
•

DAVID

6809 Machine Code

Programming

Also from Granada

Introducing Dragon Machine Code
Ian Sinclair

0 246 12324 9

The Dragon Programmer
S. M. Gee
0 246 12133 5

The Dragon 32 and How to Make the Most of It
Ian Sinclair
0 246 121149

Z80 Machine Code for Humans
Alan Tootill and David Barrow
0 246 12031 2

6502 Machine Code for Humans
Alan Toothill and David Barrow
0 246 12076 2

6809 Machine
Code

Progra111111ing

GRANADA
London Toronto Sydney New York

Granada Technical Books
Granada Publishing Ltd
8 Grafton Street. London WIX)LA

First published in Great Britain by
Granada Publishing 1984

Copyright © David Barrow 1984

British Library Cataloguing in Publication Dara
Barrow. David
6809 machine code programming.
I. Motorola 6809 (Microproccssor)--
Programming 2. Machine codcs(Elcctronic
computer)
I. Title
001.64'25 QA 76.8. M689

ISBN 0 246 12532-2

Typeset by V & M Graphics Ltd. Aylesbury. Bucks
Printed and bound in Great Britain by
Mackays of Chatham. Kent

All righ1s reserved. No part of this publication may
be rer,roduced. stored in a retrieval system or
transmitt�d. in any form. or by any means. electronic.
mechanical. r,hotocopying. recording or otherwise.
without the prior permission of the publishers.

Contents

Preface
I Into Machine Code

2 How to Write Machine Code Programs
3 Number Crunching

4 PIAs, SAM and Folding Memory
5 Taking Control
6 Versatile Graphics
7 High Resolution Text
8 Six Bits of Sound
9 An Interrupt Driven Clock
Appendix A: 6809 Architecture
Appendix 8: 6809 Assemblers
Appendix C: 6809 Instruction Set

Appendix D: ASCII Control and Character Codes
Appendix £: Some 6809 Computer Systems

Further Reading

Index of Routines

Index

vii

12
28
36
49
57
69
84
97
99

109

113

128

130

133
135
137

1

Preface

The MC6809 was released to the world as the 'programmer's dream
machine'. In fact Motorola, the manufacturers of the 6809, did a
great deal of research to discover what the users of its predecessor,
the 6800, wanted as their ideal computer. The 6809 was designed

around their findings. It has a set of instructions that is more
comprehensive and logically complete than any other processor in
its class. For the skilled programmer, it is indeed a 'dream' of a
machine.

For the newcomer to machine code, faced with 139 cryptically
named instruction forms, the dream can be a nightmare. Learning to
use the instructions effectively seems a near impossible task. How
could anyone but a TEFAL scientist remember the different actions
of every single instruction, let alone string them together to produce
a program? Well, for a start there is more to programming than just

knowing what instructions will or will not do. Important though
that knowledge is, it can wait; the key to successful machine code
programming is to have the right attitude of mind in the first place.

And that is the approach I have taken in this book.
The introductory chapter tries to get past the concept of the

microcomputer as nothing but a cold-blooded perfectionist with a
heart of silicon. Computers are designed by people and the basic

principles of their operation is not so alien to the way that we
humans work as you might think. Seeing the computer as a
microcosm which echoes human organisational methods is an
essential first step in being able to use it with complete confidence. In
the second chapter I take a look at how programs ought to be written
to remove most of the mind-bending. It is an exercise which doesn't
require a thorough knowledge of machine code but does need an
understanding of what both computers and people can and cannot

do.
Except for one chapter which deals with hardware, this book is a

viii Preface

collection of program subroutines which I think you will find
extremely useful, particularly for games programs. Though not
covering all the 6809's instructions, the routines do include the vast
majority of instruction forms and addressing modes - probably all
that you will need to use in normal user software programming. I
have documented the routines far more extensively than the sort of
comments usually found in assembler listings to show how
instructions are used to carry out clearly defined tasks. Reading and
trying out fully explained code sequences is a more efficient and
interesting way to learn machine code than attempting to
understand how each instruction works in isolation. All the routines
are written primarily for the Dragon 32 but most of them should
work on other 6809 computers with little or no change.

This book would not have been written without the help of a great
many people to whom I give my thanks - in particular to Richard
Miles of Granada Publishing for his confidence in the book, to Alan
Tootill who propelled me in this direction a long time ago, to my
wife Chrissie for patiently rereading the manuscript at each minor
revision, and not least to Karl and Sibelind who assisted my
concentration the most by keeping unnaturally quiet. You can shout
your heads off now, kids!

David Barrow

Chapter One

Into Machine Code

The psychologist G. A. Miller coined the phrase 'The Magical
Number Seven, Plus or Minus Two' to describe the limitations of the
human brain in recognising and retaining discrete items of
information. It seems that whatever sense is involved- sight, sound,
touch, taste, etc. - human beings are pretty accurate at dealing with
small quantities of data. When asked to cope with more than about
seven items at a time, however, we come unstuck and begin to make
mistakes.

The concept of at a time is quite flexible and may refer to either
simultaneous or sequential presentation of data. We can tell at a
glance if a telephone number contains four, five or six digits and we
may even be able to hold the image in our minds long enough to read
the number from it. We can certainly remember a six-digit telephone
number that is read out to us over, say, a three-second period but we
may have difficulty remembering one read out over a thirty-second
time span - especially if other things are going on at the same time.

Six-digit telephone numbers are quite easy but how would you get
on with twenty-digit numbers? Could you remember the twenty
digits for the forty seconds or so it would take to dial? Actually, you
might not find this as difficult as you think. How do you see the
telephone number 362436? As three-six-two-four-three-six or as
three-six ... two-four ... three-six? I f it was your girlfriend's number
you might even see it as thirty-six ... twenty-four ... thirty-six. She,
no doubt, has a similar method of remembering your number since
the human brain has a trick or two up its cortex to get round the
7+/-2limit!

Trick I is to group items together to form larger units but - and
this is the important point - fewer of them. Trick 2 is to form
associations between - well, between anything and everything that
can be linked. The twenty digits of our hypothetical telephone
number would get grouped into 2, 3, 4 or 5 digit sequences. The

2 6809 Machine Code Programming

patterns inherent in the groups and our own private associations

would keep the number in our minds long enough for us to dial it.
After an initial period of inventing more suitable names for British
Telecom, our 7+ /-2 unit capacity brains would deal fairly
efficiently with the larger numbers.

The way we function as thinking beings has a bearing on machine
code programming. Computers are designed by people and the code
that controls their operation is also ultimately a product of the
human mind. Hardware organisation to some extent mirrors our
mental capacity. Programming, whether in high level languages that
sound like English or in machine code, is the act of translating our

mental processes into a form which can be used by machines and
(ought to be) readily understood by other people. Only by perceiving
clearly the similarities and differences between people and
computers/ programs - and the abilities and limitations of both -

can we interact effectively.

A question of address

Would it be a good idea if your house number, street, postal district,
etc. formed an all-digit postcode that was also your telephone
number, National Insurance number, credit card number, and so
on? It would certainly alleviate the pressure on your memory but just

think of the problems caused by such a system when you moved
house!

We all need to be numbered or addressed in a multitude of ways
for different purposes. Many of the ways say nothing about our
location. Bank account numbers or National Insurance numbers
bear no relation to our home address. Some of the ways in which we
are addressed, however, give varying amounts of information
regarding location. Your full telephone number tells me what
exchange area you live in. Your postcode will take me to a small
group of houses, one of which is yours. Your full address will take
me to your front door. I will have to know your name, age or other

details to single you out from Gran, Mum, Dad, half-a-dozen kids
and a pet goldfish.

There are ways I might find you without having to know your
actual address. 'Third house past the Rose and Crown' - before
opening time, of course. As long as I know where the Rose and

Crown is, and I go at the right time, I will find you.
Your bank account number might not say anything of your

Into Machine Code 3

whereabouts but it could be made to do so. Most of the numbers we
are burdened with cross-reference our name and address and it
works the other way about, too. Your bank manager calls out, 'Get
me Smith, P. D. Q.' - and in next to no time Smith's overdraft is
staring mockingly up at the bank manager. Figure 1.1 shows the
indirect route taken to get the Smith data.

"SM I TH"
(P. D. Q.)

SM 1TH
ACCOUNT

NAM ES

ACCOUNT NUMBERS

ACCOUNTS FILE

Fig. 1.1. Indirect addressing.

Our social organisation has come up with many different methods
of directly or indirectly referring to people, places and things. It is
not surprising that we build computers which utilise some of those
methods.

Half a million bits

Computers based on processors like the 8080, Z80, 6502, 6800 and
6809 have, with all their memory intact, somewhat over half a
million units of information inside them. In fact a little electronic
jiggery-pokery will let us put a virtually infinite number of
information units in these computers, though not all accessible at
the same time. How it is done comes up later in the book but half a
million units will keep us occupied for now.

All this information is useless if it is not organised in such a way
that we can access and use any single unit that we want. Languages
like BASIC come between us and the computer and provide us with
a relatively simple but mysterious information storage facility called

4 6809 Machine Code Programming

a variable. Some variables will hold numbers and others 'strings' of

alphabetic characters. The latter type have to be given names ending
in'$' for some obscure reason. But how BASIC actually stores the

information inside the computer doesn't bother us: we type in
'Smith' and up pops the data on Smith - if we loaded the right

program, of course. Somehow BASIC manages to extract the
'Smith' information from amongst those half million units.

The units of information are binary digits, called bits. Each can be
either reset (0) or set (I) - not a very large amount of information!

But just think how the decimal system works: one digit can tell us ten
different things (0, I, 2, 3, 4, 5, 6, 7, 8 or 9) but two digits can tell us a
hundred things (00 to 99). Every time the number of digits in use is
increased by one, the number of states is multiplied by ten. Binary
works in the same way as decimal but with a multiplication factor of
2 instead of 10. A group of8 bits has 256 different states (00000000,
00000001, 00000010, 000000 1 I, 00000 100, . . . , 1 1 1 1 1 1 10, I I I I I I l l).
Notice the use of place value in both the decimal and binary systems.
Each next digit to the left is worth 10 (decimal) or 2 (binary) of its
right neighbour and when a digit gets too full it is reset to 0 and there
is a carry of I to the next higher place. In decimal the carry action
occurs after 9 while it just happens to occur sooner in binary - after
I, in fact.

bit number: 7 6 5 4 3 2 �

BYTE - 1/,1/,l/,l/,l/,l/,l/,l/,I

1
� � � � � � � �

bit value or or or or or or or or

128 64 32 16 8 4 2

as 2", 2' 2• 2s 2' 2i 22 2' 2•

Fig. 1.2. Binary place value.

Eight-bit groups are so useful that they are treated as single larger
units of information called bytes. Most machine code operations are
carried out on bytes rather than on individual bits. The 8-bit byte
grouping is the main organisation of computer memory. The
machine code programmer has access to 14 bytes of information

Into Machine Code 5

held inside the 6809 processor and up to 65536 bytes in memory
chips:

Hexadecimal notation

With our 7+ /-2 unit ability brains we can fairly reliably distinguish
between binary numbers such as I 1010010 and 11010110 (with a

little practice, perhaps!) but when the sequences are extended to 16
bits or more easy discrimination becomes well nigh impossible.

Computers don't mind bits - but then they are made that way. We

prefer to work with symbols which carry a greater amount of
information per symbol so that we can use fewer of them, as in
decimal. The decimal number 2 10 is much easier to read and
understand than I 1010010 which is the binary equivalent. But

translation between decimal and binary is not all that straight
forward. We cannot simply translate each decimal digit into a

sequence of bits and then butt-join them.
An early attempt at reconciling the computer's preference for

binary with human cognitive processes came up with octal or base 8
numbers (decimal is base 10). Three bits have eight different states
which can be directly converted into the eight values (0 to 7) of an
octal digit. This was doomed to failure, of course, since bytes have 8

bits. This meant that the leftmost octal digit never got above 3. Now
base 16 is more or less the standard and works out quite neatly. Four

bits have I 6 states and each byte has two groups of four bits.
Hexadecimal or hex, as the base is called, is not too difficult to work
with once you get used to the letters A, B, C, D, E and F assuming
another role as the digits following on from 9.

Two hexadecimal digits (a hex-pair) represent 8 bits or I byte.
Four hex digits have 65536 different states - which is the exact
number of possible 6809 memory locations. Any single memory

location can be uniquely addressed by a 2-byte number (0000 to

FFFF).
One further point. Whenever there is likely to be confusion as to

whether a number is decimal or hex (it may even look like a name
since hex uses some letters) it is usual to precede the hex by'$', as in

($0000 to $FFFF).

6 6809 Machine Code Programming

Table I./. Binary - hexadecimal - decimal

Binary Hex Decimal Binary Hex Decimal

0000 0 0 1000 8 8

0001 I 1001 9 9

0010 2 2 1010 A 10

0011 3 3 101 I B II

0100 4 4 1100 C 12

0101 5 I IOI D I 3

0110 6 6 1110 E 14

0111 1111 F 15

then

10000 10 16 I 1000 18 24

10001 II 17 11001 19 25

10010 12 18 11010 IA 26

and so on.

The ingenious uses of ON and OFF

You can regard a computer as a glorified light switch. All that any of
its bits can tell you is that it is ON (I) or OFF (0). Its electrical
circuits are either high (probably +5 volts) or low (0 volts). But then
you can regard a human being as a glorified amoeba. The
glorification is that a person's body cells (or a computer's bits) are
not entirely separate entities but are interdependent and have
specialised functions. (At this point you might like to read Appendix
A which describes the basic parts of a computer system generally
and the 6809 processor in particular. On the other hand you might
not like to read it.)

Why has no one designed a decimal computer? After all, decimal
is our natural counting system, based as it is on our having ten
fingers (including the thumbs). Actually decimal computers have
been designed, built and used but binary computers are much
simpler. They are easier to design, can make use of the electrical
conductivity properties of such cheap and plentiful materials as
silicon and are not as alien to our thought processes as the red
herring about decimal fingers might have suggested (we don't use

Address Pointer

2 7 A E

Data
D A T A L I NE

Into Machine Code 7

contents nlress

�
0000

8 bits 27AC

8 bits 27AD

27AE

8 bits 27AF

8 bits 27B0

8 bits 27B1

bd FFFE
� FFFF

Fig. 1 .3. Random Access Memory - direct addressing.

place value in finger counting - if we did it would have to be a binary
system).

Did you read Appendix A - yes or no? Are you male or female,
left-handed or right-handed? Is the weather wet or dry? Is the time
day or night, a.m. or p.m.? Our cells, like the amoeba, reproduce by
binary fission (splitting in two) and our neurons either fire or do not
fire. We are very binary.

Binary decisions are fast, no'hmmm- may be'. A t each point where
a choice has to be made there is one simple test with only two
possible results. A computer beating a path to the door of just one
memory location out of 65536 does so in just 16 easy steps, working
from a first test on bit 15 (the leftmost bit of a 1 6-bit address) down
to bit 0, as in Table 1 .2. The sequence is typical of a binary search
process called the 'binary chop'. At each test exactly half of the
remaining addresses, file records, list entries, or whatever are being
searched are dropped from consideration.

8 6809 Machine Code Programming

Table 1.2. B inary address selection ($ABCD).

Bits rested Group in (hex) Group out (hex)

(high byte)
I 8000 to FFFF 0000 to 7FFF
10 8000 to BFFF cooo to FFFF
IOI A000 to BFFF 8000 to 9FFF
10 10 A000 to AFFF BOO0 to BFFF
10 l0I A800 to A FFF A000 to A7FF
10 10 10 A800 to ABFF AC00 to AFFF
10 10 1 0 1 AAOO to ABFF A800 to A9FF
10 10 1 0 11 AB00 to ABFF AAO0 to AAFF

(low byte)
I AB80 to ABFF A B00 to AB7F
II ABC0 to ABFF A B80 to ABBF
1 10 ABC0 to ABDF ABE0 to ABFF
1100 ABC0 to ABCF ABDO to ABDF
1 100 1 ABC8 to A BCF ABC0 to ABC7
110011 ABCC to A BCF A BC8 to ABCB
I 100 110 ABCC and ABCD ABCE and ABCF
1 100 11 0 1 ABCO A BCC

The chopping sequence of Table 1 . 2 is shown as a two-phase
operation to highlight another important organisational feature of
the 6809's memory: pages. Memory is divided into 256 pages which
are numbered by the high order byte of the full two-byte address.
The 6809 has a single-byte register which can be set to hold any page
number and special Direct Page instructions which need only a I
byte address to specify any one of the 256 different locations within
the currently addressed page.

Having reached memory location $ABCD, we find that it
contains 8 bits, each one either a 0 or a I. What can this collection of
bits stand for?

(I) An unsigned value between 0 and 255 ($00 to $FF).
(2) A signed value between - 1 28 and + 1 27 ($80 to $7F).
(3) Part of a larger number, perhaps 16 or 32 bits long.
(4) Part of an address (high or low order byte) pointing to another
memory location.

Into Machine Code 9

(5) A collection of individual bits, each of which will light up a dot
on the display screen if it is set.
(6) An ASCI I character code (see Appendix D).
(7) A sequence of bits to cause branching in a program.
(8) Part of a machine code instruction.
(9) A voltage pattern for a D to A converter.
(10) Nothing at all.

The last item (10) possibly surprised you. If it did then that means you
had assumed the contents of memory location $ABCD would mean
something. Quite a lot of human assumptions are wrong but, since
we survive as individuals and as a species, many of them must be
more or less right. Assumption is a major factor in human thinking
it enables us to respond quickly to the real world. Computers don't
make assumptions, they act on exact data; but programmers are apt
to make the most unreasonable and disastrous assumptions.

_ 7_�
UNUSED USED

P LACE
VAL UE

_A__
DATA ADDRESS

B I T
PATTERN

_____ I_____,,___
CONTROL D IS PLAY

� Z\
ASC I I NUMBER PROGRAM VOLTAGE

Fig. 1 .4. Structuring information.

1 0 6809 Machine Code Programming

That you may have assumed that $ABCD contained valid data
was probably my fault for presenting the possible uses (or non-use)
of the memory byte as an unstructured list - useful, perhaps, for
getting a few ideas down quickly and fitting the shape of a book
page, but not much else. Lists of that type don't show up any
groupings which emphasise the different relationships or associa
tions between the entries. Even worse, they tend to obscure vital
information, like the need to be sure that the location contains data
and not just rubbish. Data (or information) structures, such as the
binary tree (see Fig. 1 .4), help to make explicit those facts which we
might take for granted and also describe the connections between

items.
Structure is the subject of the next chapter and the types of data

use given in the list are dealt with at various places throughout the
book. The list, by the way, is not definitive: the uses we can make of
bits and bytes are limited only by our imagination.

Out of machine code

6809 machine code consists of a limited set of numerical
instructions, from one to five bytes in length, which the processor
decodes and then acts on. The processor uses the individual bits of
the instructions while we see them as bytes, usually expressed in hex
form. But people are not very good at associating pure numbers with
specific operations (New York City police excepted - ' I have a
suspected 1 59 on 5th and l 2th') even though we might eventually
learn to recognise instructions in numerical form.

All machine code programming is done in assembly language
where each operation type is given a mnemonic (memory aid)
abbreviation of the action, the CPU registers have names like A, X,
PC, etc. and even addresses and data may have descriptive labels
attached to them. An assembler will let you program in this symbolic
form and then assemble, or translate, your symbolic source program
into object code - the actual machine code.

If all you want to do is add a few simple machine code subroutines
to your BASIC programs to speed up games or control external
hardware, you should get by with the process known as hand
assembly. You will still need to use assembler type mnemonics and

labelling in writing your programs on paper but then you do the
tedious job of translation into the numerical code form. DATA
statements can be used along with a short READ .. . POKE routine

Into Machine Code 1 1

written in BASIC to store the instruction bytes in memory. EXEC,
USR or similar BASIC functions should pass control to the address
you specify.

Hand assembly of larger routines or complete machine code
programs is very laborious. For work of this kind it is practically
essential to use an assembler. The usual features of 6809 assemblers
are described in Appendix 8, and Appendix C gives the 6809
instruction set in both assembler and numeric code forms. If you are
not familiar with 6809 instructions then this is a good time to read
those two appendices.

Chapter Two

How to write Machine
Code Programs

The title of this chapter is, perhaps, a little over-enthusiastic since
the art of programming has filled several multi-volume books. All I
can do here is throw you a few hints - some dos, don'ts, w hys and
w hy-nots - that may help to make machine code programming
somewhat easier than it might otherwise be.

Machine code is a lot more difficult than BASIC for quite a
number of reasons. Here are some of the main ones.

(I) All of the instructions are simpler (i.e. they do less) than BASIC
commands, so you need more of them.
(2) BASIC deals with all the addressing for you. In machine code
you have to decide where to put both programs and data.
(3) BASIC uses English words (more or less) and nice neat
mathematical expressions and so is fairly easy to read even without
REM statements. You need to be a machine to read machine code!
(4) BASIC programs can (but shouldn't) be written at the
computer. Machine code must be written out on paper first. Even
the best assemblers can show only a few instructions on the screen at
any one time.

All these reasons suggest that, while you can get away with writing
BASIC programs at the computer by spending an inordinate
amount of time in EDIT mode, machine code must be approached
in a more organised fashion. I n fact the actual coding of the program
should not take place until you have worked out a complete
structured design. This might seem a little hard when possible code
sequences are already suggesting themselves to you, but programs
are far easier to change in the design stage than when a lot of code is
already in place.

Another reason for delaying the writing of code until the design is
complete is that it forces you to produce documentation for the
program. Documentation produced in the design stage acts as a

How to Write Machine Code Programs 1 3

route map through the program. Without it large programs are
extremely difficult to read and tracing the flow of control (the order
in which various parts are executed) during debugging can be almost
impossible.

Structure is basically of two types. The first type shows the
breakdown of t he program into dependent parts, each of which can
be further subdivided until a complete tree structure exists of the
program. This will not be a binary tree - each part can be divided
into many smaller parts. The second type of structure is developed
from the first and shows program flow.

Program structure

Computers are unaware of any logic more complex or detailed than
that found in a single instruction. Each instruction is dealt with in
isolation from, and without regard to, any other program
instruction. Structure, then, exists only for the benefit of the
programmer, not the computer.

Structuring a program is a top-down process. Don't be tempted to
work out a section at quite a low level and then try to fit it in.
Working from the top down means that at each stage you can forget
about a large part of the program and concentrate your efforts on
just one main branch. Follow the branching down religiously,
keeping each part of the program separate. At some point in the
proceedings you might notice that the branch you are working on
includes processes that are the same as those of another branch
already completed. It might seem a worthwhile idea to join these
branches together at this point-but don't. When you come to design
the program flow the identical parts can be written as a common
subroutine or block of subroutines. Structurally, they are entirely
independent.

There are no hard and fast rules about where and when to divide
into parts. This is where programming skill comes in. Practice might
not make perfect but it certainly helps you to see where a program
can usefully be split up. Sometimes the divisions are obvious but at
other times, especially in the higher levels, programs seem to defy
you to split them into logically d istinct parts. If divisions don't
immediately suggest themselves then a rule of thumb is to aim at
about half a dozen separate parts of equal weight. A short period of
enlarging the scope of some parts at the expense of others,joining up
thinned down parts or further splitting grossly enlarged parts should

1 4 6809 Machine Code Programming

ensue. Eventually you will find the inherent structure of the
program. Why half a dozen divisions? We are back to the 'Magical
Number Seven, Plus or Minus Two'. It really is difficult to
understand the structure of a program if all the splits are into a
dozen or more parts, sub-parts, and so on. I f that appears to be
happening then have a rethink and see if you cannot produce a more
readable structure. After all, the structure is there to help you find
your way easily through the program.

ADD

VECTOR

Y-COORO

TO

Y-OFFSET

X-COORO

TO

X -OFFSET

PLOT

ADO: OR IG IN

• X-OFFSET

- Y-OFFSET

X-REH

AS B IT

PLACE

Fig. 2. 1 . PLOT structure.

PUT

BYTE

SET

PLOT

FLAG

TEST
BIT

Figure 2. I shows a structure chart of the PLOT routine from the
chapter on high resolution graphics. Subroutines of this kind sit
right at the bottom of the structure tree (structure trees grow
downwards) and usually comprise no more than three or four levels.
The lowest level is at a point where each box represents only a dozen
or so instructions at most and preferably only two or three. This is
the point at which to stop dividing. Extending the design to another
level would mean taking into account the actions of individual
instructions. There are three (at least) good reasons for not doing
that: (!) you might later want to write the program for another
processor with very different instruction capabilities, (2) at this stage
you cannot be sure which registers are going to be used nor the way
in which data will be addressed or accessed, and (3) the structure

How to Write Machine Code Programs 1 5

chart only shows the interdependence of the parts, not the program
flow which will directly affect coding.

Program flow

Flow charts describe the order in which each part of the program is
dealt with by the computer and are a development from the structure
charts. They don't stick to rectangular boxes but use several box
shapes from a standard set of symbols. You can buy flow chart
templates with about twenty different symbols on them. They

(____) D
START or END PROCESS

0 D
DEC I S I ON I NPUT o r OUTPUT

Fig. 2.2. Main flow chart shapes.

usually have labels giving the meaning or use of each symbol. Look
for templates which conform to I SO Standard 1028, ANSI XJ.5-
1970 or BS 4 058. Figure 2.2 shows the four main symbols used in
drawing flow charts. Other symbols are mostly concerned with
differentiating media for storage or display - magnetic tape, visual
display, punched card, etc. The shapes are meant to symbolise
different actions and the order in which the actions are performed is
described by a flow line which commonly has arrowheads to show
the direction of flow. Arrowheads are, however, totally unnecessary
for the flow lines in a structured flow chart and you should avoid

1 6 6809 Machine Code Programming

them like the plague. They allow you to produce unconventional
and pathological structures which are difficult to read and to code.
Flow charts that don't rely on arrowheads have to be written, or
drawn, to a set of standard constructs which help to make the
subsequent coding clear, simple and quick.

There are three basic types of construct: sequence, iteration

(looping) and selection (branching or decision). Through all these
constructs the general direction of flow is downwards, entering at
just one point (the top) and leaving at just one point (the bottom).

I

I

I

I
Fig. 2.3. Sequence.

Selection and iteration also have internal lines which flow left, right
or upwards. Figure 2.3 shows a sequence of three processes. The
flow goes straight down through each process in turn.

Selection, shown in Fig. 2.4, is a binary decision with only two
possible results. Flow is either to the right or left, not both. The left
and right paths do not have to be labelled since the result of a binary
decision is always either.false, no, 0 (to the left) or true,yes, I (to the
right). The flow lines stretch out horizontally far enough to

How to Write Machine Code Programs 1 7

F,g. 2.4. Selection: (a) skip if false. (bi if then . else. (c) skip if true.

accommodate the width of the different option boxes and then turn
down. At the bottom they turn inwards,join in the centre and exit as
a single line of flow.

Iteration is usually a REPEAT UNTIL or REPEAT IF function.
The processes repeated have to be performed at least once, as in Fig.
2.5. The internal flow line leaves the end-test decision box on the left
(repeat if result false) or on the right (repeat if result true) and moves
out far enough to clear the process box. It then turns upwards until it
reaches the start of the process to be repeated where it turns back in
to join the downward flow line. A side join always means that the
flow has come from the end of an iteration construct. The other line
leaving the decision box does not come out horizontally from the
other side, as it does in the selection construct. In this case it is a

(a)

F,g. 2.5. Iteration: REPEAT UNTIL (a) true, (b) false.

1 8 6809 Machine Code Programming

Jalilhrough line, i.e. the test result matches the UNTIL (or does not
match the IF) condition and flow falls through to the bottom of the
construct. REPEAT U NTIL gives the fallthrough condition.
REPEAT I F gives the looping condition.

The process inside a REPEAT construct is always performed at
least once because the loop-test is at the end. Occasionally we need
an iterative structure which will allow the process to be skipped
entirely with a test right at the start of the construct, before the
process box(es). This is a DO WHILE situation. While a certain
condition applies, the process will be performed. The iteration ends
as soon as the condition ceases to hold. DO WHILE is actually a
composite construct made up of an initial selection for the possible
'skip process' and a normal RE PEAT I F to determine if the
condition holds for a repeat. Figure 2.6 (a) shows the composite
structure of DO WHILE.

Fig. 2.6. DO WHILE true: (a) well structured. (bi pathological.

A pathological form of DO WHILE is often found in flow charts
and is shown in Fig. 2. 6(b). It does not conform to good structure
standards in two ways: (I) the loop-back line could turn either right
or left at the point indicated by the question mark and so could cross
the exit line, and (2) the exit is from the side of the construct and
could, without due care, give rise to extreme forms such as that in

How to Write Machine Code Programs 1 9

Fig. 2. 7. A more pathological form of DO WHILE.

Fig. 2. 7. The pathological DO WHILE is used quite a lot in coding
with the justification that a simple 2-byte BRA instruction can
replace a complex test and decision many bytes long. Optimization
of this kind is often necessary when large programs have to be
packed into a small amount of available memory. The flow chart

design, however, should precede coding, particularly any opti
mization, so only the well-structured forms should be used at this
stage.

Figure 2.8 shows the flow chart constructed from the PLOT
structure chart (Fig. 2. I). All third level actions are incorporated in

20 6809 Machine Code Programming

START

VECADD

E N D

G ET

ADDRESS

PLOT

ADDRESSED

PO INT

S E T

PLOT

F LAG

Fig. 2.8. PLOT flow.

the GET ADDRESS and PLOT ADDRESSED POINT process
boxes. Flow charts can be drawn at various stages of the structured
breakdown to illustrate more clearly how program control passes
through any part of the program.

How to Write Machine Code Programs 21

S T A R T

I N IT IALISE

C OUNTS &

VECTORS

CALCULATE

N EXT

PO INT

P L O T

DEC

COUNT

E N D

Fig. 2.9. LINE flow.

PLOT is used repeatedly by the routine LINE to plot each point
on the line it draws. Figure 2.9 is a high level flow chart showing

where PLOT fits in. The double sides of the PLOT process box show

22 6809 Machine Code Programming

that it is a separate subroutine or independent procedure called by
L INE. Even in a more detailed flow chart showing deeper levels the
double sided box remains unexpanded - its structure and flow are
shown on its own different chart.

