINE INPUT [variable

This works in the same way as INPUT, except that LINE INPUT
will take an entire line of input, including leading spaces,
blanks etc. Everything is then placed in a string variable.

Note that you cannot use numeric variables with LINE INPUT,

This turns the cat tte motor on and off, allowing control
of the motor from within a program (see AUDIO).

MOTOR ON
MOTOR OFF

NEW

This removes the current BASIC program from memory. It
doesn ‘'t actually wipe the memory out, but instead merely
changes a few internal pointers so that the program can no
longer be accessed.

18

See the ‘Useful hints and tips’' section for a method of
recovering a program that has accidentally been NEWed.

NEW

This is a multiple branching statement to a set of
subroutines.

ON [variablel] GOSUB [line numberil,[line number2l, ..

If [variablel] is equal to one, the program will branch to
the subroutine at [line number1l, if it equals 2, it will
branch to [line number2], and so on. Be careful to match up
RETURNs with multiple GOSUB statements like this.

As above, but this merely sends program execution to a
specified line, without expecting a RETURN to be found
there.

ON Cvariablel GOTO [line numberil,[line number2],

OPEN

This opens a data file for reading or writing data.
OPEN "[al",#-1,[filenamel
If ‘is set as ‘0’y, then the file will be opened for

writing data, and if it's set to ‘I’ then the file will be
opened for reading data.

This fills in a section of a graphics page.

PAINT (LX1,LY])
PAINT ([X1,LYD),[colourl

PAINT ([X1,CY1),[colourl,border]

This paints in a section of screen starting at the
co-ordinates X and Y, using the [colour] specified. I1f no
colour is named, then the foreground colour is assumed. It

fills in everything until it reaches a boundary coloured in
the [borderl colour.

PCLEAR

This reserves memory for use with graphical displays.
PCLEAR [x1

This reserves '‘x’' graphics pages. If you're using text onlv
programs, use PCLEAR1 at the start of your program.

19

PCLS

This clears the current graphics page being used.
PCLS [x1

This clears the graphics page to colour [x]. If 'x’ is not
specified, then the current background colour is used.

PCOPY

This copies graphics pages.

PCOPY [x1 TO [yl

Copy graphics page x to graphics page y.

PLAY

Used for playing music, this is a multi-parameter command.
PLAY [command stringl

where command string can contain any or all of the
following:

A-G : musical notes

1-12 : musical tones

Ox 1 octave x

Vx : volume x

Lx : length of note

Tx ¢ tempo

Px i wait for x amount of time
Xx$: execute x string and return
or + : sharp note

- : flat note

- 1 play note half as long again.
PMODE

This selects the resolution and graphics page to be used.
PMODE [x11,[x2]

This selects the resolution to be x1, and the graphics page
to be used to be x2. See the graphics section for further

information.

POKE

This puts a specific value into a specific memory location.
POKE [locationl,[valuel

This puts the value [valuel into memory location [locationl

20

PRESET

This sets a specified X,Y co-ordinate on the graphics page
to the background colour.

PRESET ([X1,LY))

PRINT

This displays information on the screen.

PRINT “[expression]”[separatorl“[expression"Jletc....

If the expression is not within quotes, it can be either a
numeric or string variable. Anything within Qquotes is
literally printed as it is written. The separator can be a
comma (splits output into two 15 column displays), a
semi~colon (prints the next expression on the next column
space), or a space (as with a semi-colon, but the cursor
does not remain in its last print position).

PRINT USING

This is a very detailed way of formatting printed output.
PRINT USING [format stringlloutputl

foutput] is simply a 1list of variables to be printed,
separated by commas.

However, (format stringl is a lot more daunting, and can
contains

: indicates column to display decimal point in
. 1t indicates column to display a digit
i : put a comma to the left of every
third digit before the decimal point
T s fill all unfilled columns to the left with
asterisks
‘$’ ¢t precede number with a dollar sign
‘$$° : place dollar sign immediately to left of number
(i.e. not just at start of specified field)
‘xs : fill unused columns to left of dollar sign with

asterisks
specify whether a number is positive or negative
by displaying sign

¢ as above, but only specifies negative numbers
‘C4CU1° 1 display number in exponential form
e 4

print only first character of a string
specifies the length (number of ‘spc’) to which
a string variable will be printed

‘Yspct’

PRINT@

This prints the output at a specified location.

PRINT@ flocationl,{expression]

21

This prints the expression at the location numbered
{location lying between O and 511 on the screen).

FPRINTS®

Prints data to external devices.

PRINT#-1,[datal

PRINT#-2, [datal

PRINT USING#-1,[format stringls[datal
PRINT USING#-2,[format stringljldatal

This prints data either to cassette (#-1) or a printer
(#-2).

This sets a point on a graphics page to a specified colour.
PSET ([X1,[Y1,[CD
This sets the point X,Y to the colour C.

PUT

This puts a previously stored array (see GET) onto a
graphics page.

PUT ([X11,CY11)-([X21,CY2]),Lal,[b]

This puts the array stored in fal onto the graphics page at
top left hand corner X1,Y1 and bottom right hand corner
X2,Y2.

bl determines how it is placed there. If [bl is PSET, then
all the points in the array are set. If it is PRESET, then
all the points are reset. If it is AND, then all points
common to the screen and the array are set, if it‘s OR, then
all points that are set on the screen OR in the array are
set, and if it's NOT, then that area of the screen is
reversed.

READ

This reads the next item from a DATA statement.
READ [variablell,[variable2l, ...
See RESTORE.

REM

This allows remarks to be placed in a program, for greater
legibility when listing the program

REM [expressionl]
‘ [expressionl]

22

RENUM

Used for renumbering all or part of a program listing.
RENUM [newline),[(startlinel,lincrement]

This renumbers in steps of (increment), starting at the
number [hnewlinel, commencing from the 1line [startlinel in
the old program. GOTOs, GOSUBs, IFs, THENs and ELSEs are
all renumbered accordingly.

RESET

This sets a point on the text scr
colour.

to the background

RESET ([X1,LY1)

In other words, the point at X,Y is effectively erased from
the screen.

RESTORE

This allows previously READ data to be re-read.
RESTORE

The data pointer will now point back to the very first item
of data.

RETURN

Returning from a subroutine.
RETURN
See GOSUB.

RUN

This commenc program execution at either the +first line,
or a specified other line.

RUN [line numberl

SCREEN

This sets a graphics or a text screen and the colour set to
be used therein.

SCREEN [typel,[colour setl
[type) is either O for text or 1 for graphics. [colour setl

depends on current PMODE setting (see graphics commands and
colour codes sections for further information).

23

SET

This sets a point on the text screen to a specified colour.
Any points other than the point specified in the character
block containing that point are re-set to black.

SET (IXx1,{Y31,IC))

SKIPF

This allows you to move past a file on tape. If a filename
is specifed, the computer will run on through the tape until
the end of that file, and then stop the cassette motor.

SKIPF

SKIPF “*
SKIPF “"[filename 1"

This generates a sound of a specified pitch and duration
SOUND [pitchl,[durationl

STOP

From within a program, this terminates program execution.
The program can be re-started from the next executable
statement using CONT.

STOP

TRON and TROFF
This turns the trace mode on or off.

TRON
TROFF

24

Basic functions

ABS

This returns the absoclute value of a number.
ABS ([numberl)

This will give us a numerical value, regardless of whether
(number] is positive or negative.

ASC

This returns the Dragon‘s idea of the ASCII code for
specified characters.

ASC (Lstringl)

This gives us the ASCII code of the first character in
[stringl.

ATN

This returns the arctangent of a number in radians. For
those rusty on the geometry side, arctangent is the inverse
of tangent.

ATN (Cnumber 1)

As with all the geometric functions, numbers must be
converted to radians before being used.

CHRs$

This takes a number and prints out the ASCII character for
that number. See the sections on ASCII characters for
further information.

CHR$ ([humberl)

Some ASCII characters perform actions, as can be seen from
the sections on ASCII characters.

cos

This returns the cosine of a number in radians.

COS (Lnumberl)

25

EOF

This indicates the end of a file from tape.

EOF ([file number])

More accurately, it tells us whether or not a given file
number has more data to come. If not, and a further INPUT

is specified, then an error occurs.

EXP

This is the inverse of LOG (see below).
EXP t(I[numberl).
This raises the natural logarithm ‘e’ to the power [numberl.

FIX

A useful routine for removing all digits after the decimal
point of a number.

FIX (Cnumberl)

HEXS$

This converts a number to hexadecimal.
HEX (Cnumberl)

This returns the hexadecimal string consisting of the digits
A to F and O to 9 which is represented by the decimal number
[numberl.

INKEYS

This is used for receiving one character at a time from the
keyboard.

INKEY$
Z$=INKEY$

Is$ will equal the last charact pre d on the keyboard,
apart from those in INPUT etc. statements. In other words,
you may have INPUT something, and then issued an INKEYS
command. The INKEY$ command will sit and wait until
something is pressed.

INSTR

This searches a specified string for a specified sub-string.
INSTR (Cnumberl,[stringil,[(string2)

This searches through stringl for the occurrence of string2,
starting at the [numberlth character of stringl. This will

26

return either the starting position of string2, or a zero if
string2 is found not to exist in stringil.

INT

This converts a number to integer format.

INT (Inumberl)

This removes anything after the decimal point, and also
(which is were it differs from FIX), rounds numbers down

regardless of whether they are positive or negative.

JOYSTCK

This returns a value depending on the position of the
joystick (either left or right).

JOYSTCK (Cnumber1)

0 indicates the horizontal position of the right joystick.
2 indicates the horizontal position of the left joystick.
indicates the vertical position of the right joystick.
3 indicates the vertical position of the left joystick.

-

LEFTS

A string manipulation command that returns the LEFTmost
characters from a string.

LEFTS$ ([stringl,[numberl)

This returns the leftmost [number]l of characters from the
string [stringl.

LEN

This returns the LENgth of a specified string.

LEN ([stringl)

This returns the number of characters in the string
[stringl, regardless of whether they are control characters,

text characters, or whatever.

Los

This returns the natural logarithm of a number, which must
be a positive one.

LOG (Lnumberl)

This returns the amount of free memory still available to
the programmer in BASIC.

27

MEM

This memory is available for programs and data, and does not
include any set aside for screen and graphics pages.

Another string manipulation command, which returns a
specified part of a specified string.

MID$ (Cstringl,[numberl],number21)

This returns a substring of [stringl, starting at the
[numberilth character, and taking ([number2] characters.
(number2) may be omitted, in which case the substring will
consist of all the characters in [stringl from the
{number1lth onwards.

This command can also work in reverse, in that part of a
string can be replaced with another substring. For example:

A$="HELLO THERE MY FINE FELLOW"
MID$ (A$,16,4)="UBLY"

PRINTAS

The result would be:

HELLO THERE MY UGLY FELLOW

PEEK

This returns the contents of a specified memory location

This returns whatever value happens to be stored in memory
location [addre: at the time.

POINT

This checks for the presence of a dot on a text screen.
POINT ([X1,LY])
If there is a text character at location X,Y then a -1 is

returned, if there’s nothing there a zero is returned,
otherwi the current colour of the dot is returned.

POS

Unusual in that on the Dragon this works for both screen and
printer, this returns the current horizontal position of the
cursor.

POS ([numberl)
Here, if the number was equal to O the position returned

would refer to the screen, and if it equalled 1 the position
returned would refer to the printer.

28

PPOINT

Same as POINT, only this time we're checking for a dot on
the graphics screen.

