
THE RAINBOW June 1991 PAGE 40

A guide for the assembly-language programmer on the move

OS-9 Assembly Language
by Jeff Mikel

After several years of programming with Radio Shack's EDTASM+ assembler. I finally
got OS-9 Level II and the OS-9 Level II Development System. This gave me access to
all those things I dreamed of doing — editing files larger than 32K. editing and
assembling large programs in memory, and easy disk, printer and keyboard I/O.

But moving from EDTASM+ to OS-9 was not automatic. I had a great deal to learn about
OS-9 assembly-language programming. The OS-9 environment is an assembly-language
programmer's dream. But with all the extra capability comes a set of design rules
that must be followed if your programs are to perform properly. This is a small price
to pay to reap the benefits of conditional assembly, macros, very large source files,
and even local and global variables. If there is a high-level assembly language, the
OS-9 Level II Development System has it.

Learning the new software packages was challenging since a lot of the necessary
information is hidden in the manuals. It took a lot of manual searching and program
writing before I found the information I needed.

This article covers the basics you need to know, but can't seem to find. First, I
cover the assembler and linker of the Development System. Then, I discuss how to write
new OS-9 commands. Finally, we'll take a brief look at the techniques for writing
subroutines for BASIC09.

Throughout this article, I assume you are familiar with the CoCo's 6809 instruction set
and that you have written enough assembly-language code to be comfortable with it. I do
not attempt to teach the hows and whys of assembly-language programming. Rather, I
explain how to write source code for the Relocating Macro Assembler or RMA. I also
assume you understand enough about OS-9 to know how and when to change directories,
specify pathlists and perform the other necessary functions without being told.

If you do not have much OS-9 experience, you should first get some background with
BASIC09, or some other high-level language, to familiarize yourself with OS-9 operation.
However, if you have used EDTASM+, or other packages under Disk BASIC, and are familiar
with OS-9, you are primed and ready to forge ahead to OS-9 and the RMA package. And, if
you are already familiar with the asm assembler, you can probably skim this article and
study only the parts that relate exclusively to the RMA.

Building a Working Disk

Before assembling any programs, first set up a working disk with the necessary
commands and enough space to hold your source files. Do not use the original Development
System disks — put write protect tabs on them and keep them in a safe place.

Your working disk should have, at the very least, the files rma and rlink in the CMDS
directory. If you plan to use scred an excellent text editor for assembly-language
programming, make sure it is also in the CMDS directory, scred needs the file termset
in /dd/SYS, so make sure that file is also available.

I recommend the sys.l file be on your working disk. This file can be used by the linker
for resolving the system-wide symbolic names and is faster than the Level I assembler's
solution of including the statement use os9defs in each of your source files, sys.l is
found in the LIB directory on your master disk. I keep my copy of sys.l in the root
directory to save keystrokes.

If you have 512K, you definitely want to use the RAM disk included with the Development
System during the editing and assembly process. There are three sizes from which to choose.
The 96K version is adequate for my assembly-language needs. The necessary modules for using
the RAM disk are in the MODULES directory on your Development System disk.

A quick way to start using the RAM disk is to load it from your Development System disk
each time you boot your system. The RAM disk comes in two parts: A device driver and a
device descriptor. Both must be in memory for the RAM disk to work. To save memory, you
should first merge the driver module with the device descriptor you want. For example,

THE RAINBOW June 1991 PAGE 41

to create a 128K RAM disk, load attr if it is not already in memory. Then, put your
(backup) Development System disk into /d0 and enter

 chd /d0/modules
 merge ram.dr r0_128k.dd >/d0/ram disk
 attr /d0/ramdisk e pe

From now on. you can insert the working disk into drive /d0 and enter

 load /d0/ramdisk
 iniz /r0

Now device /r0 functions like one of your disk drives, except it is much faster.
Although this method is easy, it removes 8K from the OS-9 system memory, which could
severely limit the number of active processes or devices at one time.

The best way to add the RAM disk to your system is to create a new boot disk with the
device driver and device descriptor included in the os9boot file. You can also configure
the RAM disk as device /dd instead of /r0 in this way. I like this method very much.
My system boots with /dd as a 96K RAM disk. After booting I use a procedure file to set
up my RAM disk with the required files. The following is a sample procedure file for a
single-drive system:

 load makdir
 chx /d0/cmds
 load scred
 load rma
 load rlink
 -x
 makdir /dd/CMDS
 makdir /dd/SYS
 unlink makdir
 copy /d0/sys/termset /dd/sys/termset
 copy /d0/lib/sys.l /dd/sys.l

With all the required files either in memory or on the RAM disk, the assembler and
linker really fly.