Coding, testing, debugging

If you have prepared detailed structure and flow charts then this
stage will be fairly straightforward and easy. If you have not you
might end up in a tangle almost as soon as you start.

The lowest level boxes on your structure charts should name tasks
that can be coded in a dozen instructions or less. These short
sequences of code are the basic action routines. They perform some
process or change on data fed to them from the next higher level and
then pass the result back. All higher level tasks are concerned with
some form of management - Which data? Which processes? What
order? The entire edifice echoes the worker-management pyramid
structure found in industry.

This distinction can prove important in coding and testing. Most
of the bottom level routines can each be coded and tested in
complete isolation from other parts of the program. Testing is a
matter of inputting test data and checking output result for any
errors. Test data is data at the extremes of the range of data the
routine is designed to act on. For example, a routine which acts on
ASCII hexadecimal digits and not other values would need to be
tested with:

$2F (/)
$40 (@)

$30 (0)
$4 1 (A)

$39 (9)
$46 (F)

$JA (:)
$47 (G)

These are the codes at the end of, and immediately outside, the two
groups used for hex digits. Other test data might be values in the
range $80 to $FF which are not used as ASC I I codes.

Routines at higher levels should be coded and tested from the top
down. The highest levels will consist mainly of subroutine call
instructions and branches selecting which lower parts to use. Here
again test data can be fed to the routines being tested, this time from
below. Many of the routines called by these levels might not yet be
tested, or even written. They can often be emulated by a simple R TS
(Return from Subroutine) instruction, possibly after setting or
resetting necessary flags in the Condition Codes register by AN DCC

Command

Breakpoint

Copy
Dump
Enter

Exit

Fill
Go
Jump
Load
Register

Save
Single-step

System

Trace

How to Write Machine Code Programs 23

Table 2 . /. M onitor commands.

Meaning

Insert Software I nterrupt (SWI) at given address, saving
replaced code byte.
Transfer a block of memory to new location.
Display a block of memory contents in hex.
Direct keyboard input of code or data bytes, either as hex
pairs or ASCI I .
Exit monitor for other system software, e.g. BASI C or
assembler.
Fill a block of memory with one value.
Execute program at address in displayed PC register.
Execute program at given address.
Load machine code program from tape or disk.
Display contents of all registers, allowing them to be
changed.
Save machine code program on tape or disk.

Execute program one instruction at a time, on key press,
displaying all register contents and current instruction code

at each step.
Alter computer system parameters, e.g. print speed, 1/ 0
rate, display mode.
Print control path of program during execution, i.e. address
of every instruction executed.

and ORCC instructions. Such subroutine swbs are normally all that
is needed to test the logic of the top levels.

The essential tools for coding, testing and debugging are an
editor-assembler and machine code monitor. It is desirable to have
these both resident in the computer in ROM form. Versions which
have to be loaded into R A M from tape or disk can be corrupted by a
faulty object program. The normal features of 6809 assemblers are
described in Appendix B. Monitors are used on the assembled object
code, not on the source program, allowing you to examine and
change the contents of individual memory locations and registers.
The features to look for in a monitor are given in Table 2. 1.

24 6809 Machine Code Programming

Program documentation

Structure and flow charts form the major part of the documentation
for the design stage. They often need to be supplemented by (a)
definitions of the program, data and system on which the program is
to run, and (b) decision tables showing conditions (cause) and
actions (effect) for any complex decisions made in the program. A
full description of this further documentation is beyond the scope of
this book. For a full and very readable treatment of structure and
documentation, I urge you to read the book by Tom DeMarco (see
the Further Reading list).

The design documentation can help in producing documentation
for the assembly language program, the names and descriptions of
processes being transferred straight to the code routines. Documen
tation of the source program is essential - a bare list of several
hundred assembler instructions is not much easier to understand
than actual machine code.

Each clearly distinct part of the source program should have
header information: its name, brief details of its action or task, the
data input to it and output from it, any registers or memory changed
by it, names of the subroutines that it calls, the maximum number of
(hardware) stack bytes that it uses and the execution time in clock
cycles if this is important. This information can be given on
complete comment lines preceding the code.

Assemblers also offer the facility of adding comments after each
instruction. Use this gift to the full. The comments written alongside
the instructions should not just describe the individual actions of
each instruction but should also make clear the full task performed
by sequences of code. Using them as a rehydrated version of the
mnemonics will not hold much water when, months later, you need
to update the program and have to work out what the code is
actually doing. The following routine L l234 is an example of
atrocious program documentation.

L l234 LDA #$FB ;load A with 25 1
STA 2,X ;store A at (X+2)
LDA ,X ;load A from (X)
A NDA #$20 ;AND A with 32
BNE L l 235 ;branch if not equal
BEQ L l 236 ;branch if equal

How to Write Machine Code Programs 25

Rewriting it as CH KEYZ informs you of what the sequence is doing.

;CHKEYZ - test for Z key press. X = $FFOO
CHKEYZ LDA #% 1 1 1 1 10 1 1 ;write Z col. mask to out-reg.

STA 2,X ;at $FF02 and read rows-in
LDA ,X ;from reg. at $FF00. Mask
ANDA #%00 100000 ;out non-Z rows, then branch
BNE NOKEYZ ;to "Z not pressed" or else
BRA KEYZ ;to "Z pressed" routines.

Other differences between the routines are (a) CHKE Y Z and the
other labels used are abbreviations of the actions performed or the
special entry conditions of the routines but L 1234, L 1235 and L 1236
are meaningless, (b) binary numbers are used in CH K E Y Z to draw
attention to the fact that it is the bit-patterns and not numerical
values that are being used, and (c) the use of BRA in CHKEYZ
informs you that there is no fallthrough from the routine whereas
this fact is not at all clear in the L I 234 routine.

Now that the actions of the routine have been made plain it is
obvious that the program is badly structured. Unless either
NOKEYZ or K E YZ immediately follows CHKEYZ, the routine is
doing two jobs - checking for Z key press and selecting from two
processes. The use of indexed addressing to write to and read from
the PIA registers at $FF02 and $FFOO is also unnecessary since
those addresses are fixed, and it means that the routine depends on
the X register being set at $FF00 on entry. These problems should
have been sorted out during the program design stage. Good
program documentation can highlight design errors - bad documen
tation would only hide them deeper.

Data

Purists regard data strictly as the plural of datum but computing
convention has it as singular, collective, abstract or descriptive, so it
is quite usual to say 'data is' rather than the grammatically correct
'data are'. Data can be of three types: constant, variable and an
in between sort referred to as parameter. Our old friend PLOT can
again be helpful as an illustration since it uses all three types of data.

Constant data never changes. It can be written straight into the
program code if necessary - for example, LDA #$FB - but there are
often good reasons why it shouldn't be. In PLOT, the conversion of
the y coordinate to a vertical offset from the origin address requires,

26 6809 Machine Code Programming

as constant data, the line increment value. This is the difference
between the addresses of two vertically adjacent screen locations
and while the line increment may not be the same on different
computers it is a constant within any particular computer. PLOT
also uses an eight-byte table of constant data. Each byte in the table
has one set bit corresponding to one of the eight possible dot
positions in one screen location. This too remains unchanged.

Variable data is that which can take different values every time a
code sequence is executed. It is usually input to a routine as values
held in accumulator or index registers. Sometimes a routine may
have to pick up variable data from memory. The vector input to
PLOT in the form of register values is variable and so are the co
ordinates of the last point plotted which PLOT reads from memory.

Parameters are data that define or limit the action of a routine.
The vector and co-ordinates are really parameters but the term is
often kept for data which changes less often. Parameters in PLOT
include the origin address and the number of horizontal and vertical
dots on the display area. These are constant for long periods,
perhaps for the entire program, but they may be changed to use
different screen pages (in the Dragon or TRS-80 Color Computer)
or to limit the size of a display window on the screen.

In a complete program constant data and parameters may need to
be accessed by several routines. Common data of this sort should be
put in a reserved area. Computer operating systems are often fixed
in ROM and cannot be changed so their system variables or system
parameters are written to an area of RAM where they can be
accessed, and altered if necessary, by any of the routines in the
system. Corrupting this data can cause a system crash.

Constants limited to a single routine can be written into
instructions as immediate data (Immediate addressing mode). If the
same data is used several times during the routine it should be
equated to a label in the source program before the first instruction.
The assembler will insert the actual data in the instruction when it
meets the label as operand.

BSDATA
BASADJ

SADYAL

EQU
LDD
C M PB
BCS
SUBB
INCA
STD
RTS

10
,x
BSDATA
SADYAL
BSDATA

,x

;base 1 0 data used in BASA DJ
;pick up value to adjust to
;base, if lo-digit is less
;than base then skip, else
;adjust by subtracting base
;and inc'ing next place digit
;re-store adjusted value
;and end routine.

How to Write Machine Code Programs 27

BASA DJ adjusts the low order digit of a two-digit value picked up
in the D register (A with B) to a base BSDA TA. If we want to use a
different base (any base from 2 to 255) only the value equated to
BSDATA need be altered.

Routines often need workspace for temporary storage of
variables and intermediate results. If the workspace requirements
are only small - say, half a dozen bytes or less - then the 6809
hardware stack is as good a place as any. The hardware stack pointer
S can be used in exactly the same way as any of the index registers, X
and Y, or the User stack pointer U with the Indexed and Indirect
addressing modes. However, you should never use memory
immediately below the current stack position. Any interrupt
occurring will stack the contents of the entire register set (or just PC
and CC in a fast interrupt), overwriting and corrupting your
workspace. The Dragon and TRS-80 Color Computer Timer
function works by an interrupt every 1/50 second. If more than half a
dozen bytes of workspace are needed a special area ought to be
reserved immediately after the routine, or in a common area for use
by several routines, using the assembler directive R M B.

Chapter Three

Number Crunching

Simple arithmetic is a fairly straightforward process which doesn't
involve any computer hardware other than RAM and the processor
itself, but it does bring in some commonly used and very important
methods of memory addressing and program control so it is a good
subject to start with.

The 6809 is an 8-bit processor and most of its instructions act on
only one byte of data. It does have instructions to add, subtract and
compare 16-bit (double byte) values but these are designed primarily
for manipulating addresses. The processing of multi-byte values is
usually best done inside a loop which deals with only one byte at a
time although there are exceptional cases where 2-byte chunks can
be processed.

MBADD adds the multi-byte binary number indexed by Y to that
indexed by X and stores the result at a third location indexed by U.
The values must all be the same length and this is input into the
routine in B. An initial test is carried out on B to see if it is greater
than $7F (127) and if it is then the routine aborts. This is because the
accumulator offset indexing uses B as a signed value in the range $80
to $7F (-128 to + 127) and if a negative value were used then
memory below the addresses in U, X and Y would be changed. With
only positive values of B valid, the loop end test is on the state of the
negative flag N which is 0 for all valid B and goes to I immediately
after the highest order bytes (at U, X and Y) have been processed and
B is decremented to $FF (- 1). Before exit, B is incremented to set the
zero flag Z and reset N to show that the addition has been
performed.

MBADD - Multi-byte binary addition
S1ack - l .
1/ 0 - Value at X plus value at Y stored at U.

B indexes the low order bytes from X, Y, U

M BADD

Number Crunching 29

(8 = no. of bytes - I). Invalid if 8 > $7F.
Output Z=O, N= I: input 8 too big (8 > $7F)

Z= I, N=O: add done, C = any carry out.

PSHS
TSTB
B M I

A

MBAEND

;save A contents while A used.
;make sure B is valid (B < $80)
;end Z=0, N= I if it is not.

ANDCC #% 1 1111 110 ;no carry in to addition.
;loop, processing each value place byte from lowest at
;R + B (R is U,X,Y) to highest at R + 0 (when B = 0),
;including carry from previous bytes addition.
M BALP LDA B,X ;get 1st argument byte, add with

ADCA B, Y ;carry byte from 2nd argument
STA B,U ;and store to 3rd argument.
DECB ;index next higher order bytes
BPL MBALP ;repeat t i l l a l l added.

;set Z, reset N to show addition done. C unaffected by INC.
INCB ;set valid output nags.

M BAEND PULS PC,A ;exit M BADD, restoring A.

M8ADD shows the basic form for any process which picks up a
string of bytes from one area, performs some change or
transformation on them (perhaps with reference to a different string
elsewhere) and then stores the new values in a different area. A few
simple changes are all that is needed to make the routine do various
other things. For example, changing A DCA 8, Y to S8CA 8, Y turns
M8ADD into M 8SU8 - multi-byte subtraction. The result of the
operation need not go into a third area. Replacing ST A 8, U by ST A
8,X will put the result back to the first argument. Deleting A DCA
8, Y from the routine turns it into a string transfer routine, moving
up to 1 28 bytes from an area indexed by X to one indexed by U.
Other methods of moving memory are shown in later chapters.

Multiplication and division

I t is not very likely that you will need to multiply values up to 128
bytes in length but 8-bit and 1 6-bit multiplication and division
routines are often needed. The 6809 is much more sophisticated than
the other common 8-bit processors in that it boasts an 8-bit
multiplication instruction M UL which executes very quickly in only
1 1 clock cycles. Eight-bit division and 16-bit multiplication and
division can only be done by agonisingly slow software methods.

30 6809 Machine Code Programming

DIVAB is an 8-bit division routine (A remainder B := A / 8). The
action is the binary equivalent of the normal long division method,
except that shift and rotate instructions are used to move the
dividend (A) over the divisor (8) instead of B being shifted down
under A as is normally done in a decimal paper-and-pencil long
division. Being binary , the divisor can either not be subtracted from
the dividend or can be subtracted only once at each digit place. The
result of each subtraction that 'goes' is a set bit (I) and the result bit is
0 if the subtraction does not go. Since the dividend is being shifted
out of A by one bit in each iteration, the quotient can be shifted into
A as each bit is determined. After all eight dividend bits have been
shifted from A into B, the complete 8-bit integer quotient is in A and
B holds the remainder.

0/VAB - 8-bit unsigned binary integer division

Stack - 3.

1/ 0 - Input A is the dividend, B is the divisor.
Output A is the integer quotient, B the remainder.

Notes - If the divisor is zero then output A= $FF and remainder B
= input A. Division by zero is normally considered an
error.

DIVAB PSHS B,CC ;save flags, put divisor on stack
LDB #8 :set up count for 8 bit-shifts
STB .-S ;on stack ("push" count).
CLRB ;clear accumulator/ remainder.

;loop 8 times. attempt subtraction of divisor at each digit
;place, forming quotient one bit at a time.
DABLP ASLA ;shift next dividend bit to

RORB ;remainder, clearing quot. bit.
CM PB 2,S ;test if divisor can be subtracted
BLO DABLPT ;from remainder, and only if it
SUBB 2,S ;can, subtract and set quotient
INCA ;bit at corresponding place.

DABLPT DEC ,S ;repeat ti l l all dividend shifted
BNE DABLP ;and A now quotient.

;put remainder into stacked B (originally divisor) for
;pulling. Clear count byte, tidying stack for pull.

STB 2,S ;pulled B to be remainder.
LEAS l ,S ;bump S to remove count byte.
PULS PC,B.CC ;exit, restoring registers.

Sixteen-bit division is done in exactly the same way but, of course,
needs 1 6 iterations. Multiplication done bit by bit is somewhat the
reverse of division; the multiplier is shifted out one bit at a time and

Number Crunching 31

D I V IDEND BIT

REMAI NDER D I V I DE N D \
\ QUOT I E NT

subtract

D I V I S OR QUOTIENT B IT

Fig. 3. 1 . Binary long division.

if the current bit is set then the multiplicand is added in to the partial
product. The two operations are shown symbolically in Figs. 3.1 and
3 .2.

PRODUCT

M ULT I PL IER \
\ PROD U C T

PRODUCT

a dd

MULTIPL IER B I T M ULTI PL ICAND

Fig. 3.2. Binary long multiplication.

O/VXY - 1 6-bit unsigned binary integer division

S1ack - 8.

I/ 0 - Input X is the dividend, Y is the divisor.
Output X is the integer quotient, Y the remainder.

Noles - Division by zero results in output X = $FFFF and
Y = input X (dividend).

DIVXY PSHS Y,X,D,CC
LOB #$ 10

;save registers used.
;set up count for 16 bit-shifts

32 6809 Machine Code Programming

PSHS B ;on stack, since A and B used
CLRB ;as 1 6-bit accumulator/
CLRA ;remainder (D).

;loop 16 times, try to subtract divisor at each digit place,
;forming quotient one bit at a time. Quotient shifts in as
;dividend shifts out.
DIVLP ASL

ROL
ROLB
ROLA

5,S
4,S

;shift next dividend bit through
;into remainder (D), clearing
;next quotient bit at bit O 5,S.

CMPD 6,S ;test if divisor can be subtracted
BLO DI VLT ;and skip (Q bit = 0) if not,
SUBD 6,S ;else it can so subtract and set
INC 5,S ;Q bit at corresponding place.

DIVL T DEC ,S ;repeat until all dividend
BNE DIVLP ;shifted. D now remainder.

;put remainder into stacked Y (originally divisor) for
;pulling quotient and remainder in X and Y. Clear count
;byte off stack so stack ready for pull.

STD 6,S
LEAS l ,S
PULS PC,Y,X,D,CC

;remainder to stacked Y.
;remove byte workspace off stack.
;exit, restore with Q and rem.

MULXY - 1 6-bit unsigned binary integer multiplication
Stack - 8.
1/ 0 - Input X is the multiplier, Y is the multiplicand.

Output X and Y contain the 32-bit product.

M U LX Y PSHS Y,X,D,CC ;save registers, put arguments
LDB # 1 6 ;on stack. Set u p 1 6 loop count
PSHS B ;on top of stack. Clear accum.
LDD #0 ;for forming product.

;loop 16 times, shifting partial product up one place and
;next multiplier bit out to carry flag C. I f multiplier bit
;set then add multiplicand in at correct place. Partial
;product does not interfere with shifting out multiplier.
M ULLP ASLB ;shift partial product up

ROLA ;through D and stacked multiplier
ROL 5,S ;which shifts up to accommodate
ROL 4,S ;and gets next place bit to C
BCC M ULL T ;no add in if place bit is 0,
ADDO 6,S ;else add multiplicand in to
BCC M ULL T ;correct place and take care of
INC 5,S ;any carry up through higher
BNE M U LLT ;order bytes of product, carry
INC 4,S ;won't reach multiplier bits.

Number Crunching 33

M U LL T DEC ,S ;repeat until all multiplier
BNE M U LLP ;shifted out and processed.

;put low order two bytes of product into stacked Y (input
;multiplicand) for pulling 32-bit product in X and Y.

STD 6,S ;put product lo-bytes to stack
PU LS B ;clear loop count off stack.
PU LS PC, Y,X,D,CC ;exit, restore with XY = product.

M ULXY uses the normal method of multiplication where there is
no multiplication instruction to do the job. But since the 6809 does
have an 8-bit MU L instruction a different method can be used -
multiplying complete bytes at a time and adding the results in at the
correct places. MBYBY does this for an 8-bit by 1 6-bit
multiplication (B and Y := B • Y). The formula for the 24-bit
product is:

(B * Yhibyte * 256) + (B * Ylobyte)

The method can be extended to a 1 6-bit by 16-bit multiplication or
even further, but it is a long routine. The advantage is in speed - the
byte method executes about twice as fast as the bit method. You
pays your money and you takes your choice!

MB YBY - 8-bit by 1 6-bit unsigned binary integer multiplication
Stack - 5.

// 0 - I nput B is the multiplier, Y is the multiplicand.
Output B and Y contain the 24 -bit product.

M BYBY PSHS Y.D.CC ;save regs and stack arguments
LOA 4.S ;get multiplicand lo-byte and
M U L ;mu! b y multiplier (in B) t o get
STD 3.S ;part product to low 2 bytes.
TFR Y,D ;get m'cand hi-byte to A and
LOB 2.S ;m'plier to B, then clear
CLR 2 .S ;product hi-byte for add in.
M U L :mu! hi-byte and d o add i n to
ADDO 2,S ;product high 2 bytes, back on
STD 2,S ;stack for pulling to B and Y.
PULS PC.Y, D,CC ;exit, restore with product.

Pseudo-random numbers

True random numbers are very difficult to come by so the usual
approach is to generate a series which exhibits minimum regularity.
This subject has produced much discussion in the machine code

34 6809 Machine Code Programming

series 'PCW S U B SET' in Personal Computer World (essential
reading for assembly language programmers) where the conclusion
was drawn that reasonably efficient 16-bit and 32-bit pseudo
random number generators could use the series

R,,, = (I 509R, + 4 1) mod 2 1 6

and

R,,, = (69069R, + 4 1) mod 232

Modulus (or mod) 2 16 arithmetic is extremely simple in machine
code. It means the remainder left after dividing a number by 65536,
and that is exactly what you get if you just take the two lowest bytes
of any result as the answer and discard bits 16 upwards. Mod 232 is
the same but keeping the four lowest bytes.

Routines to generate both 1 6-bit and 32-bit random numbers on
the 6809 appeared in 'PCW S U B SET' in May 1984. In both
routines the numbers were held in memory indexed by U. But, of
course, a routine can work on a 16-bit value input in a register and
that is what RANDOM does in order to produce a pseudo-random
number at maximum speed - ideal for determining the random
attack patterns of alien invaders.

The constant multiplier of the last random number (or seed),
1509, can easily be factorised to simplify the calculations:

I 509R = (2 * 3 * 256 * R) - (3 * 3 * 3 * R)

The multiplications then reduce to the quicker shift, add and
subtract operations.

Random - 1 6-bit pseudo-random number generator
Stack - 3. Clock cycles - 75.
1/ 0 - Input D is the previous random number or seed.

Output D is the new random number, negative flag N is set
if D > $7FFF, zero flag Z is set if D = 0.

Notes -· Generator series R,., = (I 509R, + 4 1) mod 65536 is effected
by using the identity, 1509 = (6 • 256) - 27, and then using
shift and addition instead of multiplication. Clock cycles
are given against each instruction.

RANDOM PSHS D
ASLB
ROLA
ADDO ,S

;7,
;2,
;2,
;6,

(S) = R

D = 2 R
D = 3R

Number Crunching 35

STD ,s ;5, (S) = 3R
ASLB ;2,
ROLA ;2, D = 2 * 3R
PSHS B ;6, (S) = 2 • 256 * 3R (hibyte)
ASLB ;2,
ROLA ;2, D = 4 * 3 R
ASLB ;2,
ROLA ;2, D = 8 * 3R
ADDD l ,S ;7, D = 9 * 3R
STD 1,S ;6, (S+I) = 3 * 3 * 3 R
PULS A ;6,
LDB #4 1 ;2, D = 2 • 256 • 3 R + 4 1
S U BD ,s++ ;9, ... - 9 • 3 R . Tidy stack.
RTS ;5, exit, D = new R.

The same method can be used for a 32-bit random number generator
with input and output in, say, the X and Y registers but the execution
time will be more than double that of the 16-bit routine. RANDOM
should prove adequate for any game since the series repeats only
after 65536 different values.

The fact that it is a repeating series and will always produce the
same sequence given the same starting value is a problem common
to all pseudo-random number generators. Unless the computer
system has some hardware device which can be assumed to have a
different state each time a program is run - such as an on-board,
real-time clock - then the usual method of finding a new seed is to
seek keyboard input. Video display and keyboard reading are
subjects for later chapters. For now, assume a message printing
routine which asks for any key to be pressed and a routine to test for
a keypress. The following program sequence will then produce a
different value each time the program is run.

JSR R EQUST ;go print input request.
SEEDLP ADDD # I ;continue to increment seed

JSR KEYCH K ;until key press check results
BEQ SEEDLP ;in finding request met, then

;continue program with unique seed in D.

Chapter Four

PIAs, SAM and Folding
Memory

When you use BASIC, the technical or hardware side of the
computer is almost totally hidden. This helps to make BASIC
programming the relatively easy job that it is but it does prevent you
from taking direct command of the computer. Machine code
programming, on the other hand, puts you in full control of the
whole system. The catch is that you have to know more than just the
particular language used by the microprocessor: you need to know
how to use the other hardware devices in the system.

Microcomputer systems are technically quite complex. Even an
inexpensive home computer has a lot more to it than just a
microprocessor and a few memory chips - for example, the parts list
of the TRS-80 Colar Computer takes up six (large) pages of the
Technical Reference Manual (available from Tandy stores,
Catalogue number 26-3 1 93). Twenty-nine of the parts are integrated
circuits, including the MC6809E CPU, two MC682 1 PIAs and a
MC6883L SAM. The CPU is, of course, the microprocessor. The
PIA and SAM chips are good examples of Input/ Output and
System Control devices which are discussed in general terms in
Appendix A.

The 6820/6821 Peripheral Interface Adapter

The PIA is one of the most common parallel 1 /0 devices used in
6809 systems. Parallel devices can input or output eight bits (one
byte) of data simultaneously. They can also be used to emulate serial
devices - which input or output a sequence of bits one at a time - by
software control of just one line. The difference between the 6820
PIA and the 682 1 PIA is only technical. As far as the programmer is
concerned, the 6820and 682 1 are the same. The Dragon and TRS-80
Colar Computer each have two 682 1 P!As, occupying the same

P/As, SAM and Folding Memory 37

locations and configured similarly in both systems, The uses made
by the Dragon of the P I A illustrate its extreme versatility so after a
brief and, I hope, not too technical description of the PIA, we w_ill
look at what the Dragon does with it.

The PIA consists of two 8-bit ports, A and 8, which can be
considered identical for most purposes, Port A is usually configured
for input and port B for output of data. Each port has three registers
and occupies two memory locations as shown in Table 4 . 1, and this
means that normal Read/ Write memory is absent at the addresses
used by the P IA. It is the usual practice to locate P!As and other
memory mapped devices well away from User-RA M. Nevertheless,
you must always be careful, especially when using Indexed or
Indirect addressing, not to write data accidentally to an 1/0 or
control device or you could crash the system.

Since the Peripheral and Data Direction registers share the same
address, both cannot be used at the same time. There is a good
reason for this, The DR bits determine whether the corresponding
PR bits are input or output. If a DR bit is resel (0) then the same
place bit in I.he PR is an inpul bit; if the DR bit is se1 (I) then the PR
bit is an ourpw bit. Consequently the PR can be set to include a
mixed pattern of input and output bits, Once the system has been
initialised to a specific PR input/output configuration, the D R can
be hidden behind the PR to ensure that no accidental change takes
place. Obviously there has to be some way of selecting which of the
DR and PR you want to address and bit 2 in the port Control
Register (CR-2) is used to switch between the Direction and
Peripheral R egisters, as shown in Table 4 .2. RESET of the system
(as at power-up) clears the CR, thus automatically selecting the D R
ready for initialisation.

The following code sequence will configure a P IA port A so that
bits 7 to 4 of t he Peripheral Register are input lines and bits 3 to O are
output lines. Note that bit 2 of the Control Register must be cleared
(reset) and set using bit logic operations so that no other CR bits are
affected.

LDA CRA ;clear C RA-2 to address ORA
ANDA #%111110 11 ;without changing any
STA CRA ;other C RA bits,
LDA #%0000 1 1 1 1 ;make PRA-7 to 4 input and
STA DRA ;PRA-3 to 0 output by
LDA CRA ;writing to DRA. Re-address
ORA #%00000 100 ;PRA without changing
STA CRA ;other CRA bits.

38 6809 Machine Code Programming

Port

A

8

Table 4.1 . PIA registers with Dragon addresses.

Registers Dragon A ddresses
PIA O PIA I

Peripheral Register (PRA}

} or $FFOO
Data Direction Register (ORA}
Control Register (CRA) $FF0I

Peripheral Register (PRB)

} or $FF02
Data Direction Register (ORB)
Control Register (CRB) $FF03

Table 4.2. P IA register select (CR-2).

CR bir 2

0

Register selected

Data Direction Register
Peripheral Register

$FF20

$FF21

$FF22

$FF23

Now we can input and output up to eight bits of data at a time to a
peripheral (keyboard, remote terminal, disk drive, etc.) by reading
from or writing to a Peripheral Register in the PIA. The problem is
knowing when to send the data or receive it. A 6809 CPU running at
2MHz can transfer data from memory through an output configured
P R at speeds in excess of 1 80000 bytes a second but the peripheral on
the receiving end could be a slow printer tapping away at only 12
characters a second. So how can the P IA - the chip in the middle -
reconcile the two?

The A and B ports are not, in fact, limited to just the eight 1 / 0
lines running from each Peripheral Register. There are two further
lines to each port, connected this time to the Control Registers.
These control lines are used for interrupl and handshaking signals
and may also be used to output a steady voltage.

When interrupt and/or handshaking signals are used the fast
CPU can get on with other processing tasks while waiting for a

P/As, SAM and Folding Memory 39

'ready' signal from a slow peripheral. If an interrupt is used the
peripheral can command the CPU to stop whatever it is doing and
jump to a routine dealing with the peripheral's request, resuming the
interrupted task when the request has been dealt with. If interrupts
are not used the program being run must periodically check for a
ready signal indicating that a handshake process has begun,

In an input handshake the peripheral puts data on the data lines
and a ready signal on a control line (this may cause an interrupt).

Table 4.3. Control of PIA interrupts on control lines C l and C2.

Cl C2 Control Register (CR) bit use

nags

CR-7 CR-6 Transition (interrupt occurred) flags.

control bits

CR-5
CR-I CR-4

Set (I) by control line transition.
Reset (0) by CPU read of Peripheral Register.

C2 input select (CR-5 = 0). C I always input.
Select effective transition:

If CR- I (CR-4) = 0 then high to low.
If CR-I (CR-4) = I then low to high.

CR-0 CR-3 Interrupt disable/enable:
If CR-0 (CR-3) = 0 then interrupts disabled.
If CR-0 (CR-3) = I then interrupts enabled.

After the CPU has read the data it sends an 'acknowledge' signal
back to the peripheral. The peripheral does not send further data
until it has received the data acknowledged signal. In an output
handshake the peripheral puts a signal on a control line to say that it
is ready to receive data. The CPU then puts data on the data lines
and a data ready signal on a control line. In both cases it is the
peripheral which sends the first control signal and does the waiting.