PPOINT (C[XJ,LYD)

If the location specified is turned off, a O is returned,
otherwise the colour of the dot is returned.

RIGHTS

Another string manipulation command, this returns the
RIBHTmost specified number of characters from within a
specified string.

RIGHT$ ({stringl,(numberl)

This returns the rightmost C[numberl characters from within
[stringl.

RND

This is used for generating integer random numbers.

RND ({number 1)

This returns an integer random number in the range 1 and
number. If RND is used without a number, then a real number
between O and 1 is returned.

To generate a number in the range X to Y, use the formula:
RND(X—=1)+Y=X+1

SGN

This returns the sign (positive, negative or zero) of a
number .

SGN (L{number])

=1 is returned if the number’'s negative, O if it eqguals
zero, and +1 if it is positive.
SIN

eturns the sine of a
expressed in radians.

Another geometric function, thi
number, assuming that the number

SIN (Cnumber1)

STRINGS

This is used for building up strings of specified length.

STRINGS ([Lnumber1l,{number2])

29

STRING$ ([numberil,[stringl)

In the first instance, a string will be made of Ilength
fnumberll, consisting of the character whose code is
[number2]. In the second example, the string will again be
of length [number1], but will consist this time of the first
character contained in [stringl.

STR$

This performs a numeric to string conversion.

STR$ (Cnumber 1)

This will convert the number contained within (C{numberl into
a string, but note that it also adds a leading space to the
new string funlike some machines, which add control

characters!).

SER

This finds the square root of a number.
SE@R ([numberl)

If Cnumberl] is negative, then the program will report an
srror code.

TAN

Our final geometrical function, this returns the tangent of
a number, assuming that the number is expressed in radians.

TAN (Cnumberl)

This either sets or returns the variable TIMER.

TIMER
TIMER= (C[numberl)

In the first case, the computer will print out the length of
time, in fiftieths of a second, that it has been switched on
for. However, if the value stored in TIMER exceeds &5535,
then it is reset to zero.

In the second example, TIMER acts as a variable and is given
the value [numberl. It will still be incremented every
fiftieth of a second (approximately).

USR

This calls a user—defined machine code routine that was
earlier defined using DEF USR.

USR (nl(Cnumberl)

30

VAL

The opposite of STR$, this converts a string back to a
number again.

VAL ([stringl).

This returns the numeric value of the string contained in
(stringl. If [string]l contains a non-numeric character,
then onlv characters to the left of that are considered.

VARPTR

This gives the memory location of wh a variable is stored

in memory.

VARPTR ([number1])

This returns the start address of where the variable in
[number) is stored. With arrays, if number was equal to,
say, the first element of the array A(15), then the value
returned would be the start location for that first element.
Other elements could then be found, since each one occupies
S bytes of memory.

31

Basic error messages

The Dragon is not equipped with the best set of error
messages on a home computer, as a glance below will show.
How many pecple can remember what a DS error is? The table
below contains them all, including the two Dragon forgot
about.

These are onlv the error messages generated by the computer
itself when NOT used with disk drives. there = an
additional set of messages for those (some are repeated e.g.
FD ERROR can mean Bad File Data, or Full Directory!), and
they are repeated at the back of the disk drive manual,
albeit in cryptic form. But, since this 1s for the
computer., and since the computer manual doesn’'t list all of
them anyway, here we go.

MESSAGE EXPLANATION

/0 An attempt has been made to divide bv zero.

AD An attempt has been made to open a file which
is alreadv open.

BS This usually occurs when an attempt has been
made to use an arrav subscript that is outside
range it was defined to lie in.

CN A ‘can’t continue error’. Usually when the user
has typed in CONT after altering a program.

DD A’ dimensioned array error ', when an attempt
has been made to re-dimension an already
dimensioned arrav.

DN (%) A device number error, which refers either
to the screen or kevboard, the tace deck, or the
printer.

Ds A direct statement error, which usuallv occurs
when a data file on tape contains a direct
statement.

FC An illegal function call error, which occurs when
a parameter is out of range, either in a
statement or a function.

FD A ‘file data’ error. This occurs when the wrong
type of data is being read in from a data file.
That is, a string variable is trying to be read
into a numeric one, or vice versa.

32

MESSAGE

LS

NF

NO

oD

oM

o0s

ov

RG

SN

sT

™

EXPLANATION

A ‘file mode’ error. This happens when vou trv
to input data to a file that is waiting for
output. or attempt to output data to an input
file.

An illegal direct statement. This occurs when
you've attempted to use in direct mode a command
that can onlv be executed from within a program.

An attempt has been made to input data from
bevond the end of a file.

An Input/Output error. This is either caused by
incorrect adiustment of the cassette deck (e.g.
volume too hioh or too low), or by a tape that
is faultv.

A ‘string too long’ error, which occurs when a
string exceeds 255 characters in length.

A ‘next without for' error, which occurs when a
NEXT statement is found where it wasn’'t expected
(i.e. there is no corresponding FOR statement)

A file hasn't been opened, and you can’'t read
from or write to a file without opening it first.

An ‘out of data’ error. An attempt has been made
to read some data that doesn't exist. or there
are no elements left to read in a data statement.

An ‘out of memory’ error. This occurs when there
is absolutely no memorv left (either free or
unreserved) in the computer.

No room left for strings, since it’'s all been
taken up. To correct, you can either try a
CLEAR, or reserwe more string space at the
start of your programs.

An overflow error. The result of a calculation
is too large for the computer to handle.

A ‘return without gosub’ error. That is, the
computer has found a RETURN statement without
a corresponding GOSUB statement.

The most common one of all, a syntax error!
This occurs when the Dragon can ‘'t understand
something, usually as the result of a spelling
mistake, a missing space or punctuation mark,
or an incorrect number of parameters.

A ‘string formula too complex’ error. That is,
a string formula within a BASIC statement is
too long, so you’ll have to break it up a bit.

A ‘type mismatch’ error, which occurs when numeric
data is assigned to a variable, or vice versa.

33

MESSABE

uL

34

EXPLANATION

An ‘unidentified function’' error, which occurs
when an attempt has been made to use a function
that has not previously been defined in the
program.

An ‘unidentified line number’ error, which occurs
when the program attempts to branch to a line
which doesn 't exist.

Error code not in original manual.

Cassette port

35

Centronics standards

CENTRONICS PARALLEL INTERFACE

Busy is set if:

1) Data is being received.
2) Printer is printing.
3) Printer is offline.
4) An error condition is present.

On pins 02-09 a high level represents binary ONE, a
low level represents binary ZERO. All printable
characters (i.e. codes having a ONE in DATA 6 or
DATA 7) are stored in the printer buffer. Control
characters (i.e. codes ZERO in both DATA 6 and

DATA 7) are used to specify special control functions.
These codes are not stored in the buffer except when
they specify a print command and are preceded by at
least one printable character in that line.

PIN CODE FUNCTION
________ +

o1 STROBE Read Data Pulse.

02 DATA 1 Data lines.

3 DATA 2 ditto.

04 DATA 3 ditto.

05 DATA 4 ditto.

06 DATA 5 ditto.

07 DATA 6 ditto.

o8 DATA 7 ditto.

09 DATA B ditto.

1® ACKNLG Data Received and Ready for More.
11 BUSY Not Ready for Data.

12 PE SET high when Out-of-Paper.

13 +5V

14 AUTO FEED Switch Set gives extra line—feed.
15 NC No Connection.

16 GND LOGIC Lagic Ground.

17 GND CASE Chassis Ground.

18 NE No Connectian.

19-30 GND Signal Grounds.

31 INT Reset and Buffer Clear.

32 ERROR See Notes on EUSY.

33 GND Signal Ground.

34 NC No Connection.

35 +5v

36 SLCT IN Optional DC1/DC3.

Character codes

2
12

[0 T N T Y, S N

96

koo, oy 4

s¢ | ep |

[}

5

2> 3 X >N

J

(4]

Wuwv IHHR

48 | &4 | B2

"

<4

U Y

32

”

% o

R0, -«

+.

1p |20 | 30 | 40

le

[

—l

2> R>» Nw -

]
[}

§]

o

WwwoHhB

Y

HEX

DeC

n

<+

weraoa §

=]

14 | N
1S

L]

<+

09~ g

37

|

Sl coxw kD xr No kel

w% < uou IHhx 1720

S|P oxoato x> N]

$le@covou IHh Y 1520

Wm - m <+ o o Ll O R
~N

M.o - #Qv% o~x+. | o~
K -~ 0N <+ v 85¢123$5
a L I S]

x

W - M+ 0 W MNcDdU O WL

38

Colour codes

PMODE Colowr Two - Colour Four - Colour
” Set Combinakion Combinalion
“ 2 Black / Green c
1 Black] Bug —_
. 2 - Grean) Yelloxs) Blue fud
1 — By [Gyor/Hiagenta/ Ormnge
2 o Blacky s
1 Black/[Buy
2 - Green/ Yellow . &uc/ Red
2 — By Cponf et/ e
2 [} Black/ (Green - /
1 Black/8 wht —
CovE CokouvRr

Black

L T

Disk commands

For the benefit of those with disk drives who'd like a handy
list of all the new commands, here we go:

Command Purpose

AUTOD Generate automatic line numbers.

BACKUP Makes a backup copy of a whole disk.

BEEPx Makes x separate beeps.

BOOT Boots a new operating system into RAM.

CHAIN Loads and runs a BASIC program with all
variables intact.

CLOSE Closes all disk files.

COPY Copies files from one disk to the same disk,
or another one.

CREATE Reserves disk space for a file.

DIR Prints out the disk directorv.

DRIVEx Selects a drive (from i to 4).

DSK INIT Formats a disk.

ERL Gives the line at which the last error
occurred.

ERR Gives the code of the last error generated.

ERROR GOTOx Jump to line x if an error occurs.

FLREAD Reads a record from a file (like LINE INPUT).

FRES$ Gives the amount of free string space.

FREAD Reads a record from a file.

FREE Gives the number of free bytes on a disk.

FWRITE Writes a record to a file.

HIMEM Gives highest memory location used by BASIC.

KILL Erases a file from disk.

LOAD Used to load BASIC or machine code programs.

Loc Gives position of the read pointer.

LOF Gives the length of a file in bytes.

MERGE Merges a file from disk.

PROTECT Protects files against accidental erasure.

RENAME Renames a file on disk.

RUN "name" Loads and runs BASIC programs.

SAVE Saves BASIC or machine code programs.

SREAD Reads a record from a specific sector.

SWAP A.B Swaps the values of A and B.

SWRITE Writes a file to a specific sector.

VERIFY Turns off and on automatic verifying.

WAITx Pauses program execution for x milliseconds.

40

Edge connector

This 40 pin connectar

PIN NUMBER

woh

10-17

19-31
32
33-34
35
36
37-39

40

is configured as follows:

-12v

+12v

HALT

NMI

RESET

E (6809 CLOCK)

Q@ (6809 CLOCK)
CB1

5y

DO-D7

READ/WRITE
A0-A12
COOO-FEFF (CHIP SELECT)
(%

ANALOGUE IN
FF40-FFSF SELECT
A13-A15

TURNS OFF INTERNAL ROM

a4

Flow charting

Flow fo right Flow IL-/DIO Crossing
down

: Flo u)// nes

Connector

Flow _Drection. Symbols.

Flow fo lect - > f&
—_—

Flowlene
TJunction

Terminal

VA@

Basic Foress Decision Fedepined flucass Ausliany Operalion

Collate

Basic7/o Online storge w.eswzge W A:i

Papertape Display Manual /n/m.t
lnput [Output Function Symbols.

