

ii

The Micro Language Lab:

Learning the

e 1983 by Dennis Bathory Kitsz. All rights reserved.
Learning the 6809 audio cassettes e>® 1983 by Dennis Bathory Kitsz.

First Edition
First Printing
Printed in the United States of America.

ISBN 0-916015-00-9

Recording: Steve Lusk, Claire Manfredonia, JoAnn Trottier
Recording Supervision and Tape Editing: Dennis Bathory Kitsz
Wustrations: Jim (Doc) Holliday
Cover, Layout and Design: Dennis Kitsz
Typesetting: Northfield News; !JG Inc.
Additional Design and Preparation: M. J. Rufino Associates, Marie Lapre' Grabon
Sherlock Holmes: Peter Clarke
Dr. Watson: Kalvos Gesamte
Automobile: Steve's Honda
Marge: Claire Manfredonia
Cook: Steve Lusk
Mac: RB2-3
The Drivers: Kalvos Gesamte and JoAnn Trottier
Chocolate Cream Pie: Bev Fischer

Thanks to Jane and Ed Pincus, Chuck Trapp, Harv Pennington, Bruce Stuart, RB 2-
3, Jim and Ingrid Wilson, Tom Bentley, Mary Bocage, Michael Rufino, Matthew and
Gabriel and Beth Ann Betit, Paul Wiener

Notebooks by Mid--'---America Plastics

No portion of this book or tlw:-.1--' Cd~seitcs m,._iy be reproduced 111 whole or 1n pt1rt. by.iny mvdns

mcludinq but not limited tn electronwrhcm1c<1I. 1°/ectrornc. dnd photorepro:luct1ve, or m,w lw
~tored i;l dlH/ 1'll'L·tronic ddtd ~tord~t' c1nd re!rn:'Vdl device except dS spet:1f1ed m the Micro
LiillJUctgl' l"c1b 111.:;,trurlitms ,md lnrnted to the trn1e dnd cqu1pm1.'nt nf the pun·h,1ser, w1thou1 the
vxpres~ wntttm permIss1on of tlw clU!hor cmd Green Mountain M1rro. No softwure license is
grdrned with the purchcise of t!1t1 Micro Lmguc1ge L,,b; >!x,,mp!e progriims cire for pf.>rsond! U$t'
on\1:,-·. Ne1tlwr dw publisher nor llw <1uthor c1ssurne" ~mv respons1b1!1ty or hab1!ity for toss or
d,un.-i~-il,.'S cdu:.-.ed ur <Lll<-'~Jt>d to he CdU'>l'd d1rPc!ly 01 ind1ret tly by ,ipplll'c1t1<-1n of the informr1tion
or ~oftw,Jre pres1..'llll.:'d in the Micro L,mgudgl' Ldb, includin~ but not lnrnted to cmy interruption
of sl!rviu.", !o~s ot busine:,;s or <1nt1cip<11ory profit'>, or consl'quenlld! d,mMge'.; resulting from the
USl', opprc1tion or ,1pphc,1t1nn of sue), 111formd!Km 01 tiultwdH' Also, rn, potent hc.1bihty is
c1s~unwd w1!h re~J)l'{ t to thl...' use of tht' inl,1l'n1<1tion conldinerl fwn-'in. While> every precaution
hc1s bP{:-'I) t,iken 111 th+! pn--'J)<tr<1llon of thi? Micro Lmgudge Lib, the publisher .:ind the c1uthor
,1s~ume no re~pon~1btl1ty for error~ or om1ss1onf.

TRS-80, EDTASM+, Color Computer, Radio Shack, and Color BASIC are trademarks of Tandy
Corporation. Portions of the EDT ASM+ manual and the TRS-80 Technical Reference Manual e Radio
Shack, a division of Tandy Corpordtion. Reprinted by permission.

Cat<1ioging lnforrmtion:
Kitsz, Dennis Bathory. 1949
Learning the 6809. (The Micro Language Lab). viii, 222 pp.
Roxbury, Vermont, Green Mountain Micro: 1983.

Preface
When IBM introduced its Personal Computer with grand
gestures and flourishes, the reviewers and the public
seemed overwhelmed, as if in the presence of royalty. The
PC's 16-bit microprocessor was revered and its BAS1C
praised, while its operating flaws were forgiven. Everyone
seemed to say, "Good show, IBM. Wish we'd thought of
that!"

Tandy Corporation doesn't have that classy IBM image.
When Radio Shack introduced its Color Computer, hardly
anyone noticed. It looked for ali the world like another toy,
said the critics.

Maybe Radio Shack needs to work on its grand gestures
and flourishes a little harder. That toylike Color Computer
appeared more than a year before that IBM PC. So
although the microcomputing press pointed to the PC as
innovative for including line, circle, draw and paint
commands, they had conveniently overlooked that these
same BASIC commands were actually introduced a year
earlier on the Color Computer. And while critics talked
about 16-bit processing power in the IBM machine, they had
conveniently overlooked that both the PC and the Color
Computer contain powerful 16-bit "internal" ·· but 8-bit
"external" -· microprocessors.

As l said, it's an image problem. The Color Computer, at
one-quarter or less the cost of IBM's pricey PC, is the
computin13 bargain of the early 1980s. And the heart of the
bargain lies in the heart of the computer: the 6809
processor.

The 6809 is the Maserati of the 6800 family. It's fast, sleek
and powerful. Almost anything any processor can do, the
6809 can do better. Its software capability is almost
unrivaled in the 8-bit world, and its hardware features are
stable and easily applied. Combined with its cousins -· the
6883 address processor, the 6847 video processor, and the
6821 interface circuit ·· the 6809 creates a simple yet
versatile personal computer. The Color computer is
actually a practical computer application suggested by
Motorola, the 6809's manufacturer.

Leaming the 6f!l::ft iii

iv

"Learning the 6809" was created to fill a knowledge gap.
The 6800 family hasn't produced any real "pop" processors.
The 6502 achieved its glamour in the Apple, the 280 became
known through its presence in so many different TRS-80
computers. The 6809 looks different. It works in powerful
ways which are, unfortunately, alien to users of 6502, 280 or
IBM-PC-style 8088 computing.

Be prepared to work hard; this course isn't an information
giveaway. If you want to find out how to copy Joe's
Lumbergrunters game, forget it; the answer won't be here.
But you will be able to answer the question yourself by
applying the knowledge, tools and techniques I present.
This isn't "Using the 6809 to Learn the Color Computer"-·
it's "Learning the 6809", where the Color Computer is the
practical example. When you finish this series of tapes,
you'll have the tools to explore the programming limits of
the Color Computer, you'll be prepared for programming
other 6809-based machines, and you'll be ready for the
programming concepts and principles of the 68000 family of
full 16-bit processors.

Work hard. With concentrated listening, by working out
each example and by answering every question, these 24
half-hour lessons should take you anywhere from 50 to 100
hours to complete. By then, you'll be speaking 6809. Work,
enjoy, and good luck.

Acknowledgments
It was midway through a long, bleak Vermont winter day
spent with an incomprehensible microprocessor data book
that I conceived of the Micro Language Lab. The data book
made no sense to me. Engineers, I thought, don't speak
English. No, I reconsidered, that's wrong. Engineers speak
eloquently, but in an English far different from the rest of us.
Just like musicians. And typographers. And artists. And
priests.

A book was needed for 6809 users, and Color Computer
owners in particular. I glanced at my library of programming
books, !coking desperately for ideas and inspiration.
Nothing there. I couldn't think like Adam Osborne and I
couldn't write like Bill Barden.

But talking; was something fluid. Ideas that came to me
easily when I was speaking would choke and gasp at my
typing fingertips. Perhaps if l took microphone to hand, I
could close my eyes and imagine a circle of anxious faces
around me -- hanging on every word -- and the eloquence
would begin ...

The project got down to business at the same time Green
Mountain Micro was established as my full-time occupation.
I sat across from my old friend and business partner, RB2-
3 (born with that name -- really!), and presented the idea.
Sure, talk, great, he said, do it.

That was the easy part. The talking came quickly. But with
me a musician and RB an artist, we found ourselves as
babes in the business woods. We needed pretty notebooks,
crates of cassettes, someone to print cassette labels and
stick them on, a good and accurate typesetter, a nearby
printer, recording and editing facilities, a duplicator, and a
hundred sundries.

Everyone went to work. RB, our friends and new employees
JoAnn and Steve, and my wife did the recording in my
music studio. I edited the tapes onto the floor in a two-foot
heap of gutteral stumbles and flubbering stutters. Graphics
designers visiting from New York were ingloriously put to
work on the layout. The typesetting was done very
efficiently by computer connection to California, but on the
trip back, the shiny (and expensive} new strips of typeset

Learning the 60Cf/ "

vi

got lost -- twice! -- in the back rooms at Federal Express.
People (specifically me) got sick, the printer went on
Christmas vacation, and our New York visitors escaped in
the ·dark of the night.

Meanwhile, advertisements placed three months ahead of
time began to appear. Faithful customers had placed orders
for the holidays. We worked round-the-clock, only to have
the last few weeks tumble into an abyss of chaos and
exhaustion. We blew our deadline. As I write this, the final
pieces fit together. The result is Learning the 6809, what I
consider my -- and Green Mountain Micra's -- finest work.

During the craziness of preparation, our combination home
and office took on the look of a factory as dedicated people
traipsed in and out, crossing paths at 3:30 a.m. in 25-below
winter weather. Those deserving my sincerest thanks:
-- RB2-3, for going along with the Micro Language Lab idea
and for leaving me alone and phone-free for a whole month.
-- Jim (the Doctor) Holliday, for completing three hundred
illustrations in a record two weeks; and Lynda, for not
holding those all-nighters against us.
-- Mary Bocage and Michael Rufino, who escaped in the
night leaving it all under control; Marie Lapre Graban for
finding it under control.
-- Chuck Trapp, for controlling those typesetting codes for
three straight weeks and through two lost shipments; Harv
P~nnington, for delivering on the r,romise; Bruce Stuart for
remaining cool; and Paul Wiener for half-duplex.
-- Jim Wilson, Tom Bentley, and M. Dickey Drysdale, all of
whose last-minute cooperation alleviated the typesetting-in
Vermont syndrome.
-- JoAnn T rattier and Steve Lusk, who realized too late the
meaning of "going on salary".
-- and for things many and varied: Claire, Peter Clarke, Deb
Marshall, Charlie Freiberg, Claire, N. Spike Maggio, Gerald
and Susan D'Amico, Cornelius ("the burritos are in")
Murray, Claire, Tom Hardy of Motorola, Greg Keilty, those
first faithful 80 customers, and Claire.

Contents:
1. INTRODUCTION
Introduction; necessary items; what you will learn; what is
assembly language; assembly language is not BASIC;
comparisons and contrasts; speed and flexibility demonstrations;
programs

2. NUMBER SYSTEMS
Introduction; everydav non-decimal systems; binary system;
Sherlock Holmes scenario; powers of 2, bits and the alphabet;
hexadecimal names: counting; ASCII; program 4.

3. THE MICROPROCESSOR
Introduction; names and terminology; ALU; accumulator;
memory; addreses; Program Counter and registers; moving a
message to the screen; sample programs; condition codes;
compares; source code; programs 5-8.

4. MNEMONICS
Introduction and summary; mnemonics; opcodes and operands;
tables. addresses. and offsets; labels; machine language and
BASIC: stacks; subr0t...tines; writing a program; origins and ends;
programs 8-10.

5. EDITOR/ ASSIEMBLER
Introduction and summary; source and object code; opcodes.
operands, and hex code; mnemonics; insert, delete, print,
number, and edit; editor messages; program 11.

6. ADDRESSING MODES - 1
Introduction; jargon; how information is stored in memory;
inherent addressing; register addressing; immediate addressing;
extended addressing, direct addressing; mnemonics and
examples; review.

7. ADDRESSING MODES - 2
Introduction and summary; indexed addressing; zero and
constant offsets; automatic increment ,md decrement;
accumulator offsets; examples and mnemonics; relative
addressing; signed numbers; branching; counting; summary;
program 12.

8. INSTRUCTIONS - 1
Introduction and summary of registers; reading data sheet tables;
instruction operations in binary and hexadecimal; ADD and
SUBtract; logical AND, logical OR, COMplement (logical NOT),
logical Exclusive-OR; shifts and rotates; DECrement and
INCrement; NEGate; program 13.

9. MAKING THINGS HAPPEN - 1
Memory maps; reserved vector and control area; the SAM; write·
only registers; ports; video display generator; high speed; video
paging; summary and examples; programs 14-16.

IO. MAKING THINGS HAPPEN • 2
Summary; machine language in BASIC DAT A statements; source
code equivalents; hand assembly; displaying hexadecimal
numbers; covnerting a number to an ASC!l character; converting
a byte to two 4-bit numbers; summary and examples; program 17.

11. HAND ASSEMBLY- I
Summary; screen display and update; hand assembly of LOA,
LOB, LDY, TFR, STA, STB, of calls and loops, of indexed
operands, and of relat,ve branches.

I

9

17

27

37

45

53

63

75

89

97

vii

viii

12. HAND ASSEMBLY • 2
Continued hand assembly of loads, stores, subroutines and
relative branches; locating labels; running the hand-assembled
program; ASCII conflicts with video display generator; POKEing
as a solution; EDT ASM+ assembly; first half course summary;
programs 18-20.

13. TIMING AND SOUND - 1
Timing in microprocessors; delay loops; Morse Code examples;
interrupts; lookup tables; sound; silence; programs 21-22.

14. TIMING AND SOUND -2
Summary; regularity; producing tones; timing calculations; using
the assembler; programs 23-25.

15. INDEXED INDIRECT AND STRUCTURE • 1
Introduction; locating information indirectly; the Game of Life;
selecting color graphics modes; creating program setup
parameters; scratchpad memory; filling memory; program 26.

16. INDEXED INDIRECT AND STRUCTURE - 2
Using the stack; FCB and FDB pseudo-ops; filling memory using
stack operations; constant-offset indexed; indirect indexed; using
high-resolution color graphics; rotation and branching.