The PIA has an automatic mode where reading data from the
PRA causes a data acknowledged signal to be sent and writing data
to the PRB causes a data ready signal to be sent, This is the only
difference between the A and B ports.

Control line I is input only and is usually tied to the I RQ or FI RQ
interrupt lines of the CPU. Any transition (change in the voltage
level) on it sets a flag in bit 7 of the PIA Control Register (CR-7).
CR-7 is cleared only by a CPU read of the Peripheral Register. Two

40 6809 Machine Code Programming

Table 4.4. Automatic output signals on PIA Control line 2.

Con1ro/ bits Control line 2 (CA2 or CB2)

CRA-4 CRA-3 CA2 signals

0

0

0 Low (acknowledge signal) after CPU read
from PRA until transition on CA I .
Low for I cycle after C P U read from PRA.

CRB-4 CRB-3 CB2 signals

0

0

0 Low (acknowledge signal) after CPU 11·rite
to PRB until transition on CB I .
Low for I cycle after C P U write to PRB.

bits in the Control register, CR- I and C R-0, are used to control
interrupts on line I . Control line 2 can be either input (CR-5=0) or
output (CR-5= I). As an input line it behaves like line I except that
CR-6 is the flag and C R- 4 and CR-3 the control bits. Table 4 .3
summarises P I A interrupt control.

When bit 5 of the Control Register is set (I), Control line 2 is an
output line and CR bits 4 and 3 serve different purposes. Bit 4
determines if the signal will be automatic (CR- 4 = 0) or software
controlled (CR- 4 = I). Automatic signalling is shown in Table 4 . 4 .
With line 2 under software control the signal is constantly low (0
volts) when CR-3 = 0 and constantly high (usually +5 volts) when
C R-3 = I. Control line 2 can thus be used as an off/on switch by
setting bits 5 and 4 of the Control Register and writing a switch bit to
CR-3: 0 = OFF, I = ON.

PIA and the Dragon

The Dragon keyboard is a simple matrix connected to both
Peripheral Registers of P I A O (see Table 4. 5). Any single column can
be activated by writing a zero to the corresponding bit of P R B,
making sure t hat all other bits are ones. Bits 6 to O of the eight bits
input from P R A will be all set (ones) if no key in that column is being
pressed. If a key is being pressed then a reset (0) bit in the input data

P/As. SAM and Folding Memory 41

identifies the keyboard row. Bit 7 of the PRA is used for joystick
comparison and may be O or I. The whole keyboard can be scanned
by iterating eight times and writing a zero to a different column in
each iteration. This way, any combination of the 52 keys can be used
simultaneously and identified.

PIA O PRA
Row input

from
ke_vboard

6
5
4
3
2
I

0

* not used.

Tahle 4.5. PIA 1 /0 on the Dragon keyboard.

shift
space

w

0
G
I

7

PIA O PRB
Column output to kt�yboard

6 5 4 3 2
I

break
I I z

V u T s R
N M L K J
F E D C B

6 5 4 3 2

clear
y
Q
I
A
9

TRS-80 Color Computer keyboard has a different arrangement.

0

enter
X
p
H
@
8
0

The following two subroutines check for either the BREAK key
being pressed (B R K C H K) or the key identified by row and column
(K EYC H K). The pattern of keys pressed has to match exactly the
input patterns or Z will be returned reset. To test for any keypress,
make B = 0 and A = $FF then output Z will be set if no keys are
pressed and reset if any are.

; B R KC H K check BREAK press. Output: Z= I if BREAK.
;subs: KEYCHK .
BRKCHK PSHS D

LOA #%1 0 1 1 1 1 1 1
#%1 1 1 1 1 0 1 1
KEYCHK
PC,D

I r>R
BSR
PULS

;Save A & B. Load A & B with
;patterns to exclusively

;identify BREAK key
;in KEYCHK action.
;exit. Z= I if BREAK.

42 6809 Machine Code Programming

;KEYCHK - check key press. Input: A, B = row, cols pattern.
;output: Z= I if key(s) pressed match pattern.
KEYCHK PSHS D ;Save A & B. Write cols to PRB

STB $FF02 ;from B. EOR read of PRA clears
EORA $FFOO ;equal bits, sets different bits.
ANDA #%0 1 1 1 1111 ;clear unused line, bit 7.
PULS PC,D ;exit, Z= I if match.

Unfortunately, the keyboard is not the only device to use PRA
and PRB. The joystick fire buttons are tied in to P RA-0 and PRA- 1 ,
making i t hazardous to attempt using both at once. Since i t is
unlikely that you would want to use joysticks and keyboard at the
same time, though, the PI A bits can serve two functions. Similarly,

PRB is used both to activate the keyboard and for sending data out
to a printer - several control signals ensuring that the two functions
are not confused. Tables 4.6 and 4. 7 show the uses the Dragon
makes of its two P!As.

Bits

PRA-0
PRA-1
PRA-2 to 6
PRA-7
CRA-0 } CRA-1
CRA-2
CRA-3
CRA-4
CRA-5
CRA-6
CRA-7
PRB-0 to 7
CRB-0 l
CRB- 1 (
CRB-2
CRB-3
CRB-4
CRB-5
CRB-6
CRB-7

Table 4.6. Dragon PIA O uses.

Uses

Keyboard row input.
Keyboard row input.
Keyboard row input.
Joystick comparator.

R. joystick fire button.
L. joystick fire button.

TV horizontal sync control bits.

DRA/ PRA select.
(CA2) M UX select lo-bit. (sound, joysticks)
sei } Makes line CA2 an output switch
set under software control of CRA-3.
not used (CA2 is output).
(CA I) Horizontal sync interrupt nag.
Keyboard column output. Printer output.

TV frame sync control bits.

D R B/ PRB select.
(CB2) M U X select hi-bit. (sound, joysticks)
set } Makes line CB2 an output switch
set under software control of CRB-3.
not used (CB2 is output)
(CBI) Frame sync interrupt nag. Timer.

Bi1s

PRA-0
PRA- 1
PRA-2 to 7
C RA-0 } C RA- 1
CRA-2
CRA-3
CRA-4
CRA-5
CRA-6
CRA-7
PRB-0
PRB-1
PRB-2
PRB-3 to 7
CRB-0 } CRB- 1
CRB-2
CRB-3
C RB-4
CRB-5
CRB-6
C RB-7

P/As, SAM and Folding Memory 43

Table 4. 7 Dragon PIA I uses.

Uses

Cassette data input.
Printer strobe.
Six-bit D/ A. (sound, joysticks)

Printer acknowledge control bits.

DRA/ PRA select.
(CA2) Cassette motor control.
se, } Makes line CA2 an output switch
sei under software control of CRA-3.
not used (CA2 is output).
(CA I) Printer acknowledge flag.
Printer busy.
Single-bit sound. TV sound sensor.
16K/ 32K R A M select.
VDG control.

Cartridge interrupt control bits.

O R B/ PRB select.
(CB2) Sound enable.
Se/

}
Makes line CB2 an output switch

se1 under software control of CRB-3.
not used (CB2 is output).
Cartridge interrupt (detect) flag.

The Dragon does not need a particularly complex system of
interrupt and handshake signals so the designers have used Control
line 2 of all four ports as switches of one kind or another. That is the
reason why C R-4 and C R-5 are always set and C R-6 is not used.
Writing a zero to CR-5 would make C2 an input line, disabling it as a
switch. Writing a zero to CR-4 (with CR-5 = I) would make output
automatic and a signal would be sent out every time the CPU read
from PRA or wrote to P RB. Changing the configuration of the C2
lines would disable sound, joysticks and cassette motor control.

The 2-bit configurations 00, 0 I, I O and 1 1 can be written to CR B-3
and C RA-3 (Control Register bit 3 in both B and A ports of PIA 0)

44 6809 Machine Code Programming

along with a single-bit sound enable (set CRB-3, PIA I) to produce a
four-state sound select system. The lines are tied to an analogue
multiplexer (M UX) which selects between the 6-bit D / A converter,
cassette, cartridge or a non-implemented fourth device as a sound
source. The sound enable bit (CRB-3, PIA I) is, of course, Control
line 2 from the second P IA's B port used to switch on or switch off
the sound. Control line 2 from the A port of P IA I is also used as a
simple on/off switch, this time for computer control of the cassette
motor (MOTORON, MOTOROFF).

This, I'm afraid, is where we must leave the Dragon's fascinating
P I As for now and move on to take a look at what SA M is doing. The
Dragon and TRS-80 Col or Computer books in the Further Reading
list will tell you more about the uses made of the PIA by these two
similar computers.

The Dragon and SAM

The use of the rather familiar term 'SA M' instead of his - sorry! its -
grandiose title Synchronous Address Multiplexer (His Excellency,
the Controller of the Dynamic RAM) reflects the fact that it is a very
user-friendly chip, even though it performs a complex and
sophisticated job behind the scenes. It is SA M that provides the two

clock signals £ and Q which keep the 6809 CPU ticking over at a
steady rate. Because of this, SAM can be programmed to make the
CPU run at different speeds. A word of warning here: not all
Dragons can be speeded up - they are only guaranteed to work at 0. 9
M Hz.

The E clock cycle is used by SAM to control access to the dynamic
RAM used for both program and screen memory. The 6809 CPU

C P U C P U C P U

high

E

low
V DG refresh V D G refresh

Fig. 4. 1 . CPU and VDG access to and refresh of dynamic RAM.

P/As, SAM and Folding Memory 45

must access the memory every cycle and the Video Display
Generator (VDG) must access it at least every two cycles, Also,
dynamic RAM has to be refreshed every cycle or its contents will
decay. The multiplexing, or interleaving of access, is performed by
SAM allowing the CPU access on the high period of each £ cycle
and the VDG access on alternate low periods. VDG access also
refreshes the RAM and in the remaining low periods the refresh is
performed by SAM. All this is achieved by routing the address bus
from the CPU through SAM and having SAM produce the
necessary signals to get data on the data bus when it is needed by the
VDG.

VDG access and refresh are 1ransparen1 actions to the CPU and
the programmer - they don't affect the execution of instructions in
any way and they are beyond software control. Because SAM is used
to emulate the V DG, however, it can be programmed to add an
offset, in ½K increments, to the addresses used as screen memory.
One drawback to this system is that SAM has also to be
programmed to give the correct signals for the graphics mode
currently operating in the VDG. Almost every time you alter the
VDG mode by writing data to PRB-3 to 7 of PIA I , the amount of
memory used for display is changed and consequently you have to
reprogram SAM - unless, of course, you are experimenting with
strange graphics effects.

So how is SAM programmed? Not in such a complicated way as
the PI As but by a quite unusual method. SAM has sixteen single-bit
registers spread out through 32 memory locations ($FFC0 to
$FFDF) - two addresses for each bit! In fact the memory locations
aren't there at all. SAM uses the bit patterns coming in on the
address bus as a form of data and singles out $FFC0 through
$FFDF as SAM control data bits. Bits I , 2, 3 and 4 give the SAM
control register number and bit 0 is the data to put in the addressed
register. If bit 0 of the address is a zero the register will be cleared, If
it is a one the register will be set. Any write operation to a SAM
register will do the trick since the actual data written is ignored and
it is the address used that matters. Table 4.8 gives the SAM register
addresses for programming the display start address and other
functions, Configuring SAM and the VDG (via PIA I) is given full
treatment for the TRS-80 Color Computer in Co/or Compwer
Graphics, available from Tandy. Although this is written primarily
for programming in BASIC, addresses and data are given in hex and
binary. And it is worth getting even if you own a Dragon since the
machines are so similar.

46 6809 Machine Code Programming

Table 4.8 SAM registers.

A ddresses (hex) Functions
clear set

FFC0 FFCI Display mode. Three bit configuration.
FFC2 FFC3 (see technical manual).
FFC4 FFC5
FFC6 FFC7 Display address offset (bit 9)
FFC8 FFC9 bit 1 0 (write offset in the
FFCA FFCB bit 1 1 form xxxx xxx0 0000 0000
FFCC FFCD bit 12 where xxxx xxx are the
FFCE FFCF bit 13 address bits written
FFD0 FFD I bit 14 to $FFD3 (high) down
FFD2 FFD3 bit 15 to $FFC6 (low) regs.)
FFD4 FFD5 Memory 'Page'. Keep this cleared.
FFD6 FFD7 CPU rate (2-bit).
FFD8 FFD9
FFDA FFDB Memory size (2-bit).
FFDC FFDD
FFDE FFDF Map type. Clear: 32K. Set: 64K.

Block and tackle

When you consider that early mainframes got by quite happily with
only 4 K or so of memory, the 32K of the Dragon 32 seems quite a
luxury. But while the mainframes might have been happy with only
4 K their programmers were not, and even 32K on a home computer
can be too restrictive for some jobs. Hence the trend to an increasing
amount of immediate access memory and the advent of such beasts
as the Dragon 64. But the popular 8-bit processors, such as the 6502,
the Z80 and the 6809, have an address bus that is only 16 bits wide.
As you must know by now, sixteen bits can address a maximum of
65536 locations - 64K of memory. So how can an 8-bit computer
hold 64K or more of RAM and still have room for ROM operating
systems? The answer, of course, is to put a few switches somewhere
along the address bus which are operated by a memory-mapped

P!As, SAM and Folding Memory 47

device, and to write software that will switch to the different banks
or blocks of memory as and when they are needed. Usually each
block resides physically on a separate plug-in board so that the
system can grow to keep pace with the user's requirements.

Bank or block switching means that you have to take a bit more
care with your program design and coding. The extra memory may
be there but you cannot have it all at once, There is the little matter
of writing to a switch to access different parts of a program, various
data storage areas or screen memory. Life can get complicated if you
try and run a program resident in one block while the data it is
supposed to be working on occupies another and not simultaneously
addressable block. This is the memory-switch 'weatherhouse effect'
and it can be very frustrating.

The weatherhouse effect shouldn't happen if you structure your
programs and carefully define which blocks need to be concurrently
addressed. The top level of your program should be the one to
manage all the memory switching. If the program is clearly divided
into separate modules - completely independent sub-programs -
then it can occupy several blocks of memory. Only the top level
driver program needs to be always on the bus - the modules can be
switched on only when they are needed. Passengers?

The GIMIX gimmick

Dealing with large blocks of switchable memory is usually a matter
for program design. When the switching cuts the display RAM into
four blocks stacked on the same address space, however, the
problem extends into the coding of graphics and other display access
routines.

G I M IX manufacture a 6809 system which offers extended
addressing facilities up to I megabyte. Before you dump your
Dragon, though, I'd better warn you that the CPU board alone, with
only I K of scratch pad RAM, costs about the same as four sale-price
16K Color Computers. It isn't a home micro ! The system accepts
various memory boards, one of which is a 5 12 X 5 12 high resolution
video board. The mapping is the normal horizontal line of 8 pixels
(dots) to each byte, so the screen RAM is 64 bytes wide by 5 12 bytes
high - 32K in all. However, the board occupies only 8K of address
space. It is 'folded' into four bands,

Any one of the 262144 display dots is uniquely identified by two 9-
bit co-ordinates. The horizontal (x) co-ordinate presents no

48 6809 Machine Code Programming

problems since the 8K band addressed consists of 1 28 complete
lines. The vertical (y) co-ordinate, on the other hand, has to be split
before it can be converted into an address offset from the origin (see
the chapter on high resolution graphics for how this conversion is
done). The highest two bits (8 and 7) are used to select one of the four
possible screen bands by writing them to a switch register. This
leaves a 7-bit co-ordinate for conversion to the address offset and 7
bits is just enough to index any of the I 28 addressed lines in the
selected band.

If the valid 9-bit co-ordinate is in register D (D < 5 12) then the
split is easily achieved by the three single-byte instruction sequence:
ASLB : ROLA : LSR B : leaving the band select code in A and the 7-
bit co-ordinate in B.

And that is how to unfold memory.

Chapter Five

Taking Control

The resident software in your computer should have routines which
deal with the control of the system. Occasionally the manufacturer is
kind enough to supply a list of these routines, the jobs they do, the
input they require and their start addresses. Sometimes you can only
find this information by disassembling the software and tediously
working out the effect of long lists of uncommented instructions. It
is worth the effort to do this as you may find that the computer is
capable of doing much more than you thought it could.

Persor,ally, when writing machine code programs for home
computers, 1 don't like to rely too much on firmware (system
software on ROM) since it rarely does exactly what I want. I t may
do only part of the job or it may combine two or more tasks when my
program needs only one of them. Also, routines which are part of a
complete system are not usually as conscientious about conserving

register values as I would like and they often assume that the index
registers or the user stack pointer hold system addresses. The
overheads of saving register values and loading registers with the
necessary addresses before calling these routines can outweigh the
benefits of using them. However, the main reason why I forego use
of the supplied software is that I am then obliged to find out exactly
how the computer hardware is programmed, written to or read
from. Only then do I feel that I am in control of the machine.

The routines in this chapter program the Dragon's SAM and

V DG chips, switch PIA C2 lines on or off and read the joysticks.
Dragon BASIC contains code to do these things but possibly not in
the way that you would like, or as quickly. They are not optimised for
either speed or length so, if you need particularly fast operations for
high-speed games programs, you can have a go at chopping out
supernuous cycles. V I DEOM, for example, changes the text/
graphics mode by picking up a value from a table of mode codes to
write to SA M and the V DG. For absolute speed you could have a

50 6809 Machine Code Programming

separate routine to set each graphics mode so as to make use of the
rapid immediate data instructions. More importantly, if you
experiment with hardware control routines you will get to know just
what your computer can and cannot be made to do. So don't just use
the routines supplied in ROM or given in this book without
attempting to understand what they are doing.

Paging the video

VIDEOP is a routine to change the start address of the area of RAM

used for screen memory. In the Dragon this address can be anywhere
on a 5 12 byte boundary- a 16-bit address with the lowest nine bits all
0. The seven significant bits have to be written to the SAM registers
occupying addresses $FFD3 down to $FFC6. The arrangement of
these registers is given in Chapter 4.

Input to the routine is in the 8 register. The action of the routine is
to isolate each bit in turn in bit O of the A register and use
Accumulator offset addressing to write to even (if the bit is a 0) or
odd (if it is a I) addresses. Since the seven bits are the most
significant bits of a 1 6-bit address, you might like to rewrite the
routine to accept a full address in, say, the D register but use only the
top seven bits. If you do that the text and graphics routines later in
this book will have to be changed to meet the new standard.

VIDEOP - Video page addressing on the Dragon

Stack - 5.

I/ 0 - 87 to 8 I contains the ½ K boundary number. BO is ignored.
Notes - SAM is programmed by a write to an odd address if the bit

is set, or to an even address if the bit is reset. Dragon
memory $0000 to $03FF is used by the system and so is a
small amount of memory at the top of user RAM. Safe
start values for the highest resolution are $0 4 to $66.

VIDEOP PSHS X,D,CC ;save registers used. Index SAM
LOX #$FFD2 ;at hi-bit register with X.

;write loop: X is decremented to index each address pair in
;turn with bit O of A determining write to even or odd addr.
VPLOOP SEX ;next addr bit al l through A then

ANDA #%0000000 1 ;only in bit 0. Write to even
STA A,X ;addr if 0, odd addr if I .
ASLB
LEAX -2,X

;next addr bit to bit 7 for SEX.
;move X to point to next SAM

C M PX #$FFC4
BNE VPLOOP
PULS PC,X,D,CC

Changing mode

Taking Control 5 1

;addr-pair, repeating until
;7 bits written.
;restore regs, exit VIDEOP.

Changing the text/ graphics mode is more complex than changing
the screen start address. Three bits have to be written to SAM at
$FFC5 to $FFC0 and five bits have to be written to bits 7 to 3 of PIA
I PRB to set the VDG.

V I DEOM gets these eight bits, combined in one byte, from a
table. This table need not follow immediately after V I DEOM since

B = X X X

n ot used

S A M V D 6

Fig. 5. 1 . Video mode selection.

52 6809 Machine Code Programming

the instruction LEAX V MT AB, PCR will load X with the address
of V MTAB wherever it is. There are sixteen bytes in the table even
though there are only thirteen different modes. The reason for this is
that the high order digit of input B is used to index the table and it is
shorter, quicker and a lot easier to include three repeated values in
the table than to test for an illegal input value.

The lowest bit written to the PIA at PRB-3 is for colour set
selection. In PM ODE 4 this will be green on black if the bit is 0 or
buff on black if it is I . The table values have this bit (stored as bit 0)
always reset and bit O from the input B value is merged to complete
the group of five bits before they are written to the PIA. As a
suggestion for improving the routine, you may like to write a
separate module which writes only to PIA I PRB-3 to change the
colour set. Then only PRB-7 to 4 should have table value bits written
to them for mode selection.

V/OEOM - Video mode selection on the Dragon
Slack - 6.

1/ 0 - Hi-nib B (high order digit of B) holds mode number, $0 to
$F. BO is the colour select bit: 0 = green, I = buff (or the
associated colour groups).

Notes - Modes 0, I, 2 and 3 are all Alphanumeric/ inverse/ semi
graphic- 4 (text) mode. Mode names are given against the
table but see the Dragon and Color Computer books listed
in Further Reading for a complete description of the
different modes.

VIDEOM PSHS X,D,CC ;save registers used.
;first, index mode table and use hi-nib B as offset to pick
;up the correct mode byte, merging colour set bit with it .

LEAX VMTAB,PCR ;point X to mode table start.
TFR B,A ;get mode number from hi-nib B
LSRA ;down into lo-nib A so that A
LS RA ;gives the offset of required
LSRA ;mode byte from table start.
LSRA ;Then mask out all but colour
ANDB #%0000000 1 ;select bit in B and get mode
ORB A,X ;merged with colour bit.

;second, highest 3 bits of mode byte written to SAM, moving
;lowest 5 bits up to B7 to 3 ready for PIA write.

LOX #$FFC4 ;index SAM mode addresses
VM LOOP ASLB ;next mode bit into bit 0 of A

ROLA ;and mask out other A bits so
ANDA #%0000000 1 ;X + A addresses even or odd

Taking Control 53

STA A,X ;SAM addr to reset or set SAM
LEAX -2,X ;mode bit. Repeat till 3 bits
BNE VM LOOP ;written to SAM.

;third, write 5 mode bits to PIA I P R B to program VDG.
;not changing PRB-2 to 0. Bits 2 to 0 of B are all 0.

PSHS B ;put mode on stack so bits 7 to 3
LDA $ FF22 ;can be merged with PIA I PRB
ANDA #%00000 11 1 ;after clearing old mode bits
ORA ,S+ ;out. Also remove mode from S
STA $FF22 ;write new mode to P R B/ VDG.
PU LS PC,X,D,CC ;restore regs, exit VIDEOM

;table of conjoined 3-bit SAM and 5-bit VDG codes to
;set the Dragon graphics/ text modes.
VMTAB FCB 0,0,0,0

FCB $02,$40
FCB $80,$C0
FCB $30,$32
FCB $54.$76
FCB $98,$BA
FCB $DC,$DE

Control switching

;alpha/ inverse/ semi-gra phics-4
;semi-graphics 6 and 8
;semi-graphics 1 2 and 24
;true graphics I F and I T
; 2 F and PMODE 0
;PMODE I and 2
; PMODE 3 and 4

As stated in Chapter 4, all four of the Dragon's C2 control lines are
configured as output switches. Those connected to PIA Oare used for
sound source selection (see Chapter 8) or joystick selection (dealt with
later in this chapter). The two connected to PIA I are used for sound
enable and cassette motor control.

SWITCH is a routine which writes new values to all CR-3 bits and
so can deal with any C2 switching process with just one subroutine
call. It takes advantage of the fact that the Dragon's PI As do not exist
only at their primary address locations but are each repeated eight
times, so that P IA O can be written toat locations$FFI C to$FF I Fas
well as the normal $FFO0 lo $FF03. This makes all four Control
Registers just two bytes apart from each other and the write can take
place in a loop using the 2-byte auto-increment indexed addressing
mode.

SWITCH - Write to all four PIA C2 lines on the Dragon

Stack - 5.
I/ 0 - Bits 3 to 0 of input A contain the new values.

Bit O to PIA O CRA-3 (CA2) MUX SEL lo-bit.
Bit I to PIA O CR B-3 (CB2) MUX SEL hi-bit.

54 6809 Machine Code Programming

Bit 2 to PIA I CRA-3 (CA2) Cassette motor control.
Bit 3 to PIA I CRB-3 (CB2) Sound enable.

Notes - Repeat addresses of PIA O at $FF! D and $FF I F are used.
No other CR bits are affected. All C2 lines areassumed to be
output.

SWITCH PSHS X,D,CC ;save registers used. Use X to
LDX #$FF I D ;point t o P IA O CRA.

;loop, get each Control Register contents in turn, set CR-3
;then reset it if A input bit is 0. Put back and index next.
SW LOOP LDB ,X ;get current CR contents and

SWNEW

ORB #%0000 1000 ;always set CR-3 then shift
LSRA ;corresponding input bit out to
BCS SWNEW ;carry, skip if set -job done -
ANDB #%1 1 1 10 1 1 1 ;else reset CR-3 to match input.
STB ,x++ ;restore CR with new CR-3, bump
CMPX #$FF25 ;pointer to next C R, repeat till
BNE SWLOOP ;4 bits written to 4 CR-3s.
PULS PC,X,D,CC ;restore regs, exit SWITCH.

Joystick analog to digital read

The Dragon, of course, has a routine to test the current joystick
positions. It is located at $BD52 (on my Dragon) and stores the
joystick values in locations $0 15A to $0 15D. Registers U, X, D and
CC are all changed during its execution, so if you do use the resident
routine make sure that you push those registers first if they hold
important values. It isn't a particularly quick routine - each joystick
value (right horizontal, right vertical, left horizontal and left vertical)
may be sampled up to ten times before the Dragon is happy with the
result.

A lot of games use only one joystick, so it seems rather a waste of
time always to test both. JOYCAB, with its two subroutine modules
JOY AD and B UTTON, tests only one joystick. Which one, left or
right, depends on the state of the carry flag C on input. It returns
maximally useful information: C is set if the fire button is pressed,
reset otherwise, for rapid BCC or BCS decisions and the six-bit
joystick position values are in A 7-2 (horizontal,x)and B7-2 (vertical,
y) where left/ right or up/ down decisions can be made on the state of
the negative flag N after TST A or TSTB. Bits I and O of both
accumulators contain the code for which joystick has been sampled.
The modules JOY AD and BUTTON may each be called as routines in
their own right to get just joystick or just fire button results.

Taking Control 55

Joystick sampling is an analog to digital conversion (A/ D). The
opposite process, digital toanalog(D/ A), is pursued at greater length
in Chapter 8 but for now it is enough to know that a six-bit value
written tot he D/ A converter (P IA I PRA-7to 2) is output as a voltage
which varies in direct proportion to the written digital value. The
joystick horizontal or vertical movement affects the voltage allowed
through a variable resistor and this is compared with the voltage
output from the D/ A. Bit 7 of PIA O PRA signals the result of the
comparison. If the D/ A output exceeds the joystick output then
PRA-7 goes low (0), otherwise it is high (I). A/ D conversion consists
of a binary successive approximation of the D/ A output to the
compared voltage - in this case the joystick.

JOYCAB - Single joystick and fire-button read on Dragon

Modules - JOYAD, B UTTON.
Subroutines - SWITCH.
Stack - 5 + subroutine stack use.
I/ 0 - Input C = 0 for Right joystick read.

C = I for Left joystick read.
Output C = I if fire-button pressed, else C = 0.

Bits 7 to 2 of A hold joystick horizontal (x)
position value (%000000xx is far left).
Bits 7 to 2 of B hold joystick vertical (y)
position value (%000000yy is bottom).
Bits I and 0 of both A and B hold joystick
code: 00 = Right x

0 1 = Right y
10 = Left x
1 1 = Left y

Notes - Modules JOY AD and BUTTON may be called as
separate subroutines. The fire-buttons share PIA 0
PRA with the keyboard so it is inadvisable to use both
simultaneously.

;JOY CAB: top level, converts input to correct form for
;module JOY AD read of x and y and components of requested joystick.
JOYCAB LOB

SBCB
SEX
ORA
ANDB
BSR
EXG

#0
#0

#%0000000 1
#% 1 1 1 1 1 1 10
JOY AD
A,B

;propagate carry through all bits
;of B and back into C, then also
;through all A bits. Ensure bit
;O of A set for y-component read.
;BO reset for x-component read.

;get y read in A, then
;into B, A getting x code

56 6809 Machine Code Programming

BSR
BSR
RTS

JOY AD
BUTTON

;then x read.
;fire-button state into C
;and exit JOYCAB.

;JOY AD: low level, read joystick R or L, x or y, depending
;on A l ,0: 00 = Rx, 01 = Ry, 10 = Lx, 1 1 = Ly. Output in
;bits 7 to 2 of A. A 1 ,0 unchanged.
JOY AD PS HS CC ;save carry nag. Mask out all

ANDA #%000000 1 1 ;except code bits in A for merge
JSR SWITCH,PCR ;and selection of correct joystick.
STA ,-S ;"push" for later merge.

;binary successive approximation starting with $80 and if
;too small adding ½ each time, if too big subtract 1/, .

LDA #$80 ;start value, also put on stack
STA ,-S ;for add/subtract value in loop.

;loop until 6-bit approximate value found.
VOLALP STA $FF20 ;output value to D/ A and test

TST $FF00 ;comparator input to PRA-7
B M I VOLTAD ;skip if approx. <joystick
EORA ,S ;else a . > j . so clear last add

VOL TAD LS R ,S ;halve the increment and add to
ORA ,S :approximation. then test if
BITA #%000000 1 0 ;increment gone past 6-bit limit
BEQ VOLALP ;looping until it does.

;A 7 to 2 now contains 6-bit digital approximation to joystick
;position plus bit I set. Clear bit I. removing increment
;from stack. Merge joystick code, removing code from stack.

EORA .S+ ;clear A I and get inc. off stack
ORA .S+ ;merge code getting stack tidy
PULS PC,CC ;for return to JOYCAB.