[JCCY 10
2 0= Y

netic

42

Graphics notes

The graphics capabilities of the Dragon are probably
superior to those of almost any other home computer, and vyet
their use (and documentation) remain a mystery to most.

In this (and in the ‘Useful Hints and Tips® section), we're
going to try to cram in as much graphical information as
possible. You've got the actual commands in the two earlier
sections on BASIC, so without further ado let’'s start on
graphics modes.

There are actually 14 of these, although only seven are
implemented on the Dragon's version of BASIC.

= Mode Resolution Implemented Number Number -
- in of of -
- BASIC colours bytes -
- X Y pPer screen per screen=
: 1 (A/N) 32 16 Yes 2 0.5K :
: 2 (8/6 & 64 32 Yes 8 0.5K -
: 3 (S/6 &) 64 48 No 4 0.5K =
: 4 (s/6 8 b4 64 No 8 2.0K -
: S5 (/G 12) 64 96 No 8 3.0K -
: 6 (S/86 24) 64 192 No 8 6.0K -
: 7 Graphic &4 &4 No 4 1.0K -
: 9 Graphic 128 64 No 2 1.0K -
:IO Graphic 128 96 Yes 2 1.5K -
:ll Graphic 128 96 Yes 4 3.0K -
:12 Braphic 128 192 Yes 2 3.0K s
:13 Braphic 128 192 Yeos 4 6.0K -
:14 Braphic 256 192 Yes 2 6.0K -

Notes A/N signifies alphanumeric.
S/6 signifies semigraphical.

43

Screens and pages

The video memory is divided up even further than this into
the text screen section and the graphics screen section,
which is itself divided up into 8 pages. each one taking up
1.5K of memory.

13824 3400
PAGE 8 PMODEO SCREENS
12288 3000 PMODE1&2 SCREEN4
PAGE 7 PMODEO SCREEN7
10752 2400 PMODE3%4 SCREEN2
PAGE & PMODEO SCREEN&
9216 2408 PMODE1%2 SCREENS
PAGE S PMODEO SCREENS
7680 1E0O
PAGE 4 PMODEO SCREEN4
6144 1800 PMODE1&2 SCREEN2
PAGE 3 PMODEO SCREENS
4608 1200 PMODE3&4 SCREEN!
PAGE 2 PMODEO SCREENZ
3072 0CO0 PMODE1%2 SCREEN1
PAGE 1 PMODEO SCREEN1
1536 0600
1024 0400 TEXT STANDARD TEXT AND

SCREEN SEMIGRAPHICS4

Screen start addresses

There is a 7 bit register in the video graphics chip which
determines where the start of the screen will be in memory.
To get the actual memory location, the value in this
register must be multiplied by S12. Being a 7 bit register,
it is controlled by 14 (2 per bit) different memory
locations, as indicated below.

BIT NUMBER MEMORY LOCATION ACTION
HEX DEC

& FFD3 65491 SET BIT &
& FFD2 65490 RESET BIT &
L] FFD1 65489 SET BIT &S
5 FFDO 65488 RESET BIT S
4 FFCF 65487 SET BIT 4
4 FFCE 65486 RESET BIT 4
3 FFCD 65485 SET BIT 3
3 FFCC 65484 RESET BIT 3
2 FFCB 65483 SET BIT 2
2 FFCA 65482 RESET BIT 2
1 FFCY 65481 SET BIT 1
1 FFCB 65480 RESET BIT 1
o FFC7 65479 SET BIT O
o FFC6 65478 RESET BIT O

45

PMODES

For different PMODEs and colour-sets, there are a variety of

different colours available to us. Ne to
greater the resolution displayed on screen, the

say, the

fewer
colours we have access to.
The following table shows the various relationships.
=PMODE No. Colour set Colours Available -
- =
= 4 o Black/Green -
= 4 1 Black/Buff -
=- 3 o Green/Yellow/Blue/Red -
= 3 1 Buff/Cyan/Magenta/Orange -
= 2 o Black/Green -
- 2 1 Black/Buff -
- ! o Green/Yel l ow/Blue/Red =
= 1 1 Buff/Cyan/Magenta/Or ange =
- o o Blaick/Green -
- o 1 Black/Buff =
The next table shows how our selection of PMODE number
determines how many screens we can store in memory at the
same time, and therefore how many screens we can have access
to at once for producing animated effects.
= PMODE No. Pages/Screen No. of screens -
- 4 4 2 -
= 3 3 2 =
= 2 2 4 =
= 1 2 4 =
= o 1 8 =

46

Description of graphics modes

As we 've seen earlier in this graphics section, although the
Dragon only allows us to use 7 different graphics mode:
there are in fact 14 available altogether on the video chip
itself.

However, since you can only use 7 of them, there seems
little point in going into a detailed description of how all
of them work. Thus the following tables refer only to the 7
modes that we can access.

Each table will show the resolution available, the amount of
memory required to store a screen, and so on.

MODE1

Type: Alphanumeric/Normal Text
Resolution: 32 by 1&

Characters displayeds in normal format.
How they are stored in memory:

o Line 1 Character 1
1 Line 1 Character 2

32 Line 2 Character 1
33 Line 2 Character 2

The numbers relate to the amount by which the start address
of the screen is offset to display that character.

Amount of memory required for screen: 0.35K
Memory address of any char. at (X,Y) = 32#Y+X+START ADDRESS
Border Colour: Black
Foreground colour: Colourseti=0Orange
ColoursetO=Green

How to select this screen:

This is the standard screen at power on.

47

MODE2

Type: Semi Graphic 4

Resolution: 32 by 16

Characters displayed: in quarter squares.

How they are stored in memory:

o Line 1 Character 1
1 Line 1 Character 2
32 Line 2 Character 1
33 Line 2 Character 2

The numbers relate to the amount by which the start address
of the screen is offset to display that character.

Amount of memory required for screen: 0.SK

Memory address of any char.

Border Colour: Black
Character Colour: Bits Set
000

001
o10
011
100
101
110
111

at (X,Y)

Colour

Green
Yellow
Blue
Red
Buff
Cyan
Magenta
Orange

Bits set refers to bits 4,5 and & of each memory location

the screen.

How to select this screen:

Set/Reset when in text mode.

= 32#Y+X+START ADDRESS

on

a8

MODE10

Type: Graphics only
Resolution: 128 by 96 (two colours)
How they are stored in memory:

o Row 1 Columns 1 to 8
1 Row 1 Columns 9 to 16
16 Row 2 Columns 1 to 8

1534 Row 96 Columns 113 to 120
1535 Row 96 Columns 121 to 128

The numbers relate to the amount by which the start
of the screen is offset to display that character.

Amount of memory required for screen: 1.5K

Memory address of any char. at (X,Y) =
ROW#16+FIX ((COLUMN-1) /8) +START ADDRESS

Border Colour: Green (colour set O)

Buff (colour set 1)
Character Colour: Bits Set Colour
Black (colour set 0)
Breen (colour set 0)
Black (colour set 1)
Buff (colour set 0)

~0OmoO

address

Bits set refers to individual bit for each pixel on screen.

How to select this screen:

PMODEC

43

MODE11

Type: Graphic only (4 colours)

Resolution: 128 by 96

How characters are stored in memory:

As bit pairs, and thus each byte holds four columns.
Amount of memory required for screen: 3.0K

Memory address of any char. at (X,Y) =
32#ROW+FIX ((COLUMN-1) /4) +START ADDRESS

Border Colour: Green (colour set O)
Buff (colour set 1)

Character Colour: Bits Set Colour

00 Green (colour set 0)
o1 Yellow <{(colour set O)
10 Blue (colour set 0)
11 Red (colour set O)
00 Buff (colour set 1)
o1 Cyan (colour set 1)
10 Magenta (colour set 1)
11 Orange f(colour set 1)

Bits set r
memory.

rs to the bit pairs for each bvte of on-scr

How to select this screen:

PMODE1

50

MODE12

Type: Graphic only (2 colours)

Resolution: 128 by 192

How characters are stored in memory
As individual bits, and thus each byte holds eight columns.
Amount of memory required for screen:

Memory address of any char.

3.0K

at (X,Y) =

16#ROW+FIX ((COLUMN-1) /8) +START ADDRESS

Border Colour: Green (colour set O)
Buff (colour set 1)

Character Colour: Bits Set Colour
1

o
1
o]

Bits set refers to the
on-screen memory.

reen
Black
Buff

Black

individual

How to select this screen:

PMODE2

(colour set 0)
(colour set 0)
(colour set 1)
(colour set 1)

bit for each byte

of

51

MODE13

Type: Graphic only (4 colours)

Resolution: 128 by 192
How characters are stored in memory:

As bit pairs, and thus each byte holds four columns.
Amount of memory required for screen: 6.0K

Memory address of any char. at (X,Y) =
32#*ROW+FIX ¢ (COLUMN-1)/4)+START ADDRESS

Border Colour: Breen (colour set 0)
Buff (colour set 1)

Character Colour: Bits Set Colour
00

Green (colour set 0)
01 Yellow (colour set O)
10 Blue (colour set 0)
11 Red (colour set O)
00 Buff (colour set 1)
o1 Cyan {colour set 1)
10 Magenta (colour set 1)
11 Orange (colour set 1)

Bits set refers to the bit pairs for each byte of on—screen
memory.

How to select this screen:

PMODE3

52

MODE1 4

Type: Graphic only (2 colours)

Resolution: 256 by 192
How characters are stored in memory:

As individual bits, and thus each byte holds eight columns.
Amount of memory required for screen: 6.0K

Memory address of any char. at (X,Y) =
16#ROW+FIX ((COLUMN-1) /B) +START ADDRESS

Border Colour: Green (colour set 0)
Buff (colour set 1)

Character Colour: Bits Set Colour

1 Green (colour set 0)
o Black (colour set 0)
1 Buff (colour set 1)
o Black (colour set 1)

Bits set refers to the individual bit for each byte of
on—screen memory,

How to select this screen:

PMODE4

53

Hex/Dec convertor

o

ecimal ¢ Hexadecimal Conversions

HEXADECIMAL COLUMNS

& 5 4 3 2 1

HEX DEC HEX DEC HEX DEC HEX DEC HEX DEC HEX

o . o o a o i . . L]
1 1,088,576 1 65,536 1 1 1 16 1]
I 2,097,152 2 131,072 2 2 ¥ 32 2 2
I 3,145,728 3 196,608 3 3 I 48 3 3
4 4,194,304 & 262,144 4 4 4 64 & 4
5 5,242,880 5 327,680 S B 5 80 5 s
6 6,291,456 6 393,216 & 6 & 9 & &
7 7,340,032 7 458,752 7 7 7 uz 7 7
8 8,388,608 8 524,288 8 8 8 128 @]
9 9,437,184 9 589,824 9 9 9 144 3 9
A 10,485,760 A 655,360 A A A 160 A 10
B 11,534,336 B 720,897 B B B 176 B 11
C 12,582,912 C 786,432 C c c 192 € 12
D 13,631,488 D 851,968 D D D 208 D 13
E 14,680,064 E 917,504 E 3 E 224 E 14
F 15,728,640 F 983,040 F 61,480 F F 240 F 15

Notes.

To convert from hexadecimal to decimal, first find the corresponding
column position for each hexadécimal digit. Make a note of t

decimal equivalents,
converted decimal value.

then add the noted values together to obtain the

To convert from decimal to hexadecimal, find the largest decimal
value in the table that will fit into the number to be converted.
Next make a note of the hex equivalent and column position. Calculate
the decimal remainder, and repeat the process on this and any
subsequent remainders.