Now that you have a working disk, it's time to explore the realm of OS-9 assembly language.

A Quick Review

Take a quick look at Listing 1. a short program that prints "Have a nice day." on the
screen. Those of you who have attempted to write similar programs with EDTASM+ will
appreciate the brevity of this program. I will quickly cover its operation.

The first line, which starts with psect, gives the assembler some information about
the program. (I'll discuss that in more detail later.) The program begins at Start,
where Register X is set to point to the output string. Next. Register Y is loaded
with the length of the string in bytes. Register A is then loaded with 1. which is
the path number for the standard output device (usually the screen). The os9 I$WritLn
system call writes the string to the screen and F$Exit returns control to the Shell.
Since Register B was cleared earlier, the Shell assumes no errors occurred and —
voila! — a successful program.

The Assembler Directives

The assembler has a set of statements called program section directives that direct
it (hence the name) in its production of executable code. These directives are:
psect, csect and vsect. Of the three, the only required directive in any program is
psect. Every program must have a psect.

The psect, or program section directive, marks the beginning of a code section.
The assembler and the linker use the information given in the psect directive in
building the final OS-9 module. Proper syntax for psect is

 psect name, typelang, attrev,
 edition, stacksize, entry

For Level I asm users, the psect directive takes the place of the mod directive.
Each source file should have only one psect directive, but multiple psects
(from multiple files) can be connected with the linker. This enables you to build
a library of common routines, debug them once and use them forever.

The following is a description of each psect parameter:

 name — the name for the psect. The psect name is arbitrary, but it is good
practice to use a name that describes the purpose or function of the routines in
the psect. Names can be as long as 20 characters. The assembler does not use this
name, but the linker does when it reports errors. It is advisable to give each psect
a unique name.

 typelang — this specified value becomes the type/language byte for the final
memory module. The four high-order bits define the module type and the four low-order
bits specify the language type. Type and language codes are specified on Page 3-4 of
the Technical Reference section in your OS-9 Level II manual.

 attrev — this value becomes the attributes/revision byte for the final module.
The four high-order bits specify the module's attributes. Currently, only Bit 7 is
defined. When set. Bit 7 indicates the module is reentrant and can therefore be shared.
The four low-order bits specify the module's revision number. edition — this becomes
the edition byte in the module header.

 stacksize — this is an estimation as to how much memory the routines in this
psect need for the stack. Be generous; remember that OS-9 uses the stack even if your
program does not.

 entry — the entry address of your program: the address to which OS-9 transfers
control when your program is executed.

With reference to Listing 1, the program section name is first, the module's type/lang-
uage byte is $11 (a 6809 object-code program module), and the attributes/revision byte
is $81 (a reentrant program with Revision 1). The program is a first edition with 100
bytes reserved for stack space. The program begins at Start.

Direct your attention to the sample program header in Listing 2. This listing demon-
strates the use of symbolic names in the psect directive. The only differences be-
tween this psect and the one declared in Listing 1 are the name and stack size re-
quirements. However, the real purpose of Listing 2 is to demonstrate the other two
program section directives: vsect and csect.

The vsect, or variable section directive, tells the assembler to begin a variable
storage section. There are two types of vsects: Direct-page and non direct-page.
If you specify a direct-page, the linker assigns the variables that are defined
within the vsect to the 6809's direct page (the page referenced in conjunction
with the 6809's DP register). The first vsect in Listing 2 is a direct-page
vsect, since vsect dp is used. Thus, the count and path variables are located
in the direct page.

Variables stored in the direct page are more quickly accessed and require less
program code than those not stored in the direct page. So, store your often-used
variables there. Keep in mind there are only 256 bytes in the direct page, so you
may not be able to employ the direct page for all the variables you are using.

The IObuffer and filename variables are not located in the direct page. These variables
should not be accessed through the same procedure to which you are accustomed with EDT-
ASM+ since neither you nor the assembler know the exact location of these variables at
run time. Basically, don't use extended addressing. Use an index register and reference
these variables as offsets from the base address.

Notice that the variables in the second vsect are large — large enough to use all the
direct-page space had they been put there.

THE RAINBOW June 1991 PAGE 42

It is advantageous to keep these large variables off the direct page since it is prime
real estate. You are not limited to just two vsects per psect — you can have as many
vsects as necessary. It is advisable, but not absolutely required, that you put all
similar variables in a single vsect at the beginning of the program.

csect is the next program directive. It is similar to vsect, except it does not allocate
any space. A csect, or constant section directive, is merely a convenient way of assigning
successive values to a list of labels and is similar to the EQU directive. In Listing 2.
fn.name has the value zero and fn.ext equals eight. You can also have more than one csect
in a psect. If you specify an expression after the csect. this value becomes the base
address for the section. In the second csect. first equals 10, second equals 11 and last
equals 12.