;BUTTON: low level, read right or left joystick fire-buuon.
;input C = 0 for R, C = I for L. Output C = I if bull on
;pressed, else C = 0.
BUTTON PSHS A

BBTOC

LDA $FF00
EORA #% 1 1 1 1 1 1 1 1
BCC BBTOC
RORA
RORA
PULS PC,A

;save A contents while A used to
:get PIA O PRA for bullon bits.
;complement so press = I, nopress
;is 0, no change to C so branch
;can be made to shift out Left
;(bit I) or just Right (bit 0)
;into C. Return to JOYCAB.

Chapter S ix

Versatile Graphics

The graphics commands in most computers are quite sophisticated
but do they really do everything that you need?Trytelling the Dragon
to:

L I NE (0,0)-(255.255), PSET

If your Dragon is as daft as mine it will draw a line from (0,0) to
(255. I 9 I). It won't even attempt to draw if any oftheco-ordinatesare
less than O or greaterthan 255- and that is not much good if you need a
game shape to Ooat on and off the screen.

The graphics suite in this chapter is somewhat rudimentary, doing
only single-point plotting and straight-line drawing (no circle, box or
fill routines) but it does have features which make it quite versatile.
PLOT works on 16-bit co-ordinates ($8000 to $7FFF, decimal

o e e o o o e o

¥ l o o o o 1 o o o l

o e e o e o e o

A l o o o o 1 o o o l

V i d e o
RAM

E F H N Z V C

= l o o o o 1 o o o l� -------�'

Fig. 6. 1 . Dot inversion and test in PLOT.

58 6809 Machine Code Programming

-32768 to +32767) so line figures can be drawn partly on or off the
screen. Input to it, however, is by 8-bit vecrors (offsets to the x,y
coordinates of the last point plotted). This is quicker and more
versatile since a string of vectors can be used to drawthesame shape at
different places on the screen by adjusting the start co-ordinates. Each
x or y offset in the vector is in the range $80 to $7F (decimal - I 28 to
+ 1 27) and this is quite adequate for most purposes.

The origin is at the bottom left of the display area, not the top left as
in Dragon BASIC. The display area can be set to any size within the
limits imposed by the screen size so a 'graphics window' can be set up
on only part of the screen and the rest of the screen preserved for text.

A note on style

The graphics suite comprises several independent routines and the
largest of these are split into modules. Three different forms of
subroutine call are used to distinguish between the different
structural relationships: (I) BSR label is used for routine-internal
calls, that is from the top level to an integral but separately written
part, (2) LBS R label is used for a call to a separate routine within the
suite, and (3) JSR label, PC R is used when a routine not in the suite is
called. Using these different forms can help to improve the readability
of programs. However, problems crop up if a routine is large and the
BSR form cannot be used for internal calls.

A high resolution graphics suite

PLO T - Modal, vectored plot
Modules - PAD DR, P LOTAP.
Subrourines - VECADD, MBYBY.
Srack - 1 1 + subroutines.
I/ 0- Vector (x,y offsets from last point) input in A,B.

Essential parameters and variables in table PL TVAR.
Mode determined by value at PLTVAR+ l5:
0 = TEST, I = I N V ERT, 2= PLOT, 3= UN PLOT.
Output C = 0 if point outside display area.

C = I : Z = I : point reset (off).
C = I : Z = 0: point set (on).

No1es -

Versatile Graphics 59

Written for variable sized display (maximum height
of 65536 dots). Dot width must be a multiple of 8
(maximum 20 4 0).

; PLOT: top level, decides if point is to be plotted.
PLOT LBSR VECADD ;form new coordinates from vec

BCC PLTEND ;+ last point . Only if in area.
BSR PADDR ;convert coords to address and
BSR PLOTAP ;plot using address info. Then
ORCC #%0000000 I ;show plot has taken place.

PL TEND RTS ;exit PLOT routine.

;PADDR: convert co-ord inates to absolute address and place bit.
;positive y coord is lower in memory than origin.
PADDR PSHS U,Y.D.CC ;save regs used. Index PLOT

LEAU PLTVAR,PCR ;variables from base U.
;convert y-coord to row LH byte address offset from origin.

LOY 18 ,U ;pick up y-coord and line-inc
LOB 14 .U ;(addr diff between col . bytes)
JSR M BYBY,PCR ;multiply them to get addr offset,
STY 20,U ; 16-bit, put in 'address' variable.

;convert x-coord to byte offset along row.
LDD 16,U ;pick up x-coord and divide by
LSRA ;eight to give offset along row
RORB ;of byte location containing
LSRA ;required dot.
ROR B ;(dot position in this byte
LSRA ;will be got from remainder
RORB ;of x-coord / 8).

;byte address is: origin - y-offset + x-offset.
ADDO 8,U ;x-offset + origin address
SU BD 20, U ; - y-offset gives byte addr
STD 20, U ;to 'address' variable.

;get set-bit byte giving dot-place in addressed byte.
LOB 17, U ;get x-coord lo-byte lowest
ANDB #%00000 11 1 ;3 bits as rem. x-coord / 8
LOA B.U ;indexing set-bit table to
STA 22. U ;get set-bit to ·set-bit' var.
P U LS PC.U.Y,D,CC ;restore. return to PLOT.

; PLOTAP: modal plot at addressed point. Exits with Z set
;if dot left clear. Z reset if dot is set.
PLOTAP PS H S U.D

LEAU PL TVAR.PCR
LOB (20,U)
LOA 1 5, U
LSRA

;save regs used. Index PLOT
;variables from base U.
;pick up display byte.
;get mode (0 to 3) and shift
;out for branches on C and z.

60 6809 Machine Code Programming

;TEST (0) is EQ,CC. INY E RT (l) is EQ,CS.
; PLOT (2) is N E,CC. UN PLOT (3) is NE,CS.

BEQ PLAPIT ;skip if Invert or Test, else
ORB 22,U ;use set-bit to set dot-bit.

PLAPIT BCC PLAPPB ;skip if Test or Plot, else
EORB 22,U ;use set-bit to invert dot-bit.

PLAPPB STB (20,U] ;put byte back to display.
ANDB 22,U ;use set-bit to test dot-bit.
PULS PC,U,D ;restore, return to PLOT.

; PLTVAR: 23 bytes variables used by PLOT, YECADD, STMODE,
;STCRDS and GDRST. Display parameters here are initialised
;for Dragon graphics pages 5. 6. 7 and 8, as 3/, of full
;screen area in the centre.
PL TV AR FCB $80,$40,$20.$ 10

FCB $08,$04,$02,$0 I
FOB $32E4
FOB $00C0
FOB $0090
FCB $20
FCB 0
FOB 0
FOB 0
R M B 3

;one set bit in each possible
;place in a byte.
;origin. Bottom left of area.
;display area x-dots (bytes * 8) .
;display area y-dots (rows, lines).
;line-inc (vertical byte diff).
;mode. Initialised to TEST.
;x-coord. (at origin).
;y-coord. (at origin).
;'address' and 'set-bit' vars.

VECADD - A dd vector to co-ordinates and test against limits

Stack - 6.
I/ 0 - Vector (x,v offsets) input in A,B.

Output C = I if new coordinates in display area,
else C = 0 if out of limits.

Notes - Lower limit is always 0.

YECADD PSHS U,Y,X ;save regs used. Index PLOT
LEAU PLTYAR,PCR ;variables from base U.
LOX 16 ,U ;pick up x and y coordinates
LOY 18 ,U ; in index registers X and Y
LEAX A,X ;to use signed addition
LEA Y B, Y ;instructions to add 8-bit vector
STX 1 6,U ;offsets to 16-bit coords. Then
STY 18 , U ;replace new coords.

;clear carry if either x or y coord is too big for display
;area. Also if too small as unsigned compare treats
;negative values as high positive values.

CMPX 1 0, U
BHS YCAEND

;test x-coord against x-dots,
;skip, C=0, if outside limit.

C M PY 12, U
VCAEND P U LS PC,U,Y,X

Versatile Graphics 61

;else test y-coord with y-dots.
;exit C= I if both coords okay.

LINE - Modal, vectored straight line

Modules - UN IT, U N E DO.
Suhrowines - PLOT.
Stack - 9 + subroutine.
I/ 0 - Vector input in A,B determines end-point of line

drawn from last coordinate position.
Notes - U NIT builds up an 8-byte table of variables to be

used by UNEDO. For each point along the line,
PLOT is called with a vector in A,B, the offsets being
+ I , - 1, or 0.

; L INE : top level. Just calls modules.
L INE BSR U N IT

BSR LINEDO
RTS

;set up line vectors, counts, etc.
;use LJNVAR values to drawline.
;exit LINE routine.

; U N IT: compute L I N E variables- absolute values of input
;offsets, sorted into Greater and Lesser; vectors for sending
;to PLOT: (a) Step-vec: both coordinates changed, (b) ormal
;vec: just greater offset coordinate changed; dot-count:
;number of dots to plot; step-count: when to send step-vec.
UNIT PSHS U,D.CC ;save regs used. Index L INE

LEAU LINVAR.PCR ;variables from base U.
;store offsets. Initialise step/ norm-vecs to + I .

STD , U ;store A, B offsets in offset
LDD #$0 I O I ;vars. Put + I in both x and y
STD 2, U ;offsets in step-vec and
STD 4, U ;norm-vec initially.

;get absolute A offset, correcting vecs 10 - I if necessary.

TST ,U ; i f end o f line x-offset (A input)
BPL LJTSTY ;is positive then skip, else
N EG , U ;make i t positive and
NEG 2,U ;correct step-vec and norm-vec

EG 4,U ;to - I for left-going line.
;do same for B offset.
LITSTY TST

BPL
N EG
NEG
NEG

1 , U
LIGXY
l,U
3,U
5,U

;if end of l ine y-offset (B input)
;is positive then skip, else
;get absolute value and
;correct step-vec and norm-vec
;to - I for down-going line.

;greatest e-o-1 offset in , U. Clear lesser offset norm-vec.
LIGXY LDD ,U ;pick up x ,y e-o-1 offsets in A,B

62 6809 Machine Code Programming

C M PA
BLO
CLR
BRA

LIXLTY CLR
EXG

LIGLO STD

1 , U
LIXLTY
5 ,U
LIGLO
4, U
A,B
,U

;test for y > x
;skip to exchange if it is, else
;norm-vec y-offset is O for
;long horizontals.
;y > x so clear norm-vec x-offset
;for long verticals. Get greatest
;e-o-1 offset in ,U . lesser in l , U .

;dot-count i s greater offset. Step count i s< half of it.
STA 6,U
DECA
LSRA
STA 7,U
PULS PC, U,D,CC

;dot-count is greater offset.
;step-count starts at greatest
;intege r< half greater offset.

;restore, return to LINE.

;L INEDO: draw straight line using LINYAR variables.
;action: for dot-count, subtract lesser offset from step
;count and if result positive then change greater offset
;coord else add greater offset to step-count and change
;both coords.
LIN EDO PSHS U,D,CC ;save regs used. Index L INE

LEAU LINYAR,PCR ;variables from base U .
TST 6,U ;no line to draw if dot-count
BEQ LDEN D ;is O so end immediately, else

;test whether step necessary (both coords inc'd /dec'd)
LDDTLP LDA 7,U ;get step-<:ount and subtract

SU BA I , U ;lesser off set, step needed i f
BCS LDSTE P ;result gone below zero.

;positive: no step, change only greater offset coord.
STA 7, U ;re-store step-count and pick up
LDD 4, U ;norm-vec in A.B ready for
BRA LDPLOT ;vectored plot.

;below zero: step, add greater offset to count, change both
LDSTEP ADDA .U ;coords. Add of

f

set to make it
STA 7,U ;positive again before storing
LDD 2,U ;pick up step-vec in A,B for .

LDPLOT LBSR PLOT ;call to plot at vector A,B.
DEC 6,U ;repeat for dot-count, leaving
BNE LDDTLP ;coords at line end point.

LDEND PULS PC,U,D,CC ;restore, return to LINE .

;UNY AR: variables used by L INEDO and built up by UNIT
RMB 8 ;see LINIT and L INEDO.

STMODE - Set plot mode

Stack - 2.

1/ 0 - Input B is mode (0 to 3).

Versatile Graphics 63

Notes - Not worth indexing PLTVAR with U.

STMODE PSH S
ANDB
STB
PULS

B,CC
#%000000 11
PLTVAR+ 1 5,PC R
PC,B,CC

;preserve regs.

;mask out unused bits and store
;at mode variable in PL TV AR.
;restore regs, end.

STCRDS - Set coordinates
Stack - I .
l / 0 - Input X, Y hold new x,y coordinates (16-bit).

STCRDS PSHS
STX
STY
PULS

cc ;STore instr. affects flags.
PLTVAR+ 16,PCR ;write new co-ordinates to
PLTVAR+ l8.PCR ;coord variables in PLTVAR.
PC.CC ;restore regs, end.

GDRST - Reset graphics display area
Modules - CRDRST. GDCLR.
Stack - 15.
1/ 0 - No input needed, uses PLTVAR.
Notes - Clearing a full screen is just clearing each byte from one

address to another. Clearing a window means clearing
just one row (line) at a time inside a loop and this is
slower. The modules, CRDRST and GDCLR may each
be called separately.

;GDRST: top level. makes ·clear display area· and 'reset
;coords to origin' into just one subroutine call.
GDRST BSR CR DRST ;reset coordinates to (0,0).

BSR GDCLR ;clear display area.
RTS ;exit GDRST routine.

:CRDRST: reset coords to origin by clearing.
CRDRST PSHS U.CC ;save regs. Index coordinate

LEAU PLTVA R+ l6. PCR ;variables in PLTVAR by U.
CLR .u+ ;clear x-coord hi-byte. index
CLR .U+ :lo-byte. clear it and index
CLR .U+ ;y-coord hi-byte. clear. index
CLR . U ;lo-byte and clear it.
PULS PC.U.CC :restore. return to GDRST.

:GDCLR: reset all bits inside display window. Nested loops.
;inner loop clears one display line. outer loop sets start
;address to each line in turn.
GDCLR PSHS U,Y.X,D.CC ;save regs used . Index PLOT

64 6809 Machine Code Programming

LEAU PLTVA R, PCR ;variables from base U.
;get bytes per row in X and no. of rows (lines) in Y.

LOO 10,U ;get x-dots and divide by 8
LSRA ; to give number of bytes of
RORB ;display locations in each
LSRA ; l ine of the window.
RORB ;x-dots must be a multiple
LSRA ;of 8 or window not fully
RORB ;cleared .
TFR O,X ;X = bytes per row.
LOY 1 2,U ;Y = y-dots = no. of rows.

;get offset to move pointer up to next row, start at origin.
LOO #0 ;get negative line-inc to move
SUBB 14,U ;up screen = down in memory.
SBCA #0 ;line-inc stored as I byte.
LOU 8, U ;U now origin address as pointer.

;loops: clear rows from bottom to top of window.
GCRLP PSHS U,X ;save LH address and byte count.
GCBLP CLR ,U+ ;clear row byte, pointing to next

LEAX - 1 , X ;and repeat till all bytes in
BNE GCBLP ;current row cleared.
P l/ 1 .S
LEAU
LEAY
BNE
P U LS

u,x
O,U
- 1 , Y
GCRLP
PC,U ,Y,X, O,CC

;restore row LH address and byte
;count. Move point up to next row
;and repeat till all rows in
;window processed.
;restore. ret to GORST.

GSTRNG - Process a program embedded string of graphics
commands
Subroutines - STMOOE, VECADD, PLOT, L I NE.
Stack - 8 + subroutines.
I/ O - Stacked return address (to calling program) is used

as pointer to the string of graphics commands which
must immediately follow the BS R GSTRNG or J S R
GSTR NG.

Notes -

Commands:
0 string terminator, exit GSTR NG
I STMODE - I -byte PLOT mode follows
2 YECADD - 2-bytes, x,y vector, follows
3 PLOT - 2-bytes, x,y vector, follows
4+LINE - 2-bytes, x,y vector follows

Program return is to byte following terminator.
Graphics strings may be stored in an area separate
from the program but each must have a preceding

Versatile Graphics 65

J S R GSTRNG and have RTS after the null (0)
terminator. The program then calls the string, not
GSTR 'G.

GSTRNG PSHS X.D.CC ;save regs used. Get return address

LOX 5.S ;from stack as string pointer
LOA .X+ ;get 1 st code. point to next byte.
BEQ GSEN D ;exit if terminator. null string.

;command loop; I sl test for mode need ing only I byte.
GSCLP DECA ;zero if command is STMODE

BNE GSNMOD ;so test further if not,
LOB .X+ ;get MODE and move point then
LBSR STMODE ;go set new mode and
BRA GSNXT ;go get next command.

;other commands have 2 bytes following which need to be
;passed on in A,B so the command code is put on stack.
GSNMOD PS H S A ;put code on stack and pick up

LDD .X++ ;vector in A.B moving pointer
DEC .S ;past them. Test for VECADD
BNE GSN YEC :and skip if not. else
LBSR YECADD ;go add vector to coords. then
BRA GSCSNC ;go clear stack. get next code.

GSNYEC DEC .S ;test for PLOT or L INE
BN E GSNPL T :skip if code was 4 or more
LBSR PLOT ;go plot al vector then go clear
BRA GSCSNC :stack and get next command.

GSNPLT LBSR L I N E ;draw line, etc.
;clear command byte off stack when YECADD. PLOT or L INE
GSCS 'C PULS A ;crash prevention!

GSNXTC LOA .X+ ;next command. move pointer. and
BNE GSCLP ;repeal if not nul l (0) terminator.

GSEN D STX 5.S :stack pointer for return to
PULS PC.X.D.CC ;byte after terminator.

An example for the Dragon

G X M PLP is a short program showing how the graphics suite can be
used. The first part of the program initialises SAM and the V DG.
clears the display area (the window described in PLTYAR) and sets
the plot mode to 1 (I N VE RT). Inverting dots has the useful property
that if you go over the same points twice they are first set and then
cleared. Put a delay between the setting and clearing and you have a
'frame', say about 1/w of a second. The next 'frame' can be plotted at a
slightly different place - and hey presto' moving pictures!

66 6809 Machine Code Programming

GXM PLP and the routines called by it are all relocatable.
Assemble them anywhere and use BASIC EXEC to call GXMPLP.
The text screen reappears on return to BASIC.

;GXMPLP: graphics suite demonstration program for Dragon.
;stack - 1 1 + subs.
GXMPLP PSHS Y,X,D,CC ;save regs used by program.
;initialise SAM and YDG (via PIA) by chapter 5 routines.

LDB #$1 E ;use graphics-pages
JSR YI DEOP, PCR ; 5 , 6 , 7 and 8 .
LDB #$FI ;set SA M and YDG for
J S R YIDEOM,PCR ; PMODE 4 , buff.

;set mode to Invert, clear window, init. coords & loop count.
LDB #I ;mode I is INVERT dots.
JSR STMODE,PCR
JSR GDRST,PCR ;clear window.
LDX #$FFFF ;set frame start-coords
LDY #$FFFF ;to (- 1 , - 1).
LDD #$0040 ;frame loop count.

;frame loop: set coords, draw shape, delay, draw shape.
GXFLP JSR STCRDS ;set shape start coords

BSR GXM PLS ;and draw string to set dots.
;delay for about 1/

1 0 second.
PSHS
LDX

GXDLP LEAX
BNE
PULS
BSR
LEAX
LEAY
S U BD
BNE

X
#$3000
- 1 ,x
GXDLP
X
GXM PLS
4,X
3,Y
I
GXFLP

;save X (x-coord) for use as
;delay loop counter.
;do nothing but use up
;t ime for about 1/10 second
:then get x-coord back and
;draw string in same place to
;clear dots. Move shape start
;coords for next frame
;and repeat for 64 frames.

PULS PC,Y,X,D.CC ;return to BASIC.

;GXM PLS: graphics command string. Last command before
;terminator is vector to set coords back to start point.

GXMPLS JSR GSTRNG,PCR ;go process following string.
FCB $04.$ 1 D,$00,$04,$00,$E3,$04,$E3,$00
FCB $04,$00,$ 1 D,$03,$06,$EC,$03,$00,$FF
FCB $04,$04,$FC,$04.$08,$00,$00,$04,$04,$04
FCB $03.$00,$0 l ,$02,$F8,$0A,$04,$FC,$F7
FCB $04,$08,$00,$04,$FC.$09,$02,$F5,$02
FCB $04,$08,$00,$04,$FE,$ FC,$04,$ F A,$04
FCB $02,$0 E.$00,$04,$08,$00,$04,$ FA,$ FC

Versatile Graphics 67

FCB $04,$FE,$04,$03,$04,$FE,$03,$F3,$00
FCB $02,$F8,$0A,$00 ;null (0) terminator.
RTS ;return to GXM PLP.

Optimising for the Dragon

The graphics suite doesn't operate as fast as it could. Indeed, the
routines are quite a lot slower than those used in Dragon BASIC for
several reasons. Here are the three most important, along with
suggestions for increasing speed.

(I) The routines in the suite are written for structure, clarity and
multi-system use, which you will have to sacrifice for optimum
speed. Does P LOT need to have a top level and two lower levels as
well as a subroutine call to VECADD? Write it as one long sequence
and you will cut out the subroutine call instructions and the repeated
register saving and U initialising - big cycle eaters all.

(2) Sixteen-bit coordinates are better than 8-bit a line from the
origin to (255,255) gets there, not to (255, 19 1) - but they do slow
things down. All is not lost, however. As plottable display co
ordinates must be in the range O to 255 ($FF) you can disregard the
high order bytes of both coordinates when computing the address.
The 'line-inc' doesn't change and so it can be written as immediate
data in the routine instead of being picked up from PL TV AR. Try
substituting the following sequence for instructions 3 to I 3 in
PADDR and see the speed difference.

LOB
LOA
M U L
STD
LDD
LSRB
LSRB
LSRB

19.U
#32

20,U
1 6.U

;get y-coord lo-byte (hi-byte
;must be $00 if valid) • line
;inc to give vertical offset
;from origin to "address".

;get x-coord. Hi-byte = 0 so
;just divide lo-byte by 8 for
;valid byte offset along row

;in D.

(3) If you are happy with a top-left origin you can take advantage of
the fact that multiplying they coordinate by 32 (l ine-inc) can be done
at the same time as dividing the x coordinate by 8 since y • 32 = y •
256 / 8. Lines 3 to 16 of PAD D R can be replaced by the following
code. Don't forget to change the origin address in PL TVAR and
also change GDCLR so that D holds a positive line-inc value.
GXM PLS will, of course, be upside down.

68 6809 Machine Code Programming

LOA 19,U
LOB 1 7 ,U
LSRA
RORB
LSRA
RORB
LSRA
RORB

; O gets y-coord • 256 +
;x-coord then is divided

;by 8 to give both vertical
;and horizontal address
;offsets from the origin
;at the same time in one
; 1 6-bit value. Ready for
;adding origin address.

There are one or two other tricks that can be used to speed up
PLOT and the other routines in the suite. If you discover them all
you will find that 16-bit co-ordinates can be very nearly as fast as 8-
bit on the Dragon - and much more versatile. Good hunting!

Chapter Seven

High Resolution Text

Owners of the Dragon or TRS-80 Color Computer should find this
chapter very useful. The character set used in both these computers
suffers from three gross disabilities: (I) it lacks lower-case letters and
many standard symbols, (2) it is not ASCII coded, and (3) it cannot
be used in the high resolution graphics modes. Not much can be
done through BASIC about these problems but they can be entirely
overcome in machine code. In fact we completely disregard the
character set buried inside the VDG and instead use an area of
memory to store character shaped bit patterns as a user-definable

character set. Machine code is so fast and powerful that even having
to write eight bytes to the screen for each character is quick enough
to fill the Dragon's high resolution screen with 768 characters (24
lines of 32) in the blink of an eye.

The print routine

Like the plot routine of t he last chapter, TPRINT can be set to four
different modes of operation. The first (mode 0) is the normal print
mode where the eight bytes containing the character bit patterns are
simply written to eight vertically adjacent screen locations. In this
mode the character sent to the print routine (source character)
replaces that already on the screen (destination character) . In the
other three modes logical operations are used to produce various
combinations of the source and destination characters. These modes
are intended primarily for use with pre-defined graphics shapes
rather than alphanumeric characters.

Mode I uses the logical AND to set (light up) each dot only if
corresponding source and destination dots are both set. In mode 2
(EOR) any set bits in the source character patterns produce a change
from set to reset, or reset to set, in the destination but source bits

70 6809 Machine Code Programming

H I G H RESOLUTION SCREEN
character -

0 2 3 4 5
l i ne

3

4

U D C

Fig. 7. 1 . Writing a UDC character to screen l ine 3, char. 4.

0 0 0 1 0 2 0 3 0 4 0 5 0 6 0 7

D D [] IJ []] m [I] IIJ
0 8 0 9 O A 0 B 0 C O D O E O F

1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7

1 8 1 9 1 A 1 B 1 (1 D 1 E 1 F
Fig. 7.2. UDC ·control code' graphics.

High Resolution Text 71

Table 7 . /. Character bit-pattern hex codes.

ASCII Character b_,•tes (hex)

Hex Dec Top 2 3 4 5 6 7 8

00 0 00 00 00 00 00 00 00 00
0 1 I 00 00 00 00 FO FO FO FO
02 2 00 00 00 00 OF OF OF OF
03 3 00 00 00 00 FF FF FF FF
04 4 OF OF OF OF 00 00 00 00
05 5 OF OF OF OF FO FO FO FO
06 6 OF OF OF OF OF OF OF OF
07 7 OF OF OF OF FF FF FF FF
08 8 00 00 00 00 00 00 00 00
09 9 co co co co co co co co

OA 10 30 30 30 30 30 30 30 30
08 I I FO FO FO FO FO FO FO FO
oc 12 oc oc oc oc oc oc oc oc

OD I 3 cc cc cc cc cc cc cc cc

OE 14 JC JC JC JC JC JC JC JC
OF 15 FC FC FC FC FC FC FC FC
10 16 00 00 00 00 00 00 00 00
I I 17 00 00 00 00 00 00 FF FF
12 1 8 00 00 00 00 FF FF 00 00
I 3 19 00 00 00 00 FF FF FF FF
14 20 00 00 FF FF 00 00 00 00
1 5 2 1 00 00 FF FF 00 00 FF FF
1 6 22 00 00 FF FF FF FF 00 00
17 23 00 00 FF FF FF FF FF FF
18 24 00 10 20 7E 20 10 00 00
19 25 00 08 04 7 E 04 08 00 00
IA 26 00 10 38 54 10 10 10 00
18 27 00 10 10 10 54 38 1 0 00
IC 28 44 EE FE FE 7C 38 1 0 00
I D 29 10 38 7C FE 7C 38 1 0 00
I E 30 10 38 54 FE 54 10 10 00
I F 3 1 10 38 7C FE FE 54 10 00
20 32 00 00 00 00 00 00 00 00
2 1 33 10 10 10 10 10 00 10 00
22 34 24 24 24 00 00 00 00 00
23 35 24 24 7E 24 7E 24 24 00
24 36 1 0 J C 50 38 14 78 10 00
25 37 60 64 08 10 20 4C oc 00
26 38 10 28 28 10 2A 44 3A 00

72 6809 Machine Code Programming

27 39 10 10 10 00 00 00 00 00

28 40 10 20 40 40 40 20 10 00

29 41 10 08 04 04 04 08 10 00

2A 42 10 54 38 10 38 54 10 00

2B 43 00 10 10 7C 10 10 00 00

2C 44 00 00 00 00 00 10 10 20
2D 45 00 00 00 7C 00 00 00 00

2E 46 00 00 00 00 00 00 10 00

2F 47 00 04 08 10 20 40 00 00

30 48 38 44 4C 54 64 44 38 00

31 49 10 30 10 10 10 10 38 00

32 50 38 44 04 18 20 40 7C 00

33 51 7C 04 08 18 04 44 38 00

34 52 08 18 28 48 7C 08 08 00

35 53 7C 40 78 04 04 44 38 00

36 54 IC 20 40 78 44 44 38 00

37 55 7C 04 08 10 20 20 20 00

38 56 38 44 44 38 44 44 38 00

39 57 38 44 44 JC 04 08 70 00

3A 58 00 00 10 00 10 00 00 00

3 B 59 00 00 00 10 00 10 10 20

JC 60 08 10 20 40 20 10 08 00

3D 61 00 00 7C 00 7C 00 00 00

JE 62 20 10 08 04 08 10 20 00

JF 63 38 44 04 18 IO 00 10 00

40 64 38 44 54 SC 58 40 JC 00

41 65 10 28 44 44 7C 44 44 00

42 66 F8 44 44 78 44 44 F8 00

43 67 38 44 40 40 40 44 38 00

44 68 F8 44 44 44 44 44 F8 00

45 69 7C 40 40 78 40 40 7C 00

46 70 7C 40 40 78 40 40 40 00

47 71 38 44 40 40 4E 44 JC 00

48 72 44 44 44 7C 44 44 44 00

49 73 38 10 10 10 10 10 38 00

4A 74 OE 04 04 04 04 44 38 00

4B 75 44 48 50 70 50 48 44 00

4C 76 40 40 40 40 40 40 7C 00

4D 77 C6 AA 92 92 82 82 82 00

4E 78 44 44 64 54 4C 44 44 00

4F 79 38 44 44 44 44 44 38 00

50 80 78 44 44 78 40 40 40 00

51 81 38 44 44 44 54 48 34 00

52 82 78 44 44 78 50 48 44 00

53 83 38 44 40 38 04 44 38 00

High Resolution Text 73

54 84 7C 10 1 0 10 10 10 10 00
55 85 44 44 44 44 44 44 38 00
56 86 44 44 44 28 28 10 10 00
57 87 82 82 82 92 92 AA C6 00
58 88 44 44 28 1 0 28 44 44 00
59 89 44 44 44 28 10 10 10 00
5A 90 7C 04 08 1 0 20 40 7C 00
5B 9 1 7C 60 60 60 60 60 7C 00
5C 92 00 40 20 1 0 08 04 00 00
5D 93 7C oc oc oc oc oc 7C 00
5E 94 00 00 10 28 44 00 00 00
5 F 95 00 00 00 00 00 00 7C 00
60 96 20 10 08 00 00 00 00 00
6 1 97 00 00 38 04 3C 44 3C 00
62 98 40 40 78 44 44 44 78 00
63 99 00 00 3C 40 40 40 3C 00
64 100 04 04 3C 44 44 44 3C 00
65 10 1 00 00 38 44 7C 40 38 00
66 102 oc 1 0 10 7C 10 10 10 00
67 J(\3 00 00 3C 44 44 3C 04 38
68 104 40 40 78 44 44 44 44 00
69 105 10 00 30 10 10 1 0 3 8 00
6A 106 1 0 00 10 10 1 0 10 1 0 60
6B 107 20 20 24 28 30 28 24 00
6C 108 30 10 10 10 10 10 38 00
6D 109 00 00 EC 92 92 92 92 00
6E 1 10 00 00 78 44 44 44 44 00
6F I l l 00 00 38 44 44 44 38 00
70 11 2 00 00 78 44 44 78 40 40
7 1 113 00 00 3C 44 44 3C 04 06
72 114 00 00 2C 30 20 20 20 00
73 115 00 00 3C 40 38 04 78 00
74 116 10 10 7C 10 10 10 oc 00
75 117 00 00 44 44 44 44 3C 00
76 1 18 00 00 44 44 28 28 1 0 00
77 I 19 00 00 82 92 92 92 6C 00
78 120 00 00 44 28 1 0 28 44 00
79 12 1 00 00 44 44 44 3C 04 38
7A 122 00 00 7C 08 1 0 20 7C 00
7B 123 08 10 1 0 20 1 0 10 08 00
7C 124 10 10 10 10 1 0 1 0 10 00
7D 125 20 10 10 08 1 0 10 20 00
7E 126 00 00 32 4C 00 00 00 00
7F 127 18 24 20 78 20 22 7C 00

74 6809 Machine Code Programming

which are reset leave the destination unchanged. One important use
of mode 2 is where the screen can be initially cleared to either white
(green or buff in the Dragon) or black since the foreground
character will always print as the reverse of the screen colour. Mode
3 is OR which overlays the source character on the destination.