54

Hyperbolic functions

| FUNCTION

BASIC EQUIVALENT

| secant
COSECANT
COTANGENT

| INVERSE SINE

| INVERSE COSINE

INVERSE SECANT
INVERSE COSECANT

INVERSE COTANGENT
HYPERBOLIC SINE
HYPERBOLIC COSINE
HYPERBOLIC TANGENT

HYPERBOLIC SECANT
HYPERBOLIC COSECANT
HYPERBOLIC COTANGENT

INVERSE HYPERBOLIC SINE
INVERSE HYPERBOLIC COSINE
INVERSE HYPERBOLIC TANGENT
INVERSE HYPERBOLIC SECANT

INVERSE HYPERBOLIC COSECANT

INVERSE HYPERBOLIC COTAN-
GENT

SEC(X)=1/COS(X)
CSC(X)=1/SIN(X)
COT(X)= TAN(X)
ARCSIN(X)=ATN(X/SQR(—X*X+ 1))
ARCCOS(X)= — ATN(X/SQR
(=X*X +1) +7/2
ARCSEC(X)=ATN(X/SQR(X" X— 1))
ARCCSC(X)=ATN(X/SQR(X* X —1))
+(SGN(X)=1°7/2
ARCOT(X)=ATN(X)+7/2
SINH(X)=(EXP(X)=EXP(~ X))/2
COSH(X)=(EXP(X)+EXP(— X))/2
TANH(X)=EXP (= X)/(EXP(x)+ EXP
(=X))* 241
SECH(X)= 2/(EXP(X)+ EXP(= X))
CSCH(X)=2/{EXP(X)— EXP(— X))
COTH(X)=EXP(~ X)/ (EXP(X)
—EXP(=X))*2+1
ARCSINH(X)=LOG(X+ SQR(X* X +1))
ARCCOSH(X)=LOG(X+SQR(X" X~ 1))
ARCTANH(X)=LOG((1+ X)/(1 —X))/2
ARCSECH(X)=LOG((SQR
(=X*X+1)+1/X)
ARCCSCH(X)=LOG({SGN(X)*SQR
(X*X+1/x)
ARCCOTH(X)= LOG((X + 1)/(x— 1)/2

55

Joystick slot

56

8z

92

vz

S S
T2

-

1T

d

T

ion gri

Tt
I

T

(44

oz

8t

ot

vl

2

Low resolut

o
w0
a mf
o
LR
CL
wa
wm
o
< <
e
< O
” |
o
o w|
" o
o)
~ of
o
~ o
- mf
-9
b]
-

57

Print @ grid

o-

"o

LE-]

@

o

LT

L

oo

o

LT

o=

~o

-

-

-a

-

12 3 48 & 728

A w3 8

128
160
192
384
416
448
480

6809 M/C instruction set

INDEXED ADDRESSING MODES

NON INDIRECT INDIRECT
Post-Byte [+ [Assembler] Post-Byte [+ |
rvee FORMS Form | OP Code | |#]| Fom | OPCode | |#]
CONSTANT OFFSET FROM R NO OFFSET R of A | 0|
5 81T OFFSET R 1o defaults 10 8-bit
8BIT OFFSET nR 1RR01000; 11 (n. Rl |1RR11000 4|1
16 BIT OFFSET n R 1RR01001|4]2 (n,R]__[1RR11001 Li
[ACCUMULATOR OFFSET FROMR A—REGISTER OFFSET AR 1AR00110| 1|0 1A, R} 0
B—REGISTER OFFSET B.R TRAR00101 1|0 18.R] [1RR10101]4| 0|
D—-REGISTER OFFSET) 0. R 1AR01011 /4|0 |D.A| [1AR11011|7]|0
[AUTO INCREMENT/DECREMENT R INCREMENT BY 1 A= [1RA00000[2[0 nolallowed
INCREMENT BY 2 R 0| [LRes} |1RR|000| 6|0
DECREMENTBY 1 -A 0 notallowed
DECREMENT BY2 A_[1RRo0011|3[0 | 1. -~ A j1RR10011[6| 0]
ICONSTANT OFFSET FROM PC 8BIT OFFSET n PCA xx@noo|1fv | (n.PCR| [1xx11100|a|1
16 BITOFFSET n.PCR [1xx01101|5]2 | |n PCR| l1xx11101]82
EXYENDEDINDIHECT 16 BIT ADDRESS - - o bt Inl 10011111 {5]|2
A-X.v Uos
X DONTCARE
NOTES

1 Gwen inthelableareihe basecycles and byte counts To determine Ihe tolalcycles and byte counts add the values

lromthe 6809 indexs

g modes table

2 R1ang A2maybe any par of 8 bitor any parr ol 16 bil regssters.
The 8 bl regsters are A.8.CC. OP
The 16 il egisters are X Y. U S. O PC
3 EAisthe efective address
4 Tne PSH and PUL instruclions require Scycles plus 1 cycte tor each byte pushed of pulled
§ 5(6) means S cycles itbranchnol taken. 6 cycles il taren
6 SWi sels I&F bils SW12and SW13do notatiect 18F
7 Conawions Codes sel asa direct iesullof the instruction
8 valueot hall.carryttag is undehined
9 Special Case—Carrysenib7is SET
LEGEND
OP Operation Code (Hexadecimal) 2 Zzeroyle)
Number of MPU Cycles W Ovedlow.2's compiement
Numberol ProgramBytes £ Canytombi?
-+ AdthmelicPlus | Tesland sel llrue cieared orherwise
Authmetic Minus + NotAfected
T Moty CC Condition Code Register
M Complement ol M Concatenasion
~ Transter nig. Logicator
H Hall-carrylrom bit3, Logicaland
M Negauve (signdil) « LogcalExclusiveor

59

) MODE:
INHERENT| DIRECT IEXTENDECIMMEDIATE] INDEXED' | RELATIVE 5
INSTRUCTION/ |-
FORMS [OP T T#[oP] [#[OP] [eJoP| [#|OP| 1 #]OP] °] #|DESCRPTION _|H
ABX 3|31 B~ X=X .
(UNSIGNED)
ADC ADCA 99| 4| 2[BY|S|3(69]2|2|afjasid: A+M:-C.-A 1
A0CB 09[4 |2[Fa|s|alcel2|zfesfe-|z- B-M.C-8 |1
ADD ADDA 98(a|2]s8|s| 3ee|2|2]a8ls- |2+ IR 1
ADDB DB(4 [2|FB|5|3CB|2 |2 |EB 4+|2+ B+M—-B 1
ADDD 036 |2|Fa|7|afca|e|afeafee|2- D-MM-1-0t
(AND ANDA 94| 4 | 2|Ba|s| 3843 2faalac]2- A M—A .
ANDB Daf& | 2|Fa (5| 3(Cd|2|2[Ed |4 |2 -8 .
ANDCC c|a|2 cc MM -cC
ASL ASLA |48 |2 |1 A s[1)1[11
aste s |2 |1 o} 0o o o34
ASL o8| 6 | z|Te|7| 3 6B 36 2+ mlic b bo 8|
ASR ASRA |47]21 A s|1/t]-[s
asm o721 EFEI]IIIID-D FIEEIR
ASR o7& |2f77|7| 3 &7 (6|2 mb o oo © Bf1fe1
8CC BCC zaf 3 |2[Branch C =0 [sfs]s[s]s
Lecc 10|5(6)| 4 [LongBranch as]efl
24 c:0
8CS BCS 25| 3 [2[Branch C -1 [s]s]ss]s
L8Cs 10{5(6)| 4 [Long Brancn o[s]as]s
25| C-1
BEQ BEQ 273 |2(Branch 2 =0 |ssfs]s|s
LBEQ 10|5(64 4|Long Brancn olafelefs
27 Z-0
8GE BGE 2C| 3 | 2(Branch - zero |ofs|ss|s
LBGE 10[5(6H 4[Long Branch = |afs|afss
2c|
8GT 8GT 2€[3 | 2|Branch > Zero [afs]sfss
L8GT 10[5(6)| 4 |Long Branch > [«[+|s[+|+
2€] Zero
B BHI 22| 3 | 2|Branch Higher |=|s|s]s]s
LEH 10[5(6) 4[LongBrancn wfnfufafe
22| Higher
BHS BHS 24| 3 | 2|Brancn Higher |«|sf+[<|+
or Same
LBHS 10(5(6)| 4 |LongBranch =]
24 Higheror Same
BIT BITA 95| a|2/Bs|5| 3|es|z|2[as|e:|2. Bit TestA (M~ A) |+[1]1[o|+
878 0s|a|2[Fs (4| alcs|z|2[es|a|2. BilTestB M~ 8 [+|1]1[0]+
BLE BLE 2F| 3 | 2[Branch < Zero |sfs|ss|
LBLE 10[5(6) 4|LongBranch = |ssfsfe]s
2F|
BLO BLO 25| 3 [2[Branch Lower |s[s|s[sfs
LBLO 10| 5(6)| 4 |Long Brancn alulefs]=
25 Lower
BLS BLS 23| 3 |2 [Branch Lower [s[s[sfs]
or Same
LBLS 10|5(6)[4|Long Branch ofofefefe
23| Lowes or Same
BLT BT 20| 3 | 2[Branch < Zero [s|efs]e[s
LeLt 10(st6)| 4 [LongBranch < |s|sfals|s
" 20| Zero
am| M 28| 3 |2 |Branch Mnus of=fefof=
LEMI 10[5(6)| 4|LongBranch efofelefe
28|
BNE BNE 26| 3 [2|Branch z =0 [sefe[s]s
LBNE 1 0|5(6)| 4 |LongBranch afefelefe
26 Zx0
BFL BPL 2a| 3 |2 [Brancn Pius [sfx|efs|s
LBPL 10(5(6)| 4|LongBranch wfefefefe
24) Plus