17. INDEXED INDIRECT AND STRUCTURE - 3
Summary; completing the Game of Life; indexed indirect review;
creating commented listings; drawing on the listing; structural
(flow) chart; pseudo-ops; summary; program 27.

18. POSITION INDEPENDENT CODE • 1
Definition of position independence; P.l. ms!ructions; using LEA
instructions; program-counter relative; relative subroutines;
branches, long branches; simple, simple conditional, signed and
unsigned conditional branches; examples; programs 28-29.

19. POSIDON INDEPENDENT CODE • 2
Completion of moving program; also, coverage of miscellaneous
Instructions: ABX, ADC, BIT, DAA, EXG, MUL, NOP, SBC,
SEX, TST: examples; program 29.

20. REPRESENTATION OF NUMBERS
Integers and signs (review); powrs of two; floating point; binary
representation; samples and examples; arithmetic; program 30.

21. USING BASIC
Protecting memory; free memory space; using CLEAR; offsets to
origin using CLOADM; using FCC; high-resolution storage; string
packing and VARPTR; EXEC and USR; transferring information;
warnings; summary, examples; programs 31-33.

22. INTERRUPTS- 1
NM!, lRQ, FIRQ,SWI, SWl2,SWl3; setting and resetting
interrupts; vectors; PIA synchronization; creating a software
clock; RT!; chaining vectors; auto pre-decrement; program 34.

23. INTERRUPTS - 2
SYNC and CWAI: PIA control functions; horizontal and vertical
synchronization; field synchronization; mixing alphanumerics and
graphics; labeling examples; interrupt service routines; creating a
multi-mode display; program 35.

24. COURSE SUMMARY
Debugging; methods; stepping through memory; stepping
through execution; how the programs in this course were
debugged; brief summary of the entire course.

103

113

121

131

139

145

155

165

173

181

191

199

209

•
Hello. I'm Dennis Kitsz, your guide through the
subminiature world of assembly language programming for
the 6809 microprocessor. As you move with me through
these new wftware concepts, I believe you'll constantly
have mixed emotions. You'll likely find it rewarding ...
frustrating ... enlightening ... tedious- as well as very fast
and powerful.

You probably know Color BASIC or Extended Color
BASIC. But please start off learning with a blank slate;
clear BASIC from your mind. Except for a few early
examples, BASIC won't help you to learn 6809 assembly
language. And, if you haven't found out already, you'll be
surprised to discover how slowly BASIC really does work
for you. On the other hand, it is a language that spoils you,
with many convenient features, error messages, and
programming prompts. By contrast, assembly language
will at first seem the height of tedious absurdity. "All that
just to clear the screen?", you will ask.

Don't worry. The feeling is almost universal. I'll admit right
here that the breakthrough in learning assembly language
for me took almost a year. There was no one to guide me.
And because I remember that sense of frustration, I want to
guide you.

If you're a newcomer to 6809, but know other processors,
be prepared for some major differences in concept and
approach. These are different languages we'll be working
with. So whether you're a seasoned programmer or
discovering assembly language for the first time, don't rush
through these tapes; work with each one. Try every
program. I've organized each lesson carefully so I won't
waste your time, but even so, every concept will be
presented and reinforced; most demonstration programs
are provided on tape to save you the typing. So turn off the
TV or radio, send the kids to bed, unhook the telephone,
and pack the spouse off to bowling or a movie. More than
anything ebe, assembly language takes concentration, the
elimination of distractions, and - occasionally -- the
ability to suspend time and reality. Let me say part of that

Learning the

This is the orograllECI learning
section of the Micro Language
Lab. In this col1111n you will
find questions and aft5liler5 about
the accoapanying text in the
forw of quick quest ions. Also,
your regular exercises and
self-tests appear in this
colua,. To Nke best use of
these questions, start at the
top of the page, and use a card
to N!'INl each qlifition but to
cover the an!SIEI". Try to answer
the quntion, and iaediately
co.pare 'fO/'lf' araa- to the
artSNer in the book.

For full use of the Micro
language lab, fol low these steps
for each lesson: First, listen
to the cassette tapes and follON
along. Second, read the te1tt
and att111pt the ilCCOllpinying
questions as you ~o along.
Third, start over and attell!)t
the q!IE'Stions by thetnelves.
Repeat the second and third
steps until you can answer all
the questions Nithout reference
to the text. Then you are ready
for the next leuon.

It NOiU like ttri s:

t I-be Nny steps are involved in
using the Nim, Language Lab
prograaed lemiing?

Three st.eps are involved in the
prograal'd learning.

60Cf/ 1

Requirements

t lllat is the first of the three
steps in the Micro i.MgHglt lib
!lf'OFilB!d learning?

The first step is to lista to
the cassette tapn.

* ht is the Hl'ONI of the
three steps in the Micro
linguap Lab progri!llllld
learning?

RNd the text and try the
questions.

• 11\at _.. the first two Hepa
in the Micro ~ Lib
~ lNming?

1. Listen to th!! cassette t1p11,,

2. Read the text aftd try the
question.

• ht is the Int of the thrN
steps in th!! Nicro Language lib
prograaaed lNfflifll?

The third step is to leem the
....-S to th!! quntiOM tdthout
referring to the tut.

• lltat are the ttne st.1,15 ift
the NitTO Language Lab
prograaaed leil"fting?

!. Listen to the cassette tapes.
2. Read the text aftd try the
questions. 3. Learn the aftSle"!i
to all the questions.

So that's how it goes.

2 Lesson 1

again. Assembly language takes concentration and the
elimination of distractions.

There are also some things you will need for this course.
You can't get along without an Edi tor/ Assembler, so please
don't try. Get one. Radio Shack calls this program
EDTASM+, and it's available in a ROMpack cartridge for
all the Color Computers. It contains an Editor/ Assembler
system, which fll help you learn to use, a rundown of the
6809 instructions, and other pertinent information. All the
sample programs are compatible with EDTASM+.

You will also need a machine-language software monitor.
That's part of the EDTASM+ cartridge, but if as you
progress you feel you need more features, then there are
several excellent commercial programs available.

Blank cassettes are necessary only for saving original
programs as you write them. You won't need blanks with
this package to do any of the demonstration programs since
everything is typed for you. But as you develop software,
you may find that you like what you've done enough to keep
it. For this you will need blank tapes.

Keep your Extended Color ·BASIC manual handy for
reference, have paper and pencil ready, and take out the
enclosed MC6809E data booklet and leave it nearby.

Finally, you will soon find that unplugging cables from your
cassette player is no fun. Both my voice and all the
programs are recorded together on these cassettes.
Enclosed in this package are plans for a simple switch box
so you can flip between listening to me and loading
programs into your computer.

Support materials:

EDT ASM+ and manual
Color Computer Technical Manual
Technical Manual Supplement
MC6809E data booklet (included)
MC6821 data booklet (included)
MC6847 data booklet (included)
MC 6883 data booklet (included)

RS Cat. No. 26-3250
RS Cat. No. 26-3193

RS Parts No. 8749420
Motorola DS9846-Rl
Motorola DS9435-R3

Motorola OS9823
Motorola ADI-595Rl

Now I want to tell you what you will be learning in this
course. You will discover that assembly language is nothing
like BASIC, but also that there are real advantages and
disadvantages to using either one on the computer.You will
learn binary and hexadecimal number systems, why they
are needed at all, the ASCII codes, the job of the
microprocessor, its architecture and timing, data flow, a
little about how hardware relates to all of this, and lots of
jargon. There will be lessons on memory maps, CPU
control, input and output techniques, instruction sets,
operation codes, instruction names, the inside and outside
of the processor's world, and more jargon. Lots of
demonstration programs will bt, provided, and in trying
them you will learn how to use machine language monitors,
editors, assemblers, and debugging techniques. Midway
through the course, you will be learning all the different
types of assembly language commands and their operation,
how to use some subroutines already written for you in
BASIC, the pitfalls of depending on that option, and more
jargon. By the end of these tapes, you will be writing your
own keyboard and screen subroutines, hopscotching data
through memory, doing graphics and sound, and
interfacing fast machine language with the simplicity of
BASIC. And, of course, you'll be able to intimidate your
friends with all the jargon you wil1 use with such ease.

So now take some time to relax, clear your mind, and get set
to begin learning 6809 assembly language programming.
By the way, Claire is here to tell you exactly when to turn
this tape on and off, when to load programs, and where to
look in your booklet for your next instructions.

Let's get started. I've already said that the
microprocessor's language is not BASIC. So what is it?
TheoreticaHy, that answer is simple. The microprocessor's
language - the machine's language - is a set of binary
signals which causes predictable electronic events to take
place within a microprocessor and in relationship to its
external memory, events which can be combined and
expanded into control signals, mathematical calculations,
video displays, and high-level languages like BASIC
itself.

However, I'm not sure this definition is very a useful start.
Let me try it from a different angle. Imagine your car is a
computer. You unlock the door, open it, sit down, putm1 the
seat belt, insert the key, start the ignition, release the
brake, put the car in gear, let up on the clutch, step on the
accelerator, turn the wheel, and off you go. That's
BASIC.

Machine language takes you inside. You unlock the door by
inserting a key whose ridges lift tumblers to specific
heights, enabling a cylinder to turn inside a shell, releasing
certain mechanical barriers. Open the door by pressing a
button which engages some levers, slides and springs,
allowing the door to be pulled out on hinges. The seat belt
unrolls from a spring-loaded coil, perhaps turning off a
small switch as it is pressed into a latch. Another key is for

Learning the

Machine Language

* What is the first thing you
will discover in this course?

That asseably language is
nothing like MSIC.

* Nae three ot.har lltings you
will le&n11 in this ·covse (there
are Si!Yl!Hl answrs to this
question>?

NUllber systms; architecture and
ti■ing; dat;a flON • • • or
Neaory -,is; innndiOl'I sets;
operatian codes ••• or
Sriphics; sound; Jargon.

• Again, the first thing you
Nill learn in this course is •••

••. that lfll!llbly language is
nothing like MSIC.

* llll!fl you hear Claire's voice,
she Mill tell you OM of three
things. What is the first one?

Ihm to turn the tape on and
off.

* Claire will tell you when to
turn the taoe on and off. What
is another thing she 11ay tell
you?

When to load progran.

* Claire titill tell you tithen to
turn the tape on and off and
iChen to load progras. lillat
else aay she tell you?

Where to look in your book for
your instructions.

* What is another NE for the
■iCl"Opl"OCH,SO' s language?

Another NIii!

■icropr'OCessor' s
Nehine language.

for the
languge is

* Hew is knowing BASIC like
driving a car?

Because both are si11ple to use
but cause eo11plex operatiOM
inside a aachine.

IKJ9 3

Memory Map

you
of

call
hew

coaputer's desigl'll!!t"5
irr.inged itl lll!IIOry?

A lleMOt")' Np.

the
the

haft

* HoN aany charad8'1"5 of Ml!IIOl"Y
does the norul display screen
use?

512 characters.

*At.._ lll!ilOl"y locltion don
the nortlill display scren lllfin
on the Color c.iuter?

At IEIIDl"Y location 1924.

* How uny liellOl"y locations are
there in the Color Collputer?

There are
locations
Ccaputer.

65,536
in the

IIE!IIOl"Y
Color

• lilat is the arrangeA11mt of
these lllll0l"Y location5 callld?

The EIIOf')' up.

* lhre dOl!I tile nonail display
SCN!lffl begin in the 1f1NOrY aap?

At location 1124.

* lh!re do8 thlt noral display
screen end in the -.ory up?

At locatiOl'I 1535.

• How uny EIIOl"y locatiOM does
the nonwal Color Collputer
display saeen use?

The screen uses 512 locations.

• HcM any aeaory locatiOM are
there altogether in the Color
f.ollputer _,,.., map?

There are 65,536 locations in
the lll!IIOI")' up.

• What is the rMlllbef- of the
first aeaory location?

It is~ e (zero>.

4 Lesson 1

another set of tumblers which releases a clamp on the
steering wheel and permits electrical current to flow
through engine components. Turning the key further sends
electricity to an electromagnet, pulling a starter motor into
position, rotating the starter motor, spitting high voltage
through rotors, wires and spark plugs in a very precise
order, sucking gasoline and air into engine cavities,
consequently igniting the gasoline and air mixture, pushing
pistons which, through mechanical linkages, rotate the
engine's crankshaft. The rotation also activates a generator
which, combined with those explosions, causes a self
sustaining repetition. Electrical and monitoring circuits
are activated. You release the key and prepare to put the
car in gear.

By now you get the idea. Getting into a car and driving away
is a simple task for a modern American. Yet the number of
machine-level activities that take place in that short span is
enormous. When you enter "PRINT 3 + 4" and BASIC
responds "7", that simple action represents an equally
astounding number of machine-level activities: checking
the entire keyboard for your typing, displaying your typing
in the correct screen position, interpreting your commands
and checking them for correctness, calculating the results,
displaying the results, and returning for your next input.
That's a summary of the thousands of steps involved.
Machine language is working for you at all times.

Where is the machine language? How do you get to it? And
how does it work? Some folks tell me that the "dot on the
screen" example is shopworn. Well, get ready. Here it is
again. For me, an intellectual understanding of a concept is
seldom as effective as seeing or hearing something
concrete. Throughout this course, visual and sonic
examples will be used frequently - so you know you've
"done something". So, putting a dot on the screen is the
place to start.

To put that dot on the screen, you have to know where the
screen is. The "where" is what's known as the computer's
memory map. This map is a description of how the
computer's designers have arranged its memory. I'll talk a
great deal about memory maps later in this course, but for
the moment let me tell you that the normal Color Computer
screen occupies a block of memory 512 characters long
beginning at memory location 1024 and running through
memory location 1535. That's where it lies in the overall
map of 65,536, memory locations.

So when you ask BASIC to PRINT on the screen,
evaluations are made to determine the exact screen
location that is available, and the information is
subsequently placed in screen memory for you to see and
read. We can emulate this process. Turn your computer on,
and when "OK" appears, type POKE 1024,110. (Repeat)
Press ENTER. Your screen should show a black dot in the
upper left hand corner - an ordinary period, actually. You
could just as easily PRINT this from BASIC. But now try
this. Type POKE 1024,46 (repeat), and press ENTER.