TPRINT gets its source character dot patterns from a 1 024-byte

table, U DC (User Definable Characters), stored in RAM. Table 7.1
gives codes to produce the complete ASCII character set with
various graphics shapes for the ASCII control codes $00 to $ IF.
You will probably find it easier to type large tables of numbers into
the computer as hex digits, through a machine code monitor, rather

than as FCB directives in an assembly language program.
ASCII uses only 7-bit codes with the highest bit of each byte reset

(0), so bit 7 is used by TPR INT as an 'inverse character' flag. If the
input character code byte has bit 7 set then the eight bytes picked up
from U DC are complemented to change all Is to 0s and all 0s to Is
before being written to screen memory. Ordinary characters have
codes $00 to $7F and inverse characters have codes $80 to $FF.

You don't have to use the character patterns of Table 7. 1 , of
course, since any shape which fits an 8 by 8 dot matrix can be written
in U DC. You could even set up more than one U DC table in
memory and switch the U DC address stored in TXTV AR (variables
used by the text suite) between ASCII and pre-defined graphics. The
text suite can be used as an easy way of moving small games shapes
around on the screen.

TPRINT - Modal, high resolution display print
Modules - TCHARY, TDISPX, TWRITE.
Subroutines - TVALID, TRIGHT.
Stack - 4 + subroutines.

I/ 0 - Input B is character code.

Notes -

Bit 7 of B is character inverse flag (I = inverse).
Character dot patterns in RAM table U DC.
Essential parameters and variables in table TXTV AR.
Mode determined by value at TXTVAR+ I 2:
0 = REPLACE, I = AND, 2 = EOR, 3 = OR.
Output: character modally printed and cursor
(TXTVAR+8,9) moved to next valid print position.
Written for a variable sized high resolution display.
Each character is an 8 X 8 dot matrix (one byte wide
by 8 bytes deep) on the screen. Margins (undisplayed
locations at the end of each screen row) are not
allowed for.

High Resolution Text 75

;TP R I NT: top level, saves registers used in modules,
:initialises U to index TXTV A R .
TPRINT PSHS U ,Y. X, D,CC ;save regs used. Index text

LEAU TXTVAR,PCR ;variables from base U .
L B S R TVAL I D ;ensure cursor i s on screen.
BSR TC H A R Y :index U DC char patterns in Y.
BSR TD I SPX ; X indexes screen locations.
BSR TWR ITE :move U DC char to screen and
L BSR TRIGHT ;move cursor to next position.
PU LS PC,U. Y.X.D.CC ;exit TPRINT routine.

:TCH ARY . Y points to first byte of 8 bytes in U DC giving
:dot patterns lor character in B.
TCH A R Y TFR D.Y

ANDB #%01 1 1 1 1 1 1
LOA #8
M U L
ADDO 10,U
EXG D.Y
RTS

;save D in Y. Strip inverse flag
:from char code. Code • 8 for
;set of 8 bytes corresponding to
:char code in U DC. Add U DC base
;address to give char bytes
;address in Y, restoring D.
;return to TPR INT.

;TDISPX: X points to the top of 8 screen locations which
;correspond to the character position indexed by the cursor.

TDISPX TFR D.X ;save D in X. Pick up no. of chars
LDD 7.U :per l ine in A, l ine offset in B.
MU L ;Address offset of top byte of

ASLB ;leftmost char on cursor line i s

ROLA :computed from
ASLB :cursor line offset •
ROLA
ASLB
ROLA
ADDB 9,U
A DCA #0
ADDO .U
EXG D.X
RTS

:no. of chars per line *
:8 hi-res rows per character.
:Then add cursor char offset
;to index top byte of 8 vertical
:locations char position. Add
;screen start to give actual
;address into X. restoring D.
;return to TPRINT.

;TWR ITE: move 8 sequential bytes from U DC to 8 vertically
;sequential screen locations. Invert char bits if bit 7 .8
;is set . Combine source (U DC) and destination (screen) bytes
;logically according to print-mode (TXTVAR+ 1 2).
TWRITE SEX ;normal (A=$00). inverse (A=$FF).

LOB #8
PSHS D
LOB 7.U

;pattern bytes count. Count and
;norm/ inverse used with S index.
:get screen row increment.

76 6809 Machine Code Programming

;write loop. l st job: get UDC byte and perform inverting
;operation if bit 7,B was set (,S now = $ FF).
TWLOOP LOA ,Y+ ;get U DC byte and index next.

EORA ,S ;invert only if ,S=$FF.
;next job: test mode for logical combinations. After shift:
; RE P LACE (0) is EQ,CC. AND (I) is EQ,CS.
;EOR (2) is N E,CC. OR (3) is N E,CS .

TWEOR

TWRA

TWME

LSR 1 2, U
B E Q TWRA
BCC TWEOR
ORA ,x
BRA TWMEND
EORA ,x
BRA TWMEND
BCC TWMEND
ANDA ,x

D ROL 1 2, U

;combination test on mode.
;go R EPLACE or A N D
;go EOR
;combine all set bits in U DC and
;screen bytes.
;complement screen bits if UDC
;bits are set, else leave.
;go replace, else result bit set
;only if U DC and screen bits set.
;restore mode.

;next job: put result byte to screen and move screen pointer
;down to next hi-res row.

STA .X
ABX
DEC l ,S
BNE TWLOOP
PULS PC,D

;replacement/combination to screen
;add row-inc to move to next row
;and repeat until 8 bytes moved
;from U DC, processed. written.
;return to TPRI NT.

;TXTV A R : 14 bytes variables used by most routines in the
;text suite. Display parameters here are initialised for
Dragon graphics pages 5, 6, 7 and 8.
TXTVAR FOB $ 1 E00

FOB $! FOO
FOB $3600
FCB $ 1 8
FCB $20
FCB $00
FCB $00
FOB ???"
FCB $00
FCB $00

Cursor control

;screen start address.
;2nd char line address.
;screen end + I address.
;char lines (dot rows / 8)
;line width (bytes per row)
;cursor line offset (0 to 23)
;cursor char offset (0 to 3 1)
;address of U DC (you decide where)
;print mode (at REPLACE)
;clear mode: 0 = black, I = white.

T P R I NT calculates the screen addresses from the cursor line and

character (along the line) offsets stored in TXTV A R + 8 and +9 .

P R I NT A T is easy to write into a program:

LDA
LDB
STD

#line
#char
TXTVAR+8,PCR

High Resolution Text 77

;required line offset.
;required character offset.
;set cursor for PR INT AT.

But in many cases a more useful method of adjusting the cursor
position is to use control codes much like those used by ASCI I.
Eight codes, $00 to $07, or their 'inverse' equivalents, $80 to $87, are
used by TCNTR L to select various actions.

$0 4 to $07 are used for single character or line shifts, T R IGHT,
TLEFT, TDOWN and T U P. TDOWN is the same as 'line-feed' on a
printer. Left movement is not allowed past the first character on any
line and up movement can only go as far as the top line. Movement
right or down can cause the screen to be scrolled. All four of these
simple cursor movement routines exit through TV ALI D to ensure
that the position is on the screen.

Null ($00) is used by TCNTR L as a free value to which all
printable characters (above $07) are reduced for the jump table.
Another use for the null character is as a string terminator. This is
shown later in the chapter.

Codes $03, $02 and $0 I form a hierarchy of operations -
TCARET ('carriage return', cursor to start of the line), THOME
(cursor to start o f the top line) and TCLEAR ('form-feed', cursor
home and screen cleared). These three routines are combined in an
optimised form as a single routine with three entry points. All of
these control routines can be called directly by your program but
accessing them by merely sending a control character through
TCNTR L is by far the easier method.

TCNTRL - Control operation select routine
Subroutines - TPRINT, TCLEAR, THOME, TCARET, TRIGHT,

TLEFT, TDOWN, T U P.
Swck
I/ O -

Notes -

6 + subroutines.
Code input in B is either a character to print, a null
(return immediately) or a control code (see
TCJ MPT for control codes).
The jump table can be extended to accommodate
any more control routines used.

;TCNTRL: 1st part strips inverse bit from code. deals with
;null byte and reduces all non-controls to $00 for TPRI NT.
TCNTRL PSHS X,B,CC ;save regs used.

ANDB #%0 1111111 ;strip to normal char codes.
BEQ TCEND ;exit immediately on null.
CM PB #7 ;test for control codes,

78 6809 Machine Code Programming

BLS TCINDX ;skipping if B is a control,
CLRB ;else index TPRINT branch.

;2nd part: X becomes jump table + 3 * control code to address
;correct long-branch instruction.
TCINDX LEAX TCJM PT,PCR ;X becomes jump table base

;address then add 3 * control
;code in B so X is address of

LEAX B,X
ASLB
LEAX B.X
LDB l , S
JSR ,X

TCEND PULS PC,X,B,CC

;branch instr. to control routine.
;recover input character and
;call routine via jump table.
;end TCNTR L.

;TCJ M PT: jump table for TCNTRL.
TCJ M PT LBRA TPRINT ;non-control codes.

LBRA TCLEAR ;code I
LBRA THOME ;code 2
LBRA TCAR ET ;code 3
LBRA TRIGHT ;code 4
LBRA TLEFT ;code 5
LBRA TDOWN ;code 6
LBRA TUP ;code 7

TCLEAR, THOME, TCARET - Clear screen and home cursor,
home cursor or carriage return
Stack - TCLEAR: 6. THOME, TCAR ET: 0.
I/ O - No direct input needed. TXTVA R used and affected.

TXTV A R + 13 is "clear mode": 0 = black, I = white.
Notes - The full width of screen is cleared.

;TCLEAR: falls through to THOME.
TCLEAR PSHS U,X,D ;save regs used. Index text

LEAX TXTVAR,PCR ;variables from base X.
LDU 4,X ;start to clear from screen end.
LDD #0 ;O to reset all screen bits
TST 1 3,X ;unless clear mode not zero
BEQ TC LOOP ;for black screen, if not then
LDD #$FFFF ;al l bi ts set for white.

;clear loop pushes all reset or all set bits to screen RAM.
TCLOOP PSHU D ;set/ reset 16 bits moving pointer

CM PU ,X ;down 2 bytes until at screen
BNE TCLOOP ;start address when all cleared.
PULS U,X,D ;restore regs and now home cursor.

;THOM E : falls through to TCARET.
THOME CLR TXTVAR+8,PCR ;cursor offset to top line and,

High Resolution Text 79

;TCARET: also end of THOME and TCLEAR.
TCARET CLR TXTVAR+9, PCR ;cursor offset to line start.

RTS ;ex.it TCLEAR, THOME, TCARET.

TRIGHT, TLEFT, TOOWN, TUP - Single character cursor moves
Subrourines - TVA L I D.
Stack - 0 + TYALID stack use.
I/ 0- No direct input. TXTVAR used and affected.
Notes - TDOWN may cause scrolling. TRIGHT may cause

carriage-return, line-feed and scrolling.

;TRIGHT:
TRIGHT

move cursor one character space right.
INC TXTVAR+9,PCR ;move cursor char offset
BNE TR VAL ;okay unless 'wraparound' to
DEC TXTVAR+9,PCR ;O, if so put it back
LBRA TVALID ;ensure valid screen position. TRVAL

;TLEFT: move cursor one character space left.
TLEFT

TLVAL

TST TXTVAR+9,PCR ;if cursor char offset is not
BEQ TLVAL ;already at leftmost position
DEC TXTVAR+9,PCR ;move it back one space
LBRA TVALID ;ensure valid screen position.

;TDOWN: line-feed, cursor down to next line.
TDOWN INC TXTVAR+9,PCR ;move cursor line offset

BNE TDVAL ;okay unless 'wraparound' to
DEC TXTVAR+9,PCR ;O, if so move it back

TDVAL LBRA TVALID ;ensure valid screen position.

;TU P: cursor up one line.
TU P

TUVAL

TST TXTVAR+8,PCR
BEQ TUVAL
DEC TXTVAR+8,PCR
LBRA TVALID

; i f cursor line offset i s not
;already on top line then
;move it up by one line
;ensure valid screen position.

TVAL/0 - Ensure cursor indexes valid screen position
Subrourines - TSCROL.
Stack - 6 + TSCROL stack use.
I/ 0 - No direct input. TXTV A R used and affected.
Notes - Excess cursor character offset causes setting to 1st

position on next line. Excess line offset causes
scrolling up by one line with line offset set to bottom
line.

TVALID PS H S U,D
LEAU TXTVAR,PCR

;save regs used. Index text
;variables from base U.

80 6809 Machine Code Programming

LDD 8,U ;get cursor offsets in A, B.
;ensure valid char offset (in BJ.

CMPB 7,U
B LO TVLINE
CLRB
INCA
BNE TVLI N E
DECA

;char offset okay as long as it
;is less than chars per line,

;else reset to leftmost char
;on next line, making sure that
;no 8-bit "wraparound" from $FF
; to $00 occurs.

;ensure valid line offset (in A).
TVLINE CMPA 6,U ;line offset okay as long as it

; is less than lines on display,
;else set at bottom line (I less
;than no. of lines) and scroll
;display up one line.

TVEND

BLO TVEND
LOA 6,U
DECA
LBSR
STD
PULS

TSCROL
8, U
PC,U,D

;put valid offsets back.
;restore regs and exit.

TSCROL - Scroll display up one line, clearing bottom line
S1ack - 8.

1/ 0 - No direct input. TXTVAR used but not affected .
No1es - The full width of the screen is scrolled.

TSCROL PSHS U,Y,X,D ;save regs used. Index text
LEAU TXTVAR,PCR ;variables from base U.

;initialise pointers to top, leftmost bytes of first and
;second lines (I st and ninth hi-res dot rows).

LOX ,U ;X is destination pointer
LOY 2 ,U ;Y is source pointer.

;scroll loop: move bytes from (Y) to (X) , incrementing
;pointers to next bytes until source gone past screen R A M .
TSM L P LDD ,Y++ ;get source and bump pointer

STD , x++ ;to destination, bump pointer
CMPY 4,U ;repeat until source pointer has
BNE TS MLP ;gone past screen memory(end + 1).

;initialise D for "clear" to black (mode 0) or white (mode 1).
LDD #0 ;$0000 to reset al l bottom line
TST I 3, U ;bits if mode 0
BEQ TSCLP ;skip if it is, else D = $FFFF
LDD #$FFFF ;to set bottom line bits.

;clear loop: set/ reset bits until dest.
TSCLP STD ,X++

CMPX 4,U
BNE TSCLP
PULS PC,U,Y,X,D

gone past screen.
;set/ reset 2-bytes of destination
;bumping pointer, until pointer
;at end + I.
;restore regs and exit.

High Resolution Text 81

Strings and storage

Using a string handling routine is by far the best way to deal with
large amounts of text. TSTRNG processes a string of characters and
control codes terminating with a null byte ($00). So that as many
codes as possible can be used for characters, TSTRNG will
recognise control codes only if they are preceded by $80. Normally
the codes are routed straight to TPR I NT but on encountering $80
TSTRNG sends the next code through TCNTR L. The 'control code
follows' code $80 never gets past TSTRNG.

TNSTR is a routine to fetch, or rather point to, 'named' strings
held in memory. The name is really any 16-bit number, excluding
$0000 which is used by TNSTR to recognise the end of the string
table. You can, however, use two-letter ASC I I codes for the names,
and this does make programs more readable. Each string also has to
have two bytes giving the string length which act as index to the
following string. String tables should be set up as in this example:

STRTAB FCC 'MS ;string name "MS"
FDB $0008 :length 8 bytes including null
FCC 'Message ;string contents
FCB $00 :null string terminator
FCC 'TX ;string name "TX"
FDB $0005 :5 bytes including null
FCC 'text ;string contents
FCB $00 ;null terminator
FDB $0000 ;table terminator.

A quite simple and readable program sequence is then all that is
needed to first address any particular string and then get it printed:

LDD
LEAX
JSR
BCS
JSR

#'TX
STRTAB,PCR
TNSTR.PCR
ERROR
TSTRNG.PCR

;string name to D
;address table start
;go get string 'TX' address
;error if no 'TX' string
;go print string 'TX'.

The branch to an error handling routine is, of course, not necessary
if you know that string 'TX' is in the table but it is good
programming practice to take any possible error conditions into
account.

TSTRNG -Character and control string handling routine
Subroutines - TCNTRL, TPRI NT.
Stack - 4 + subroutines.

82 6809 Machine Code Programming

1/ 0 -

Notes -

Input X points to the first byte of the string. Output
X points to the byte following the string's null
terminator.
Byte values $0 l to $7F and $8 1 to $FF are normally
passed on to TPRINT. Value $80 causes the next
byte to be passed to TCNTR L. $00 ea uses exit from
TSTRNG unless immediately following $80.

TSTRNG PSHS B,CC ;save registers used.
LDB ,x+ ;get char and index next.
BEQ TSEND ;exit immediately if nul l string.

;loop till terminator found .
TSLOOP CMPB #$80 ;is it 'control follows'?

BNE TSNOTC ;skip if normal character
LDB ,x+ ;else get control char, bump
LBSR TCNTRL ;pointer, and send char through
BRA TSNEXT ;control select. Go get next.

TSNOTC LBSR TPRINT ;normal chars printed.
TSNEXT LOB ,x+ ;get next char, bump pointer,

BNE TSLOOP ;repeat till null terminator.
TSEND PULS PC,8,CC ;restore and exit.

TNSTR - Index named string in string table
Stack - 2.

//0 - Input X addresses 1 st byte of string table.
Input D contains string name
Output, string found: C = 0. D = string length

X = 1 st string byte pointer.
Output, not found: C = I . D = 0. X points to byte

following table terminator.
Notes - Each string must be preceded by 4 bytes of information.

Bytes I and 2 are the string name. Bytes 3 and 4 give the
offset to the next string. Strings must end with a null
terminator byte. The table must end with two null bytes.

TNSTR PSHS Y ;save Y for use as holder of
TFR D, Y ;requested name throughout.

;loop: first, test name, if found get length & set exit nag.
TNLOOP CMPY ,X++ ;test name, moving pointer past.

BNE TNTERM ;if not name, skip to end test.
LDD ,X++ ;is right string so get length,
ORCC #%00000 100 ;moving X to 1 st byte and set Z
BRA TNLPND ;so exit from loop occurs.

;test for table end reached, set 'not found' nag if it is.
TNT ERM LDD -2,X ;was 'name' double-null terminator?

High Resolution Text 83

BNE TNN EXT ;go gel next if not, else set C
ORCC #%0000000 I ;to show string not found and
BRA TNLPND ;go exit loop (Z= I) .

;gel length, add to pointer to index next string. Clear exit.
TNNEXT LDD ,X++ ;get length, moving pointer past

LEAX D,X ;and add, indexing next string.
ANDCC #%111110 11 ;clear Z for no exit from loop.

TNLPND BNE TN LOOP ;repeat if not string or table end .
PU LS PC, Y ;restore and exit.

Optimising TPRINT

Since each text line takes up eight rows on the high resolution
screen, the cursor address offset from the screen start is given by the
formula:

(line offset • chars per line • 8) + char offset.

However, in the Dragon and Color Computer there are 32
characters to each line - each screen row uses 32 locations in
PM ODE 4 . Since 32 multiplied by 8 is 256, the cursor address offset
can be formed simply by picking up the line and character offsets as
they are in TXTVAR. This makes the TDISPX module of T P R I NT
much shorter and quicker.

;TDISPX:
TDISPX

Dragon / Color Computer version.
TFR D,X ;save D in X, pick up line and
LDD 8,U ;char offsets as full address
ADDO ,U ;offset, add screen start to give
EXG D,X ;cursor address into X, getting
RTS ;D back. Return to TPRINT.

Chapter E ight

Six Bits of Sound

System independent text or graphics suites are fairly easy to write
since most computers use a similar form of memory mapped display.
Sound generation, on the other hand, tends to be very hardware
dependent. A lot of computers use programmable sound-effects
chips. Some are limited to a simple monotone (sound-on, sound-off)
or have no sound facilities whatsoever. The Dragon and TRS-80
Color Computer each have five possible sound production methods,
except that one source is 'non-implemented'. The PIA switching of
these is shown in Table8. I. This diversity of sound creation methods
makes it practically impossible to write generally applicable code.

Table 8. 1. Dragon sound source selection

PIA I
CRB-3

PIA 0
CRB-3

(sound enable) (MUX hi-bi1)

0
0

I
0 0 or I

PIA O Sound
CRA-3 source
(MUX lo-bi1) selecied

0 D/ A
I Cassette
0 Cartridge

not implemented
0 or I single bit sound

The routines in this chapter are written specifically for the
Dragon's six-bit digital to analog converter (D/ A) since this is by far
the most versatile of the sources. They are divided into two suites
showing different approaches to sound - static and dynamic. The
second of these makes use of the Dragon's two timer interrupts
which depend on the frequency of the alternating current mains
power supply, which is 50 Hz in Britain. Because of this hardware
dependency both sets of routines are unlikely to work on other

Six Bits of Sound 85

computer systems and the second set may not work correctly in
other countries where the a.c. frequency is different - in the United
States of America, the frequency is 60Hz. This said, you will
probably find that not too much rewriting of the routines will be
needed to use them on other computers with a 0/ A and a high
frequency (5000 or more each second) interrupt.

The Dragon DI A

Bits 2 to 7 of P IA I P R A (at location $FF20) are output lines to the
0/ A. I f a set bit is written to any of these PRA bits then the line goes
high at about +5 volts. If a P R A bit is reset (0) then the line is low at
0 volts. At the other end of each line, in the 0/ A, the voltage is
reduced in proportion to the binary place value of the line. This is
achieved by parallel resistors which give double the resistance to
each successively lower value bit. Once past the resistors, the lines
join to produce one analog voltage which varies in proportion to the
value of the six-bit digital number written to PRA-2 to 7.

A dig'1al value is one which is incremented or decremented in
discrete steps whereas an analog value can, theoretically, show an
infinite number of gradations. The 0/ A output, however, depends
on the digital write to the P I A and so can only have 64 different

Table 8.2. Dragon 0/ A output voltage.

PIA I

PRA-7
PRA-6
PRA-5
PRA-4
PRA-3
PRA-2

D/A

bit

5
4
3
2
I
0

Digital value
rese1 set

0 $20
0 $ 10
0 $08
0 $04
0 $02
0 $01

Approximate
voltage our
low high

0 2.288
0 1 . 144
0 0.572
0 0.286
0 0. 143
0 0.07 1 5

Sub-total:
Add constant: 0.25

Total 0/ A output:

86 6809 Machine Code Programming

voltage levels but this number is sufficient to obtain reasonably
smooth sound changes. The output voltages don't range from O to
+5 volts as you might expect but are limited to a safe middle range of
about 0.25 to 4 . 75 volts. Table 8.2 shows how to calculate the output
voltage for any digital value O to 63.

Since bits 2 to 7 of the P R A are used fort he D/ A instead ofbitsO to
5, it is sometimes worthwhile to think of the values as ranging from 0
to 252 ($00 to $FC) in increments of 4 . This alternative approach
affects the way in which the six bits to be used as a D/ A value are
selected from the eight bits in a byte before they are written to the
D/A :

LOWAY ASLA ;shifl bits O to 5 up into
ASLA ;2 to 7, clearing O and I .
STA $FF20 ;write 6-bit to D/ A.

HIWAY ANDA #%1 1 1 1 1 1 00 ;clear unused bits O and I
STA $FF20 ;write 6-bit to D/ A.

In a loop which increments or decrements the value output by I, the
'low way' value is ch�nged every iteration but the 'high way' value
actually written to the D/ A will be affected only every fourth
iteration.

Creating waves

Rapid changes in air pressure cause our eardrums to vibrate and,
after a process of bony amplification and neuron triggering, we hear
sound. We discern the speed of the pressure changes aspirch and the
difference between low and high pressures as amplitude or volume.
These two dimensions to sound are represented graphically in Fig.
8. 1 which shows one complete cycle of a sine wave. I f the cycle of air
pressure change this represents is repeated rapidly over a period of
time we hear a constant note. Stretching the wave vertically makes
the sound louder and stretching it horizontally results in a lower
pitch � each second of the note contains fewer cycles.

We can use the D/ A to create sound waves by applying different
voltages to a loudspeaker, usually by way of an amplifier. The
diaphragm of the speaker is controlled electromagnetically so that
higher voltages cause a greater displacement from its rest position.
A lternating between high and low voltages causes oscillation of the
diaphragm which produces air pressure waves. The difference
between the maximum and minimum voltages in a cycle translates

ampli tude

(volume)

Six Bits of Sound 87

frequency (pitch)

Fig. 8. 1 . Sine wave.

into pressure difference so we can control volume by voltage
variation. Pitch is controlled by the time we take to complete each
cycle of high to low voltage output.

delay

HIGH (1 - 63)

LOW (0)

delay one cyc le

Fig. 8.2. Square wave.

Simple alternation between low and high voltage creates a 'square
wave' with the volume dependent on the high voltage value and the
pitch on the delay between changing state. This is shown in Fig. 8.2.
Square waves are actually very good sounds since they are rich in
harmonics at odd multiples of the fundamental frequency - for
example, a I 00 Hz square wave has t he harmonic frequencies of 300,
500, 700 and so on. Square waves are not the only interesting wave
shapes, however, and machine code programs operate fast enough
to output several dozen different voltages in each cycle, not just the
two necessary for square waves.

Relating the loudspeaker's diaphragm movement to Fig. 8. 1 , the
curve can represent its displacement over a period of time. A
sequence of values. taken from a wave-shape table, can be sent out
through the D/ A to position the diaphragm correctly at equal
intervals of time along the cycle. The result is stepped rather than a

88 6809 Machine Code Programming

smoothly curved wave form, but it is still quite a good
approximation. Sound waves can be any shape and each has its own
distinctive qualities. Table 8.3 is an example of some fundamental
wave shapes coded in the highest 6 bits of each of sixteen bytes. The
table is for the routine SOU N D to use and $00 is a terminator, so any
zero values within each shape are coded as $0 1 which will be masked
to produce $00 by SOU ND.

Tahle 8.J. Digital wave shapes (WA VTAB).

No. Values (hexadecimal)

0 FF 0 1 F F 01 FF 01 FF 01 FF 01 FF 0 1 F F 01 FF 00
I FO EO DO CO BO AO 90 80 70 60 50 40 30 20 10 00
2 1 0 20 30 40 50 60 70 80 90 AO BO CO DO EO FO 00
3 FO 10 EO 20 DO 30 CO 40 BO 50 AO 60 90 70 80 00
4 80 70 90 60 AO 50 BO 40 co 30 DO 20 EO I O FO 00
5 80 80 80 CO FF CO 80 40 01 40 80 CO FF CO 80 00
6 FF FF FF FF 01 FF FF FF FF 0 1 F F F F FF FF 01 00

01 04 08 I O 20 40 80 FF FC F8 FO EO CO 80 01 00

SOUND routine

The routine SOU N D needs four parameters input in D and X. A
must give the wave shape number and B the number of times the
shape is to be repeated. The low order byte of X must have the
frequency delay - a measure of the length of time between writing
successive table values to the D/ A. The high order byte of X is the
volume control byte. Volume is graded from ½,. to "o/,56 of full
volume. The digital value from the table is multiplied by this byte to
produce a 16-bit value of which only the highest six bits are used. I f
the volume byte is $00 this is taken to mean 256.

An EQU directive sets the length of the table entries as far as
SOU ND is concerned. From this it calculates the start address of the
requested wave shape. You can write a table with longer wave shapes
and, if you do, WA V LEN will need to be set accordingly. A nother
way to get longer wave shapes is to set the null terminators to $0 1 -
SOUND will continue to address successive table bytes until it
reaches a $00.

SOUND - Wave shape sound routine
Stack - 8 .

Six Bits of Sound 89

I/ 0 - Input A = wave shape no. in WA VT AB. (0 to 255)
B = repeat count for wave shape. (I to 256)

X-hi = volume (I to 256)
X-lo = frequency delay (I to 256)

Notes - Initialisation of the D/ A as sound source, and sound
enable must have taken place before SOU N D. Both
frequency-delay and repeat-count affect the length of the
note played.

WAVLEN EQU $ 10 ;WAVTAB shapes byte length.
;initialisation by addressing I st byte of correct entry in
; WA VT AB in X and getting repeat count in B.
SOUN D PSHS X.D.CC ;save regs used. Index base of

LEAX WA VTAB,PCR ;wave table then calculate offset
LOB WAVLEN ;to requested shape entry (A)
MU L ;from table start and add to
LEAX D,X ;pointer. X now at right shape.
LOB 2,S ;get repeat count back in B.