60

INHERENT| DIRECT EXTENDEDIMMEDIATE| INDEXED' [RELATIVE 33133
INSTRUCTION/ it = el
Forms op |- [wfor| |ejor| |spp| |#lor|-[wfop| *|e[DESCRIPTION [HM|zIVIE
BRA BRA 20(3 | 2|BranchAways [sfefele]s
LBRA IIEREL
BAN BAN 21[3 [2|BranchNever fefelefsle]
LBRN 10| 5 | #LongBranchiever |+ |+«[«]|
2
psaBsh 80| 7 | 2[Branch10 ofefelefs
Subroutine
LBSR 17[9 |3|Long Branchio s lefe]e s
Subroutine
BvC BVC 28 3 | 2[3ranen V-0 [sjels]els
8vec 10 [5(6)| 4 |Long Branch welefe el
28 Vo
BVS BvS 29| 3 |2/Brancn Va1 [sfelslels
LS 10[st6)| 4 [Long Branch o efef+]!
29 v
CLR CLRA [aF |21 o~ A «[o[1fof
cure |5k (2|1 o8 «lof1]o
ClA ofle |2|7F[7] 2 &F Jo- 2+ - +fo1fo
CMP CMPA 914 |2[B1fs|3farfz]2arfarf2y Compare MtromA (8111 1
CMP8. Ovaf2|Fr|s|3fcr|z|2[erfes|2. [Compare M trom (8114
CMPD wlri3fofsf4fofs]afr0fr]3. [Compare M. M » 1= [1(1[1]1
93 [:5] 8 A3 from D
cMPS w7 |afrfe] afinfs|afrr]rsfa- (Compare M M + 1< [1]1]1
sC ec sC AC trom$
CMPY vil7 |3 f8] afn|s [afre]refae Conpare M M « 1|« |1 t]1]s
9 [:X] 8 A3 om U
CMPX 9C|6 [2(BC|7|3fpCf4a|a(AC(6|2+ Compare M M « 1|« [t]t{t|t
trom;
CMPY 0|7 |3|w0s]| 4|05 |alr0f7e(3. Compare MM « 1« 1]1f 11
oC eC aC lAC hom ¥
CoM COMA (43|21 XA REALY
coms [s3[2]1 B8 10|
com o6 |zfra|7| 3 636 |2- M~ M -[110]
CwAs 3C |20| 2 cC MM -.CC U
wanttor interrupt |
DAA wef2] DecimalAdjust A
OEC DECA [4A [z |1 A-1A
DECB |sA |zt 8-1-8
DEC oal6|2f7al 7| 3 6als-|2. Mo
EOR EORA oo a|2fBafs| ajes|2|2[asfasf2e AvM—A
EQRB o8|« |2|Fs|s|3lcaf2|2|eass|2- 8y M—B
EXG R1A2 E[7]2 Al A2
INC INCA fac 2] As1A
INCB [sC |2 B.1-8B
INC oc|s|2c|7|3 6C|6+|2+ MM
MP oe|3|2|7E|4f 3 6E|3.[2- €A~ PC
JSA 90| 7 |2|eo|ef 3 AD |7+ (2] PumptoSubroutine
L0 oA 964 |2[B6|5| 3fB6| 2| 2(A6|4-|2 M- & EEELR
0B O6f +|2[Fs|5| 3|csf2|2E6e-[2 M-8 +|1f 10|+
00 oc|s|2|fcfs| ajoc| 3| alec(s-|2 MM-1--0 [«t/1|of+
s 10[6|3[10]7[40| 4] 2f10f6-|3 MM-1—5 1ol
of FE =3 EE
Loy s 2f[re (6| 3jcel 3| afeEs-[z- MM.1=U 11 of o
LOX 9| 5 | 2[BE| 6| 3[8€| 3| 3[AE|s-[z2- Mowes x| g ofe]
Loy 1| 6|3f10|7] af10f 2| a|10]6-|3. MMy HEER!
9 BE 8€ AE
LEA LEAS 32(44| 2 EA =S ofef oo+
LEAU 23 (44|24 EA U
LEAX 30|44 2 EA - X ofelsfele
LEAY 31|as|2 EA — Y olefte|e

61

INHERENT| ODIRECT |EXTENDEC! 7 ¥ 21

iwstrucTions [| __ga‘ MDEXCO IHE“_"VE 1
FORMS _[OP # [Ou #|OP) - = - - -* | # |[DESCAIFiION &

tst istA 48|z A EEEER
sie [sefz|1 o} O-QID. o+ 1111
LSt od| 6| ziTa|7| 3 LR ED mhe oooe gl f et

LSR LSRA (44|21 A <loft|eft
ishe [sef2 alo ~O+fo[1f-}s
LSR 04| 6| 2 7|2 B4 6+ |24 M B B Clelo|lleft

LN o 8~ MUNE

{Unsigned)

NEG NEGA |40(2|1 Ast A L HEIEIE
NEGB |50 2|1 B+1-B LR EIRE
NEG oo| 6|2\ ma|7| 3 CaLEER Met—=Mm CRIEIRIRS

NOP 2zlz| No Operation of ¢l 2|

OR ORA 9Al 4| 2|BA| 5| 3|8A[2| 2[AAl4+] 2 ALvM—A EHELS
ORB DAl 41 2[FA[5| 3|CAl 2| 2|EA|4(2+ B.M—B < 3ft]of~
ORCC 1Al 3| 2 CC v MM — CC| 7

PSH PSHS [34]s. 2 Push Registers on | +|[*[+|

lack
PSHU 36 |5+ 1 2| Push Registers on ||« [ee]e
PUL Pus |35(5.1 2 Pul Registers
S Slack
PuLy |37 5.1 2 Puil Registers
U Stack

ROL ROLA |49|2]|1 A RHHNHE
ROLB |59 (2|1 B}fl»[m]]m—-]-llll
ROL o9 6| 2| raf¥| 3 B 6|24 Mmoo = e o113t

ROR RORA (462 |1 A o 1t
ROAB (56 (2 |1 ojF-0 T 333
ROR 066 |2z m|7| 2 LUALR R Mlc beebe [alfafeld

AT 38§15 1 7

interrupt

ATS EEAR Relun From ofefe]e]+

Subroutine

SBC SBCA 92(4|2/B2|5| 3|82 2| 2|A2|4q|2+) A-M-C—A |81l
SBCB D2| 4| 2|F2|5| 3|C2| 2| 2[€E2(a+|2+ B-M-C—8 |8ttt

SEX 2|1 SignExtend® | [1[1o]+

nteA

ST STA o7| 4 2|e7|s| 3 AT|as|24 A—M < 8[3]o[+
sT8 o7[af2F7|s|a €7[a+|20 BM J1/t[o]+
STD po|s|2/Fo|6| 3 ED[S5+|2] ~M M1 1[0+
sTS 10f6]|3w0|7]| 4 106+ (34 S—MM=+1 < 3jt]o[

DF| FF EF|
sTU of| 5| 2|FFlE] 3 EF [54]2] (TR) < tlt]o[
STX 9F| & | 2| BF|E| 3 AF {50 |2 MM <l t[t)of
STy 1| 8] 307 10 yommet [of1ftlo]
oF BF AF16. 3]

SuB SUBA 90| 4| 2/B0f5| 3]eo|2|2fa0fa:|2 A M= A Lk
suBB po| 4 | 2|Fo|s| 3fco| 2| 2|e0|a. |2+ B M-8 8 1t1]t
sueD 9lel2e|7| 3fafa A3|6+ 2+ D MMt =Dl i

sSwi swr IF 19 v Software Interrupt 1
swiz¢ |10 |20 2! Software Inemp! 2

F
swiz [20| 2 Sonware Intecrupt 3|+ «[+|+|
F
SYNC 13 p2)1 Synchromzeto | sf ofs|sf+
Interrup!

TFR ALR2 [F |72 A2 .

1sT TSTA [4D|2 |t TestA < 1ltfo]+
TSTB |5D|2 |t TestB < 1/4]0f <
1St on|6)2[ro7] 3 IR Tosi M <[il1ol-

62

6809 mnemonics

OP MNEM MODE ~ # ||or rNem mobE ~ #*
#6 NEG DIRECT 6 2 ||1c awoce INMED 3 2
®3 CcoMm 1 [2 [|10 sex InHERENT 2 1
B4 LSR “ 6 2 |[1E Ex6 v 8 2
@6 RoR “ [2 || 1F TFR inHERENT 7 2
$7 ASR ¥ 6 2 ||2¢ BRA ReLaTIVE 3 2
38 AslsL [3 2 (|21 BRN [3 2
?9 RoL v 4 2 [[22 8HI " 3 2
®A DEC - 6 2 |[23> ®Ls . 3 2
@c INC . 6 2 || 24 P " 3 2
@0 TsT i 6 2 |25 ®H¥ " 3 2
@E JMP u iS5 2 26 BNE 1 &) 2
OF CLR OIRECT 6 2 27 BEQ .) 2
12 NOP INHERENT 2 1 28 BvC u 3 2
13 SYNC iINHERENT 2 1 29 Bvs u 3 2
16 LBRA RELATIVE 5] 3 ||2A BPL " 3 2
17 LBSR RELATVE 9 3 28 BM v 3 2
19 DAA INHERENT 2 1 ||2¢ ®B6E " 3 2
1A oRCC InMED 3 2 ||2p0 8LT rRexAnve 3 2
OF MNEM __MODE ~ A |[oP Mnen MODE ~ #*
2E BGT REIATIVE 3 2 || 44 LSRA INHERENT 2 1
2F BLE u S 2 46 RORA - 2 1
3@ LEAX |NDEXED 4 2 47 ASRA " 2 1
31 EAY . 4 2 || 48 34 W 2 1
32 LEAS » 4+ 2 49 RolA W 2 1
33 LeAv " 4 2 4A DECA . 2 2
34 PSHS INHERENT 5 2 AC INCA = 2 b
35 PuLs " 5] 2 4D TSTA " 2 1
36 PSHU v s 2 4F CRrA " 2 1
37 PO " 5 2 || 54 nresa " 2 1
35 RTS " 5| 1 53 comB " 2 1
3A ABX " =) 1 S4 LSRR " 2 1.
38 RTI “ 6/5 1 ||S6 Rore u 2 1
3C @Al " 21 2 (|57 Asea W 2 1
3> ™MoL u 11 1 || 58 28 i 2. 1
3F sw . 19 1 || 59 Row “ 2 1
4% NEGA ' 2 1 S5A Dece W 2 1
43 CoMA e 2 1 [[8C ines " 2 1

[«2]
w

oF MNEM _ MODE. ~ #* OF MM MODE ~
ED TSR INHERENT 2 1 || 77 Asr Extenpen 4 3
5F ceg o« 2 1 || 78 ‘st i 7 3
6f Nes INDEXED 6 2 |75 rev ., FA-)
63 com W 6 2 A Dec u 7 &)
64 (sr « A 2 7C mc « 7 3
b Ror i [2 |70 —sT W 7 3
b7 Asr " © 2 || 7E ome u 4 3
6B APE " ¢ 2 | 7F e " 7 03
69 RoL « A 2 |83 suea 1mmED 2 2
6A DEC " A 2 81 A h 2 3
6C Inc I 4 2 |82 secw v 22
6D TsT . b 2 |83 susd . 4 03
6E JMp u 3 2 |84 awa i 2 2
6F as it © 2 BS BiTA . 2 2
7P NEG extencen 7 3 [[86 oA " 2 A
73 com . 7 3 88 EorA " 252l
74 LSR " 7z 3 89 Apca . 2 2
76 Ror 5 7 3 |8A oena " 2.2
OF MNEM MOOE. ~ # || 0F men pooe ~ #
868 ADA imMed 2 2 OF DX DIRECT 5 2
8c cmPx " + s || 9F sTx W 5 2
B0 BSR RELATWE 7 2. AP SOHBA INDEXED 4 2
BE Lox immen 3 3 ||Al awa “ 4 2
9P SUBA OwecT 4 2 ||A2 seca " 4 2
S1 cmPA 4 2 AS susbd " [2
22 SecA 4 2 AL ANDA . 4 2
93 suep o 2 ||AS BmA " 4 2
94 ANDA & 2 ||AG oA " 4+ 2
95 BmA + 2 ||A7 sSTA u 4 2
96 LDA 5 4 2 A EcrA - 4 2
97 sTA " 4 2 ||A9 A " 4 2
98 EcrRA n 4 2 AA ORA " 4 2
99 AXA u 4 2 ||AB DDA . 4+ 2
S5A ORA 4 2 AC cHPx 6 2
9B ADDA “ 4 2 |[[AD osR " 7 2
Sc o chex & 6 2 [|ae 1bx . S 2
9D JSR % 7 2 ||AF sT% W S 2