Don't put your variables in a csect. even though one of the sample programs in the RMA
manual does. Always use a vsect so the linker can properly assign values to the symbolic
names. Remember that csect is used to define constants only. just like the EQU and SET
directives. For example,

 False EQU 0
 True EQU 1

is the same as

 csect
 False RMB 1
 True RMB 1
 ends

With this in mind, the constants defined within a csect should normally be used with
immediate addressing. For example, you can use the following source code with
constants:

 LDA #True
 CMPA #True

The Four Golden Rules

When writing assembly-language programs for OS-9, keep in mind that you are writing
for a multiuser, multitasking environment. This means your program does not have the
degree of control you are used to with EDTASM+. The operating system determines where
in memory your program runs and where its data storage area is. Also, the operating
system must be free to interrupt your program and pause it so that the other active
tasks receive their time, too. Unless your program has timing-critical code, leave
the interrupts unmasked.

For all of this to work smoothly you must follow a few simple rules. First, you must
write position-independent code. Your program must be able to execute from any
position in the microprocessor's 64K address space. The only way to ensure this is
to avoid using absolute addressing. This means that when you need to access strings,
variables or constants in your program, you must specify them as an offset from the
program counter (PC) register if they are in a psect or as an offset from Register U
if they are in vsect and not as an absolute address. That is. instead of using either

 ldy #name
 jmp label

use

 leay name,pcr
 bra label

This is called position independent code and is a requirement in OS-9. The assembler
takes care of the calculations for you. so the process is painless and soon becomes
second nature.

Second, your program should never modify any memory outside its variable space. Since
OS-9 allocates memory for each process at run time, your program might overwrite itself,
or some other important data, if it is allowed contact with memory that does not belong
to it. Remember, your programs are no longer running alone. Multiple copies of your
program can be running at the same time. Therefore, your program must never modify itself.

Third, when your program begins, OS-9 gives it some important data located in the 6809's
registers. With this data, a program knows where its variable storage is and whether or
not any parameters have been passed to it. Some programs don't need to know this
information, but you should make sure you save it, or use it. before loading the registers
with other data.

Fourth, never directly access the CoCo's hardware. You should always use a system call to
handle the desired function. This ensures your program runs on OS-9 systems other than
your own. OS-9 has built-in routines for keyboard, screen, printer, and disk I/O, so it is
a waste of time to write your own.

Interfacing with the Shell

Now. the $20.000 question: If you don't know in advance where your variable storage is,
how do you access it? Fortunately. OS-9 provides enough data, via the registers, to
provide a simple solution.

When OS-9 forks a process (which is what your completed program is when it executes),
it puts the following data into the registers:

 B — contains the number of characters in the parameter list, including the
 carriage return at the end.

 X — points to the first byte of the parameter list.

 Y — points to the top of the process' memory area, which is the end of the
 parameter list.

 U — points to the bottom of the memory area, which is the first byte of the
 direct page.

 DP — contains the most significant byte of the direct-page address. Never
 change the direct-page register.

Terminate your programs by using the F$Exit call. The value in Register B at the time
of the F$Exit call is returned to the Shell as an error number. A value of zero indicates
no errors. Make sure to load Register B with the proper value before calling F$Exit.

Since the direct-page register is set for you, any variables in the direct page can be
accessed with direct addressing or as offsets from Register U. as long as it is not
changed. Using the variables from Listing 2, you could use

 lda path
 stx count

Variables that are off the direct page should always be referenced as offsets from
Register U to ensure your programs are using the memory space OS-9 has assigned to
them. To ensure this process, use

 leax IObuff,u
 leay filename,u

instead of

 ldx #IObuff
 Idy #filename

Following the proper rules becomes automatic after a short while. Pay particular at-
tention to the sample programs, since they demonstrate important principles.

Building An Executable Program

Program development with the Development System is a two-step process. First, the
assembler gathers your source code into a Relocatable Object File (ROF). Then,
the linker processes one or more ROFs. adds the proper module header and CRC bytes,
and creates the final product. Although the two-step process for generating an
executable module may seem tedious, it is this very process that makes RMA so
powerful.

The power of this method comes from the fact that any symbolic name not defined in
a psect is passed to the linker, which attempts to resolve it based on information
from other psects. Thus, program code in one psect can use symbolic names defined
in another psect.

THE RAINBOW June 1991 PAGE 44

To make this process easier to implement, the assembler gives you the ability to
declare your symbolic names as either local or global names. Local names are defined
only in their psect and are unknown to other psects. In fact, other psects may use
the same names for different values without any "multiply defined symbol" conflicts.