0

11,0Z.-'I

116
MA.P
c;,~,s-:,$
ld!i ',";,'{
'-'> ,;;-,-s
GS s~z
loS°, ,;-, I

--~ -----/----
-----;~~--

7

:z
/

0

o,;s r-

L •1.:~

Now there's a black box with a white dot- a reverse-video
period. There's nothing you can PRINT from BASIC to
produce that, because it's one of BASIC's non-printable
codes.

Simple as that seems, this example represents just one of
the hundreds of capabilities that machine language offers.
In fact, there are 32 characters BASIC doesn't let you see.
Have a look in this next example.

Program 11 1, a BASIC program. Turn on the power of your Ex
tended Color BASIC computer. When the cursor appears, type
CLOAD and press ENTER. The computer will search (S) and
find (F). When the cursor reappears, LIST this program. If the
program is not similar to the listing, or if an 1/0 error occurs, re
wind to the start of the program and try again. For severe load
ing problems, see the Appendix.

10 CLS
20 PRINT"BASIC'S CHARACTER SET:"
30 FOR X = 0 TO 127
40 PRINT CHRSCX);
50 NEXT
60 PRINT:PRINT"THE WHOLE THING:"
70 FOR X = 0 TO 127
80 POKE 1216+X,X
90 NEXT
100 PRINT@448,"";

Run this program. You will see the 96 numbers, letters and
symbols that BASIC can print. Below them you will see all
128 numbers, letters and symbols that your computer
actually has available.

To summarize this program: BASIC prints its available
characters, whereas the POKE statement manipulates
memory to contain exactly what you wish.

The first advantage of machine language, then, will be to
give you access to everything your computer has built into
it, with no exceptions. Before r turn to another advantage,
you should note now that the two sets of characters in the
previous example are not displayed in the same order. I'll
explain why later.

Displaying Characters

• Can yoti PRINT a reverse-video
period on the screen- using
IIASIC?

No, you can't PRINT a
r"'V'IWII! vi dlto period.

• lltat MSIC ~ do you use
to display a ~video
period?

t ht does PM do?

PO<E plaL"H a value directly in
IWIIOl"Y•

• How any dhlrarien can BASIC
not display ning PRINT?

32 chararters cannot
displayed •ith PRINT.

f How •ny
available
Cciaputer?

characters
in the

be

are
Color

128 charac·ters are available.

• ht ~nd can display all
128 characters?

PO<E.

t How dce!5 it display all 128
characters'?

By dil"tletly aanipulating display ~-
• What is the a of
l1ll!IIOf'Y 1 OCilt ions called?

The lll!IIOr)' Np.

• lllere deft the norMl Color
Cmiputer display screen start in
this ~f aap?

At location 1124.

t ht is the
displaying val•
first location
ll!ID"y?

POKE 1124,111

coaand fOI"
1111 at the
in display

Learning the IK:fJ 5

Printing and POKEing

• lllat is the purpose of progratt
12?

To fill
display
characters.

the SCl"f!l!ft 1dth a
512 i.tical

f lllil't IN tha four •ys this
prograa fills the Kl"Rn teith
char'd8'S?

By PRINring dlll"lrilt"S; by
PRINring ltrinp, by PO<Eing
valUK; by using llldliM
langu1p.

6 Leason 1

Program #2, a BASIC program. Turn on the power of your Ex
tended Color BASIC computer. When the cursor appears, type
CLOAD and press ENTER. The computer will search (S) and
find (F). When the cursor reappears, UST this program. If the
program is not similar to the listing, or if an 1/0 error occurs, re
wind to the start of the program and try again. For severe load
ing problems, see the Appendix.

10 CLS
20 INPUT"CHARACTER";A$
30 PRINT"PRINTING ••. "
40 GOSUB 440
50 CLS: GOSUB 440: TIMER= 0
60 FOR X = 1 TO 511
70 PRINT A$;
80 NEXT
90 A= TIMER: GOSUB 440
100 GOSUB 460
110 GOSUB 440 : CLS
120 PRlNT"PRINTING STRINGS ••• "
130 GOSUB 440: CLS: TIMER= 0
140 FOR X = 1 TO 15
150 PRINT STRING$(32,A$);
160 NEXT
170 PRINT STRING$(31,A$);
180 A= TIMER: GOSUB 440
190 GOSUB 460
200 GOSUB 440
210 CLS
220 PRINT"POKING CHARACTERS ••. "
230 A= ASC(A$)
240 GOSUB 440: CLS: TIMER= 0
250 FOR X = 0 TO 511
260 POKE 1024+X,A
270 NEXT
280 A= TIMER: GDSUB 440
290 GOSUB460
300 GOSUB 440
310 CLS
320 PRINT"MACHINE UlNGUAGE ••• "
330 DATA BD,B3,ED,BE,04,00,E7,80,SC,06,00,26,F9,39
340 FOR X = 16000 TO 16013
350 READ B$: A= VAL ("&H"+B$)
360 POKE X,A
370 DEFUSR0=16000
380 NEXT: TIMER= 0
390 A= USR0(ASClA$))
400 A= TIMER: GOSUB 440
410 GOSUB460
420 GOSUB 440
430 END
440 FOR N = l TO 500: NEXT
450 RETURN
460 CLS : PRINT"TIMER READS"A
470 GOSUB440
480 RETURN

Welcome back. The program demonstrates the speed of
6809 assembly language. Its purpose is simply to fill the
screen with 512 identical characters, which can be done in
at least four ways: by printing 512 characters through
BASIC, by printing strings of characters, by POKEing 512
characters from BASIC directly into screen memory, and
by handing control over to a 6809 machine language
program. RUN this program now.

"' .f
I 11

,\1/,/,/,1/

\;U<uN]~
·111,1, \

~~ ,I-

First, enter any uppercase letter from A to Z you wish
displayed. Observe the BASIC printing technique. Notice
the string printing method, which is quite fast. Now watch
the BASIC POKEing technique. And finally, the machine
language routine seems instantaneous.

Now there are three important things to notice. The first is
the speed of the machine language program; don't mis,. that
final display. Run the program again. This time, enter a
number or punctuation mark as the character to be printed
instead of a letter. Observe carefully as the printing and
string printing finish that the LAST (512th) letter is
missing. In BASIC, if you print in that 512th screen
position, the screen automatically scrolls to the next line.
But charac:;ers can he POKEd anywhere in memory, even
in the last screen space. The machine language program is a
fast way of doing that POKEing.

Yet there's something else. This time, the characters
printed are not the same as those POKEd into memory or
displayed by the machine language program. Recall the
first program in this lesson - the characters weren't in the
same order when printed and POKEd into memory. The
reason is the hardware chosen to perform the video display.
This hardware is limited to displaying only 64 characters -
numbers, symbols, and uppercase letters. The Color
Computer uses reverse (also called inverted) letters to
represent lowercase. The BASIC software knows how to
switch all these around to get the standard order - the
order of ASCII, the American Standard Code for
Information Interchange. This first, short machine
language program doesn't do that. But it can be expanded.
We'll return to that later .

The final lines of the BASIC program contain data
statements and other commands which set up and execute
a machine language program. Although you may examine
these now, I'll hold back the detailed explanation of these
for the moment.

So far, I've only played around with screen memory by
putting some things on it. Now enter a three-line program;
I'll read it to you. Line 10. POKE 654 78,0. Line 20. POKE
654 79,0. Line 30. GOTO 10. I'll repeat that; you can glance
in the manual and check Program #3 to double-check.

10 POl-{E1S54 78. 0
20 POKE1S54 79, 0
30 GOTO10

RUN this program. What's that? It's delving into the heart
of the computer, manipulating its control signals. Ifs video
screen position information masquerading as computer
memory. And that's the subject of the next lesson.

Screen Memory

t lllat does ASCII aean?

Arwrican Stllldmi Code for
Inforution Interchange.

• lb, don the Color Collputer
represent lONl'l"CflY letter-s?

LORrCaw i1 reprellftted by
n!'ffl"N video (Ii.bite on black).

* Art thlt intlR"Ml Chlrdwarel
Color Callputer charil.'ttn in
ASCII order?

No.

• Does PRINT display the
characters in ASCII order?

Ye.

• Does IQ£ display the
charaeteN; in tlEII ordlr?

No.

t Illy dOl'S PRINT display the
charaeta-s in ASCII order?

Because the RIC software
SNittnes thf!L

• lllat &llSIC aaand is used to
shOli the intem1l order of the
charaeters?

1 lllat does PO<E do?

It pllt'el a value into 1E110ry.

• What locations in the -,,.y
up does the l'IOt"'llil 1 Co 1 or
Ccapqter display screen use?

Fl"Clll loeati<JM 1124 to 1535.

• Of the four ..thods in i>rogr•
12 !PRINTi11g characters,
PRINTing strinp, PIJ(Etng, mt
Nc:hine l,anguge - tllic:h is
fastest?

f4achine language is the fastest
Method.

Learning the 6e/::ft 7

8 Lesson 1

IZ.' =

/

iw· ,.

~*,r· ¾C-~.-·

~10· 'fc•

7:1,.,;· l'l,<"'

J&Y

•
Welcome to the subject that strikes unreasoning terror in
the heart of every programming novice - numbers and
number systems. There are many opinions about computer
number systems. Here's mine: if you don't learn them,
you'll end up hacking your way through assembly language
programming. You'll never feel comfortable or competent
doing it.

That said, I'll start by telling you that I'm no
mathematician. Numbers make me cringe. Yet binary and
hexadecimal computer representation are really easy.
Partly that's because I found that, when ordinary sheep
failed me, counting backwards hexadecimal sheep jumping
a fence put me to sleep before I reached zero. I'm not
making it up.

Seriously, computer number systems have been made
frightening by obscure use of language and knot-headed
programmers. In truth, we live and live well in a world of
non-decimal number systems. Here's a short list:

12 inches to a foot, 3 feet to a yard
5280 feet to a mile
32 degrees is freezing, 212 degrees is boiling
60 minutes in a hour, 24 hours in a day
7 days in a week, 52 weeks in a year
365 days in a year, but 360 degrees in a circle
3 teaspoons to a tablespoon, 4 quarts to a
gallon
30 days hath September, April, June, and so
forth

There are dozens, acres, ounces and hundreds of other
examples. All are the daily measurements of our bread and
butter, our life and time. All are irregular ways of
numbering, but few confuse us. Chances are you can
identify every one of these groups of numbers:

You have finished the first
lesson. The !)l"(l91'aled learning
section of that lessm NH

si■ple il'ld repetitive; all of
the progr.-ct lNl"ning is
S<allhat repetitive, but n you
go, the pace •ill begin to
quiclce. Also, the questions in
this 1 •ill assae you kftOlf
the uterial in the first
leuon. Much of the g,'OllldNork
in __.ly language is rote
lNming, Just li• -■orizing
ti■es tables, so keep up lfith
the progra.ed learning
questions.

* Different nu■blr systas are
our heritage. !be ■any cards in
a poker deck? !be Nny Neeks in
a ynr?

52.

• HoM ■any cards in a suit? HoM
■any Neeks in a quarter?

4.

• HoM ■any spots in a card deck?
Holt ■any days in a year?

365.

• How ■any face cards in a decl<?
Holt ■any ■onths in a year?

12.

727,737, and 747
33, 45 and 78

98.6
3.1416

Learning the l:::,e/::Jt 9

Sherlock Holmes

t Is the dec:iaal systell used for
roaputer operations?

No.

t Why aN!'l'I' t deci ma 1 nullbeT-s
used for· coaouter n1111ber
systeas?

Because
n1111bers

tt,e activiti.es the
represe!llt NOuld be

clUEy or Nke little sense in
deci11al.,

t "1iat nuaber systt!!II is used for
r.oaputers?·

The binary systea.

nu■bers
by the

can be .
binary

t What are the 111a■es of the h10
Mlllbers represented by the
binary syste1.

The brnary nuabf!rs are 0 and 1.

t Maae
rotld i ti ons
represented
systee.

On arid off.

another
that
by

pair of
can be

the binary

t Na■e scne other opposite pairs
of conditions that ■ight be
reoresented by the binary systea
(there are 11any correct answrs
to this ouestionl.

High and ION; in and out;
fOl"Nrd and bick..al"d; red and
green; and so forth.

t Was Dr. Watson a Edical
doctor?

Yes. He Mas a general
practitioner. This question in
no ..ay relates to the discussion
of ftUllber systen.

10 Lesson 2

What I guess came to mind were airplanes, records, normal
body temperature, and pi. My point is that this is a
conceptual issue. These are not numbers, they're
representations of something useful in real life. And
computer numbers are conceptual, too. The metric system
is official in the U.S., but how much use does it get? Perhaps
it too is a conceptual issue. I know how long a centimeter is,
but can't convert from fept to meters. Same with a liter.
Now that soft drinks come in liter bottles, l finally know
what one is. Never could make a mathematical conversion
of it, though. I can tell an acre, even though I don't know its
actual measurement. In other words, once a number is
represented by something in "real life", so to speak, I can
make sense of it.

Basically that's what computer number systems are all
about - they represent activities that are clumsy or make
little sense when described by "regular" decimal
numbers.

Keep that in mind. By now you''re probably familiar with
that old standard, the light-switch analogy. Computers, it's
been said, operate using electronic switches that are either
on or off, just like light switches. That's two conditions -
the binary system, it's called. On or off.

Such a description is true as far as it goes, hut it leaves out a
lot. To cast a different light on the binary system, I've
enlisted the help of two old friends, Sherlock Holmes and
Doctor Watson, who will discover some clues in this slightly
rewritten scene ...

Watson: ... but it's just someone turning the lamps on,
Holmes. It's past dusk, after all.

Holmes: Ah, yes, Watson, but why would someone light a
lamp and extinguish it so quickly? And move from room to
room? Eh. Watson?

Watson: Perhaps they're looking for something they can't
find.

Holmes: Or perhaps they're signaling someone. A cipher of
some kind, I would say.

Watson: With lamps m five windows? Nonsense,
Holmes!