;shape repeat loop: end when B=0. Main action to save shape
;start address while processing shape for quick repeat.
SLOOP PSH S X,B ;save shape start and repeat count.

L OA ,X+ ;get 1 st shape val.. index next,
BEQ S LPEND ;but end shape if terminator.

;shape process loop: end on $00 table byte. Multiply table
;value by vol. and write to D/A .
SVALLP LOB �S

BEQ S DTOA
M U L

;get volume and i f $00 then skip
;as D already val. • vol. (256)
;else D = val. • vol. / 256.

S DTOA ANDA #% 1 11 1 1 1 00 ;mask out unused bits and write
STA $FF20 ;new value to D/ A then delay .

;frequency delay loop: determines pitch.
LOB 7,S ;get frequency delay from stack

SFR EQ DECB ;and loop unti l B=0 just using
BN E SFREQ ;up time to get right pitch.
LOA ,X+ ;get next shape value and
B N E SVALLP ; repeat till null terminator.

SLPEND PULS X,B :get shape start address and
DECB ; repeat count back. Repeat till
B E S LOOP ;repeat count done.
P U LS PC.X,D.CC ; restore and exit SOUND.

Sound strings

Each set of sound parameters can, if given a name and placed in a

90 6809 Machine Code Programming

table, form part of a string much the same as the text strings of
Chapter 7. The routine SNSTR deals with sound strings rather like
TNSTR and TSTRNG together deal with text.

The string table format is somewhat different for the sets of sound
parameters since each element in the string has four bytes and not
just one as in a text string. The two-byte name comes first, followed
by two bytes giving the number of elements - this value has to be
multiplied by four to index the next string in the table.

SNSTR also deals with initialisation of six-bit sound on the
Dragon - and remembers to switch off the sound enable bit when the
string has been played.

SNSTR - Play named sound string
Modules - SGSTR, SDSTR.
Subrourines - SWITCH, SOUND.
Stack - l 2 + subroutines.

I /0 - Input D contains the name of the sound string.
Output C= 1 if sound played, C=0 for string not
found or null string.

Notes - The name in D cannot be $0000 as this is the end-of-
table flag.

;SNSTR: top level, initialises pointer to string table, calls
;modules to address named string and, if found, play it.
SNSTR PS H S U,Y ;save regs used. Point U to start

LEAU SSTAB,PCR ;of sound string table.
BSR SGSTR ;go find named string, but
BCC SN EN D ;end if not found, else
BS R S DSTR ;go process it if found.

SNEND PULS PC,U,Y ; restore, exit SNSTR routine.

;SGSTR: Input D = string name, U = SSTAB start address.
;out: C=0: U = SSTAB+J. C= I : Y = no. of elements, U is
;pointer to 1 s t byte.
SGSTR PSHS D ;name to stack for comparison.
;get name and no. of elements. End if end-of-table.
SGLOOP P U LU Y,D

CMPD #0
BEQ SGLEN D

;get string header info.
;test for e-o-t flag and exit
;with C = 0 if end reached.

;exit loop, string found, if name matches.
CM PD ,S ;if string name = request name
ORCC #%00000001 ;then set string found 0ag C
BEQ SGLEN D ;and exit loop.

;move pointer to next string in table.

t

TFR
L EAU
LEAU
LEAU
LEAU

SGLEND BNE
PULS

Y,D
D,U
D,U
D,U
D,U
SGLOOP
PC,D

Six Bits of Sound 9 1

;move no. o f elements into D
;and add four times to pointer
;(4 bytes to each element)
;so pointer now addresses the
;name of next string.
;repeat till name matches or e-o-t.
; restore name, ret. to SNSTR.

;SDSTR: Input U points to 1 st byte, Y = no. of elements.
;out: C=0: null string (Y=0). C= I: string played, U at
;string + I, Y = 0.
;first, test for empty string. If okay, switch sound on.
SDSTR PSHS X,D ;save regs used.

CMPY #0 ;test for an empty string and
BEQ SDEND ;end immediately if it is.
LDA #$08 ;else enable sound and select
JSR SWITCH,PCR ;D/A at Dragon PIAs.

; process loop. Get parameters. call SOUND, till e-o-string.
S DLOOP P U LU X,D ;get SOUND parameters from string,

L BSR SOUND ;indexing next set, and SOUND
LEAY -1,Y ;them. Repeat for all elements
BNE S DLOOP ;in string.

;disable sound and set string-played nag.
L DA #0 ;reset bit 3 for switching off
J S R SWITCH,PCR ;sound enable.
ORCC #%00000001 ;nag string played in C.

SDEND PULS PC,X,D ; restore, return to SNSTR.

Sound sample

SXM PL can be called from Dragon BASIC by an EXEC command.
It sends the names of both strings in the example sound string table
SST A B to SNSTR. String $DEAF plays all eight wave shapes in the
sample WA VT A B and string $EEEC plays the second shape at eight
different pitches.

SXMPL PSHS D,CC ;save regs used.
LDD #$DEAF ;go play string "DEAP'
JSR SNSTR,PCR
LDD #$EEEC ;then string "EEEC"
JSR SNSTR,PCR
P U LS PC,D,CC ; restore, return to Basic.

SSTAB FDB $DEAF ;name

92 6809 Machine Code Programming

FOB $0008 ;8 elements (parameter sets)
FCB 0,0,0,64 ;shape, rep-cnt, vol, fr-del.
FCB 1 ,0,0,64
FCB 2,0,0,64 ;(try this string with the
FCB 3 ,0,0,64 ; repeat-count, volume and
FCB 4,0,0,64 ;frequency-delay parameters
FCB 5 ,0,0,64 ;set to different values.
FCB 6,0,0,64 ;Also change shape nulls to $01
FCB 7,0,0,64 ;to get complex wave shapes.)
FOB $EEEC ;name
FOB $0008 ;8 string elements.
FCB 1 ,$20,$80,0
FCB I ,$24,$80,$E0 ;(see if you can find the
FCB I ,$28,$80,$C0 :frequency-delays which
FCB I ,$33,$80,$A0 ;approximate to actual
FCB 1,$40,$80,$80 ;notes in an octave.)
FCB 1,$55,$80,$60
FCB 1 ,$80,$80,$40
FCB 1 ,$00,$80,$20
FOB $0000 ;SST AB terminator.

Dynamic HI-FI sound

The sound produced by the routine SOU N D can be considered
static since neither the frequency nor volume change throughout the
duration of the note. This is useful for playing tunes but not much
good for creating games sound effects. The best effects are produced
when frequency and/ or volume is dynamic. H I FI lets you set start
values and increment or decrement values so both pitch and volume
alter by a programmed amount every 1/,o second.

Most Dragon owners know that the TIM E R function is operated
by an interrupt every 1/50 second but many do not realise that this
interrupt is synchronised to the v ideo display logic which renews the
TV picture fifty times a second. This is known as the 'Frame sync
Interrupt' (FI). The display consists of 256 horizontal lines and the
Dragon has yet another interrupt synchronised to the line timing -
the ' Horizontal sync I nterrupt' (H I). When enabled by setting bit 0
of PIA O CRA the HI causes an I RQ interrupt 12800 times a second
(256 * 50), one every 69 or 70 clock cycles.

The part of H I FI which writes to the D/ A is interrupt driven
which means that it is not called as a subroutine by the main iterative
part, H I MAP. Instead, every other H I signal causes the CPU to stop

Six Bits of Sound 93

processing HI MAP, save all the registers on stack (excluding the
stack pointer S) and process HIDI YE. The execution time of
H IDIVE is longer than 70 clock cycles so a second interrupt is
ignored, further interrupts being automatically disabled during the
processing of one interrupt. H I DI V E decrements a frequency
counter by I at each interrupt. Every time the counter reaches zero
the 0/ A output is changed from low to high or from high to low. So
HI FI outputs a square wave with a maximum frequency of 3200 Hz
and a minimum of 12.5 Hz.

The FI signal causes the note length to be decremented by I and
the note ends when this reaches 0. HI FI notes can be accurately
timed from 0.02 to 5. I 2 seconds. FI also results in the volume and
frequency values being adjusted by the input increment/ decrement
values. HIFI parameters can best be understood by reference to
Table 8. 4 .

Table 8.4. H I FI sample string (H ISS) hexdump. 160 bytes.

Offset Parameter values

0000: A3 20 00 F8 00 0 I A3 40 80 0 I 80 FE A3 I O 80 00
00 10: 0 1 00 A2 08 00 00 A2 08 00 00 A2 08 80 00 A3 20
0020: CO 00 0 I 00 A3 30 FF 00 40 00 A3 00 00 FF 00 I 0
0030: A2 00 00 20 A3 00 00 I O I O 00 A I 00 00 FO A I 00
0040: 00 20 A I OO 00 EO AJ 00 00 FO 00 FO A3 I O 00 FO
0050: 00 00 A2 10 FO 00 A2 10 EO 00 A2 10 DO 00 A2 10
0060: co 00 A2 10 BO 00 A2 10 AO 00 A2 10 90 00 A2 10
0070: 80 00 A2 10 70 00 A2 10 60 00 A2 10 50 00 A2 10
0080: 40 00 A2 1 0 30 00 A2 I O 20 00 A2 I O I O 00 A2 I 0
0090: 08 00 A2 1 0 04 00 A2 1 0 02 00 A2 1 0 0 1 00 00 00

The first two bytes of each sound command are essential. I f they
are both nulls HIM AP ends. The second byte is the note length in Y,o
second. The first byte tells HIM A P what other parameters are to be
picked up. If bit 0 is set then volume and volume inc/ dec are in the
next two bytes. If bit I is set then the frequency delay and its inc/ dee
value follows. If both are set then the volume parameters are
followed by the frequency parameters. If neither is set then no
further bytes are picked up. Since only bits 0 and I of the command
code are used, the other bits can take any value. In HISS they are
used to identify the command bytes as Ax (except for the byte at

94 6809 Machine Code Programming

offset 0068 which is a frequency).
Look at offset 0030 to 003D in Table 8. 4 :

0030: A2 00 = frequency follows. Note length 256.
0032: 00 20 = fr-delay 256, inc'd by 32 every 1/50 sec.
0034: AJ 00 = vol. & freq. follow. Length 256.
0036: 00 10 = volume 0, incremented by 16 every 1/50 s.
0038: I 0 00 = fr-delay 16, constant (increment 0).
003A: A I 00 = volume follows. Length 256/ 50 sec.
00JC: 00 F0 = vol. 0. decremented by 16 every 1/50 sec.

HIJAN Uust a noise) is a short program to send the address of
HISS to HIFI. Call it from BAS IC with an EXEC command and
listen to 4 6.56 seconds of dynamic sounds.

HIJAN PSHS
L EAU
JSR
P U LS

u
HlSS,PCR
H l Fl,PCR
PC,U

; save the contents of U so it
;can be used to send HISS
;to HIFl for playing, then
;restore, return to Basic.

HIFI - Interrupt timed dynamic sound routine

Modules - HICUE, HI MAP, HICUT and inrerrupt routine
HIDIVE.

Stack -
//0

Notes -

25 including I RQ entire register save.
I nput addresses 1 st byte of a sound string.
On exit, U = string + 1 .
Written t o work o n Dragon/TRS-80 Color Computer.

; HIFI: top level, just calls modules.
HIFI

;HICUE:
HICUE

PSHS Y,X,D,CC
BSR HlCUE
BSR H l M AP
BSR HI CUT
P U LS PC,Y,X,D,CC

;save registers used. Switch on
;D/ A sound and Horiz. Interrupt.
;go to parameter fetch loop.
;switch off D/ A and HI.
;restore and exit H l FI

initialise high frequency interrupt and D/ A.
ANDCC #%11101 1 1 0 ;clear C, enable IRQ interrupts.
LDA #$08 ;enable sound and select
JSR SWITCH,PCR ;D/ A 6-bit sound.
LEAX HIDIVE,PCR ;change IRQ jump address from
STX $010D ;TIM ER to HIDIVE.
LDX #$0003 ;ensure no sound output
STX HIWORD,PCR ;until ready inside HIM AP.
LDA $FF0I ;enable Horizontal sync Interrupt
ORA #%0000000 1 ;by setting PIA O CRA-0
STA $FF0 I ;not changing other bits.
RTS :return to HIFI.

Six Bits of Sound 95

; H I M AP: parameter fetch and inc/ dec loop. Dependent on
;FI occurred nag C= I or infinite loop at HI WAIT!
HI M A P LDD ,U++ ;get code & length, bump point,

BEQ EH I M AP ;end if $0000 terminator.
;test bits 0 & I of command code:
;00 = note length only (already in B).
;0 I = get volume byte and volume inc/ dee byte in X.
; 1 0 = get freq-delay byte and its inc/ dec byte in Y.
; 1 1 = get vol, vol-inc/ dee, fr-de!, fr-del-inc/ dee in X & Y .
H I LOOP BITA # I ;test i f volume follows and

BEQ H I FREQ ;skip if not, else pick up
PU LU X ;vol, vol i/ d in X, bump point.

H I FR EQ BITA #2 ;test if frequency-delay follows
BEQ H IWAIT ;skip if not, else pick up

PU LU Y ;fr-d, fr-d i/ d in Y, bump point.
; infinite loop if C=0 on entry to H IWAIT. y,0 second
; interrupt sets C to I , so wait for interrupt to occur.
HI WAIT BCC HI WAIT ;loop till C = I . FI occurred.
;every Y,o sec. adjust volume and frequency-delay by
;adding respective inc/ dee bytes. Decrement note length
;if 0 get new parameters, else wait for next F I .

PSHS Y,X ;put volume and frequency
LDA 2,S ;variables on stack for access
A DDA 3,S ;by accumulator for
STA 2,S ;parameter adjustment
LDA ,S ;which produces dynamic
ADDA l ,S ;sound - continual change
STA ,S ;of volume and/or frequency.
DECB ;if note not finished
BNE
LDD
BNE

H I WAIT
,u++
HI LOOP

E H I M A P RTS

;then wait for next Ysu interrupt.
;else get next command & length
;repeat till $0000 terminator.
;return to H I F I

; H ICUT:
H ICUT

switch off high frequency interrupt and D/ A sound.
LDA $FF0 I ;disable Horiz. sync Interrupt
ANDA #%1 1 1 1 1 1 1 0 ;by clearing PIA O CRA-0
ST A $ FF0 I ;not changing other bits.
LDX #$9DJD ;change IRQ jump address from
STX $0 I0D ; H I DIVE to TIMER.
CLRA
JSR
RTS

;switch off sound enable bit
SWITCH , PCR ;by clearing all C2 lines.

;return to H IF I .

96 6809 Machine Code Programming

; H IDIVE: Interrupt routine, entered on both H I and FI
;interrupts. IRQ automatically saves al l registers to
;stack so HI DIVE works on the stacked parameters and on
;2 variable bytes, H I WORD: hi-byte is a square wave D/ A
;mask, lo-byte is the frequency count loaded from saved B.
H I DIVE LDD H IWORD,PCR ;get D/ A mask and fr-del.

DECB ;count down fr-delay and if
BEQ H IWAVE ;0 then go change voltage out.
NOP ;else use up time so
NOP ;HI DIVE always takes same
BRA HI DAVE ;no. of clock cycles.

H IWAVE LDB 6,S ;renew fr-delay count.
EORA #%11 111100 ;low to high or high to low

H I DAVE STD H IWORD,PCR ;restore changed variables.
ANDA 4,S ;get masked volume (or $00)
STA $FF20 ;and write it to D/ A.

;set C if F I interrupt also occurred. Else C=0.
LDA $FF03 ;get PIA O CRB for FI flag in
LSR ,S ;bit 7. Shift out stacked C
ROLA ;shift out FI flag and shift
ROL ,S ; i t in to stacked C flag

;read PRA and P R B to clear interrupt flags in CRA and CRB.
LDA $FF02 ;clear FI flag.
LDA $FF00 ;clear H I flag.
RTI ;return to interrupted H I MAP.

H I WORD R M B 2 ; H I DIVE variables.

Chapter N ine

An Interrupt Driven
Clock

Any computer system which can generate a regular interrupt at a
frequency of I to 256 per second can have this on-screen clock. It has
to be 'patched in' to the normal interrupt service routine. On the

Dragon this means changing the address in the J M P instructions at
locations $0 1 0C, $0 10D and $0 JOE to the address of CLOCK which
must end with a jump to the original destination of the interrupt - to
$9D3D - if you still want the TIMER and PLAY functions. Don't

expect mellifluous music with the clock in operation all the tones
have a very pronounced 50 Hz warble with a once-a-second hiccup.

Set the time correctly by POKEing from BASIC.

CLOCK - Interrupt driven, on-screen, 24-hour, digital clock

Modules - CDPRNT.
Stack -
!/ 0 -

Notes ·-

IRQHZ
CLOCK

Normal IRQ stacking + 2.
None in. Registers U, X, D and CC are changed.
Time written to memory-mapped display every second.
If the normal interrupt routine ever uses the
contents of the passed down registers then CLOCK
should be written to PSHS and P U LS U,X, D,CC.

EQU $32 ;interrupt frequency (50 for Dr.)
LEAU CCOUNT,PCR ;index frequency count down and
DEC ,U ;dee i t , exit CLOCK routine
BNE CLKEND ; i f second not up , else
LOB IRQHZ ;renew counter for next
STB . U ;second count down.

;increment seconds with any carry to minutes, hours. BCD
; (Binary Coded Decimal) values used for speed and ease.

CLRB ;clear carry flag C so sees get
LDB #3 ;inc'd. Count for 3 values.

CVLOOP LDA ,-U ;get time byte after moving
BCS CVLEND ;pointer. Skip if no inc to do.
ADDA # I ;inc time byte and correct to

98 6809 Machine Code Programming

DAA ;BCD value then
ST A , U ;put it back to string.
C M PA -3,U ;compare with limit value and
BLO CVLEND ;skip if not reached, else reset
CLR ,U ;to 0. C clear for next byte inc.

CVLEND DECB ;loop for seconds, minutes, and
BNE CVLOOP ;hours, leaving U at hours.

;index screen RAM and print time to screen after converting
;BCD to ASCII decimal digits.

CPLOOP

CPLEND

CLKEND

LOX -5,U
LOB #2
BSR CDPRNT
TSTB
BEQ CPLEND
LOA #$3A
STA ,x+
DECB
BPL CPLOOP
J M P I RQRST

;get screen address. Set count
;in B for 3 loops, ending $ FF.
;print hrs, mins or sees
;if seconds just been printed
;then skip, else
;get colon ':' separator to
;screen, bumping pointer.
;repeat for hours, minutes
;and seconds.
;go to normal IRQ routine

;CDPRNT: module to get BCD value at U, convert to two
;ASCII decimal digits and put to screen at X.
CDPRNT LOA , U ;get BCD value,

LSRA ;shift high order digit
LSRA ;down into lo-nibble A,
LSRA ;clearing hi-nibble A
LSRA ;at same time, then add in
ORA #$30 ;ASCII digits hi-nibble and
STA ,X+ ;write to screen, bump pointer.
LOA ,U+ ;get lo-digit, bumping pointer,
ANDA #$OF ;clear hi-nibble and add in
ORA #$30 ;ASCII digits hi-nibble, write
STA ,X+ ;to screen, bumping pointer,
RTS ;and return to CLOCK.

;variables and parameters for CLOCK, with only label at
;interrupt frequency needed.

FOB $0400 ;screen R A M address ($0400 is
;at top left of Dragon's normal text screen).

FCB $24,$60,$60 ;hrs in day, mins in hr, sees in
;min. BCD values have to be written in looking like hex.
;These are the limits for comparison with variables

FCB 0,0,0, ;time variables (at midnight).
CCOUNT FCB IRQHZ ;second counter.

Appendix A

6809 Architecture

Architecture usually refers to the make-up of the actual micro
processor, being anything from a simple list of the registers to a
detailed mapping of the full logic. However, since the processor in
isolation is about as much use as 1.5 kg of brain on a butcher's slab, it
is more illuminating to describe it in relation to the computer system
as a whole.

Figure A. I shows a very much simplified block diagram of the
relationship between the various components of a complete system.
The number of devices and their linkage is far more complex - as a
glance at the schematics for a real system will show you - but in
general programmers are not too concerned with technical detail.

Peripherals stand outside the basic system and the computer can,
in theory, work without any of them - though not to any useful
effect. Input/ Ow put devices are the sockets into which peripherals
are plugged. At their simplest they are mere ports through which
data is transferred. In their most complex form they are 'intelligent'
or 'semi-intelligent' configurations which can perform much of the
decoding of information to and from peripherals or linked systems.

Memorr is an essential part of the system and is basically a set of
numbered pigeon-holes for storing numbers. Memory is of two
types: (a) ROM or Read Only Memory where the contents are fixed
('burnt-in' is the jargon term) and cannot be overwritten by new
numbers, and is used for programs which have to be present in the
computer on power-up; (b) RAM or Random Access M emory
which can have its contents changed. Many computer systems have a
memory-mapped video display where a portion of RAM is
dedicated as video- RA M or screen-memor_l". These dedicated
memory locations correspond to screen positions and their contents
to dot-patterns appearing as characters or graphics on the screen.
Some systems treat video display in the same way as printers
requiring character codes to be sent through an 1 / 0 device.

1 00 6809 Machine Code Programming

M E MORY
M A PPED
V I D E O
LOG I C

M E MORY

A D D R E SS BUS

D A T A BUS

P E R I P H E R A L S

(p u

(Keyboard, Pr inter, Modem, D i sks, etc.)

Fig. A. 1 . The main features of a computer system.

A ddress and data buses are networks of lines running through the
system to carry information between the different parts. In an 8-bit
computer the address bus is 16 lines wideandcan hold any value between

$0000 and $FFFF (0 to 65535 in decimal) and the data bus is 8 lines
wide and can carry any value from $00 to $FF (0 to 255 decimal).

The CPU or central processing unit contains a small number of
special memory locations referred to as registers, and internal logic
which can perform a few simple operations on binary numbers. The
CPU can also put values on to the address bus, put values on to the

Appendix A: 6809 Architecture 1 0 1

data bus, take values from the data bus and move values between the
registers.

System control devices perform a variety of tasks mostly ensuring
that the actions of all the other parts are synchronised. An example
of the importance of this synchronisation is demonstrated by the
need for both the CPU and video logic to access screen-memory at
virtually the same time when a program is printing a message. The
conOict is resolved by use of a srstem clock which regularly and
frequently alternates between two states: high (or active) and low.
The CPU is only allowed to access memory during one state and
video logic during the alternate state. One high and one low state
together constitute a clock cycle and the frequency of these cycles is
used as the measure of how fast a computer operates. Since machine
code instructions always operate in a given number of cycles the
actual time taken by any instruction varies with the cycle rate. The
TRS-80 Col or Computer runs at 0.89 MHz (890000 clock cycles per
second). More sophisticated, and expensive, business systems such
as the SEED System 19 usually run at 2 MHz. The Positron 900 is
advertised as having a 500 ns cycle time (500 nanosecond cycles is the
same as 2 MHz).

11 0 PORTS H z-eo cPu H .. __ M
_

E

_

M

_

oR
_

v
_--1

MEMORY

6809 C P U

I / 0 PORTS

Fig. A.2. 280 and 6809 memory and 1/0 ports addressing.

Computer systems are designed around the abilities and
limitations of the processor (CPU) employed. The 1/ 0 ports of 280
systems are tied directly to the processor and the 280 has special
instructions dealing specifically with I / 0. The 6809 has no such
specific 1/ 0 capabilities but can only address memory. Consequently
1/ 0 devices in 6809 systems have to be tied in to memory addresses

1 02 6809 Machine Code Programming

(see Fig. A.2) and all 1/0 operations involve normal memory
reference. Memory or port addressing is accomplished by putting a
16-bit address on the address bus. Data stored to memory or output
has to be put on the data bus. Memory read or input takes data from
the data bus.

All the timing of data movement, address decoding and most of
the system control is taken out of the hands of the programmer who
only has to provide the processor with a sequence of instructions in
numerical form - machine code. The code will say what action has to
be performed on data and where 1ha1 da1a is 10 be.found. This is the
point where the CPU registers interact with the system.

The 6809 register set

Accumulators (A, B, D)

Accumulators are the registers in which the results of most

7 0 7 0

D i red Page
D P I

C ond i t i on C odes
cc

R eg ister Reg is ter (f lags)

Accumulator A
I

Accumulator B I
I

(D h igh byte) I

(D l ow byte) I

I nd e x R eg i s t e r X

I nd e x R e g i s t e r y

Use r S ta c k P o i n t e r u

Hardware S tack Poin ter s

P rogram C o u n t e r P C

1 5 0

F,g. A.3. The 6809 register set.

Appendix A: 6809 Architecture 1 03

operations are stored - especially arithmetic operations. A and B are
both 8 bits long and capable of holding values O to 255 ($00 to $FF).
D is a 16-bit accumulator formed by joining A and B. The 6809 has a
few operations which act on 16 bits of data (mostly load and store
operations) but as the data bus is only 8-lines, 16-bit data operations
involve two accesses.

Pointers (X, Y, U, S)

Pointers are 16-bit registers which normally contain addresses. The
Indexed/ Indirect addressing modes of the 6809 cause the values
held in the pointers to be put on the address bus, sometimes after the
addition of a constant value (programmed in the instruction) or the
value from an accumulator. As an example, the instruction LDA
B,X causes the 1 6-bit address formed by adding the value of B to that
of X to be put on the address bus. The system logic decodes this
address to access just one memory location which results in the data
held there being put on the data bus. The CPU receives the data from
the data bus and stores it in the A register. All of this action is
transpar,ent to the programmer who thinks of the operation as
A -memory at X + B. The pointers can also be used for 16-bit data
store and load and limited arithmetic - designed for address
manipulation.

Index Registers (X, Y)
X and Y are usually referred to as Index registers since that is their
main function, as described above. The instructions LEAX n, X and
LEA Y n,Y also allow them to be used as 16-bit counters.

Hardware Stack (S)
As well as the normal pointer functions, S has a special function as
stack pointer. Stack is an area of memory reserved for temporary
storage of register values generally and for storage of program
addresses during subroutine calls particularly. On a JSR or BSR
instruction, the following actions occur:

memory at S-1-Program Address low-order byte
memory at S-2- Program Address high-order byte

S-S-2
Execution moves to Subroutine Address

At the end of the subroutine the program address is taken from
memory at S:S+ I, S has 2 added to it and the program continues.
The instructions PSHS register names will cause a similar action but

1 04 6809 Machine Code Programming

with the values of the registers named. Stack can be anywhere in
memory since S is a 1 6-bit register and can therefore address any
memory location.

User Stack (U)
U can be used in the same way as S for saving register values on a
User Stack. Program addresses, however, are always saved to the
Hardware Stack by subroutine call instructions.

Direct Page Register (DP)
DP is used by the processor as the high-order byte of memory
addressed by the Direct Page addressing mode. The low-order byte
of the address has to be written into the machine code instruction.
The 6809 can address 65536 different memory locations. In hexa
decimal the addresses run from $0000 to $FFFF and the leftmost
two digits form the 'page number'. Pages thus run from page O to
page 255 and each page contains 256 different locations. DP can be
set to any page number.

Condition Codes Register (CC)
This is dealt with at length under 6809 Flags. It is a collection of eight
individual bits hold ing status and control information.

Program Counter (PC)
The Program Counter is the processor's own pointer register. It is
the 16-bit register which holds the program address referred to in
Hardware S1ack. Machine code programs are nothing more than a
sequence of 8-bit numbers - one number (byte) to one memory
location - and the processor reads programs in the following way:

(a) the contents of the PC are put on the address bus
(b) the 8-bit value (instruction byte) is taken off the data bus
(c) the PC is incremented by I
(d) the instruction byte is decoded to effect the correct action.

As machine code instructions are anything from I to 5 bytes in
length the read-instruction sequence may be performed up to five
times - each time the PC is pointed to the location of the next byte.
When the processor performs the action of any instruction, the PC
always contains the address of the location a/ier the instruction.
This fact is of absolute importance when you use instructions which
depend on the value of the PC - Branches, PC-offset addressing,
exchange and transfer with the PC.

Appendix A: 6809 Architecture 1 05

6809 flags

The Condition Codes register (CC) is different from the other 6809
registers in that each of its eight bits is treated as a separate unit.

b i t : 4

f lag : E F H I N z V C

Fig. A.4. The 6809 condition codes register.

Exceptions to this rule are the instructions ORCC, AN DCC. PSH.
PU L. EXG and TFR. Five of the bits are used to flag the results of
operations and the others as control bits. Table A. I gives their uses.

Bit

0

4

Name

C

V

z

fob/e A . /. 6809 Condition codes description.

Description

Carry. Used to store a bit carried out of an

arithmetic result when 8 (or 16 for d ouble-byte
arithmetic) bits arc not enough. Also used as

a ninth bit in rotate and shift operations.
O\'(>1:f/otr. Shows if 2's complement arithmetic

overflow has occurred. The overnow flag is
the exclusive-OR of the carry-in with the
carry-out of the result sign bi t .
leru. Set if the result of an operation is zero

(a l l bits reset).
Negt11i1·e. Sometimes referred to as the Sign
flag since it is a copy of the result sign bit.

I n 2·s complement signed numbers. $00 to S7F

is positive (0 to 1 27 decimal) and $80 to $FF
negative (- 1 28 to -I decimal) and bit 7 is thus
the sign bit . In 1 6-bit values the sign bit is

bit 1 5.
IRQ lmerru/H nws/.: . Regular I R Q interrupts are

disabled when / = I. enabled (al lowed to occur)
when / = 0.

H Ha((carry. Shows if any carry out of the low
order digit of an 8-bit addition occurred. Used

1 06 6809 Machine Code Programming

6
7

F
E

by the processor during a DAA instruction.
FIRQ lnrerrupt mask. As I but for fast interrupts.
£mire state. I RQ, CWAI, SW! set £ = I then
save all registers on stack before dealing with
the interrupt. FIRQ resets £ = 0 and saves only
PC and CC. RT/ (Return from Interrupt) pulls
CC off stack and tests £ to determine whet her
all registers of just PC have to be restored .