oFr _MNEN Mope, ~ # |lop mmerr mooe —
Bg SUBA EXTENDED = > C2 SAB \MMED 2 2
81 cmPA u ts} &) C3 ADDD © 4+ S
B2 SBCA " S| 3 ||+ Anpe 2 2
B3 SUBD " 7 &) c5 |TA 2 2
B84 AnDa "] 3 ||ce Lop - 2 2
B85 BiTA “ 5 3 ||ce Ecxe . 2. 2
BG6 Lpa u 5] 3 [|co Axcs 22
B7 STA L] S 3 |[CA ore 2 2.
B8 EorA % 5 3 C8 AppB . 2 2
B89 ApcA " &) 3 cc LoD “ 3 &3
BA ora - 5 3 CE Lpu . 3 3
8B ADpA " 5 3 ||De suves DrecT 4 2
BC crPx " 7 &) DL cMP8 " S 2
8D JsR " 8 3 |2 sece 4+ 2
BE LDX " 4 3 |Ip3 Aocbp e 2
BF Six " 4 3 ||p4 anoa . 4 2.
CP SUBR IMMED 2 2 |lps BM™® 4 2
Cl cneB " 2 2 ||b6 DB . 4 2
or mmem _mope _~ _# |lor mwey _mooe ~ #
D7 STB DIRECT 4 2 ||E9 AXB INDEXED 4+ 2
D8 ECR® i 4 2 ||EA ore “ 4 2
DS ACCR . & 2 ||EB »rODB o 4 2,
DA ORB - 4 2 ||EC oD o 5 2
DB ADDB . 4 2 ||Ep s™ " 5 2
DC DD - S 2 ||EE 1o - 5 2
DD ST N S 2. ||EF sTtu “ S 2
DE DU " 5 2 [|F¢ suge erDED 53
OF STU " 15 2 [[F1 o8 - S5 3
E@ SUBB INDEXED 4 2 ||F2. secs & 3
E1l cwmeB " 4 2 ||F3 aAopD 7 3
£2 sicp . 4 2 ||F& Anos . 5 3
£3 ADDD " 6 2 |[F5 eme " 5 3
E4 ANOB “ 4 2 ||F6 toB " S| 5>
£S5 B8 - 4 2 ||[F7 stB - 5 &)
E6 wB . 4 2 ||F8 Ecre " 5 3
E7 s W 4+ 2 |[|Fe Acse " 5 &)
E8 &R 4 2 ||FA orB 5 3

65

OF Mt MppE ~ # || of mwtr Mooe ~— A
FB ADDA EXTENCED 5 3 ||1P2E 6T RELATIVE. S(b) 4
FC LoD | [2) 3 |Ap2F e “ 506) 4
FO S5T0 “ & 3 || 1p3F SWY2 INHERENT 28 2
FE WU . 6 3 [|1883 o« iMMED 5 4
FF st W & 3 |l1igec oy N 5 4
1821 LBRN RELATIVE 5 4 |Q@eE ov " b 4
1922 LBHT 56D 4 |[1993 PD DIRECT 7 3
1623 LALS " S(6) 4 |[1@9C cmey " 7 i
1024 BEL " 50 4 |[1gSE Lov " & 3
1ms 8% : 5> 4 |[goF s1v " 6 3
1926 LBNE “ S 4 |[1A3 cMPD INDEXED 7 3
1527 weeq M S 4 ||19AC cmey 7 3
1028 18vc u 5(6) 4 [[1QAE LoY " 6 3
1929 Levs W 5() 4 |hpar sTY i 6 3
142A LefL " S5(6) 4 P83 CMPD EXTENDED 3 4
A28 LBMI u 5(b) 4 |[@BC crey “ 3 4
102 LBGE ., 50 4 |agsBE Loy . 7 &
192D reLt “ 5 4 @BF STY 7 4
oF Ml MOOE.) U
1BCE DS IMMED 4 4+
IBDE LDS DIRECT <) 3
180F TS " © 3
IPEE LDS (NDEXED ® &3
IpeF STS 5 G 3
I9FE LPS EXTENDED 7 4
1PFF STS . 7 4
LI3F Sw3 INHERENT 28 2
1183 cMPU IMMED 5] 4
118C cHes » S 4
1193 cMPU DIRECT 7 3
119C cHPs " 7S]
11A3 cMPL INDEXED 7 3
11AC cHps 7 3
1183 cmpo EXTENDED 8 4
11BC cMps " 8 4

Machine code register

7 A 0|7 B 0| 8Bt Accumuolors AsB
15 D 0] 16-8t Accumulator D
[|5 X Ol X Index Regster
lis Y o 7 lrdex Register
lis u o] U Stck Foinker
[rs) o] S Stk Rnkr
[T 9p 0] Drect Page Rageer
l|5 PC 6] FPregmm Cownler
EJFIH]TIN|Z]VIC] Comition Grde Regstar
Edre Stols Sove Carry ((:rumB]t7)
Fost \rterupt Maskj Overflow
Halg Carry (grom B 37_!

Interupt Mask Negative

67

INDEXED ADDRESSING POST-BYTE

REGISTER BIT ASSIGNMENTS ©802
STACKING ORDER,
AOST-BITE REGISTER BT INDEXED PULL ORDER
716(S14|3/2|1|B| ADORESSING MoBE |
DX X[X[%] X[X[X|EA:,R+4BITOFFSET o
1| X|X|B| B D B8 SR+ A
1 x| x|x|o|e[o|1 LR B
1 xIxlplol@|1|o ;R op
1 x[x/x[o|o|1] 1 ,——R x Hi
11 X[X|X|2|1|@|@[EA=.R* ® OFFSET X to
1 X[X|X|@|1]@|1|EA-,RTAXB OFFSET Y HL
1 X[X|X|®?| 1| 1| Q|eA: . RELACA cFeseET Yls
1 X[X[X|1|O[O[D|EA..RY 781T OFFSET U/s R
1[x|%|X|1]|0[@] 1 |eA:,REIS BITOFFSET /s Lo
1[Xx|[X|[X[1|@] 1|1 |EA=,RE DOFFSET PC HL
1 X[XIX[1]| 1| OEA-,PC=T7BIT oFFsET PC Lo
I X[X[X 11| @ 1|ea=, Pc XIS BITOFFSET
ix(x[q11[1]12 1 EA=, ADDRESS PUSKH OROER
le |
g ' I_ADD&ESSING MOOE REWD 1‘::;:275\:NG
1FELD L
FOR B7 =1: INDIRECT
FOoR 87 - @ : Si6N &IT
— REGISTER FiELD

@@i1R=X Ol1lR=Yy

18 R:=U 11R=$ $809
VECTORS
FFFE | RESTART
FEFC | NM1
il I I I Gl
IR
RIvT &l FEFG [Fira
o Pu: i FEFY ISwi2
u“-—L FFF2 |swui3
FFF@® |RESERVED
S-E'CRCE DESTINATION M,_
202 :dA:R) 0121 : PC
To e, oool:x 1cec -
-LoeT-oyre. o010 Y 1001 : &
@@11:=v 101@ : cCr
ole0e:sS lo11:0pR

Memory map

= Location Description -
= Hex =
= =
= 0019 Address of start of BASIC program =
= 001A Address of end of BASIC program =
= 001B Address of start of variable storage =
= 001D Address of start of array storage -
= O0O1F Address of start of free memory -
= 0021 Address of start of string stack =
= 0023 Address of upper limit of BASIC -
= 0027 Address of highest available RAM =
= 006C Current cursor column position -
= 006F Holds current device number =
= 0071 Warm start flag o
= 0072 Warm start vector =

0074 Address of highest memory address -

007C Block tvpe .

007D Number of bytes to be put out =

007E/F Base address of bvtes -

0080 Checksum =

0081 Error code =

0088 Point to next location for screen output =

0089 Ditto -

008C Sound freguency w.

008D Duration of sound =
= 008BF Blink count -
= 0090/91 Leader bvte count for tapes -
= 0095/96 Cassette motor delay -
= 0099 Line printer field width =
= 009A Last field width =
= 009B Line printer width =
= 009C Print head position for line printer -
= 009D Transfer address after CLOAD -
= 00B& Holds current PMODE =
= 0100 SWI 3 vector =
= 0103 SWI 2 vector =
= 0106 SWI 1 vector =
= 0109 NMI vector -
= 010C IRQ vector =
= O10F FIRQ vector =
= 0121 Points to BASIC command token table -
= 0123 As above for jump table -
= 0126 As above for function token table =
= 0128 As above for function jump table =
= 0148 Buffer full auto line feed flag =
= 0149 Alpha lock flag -
= 014A Number of chars. to be printed in end of line =
= 014B Perform carriage return to printer =
= 014C Perform line feed =
= 014D Redundant -
= O14E Redundant -

o2}
©

Location
Hex

Description

L I I T O T T T T T

0151
0152-159
015A
015B
015C

015D

01D2

01D4

O1ES
0200-3FFF
0400-SFFF
0600-07FF
OCO0-7FFF
8006

8009
800C

800F

8012
8015
8018
801B
801E

8021

8024
8027
8033
8154

81CA
8250
82A9

82E0
COO0O-FEFF
FFOO

FFF2

FFF4

FFF&
FFF8
FFFA
FFFC
FFFE

Start of kevboard rollover table
Covers entire keyboard

Left jovstick X position

Left joystick Y position

Right ioystick X position

Right joystick Y position
Cassette file name

Cassette file buffer

Transfer address used by CSAVEM
Buffer for cassettes etc.

Text screen default area
Graphics screen/program/variable storage
User RAM, depending on graphics pages
Poll keyboard

Blink cursor

Write character to text screen
Ditto for line printer (char. in A as above)
Update joystick readings

Turn on cassette relav

Turn off cassette relay

Prepare cassette for writing
Shove byte to cassette from A
Prepare cassette for data
Returns next byte in A

Gets next bit in from cassette
BASIC command word table

BASIC command jump table

BASIC function word table

BASIC function jump table

BASIC error message table

BASIC interpreter

Cartridge slot

PIA

SWI 3 vector

SWI 2 vector

FIRQ vector

IRQ vector

SWI 1 vector

NMI vector

Reset vector

BowEn NN H RN NN W NN RN M NN NN R RN NN NN

70

%2

QDecsmal Address Conlants Hex Address
2z - 1g23 System Work Area & - 3FF
1024 - 1535 Text Screen 400 - 5FF
1536 - 30571 Grophic - page 1 699 - BFF
3072 -4607 “ .2 Coa -11FF
4608 6143 : 3 120¢ - 17FF
6144 - 7679 3 « 4 1903 - 1DFF
768@- 9215 « 5 1E@@ - 23FF
9216 -16751 - 6 24@@ - 29FF
16752 - 12287 7 2A80 - 2FFF
12288 - 13823 . « 8 30P@ -3SFF
13824 - 37767 Pogram o Vasiables-wser’s | 360@ - 7FFF
37768 - 49151 BASIC ROM BOPB - BFFF
49152- 65279 Carkridge Port CoBP -FEFF
65288 -65535 [npu_t/Outpld: FF@® -FFFF

a1n1993yoase Auowd

Powers tables

Powers of 2

256 8

512 9

1,024 10
2,048 11
4,096 12
8,192 13
16,384 14
32,768 15
65,536 16
131,072 17
262,144 18
524,288 19
1,048,576 20
2,097,152 21
4,194,304 22
8,388, 608 23
16,777,216 24

72

Powers of 16

16
256

4,096

65,536

1,048,576

16,777,216

268,435,456

4,294,967 ,296
68,719,476,736
1,099,511,627,776
17,592,186,044,416
281,474,976,710,656
4,503 ,599,627,370,496
72,057,594,037,927,936

1,152,921,504,606,846,976

CAONCUBUWUN=O

Printer port

73

RS232 standards

Ela RE2I2-C (CCITT v24)

Transmission is serial (asynchronous).

MARK = binary 1 = OFF = -3 to -25 volts.

binary 0 = ON = +3 to +25 volts.

D" type connector.

Data Control Equipment (DCE) has female connector.
Data Terminal Equipment (DTE) has male connector.
Open circuit drive voltage cannot exceed 25 volts.
Terminator resistance 3-7K ohms.