Holmes: Just copy this down, Watson. I'll read starting
from the uppermost window. Lamp on, lamp off, lamp on,
lamp on .. ,

Watson: Slow down, Holmes.

Holmes: Keep at it, Watson, they won't stop for your
fingers. Lamp off. They're changing now. Again, from the

~[Jr]~

Et

~

,--~
'!,~•,

C si.w.w... ••-

~-~
11~•1#

II~•«
,.-_ .. (.
. .,

_..

llid1~~6E

ID
e)

uppermost. Off, on, off, off, on ... I've got it, Watson! These
are letters of the alphabet. Five windows create 32
combinations, enough for all the letters of the alphabet.

Watson: Amazing, Holmes!

Holmes: You don't need to write down the lamps now,
Watson. I think I can read the message. S - E - E M -
E A - T ... See me at the August Lion Tavern at 6
o'clock. That's it! We have just five minutes. Come on,
Watson!. ...

What Holmes discovered, of course, was that by using the
most basic information •- a simple pattern of lamps lit or
extinguished - a complete message might be sent and
received. Morse formalized that with his telegraph code. In
this case, Holmes perceived quickly and correctly that with
five lamps, 32 combinations were possible by rearranging
the pattern of lamps lit and darkened.

You will find that computers are really quite simple
minded devices. You're dealing with nothing more than a
vast but microscopic nest of electronic switches. There's no
intelligence involved - just an impulse here, an impulse
there, all moving very fast. For reasons that have more to do
with manufacturing economy than anything else, the
decision to use the on-off switch was chosen over
something more familiar like a decimal type counter.
Programming might have been much easier otherwise. But,
cheap as it was to manufacture, the on-off idea limited each
meaningful computer signal to those two conditions alone.
For more conditions - larger numbers, that is - more on
off signals are needed. Groups of signals, all working
simultaneously, like Holmes's five lamps.

Everything in computers began to take on the color of two
choices, base 2, the binary system. Data was parceled out in
base 2, and grouped in powers of 2. The first
microprocessor device used four simultaneous signals for
transmission of data. The 6809 uses eight signal lines.
Newer, more sophisticated computers use 16 or more
concurrent on-off signals.

You can probably guess I'm taking you easy into this. But
stay with me. If you think back to Holmes' s discovery, you'll
remember that the operant concept was not the number,
but rather the pattern of lamps. The patterns represented
codes for letters - an inspired idea from the time Morse
developed his telegraph code to the present day American
Standard Code for Information Interchange (ASCII).

In computers, these are patterns of binary signals, thought
of as binary numbers or binary digits. Binary digit is
conveniently abbreviated "bit". So when the 6809 is called
an 8-bit processor, that means that all its information is
created from the combinations of eight binary digits.
Here's the grabber: no matter what the information

Learning the

Binary System

• How •ny caabinations did
Holas figve CCMtld be INde fl"Oa
fiw lap1?

32 C<lllbiftiltionL

• How 11any laps NOUld produce
only 16 diffwwnt pittems?

Four lillpl.

t How 11any different
cmbinations NOUld Holms have
discovered if there Nffl! SiK

laps?

64 ooabinations.

1 How •ny different
coabinati0fl5 MOuld Hollll!S have
calculated froa eight l111p11?

a, COllbinatiOM.

, Write doM'I the poNerS of 2
froa 2+1 to 2+8.

2, 4, 8, 16, 32, 64, 128, a;

* ltiat nutlbt!r syst111 is used in
coaputers?

The binary systa.

1 Ho. any different nuabers can
be repl"eSel'lted by the binary
systea, and Nhat ire they?

2 l'lll9bel-s; they are 8 and 1.

1 HON 11iftY different
coabinations can be forwd froa
eight on-or-off laps? Fro.
eight Ol'IH)l"-Zero binary
digits?

Both aMIB'S are the saa: 256
e011binations.

1 ltiat does bit man?

Bit aeans binary digit.

1 How aany binary digits (bits)
are used by the 6819 processor
to ~ infOl"llltion?

Eight bits.

6eat 11

HexidecimaB

t How any different
coabinations cifl be fCJnld froa
eight bits?

256 COllbinations.

t How llilny di fflt"t!ftt
coabinations of binary digits
can the 6819 processor produce
froa its 8 bits?

256 COllbinations.

1 Holt does the 6819 processor
distinguish letters, coaa11ds,
display, sound and other
ourposes of the 256 co.binitions
of 8 binary digits?

By the context in lllhich those
digits are presented.

1 What nu.her systea is u!ill!d in
eo11puters?

The bi.nary l'IUllber syst111 is used
in coaputers.

t lllat counting systea is used
for clarity in diSCU!ising
cmrputer n1111bel"s?

The hex~iNl counting systa
is used for cli1rity.

1 How uny
represented by
c:ount i ng systea?

ftUllbers are
the hexadecluul

16 nullbers are re!1J1 esented by
the hexadeciaal counting
systea.

12 Lesson 2

represents - letters, numbers, commands, display, sound,
whatever -- it is formed by some pattern of those eight
binary digits, formed from those eight bits. The
microprocessor, the computer's heart, can know the
difference only by the context in which those digits are
presented.

If that seems far-fetched, consider that there are only 26
letters in the alphabet, 10 numerical symbols, and a dozen
or so punctuation marks. Those letters, in specific
combinations and contexts, make up the half-million or so
words in the English language. Those same letters,
combined into words and melded thrnugh punctuation into
sentences and paragraphs, can describe the entire known
history of humanity with multiple levels ofnuance, politics,
or poetry. Quite a bit from a simple 26-letter code.

At last it's time to get down to spe,cifics, and deal with those
numerical symbols. The trick is for you to gain an
appreciation of the computer number system that's used
exclusively for darity. It's called hexadEicimal. Base 16.
Don't run for the Maalox. Keep in mind that we're not
talking about counting-type numbers here, but simply
re-presentations, symbolic abstractions.

First, there's a program to gEit up and running.

Program lf4, a BASIC program. Tum on the power of your !Ex
tended Color BASIC computer. When the cursor appears, type
CLOAO and press ENTER. The computer will searc:h (S) and
find(F). When thei cursor reappears, LIST this program. If the
program is not similar to the listing, or if an 1/0 error occurs, re
wind to the start of the program and try again. For severe load
ing problems., see the Appendix.

10 CLS:L=154
20 PRINT"CONVERSION:":PRINT"FROM DECIMAL TO BINARY"
30 FORB=1T05
40 PRINT:,INPUT"NUMBER 0 TO 255":X
50 IFX<00RX>255THENPRINT"OUT OF RANGE":GOSUB290,GOT040
50 GOSUB32•Zt
70 PRINTC:E:G:I:K:M:O:Q:
80 NEXT
91il PRINT: INPUT" <ENTER> TO CONTINUE" :A$
100 c~s
110 PRINT: PRINT"DECIMP,L AND BINARY DO NOT BEAR A DISTINCT VISUA
L RELATIONSHIP:"
120 FORX=0T0255
130 GDSUB320
140 PRINT@256. X: :PRINT@,.':66," <----DECIMAL"
150 PRINTC:E:G:l;K:M:O;Q:
160 NEXT
170 CLS
i80 PRINT:PRINT"HEXADECIMAL AND Bil'JARY SHOW A
ATIONSHIP. THE FOUR BINARY DIGITS CREATE 16
BINARY PATTERN IS IDENTIFIED BY A UNIQUE
OL FROM 0 TD F. "
190 FORX=0T0255
200 X$=HEX$(X>
210 IFLEN<X$)=1THENX$="0"+X$

CLEAR VISUAL REL
PATTERNS. EACH
HEXADECIMAL SYMB

220 PRI Nl@260, " • ., •• "LEFT$< X$, 1) " ••..• •••• "RIGHT$·(X$, 1) " ••••• "
230 GCJSUB320
240 PRINT"
250 PRINT"

"C;E;G:I;K:M;O;Q

0000 0
000/ I
00/0 z
60// 3
0/00 '¥
0/0/ 5
0//() {,
OIi/ 7·
/000 s
IOCJ/ " /0/0 A
/()// "' //OC C,

/IOI p
/l/0 e.
Ill I f

260 NEXT
270 FORX=1T0300:NEXT
280 STOP
290 FORN=1T01000:NEXT:RETURN
300 X=C*128+E*64+G*32+I*16+K*8+M*4+0*2+Q
310 RETURN
320 C=INT(X/128):D=C*128
330 E=INT<<X-D)/64):F=E*64
340 G=INT<(X-D-F)/32) :H=G*32
350 I=INT<<X-D-F-H)/16>:J=I*16
360 K=INT<<X-D-F-H-J)/8):L=K*B
370 M=INTl(X-D-F-H-J-Ll/41 :N=M*4
380 O=INT((X-D-F-H-J-L-N)/2) :P=0*2
390 Q=INTCX-D-F-H-J-L-N-P>
400 RETURN

I've been talking about symbols, relationships and
legibility. I'm also talking about memorizing patterns for
instant recognition. You're about to run a program which
will show all 256 rearrangements of eight binary digits,
represented as a string of ones and zeros. Run this program
now. Enter a number from O to 255, and check out the
binary equivalent printed below. Enter another number,
and look. Enter three more numbers, and examine the
binary equivalents. Chances are, what you see is not very
useful. Hit <ENTER>. The decimal values from Oto 255
will be displayed in order, together with their binary
equivalents.

The decimal numbers count up nicely from O to 255, and
the binary numbers also follow a regular pattern. That
binary counting-up pattern probably isn't familiar to you
yet, but there are lots of ways of understanding it. For
example, as you watch, notice that the right-hand digit
alternates quickly between 1 and 0. Its neighbor's
alternation takes twice as long, and its neighbor's
alternation in turn takes twice as long as that. There's that
binary, base 2 system working again. The binary counting is
useful to watch; try to get familiar with it.

When the decimal counting is finished, the program will
show you a much easier system. Mentally break that eight
bit binary group into two halves. Remembering Sherlock
Holmes' discovery, you can see that the four binary digits in
each group can be rearranged 16 different ways. Instead of
trying to recall lines of ones and zeros, though, each
arrangement can be identified with a single, unique
character. The arrangement 0000 can be identified as 0. 1
can be identified as 1. 0010 becomes 2, 0011 becomes 3,
01 oo becomes 4, on up to 1001, which is called 9. 101 O is
labeled A, 1011 is labeled B, 11 oo is labeled C, 1101 is D,
111 O is E, and 1111 is F.

As you watch the screen, you will notice that a separate
symbol - a hexadecimal symbol - is used for each half of
the 8-bit group. That gives you an easy-to-handle two-digit
reference for each long binary number from 00000000 to
11111111.

Counting Hex

• If you ire NOl"king Mith eight
binary digits, lllflat is the
biftil")' equivalent of deciNl
m.tler1?

-1 is the 8-bit binary
equivalent of the deciul l'Mablr
1.

• If you are NOl"king Mith eight
binary digits, Nhlt is the
binary equivalllnt of deciaal
nullber- 255?

11111111 is the 8-bit equivall!l'lt
of deciul ~ 255.

1 What i1 the hexideci111l symbol
fOl" deci•l __. 1?

1 is the hexadeciaal symbol for
deciaal nuaber 1.

t ht deci•l nuaber is
represented by binary nuaber
88N1111?

IINlUl is the deciul IMIIDI"
15.

hhidlr:i•l l'IUlllwr
'N!p1 ewnts biMry IIUlllber ... ?

Hexadeciaal nuablr I reprttll!ftts
binary 1111.

• lllat hexidll:iaal nuabl!I-'
l"l!pl'fteftts binary nuabe\" 1111?

Hexadeciul nu.blr F represents
binary 1111.

1 lllat hexldeciul
represents binary
MIU11?

naber
nuaber-

Hexadt!ciul nua1ier • represents
binary INl1111.

* Count the biftll"y Nlill!r5 fl"OII
llllto 1111.

1111, •1, •11, •u, 1111,
1111, 1118., tUl, 11N, 1N1,
1811, 1111, 1111, 1111, 1111,
1111 The advantage of this method is very real. By knowing a

binary number, you can almost instantaneously know the
hexadecimal equivalent. By knowing the hexadecimal

Learning the /:Rl::1t 13

Reading Hex

• Count tht hex.aci111l nu.bin
fNJM I to F.

I, 1, 2, 3, 4, 5, 6, 7, 8, 9, A,
B, C, D, E, f

• Count NClclMrds in hex;a
deci111l nuabers fma F to I.

F, E1, D, C, B, A, 9, 8, 7, 6, 5,
4, 3, 2, 1, I

• lllat binary nllllber is
represented by the hexadeciaal
n1aber C?

Hexider:i.al C is binary UN.

• What is the shorthnt NOrd for
htxadleci11al?

The shorthand NCll"d for
hexadecimal is hex.

• Count aloud quickly fro11 hex
21 to hex 38.

Tl«.l-Zlll"O, tlllO'"'CM'le, tNO-two, t.
three, tNO--foor, ti«rfive, tNO
six, tNCt-wven, tllO""t!ight, t.o
nine, tNO-A, t1111rB, tNO-C, t..o
D, tN<rf, tMo-F' thll'N'-Zl\l'O.

t lillat syabol is used to
indicate a he,x nuaber?

The dolla1· sign,,

• What is the hexirdeei111l naber
for binary Ul0?

The hexirdeeillill l'lfllllber is SC.

f Colllnt aloud quickly, backNBl'Cls
in hf!x fra11 SfF to te:8.

Ff, FE, FD, FC, FB, FA, F9, F8,
F7, F6, FS, F4, Fl, F2, Fl, Fl,
EF, EE, EU, EC, EB, EA, £9, E8.

* What is the binary nuaber for
hexadeciul $AA?

Hexadeci•l A is binary 1111, so
heX tAA IIUSt be 18181111.

14 Lesson 2

representation, you can get at the binary equivalent at any
time. Remember, these microprocessors work in a binary
world. Knowing that world is essential for you as the
programmer to call the shots.