6809 interrupts

As well as being connected to the address and data buses and various
power and control lines, the 6809 CPU has four input lines which
generate a particular type of response and three program
instructions which emulate the same response. The response made
by the processor is to save the state of the machine (i .e. register
contents) on stack and pass control to one of a number of special
service routines. The signal causing this response is known as an
Interrupt Request.

Each type of interrupt requires its own service routine and the
address at which that routine starts is stored in a reserved area of
memory from $FFFO to $FFFF. These addresses are known as
Interrupt Vectors. Table A.2 gives the locations for the Most
Significant Bytes and Least Significant Bytes of the vectors, the type
of interrupt and brief descriptions.

MSB LSB
a, at

Tahle A .]. 6809 Vectored interrupts.

Type Descriplion

FFFE FFFF RESET Operating system start address on power on.
FFFC FFFD NM I Non-mask able interrupt. Usually an

emergency situation such as power drop.
The response in this case would be to

FFFA FFFB SWI
switch to a back-up battery.
SoJ!ware interrupt. I nstruction generated
interrupt useful during program development
for setting break-points. Also for control

Appendix A: 6809 Architecture 1 07

transfer between system and user programs.
FFF8 FFF9 I RQ lnterrupl Requesl. The I RQ line is usually

tied to an 1/ 0 device such as the Peripheral
Interface Adapter (P IA). The main use is
for slow peripherals such as printers to
give a ff{/£�\' signal to the CPU which
meanwhile performs other duties.

FFF6 FFF7 FIRQ Fmu lnrerrupr Request. H igher priority.
faster action equivalent of I RQ. Used for
fast peripherals requiring quick response.
FI RQ can interrupt IRQ unless disabled.

FFF4 FFF5 SWl2 As SWI .
FFF2 FFF3 SWl3 As SWI .
FFF0 FFF I Not used.

Interrupt requests are inplll to the 6809. Corresponding outf"'' lines
are used to signal to external hardware that an interrupt has been
recognised and that the CPU is or is not ready t o respond.

IRO SERVICE {
P U S H

R E G I S T ER S

PC - vector

RT !

Interrupt
rou t i ne
e.g . TI HER update

P U L L
R E G I S T E R S

F,g. A.5. IRQ action.

1 ,
---- I R Q

Program

cont inues

unaffected

1 08 6809 Machine Code Programming

IRQ and FIRQ may be enabled or disabled by the status of the I

and F flags in the CC register. 1/ 0 devices using IRQ and FIRQ
often have control bits which allow for interrupt enable/ disable.

Interrupts are transparent to the interrupted program except that
stack memory is used for register storage. If your program might be

interrupted (e.g. by the timer on the Dragon or TRS-80 Color
Computer) then you must ensure that there are 12 bytes of stack
space below S for IRQ and 3 bytes below S for FI RQ. Figure A.5
shows the effect of IRQ.

Append ix B

6809 Assemblers

Conventions

Assembler programs (known as source programs - the actual
machine code is referred to as the object program) are always written
in a tabular fashion. The columns are called fields. Usually the fields
are fixed to certain character positions on the line but some
assemblers do allow a degree of latitude provided the correct
delimiters (characters separating different fields) are used. All
assemblers require a minimum of three fields with optional others. A
printout of object code alongside source program may have as many
as seven fields.

(I) Location Gives the address of the first byte of the machine code
instruction. Usually in hexadecimal.
(2) Code Gives the machine code (I to 5 bytes) in hexadecimal.
(3) Line number Optional in the source program but when used
refers to the position of the instruction in the program.
(4) Label First necessary field in the source program. At assembly
the label is used as equivalent to the address of the first byte of the
instruction which is labelled.
(5) Mnemonic Operation name, e.g. ADDA.
(6) Operand or Address The data, register or memory reference part
of the assembler instruction, e.g. - I 5,X or #$ FE.
(7) Comment Optional in the source program. Description of what
the program is doing. Necessary if you or anyone else wants to
understand the program.

The normal delimiters are: (a) spaces - after a label, after the
mnemonic and before a comment which follows an instruction, (b)
commas - between operands, before register names in no-offset
Indexed modes (e.g. ,X++), and (c) asterisk - before a complete

1 1 0 6809 Machine Code Programming

comment line. The delimiters used in this book are standard except
that comments are always preceded by a semicolon (;).

Labels are usually restricted to six characters and must start with
an alphabetic character (A to Z) or a full stop (.). Some assemblers

require all labels to begin with a specific symbol. The DASM
assembler for the Dragon, for example, insists that all labels begin
with ·@·. Register names, mnemonics and assembler directives are
not allowed to be used as labels.

Assembler d irectives

These are instructions to the assembler and are not translated into
machine code even though they are written in the mnemonic field.
Table B. I gives the usual 6809 directives with their meaning.

Form

ORG

EQU

R M B

FCB

FDB
FCC

END

Table B. /. Assembler directives.

Meaning

Origin. Tells the assembler where in memory the
object code has to start.
Equate label to data. The label can then be used
in the source program operand field and the
assembler will use the equated data in the object
code.
Reserve Memory Bytes. Used to tell the assembler
to leave a given number of locations free.
Form Constant Byte. Put a byte of data into memory
at the current program location.
Form Double Byte. As FCB but two bytes of data.
Form Constant Character. Store the ASC I I codes of
the character(s) following FCC.
End of source program.

Assembler operand forms

The information which an assembler expects to find in the operand
field of a source program corresponds closely to the addressing
mode used, especially in the use of register names. Most assemblers,

Appendix 8: 6809 Assemblers 1 1 1

however, expect certain additional information and allow for an
expanded range of expressions.

(I) Labels Labels can take the place of an actual address in the
operand field. The assembler usually passes through a source
program at least twice, the first time to build up a label-address
table. Instructions requiring data will be given the data located at the
label-addressing and instructions needing an address will be given
the address. Program relative instructions will have the offset (label
minus current position) calculated.
(2) Data The default case is decimal requiring the number only
(optional preceding '&' for program clarity). Other forms are: (a)
hexadecimal starting with "$", (b) octal starting with"@", (c) binary
starting with "%", and (d) ASCI I - single character or character
string (depending on assembler sophistication) preceded by an
apostrophe, e.g. FCC 'STRING. Some assemblers will also allow
arithmetic expressions which reduce to 8-bit or 1 6-bit integers
(fractions lost).
(3) PC Relative Since the normal Indexed form n,PC used with a
label - say. DATTAB - would produce object code in which the
value of DATTA B is used as the offset, a special assembler form
n,PCR is allowed. In this case the distance from the instruction to
DATT A B is calculated by the assembler and used as the offset.
(4) Mode symbols Immediate data requires a preceding hash sign '#'.
If the hash is absent the assembler will interpret the data as an
address. Assemblers automatically select Direct mode if the address
given falls within the page indexed by the DP register and Extended
mode if it does not. Direct mode can be forced by preceding the
address with '<" and Extended mode by a preceding '>'. In Indexed
offset addressing, the assembler automatically chooses the smallest
offset form (none, 5-bit, 8-bit or 16-bit) consistent with the
displacement. Preceding the operand with a "<" forces the 8-bit form
and with a ·>' the 1 6-bit form.

Some real assemblers

MACE - Editor, Assembler, Monitor for Dragon.
DASM - Assembler for Dragon/ TRS-80 Color Computer. Allows
assembler instructions to be embedded in BASIC programs.
Associated monitor DEMON available together with DASM or on
a separate cartridge.

1 1 2 6809 Machine Code Programming

DREAM - Editor, Assembler, Monitor from Dragon Data on
cassette or cartridge. ALLDREAM version is a full development

package with breakpoints, trace, disassembler, etc.
EDTASM - Editor, Assembler, Monitor package on cartridge for

the TRS-80 Color Computer. Monitor-debugger part is ZBUG

allowing breakpoint setting, etc.
RALL ! - OmegaSoft relocatable assembler and linking loader
SA-92 MNEMONIC ASSEMBLER - Smoke Signal Broadcasting
assembler. Allows multiple source files.

This list is, or course, by no means exhaustive. There are many

assemblers on the market - several for each 6809 system - and
almost all vary to a greater or lesser extent from the Motorola 6809
assembler standard.

Appendix C

6809 Instruction Set

First some facts and figures. There are 59 different tvpes of
instruction - LD, PSH, BLE, ASR, and so on. Taking into account
the use of different registers to implement these types (CM PA,
CM PB, CM P D, etc.) there are 139 forms of instruction. Many of
these act on memory indicated by many different addressing modes
and if we include these differences, we find that there are over 4800
instructions at our disposal. On sheer volume the 6809 totally
overwhelms the two most popular 8-bit processors - the Z80 has
about 700 different instructions and the 6502 a mere 15 1. Of course
the number of instructions is not the only factor to determine the
efficiency or power of a microprocessor. The execution t ime of the
instructions, the ease of performing higher precision (i.e. 16-bit, 32-
bit, floating point) arithmetic and flexibility in dealing with external
logic - intelligent printers, hardware-decoded keyboards, etc. - are
just a few of the many criteria you might use. However, the size and
complexity of the instruction set is very important to the
programmer.

Larger instruction sets contain a greater degree of redundancy.
The instructions in the small repertoire of the 6502 each perform
very different tasks. 6502 programming is consequently a rather
mechanical job for the programmer who has very little choice in how
he or she will actually code a program. The 6809 programmer, on the
other hand, is faced with a bewildering three-dimensional array of
instructions - dimensioned by type, form and mode many of which
seem to do exactly the same operat ion. JSR n,PC does in three bytes
and eight clock cycles what BSR n does in two bytes and seven clock
cycles. And at the end of the subroutines we have just called, do we
PULS PC or RTS? In an expansive mood we might even LOX ,S++
followed by TFR X, PC. The redundancy illustrated by these few
examples is not an oversight of the 6809 design team, nor is it an

1 1 4 6809 Machine Code Programming

unfortunate quirk of the three-dimensional structure of the
language. Redundancy is built in to aid the programmer.

Rather like that extinct species of schoolteacher who defined his
goal as instilling the three ' Rs' of reading, 'riling and 'rithmetic (but
seemingly not spelling) in the minds of his pupils, the programmer is
often concerned with the 'three Ss' of structure, speed and size. The
story of the programmer who wrote a subroutine that was not only
fast and compact but also so well structured that even his team
leader understood it is probably apocryphal: most programs have to
trade off two of the three Ss to achieve the third. The high
redundancy of the 6809 instruction set allows us to write the same
program in many different ways using varied proportions of the
three Ss as circumstances dictate.

The superabandance of 6809 instructions is undoubtedly an aid to
the experienced 6809 programmer who probably gives as much
conscious thought to his choice of instruction as to his choice of
words in a casual conversation in his own native dialect. For a
beginner in the language it presents problems. A set with very few
instructions is easy to learn: for each task there is one instruction
that will do the job so no choices have to be made; the operation
performed by each instruction is seen as clearly distinct from those
of other i nstructions. The many instructions of the 6809 set seem to
defy the'one task- one instruction' classification which makes for easy
learning and use. 1 mentioned earlier that the 6809 set has a three
dimensional structure based on instruction type (the sort of
operation performed), form (in most cases this defines the register
used) and mode (whether registers or memory or both are used and
the way that memory is accessed). 1 then gave an example in which
two instructions of both different type and different mode
performed identical jobs. Clearly, if this sort of boundary crossing
happens often - and it does - then learning the 6809 language and
understanding its finer points only by type, form and mode is going
to be very frustrating.

Tables C. I to C. 1 1 classify the instructions mainly by type. A few
instructions are repeated in more than one group but generally each
instruction has been consigned to a single group. The problem with
this sort of single-entry grouping is that most instructions really
belong to a number of diverse classes. For example, all instructions
which use a specific register could be grouped together. To find if
you can perform an 'Arithmetic Shift Left' on the X register you
would refer to the 'Action on X' table and find that although you
can ABX, LEAX, STX, LOX, PSHS X, etc. you cannot ASLX.

Appendix C: 6809 Instruction Set 1 1 5

You might have found out more quickly by looking at a 'Rotate and

Shift' table which would inform you that ASL can be carried out on
the contents of the A and B registers and on a memory byte but not
on X, Y, U, S, DP, D or PC. A useful table to compose would be one
giving all the methods of jumping to and returning from a
subroutine.

Compiling tables of related instructions for reference during
coding is a sound method of learning what options are available for
performing various tasks. The chances are that if your brain has
gone to work on classifying the instructions to make the tables then
you won't even need to look at the tables when you program - except
to check up on result flags or instruction timings.

Putting the bytes together

Tables C. I to C. I I give only the mnemonic and single-byte 'opcode'
(in some cases a 2-byte opcode is needed and this is given). But 6809
instructions can be anything from I to 5 bytes long and the
assembler mnemonic has often to be followed by one or more

operands defining the registers and/or memory operated on. So
how do you decide what can follow the mnemonic and opcode?

The addressing mode and a pinch of common sense will tell you
exactly how to form the complete instruction.

(I) Inherent The operands are implied by the mnemonic and so the
code is usually just I byte. A few instructions classed as Inherent do
need a second byte giving certain information: CWAI needs an 8-bit
value to AND with the CC register, EXG and TFR need two register
names with their codes in the second byte, and PSH and PUL need
the names of all the registers being pushed or pulled.
(2) Direct Either 2 or 3 bytes. The last byte gives the location within
the page of memory indexed by the DP register. In assembler form
this can be a number less than 256 or a label.
(3) Extended Either 3 or 4 bytes. The last two bytes specify a memory
address. Assemblers will accept either a number less than 65536
($FFFF or less) or a label.
(4) Immediate Operations using 8-bit registers expect a single byte of
immediate data (i.e. a value written as the last byte of the
instruction) and 1 6-bit registers need 16 bits of data. In assembly
language the data could have been given a name by the EQU
directive or have been put in a labelled memory location. In both of

these cases the assembler will accept a label as operand.
(5) Relative Either an 8-bit or 16-bit signed offset to the PC written

1 1 6 6809 Machine Code Programming

as the last I or 2 bytes of the instruction. Assemblers will accept a
label as operand and calculate the offset (and decide whether to use
the Branch or Long Branch form).
(6) Indexed/ Indirect All these modes need a post-byte immediately
following the opcode, so look up Table C. 1 3 for the post-byte. Table
C. 12 gives the operand form which corresponds to the particular
mode and post-byte. The notes to Table C. 12 tell you when any
other bytes are needed. Assemblers will, as always, accept valid
labels in place of addresses and offsets.

Key to the tables

Mnemonic

Action

Time

HNZVC

M
M:M+l

Code

Imm., Dir., Ind.,
Ext.

-and-

I\

V

Acronym of the operation performed (e.g. BGE
is Branch if Greater or Equal).
Description of what the instruction will
cause the processor to do.
Execution of each instruction in system
clock cycles. A 6809 running at 2M Hz uses
up two million cycles every second; each
cycle is 500 ns (nanoseconds). The total
execution time of instructions using the
Indexed/ Indirect modes is the sum of the
cycles given against instruction (Tables C. I
to C. I I) and Indexed form (Table C. 1 2).
Flags affected by operations.
Flag name: state depends on result.
0 always reset to 0.

always set to I .
state undetermined.
flag not affected by operation.

Single byte memory location.
Consecutive memory locations holding a 1 6-bit
value. Pointers point to the high-order byte.
Instruction opcode given as a pair of hexadecimal
digits. May appear under various Addressing
modes.
Immediate, Direct Page, Indexed/ Indirect and
Extended Addressing modes. Other modes are
Inherent and Relative.
Data (bit, byte or double-byte) is moved or
assigned in the direction of the arrow.
Logical AND (see below)
Logical INCLUSIVE OR (see below)

Appendix C: 6809 Instruction Set 1 1 7

Logical EXCLUSIVE-OR (see below)
AN D. OR and EOR operate on corresponding
individual bits only in the following way:

a b a" b avb avb

0 0 0 0 0
0 I 0

0 0 I
0

Ta hie C. /. 8-bit Accumulator Only Operations.

Accumulator A Accumulator B
Mnem Cude Mnem Cude Action Time H '< Z V C

ASLA 48 ASLB 58 C-R,- R.,-0 2 ? N Z V C
ASRA 47 ASRB 57 R,- R,- Ru-C 2 N Z - C
LSLA 48 L.SLB 58 ·c- R,- R.,-0 2 - N Z Y C
LSRA 44 LSRB 54 0- R,- Ru -C 2 - 0 z - c
ROLA 49 ROLB 59 C- R,- Ru-C 2 - N Z Y C
RORA 46 RORB 56 C- R,- R.,-C 2 - N Z - C
DECA 4A DECB SA R-R- 1 2 - N Z V -
INCA 4C INCB SC R-R+I 2 -- N Z Y -
CL.RA 4F CLRB 5F R-0 2 - 0 I 0 0
COMA 43 COMB 53 R-R 2 - N Z 0 I
NEGA 40 NEGB 50 R-R+I 2 ? N Z V C
TSTA 4D TSTB 5D R-R 2 - N Z 0

Notes:
1. R·"'-' R., indicates that all bits are shifted by one place left or right.
2. R is the onc·s complcm\.'nt of R (i.e. R¥SFf).
3. R-R+ I has the same effect as R-0-R.
4. R is either of Accumulator A or B.

1 1 8 6809 Machine Code Programming

Table C.2. 8-bit Memory Only Operations.

Mnem Imm Dir

ASL

(-) (6)

08

Ind Ext
(6+) (7)

68 78

Action

C- M,- Mo-0

H N Z V C

? N Z V C
ASR 07 67 77 M,- M,- Mo-C ? N Z - C
LSL 08 68 78 C-M,-Mo-0 - N Z V C
LSR 04 64 74 0- M,- Mu-C - 0 Z - C
ROL 09 69 79 C-M,- Mo-C - N Z V C
ROR 06 66 76 C- M,- Mo-C - N Z - C
DEC 0A 6A 7A M-M-1 � N Z V -
I 'C oc 6C 7C M-M+ I - N Z V -
CLR OF 6F 7F M-0 - 0 I 0 0
COM 03 63 73 M-M - N Z 0 I
NEG 00 60 70 M - M+ I ? N Z V C
TST OD 60 70 M-M - N Z 0 -

Notes:
I . Sec no1cs to Table C. I .
2 . lns1rucrion t imes (clock cycles) are given a t the column heads.
3 . M is the addressed single byte of memory.

Table C.J. Test and Compare.

Mnem Imm /Jir
(2) (4)

Ind Ext
(4+) (5)

TSTA (Inherent. Code: 40. Time: 2)
TSTB (Inherent. Code: 50. Time: 2)
TST OD 60 70
RITA 85 95 AS 85
BITB CS 05 ES FS
CMPA 8 1 9 1 A l 8 1
CMPB C l D I E l F I
CMPD 1 083 1 093 I 0A3 1 083
CMPU I 1 83 1 1 93 I I A3 1 1 83
CMPX 8C 9C AC BC
CMPY 108C 109C IOAC I 0BC
CMPS I 1 8C I 19C I I AC I I BC

Notes:

Action

A-A
8-8
M - M
A" M
8A M
A- M
8 -M
D-M : M + I
U- M : M + I
X- M : M + I
Y-M : M+ I
S- M: M+ I

H N Z V C

- N Z 0
- N Z 0
- N Z 0
- N Z 0
- N Z 0
? N Z V C
? N Z V C
- N Z v c

- N z V C
- N Z V C
- N Z V C
- N Z V C

I . Basic instruction times (clock cycles) for BITA. 81TB. C M PA and C M P B are
given at the column heads.

2. Add 2 cycles for TST and CM PX in all modes.
3. Add 3 cycles for CM PD, CM PU. CM PY and CM PS in all modes.
4. Only status is affected by these instructions: memory and registers are unchanged.

Appendix C: 6809 Instruction Set 1 1 9

Table C.4. A rithmetic and Logic.

Mnem Imm Dir Ind Ext Action H N Z V C
(2) (4) (4+) (5)

ADCA 89 99 A9 B9 A-A+ M+C H N Z V C
ADCB C9 D9 E9 F9 B-_ B+ M+C H N Z V C
ADDA 8B 9B AB BB A-A+ M H N Z V C
ADDB CB DB EB FB B-B+M H N z V C
ADDO C3 D3 E3 F3 D-D+ M : M + I H N Z V C
SBCA 82 92 A2 B2 A-A- M-C N z V C
SBCB C2 D2 E2 F2 B-B- M-C ? N Z V C
SUBA 80 90 AO BO A-A- M N Z V C
SUBB co DO EO FO B-B- M ? N Z V C
SUBD 83 93 A3 B3 D- D- M :M+ I - N Z V C
ANDA 84 94 A4 B4 A-AA M - N Z O
ANDB C4 D4 E4 F4 B- B " M - N Z O
EORA 88 98 A8 B8 A-AvM - N Z 0
EORB C8 D8 E8 F8 B-BvM - ' Z 0
ORA 8A 9A AA BA A-AvM - N Z 0
ORB CA DA EA FA B- Bv M N Z 0

Notes:
I . Instruction (clock cycles) for 8-bit operations are given a t the column heads.
2 . 1 6-bit operations (A D D D and S U BD) take 2 cycles longer in all modes.

120 6809 Machine Code Programming

Table C.5. Register-Memory Transfer.

Mnem Imm Dir Ind Err Action H N Z V C
(2) (4) (4+) (5)

LOA 86 96 A6 B6 A- M - N Z O
LOB C6 D6 E6 F6 B- M - N Z 0
LDD cc DC EC FC D- M : M+ l - N Z O
LOX 8E 9E AE BE X- M : M + I - N Z O
LOY 108E 1 09E IOAE JOBE Y- M : M + I - N Z O
LOU CE DE EE FE U-M: M+I - N Z 0
LDS IOCE IODE IOE E IOFE S- M:M+I - N Z O
STA 97 A7 B7 M-A Z 0
STB D7 E7 F7 M-B - N Z 0
STD DD ED FD M: M+I-D - N Z O
STX 9F AF BF M : M+ I-X - N Z 0
STY l09 F IOAF IOBF M: M+I-Y - N Z O
STU DF E F FF M : M+I- U - N Z O
STS IODF IOEF IOFF M : M+ I -S N Z 0

Notes:
I. Basic instruction times (clock cycles) for 8-bit 1 ransfcrs (A and 8) arc given at

the column head�.
2. Add I cycle for transfers involving D. X or U in all modes.
J . Add 2 cycles for t ransfers involving Y or S in all modes.

Appendix C: 6809 Instruction Set 1 21

Table C.6. Stack Operations.

Mnem Code Time A ction

PSHS 34 5+

H N Z V C

- - - - -

PSH U 36 5+

l For each byte pushed:

S/ U-S/ U- 1 : (S/ U)- byte. - - - - -

PULS 35 5+ - - - - -

PULU 37 5+

l For each byte pulled:

byte-(S/ U): S/ U-S/ U+ I I - - - - -

Notes:
I . All instructions require a post-byte with the following register-bit

correspondence:

Bit: 7
Register: PC

6 5
U/ S Y

4
X

2
DP B A

0
cc

2. Post-byte set bits result in the corresponding registers being pushed/ pulled.
3. PSHSI PU LS will push pull U when bit 6 is set. PS H U/ PU I . U will push/ pul l

S when bit 6 !S SCI.
4. Higher-bit registers are pushed before lower-bit, lower-bit rcgis1crs arc pu/h•d

before higher-bit.
5. Add I clock cycle to the basic instruction time for each hyf!' (not register)

pushed or pulled.
6. Flags (CC register) are unaffected only if no value is pulled 10 the CC register

during PULS or PULU .

Table C.7. Register Exchange and Transfer.

Mnem Code Time A ction

EXG I E
TFR I F

Notes:

Register 1 - Register 2
Register 1 - Register 2

H N Z V C

I . Both instructions require a post-byte with the high- and low-order hexadecimal
digits giving the codes for registers I and 2 respectively.

2. The register-digit correspondence is:

Digit: 0
Register: D

(1 6-bit regs.)
I 2 3
X Y U

4
s

5
PC

(8-bit regs.)
9 A B

A B CC DP

J. EXG or TFR is illegal between registers of d iffering length.
4. Flags (CC register) arc unaffected only if the CC register is not the destination

register.
5. The effect of codes 6. 7. C. D. E and F is undefined.

1 22 6809 Machine Code Programming

Table C.8. Pointer M anipulation.

Mnem Dir Ind Eri Action

JMP OE (3) 6E (3+) 7E (4) PC- EA
JSR 9D {7) AD (7+) BD (8) Stack -PC

PC-EA
LEAX 30 (4+) X-EA
LEAY 31 (4+) Y-EA
LEAS 32 (4+) S-EA
LEAU 33 (4+) V-EA

Notes:
I. Instruction times (clock cycles) are given in paren1hcses.

H N Z V C

- - Z -
_ _ z _ _

2 . All of these instructions are designed t o deal with poin1crs t o values ra1her than
actual values. Hence the normal meaning given to each addressing mode does
not apply. One /el'('/ of indirenivn is fl'IIIU\WI.

3. EA is Effective Address. This is distinct from the notion of a 16-hit value as
illustrated in the following examples:
(a) LOX 2.Y will load X with the value held in memvrr ar r+2: Y+J but
LEAX 2. Y will load X with the value (address) held in Y and add 2 to that
value.
(b) J M P $89AB (Extended mode) will load the PC with the value (address)
$89AB NOT the value held in memory at $89AB and $89AC.

Appendix C: 6809 Instruction Set 1 23

Table C.9. Program Relative Branching.

Mnen1 Code Condition Mnem Code Condition
N Z V C N Z V C

(a) Simple conditional
BCC 24 - - - 0 BCS 25 - - - 1
BNE 26 - 0 - - BEQ 27 - 1 - -
BVC 28 - - 0 - BYS 29 - - 1 -
BPL 2A 0 - - - BMI 28 I - - -
(b) Umigned conditional
BHI 22 - 0 - 0 BLS 23 {

- - - 1 } - I - -
BHS 24 - - - 0 BLO 25 - - - 1
(c) Signed conditional
BGT 2E

{ �
0 O}- BLE 2F

i - l -- i 0 I - 0 - 1 -
I - 0 -

BGE 2C
{�

- 0 }- BLT 2 D
C

- I
= }- I - - 0

(d) Unconditional
BRA 20 a/lt'G_l'S BRN 2 1 never
(e) Subro111ine
BSR 8D always (q(ter pushing PC to hardware stack)

Notes:
I. Flags (CC register) are unaffected by Branch instructions.
2. The flag states listed arc 1hosc causing the branch. Where more than one

configuration is given. any one of the patterns will cause branching.
3. The mnemonics and codes given are for the 8-bit offset forms of the Branch

instruction. Each has a 1 6-bit Long Branch form with the following differences:
(a) the mnemonic has an 'L' prefix (e.g. LBCC), (b) the code has a $10 pre-byte
(e.g. S I 024).

4. The instruction must be followed by a byte giving a signed value offset (-128 to
+ 127). Long Branches must be followed by a 2-byte signed offset (-32768 to
+32767).

5. A('{ion: If condition true then PC-PC + offset.
6. Time: 8-bit form: 3 clock cycles (Branch or No Branch); 1 6-bit form: 5 cycles (No

Branch). 6 cycles (Branch).
1. Special cases: BSR takes 7 cycles. A special form of LBRA (code $ 1 6) takes 5

cycles. A special form of LBSR (code $ 1 7) takes 9 cycles.
8. BRN (Branch Never) can be used for fine-1Uning in precision timing situations

or to mark a possible branch position during program development.

1 2 4 6809 Machine Code Programming

Table C. /0. I nterrupts.

Mnem Code A ction H N Z V C

CWAI JC CC Register A data: E Flag-I Note I

Stack -PC,U, Y,X,DP,B,A,CC
Wait for interrupt.

SWI J F (Software I nterrupt) - - - - -
E Flag- I
Stack-PC, U, Y ,X,DP ,B,A,CC
F Flag- I : I Flag- I
PC-I nterrupt Subroutine Vector

stored in $FFF A and $FFFB
SWI2 JOJF A s SWI excep1 F and I Flags unaltered - - - - -

and PC-Vector at $FFF4 and $FFF5
SWl3 I I J F As S W I excep1 F and I Flags unaltered - - - - -

and PC-Vector at $FFF2 and $FFF3
SYNC 13 Halt processing until interrupt. - - - - -

/(interrupt disabled (F or I = I) or
interrupt request <J cycles Then
continue processing Else stack
registers and transfer control to
interrupt service routine.

RTI J R Return from I nterrupt. Note 2
CC-Stack
If E Flag = 0 Then PC-Stack

Else A,B,DP,X,Y,U,PC-Stack

Notes:
I. CWA I requires a second (immediate data) byte to be logically ANDed with the

CC register. The purpose of this is to clear either or both of the interrupt flags (F
and I) before suspending operation t o enable interrupts. Status (flags) thus
depends on the result of the AND.

2. Status is restored to that before the interrupt occurred.
3. Time: SWI. SWl2 and SWl3 execute in 19. 20and 20 clock cycles respectively.

RTI takes 6 cycles if only the CC and PC registers have to be restored. 15 cycles if
all registers are to be restored. CWAI and SY C have time specifications of 20
and 2 cycles. respectively. but since both of these instructions wait for external
events the timing is indeterminate.

4. Software interrupts are most often used for setting breakpoints and 'on error'
service routines.

5. CWAI is used to provide an extremely quick response to an expected interrupt.
since the state of the machine (registers) is saved before the interrupt occurs.

6. SYNC is used to synchronise operations to external events. Short pulse
interrupt requests (less than 3 cycles) will simply restart program execution from
the next instruction.

Appendix C: 6809 Instruction Set 1 25

Table C. I I . Program Control and Special Purpose Arithmetic.