Global symbols are made available to all psects. but they are referred to only if the
psect has not also defined the same name. If one psect defines the symbol buffer as a
global symbol and a second defines buffer as a local symbol, the symbol in the second
psect is local and different from the global symbol of the same name.

To make a symbol global, include a colon (:) after the symbol name when it is defined.
All other symbols are local symbols by default.

When using RMA, it is important to note that the assembler is case-sensitive. Thus,
the labels Buffer, buffer and BUFFER are all different, even though they are spelled
the same. Avoid the temptation of using the same name with different upper- and
lowercase combinations in the same psect. Doing so is asking to become easily confused
when debugging time comes around.

When multiple psects are linked, there must be one. and only one, mainline code segment.
The mainline code segment is that section of code OS-9 transfers control to when the
program begins executing. The psects in listings 1 and 2 are mainline psects. psects
used with the mainline psect should be written as subroutines. They can have their own
vsects, but they should not attempt to define the typelang. attrev. edition or entry
bytes of the module. Make these entries in the psect statement zero or the linker refuses
to link the code sections together.

Using Multiple psects

Direct your attention to the source code in listings 3, 4 and 5. These three psects,
when linked together, form a program that waits for a keypress from the keyboard.
dumps the values of the 6809 registers to the screen, and prints the ASCII value, in
decimal, of the key pressed. Each listing is a separate file and is assembled separately
from the others.

Notice that each psect has a symbol named buffer that labels a non direct-page

 Offset Size Description
 0,s 2 bytes return address — don't change it
 2,s 2 bytes number of parameters passed
 4,s 2 bytes pointer to first parameter
 6,s 2 bytes size, in bytes, of first parameter
 8,s 2 bytes pointer to second parameter
 10,s 2 bytes size, in bytes, of second parameter

 Figure 1: A Sample Data Block

 Type Size Comments
 BOOLEAN 1 byte $FF= true. 0= false
 BYTE 1 byte
 INTEGER 2 bytes if left-most bit set, number is negative
 REAL 5 bytes 8 bit exponent, 31 bit mantissa. 1 sign bit
 STRING varies terminated with $FF if less than max size

 Figure 2: The Five Basic Data Types

variable. These three symbols are all local to their psects and, thus, have different
values.

There are three global symbols in this group of psects: Dec. RegDump and Divide. There
is also only one mainline psect — main. Notice that the other psect directives specify
the typelang, attrev, edition and entry bytes as zero.

Variable names that have been declared as global symbols can be accessed from other
psects simply by using that symbol name in your source code. Keep in mind that the
assembler passes only unresolved references to the linker, so if the code in a psect
defines a symbol with the same name as a global symbol, the global symbol is not used.

To access a global variable from another psect. use one of the following methods. If
the variable is a non direct-page variable, access them in the normal manner:

 leay IObuf,u
 ldx counter,u

If a global direct-page variable is to be accessed, precede the variable name with the
less-than symbol (<):

 lda <Accum
 stx <pointer

RMA is smart enough to know when to use direct addressing for direct-page variables in
its own psect. but symbols defined elsewhere are assumed to be extended (16 bit) addres-
ses. Using the < forces the assembler to generate object code that uses direct addressing.
Again, you can access variables as offsets from Register U, which also works for the
direct-page variables.

Armed with this information, you can build a library of common routines, debug them once,
and then use them repeatedly. Each library routine can declare its own variable space, so
you can "set it and forget it" since the linker automatically allocates enough space when
you link files together. This gives you the ability to write "black box" subroutines that
perform their function without affecting the other parts of your program.

A Sample Assembler Session

Using the source code files in listings 3, 4 and 5 you would make an executable file by
following these steps:

— Use a text editor to create the files demo.a, AsciiConv.a,and RegisterDump.a.

— Generate three ROFs. demo.r, AsciiConv.r, and RegisterDump.r in the following manner:

 rma -o=demo.r demo.a
 rma -o=AsciiConv.r AsciiConv.a
 rma -o=RegisterDump.r RegisterDump.a

— If the file sys.l is in the current data directory, you can use the following command
 to invoke the linker and generate an executable file:

 rlink -l=sys.l -o=demo demo.r AsciiConv.r RegisterDump.r

—If the sys.l file is not in the current data directory, specify the complete pathlist
 after the l option as follows:

 rlink -l = /dd/lib/sys.l -0 = demo demo.r AsciiConv.r RegisterDump.r

THE RAINBOW June 1991 PAGE 45

Now, you should have a file called demo in your current execution directory. Notice
how the file with the mainline psect is specified first in the ROF list for the linker.
Other than that, it doesn't matter in what order you specify the modules, as long as
the mainline section is first.