How can you learn the hexadecimal numbers? Memorize
them. Just like the timeR tables in elementary school.
Count sheep, forwards and backwards. Go back to this
program and RUNl 70. Read the numbers aloud. By the
way, hexadecimal numbers - you'll just call them hex after
a while - are read a little different from decimal numbers.
If there's a leading zero, for example, you hang onto it. Like
this:

00 01 (not just "one") 02 03 04 05 06 07 08 09 OA OB OC OD
OEOF1O(not"ten") 11 (not"eleven") 12131415161718
19 1 A 1 B 1 C 1 D 1 E 1 F 20 (not "twenty") and so on.
Remember than when you get up to 9A 98 9C 9D 9E 9F, the
next hex number is AO. It goes all the way up to FF.

Another convention for hexadecimal numbers is their
written form. The letters are always uppercase, and in
order to distinguish hex from decimal, it's common practice
to put a dollar sign in front of a hexadecimal number.

You should also try to learn your hex numbers backwards.
Assembly language has certain kinds of program activities
that move backwards, and being able to make an accurate
backward count-- FF FE FD FC FB FA F9 Fa etc. - will ease
this process.

As far as converting from decimal to hex and vice versa,
you'll do it occasionally" Use a chart, a special cak:ulator
like the Texas Instruments programmer, o:r a formula,
When you learn to use the editor/assembler/debugger
programs, much of this conversion is done by the assembler
itself. For the, moment, learn to recognize the four-bit
binary patterns and their hex equivalents. In fact, you
might take a bre,ak from this tape right now to practice
binary and. hexadecimal patterns.

Hexadecimal numbers will be used for the remainder of this
series, Please practice the hexadecimal numbers patterns and
return to the tape when you can recognize thE: four-bit binary

' patterns and their hexadecimal equivalents.

cooo 0000 ___,...., .,_,,..,
0 0

ooa) O<X!I
'--v--,., ._,,....J

0 I

/000 ccco
~~

~ g

/100 CV:::,/

-------- '-"""'--'
t!_,, I

I I I I Ill/ ,,____,,_, ..__..,..._,
F F

HEX 70:::;,
OIi/ 01/0

/Ot')
F-F
flS
FD
Ft,,

fS
fA
f1
fE>
'F7
Fb
F5

IA
0100 000/

C!/t_O 000/

fJ/0/ /010

01!1 /0/0

Since this is a lesson about numbers and codes, I'd like to
introduce another essential preliminary to diving into
assembly language programming, the ASCII codes. ASCII
- the American Standard Code for Information
Interchange -- is a set of 128 numerical codes to represent
letters, numbers, symbols, punctuation, and special
control functions.

I'll talk hex. Punctuation marks start at $20, numbers at
$30. $40 points to uppercase letters, $60 starts lowercase.
Simple? Only in hex. Ever try to convert from uppercase to
lowercase in BASIC? It can be tricky. But in binary, it's a
cinch. Grab paper and pencil.

Write down hexadecimal 41, and across from it write its
binary equivalent, 01000001. This is the uppercase letter
A. On the next line, write down hex 61, and across from it
the binary, 011 O 0001 . This is lowercase a. Now write hex
5A, and its binary, 0101 101 O; this is uppercase Z.
Lowercase z is 7 A, binary 0111 101 0.

Sit back and look at these numbers. The hex numbers seem
related enough, but the real due lies in the binary. In
referring to binary numbers, the rightmost digit is called bit
zero. Find bit five in both upper and lowercase A; it's third
from the left. Notice that bit five is the only digit that's
different in upper and lower case. Same with letter Z. Bit
five clearly distinguishes uppercase from lowercase. In
decimal, upper and lowercase Z are 90 and 122
respectively. There's no visible relationship there. But bit
five! Just one digit makes all the difference. ASCII looks
illogical in decimal, not binary.

I'll talk more about ASCII codes, especially those from $00
to $1 F - the control codes that ring bells, backspace, line
and form feed, carriage return, and perform special
activities like clearing the screen. In the meantime, there's
work for you to do.

For your assignment: learn to count in hexadecimal,
explore all the ASCII codes in binary, and learn to read the
ASCII bit table in the back of your documentation package.
Review this lesson until you are familiar and comfortable
with binary and hexadecimal. Please continue with these
lessons only when you have reviewed the number systems
thoroughly.

ASCII codes

• What does ASCII stand for?

ASCII stands for Allerican
Standard Code for Inforution
Interchange.

1 Where are uppercase l.tters
found in the ASCII code? 6ive
the ansNer in he11idaci11al.

The uppercase ASCII codes are
$'ti tots.

• 'ltere are the l011ercase
letters found in the ASCII code?
Give the answr in hexadecillill.

The lONel"Case ASCII codes are
$61 to S7F.

* How are the right110St and
left110St bits nu11bered in a
group of eight binary digits?

The rightaost is bit I, the
leftllOSt is bit 7.

• ltlat binary digit
distinguishes uppercase fro.
la.rcase characters in the
ASCII code?

Bit 5 distinguishes uppercase
ASCII fl"Olt lONe!"Case ASCII.

• How is ASCII pronounced?

ASCII is pr'()l'l(MICed ASSkey.

• The ASCII code fer the
uppercase letter E is
hexadeciaal t45. lllat are the
binary and hexadeciaal values
for both upr:,ercase and lONerease
letter E?

Uppercase Eis $45, binary 1111
1111. LOMel"Case E is S65,
binary 11111111.

• What ASCII codes are located
froa tiexadeciaal • to S!F?

The 11achine control codes are
found TI'OII $11 to SlF.

Learning the 6e/:J9 15

16 Lesson 2

•
Hello again. In this third lesson, we reach a critical point ...
the point of explaining the whys and wherefores of the 6809
microprocessor. You should have spent some serious time
getting familiar and comfortable with binary and
hexadecimal counting, as well as with the arrangement of
ASCII characters. The workbook provides some exercises
and self-tests; please complete them before continuing
with this lesson. Especially if you're a first-timer to
assembly language, that's very important.

There are many general ways in which microprocessors are
described and defined: they are smart circuits, they are
calculating devices, they are (as I've said) a microscopic
nest of electronic switches. Microprocessors are all of these
things and more. I'll use several terms interchangeably
throughout these lessons - processor, microprocessor (or
MPU), central processing unit (or CPU). In your Color
Computer, these all mean the same thing: the 6809
microprocessor.

Inside all microprocessors, inside all MPUs, are a number
of data holding stations called registers. More about the
term register later, but at the heart of a microprocessor is a
special calculator register, formally called an arithmetic
logic unit, or ALU. The ALU holds one binary word-- that
is, a certain number of binary digits of information. I'm
talking here about the 6809 processor. It accepts data in an
eight-bit binary group, called by the tongue-in-cheek name
"byte". The word size of the 6809's binary data is the byte
- eight bits.

To describe it another way, the 6809 has eight wires
connected to it for data. All eight wires become "live"
simultaneously, conducting eight binary digits to the
processor. This information is one byte.

So it's got this arithmetic logic unit, the ALU, which holds a
byte of data. The ALU can then perform simple
calculations with that byte of data. The calculations, which
I'll get back to in detail shortly, are: addition, subtraction,
and multiplication. Also, there are incrementing and

Learning the

Things pick U!J s!)l!l!d now.
Thel"e's lots of new infOl"llltion
coaing up, so aake sure you've
done all the exercises before
ending this session.

* lllat does CPU stand for?

Central Processing Unit, the
■icroprocessor.

• What is the Central Processing
Unit !CPU) in the Color
Co■puter?

The 6889 is the Color Ccaputer's
cru.

• What holds the data inside the
■icroprocessor?

Re!!isters hold data inside the
■icroprocessor.

f "1.lt does ~U IINl'I and Nhat
does it do?

AUi aNM ArithEtic Logic Unit.
The ~U perfor115 calculations.

• How .any bits of il'lforation
does the ALU hold?

The AUi holds eight bits.

• lilat is the coaputl!I" Jargon
for eight binary digits?

A byte is coaputer Jargon
eight bimry digits.

6fJ:Y)
for

17

The ALU

f lllat is a binary IIDl"d?

A certain l'IUllbl!r of bil'lilry
digits.

t lllat is the l«>l"d size of the
6889 ■icroproc:essor?

The 6819's NOrd size is eight
bits.

• Again, Nhiit is the coaputer
Jargon for eight bits?

Eight bits ■ake up a byte.

* NaMe three kinds of arithaetic
the AI..U perfOl"E.

Addition, subtraction, allld
■ultiplication.

t Halle four kinds of logical
functions the ALU perfol"95.

AND, OR, NJT and Exclusive OR.

t Nae the three other
operations the AI..U perforas.

I ncrnent i ng, deer eamti ng, arid
coapariSOl'I.

t How ■any bytes can the ll.U
hold for doing its MOrk?

The ALU holds one byte.

* Na■e all ten kinds of
operations the AI..U can per-for■
on one byte.

Addition, subtraction,
aultiplication, AND, OR, t«rr,
Exclusive OR, incre■enting,

decre•nting, and caeparison.

t lllat is the AI..U called in the
6889 processor?

The ALU is called the
accU11Ulator.

t How ■any acc.ulators are
there in the 6819 processor?

The 6899 has tNO acc111111lators.

18 Lesson 3

decrementing, which are essentially addition or
subtraction by one. The ALU can perform logical
operations such as AND, OR, NOT, and EXclusive OR.
Finally, it can make a comparison with any other byte of
data.

Most of the processor's hard work is done in the ALU. In
fact, the 6809 is such an advanced processor that it
contains two separate ALUs. Each one can add, subtract,
increment, decrement, compare and perform logical
operations. Together, they can be used to multiply.

The arithmetic logic units in most MPUs, in most
processors, including the 6809, have several descriptive
names. They are called accumulators. The ALU is also
called an accumulator register. Finally, the 6809's own
PAIR of accumulators are labeled A and B. So the
arithmetic logic unit, the ALU, the accumulator, and the
accumulator register effectively mean the same thing. In
the 6809, they mean where the math is done - in A or
B.

These A and B accumulators get the information they need
by loading it. Loading: that's the term for obtaining data.
The accumulators save the results by storing data. Load
and store. Get data, save data.

I have to answer se·veral questions at once now, because the
actions that they represent are so intertwined. Here are the
questions: How does an accumulator load or store data?
Where does it load data from, and where does it store it?

I'll start with the "where". The data the accumulator needs
might be inside the microprocessor in another register. The
term register is in fact quite general. The A and B registers
of the 6809 are the arithmetic logic units, the accumulators.
But there are other registers also capable of holding
information, though these registers cannot by themselves
do any mathematical calculations with the data. Their main
purpose is to keep information handy for the
accumulators.

But the most important place the accumulator obtains its
information is from memory. Memory is a line of storage
locations outside the 6809 processor itself. Each memory
location can hold an eight-bit word, a byte.

I'll back off from that briefly to tell you how an accumulator
loads or stores data. It follows the commands of an
instruction decoder, that part of the processor which
determines the actions the processor is to take. Now here's
where my answers get intertwined. The instruction
decoder gets its instructions from the same memory that
stores data. In other words, when the instruction decoder
gets a byte from memory that says "load something into the
accumulator", the next byte in memory is that very
"something". It all comes from the same line of memory.

Recall the last lesson. I said that the 256 possible

rearrangements of binary digits represent all the
information the processor will ever need - instructions,
numbers, ASCII characters, whatever. That's precisely
true. I also said that it's the context that determines what
the binary pattern means. Context is what assembly
language programming is all about: ordering the bytes sos
that they turn into a useful program.

So far you know that the processor, the MPU, gets both its
instructions and data from memory. How does it
distinguish them? That is, how does it understand their
context?

To discover the answer, you must know that the memory
locations are each uniquely numbered, starting from zero.
These identification numbers are called addresses. How
many memory addresses a given MPU has available are
determined by the number of its address bits. In keeping
with its total logical binary nature, the 6809 has 16 address
bits. The total number of rearrangements of 16 binary
digits, from 0000000000000000 to 1111111111111111,
is 65,536. It's what you call 64K (since a "K" in computer
terms is 1,024).

Get a pencil and paper. Breaking them into groups of four
digits, write down 0000 0000 0000 0000. That's 16 zeros.
Now, elsewhere on the paper, write down 16 ones. Also
break those into groups of four: 1111 1111 1111 1111.
Above each group of four binary digits, write its equivalent
hexadecimal symbol. For the 16 zeros, the hexadecimal
value would be: dollar sign O O O O. Don't forget that dollar
sign; it identifies a hex number. Also write the hex value for
16 ones: dollar sign F F F F.

What you have just written is the address range - that is,
the number of individual memory locations - available to
the 6809 processor. $0000 running through $FFFF are the
addresses of the 6809 MPU.

Learning the

Memory addresses

* lillat are the MES of the tt«I
accuaulators in the 6819?

The tNO accuaulators are called
A and B.

* lllat are the ten kinds of
operations the A and B
acc111111lators can perfon1?

Addition, subtraction,
aultiplication, AND, OR, M:JT,
Exclusive OR, increaenting,
decrementing, and e011parison.

* What is the tl!l"II for obtaining
data?

loading aans obtaining data.

* ..-iat is the tera for saving
data?

storing Eans saving data.

* What is the NOl"d size the
6809's accuaulators can hold?

One byte, that is, eight bits.

* Aside froa other registers,
Nhere do the A and B acc\111""
ulators get their inforaation?

The A and B accu1111lators get
their inforution fl"OII 111!1101")'.

* What is the NOl"d size of a
IIE!IIOry location?

One byte, that is, eight bits.

* How ■any locations are in the
Color Coaputer-y 11ap?

65,536 IIEIIOl"Y locatiOM.

* Describe the up size and NOl"d
size of the 6819 processor's
lll!IIOI")'.

65,536 locations; each location
is one byte in size.

* There are hOlt 11any bytes in
one •K•?

1824 bytes.

60CJ9 19

Powering up

• There are hoN llil"Y •K• in
65,536 bytn?

MK.

* What is the nuaber of the
first and the last ~
location in the Color Coai,uter.

The first lll!El"Y location is
ntaber I; the lHt ...-y
location is 1IUllber 65,535.

* HON ur,y bil'lilry digits are
needed to r'epl esrnt the range 8
to 65,535?

There are 65,536 pouible
coabinatiOM of 16 bib needed
to Npreunt the range e to
65,535.