Mnem Code A ction Time H N Z v c

NOP 1 2 No Operation 2 - - - - -

ORCC I A CC-CCvdata 3 Note I
ANDC I C CC-CC"data 3 Note I
RTS 39 PC-Stack 5 - - - - -
ABX JA X-X+B (unsigned) 3 - - - - -

DAA 19 A-BCD adjusted A 2 - N Z 0 C
M U L 3 0 D-AXB (unsigned) II - - Z - C
SEX I D D- 16-bit B (A-sign BJ 2 - N Z 0 -

Notes:
I. ORCC and AN DCC require a following byte of immediate data. Status is the

resuh of 1he logical operation.
2. ORCC is used to set flags. AN DCC to clear them.
3. Note the difference between A BX. where B is an unsigned value in the range O to

255, and LEAX B. X where 8 is a signed value in the range -128 to + 1 27.
4. After MU L the C Flag contains the sign of B. This is 10 facilitate rounding up the

high-order result byte in A.
5. RTS may also be effected by PULS PC.
6. DAA is used following arithmetic operations on Binary Coded Decimal values

to correct the result to BCD. Since it uses the Carry and Half-carry flags. it must
be used before any other instructions alter the status.

1 26 6809 Machine Code Programming

Table C. 12. Indexed Addressing Modes - Form and Timing.

Non-indirect Indirect
Type Form Time Form Time

Constant Offset from R
No offset .R 0 [,RJ
5-bit offset p,R defaults to 8-bir
8-bit offset n,R [n,R J 4

1 6-bit nn,R 4 [nn,RJ 7
A ccumu/a10r from R

A offset (8-bit) A.R [A,RJ 4
B offset (8-bit) B.R I [B,RJ 4
D offset (16-bit) D,R 4 [D,R] 7

A wo Increment/ Deuement R
Increment by I ,R+ 2 not allowed
Increment by 2 ,R++ 3 [.R++J 6
Decrement by I ,--R 2 not allowed
Decrement by 2 ,--R 3 [,-- RJ 6

Constant Offset from PC
8-bit offset n,PC I [n,PCJ 4

16-bit offset nn,PC 5 [nn, PC] 8
Extended Indira/

16-bit address use Ext. Mode [nn] 5

Notes:
I . R is any of registers X. Y. U or S.
2. Time gives the number of clock cycles to be added to the basic instruction times

given in Tables C.I 10 C. 1 1 .
3. p i sa 5-bit signed offset (range- 1 6 to+ I 5) encoded in bits4 to 0 of the post-byte.
4. n is an 8-bit signed offset (range - 128 to+ I 27} which must follow the post-byte.
5. nn is a 1 6-bit signed offset (range-32768 to + 32767 which must follow the post

byte.
6. The No offset. 5-bit offset. Accumulator offset and Auto Inc/ Dec forms do not

need data bytes following the post-byte.
7. Since the meaning of the Indirect Auto Inc/ Dec Mode isto indirectly use a table

of 1 6-bit addresses. an increment or decrement by I would be an error in
programming and i s not allowed.

8. The usual assembler forms for the Constant Offset from PC type are
[label. PC R] and label. PC R. The assembler will calculate the offset at assembly
time.

Appendix C: 6809 Instruction Set 1 27

Table C. 13. Indexed Addressing Modes - Post-byte Codes.

(a) Indexing h_,· X. Y, U or S

R: X y u s R: X y u s

O.R 00 20 40 60 - 16, R 10 30 50 70
I.R 01 2 1 4 1 6 1 - 15 .R I I 3 1 5 1 7 1
2.R 02 22 42 62 - 14.R 12 32 52 72
3 ,R 03 23 43 63 - 13.R 1 3 3 3 53 73
4.R 04 24 44 64 - 12,R 1 4 34 54 74
5,R 05 25 45 65 - 11, R 15 35 55 75
6.R 06 26 46 66 - 10, R 16 36 56 76
7.R 07 27 47 67 -9.R 1 7 37 57 77

8.R 08 28 48 68 -8.R 1 8 38 58 78
9,R 09 29 49 69 -7,R 19 39 59 79
10,R OA 2A 4A 6A -6,R IA 3A SA 7A
11. R 08 28 48 68 -5,R 1 8 38 58 78
12.R OC 2C 4C 6C -4,R IC 3C SC 7C
13.R OD 2D 4D 6D -3.R ID 3D 5D 7D
14.R OE 2 E 4E 6E -2.R IE 3E 5 E 7E
15,R OF 2 F 4F 6F - 1 ,R I F 3F SF 7F
,R+ 80 AO CO EO [,R+] not allowed
, R H 8 1 A l C l E l [,RH] 91 B I DI FI
,-R 82 A2 C2 E2 [.- R] not allowed
.-- R 83 A3 C3 E3 [,-- R] 93 83 D3 ' F3
.R 84 A4 C4 E4 [.R] 94 84 D4 F4
B,R 85 AS CS ES [B.R] 95 85 D5 F5
A.R 86 A6 C6 E6 [A,R] 96 86 D6 F6
n,R 88 AS CS ES [n.R] 98 88 D8 F8
nn.R 89 A9 C9 E9 [nn,R] 99 89 D9 F9
D.R 88 AB CB EB [D,R] 98 88 DB FB

{b) Program Counter O.f.fset and Extended Indirect

Four options Four options

n.PC SC AC CC EC [n,PC] 9C BC DC FC
nn,PC 8D AD CD ED [nn,PC] 9D BD DD FD
nn use Ex1ended Mode [nn] 9F BF DF FF

Append ix D

ASCII Control and
Character Codes

ASC I I (American Standard Code for Information Interchange)
control codes ($00 to $ 1 F and $7F) were designed for terminal
control. Most of them have no use within the stand-alone micro. A
few are often used as cursor control codes by character and string
print routines. The character codes ($20 to $7E) are almost always
used for inter-computer communicating and often for file storage on
tape or disk. They are not always used for internal character
representation.

Table D. /. Control code meanings.

$00 N U L Null $ 10 DLE Data Link Escape
$01 SOH Start of Heading $ 11 DC I Direct Control I
$02 STX Start Text $ 12 DC2 Direct Control 2
$03 ETX End Text $ 13 DC3 Direct Control 3
$04 EOT End of Transmission $ 14 DC4 Direct Control 4
$05 ENQ Enquiry $ 1 5 N A K Negative Acknowledge
$06 ACK Acknowledge $ 1 6 SYN Synchronous Idle
$07 BEL Bell $) 7 ETB End Transmission Block
$08 BS Backspace $ 18 CAN Cancel
$09 HT Horizontal Tab $ 19 EM End of Medium
$0A LF Line Feed $ I A S U B Substitute
$0B VT Vertical Tab $ 1B ESC Escape
$0C FF Form Feed $ I C FS Form Separator
$OD CR Carriage Return $ I D GS G roup Separator
$OE so Shift Out $ 1E RS Record Separator
$OF SI Shift I n $ I F us Uni t Separator
$7F DEL Delete $20 SP Space

Appendix D: ASCII Codes 1 29

Tah/e 0.2. ASCII character codes.

L S. Mos/ Jign{/icam hexadecimal digir
digit 2 3 4 6

0 SP 0 @ p p
A Q a q

2 2 B R b
3 # 3 C s C

4 $ 4 D T d
5 % 5 E u u
6 & 6 F V V

7 G w g w
8 8 H X h X

9 9 I y)'

A z
B + K [
C < L \
D M l 111

E > N 11

F 0 0 DEL

Append ix E

Some 6809 Computer
Systems

The following list is just a small sample of the available 6809
systems. Most are designed as business machines or. boards for
industrial control applications. I n the home computer field, only
Tandy/ Radio Shack and Dragon Data have built complete systems
around the 6809, although you can get 6809 add-on boards for other
home/small business computers.

The TRS-80 Color Computer

This computer is built around the MC6809E processor with a clock
speed of 0.89 4 MHz. Other on-board hardware devices include the
MC6883 Synchronous Address Multiplexer, MC68 4 7 Video
Display Generator and two MC682 I P !As. Video display is output
to a normal television and is capable of thirteen different modes
from text with a 32 X 6 4 pixel graphics capability to a 1 92 X 256 dot
graphics without text. Sound can be software generated and output
to a television speaker. Available with either 16K or 32K dynamic
RAM.

Further details can be obtained from most Tandy dealers or from
Tandy's Walsall head office on 0922 6 4 8 18 1.

The Dragon 32 and 64

The Dragon is remarkably similar to the Color Computer and is
available from many high street computer and electrical stores.

If you can't get the details, try Dragon Data on 0792 58065 1.

Appendix E: Some 6809 Computer Systems 1 31

Positron 900 and 9000

The Positron 900 is based on the MC6809 and is built as a single
board requiring the attachment of keyboard terminal. Dynamic
RAM memory is expandable from 6 4 K to 256K and up to 128K of
on-board ROM is supported. The processor unit has four RS232C
serial ports and an I E E E 4 88 interface. Up to seven processor units
and eight disk drives can be networked using the Positron 9300
Network Controller which has its own 6809 processor.

The Positron 9000 Work Station incorporates the 9000/ I Main
Processor Board and the 9000/ 2 Video/ Keyboard. The keyboard is
software decoded for easy user modification. The video output is
View data compatible with 24 rows of 4 0 characters on a 1 4 X 10 dot
matrix. The screen is I K memory mapped or I O K memory mapped
for 24 0 X 24 0 pixel graphics, with mixed text. Video output is to
composite video, direct video or channel 36. The board also has a 0
to 4 kHz tone generator for output to an external speaker.

Further details arc available from Positron Computers on 09252
297 4 1.

SEED System 1 9/64DS5

This is based on a CPU board with a 6809 processor running at 2
MHz, a disk controller and 57K RAM. It has three RS232C serial
interfaces, one parallel interface and one SASI interface for a
Winchester disk add-on.

System I 9 add-on boards include the SCB-69 CPU board with a
6809 processor at 2 MHz, I K of scratchpad RAM and a 10 ms
interrupt real-time clock with signals from months to 0.00 I seconds,
the SEED PTM- 1 board based on the MC68 4 0 timer with three 16-
bit counters and associated control registers, a 256K dynamic RAM
board and several D/ A and A/ D converters.

Details from Strumech Engineering Electronic Developments
Ltd on 05 433 78 I 51 or 4321.

Windrush Micro Systems

Windrush supply a large range of systems and add-on boards
intended mostly for industrial control or as development systems.

The E uro-3X development system features a 2 MHz 68809

1 32 6809 Machine Code Programming

processor, 56K static RAM with battery back-up, two R655 I A
RS232 ports, two R6522 parallel ports, seven 16-bit timers (one
MC68B 4 0 and two R6522A) and a battery backed MM 58 1 67 clock
calendar.

The P R IVAC BT- I 5 1 2 by 4 80 intelligent graphics controller
board has its own 6809 CPU running at 1 . 5 MHz. Text and graphics
can be mixed with 43 lines of 83 characters in a 6 X 10 dot matrix
character cell as default but are capable of being set to 15 different
sizes in four orientations. Four 96 character sets are available. The
board also includes an eight-channel 8-bit A/ D converter for
joystick, tracker ball or mouse control. The board has 6K of
firmware, expandable up to 20K and communicates with the host
board via only 4 bytes on the host memory map.

The GIM IX 6809+ CPU board includes jumper selectable clock
speeds of I, 1.5 or 2 MHz for the 6809 and clock speeds of 2, 3 or 4
for the optional 95 1 1 A or 9512 Arithmetic processor. It also has a
68 4 0 programmable timer and a battery backed 58 1 67 real-time
clock.

Further details about these and many other boards and systems
from Wind rush Micro Systems on 0692 4 05 I 89.

Further Reading

Books

One book like this can only provide you with a glimpse of the
exciting and challenging field of machine code programming. The
key to success in developing your new knowledge lies in hard work
and receptiveness to ideas. The following list of books should
provide you with a lot of the information you need to extend your
programming abilities.

Sinclair, James and Barden are more or less introductory books
but they do contain information about the Dragon and Colar
Computer (and about 6809 programming generally) that I did not
have room for in this book. DeMarco and Leventhal are essential
reading if you want to progress further - both of them give many
useful references. Don't bother getting Knuth unless you are
contemplating doing a course in computer science or are
inordinately fond of mathematics. I have included the very
informative psychology book to remind you that computers are
built, programmed and used by people. Hofstadter and Spencer
Brown will both concentrate and expand your thoughts - read them
together.

Motorola books
MC6809-MC6809£ Microprocessor Pro gramming Manual
Mo10rola Micropro cessor Products Data Manual

Tandy (Radio Shack) books
Co/or Computer Graphics by William Barden Jr.

Cat. No. 62-2076
TRS-80 Co/or Computer Assembly Language Pro gramming

by William Barden, Jr. Cat. o. 62-2077
TRS-80 Co/or Computer Technical Reference Manual

Cat. No. 26-3 1 93

1 34 6809 Machine Code Programming

Brown, R. and R. J . Herrnstein. Psvchology. London: Methuen,
1975.

DeMarco, Tom. Structured Ana(J'Sis and System Spectfication.
New York: Yourdon Inc., 1978.

Hofstadter, Douglas R. Godel, Escher, Bach: an Eternal Golden
Braid. London: Penguin Books, 1980.

James, Mike. Anatom1' of the Dragon. Sigma Technical Press,
1983.

Knuth, Donald E. The Art of Computer Programming, Volume I:
Fundamental Algorithms. Massachusetts: Addison-Wesley, 1973
(2nd edition).

Leventhal, Lance A. 6809 Assembll' Language Programming.
Berkeley: Osborne/ McGraw-Hill, 198 1.

Sinclair, Ian. Introducing Dragon Machine Code. London:
Granada, I 984.

Spencer-Brown, G. Lall'S of' Form. New York: E. P. Dutton, 1979.

Magazines

Reading magazines will keep you up to date with hardware
developments. No magazine, as far as I know, is aimed solely at the
writer of assembly language programs, though some do publish
machine code listings and 'hex dumps' occasionally.

Personal Computer World has been running a series since 1980
called 'PCW S U B S ET'. This publishes three or four machine code
routines submitted by readers in each issue. Give it a try.

ROM

You can get a lot of ideas from the professionally written programs
inside your computer system. Buy a disassembler (or write one) and
find out how your BASIC is written. Just remember. though, that
the software inside your machine is copyright so you can't use it
commercially.

Index of Routines

BASADJ. Adjust number to base. 26
BRKCH K. Check for BREAK key

pressed. 4 1
BUTTON. Check for joystick fire

button press. 56
CDPRNT. Two digit BCD to printed

ASCII decimal digits. 98
CH KEYZ. Check for Z key pressed. 25
CLOCK. On-screen digital clock.97
CRD RST. Reset co-ordinates to origin.

63
DIYAB. 8-bit unsigned binary integer

division. JO
DIVXY. 1 6-bit unsigned binary integer

division. 3 1
GDCLR. Clear graphics window. 63
GDRST. Reset co-ordinates and clear

graphics window, 63
GSTRNG. Process a program

embedded string of graphics
commands. 64

GXMPLP. Graphics suite
demonstration program for the
Dragon. 66

H ICUE. Initialise Dragon interrupt
and 6-bit sound, 94

H ICUT. Cut off Dragon interrupt and
6-bit sound. 95

HIDIVE. Dynamic sound interrupt
routine. 96

HI FI. Dynamic sound main routine. 94
H IJAN. Dynamic sound

demonstration program for the
Dragon. 94

HIMAP. Dynamic sound parameter
read routine. 95

JOYA D. Joystick analog to digital
read, 56

JOYCAB. Single joystick and fire
button read. 55

KEYCHK, Check for defined keys
pressed, 42

LI E. Modal. vectored straight line
draw, 6 1

LINEDO. Draw line from s1ored
variables. 62

UNIT. Calculate line variables from
vector. 6 1

MBADD. Multi-byte binary addition.
28

MBYBY, 8-bit by 16-bit unsigned
binary integer multiplication. 23

MULXY. l6-bi1 unsigned binary
integer multiplication. 32

PADDR. Co-ordinates to absolute
address conversion, 59

PLOT. Modal. vectored plot. 58
PLOTAP. Plot addressed point. 59
RANDOM . 1 6-bit pseudo-random

number generator. 34
SDSTR, Sound string processing

routine. 9 1
SGSTR, Index named sound string, 90
SNSTR. Play named sound string. 90
SOUND. Wave shape sound routine,

88
STCRDS. Set new co-ordinates. 63
STMODE. Set new PLOT mode. 62
S WITCH. Switch Dragon control lines

on or off. 53
SX M PL. Sound demonstration

program for the Dragon. 9 1
TCARET. High resolution text

carriage return. 78
TCHARY. Index user defined

character. 75
TCLEAR. H igh resolution text clear

screen. 78
TCNTRL. High resolution text control

operation select. 77

1 36 6809 Machine Code Programming

TD I SPX, High resolution lext screen
character index, 75, 83

TDOWN, Cursor down, 79
THOME, Cursor home (top left), 78
TLEFT, Cursor left, 79
TNSTR, Index named character string,

82
TPRINT, Modal, high resolution

character print, 74
TR IGHT. Cursor right, 79
TSCROL, Scroll high resolution text

screen, 80

TSTRNG, Character and control code
string handling routine, 8 1

TUP, Cursor up. 79
TVALID, Validate cursor, 79
TWR I TE. Transfer character from user

definable characters to high
resolution text screen, 75

VECADD. Add vector to co-ordinates,
testing against limits, 60

V I DEOM. Video mode selection on the
Dragon, 5 2

V I DEOP, Video page addressing on the
Dragon. 50

Index

accumulator offset addressing. 50
accumulator only inslructions. 1 1 7
accumulators. 1 02
acknowledge signal. 39
address bus. 46. I 00
addressing. 2
addressing modes. 1 1 5
address selcc1ion. 8
analog to digital. 54
AND (b i t logic). 69 . 1 1 6
arithmetic. 28
arithmetic and logic instructions. 1 1 9
arithmetic. special purpose

instructions. 1 25
arrowheads. 1 5
ASC I I . 22. 7 1 4 . 8 1 . 98. 1 28
assembler d i rectives. 1 1 0
assembler fields. 109
assembler operand forms. I 10
as�cmblcrs. 10. 1 09
assembly language. I 0
assumptions. 9
auto-increment addressing. 53

bank account. 2
bank switchi ng. 47
BAS IC entry of machine code. 1 0
B A S I C variables. 4
BCD (Binary Coded Decimal). 97 8
BCD to ASC I I decimal conversion.

98
binary chop. 7
binary decision. 7. 1 6. 54
binary digits. 4
binary tree. I 0
bit inversion. 57. 60. 65. 74
hit merging. 52. 56
bits. 4
bit testing. 60
bit uses. X

bn1nch instructions. 1 23
bytes.4

carry flag. 105
cassette motor control. 44. 53
clear screen. 63 . 7X
clock cycles . .14. 92 . I O I . 1 1 6
clock signals. 44
coding. 22
colour selection. 52
comments. 24. I 09
computer system components. 99
condition codes register. 1 04
constants. 25
constructs. 1 6
control bits. I 05
control codes. 77
control register. 36 40. 45
CPU (Central Processing U nit) . 1 00
cursor movement. 77 XO

DAA (Decimal Adjust A). 9X. 1 06
DASM (assembler) labels. 1 00
data. 25. 1 1 1
data bus. 100
data din:c1ion rcgistn. 37 X
debugging. 22
delay. 66. 88 9
delimiter. I 09
digital clock. 97
digital to analog. 55. 85 6. 93
d i rect addressing. 7
d i rect page. X
direct page addressing. 104
d irect (page) addressing mode. 1 1 5
d i rect page register. 1 04
division. 29
documentation. 1 2. 24
dollar sign. 5. 1 1 1
dot matrix. 74

1 38 Index

DO WH I LE construct. 1 8
Dragon computer. I JO
driver program. 47
dynamic R A M . 45
dynamic sound. 92

E dock �ignal. 44
END (•1�scmblc rd i rcctivc). 1 1 0
end-or-table. 90. 92
entire state flag. 106
EOR (bit logic). 69. 1 1 7
EQU (assembler d i rective). 26. 88. 1 10.

1 1 5
error conditions. 8 1
execution time. 24
extended addressing. 4 7
c:xtcndcd addressing mode. 1 1 5

fallthrough. 1 8. 25
FCB (assembler d i rective). SJ. 1 1 0
FCC (assembler directive). 8 1 . 1 1 0
FD8 (.1sscmblcr d i rcctivc). 60. I I0
fire-button. 42. 54
FI RQ (Fust Interrupt Request). 39. 1 07
F I R Q Interrupt mask. 1 06
nags. 22. 1 05
flowcharts. 1 5. 1 9
flow chart standards. I 5
now chart symbols. 1 5
flow chart symbols. 1 5
frame sync. 9 2
frequency. 84. 88. 92. 97

G I M I X. 47. 1 32
graphics. 57. 70
graphics string. 64

half-carry flag. 1 05
hand-assembly. 1 0
handshaking. 38
hardware. 36. 49. 84. 99
hardware st:.ick pointer. 1 03
harmonics. 87
hash sign. I 1 1
header informa1ion. 24
hexadecimal. 5
hcxdump. 7 1 . 88. 93
h igh resolution text. 69
high resolution video. 4 7
hori1nntal sync. 92

mmediatc addressing. 26
mmcd i.itc addressing mode. 1 1 5
ndcxcd addre:-.sing. 25

indexed addressing mode. 1 16. 1 26
index registers. !OJ
indi rect addressing. J
indirect addressing mode. t 16 . 1 26
inherent addressing mode. 1 1 5
input /output devices. 36. 99. 1 08
instruction SCI. 1 1 3
instruction set d i mensions. 1 1 3
instruction set redundancy. 1 1 3
interrupt. 27. 38. 92. 97. 1 06
interrupt instruclions. 1 24
interrupt re4uest. 1 06
interrupt vectors. 1 06
i nverse characters. 74
I RQ interrupt mask. 1 05
I R Q (interrupt rc4uest). 39. 92. 97. 107
iteration. 1 6

joystick. 4 1 . 42. 54
jump table. 77

keyboard. 40
kcypress. 40. 42

line draw. 6 1
lists. 1 0

machine code. 10. 1 2. I 09
machine code monitor. 23. 74
Magical Number Seven. I. 1 4
ma nagcmcnt. 2 2
mask. 52. 96
memory. 99
memory-mapped devices. 37
memory-mapped video. 99
memory reference I 0. 1 0 1
mental tricks. I
M illcr. G. A .. psychologist.
mnemonic. 1 0. 1 09. 1 67
modulcs.47
modulus arit hmetic. 34
moving graphics. 65. 74
M UL. 29
multi-byte addi1ion. 28
muhiplication. 29
mult iplication by shift and add. 34
M UX. a nalog multiplexer. 44

rrnmcd strings. 8 1 . 90
negutivc flag. 1 05
NM I (Non-Maskablc Interrupt). 1 06

object code. I 0
oh]ect program. 1 09

octal. 5. 1 1 1
ON / OFF. 6. 40
opcode. 1 1 5
operand. 109. 1 1 5
optimisation. 19 . 67. 83
OR (bit logic). 74. 1 1 6
ORG (assembler d irective). 1 10
ovcrnow nag. 105

page numbers. I 04
pages. 8
parallel I/ 0. 36
parameter. 25. 93
patching in. 97
PCW S U B SET. 34. I J4
per-cent sign. 1 1 1
peripheral register. 3 7
peripherals. 38 . 99
P IA. 36. 53 . 85
PIA Control l ines. 38. 53
P I A functions. 42 3
P I A init ial isation. 37
place value. 4
PLAY (BASIC function). 97
plot point. 58
pointer manipulation instructions. 1 22
pointers. 1 03
ports.99. 1 0 1
Positron 900. I O I . 1 3 1
post-bytes. 1 2 1 . 1 27
PR INT AT. 76
print high resolution character. 74
procedure. 22
processor. 99. 1 1 3
program address. 1 03
program control instructions. 1 25
program counter. 1 04
program counter offset addressi ng.

1 04. 1 1 1
program now. 1 3. 1 5
programming. 2

Q clock signal. 44

R �: (Random Access Memory). 26.

random number generator. J4
random numbers. JJ
read-instruction sequence. 104
ready signal. 39. I 07
refresh. 45
regis1er exchange and t ra nsfcr

instructions. 1 2 1

Index 1 39

register-memory transfer instructions. 1 20
registers. 100
register set. I 02
relative addressing mode. 1 1 5
R EPEAT I F construct. 1 7
R EPEAT UNTI L construct. 1 7
reserved area. 26
RESET. 106
R M B (assembler d i rective). 27. 60. 1 1 0
ROM (Read Only Memory). 26. 49. 99.

I J4
RT! (Return from Interrupt). 96. 1 06

SAM registers. 46
SAM (Synchronous Address

Mul t iplexer). 44. 49
screen memory. 99
scrolling. 80
SEED System 1 9. I O I . I J 1
selection. 1 6
separator. 98
sequence. 16
serial 1 / 0. 36
signed offset. 28. l 1 5
sign nag see negative nag
sine wave. 86
sound enable. 44. 53. 90
sound generation. 84
sound select. 44. 53. 84
sound sources. 84
sound strings. 89
source p rogram. 10. 1 09
square wave. 87. 93
stack. 27 . 103
stack operation instructions. 1 2 1
stack space. 27. 1 08
string transfer. 29
structure. 1 3. 58
structure chart. 14
structured design. 1 2
structured information. 1 0
structure. palhological. 1 6. 1 8
structure tree. 1 3. 1 4
stubs. 23
subroutine call instructions. 58
successive approximation. 55. 56
SWI (Software I nterrupt). 106
switch. 53
switch rcgis1er. 48
synchronisation. l 01
system clock. I O I
system control devices. J6. / O J
system parameters. 26
system variables. 26

1 40 Index

telephone numbers. I
1cnnina1or byte. 77. 81. 88
terminator word. 81. 90. 95
test and compare instructions. 1 18
test data. 22
testing. 22
text strings_ 8 1
.. three S's" of structure. speed and size.

1 14
TIM E R (BASIC function). 27. 92.

97. 108
t iming s ignals. 44. I O I
top-down process. I J. 22
transparent action. 45
T RS-80 Color Computer. 1 30

user-definable characters. 69. 7 1
user stack pointer. 104

variable data. 26
variable storage. 60. 81
variable voltage. 55. 85
VDG (Video Display Generator). 45.

49. 65. 69

vector. 26. 58. 60
vcc10r addi1ion. 60
video mode. 5 1
video page. 50
video-RAM. 99
voltage. +5 volts. 6. 40. 85
volume. 86. 88. 92

wait. 95
waves. 86
wave-shape table. 88
wcathcrhousc effect. 47
window. 26. 58. 65
Wind rush Micro Systems. l JI
workspace. 27

Z80. 101. 11.l
,cro Oag. 105

6502. 1 1 3
6809 . .l. 28. 36. 44. IOI. 1 13
6820 6821. 36
688.1. 36

MACHINE CODE - POWERFUL • • • EFFECTIVE • . •
ATTAINABLE!

At the heart of the Dragon, TRS-80 Color Computer and
other computer systems, the 6809 microprocessor
performs up to a million operations every second. The
speed of interpreted BASIC, however, i� ct.Jasured in
mere hundreds of actions per second. Machine code is
the only way that you, the programmer, can harness the
full power of the machine-for really fast games, accurate
timing to thousandths of a second and total control of all
functions.

This book introduces you to 6809 machine code, the
professional programming methods that will save you
time and frustration, and tells you how to take command
of the support chips dealing with sound, graphics,
keyboard and other input/output functions. Many
essential routines are given with explanatory
documentation to show the 6809 in action. Perhaps most
importantly for Dragon owners, the software is provided
to put text on a high resolution screen with a fully re
definable character set.

The Author
David Barrow is well-known to machine code enthusiasts
as a prolific contributor to, and later presenter of, the
machine code series PON SUB SET in Personal Computer
World. He is the co-author, with Alan Tooti l l , of ZBO
Machine Code For Humans and 650'2 Machine Code For
Humans.

Front cover illustration by Angus McK'oe

GRANADA PUBLISHING
Printed in Great Britain 0246125322 £7.95 net

�
70

()
�

3

"
%
-

z
ffl

8
C
ffl

.,,
B

	1
	lc-n001
	lc-n002
	lc-n003
	lc-n004
	lc-n005
	lc-n007
	lc-n008
	lc-p001
	lc-p002
	lc-p003
	lc-p004
	lc-p005
	lc-p006
	lc-p007
	lc-p008
	lc-p009
	lc-p010
	lc-p011
	lc-p012
	lc-p013
	lc-p014
	lc-p015
	lc-p016
	lc-p017
	lc-p018
	lc-p019
	lc-p020
	lc-p021
	lc-p022
	lc-p023
	lc-p024
	lc-p025
	lc-p026
	lc-p027
	lc-p028
	lc-p029
	lc-p030
	lc-p031
	lc-p032
	lc-p033
	lc-p034
	lc-p035
	lc-p036
	lc-p037
	lc-p038
	lc-p039
	lc-p040
	lc-p041
	lc-p042
	lc-p043
	lc-p044
	lc-p045
	lc-p046
	lc-p047
	lc-p048
	lc-p049
	lc-p050
	lc-p051
	lc-p052
	lc-p053
	lc-p054
	lc-p055
	lc-p056
	lc-p057
	lc-p058
	lc-p059
	lc-p060
	lc-p061
	lc-p062
	lc-p063
	lc-p064
	lc-p065
	lc-p066
	lc-p067
	lc-p068
	lc-p069
	lc-p070
	lc-p071
	lc-p072
	lc-p073
	lc-p074
	lc-p075
	lc-p076
	lc-p077
	lc-p078
	lc-p079
	lc-p080
	lc-p081
	lc-p082
	lc-p083
	lc-p084
	lc-p085
	lc-p086
	lc-p087
	lc-p088
	lc-p089
	lc-p090
	lc-p091
	lc-p092
	lc-p093
	lc-p094
	lc-p095
	lc-p096
	lc-p097
	lc-p098
	lc-p099
	lc-p100
	lc-p101
	lc-p102
	lc-p103
	lc-p104
	lc-p105
	lc-p106
	lc-p107
	lc-p108
	lc-p109
	lc-p110
	lc-p111
	lc-p112
	lc-p113
	lc-p114
	lc-p115
	lc-p116
	lc-p117
	lc-p118
	lc-p119
	lc-p120
	lc-p121
	lc-p122
	lc-p123
	lc-p124
	lc-p125
	lc-p126
	lc-p127
	lc-p128
	lc-p129
	lc-p130
	lc-p131
	lc-p132
	lc-p133
	lc-p134
	lc-p135
	lc-p136
	lc-p137
	lc-p138
	lc-p139
	lc-p140
	z