A quick word on the sys.l file. This file is a library file and is an ROF generated
from the file defs/os9defs.a. You can insert the use /dd/defs/os9defs.a directive in
each of your source code files and have the assembler resolve the OS-9 symbol constants,
which slows the assembly process, or you can have the linker resolve all of the symbols
in one step during the linking process. The second method is faster; the choice is yours.

 OS-9 Level II

 Listing 1: first.a

 * listing 1

 psect first,$11,$81,1,100,Start

 Start leax name,pcr get prompt
 ldy #name.len and its length
 lda #1 get standard output path number
 clrb
 os9 I$WritLn output prompt
 os9 F$Exit return to shell

 name fcc /Have a nice day./
 fcb 13
 name.len equ *-name

 Listing 2: second.a

 * listing 2
 * sample vsects and csects - not executable

 Type equ $10
 Lang equ $01
 Att equ $80
 Rev equ $01
 Edtn equ $1
 Stack equ 2

 psect second,Type+Lang,Att+Rev,Edtn,Stack,Entry

 vsect dp
 count rmb 2
 path rmb 1
 endsect

 vsect
 IOBuffer rmb 256
 filename rmb 11
 endsect

 csect
 fn.name rmb 8
 fn.ext rmb 3
 endsect

 csect 10
 first rmb 1
 second rmb 1
 last rmb 1
 endsect

 Entry code
 etc.
 endsect

 Listing 3: demo.a

 * listing 3

 psect main,$11,$81,1,100,Entry

 vsect
 buffer rmb 2
 endsect

 Entry lbsr RegDump dump registers to screen
 leax prompt,pcr
 ldy #prompt.l
 lda #1
 os9 I$Write
 leax buffer,u get input buffer address
 ldy #1
 lda #1
 os9 I$Read read from std in
 ldb ,x get character read
 clra
 lbsr Dec convert character to decimal ascii
 lda #'= insert '=' at start of string
 sta ,-x
 leay 1,y add one to string length
 lda #1
 os9 I$WritLn write ascii string to screen
 clrb tell shell no errors
 os9 F$Exit
 prompt fcc /Press a key: /
 prompt.l equ *-prompt
 endsect

 Listing 4: AsciiConv.a

 * listing 4

 * Function
 * subroutine Dec converts a 16-bit, unsigned binary number to a 5-digit
 * ASCII string terminated with a linefeed character
 *
 * Usage
 * call from the mainline code by
 *
 * bsr Dec
 *
 * Entry
 * D holds the 16-bit number
 * U points to dp base address
 *
 * Exit
 * X points to the first byte of the ASCII string
 * Y contains the ASCII string length

 psect AsciiConv,0,0,0,32,0

 vsect dp
 Accum rmb 2
 endsect

 vsect
 buffer rmb 6
 endsect

 Dec: pshs u
 leax buffer+5,u move to assumed end of buffer
 ldy #1
 leau Accum,u get address of accumulator
 std ,u save number in accumulator
 lda #13
 sta ,x mark buffer end
 DecLoop ldb #$10 load divisor
 bsr Divide do division
 adda #'0 convert remainder to ASCII
 sta ,-x save in buffer
 leay 1,y
 ldd ,u all done?
 bne DecLoop branch if not
 puls u,pc

 * following subroutine divides an unsigned 16-bit number by a positive 8 bit
 * entry: B = divisor
 * U points to 16-bit number
 * exit: A = remainder
 * U points to result

 Divide: pshs b,x
 ldb ,u get first byte
 clra clear remainder
 bsr DoDiv divide
 stb ,u store result
 ldb 1,u get second byte
 bsr DoDiv divide
 stb 1,u store result
 puls b,x,pc
 DoDiv ldx #8 loop counter - 8
 DivLoop aslb rotate D left
 rola
 cmpa 2,s is A larger than divisor?
 blo TooBig branch if not
 incb
 suba 2,s
 TooBig leax -1,x done all 8 repetitions?
 bne DivLoop branch if not
 rts
 endsect

 Listing 5: RegisterDump.a

 * listing 5
 *
 * OS-9 Register Dump
 * Written 89/07/06 by Jeff Mikel
 *
 * Call using a BSR to RegDump
 *
 * Entry: U points to dp base address
 *
 * Exit: register dump displayed on terminal
 * all registers are preserved

 csect
 regs.cc rmb 1
 regs.a rmb 1
 regs.b rmb 1
 regs.dp rmb 1
 regs.x rmb 2
 regs.y rmb 2
 regs.u rmb 2