• Write the ncaber I in 16
binary digits.

The nUllblr zero in biNrY is
* What is 1111 1111 1111 1M in
hexadeciul?

---- in hna
deciaal is -·

• What is the nUllber 65,535 in
binary digits? Hint: it is the
largest 1IUllber that can be
lff'itten using 16 bits.

65,535 in binary is 1111 1111
11111111.

• What is 1111 1111 1111 1111 in
hexadeciul?

1111 1111 1111 1111 in hexa-
deciaal is tFFFF.

t The 6819 ■icropi"OC151(1r has a
64K ..-y ■ap. HcM uny bytes
is 64K?

64K is 65,536 bytes 164K titES
1,124 bytes per K>

20 Lesson 3

You have just identified the 6809 processor's address
range. Knowing now that the 6809's addresses run from
$0000 to SFFFF, you are ready to discover how the 6809
MPU distinguishes instructions it performs from the data
it uses.

The 6809 goes through a fixed set of electronic actions
whenever the power is turned on, or whenever the reset
switch is pressed. The processor first does up its internal
housekeeping. It requests the contents of memory at
address SFFFE, and following that, it requests the contents
of memory at address $FFFF.

Follow carefully here. The two bytes loaded from memory
locations SFFFE and $FFFF are concatenated - that is,
combined end-to-end. A byte is 8 bits; two bytes end-to
end are 16 bits. 16 bits happens to be the same size as the
6809 processor's address ... something that didn't happen
by chance. In fact, those two bytes are used as the address
of the memory location containing the very first instruction
the microprocessor will follow.

I'll repeat that. When the power is turned on, the 6809
fetches the two bytes stored at memory locations $FFFE
and $FFFF. The processor concatenates them, producing a
16-bit value. That value is used as an address, and at that
address is found the first instruction 6809 must execute .

That address is put in a special 16-bit register called the
program counter. From that point on, until the power is
turned off, the program counter, called the PC, always
keeps track of the next instruction the processor is going to
follow. If the programmer has done a good job, the
computer will begin executing the thousands of
instructions that make up its language or operating
system.

I think it's time for a summary.

I'm using microprocessor, MPU, processor, central
processing unit, and CPU interchangeably. Inside the 6809
MPU are two arithmetic logic units, the AL Us, which each
hold a single 8-bit word of data and perform simple
calculations on that byte of data. The ALU s, also called
accumulators, are identified as the A and B registers.

The registers load bytes of data from memory a:nd store
bytes of data in memory. There are 65,536 memory
locations available to the 6809 MPU, and from them it gets
both its instructions and data. The instruction decoder
inside the MPU tells it what operations to perform in
response to an instruction byte loaded from memory. The
program counter register, the PC, keeps track of which
instructions are next in line.

If you feel comfortable with this information, please
continue with this tape. If any of it's shaky, start this lesson
again; you might want to follow along in the text while
reviewing the lesson.

l
iJ

fu[!JE,R__

i

&
j \i/11111111

4} 11lffl

31211
31ZD
Jllff
,IIE
~IID'-
~fill I~
311?,. ~ or

i - ~ :;.i

~IF

What I'm discussing in this lesson is the 6809's
architecture. That's the term for the logical organization of
the processor. The water's about to get deeper, and I'm
going to throw you in, so get ready to swim. Along with your
documentation, there is a Motorola data booklet for the
MC6809E processor. Find the booklet, and turn to page 5.
Data booklets like these are meant for programming and
hardware professionals, so much of it will initially appear
incomprehensible. That fogginess is a trademark of data
sheets.

We'll be concerned with the last two paragraphs on page 4.
the first few on page 5, and most importantly Figure 5. Take
a moment to locate those.

Look first at Figure 5. So far, you've found out about the
program counter (PC) and the A and B accumulators. As
you can see, there are actually several more registers.

The X and Y registers are effectively identical. They are
called "index registers" because they act sort of like your
index finger in a card file, pointing to a specific entry.
Remember that registers are special data storage locations
inside the processor. Each of these two index registers is 16
bits in size. Because X and Y are 16 bits, they can be used to
point to a specific memory location, that is, to be indexed to
that 16-bit address. Indexing is its most common function.
but not its only use; here's an example of indexing.

Let's say there's a message to be displayed on the screen.
I'll point my Y register to the video screen memory, and
point my X register to the memory that contains the
message. My program can then tell the A accumulator
register to get the byte of data from the memory location
indexed by X and put it in the memory location indexed by
Y. Load A accumulator from memory indexed by X, store A
accumulator to memory indexed by Y. The first letter of the
message is then displayed. It's like telephone directory
assistance. The operator indexes the number, the
telephone transmits it, and you index it on your phone pad.
If I increment both X and Y after displaying the first letter
of the message - that is, ifI add one to the present values of
X and Y - they will be pointing to the next locations in
memory. I can have the program repeat the process of
loading from memory indexed by X and storing to memory
indexed by Y. That would get the next letter oft he message
and display it in the next position on the screen. Load A
from X-indexed memory, store A to Y-indexed memory.

I've got a program to do that.

Learning the

Index Registers

* The 6889 ■icroprocessor has a
MK tM!IIOl"Y 11ap. lttat is its
address range in deciaal, in
binary, and in hexadeciaal.

The map runs froll I to 65, 535 in
deciaal, fro■ 8110 INI INI
8lll8 to 1111 1111 1111 1111 in
binary, and fro■ Mll8 to $FFFF

in he11adeciul.

* A byte of infoniation is eight
bits; an address is 16 bits.
HoN ■any bytes are needed to
describe an address.

TMO bytes describe an address.

1 What part of the processor
deter■ines Nhat it ~ust do?

The instruction decoder.

+ Where does the instruction
decoder ~et its instructions?

Fro111 llll!IIOry.

* What ■e■ory locations does the
orocessor use "'1en the 001er is
turned on?

It uses SFFFE and SFFFF "'1en the
aower 1s turned on.

1 What does the orocessor get
fl"OII MeMOry location SFFFE?

One byte.

* What does the proct!fiOr get
froa ae■ory location SFFFF'.l

One byte.

* The orocessor puts the bytes
from 111EMOry locations $FFFE and
SFFFF together. lillat is the
process called, and Nhat is the
result in this case?

The process is called
concatenation, and the result is
a t1«rbyte n1111ber.

1 How aany bits is tMO bytes?

16 bi ts.

21

Displaying a message

• I-bl does the processor use the
16-bit nllllber obtained by
concatenating the contents of
M!IIOrY locations SFFFE and
SFFFF?

It uses the 16-bit n1111ber as an
address.

• What is the 16-bit I\Ullbel" the
address of?

The 16-bit nUllber is the address
of the first instruction the
processor wi 11 execute.

• lrllat part of the processor
uses this instruction?

The instruction decoder.

• What keeps
instructions
processor?

track of
in the

The progru counter.

the
6889

t What is the progru counter
and lllhat is its shorthand flalll!?

The orogra■ counter is a 16-bit
register that contains the
address of a COllf)Uter
instruction. Its shol"thand naw
is PC.

t Name the index registers.

X arid Y.

t lrllat is the size of the X and
Y index registers?

X and Y are each 16 bits in
size.

t What is the aost coaon
function of the X and Y index
registers?

To index an addl"tlss; that is, to
hold the nUllber of a EIIOry
location for reference.

t What is the starting address
of the noraal video display?

It starts at 1,024.

22 Lesson 3

Program #5, a BASIC program. Turn on the power of your Ex
tended Color BASIC computer. When the cursor appears. type
CLOAD and press ENTER. The computer will search (S) and
find (F). When the cursor reappears. LIST this program. If the
program is not similar to the listing, or if an l/0 error occurs, re
wind to the start of the program and try again. For severe load
ing problems. see the Appendix.

10 DATA 8E. 06, ~)0
20 DATF1 i 0. 8E. 0<+. Q)0
30 DATA A6.80
40 DATA A7.A0
50 DATA 8C.08,00
£,0 DATA 25.F7
70 DATA 39
l.10 REM LOAD X WITrl $0£,00 ,'1ESSGE
120 REM LOAD y WITH $0400 SCREEN
130 REM LOAD A FROM X-INDEXED,
140 REM STORE A TO Y·-I NDEXED.
150 REIY! COMPARE IF X 15 $0800
l 60 REM BRANCH BACK IF NOT
200 FOR N = 16000 TO 16016
210 READ A$
220 A=VAL("&H"+A$l
230 POKEN,A
240 NEXT
250 CLS

AND INCREMENT X BY 1
AND INCREMENT Y BY

260 PRINT"THE MESSAGE YOU ARE READING WAS ORIGINALLY DISPLAYED B
Y PRINTINGIT NORMALLY USING BASIC. IT CANBE RECALLED AT ANY TIM
E -- ONCE THE BASIC PROGRAM HAS BEEN RUN -- BY TYPING "CHR$(34l
"EXEC"CHR$(34> "."
270 PRINT"THE BASIC PROGRAM PLACED INTO MEMORY THE 6809 MACHIN
E LANGUAGEPROGRAM DESCRIBED IN LESSON 3. IN THIS PROGRAM, INDEX

REGISTERSX ANDY ARE USED TO TRANSFER A GROUP OF BYTES (IN THI
S CASE ORDINARY ASCII CHARACTERS) FROM";
280 PRINT"ELSEWHERE IN MEMORY DIRECTLY TO THE SCREEN MEMORY."
290 PRINT" "STRING$(30,191l;
300 FOR N = &H400 TO &H5FF
310 POKEN+&H200,PEEK(Nl
320 NEXT
330 CLS
340 FORN=1T01000:NEXT
350 EXEC16000
999 GOT0999

RUN this program. A message printed by BASIC will
appear on the screen, the screen will be cleared, and the
message will appear again, this time printed by the machine
language program I've just described. Now I feel bound to
prove that I'm not fooling you with some fancy BASIC
manipulations. Once you have RUN the program the first
time, hit <BREAK> and then delete it. Type NEW to
clear out the program. Now, I say smugly, type EXEC -
that's E-X-E-C - and hit <ENTER>. The message
reappears, partly obliterated by an "OK".

To see the whole thing, enter these two lines. Line 10.
EXEC. Line 20. GOTO 20. That's it. Line 10. EXEC. Line
20. GOTO 20. Now RUN that. There's the message.

Have some fun. Try changing the program. Hit
<BREAK>. POKE 16001,128 <ENTER>. POKE
16012,130. <ENTER>. Then RUN. You can POKE

----+

16001 with any number from Oto 253. POKE 16012 with
the previous number plus 2. For example, Hit <BREAK>.
POKE 16001,0 <ENTER>. POKE 16012,2 <ENTER>.
RUN again. Take a break here to load and RUN the next
program. When you RUN it, notice that it expects you to
input a hexadecimal number this time.

Program #6, a BASIC program. Turn on the power of your Ex
tended Color BASIC computer. When the cursor appears, type
CLOAD and press ENTER. The computer will search (S) and
find (F). When the cursor reappears, LIST this program. If the
program is not similar to the listing, or if an 1/0 error occurs. re
wind to the start of the program and try again. For severe load
ing problems, see the Appendix.

Condition codes

* That nllllber ..as deciul since
it didn't have a dollar sign in
front of it. lllat is that
starting
hexadeciaal?

address

1,204 in hexadeciaal is Sl488.

in

* If the X register is indexed
to an ASCII character in IINOl"Y
and the Y register is indexed to
the video display at Sl488, how
can the A aecu11ulator get the
111eSsage to the screen?

10
20
30
40
50
60
70
80
'30

The A accuaulator can load the

INPUT II MEMORY LOCATION (00 TO FE) 11 = A$ ~~uet TI"Ollthelll!IIOl"Yl indet xed by X
_ · .,., s ore va ue o lll!IIOry

A==VAL ("&·H"+A$): IFA> i.::::540RA (0THEN10 indexed by Y.
POKE16001,A
IFA=254THENB=0ELSEB=A+2
POKE16012,B
EXEC
FORN==1TO1000:NEXT
CLS
GOTO10

You've RUN the program, and seen a number of curious
screen displays. What you have done is simple. You
redirected the X register, which was pointing to the
message I stored in memory, to somewhere else in memory.
You can see that it takes very few changes to spy anywhere
into memory with even that little machine language
program.

Return to Figure 5 in the MC6809E data booklet. At this
point, I have introduced the A and B accumulators, the
program counter PC, and the X and Y index registers.
Again, if you feel you might need to review, this is the time
to do it.

Turn your attention to Figure 5, and notice the bottom
register marked CC - the condition codes. This special
register gives the processor its limited intelligence. Also
called the "flags", the condition code register contains bit
by-bit information about the processor's activities ... what
the processor does, and what the results indicate. In the
beginning, the flags of most interest will be the Carry/
Borrow Flag and the Zero Flag.

In this lesson's first program example, I had the A
accumulator load a value from memory indexed by X, and
store that value in memory indexed by Y. My program did
that for exactly one screen full of information - 512 bytes.
I should say that my program did that for exactly hex 200
bytes, which is an easier number to work with.

How did my program know to stop after $200 bytes? Turn

* Hoit does it do this?

It follONS instructions.

* lllere does it get the
instructions?

It gets the instructions fl"OII
lf!IIOl"y.

• What is inother nae for the
condition codes?

The flags.

* lllat inforsation is held by
the cond i hon codes?

Bit-by-bit inforaation about the
!ll"OCeSSOr's activities.

* lllat activities is the
!lroce5SOI" engaged in?

The instructions it is
following.

1 lrllat keeps track of the
instructions it is follONing?

The prograa counter, or PC.

* NaN, Nhere Mere Ne?

Talking about the condition
codes, or fl 1195.

to your documentation book for this lesson, and follow L Qt"\()

Learning the r:x.>J7 23

Compares

f <II yes. lllat dolls the
instruct iOft •coap,1re• do?

It coapares the contents of a
register against another value.

* In llhat •Y does it coapar-.?

It ccapares by perforaing a
•ghost• subtraction.

f What don the ghost
subtraciiOft do?

It sets the condition codes (or
flags> according to the results
of the ghost subtraction.