50 foot maximum DCE, DTE separation.

2500 pico farad max conductor capacitance.

CIRCUIT

PIN MAME DIRECTION CCITT €1A FUNCTION
a1 FG — 101 AR Frame Ground.
0z T To DCE 103 BA Transmitted Data.
o3 RD To DTE 104 33 Received Data.
o4 RIS To DCE 105 cA Request To Send.
05 cTs To DTE 106 cs Clear To Send.
06 DSR To DTE 107 cc Data Set Ready.
07 S6 - 102 Ll Signal Ground.
08 DCD Ta DTE 105 oF Data Carrier Detect.
09 To DIE Fositive DC Test Voltage.
10 To DTE Negative DC Test Voltage.
11 am To DTE Bell 2e8A Equaliser Mode.
2 (S)DCD To DTE 122 SCF Secondary Data Carrier Detect.
13 {S)CTS Yo DTE 12 SCB Secondary Clear To Send.
14 (5)TD To DCE 118 sea Secondary Transmitted Data.

NS To DCE Bell 2 New Synch.
15 TC To DTE 114 DB Transmitter Clock.
ia (S)RD To DTE 119 SBB Secondary Received Data.

pcT To DTE Bell 2e8A Divided Clock Transmitter.
17 RC To DTE 115 DD Receiver Clock.
18 DCR To DTE Bell 208A Divided Clock Receiver.
19 (S)RTS Yo DCE 120 ScA Secondary Request to Send.
20 DTR To DCE 108.2 CD Data Terminal Ready.
2 sa Yo DTE 110 cG Signal @Quality Detect.
2 RI Yo DTE 12! CE Ring Indicator.
23 To DCE 111 CH Data Rate Selector.

To DTE 12 c1 Data Rate Selector.

24 T To DCE 113 DA EXT Transmitter Clock.
2 Ta OCE Bell 1138 Busy.

74

CCITT

V24 Circuit Definitions

This conductor establishes the signal common return for
interchange circuits.

Circuit 107 - Transmitted Data

The data signals originated by the DTE, to be transmitted
via the data channel to one or more remote data stations,
are transferred on this circuit to DCE.

Circuit 104 - Received Data

The data signals generated by the DCE, in response to data
channel line signals received from a remote data station,

are transferred on this circuit to the DTE.

Circuit 105 - Reguest to Send

Controls the data channel transmit function of the DCE.

Circuit 106 - Ready for Sending

Indicates whether the DCE is conditioned to transmit data on
the data channel.

Circuit 107 - Data Set Ready

Indicates whether the DCE is ready to operate.

Circuit 108/1 - Connect Data Set to Line

Controls switching of the signal-conversion ar similar
equipment to or from the line.

Circuit 108/2 - Data Terminal Ready

Controls switching of the signal-conversion or similar
equipment to or from the line.

Circuit 109 - Carrier Detect

Indicates whether the received data channel line signal is
within appropriate limits, as specified by the relevant

recommendation for DCE.

Circuit 110 - Data Signal Quality Detector

Indicates whether there is a reasonable probability of an

75

error in the data received on the data channel.

Circuit 111 - Data Signalling Rate Selector

Used to select one or two data signalling rates of a
dual-rate synchronous DCE, or to select one of the two
ranges of data signalling rates of a dual-range synchronous
DCE.

Circuit 112 - Data Signalling Rate Selector

Used to select one of the two data signalling rates or
ranges of rates in the DTE to coincide with the data
signalling rate or range of rates in use in a dual-rate
synchronous or dual-range asynchronous DCE

Circuit 11

- Transmitter Signal Element Timing

Provides the DCE with signal element timing information.

Circuit 113 - Transmitter Signal Element Timing

Frovides the DTE with signal element timing information.

Circuit 115 - Receiver Signal Element Timing

Frovides the DTE with signal element timing information

Circuit 116 - Select Standby

Used to select the normal or standby facilities such as
signai convertors and communication channels.

Circuit 117 - Standby Indicator

Indicates whether the DCE is conditioned in its standby mode
with the pre-determined facilities replaced by their
reserves.

Circuit 118 - Transmitted Backward Channel Data

Equivalent to circuit 103, except that it is wused for data
received on the backward channel.

Circult 120 — Transmit Backward Channel Line Signal

Equivalent to circuit 105, except that it is used to control
the backward channel transmit function of the DCE.

Circuit 121 - Backward Channel Ready

Equivalent to circuit 106, except that it is used to

76

indicate whether the DCE is conditioned to transmit data on
the backward channel.

Circuit 122 - Supervisory Carrier Detect

Equivalent to circuit 189, except that it is wused to
indicate whether the received backward channel line signal
is within appropriate limits.

Circuit 123 - Backward Channel Signal fuality Detector

Equivalent to circuit 110, except that it is used to
indicate the signal quality of the received backward channel
line signal.

Circuit 124 — Select Frequency Groups

Used to select the desired frequency groups available on the
DCE.

Circuit 125 - Calling Indicator

Indicates whether a calling signal is being received by the
DCE.

Circuit 126 - Select Transmit Frequency

Used to select the required transmit frequency of the DCE.

Circuit 127 - Select Receive Frequency

Used to select the required receive frequency of the DCE.

Circuit 128 - Receiver Signal Element Timing

Provides the DCE with signal element timing information.

Circuit 129 — Request to Receive

Used to control the receive function of the DCE.

Circuit 13 - Transmit Backward Tone

Controls the transmission of a backward channel tone.

Circuit 131 - Received Character Timing

frovides the DTE with character timing information.

Circuit 132 - Return to Non-Data Mode

77

Used to restore the non—data mode provided with the DCE
without releasing the line connection to the remote station.

Circuit 13T - Ready for Receiving

Controls the transfer of data on circuit 104, indicating
whether the DTE is capable of accepting a given amount of
data, specified in the appropriate recommendation for
intermediate eguipment, for example, error control
eauipment.

Circuit 134 - Received Data Fresent

Used tao separate information messages from supervisory
messages, transferred on circuit 164.

Circuit 191 - Transmitted Voice Answer

Signals generated bv a voice answer unit in the DTE are
transferred on this circuit to the DCE.

Circuit 192 - Received Voice Answer

Received voice signals, generated by a voice answering unit
at the remote data terminal, are transferred on this circuit
to the DTE.

Other CCITT Interfaces

vio
Electrical characteristics for unbalanced double-current
interchange circuits for general use with integrated circuit

equipment in the field of data communications.

Vi1

Electrical characteristics for balanced double—current
interchange circuits for general use with integrated circuit
equipment in the field of data communications.

vis

Use of acoustic coupling for data transmission.

Vie

Medical analogue data transmission modems.

vie

78

Modems for parallel data transmission using telephone
signalling freguencies.

v20
Farallel data transmission modems standardised for universal
use in the general switch telephone network.

Va1

200-baud modem standardised for use in the general swi tched
telephone network.

V22
Defines the procedures and standards for 1200 baud full
duplex communications over the public switched network.

V23

600/1200-baud modem standardised for wuse in the general
switched telephone network.

v24

List of definitions for interchange circuits between data
terminal equipment and data circuit terminating equipment

v2s

Automatic calling and/or answering equipment on the general
switched telephone network, including disabling of
echo-suppressors on manually established calls.

V26

2400 bits per second modem standardised for use on 4-wire
leased telephone-type circuits.

V26 (alternative)

2400/1200 bits per second modem standardised for use in the
general switched telephone network.

v27

4800 bits per second modems with manual equaliser
standardised for use on leased telephone-type circuits.

V27 (alternative 1)

4800 bits per second modems with automatic equaliser

79

standardised for use on leased telephone-type circuits.

V27 (alternative 2)

4800/2400 bits per second modems standardised for use in the

general switched telephone network.

Va8

Electrical characteristics for unbalanced double-current

interchange circuits.

V29

9600 bits per second modems standardised for use
telephone circuits.

(%2538

Electrical characteristics for single current
circuits controlled by contact closure.

V35

Data transmission at 48 kilobits per second using
group band circuits.

V36

Modems for synchronous transmission using 60-108
band circuits.

80

in

leased

interchange

60-108 KHz

KHz

group

Useful hints and tips

This section is a collection of Dragon miscellanea gleaned over the
months. It contains material that we have discovered by ourselves,
or seen in various magazines, or even overheard in casual conversation
at computer shows, user groups, etc.

It just goes to show how much undocumented information there is
floating around about the Dragon, and, even more, how much there
is still to be discovered. The publishers would be grateful to hear of
any Dragon fact or figure that you've discovered, with a view to sharing
this knowledge with everyone else in future publications.

But now, without further ado, and without any concern for presenting
things in a logical order {see the index if you get totally lost!), let's
start with a few USR functions.

USR functions

As is usual with the Dragon manual, these have been wrongly
described. Most people redefine USRO over and over again, and just
use that one for several different reasons. However, USR1 to USR9
can all equally well be used, provided that the call in a Basic program
is prefixed by a 0. That is, use A=USRO01(A) {for example), rather
than USR1(A). For example:

10 DEFUSR8=&HBO15:REM START OF M/C ROUTINE TO
TURN THE CASSETTE MOTOR ON

20 DEFUSR9=&HB018:REM START OF M/C ROUTINE TO
TURN THE CASSETTE MOTOR OFF AGAIN

30 AS$=INKEY$: IFA$=""THEN3O

40 IFA$="#"THENA=UBRO8 (A) : BOTO30

S50 IFA$="@"THENA=USRO% (A) 1 BOTO30

60 B0OTO30

81

All this little demonstration does is to turn the cassette motor on if
the’* key is pressed, and turn it off if the’@’ key is pressed. No other
key has any effect.

Speeded up Dragon

The POKE to speed up the Dragon is well known (POKE 65495,0),
but unfortunately doesn’t work on all Dragons. However, there are
otherways to speed up certainfunctions. For instance, INKEY#$ is not
the fastest of functions, and in a program that requires the user to
enter one of the four arrow keys to move a character about on the
screen, you might like to use the following four memory locations
instead:

For up arrow,read PEEK(341).
For down arrow, read PEEK(342)
For left arrow, read PEEK(343).
For right arrow, read PEEK(344).

These locations return a 255 if the relevant key is not being pressed,
but if it is, a value of 223 is put into that location. Thus, by using:

IFPEEK(344) =223THEN move the character up
we can easily handle those four particular keys.
There are some other (safel) locations in the Dragon that can be POKEd

in order to speed things up a little. For instance, if you want to increase
the processing speed of your Dragon, try the following:

POKE &HFFD7,0
POKE &HFFDS9,0

The second in conjunctionwith the first should be safe on all Dragons
(it is on ours!). To get things back to normal again, use:

82

POKE &HFFD8,0
POKE &HFFD6,0

And more on INKEY$

As we all know, unless specific steps are taken to disable the break
key, pressing this will break into a loop that is waiting for a key to be
pressed. However, by using the internal routine that handles the
INKEY$ function, a program will be seen to be behaving as normal,
but will however be inaccessible to people typing BREAK.

Thus, we might have something like:

10 PRINT"PRESS ANY KEY TO CONTINUE":EXEC41994

This just calls up the internal routine to handle INKEYS$.

NEW programs for OLD Dragons

We've mentioned elsewhere in this book that typing in NEW
<ENTER> doesn’t remove everything from memory, but merely
resets internal pointers so that the program can no longer be accessed.

Therefore, it ought to be possible to retrieve a program that has been
accidentally NEWed. Provided that no new program lines are entered,
no new variables are assigned (and someone hasn’t switched the
machine off!), the following short program will do the trick.