 psect RegisterDump,0,0,0,64,0

 vsect
 buffer rmb 80
 endsect

 RegDump: pshs cc,a,b.dp,x,y,u save registers on stack
 leax buffer,u get output buffer address
 leay data,pcr get prompt address
 bsr copy copy first reg name to buffer
 lda regs.cc,s get CC register
 bsr hexout convert
 lda regs.a.s get A
 bsr hexout convert
 lda regs.b,s get B
 bsr hexout convert
 lda regs.dp,s get DP
 bsr hexout convert
 ldd regs.x,s get X
 bsr double convert
 ldd regs.y,s get Y
 bsr double convert
 ldd regs.u,s get U
 bsr double convert
 tfr s,d get S
 addd #return+2 compute S before subroutine call
 bsr double convert
 ldd return,s get return address
 bsr double convert
 exit lda #$0d flag end of buffer
 sta ,x
 leax buffer,u get buffer start
 ldy #80 get max output characters
 lda #1
 os9 I$WritLn display on terminal
 puls cc,a,b,dp,x,y,u,pc restore registers and return

 doulble bsr HexConv convert first byte
 tfr b,a get LSB
 hexout bsr HexConv convert second byte
 lda #$20 insert a space in buffer
 sta ,x+
 copy lda ,y+ copy next prompt
 beq retn
 sta ,x+
 bra copy
 retn rts

 HexConv pshs a
 rept 4 convert MS nibble to ascii
 lsra
 endr
 bsr Digit
 lda ,s get byte again
 anda #$0f convert LS nibble to ascii
 bsr Digit
 puls a,pc

 Digit cmpa #9 in range 0-9?
 bls ToAscii
 adda #7 digit is A-F
 ToAscii adda #$30 make it ascii
 sta ,x+ save in buffer
 rts

 data fcc /cc=/
 fcb 0
 fcc /a=/
 fcb 0
 fcc /b=/
 fcb 0
 fcc /dp=/
 fcb 0
 fcc /x=/
 fcb 0
 fcc /y=/
 fcb 0
 fcc /u=/
 fcb 0
 fcc /s=/
 fcb 0
 fcc /pc=/
 fcb 0
 fcb 0
 endsect

 Listing 6: Addlnteger.a

 * listing 6

 psect AddInteger,$21,$81,1,100,Start

 csect
 return rmb 2 Basic09 return address
 pcount rmb 2 number of parameters passed
 param1 rmb 2 pointer to first parameter
 psize1 rmb 2 size of first parameter
 param2 rmb 2 pointer to second parameter
 psize2 rmb 2 size of second parameter
 param3 rmb 2 pointer to third parameter
 psize3 rmb 2 size of third parameter
 endsect

 Start ldb #100 prepare for possible error
 ldx #3 exactly three parameters passed?
 cmpx pcount,s
 bne error branch if not
 ldx #2 each parameter size of type integer?
 cmpx psize1,s check first parameter
 bne error branch if wrong size
 cmpx psize2,s check second parameter
 bne error branch if wrong size
 cmpx psize3,s check third parameter
 bne error branch if wrong size
 ldd [param1,s] get value of first parameter
 addd [param2,s] add to value of second parameter
 std [param3,s] store as value of third parameter
 clrb signal no errors
 rts
 error orcc #1 set error flag
 rts
 endsect

 Listing 7: ParamDump.a

 * listing 7

 psect ParamDump,$21,$81,1,100,Start

 csect
 buffer rmb 3 I/O buffer
 return rmb 2 Basic09 return address
 pcount rmb 2 number of parameters passed
 param1 rmb 2 pointer to first parameter
 psize1 rmb 2 size of first parameter

 Start leas -return,s set up variable space on stack
 ldb #100 prepare for posiible error
 ldx pcount,s get parameter count
 cmpx #1 exactly one?
 bne error exit with error if not
 leax buffer,s get i/o buffer address
 ldb #32 put space character at end
 stb 2,x
 ldy psize1,s get parameter size
 ldu param1,s get parameter location
 loop pshs y
 lda ,u+ get next byte of parameter
 pshs x
 bsr ConvHex convert to Ascii hex
 puls x
 lda #1 standard output path
 ldy #3 number characters to write
 os9 I$Write
 puls y
 leay -1,y done entire parameter?
 bne loop repeat if not
 ldb #13 else send carriage return to output path
 stb ,x
 os9 I$WritLn
 exit leas return,s restore stack
 orcc #1 indicate error occurred
 rts

 ConvHex pshs a
 rept 4 get four high bits
 lsra
 endr
 bsr Digit convert to Ascii digit
 puls a
 anda #$0F get four low bits
 Digit adda #'0 make Ascii number digit
 cmpa #'9 outside range 0-9?
 bls legal branch if not
 adda #7 else make in range A-F
 legal sta ,x+ save in i/o buffer
 rts
 endsect