* lllat are the results and the
condition rodes if the
register's value is greater than
the value being coapared Nith?

If the register's value is
greater than the value being
~red Ni th, the ghost
subtraction causes no borrolf and
the result is not zero. The
carry/borroN and zero flag is
turned off.

1 What are the results and
condition rodes if the
register's value is the SAE as
the value being coapared Nith?

There is no borrow, but the
result of the ghost subtraction
is zero. The carry/borroN flag
is off, but the zero flag turns
on.

1 Well, then, Nhat if the
register's value is less than
the value being CCJIIP,ired 1dth?

The result isn't zero, but the
ghost subtraction dellimds a
•bcJrTow•. The carry/borroN flag
goes on, but the zero flag is
off.

1 So hoN do you ue this
infOl"llation?

By learning the principles in
this lesson wry •11 before
going on to the next lesson.

24 Lesson 3

along with me as I describe a little more precisely how this
program operates.

Step 1. Load X register with the immediate
value of $0600. This is the address where the
message is stored in memory.

Step 2. Load Y register with the immediate
value of $0400. This is the address where the
· screen begins on the Color Computer.

Step 3. Load A accumulator from memory
indexed by X, and automatically increment the
X register by one.

Step 4. Store A accumulator to memory
indexed by Y, and automatically increment the
Y register by one.

At the end of this step, there is a letter on the screen. X,
having been incremented, now indexes the second
character of the message, and Y, also having been
incremented, indexes the second location on the screen.
What I would like the program to do is somehow check to
see if the job is finished. Here are the questions to
consider:

When would the job be finished? When the screen is full.
When is the screen full? If Y has been incremented, one
step at a time, past the last screen position, and X has been
incremented, one step at a time, past the last letter of the
message. When is X past the last letter of the message?
When it reaches $0800.

So the actions of Step 5 becomes clear.

Step 5. Compare X register to the immediate
value $0800.

"Compare" is a microprocessor instruction which does
what might be called a "ghost" subtraction. The only
purpose of the ghost subtraction's result is to discover if
the value being compared with is higher, lower, or equal to
the register being compared to. Both original values remain
unchanged - no actual result has been produced- but the
result of this comparison can be discovered by the 6809
reading the condition codes. Here's how it goes:

If the register's value is greater than the value being
compared with, then the ghost subtraction results in a non
zero, positive number. Both the carry/borrow flag and the
zero flag are reset - turned off, that is.

If the register's value is equal to the value being compared
with, then the result of the ghost subtraction is zero, turning
on the zero flag but leaving the carry/borrow flag off.

And finally, if the register's value is less than the value
being compared with, then the ghost subtraction results in

a negative (hut non-zero) number. The carry/borrow flag
goes on, the zero flag goes off.

So how does it fit here? At this point, I'm going to do
something I like to avoid, and that's to explain assembly
language using similar BASIC commands.

Program 117, a BASIC program. Turn on the power of your Ex
tended Color BASIC computer. When the cursor appears. type
CLOAD and press ENTER. The computer will search (S) and
find (F). When the cursor reappears, LIST this program. If the
program is not similar to the listing. or if an 1/0 error occurs. re
wind to the start of the program and try again. For severe load
ing problems, see the Appendix.

10 X = &H0500
20 y = &H0400
30 A = PEEK(X) : X = X + 1
40 POKE Y,A : y = y + 1
50 IF X 0 &H0800 THEN 30
60 END

This is a short program, and I'd like you to list it before you
run it. In case you've never used BASIC' s peculiar no tat ion
for hexadecimal, it's "ampersand H''. Now in the 6809, X. Y
and A registers are not variables. I'm using those names
here just for visual effect. Rut follow this through. In line I 0.
Xis $0600, the first memory location of the message. In line
20, Y is $0400, the first memory location of the scn•en. In
line :rn, A takes the value indexed by X - here I use PEEK
to create the same effect - and Xis incremented by one. In
line 40, A stores its value at the location indexed h:v Y -
here I use POKE to create that effect - and Y i:,;
incremented hy one. In line 50, the compare is done. X is
compared with $0800; if it isn't $0800, then the program
isn't done, and it branches back to line :rn.

RUN the program. It does, quite slowly, exactly what the
machine language program did. To finish this lesson, load
and examine the source code that follows on this tape.

Program #8, an EDTASM + program. Insert the EDTASM +
cartridge, and turn on the power to your computer. When the
cursor appears, type L and press ENTER The computer will
search (S) and find (F). When the cursor reappears. display the
program. Type P#: • and press ENTER. If the right-hand side of
the program is not similar to the listing. or if an 1/0 error occurs.
rewind to the program's start and try again. For severe loading
problems. see the Appendix.

00100
00110
00120 LOOP
00130
00140
00150
00160
00170

LDX
LDY
LDA
STA
CMPX
BNE
RTS
END

#$0600
#$0400
'X+
,Y+
#$0800
LOOP

Learning the

Registers vs. variables

RevietiJ:

• What does CPU aean; Nhat CPU
does the Color Coaputer use?

Central Processing Unit; the
Color Computer uses a 68e9 CPU.

* What are the teras for one
binary digit and for eight
bir1ary digits?

The teras are bit and byte.

* What does ALU aean, and what
kinds of arithlletic does the
6809's ALU !)E!rfor11?

ALU 111eans Arithlletic Logic Unit,
and the 6889's ALU oerforMS
addition, subtractior,, multi pli
cation, AND, OR, NOT, Exclusive
OR, incre11enting, decrementing,
anc corepari son.

* How many Al.Us does the fa9
have, and Nhat are they called?

The 6809 has two ALUs called the
H anc, B accu■ulators.

* Where do the acc1111ulators get
and save their ir,foraatlori, and
what are the terMS for getting
and saving data?

The accu■ulators the information
from other registers and from
Met110ry; the process is loading
and storing data.

* What is the address range of
the 6809 CPU in hexadecima!'

The address range is Sil000 to
5r,:::F.

* How aoes the orocessor get
started, and what keer,s track of
its intructiorrs'

By loading and concatenating the
data at 111et110ry 1ocations iFFFE
ar,d $FF~! and usir,g the result
as the address of its first
i r,struct ion. The ::irogram
counter, or PC, keeos track of
t>ie instructions.

6fD9 25

t What are the index re!!isters,
what do they hold, and what are
they for?

The index registers are X and Y,
they hold 16 bits each, and they
are most often used to hold the
address of a ftlelllOry location.

* lillat are the condition codes'

The condition codes are bits
that hold information about the
orocessor's activities.

* 6i ve another nae for -~he
condition codes, and naae two of
the codes.

Condition codes are also cal.led
flags; carry/borrow and zero are
condition codes.

26 Lesson 3

•
I promised to throw you in the swim during that last lesson,
but sorry I had to leave you swimming at the end of it.
Here's a short review:

The 6809 microprocessor contains several registers. Each
register is in effect a memory slot inside the processor, but
each register has a uniquely defined task. The A and B
accumulators are 8-bit arithmetic logic units, or ALUs,
capable of performing simple arithmetic and logical
operations. The X and Y registers are 16-bit registers used
mainly to index, that is to point to, addresses within the
processor's memory range. The PC, the program counter,
points to the memory address containing the next
instruction that the processor is the act upon.

The address range of the 6809 runs from $0000 to $FFFF, a
total of 65,536 locations. When the power is turned on, the
processor fetches the information stored in the top two
bytes of memory, concatenates it, and places it in the
program counter. The processor obtains its first
instructions from there, the instruction decoder begins
translating the instructions into actions, and the computing
begins.

As an example of this much of the 6809's architecture, I
presented a short program. In that example, the X register
was given the address of - that is, indexed to - the first
character of an ASCII message stored in memory, and the
Y register was indexed to the first display location in video
memory. The A accumulator loaded a value from memory
indexed by X, and stored that value in memory indexed by
Y, causing an ASCII character equivalent to the stored
value to appear on the screen.

At the end of the lesson, I had introduced the flags, formally
known as the condition code register, whose purpose is to
provide simple indications about the most recent
instructions executed by the 6809 processor. In this case,
by comparing the value in the X register to a known value,
and subsequently checking the condition codes, it is
possible to determine when the complete message has

Learning the

Machine language orogra11111ing
actually begins rn this lesson.
You'll be needing your
editor/asset1bler EDTASIII+ J'lOIII, so
be sure to have your copy before
beginning this session.

1 What is the addr~.s range of
the 6809 processor, in hex.

$0000 to $FFFF

* How aany bytes does the A
accuaulator hold?

One byte.

1 How many bytes does the X
register hold?

Two bytes.

* X and Y are Mhat kind of
registers? Why?

Index registers; because they
index an address in 11e110ry.

* lliat does the orograM counter
!PC) indicate?

The 11e110ry address containir1Q
the next instruction the
processor is to act upon.

1 What is the formal name for
the flags'

The condition codes, or
condition code register.

6PD9
the

27

Mnenmnics

·• There is a set of
descriotiicms of
conands; what are
descrioti,ons called?

verbal
processor

thE!Se

Verbal descriptions of proces!;or
eOMands ,are called ■neaonics.

·f How
!Jrooounced?

is • 11r,emon i cs•

It is pro1oounced nuh--!t!ON-ix.

•• What do ■nellOnics represent~'

l~rocessor COllfllands.

* What i !S the proper naae for a
1Jrocessor coaand?

fl oroce<s.sor co..and is an
i)peration code, or opcode.

it One orocessor coaand 1s

,~ri tten L!DX. What does this
111ean?

I.DX means "lCtad X registerM.

if What 1s LDX'.l

I.DX is an opcode ■,eaning "load X
register" ..

,1 What is STA? What does STA
l"i:!uresent'i What does STA 111ec1r1'.l

IJhat acti@ does 1t cause?

STA 1 s a 1nne11cmic; it represer,ts
;in oocode; the 1Docode mea.ns
"store A ,i!CCu■ulator•; it cauc;,es
the contents of the A
,1ccumulatcir to be storer' ir1

11e111ory.

if Describe CMPX. What 1s it'.!

•lhat does it repr1esent' liMiat
does it 111ean? Wh,at action does
it cause?

CMPX i!;, a 111ne111c.iniq it
represent!, an opc~de; the opcooe
1ieans "c<:i111oare X register"; it
c:auses the value of the X
1-egister to be cO!llpared with
another Villue ..

Lesson 4

been displayed. I used an example in BAS[C to outline the
process, and finished by having you load and examine a
mnemonic source code. Load that program again ~ it
follows on this tape ~~ and then ['I! talk about mnemonics
and source code, and what they mean.

Program #8. an EDT ASM + program. Insert the EDTASM +
cartridge, and tu.rn on the power to your computer. When the
cursor appears. type L and press ENTER. The compuller will
search (S) and find (F). When the cursor reappears. display the
program. Type P#: • and press ENTER. If the ri1ght-hand side of
the program is not similar to the listing. or if an 1/0 error occurs.
rewind to the program's st,~rt and try again. For severe loading
problems. see the Appendix.

001'210 L.DX #$0b00
1210110 LDY #$0400
00120 LOOP LDA • X+
0013121 ~;TA • Y+
00140 CMPX #$0H00
00150 BNE LOOP
00160 fHS
00170 END

\Ve'll spend a session learning to use the editor/assembler
a little later. For the moment, print this listing on the screen
hy typing P followed by ENTER. What you see should
almost look familiar from the descriptions of the processor
instructions you've been getting from me.

What you're looking at are mnemonics, somewhat verbal
descriptions of processor commands. I'll read the
commands in the third column. Load X, Load Y, Load A,
Store A, Compare X, Branch if Not Equal, Return from
Subroutine. One more timu, just for familiarity. Load X,
Load Y, Load A .. Store A, Compare X, Branch if Not Equal,
Return from Subroutine. These commands are called
operation codes, or Op Codes.

In the fourth coilumn you'll see the Operands, those values
and indications used hy the Op Codes. I'll read the third
and fourth columns togpther, which provides a complete
description of each 6809 processor instruction in turn.
Here goes.

• Load :1
(with the immediate value

hexadecimal 0600

• Load Y with the immediate \·alue
hexadecimal 0400

• Load A with the value from memory
indexed hy X, and increment X by one

• Store /\ to the value in memory indexed by
Y, and increment Y by one

MYCIX>E-

A (@d
B @J
t@
r[EJ
E-[AJ
F~

6-fibl
~~

1~
j 00
K@

• Compare X to the immediate value of
hexadecimal 0800

• Branch if the result of the previous
computation was not zero, that is, if not equal,
back to the instruction labeled LOOP.

• Return from subroutine. The return is
used here only because this program is a
machine-language subroutine we have used
from BASIC. This RTS gets the processor
back to BASIC.

I've used some new terms. "Immediate" value is one of
them, one which I slipped into the previous lesson.
"Immediate" is a piece of jargon I'm not fond of, but it's the
formal term meaning "use this actual number". In line 100,
that means Load X with the number hex 0600. The num her
sign preceding the value is used to indicate an immediate
operand.

The rest of the listing should look fairly straightforward.
The plus signs after X and Y mean automatically increment
those registers by one. There are also ways of incrementing
by two, or decrementing by one or two. Later for that.

But one thing might look peculiar, and that's the comma
sitting in front of the X and Y in lines 120 and 130. To my
eyes, that comma's a beautiful thing; it gives me computing
power. Line 120 could have been written another way: LDA
0,X+ ... which means, Load A with the value in memory
indexed by the X register plus an offset of zero. One more
time. LDA0,X+. Load A with the value in memory indexed
by the X register plus an offset.

In this program, the offset value is an implied zero. It's
implied by leaving it out. In effect, the A accumulator gets
its value simply from the memory location indexed by the X
register. If X is $0600, A loads its value from $0600. No
problem.

But that offset can be an astoundingly powerful thing. Most
kids have written letters to friends in code. They mix up the
letters and ever so seriously send the message. Cryptogram
puzzles work that way, too. Using the 6809's amazing
indexed-offset technique, encoding - and decoding -
that kind of message becomes a snap. I remember making
off with a Scrabble set to write my cryptograms. I would
sort out one alphabet of Scrabble tiles, and then write out
the letters of the alphabet in order on a large sheet of paper.
Then I'd shake up the letters and put them down on my
paper, one at a time. A might be X, B would be L, C would
turn into N, who knows. That would be my code. I would
'hTite my message and carefully code it, letter by letter.