100 CLEAR 200,32749

110 Y=3274%2

120 DATA 158,25,189.131.48.2.159.27,159.29.159,31.,57
130 FORI=1TO14:READX: POKEY+I,XsNEXT

This program should always be sitting in your Dragon, and to execute
it when you've accidentally said goodbye to a program, use EXEC
32750.

83

Loading information

Aswe’veseen, the two hex locations &8015 and &8018 (decimal 32789
and 32792 respectively) can be used to turn the cassette motor on and
off. There is a third useful location when dealing with cassette decks,
and this is the one which handles the CLOADing of a BASIC program.

I1f you aren’t fussed about what filename you're looking for on tape,
try EXEC 46800.

Another point about loading programs, is that it is always a good idea
to leave a gap between stuff on tape whether it be programs or data.
This is usually done with the MOTORON and MOTOROFF commands,
but if entered in direct mode, MOTOROFF can take some time to type,
thus leaving an inordinately long gap on the tape.

Even worse, you might spell the word incorrectly and leave an
extremely long gap as you try to delete characters to getitright! To
achieve the same effect as MOTOROFF, just generate a syntax error.
For example:

H <ENTER>

HEX/DEC and OCT

We're all familiar with the fact that the Dragon can handle decimal
as well as hexadecimal numbers.

Well, it can also handle octal numbers, by replacing the &H characters
with &O.
Thus:

PRINT &0 number

will return the decimal equivalent of the octal number ‘number’.

84

Screen information

The largest part of this book is devoted to the handling of graphics,
but even armed with all that knowledge there is a surprising amount
of uncharted material concerned with displaying information on the
screen.

For instance, to simulate a mixture of text and graphics on the screen,
a simple way in BASIC would be simply to switch from one to the
other very rapidly. Even better, if your machine can handle the’speed
up’ POKE the display will appear relatively flicker free.

Of course, the ultimate goal would be to write this sort of thing in
machine code, but as a small BASIC demonstration, how about this:

100 PMODE1,1:COLOURO,S:REM POKE&4S495,0 IF YOUR
MACHINE CAN HANDLE IT!

110 PCLS:CIRCLE (125,100),80

120 SCREEN1

130 FORI=1TO10:NEXTI

140 SCREENO

150 FORI=1TO10:NEXTI

160 GOTO120

All thisdoesis draw acircle on a high resolution screen, and then swap
from that to the screen displaying the listing.

And more

This is to be used when you require an increase in the normal colour
resolution available.

It is possible, in PMODES3, to fool the Dragon into displaying all 256
character positions at a time, which makes pixels overlap. This
effectively doubles the resolution, although it does make it very difficult
to control the colour. Still, it's probably worth the attempt:

85

100 PMODE33: SCREEN1,0:PCLS
110 PMODE4,1

120 CIRCLE (128,96),96

130 PAINT (128,96)

140 A$=INKEY$: IFA$=""THEN140

Runthisprogram as normal, and then delete line 110 to see what kind
of effect you can really get out of the Dragon!

And yet more!

In our highest resolution graphics mode, you can normally only display

two colours at a time. However, it is possible to get a purple haze on
the screen, with the aid of one POKE.

10 PMODES,1:SCREEN1,1:POKE&5314,248

By doing this, BASIC thinks that you’re in four-colour mode, while
the video chip s still convinced that you're in two-colour high resolution
mode.

Our new colour set now has the values of 2=light purple, 1=Dblack
and 0=white.

Let’s take a break

We mentioned earlier that there is a way to get around the problem
of people BREAKing into Dragon programs while the program sits and
waits for a key to be pressed. This involved using an internal routine

to collect the key being pressed.

A more unsubtle, but equally effective way, would be to disable the
BREAK key totally, so that pressing it would have no effect at all.

To do that, enter the following in direct mode:

86

POKE 411,228
POKE 412,203
POKE 413,4

POKE 414,237
POKE 415,228

Once that little piece of code is sitting in the machine, the BREAK
key can be disabled by:

POKE 410,236

and re-enabled with

POKE 410,57

Back to loading

It is possible, using the CLOADM and CSAVEM commands, to load
and save screen images to and from cassette, which could be used

to enhance certain programs considerably.

To do this, we need to know where the screen pages are stored in

memory, and in order they sit at:

Page No.

Hexadecimal address

NoOoOObsWN-=0O

0600-0BFF
0CO00-11FF
1200-17FF
1800-1DFF
1E00-23FF
2400-29FF
2A00-2FFF
3000-35FF

87

On top of this, we need to know that:

PMODEO uses 1 page.
PMODE1/2 uses 2 pages.
PMODE3/4 uses 4 pages.

CLOADM is obviously the command required to re-load a previously
CSAVEMed file, but where to save from?

Assuming for the sake of argument that you're starting with page 1,
the following table shows the locations to save:

PMODE Command

0 CSAVEM “'fred”,&H600,&HBFF,&H600
lor2 CSAVEM “fred”, &H600,&H11FF,&H600
3or4 CSAVEM "fred”,&H600,&H1DFF,&H600

And finally

Toround things off, just a few words about GET and PUT. The Dragon
manual treats these in a very disdainful manner, and indeed would
seem to suggest that the largest screen area that could be GOT {why
don't BASIC keywords have past and future tenses?!) and PUT
anywhere, in the highest resolution mode, is about 80 by 75 pixels.
Not a great deal.

However, all we need to knowabout any pixelin the highest resolution
screen (just 2 colours to play with, remember) is whether that pixel
is on or off. Thus one byte can store information about 8 different
pixels.

Therefore, to read an entire screen in PMODE4 requires some

(256*192)/8 bytes, or6K. If you believed the manual, it would require
almost a quarter of a milion bytes!

88

The following program demonstrates this technique by reading an
entire screen {which does take a little while in BASIC), waiting for a
key to be pressed, and then PUTting it back to the screen again.

100 PMODE4:PCLS: SCREEN1 ,0

110 FORI=1TO191STEP2: FORJ=1TO255STEP2: PSET (J,1)3
NEXTJ, I

120 DIM A(1250)

130 GET (0,0)-(255,191),A,6:REM SAVE FULL BRAPHIC
DETAIL

140 PCLS

150 A$=INKEY$: IFA$=" "THEN150

160 PUT (0,0)-(255,191) ,A,PSET

170 A$=INKEY$: IFA$=""THEN170

So, using this technique, 2 or 3 pages can be saved in BASIC, and
still leave room for a reasonable program to manipulate it all.

89

Index

ASClI codes: 9-10
ASClitables: 7

Basic error messages: 32-4
Basic expressions: 11
Basic functions: 25-31
Basic keywords: 12-24
Cassette port: 35

CCITT V24 definitions: 75-8
CCITT Vinterfaces: 78-80
Centronics standards: 36
Character codes: 37-8
Code conversion tables: 37-9
Colour codes: 39

Dec/Hex convertor: 54
Disk commands: 40

Edge connector: 41

Error messages: 32-4

Flow charting: 42

Graphics modes: 47-53
Graphics notes: 43
Hex/Dec convertor: 54
Joystick slot: 56

Keyboard sequences: 8
Low resolution grid: 57

Machine Code instruction set: 59-62

Machine Code mnemonics: 63-6
Machine Code register: 67-8
Memory architecture: 71
Memory map: 69-70
PMODES: 46

Powers tables: 72

Print @ grid: 58

Printer port: 73

RS232 standards: 74
Screen start addresses: 45
Screens and pages: 44

91

DUCKWORTH
HOME COMPUTING

All books written by Peter Gerrard, former editor of Commodore
Computing International, author of two top-selling adventure
games for the Commodore 64, or by Kevin Bergin. Both are regular
contributors to Personal Computer News, Which Micro? and
Software Review and Popular Computing Weekly.

EXPLORING ADVENTURES ON THE DRAGON
by Peter Gerrard £6.95

This is a complete look atthe fabulous world of Adventure Games
for the Dragon Computer. Starting with an introduction to adven
tures, and their early history, it takes you gently through the basic
programming necessary on the Dragon before you can start writing
your own games.

Inputting information, room mapping, movement, vocabulary —
everything required to write an adventure game is explored in
detail. There follow a numnber of adventure scenarios, just to get
you started, and finally three complete listings written specially for
the Dragon, which will send you off into wonderful worlds where
almost anything can happen.

The three games listed in this book are available on one cassette.

Other titles in the series include Sprites & Sound on the 64, 12
Simple Electronic Projects for the VIC, Will You Still Love Me
When I'm 64, Advanced Basic & Machine Code Programming on
the VIC, Advanced Basic & Machine Code Programming on the
64, as well as Pocket Handbooks for the VIC, 64, Dragon, Spectrum
and BBC Model B.

Write in for a catalogue.

DUCKWORTH
The Old Piano Factory, 43 Gloucester Crescent, London NW1 7DY
Tel: 01-485 3484

Duckworth Home Computing

A POCKET HANDBOOK FOR THE DRAGON

by Peter Gerrard and Danny Doyle

The topics covered here include: ASClI tables,
Assembler/Disassembler, Basic keywords, Basic error
messages, Centronics standards, Conversion tables, Flow
charting, Hex/Dec/Binary conversions, Hyperbolic functions,
|IEEE standards, Input/Output, Interfacing standards, Memory
maps, Memory architecture, Machine Code interfacing,
Machine Code instruction set, Musical note values, RS232
standards, Useful machine code and system calls. In short,
everything you need to know about your machine.

Peter Gerrard, former editor of Commodore Computing
International, is the author of two top-selling adventure games
for the Commodore 64 and a regular contributor to Personal
Computer News, Which Micro? and Software Review and
Commodore Horizons.

Danny Doyle is Systems Performance Consultant for Sperry
Ltd. and a regular contributor to Commodore Computing
International.

ISBN 0-715k-1788-5
9 "780715"617885

Duckworth ISBN 07156 17885
The Old Piano Factory
oucester Crescent, London NW1 IN UK ONLY £2.95 NET

	11
	lc-p001
	lc-p003
	lc-p004
	lc-p005
	lc-p006
	lc-p007
	lc-p008
	lc-p009
	lc-p010
	lc-p011
	lc-p012
	lc-p013
	lc-p014
	lc-p015
	lc-p016
	lc-p017
	lc-p018
	lc-p019
	lc-p020
	lc-p021
	lc-p022
	lc-p023
	lc-p024
	lc-p025
	lc-p026
	lc-p027
	lc-p028
	lc-p029
	lc-p030
	lc-p031
	lc-p032
	lc-p033
	lc-p034
	lc-p035
	lc-p036
	lc-p037
	lc-p038
	lc-p039
	lc-p040
	lc-p041
	lc-p042
	lc-p043
	lc-p044
	lc-p045
	lc-p046
	lc-p047
	lc-p048
	lc-p049
	lc-p050
	lc-p051
	lc-p052
	lc-p053
	lc-p054
	lc-p055
	lc-p056
	lc-p057
	lc-p058
	lc-p059
	lc-p060
	lc-p061
	lc-p062
	lc-p063
	lc-p064
	lc-p065
	lc-p066
	lc-p067
	lc-p068
	lc-p069
	lc-p070
	lc-p071
	lc-p072
	lc-p073
	lc-p074
	lc-p075
	lc-p076
	lc-p077
	lc-p078
	lc-p079
	lc-p080
	lc-p081
	lc-p082
	lc-p083
	lc-p084
	lc-p085
	lc-p086
	lc-p087
	lc-p088
	lc-p089
	lc-p091
	lc-p093
	z