 Listing8: Tester.b09

 PROCEDURE Tester
 0000 (* listing 8
 000C (* illustrates how to call the machine-1anguage subroutine
 0046 (* IntAdd that is made from listing six
 006D DIM first,second,sum:INTEGER
 007C first=1991
 0084 second=2001
 008C RUN IntAdd(first,second,sum)
 00A0 PRINT first; " + "; second: " - "; sum

 Listing 9: ParamTest.b09

 PROCEDURE ParamTest
 0000 DIM f:REAL
 0007 DIM i:INTEGER
 000E DIM b:BYTE
 0015 DIM bo:BOOLEAN
 001C DIM S:STRING[20]
 0028
 0029 f=123.45
 0034 i=12345
 003C b=123
 0043 bo=TRUE
 0049 s="This is a string"
 0060
 0061 PRINT "REAL = ";
 0070 RUN ParamDump(f)
 007A PRINT "INTEGER = ";
 0089 RUN ParamDump(i)
 0093 PRINT "BYTE = ";
 00A2 RUN ParamDump(b)
 00AC PRINT "BOOLEAN = ";
 00BB RUN ParamDump(bo)
 00C5 PRINT "STRING = ";
 00D4 RUN ParamDump(s)
 00DE END

To execute the program, type demo at the OS9: prompt. To see how the hardware registers
change, try adding some parameters after demo on the command line. For example, try
demo abcd, demo #16K and demo abcd #16K.

Interfacing with BASIC09

The rules for writing machine-language programs for BASIC09 are somewhat different.
These programs execute as subroutines, not as individual processes, so your program
development is different in several ways. First, the typelang byte in the psect
directive must be set to $21 instead of $11. Second. BASIC09 does not allocate
memory forth subroutine, so your subroutine has severe restrictions on memory usage
for its variables. All communications between your subroutine and your BASIC09 program
are done via the hardware stack (the S register). Finally, and of great importance, your
program must end with an rts instruction, not the F$Exit call. Using F$Exit terminates
BASIC09 as well. Your programs must still be written in position-independent code.
Programs not written in position-independent code do not work with BASIC09.

When BASIC09 calls your machine-language subroutine. Register S points to a data block
your subroutine can access. A sample data block might appear as shown in Figure 1.

The size of the data block varies depending on the number of parameters sent. If no
parameters are sent, the data block contains just the return address and the parameter
count, which would be zero in this case.

THE RAINBOW June 1991 PAGE 46

Each parameter is defined by a pointer to the area used to store the parameter and a
count of how many bytes are required for storage. Therefore, each takes up four bytes
on the stack. Any BASIC09 data type can be sent as a parameter to your subroutine.
The five basic data types, and their sizes, are shown in Figure 2.

The size of a string variable will always be the number of bytes specified in the DIM
statement, not the actual length of the string stored in that section of memory. If
the length of the string is shorter than its dimensioned size, which is 32 bytes
unless specified otherwise. the string is terminated with $FF(255 decimal). You must
find the length manually by searching for this character. Also, make a note not to
store the parameter values directly on the stack rather they are accessed indirectly.
See the sample programs for more clarification.

At the completion of your subroutine, you may return an error code to BASIC09 by
loading Register B with the desired error number and setting the carry flag.
If the carry flag is not set. BASIC09 assumes no errors occurred, regardless of
the contents of Register B.

Your subroutine knows only the size and location of a parameter passed to it.
There is no type checking, so your subroutine is not able to discriminate
between variables of different types that are the same size. For example,
assume the following statements appear in a BASIC09 program:

 DIM name:STRING[5]
 DIM mass:REAL
 DIM state(5):BOOLEAN

Also, assume you have created a machine-language subroutine called Sample.
which can be executed from a BASIC09 program through the following command:

 run Sample(parameter)

You could execute Sample in any of these three ways:

 run Sample(name)
 run Sample(mass)
 run Sample(state)

In each of the above cases, the subroutine Sample will not know which of the
three BASIC09 variables was sent. Naturally, Sample expects a certain variable
type — STRING, REAL or BOOLEAN — but it does not know whether the parameter
sent to it is of the proper type. You needn't worry too much about this
situation since the contents of a variable of the wrong type will, in all
likelihood, look like garbage. Just keep in mind there is no way to
explicitly check a variable's type.

As a matter of fact, the same is true for BASIC09 procedures. If a calling
procedure sends as its argument a REAL (floating-point) number, the procedure
called can declare its parameter as a REAL, a five-element array of type BYTE,
or a five-element array of type BOOLEAN (try it!). No errors are generated
because there is no type checking. Any problems that arise are as a result
of the way the called procedure interprets the data sent to it. Again, this
is not something you have to worry about. You just need to know you cannot
check a parameter's type. Rather, just check for the expected size and for
valid data and all will be fine.

Program Memory Under

As stated earlier, your subroutine will not have any memory reserved for it.
Very few programs can keep track of all the relevant data in the CPU registers,
so you must have some memory somewhere. Where do you get it? There are two ways
to solve this problem.

First, your program can reserve some extra space on the hardware stack. For example,
if your program needs 10 bytes of variable storage space, you can use the instruction

 leas -10,s

at the beginning of the program. Then, at the end, you'll need to "bump" the stack
pointer back to its original position. Exit the subroutine using

 leas 10,s
 rts

This method is simple, but it does not allow your subroutine to have any static
variables, which means all variables are erased when your subroutine ends. They
do not exist except when your subroutine is running and they cannot be saved for
later use by the subroutine.

If you need static variables, meaning that they don't "go away", you can use a
BASIC09 variable as storage. For example, the 10 bytes of storage space used above
could also be stored in an array declared by the BASIC09 program:

 DIM memory(10):BYTE

Then, so that the machine-language subroutine has access to the space occupied by
memory, use

 RUN Sample(memory)

Subroutine Sample can then use the 10 bytes of Variable memory for its variables.
Keep in mind that variables in BASIC09 are local to the procedure that defines
them. Therefore, unless explicitly passed from one procedure to the next, any
static storage space is also local. Also, the static storage space exists only
while the BASIC09 procedure that calls your machine-language subroutine is
running, which makes it dynamic storage just like all other BASIC09 variables.
This is also why the word static is italicized. In the true sense of the word,
BASIC09 does not offer any static variables, so be careful when using this
technique.

It is important to note that when writing BASIC09 subroutines, your program is
not the primary module, thus it should not attempt to adjust the amount of
memory set aside for the process. BASIC09 is in charge. You must work with it.
not around it.

Listing 6 is a simple subroutine that takes three parameters, all integers.
The first two integers are added together and returned via the third parameter.
This program is fairly straightforward and is intended to illustrate how to access
and change the parameters. Notice the use of a csect to keep track of all of the
offsets for accessing the parameters. This way. the offsets are automatically
computed, which saves you time, trouble and prevents mistakes due to incorrect
offsets.

Executable programs for BASIC09 are created in the same manner: assemble and
link them. BASIC09 automatically loads them when they are called, provided the
subroutines are in the current CMDS directory. For example, the instructions to
make an executable module out of Listing 6 are as follows:

— Create the file Addlnteger.a with a text editor.

— Assemble AddInteger.a to a ROF, Addlnteger.r using:
 rma -o=Addlnteqer.r Addlnteqer.a

— Use the linker to generate an executable module using:
 rlink -o=IntAdd Addlnteger.r

— From BASIC09. call the subroutine in the same manner as
 you would any BASIC09 subroutine: run IntAdd(x1, x2, x3)

where x1, x2 and x3 are all integers. Run Listing 8 for a real-life sample of this
routine in operation.

Listing 7 is another simple subroutine. It gives a hexadecimal dump of the contents
of a single parameter. Use this subroutine to examine how different data types look
in the computer's memory. This program uses the stack for all of its variable storage.
Notice again the use of a csect to keep all of the offsets straight. Also notice the
stack pointer is restored to its original value before that final rts instruction.
This is a must, but it is easy to forget. Assemble and link ParamDump.a (Listing 7)
in the same manner as you did for Listing 6 and then run the program in Listing 9
to see the program in action.

Be careful when writing programs for BASIC09. Remember, do not attempt to write to
memory that has not been given to you by a BASIC09 procedure. Be especially careful
if you are rewriting a program for BASIC09 that ran under the Shell. Remember you
do not have access to the direct page — that belongs to BASIC09. Careful planning
prevents any mishaps.

Hopefully, you will find that assembly-language programming under OS-9 is enjoyable,
especially since you do not have to worry about writing disk and keyboard drivers or
Hi-Res graphics routines anymore. Plus, if you follow the rules, your programs
automatically work with all other OS-9 programs. This is all made possible by OS-9's
standard file structure and graphics routines. I believe once you start programming
in assembly language under OS-9, you won't want to go back to Disk BASIC.

I would like to think this article has answered all your OS 9 assembly-language questions,
but I know it hasn't. Please feel free to send me any questions or comments.

Jeff Mikel is a recent graduate of Georgia tech. where he studied electrical and
computer engineering. He has been CoCo programming for nine years. Jeffs other
interests include hi-fi audio, electronics and outdoor photography. He can he
contacted at 3300 Gate Court. Rex. GA 30273. Please include an SASE when
requesting a reply.