Get a pencil and a large piece of paper. In one line across the
paper, write the letters of the alphabet in a mixed-up order.
When you've finished that, write, in order, the hex numbers
$00 to $19 above those letters. The letters will be out of

Learning the

Immediate & Offset

• What is the r1a11e for a machine
instruction?

An opcode.

* lllat is the naE for a value
or indication used by an
opcode?

An operand.

* Read the lll'll!IIOnic LOX.

load X register.

* Read the lll'll!IIOnic LOX ~-

Load X
iaediate
1688.

register
value

with the
hexadeci.al

• lllat does iaediate 11ean?

Use the actual value, the value
iaediately follONing the
opcode.

t What syllbol is used to
indicate an iaediate operand?

The number sign or crosshatch
!ll,

* What symbol is used to
indicate hexadeciaal notation.

The dollar sign (S).

* Write the llnl!IIOnic for •load
the Y register Mith the
iaediate value hexadeci11al
1234•.

LOY ff1234

t Write the ll!l'lellOl'lic for the
instruction •1oad the X register
Mith the ill!IIE!diate value a•

LOX te or
LOX INN or
LOX HIM or

* What does the ccaa indicate
in the IIN!llonic lDA ,X?

The ca.a indicates an offset.

60CJ9 29

]Labels, constants ,ilnd USR

• lrllat is the offset in the
■1nHOnic LOA , X " Why?

Tl~e offset is zero because it is
n,ot specified.

• lrllat does the coaa indicate
in the lfflNOflic LDB $43, Y ?'

Tl~e coua indicates an offse!t.

t What is the offset in the
■1neaonic LOB $43, Y ?

The offset is $43.

1 Write the lll'lell01nic for- the
i 1nstruction "load the A
~::CUlll.llator with ■l:!IIOry indlex1!d
by X, with an offset of
hexadec111al S9C".

LUA $9C, X

• lrllat action does the ame■ionitc
oocode LDX isa:ct perfor11?

H loads the X register with the
i1aediate value he,cacieci111c1l
~:CCC.

1 What action does the 111ne1ronic
01ocode LDA S33, X perfor11?

H loads the A accu11Ulator wit:h
the value found at 11N10ry
i1ridexed by X, with an offset c,f
ht~xadeci■al S33.

1 You find these instructio~5:
Ll)X ffCCOC
LiDA $331 X
F1~ what fllellOry location does A
g1et its data?

~m, that is, SCCCC offse,t by
s:33.

• What is the ASCII value, for
the letter A <in hex)?

U1?percase A is $41, l0Nerea1se a
i!S $61

1 What is the ASCII value, for
the letter Z (in hex)?

U1ppercase Z is SSA, lowerca1se z
i!i $6A.

order, but the hex numbers will be in order. Turn this tape
hack on when you're finished; turn the tape off now.

Now you've got ~;16 rearranged letters and 26 hex numbers
in order. Above letter $00 write "X Register". Below letter
$00 write ·'CIPHER". CIPHER is a conveni.ence label that
will identify the start of the coded alphabet. That's "X
Register" above letter $00 and the label "CIPHER" below
letter $00.

And now to the pm gram. The idea here is to be able, given a
value from somev,here, to extract the coded value from the
table and provide it to the user.

Let's say the value is in ASCII, a normal state of affairs for
these machines. Letter A is ASCII hex 41, letter Z is hex SA.

The question is how to get from ASCII values $41 through
$SA to the encrypted values in the table, which are
numbered $00 through S,19. There's really no mystery or
wonder to this part. If you subtract $41 from $41, you get
$00. Subtract $41 from !SSA, you get $19.

So the ASCII values come in from somewhere, you subtract
$41. and the n•stilting number is the position of the
pncrypted value in the table. You extract the value from
that position, and the encoding is done.

There's a program to write now, during which I'm going to
introduce some new parts of the 6809 architecture. This
would be a good time to take a break and review 1.vhat's
been done so far. When you've finished rnviewing, open
your Extended Color BASIC manual, and read pages 145,
146, and all except the last paragraph on page 147. Don't
worry if you dori"t understand all of it; I'll explain later.

Plec1se rec1d pc1sws 145, 146 and 147 m the Extended Color
BASIC manu,1I. This is the beginning of the chapter called
··M,ichine Lmguc.'.ge Routines"'.

The program you have to create will accept an ASCII value,
subtract a constant, and use the result to pluck a number
from a table of encrypted letters.

You'll actually be creating a working program, so you need
a jumping off place. BASIC is good. You can transfer a
value from BASIC to machine language; :it's part of the
USR command. lln your Extended Color BASIC book, the
USR function was described. The "argument" they're
talking about is the value transferried to a machine language
program from BASIC, and that will be the ASCII value you
are going to encrypt. Once control is given over to your
machine language program from BASIC, your program
must obtain that ASCII value.

When USR is executed by BASIC, the first step is done for

B 'jz_ - 't 1
C, .,,, - 4/ z_

(7 'f<f - 'ti ?,

E- 'f5 - 41 'I
F 'fio - 'fl

~fuu..

\~'\~~~
~l'OLL

i----- !\
I:------~-----,

~'l\t-

you. The value is waiting in memory, and part of BASIC's
own machine language commands are set up for your use.
The Extended Color BASIC manual described this
process of transferring your integer ASCII value by saying,
"It's possible to force the argument to an integer by calling
BASIC's INTCNV routine from the USR function
(INTCNV = X'B3ED')." I'll tell you what that means. It
means you can transfer an integer from BASIC to a
machine language program by using a part of BASIC found
at address $B3ED. Your program must consider the chunk
of BASIC beginning at $B3ED to be its own subroutine.

Subroutines in machine language are almost identical in
principle to the GOSUBs in BASIC, except that you have to
know more about them. Primarily, you have to know about
the stack. Return to your MC6809E data booklet, and look
again at Figure 4 on page 5. Notice that below the X and Y
registers are two registers marked User Stack Pointer and
Hardware Stack Pointer.

The stack is one of the best- and worst-named registers in
microprocessor programming. It's well named because it is,
in fact, a stack full of bytes being temporarily stored. You
put things on the stack in first-in, last-out order. That is, it's
like that pile of magazines on your coffee table. The first
magazine you stacked there is the last magazine that gets
taken off the table because everything else is on top. Go
look. I bet you didn't realize there was still a January 197 5
Reader's Digest underneath all that.

Seriously, the stack is a register which points to a memory
location. The address being pointed to changes as the stack
grows or shrinks. But the stack is badly named because it
works upside-down. It's what's known as a "push-down"
stack. Every time I push a byte on the stack, the address
decreases by one. It's like stacking those magazines on the
ceiling. For the moment, just remember first-in, last-out.

The reason you have to know about the stack to use a
subroutine is because it is on the stack where the 6809
processor puts the present address in its PC register - the
program counter~ when it jumps to a subroutine. It breaks
the address into two bytes of data, pushes the two-byte
address on the stack, and puts the address of the
subroutine in the program counter. The next instruction, so
far as the program counter knows, is now at the beginning of
the subroutine! It goes along, executing instructions in the
subroutine, until it comes across the command RTS (return
from subroutine). The instruction decoder pull,s that
original two-byte address off the stack, reconstructs it, puts
it in the program counter, and presto! you're back where
you left off in the original program.

Some jargon now. This is known as a subroutine call, and its
mnemonic is JSR - jump to subroutine. As I said, it works
just like a BASIC GOSUB, and like BASIC, you can nest
your subroutines - call one from inside another from
inside another. But here's where the difference shows up.
You don't have to keep track of much in BASIC - it

Learning the

The Stack
• How Nny letters are there in
the alphabet (in hexl?

There are S1A letters in the
alphabet.

• If A is considered letter
n1111ber $811 Nhat is letter Z?

letter ntillber $19.

• If the X 1"9gister points to a
HIIOI")' location that contains a
soecial code for letter A
(letter flUllber $81), !lll"ite a
single lll'll!IIOnic ccaand to load
the A acc1111Ulator with the
special code for letter z.

lDA $19,X

• l-loN does BASIC transfer a
value to storage for use by a
aachine-language progra?

With the USR craand.

• What is needed with the I.JSR
e<aand to transfer a value to
storage for use by a
aachine-language progra11?

It needs an arg1111e11t follONing
the coaand.

• If Mis a BASIC variable, and
the value to be transferred is
149, ir,rite a USR co.and to
transfer a value to a
aachine-language prograa.

M=USRU49}

• At Nhat lll!IIOl"Y location does
BASIC' s integer conversion
routine begin?

The integer conversion
subroutine starts at SB3ED.

I What does the lll'll!IIOflic JSR
11ean?

J1111p to subroutine.

• lrllat register does a Jllllp to
subroutine require?

The stack.

6PJJ9 31

Pushi111g ancll pulling

t Why does a Juap to subro11ti1r1e
require the stack?

To store the currerit positic)n of
the progra counter· to use as a
return adcllress.

t litlat type of stac::k is fow'ld in
the 6819 processor?

A push-cllONn st.lick; or,, a
first-in last-out !itack.

t litlat c:<aand places the
p,rogra ccmnter on the st1elc?

JSR, JIIIIP to subl"0\1tine.

t What co.and plat"eS title
o,riginal address back in tile
D1rogra cciunter?

~ITS, retur-n froa subroutine ..

t· What ac~tion d01!S the roaand
JSR tB3ED descibe?

JUMP to subrout i rie at IIIP.IIO'ry
location 1iB3ED.

1 What is the proa!Ss of placing
a value 0\'1 the stac::k called?

P1ushing.

* What is the proci!SS of hking
a value off the st.1ck called?

Pullirig.

1 What dces the progra counter
(PC) keep track of'.I

The next inst:ruction the
processor is going to foll01~.

t At address $1NI, a ccaand is
encountercl Nhose lll'INDnic i !t JSR
tBJED. Upon exE!Cution o1f JSR
tBJED, liltliit value i.s pushed '"'n
the stack'/'

$11113.

1 How IWl)I' bytes are pushed on·to
the stack liltlen JrsR $B3El) is
executed?

TMO.

32 l.esson. 4

"cleans up" for you. But you've got to know where your
machine language stack is, because it's also used Ito save
information for later usie.

Refer again to the Extended Color BASIC manual, on page
147, entitled "Returning to BASIC from a USR Function".
It states, "The values of A, B, X and CC registers need not
be preserved by the USR function." That implies that the
value in the Y register is needed; how do you save it? By
pushing it on the stack, that's how. Once the two bytes that
make up the 16-bit Y register get pushed on the stack, you
can then modify Y as you wish. Before returning to BASIC,
pull Y from the stack, and off you go.

If you're ahead of me, then you're asking, "which stack?"
The MC6809E data booklet indeed stated that there is
both a User Stack and a Hardware Stack. Subroutine calls
automatically use the Hardware Stack, so that's a certainty.
For pushing and pulling various values, you might use
either of the re1naining stacks. But because of the complex
software in the Color Computer, the User Stack is basically
reserved. For the most part, stay away from it. The
Hardware Stack is what's left.

Now the mnemonics. To push a value on the Hardware
Stack, the mnemonic is "pushstack" - PSHS. The
operand is the set ofregisters you wish to push. To push X,
Y, and A, for example, you would pushstack X YA-- PSHS
X,Y,A.

So where are you? You've got an encrypted ASCII alphabet
in a table. you know you have to save the Y register for
BASIC, you know that $H3ED is the address of the integer
conversion subroutine. Page 14H of the Extended Color
BASIC manual tells you that $B4F4 is the subroutine call
that properly returns an integer value to BASIC. A!ll that's
left is to write the program. If you need it, now's the time to
take a break and review.

Now to the program; do it on paper first. The Y register
must be saved, sopushstack Y - write PSHSY. Now there's
the matter of getting the value waiting in BASIC. Jump to
the subroutine at $B3EICI for that. Write JSR $B3E:D. The
manual tells you that the value from BASIC is returned in
the D register. VVhat' s that? It's merely the name for both A
and B 8-bit accumulators used as if they were a single 16-
bit accumulator, Since the value is an ASCH character, it is
only one byte in size, fitting into the B accumulator.

The encryption table has to be identified. Write Load X
with immediate value CIPHER. Write "LDX" and across
from it write'•# CIPHER". The X register is pointing to the
zeroeth entry in the encrypted ASCII table.

Remember that $41 has to be subtracted from the ASCII
value to get it into the range $00 to $19. Subtract the
immediate value of$41 from the B register; that is, subtract
from B immediate value $41. Write SUBBI #$41.

The magic is next. You know that the B register contains a
value from $00 to $19. You know that X is pointing to the
zeroeth value in the encrypted table. All that's left of the
hard work is to use that information to find the value you
want from the table. That value is found at the address
indexed by X, plus the offset value found in register B.
Load A with value indexed by X offset by B. Write LOA B,X.
You've got it.

The Extended BASIC manual says that to get the value
back to BASIC, it has to be in the D register - remember
that's A and Bused as one register - and $B4F4 has to be
called. That means the value now in A has to be placed in B,
since the B register is the least significant byte of the D
register. There's a transfer instruction for that ... transfer
A to B. Write TFR A,B.

Now A and B contain the same value.You want A to be zero,
so clear it. Write CLRA. It looks like most of the work is
done, so call that routine that gives the value to BASIC.
Write JSR $B4F4. Now get the Y register back (you do
remember you saved the Y register, don't you). Pullstack Y.
Write PULS Y. And finally, it's back to BASIC - return
from subroutine. Write RTS.

There's a tape to load now. When you're done with that,
take a break.

Program #9, an EDTASM+ program. Insert the EDTASM+
cartridge, and turn on the power to your computer. When the
cursor appears, type L and press ENTER. The computer will
search (S) and find (F). When the cursor reappears, display the
program. Type P#: • and press ENTER. If the right-hand side of
the program is not similar to the listing, or if an 1/0 error occurs.
rewind to the program's start and try again. For severe loading
problems, see the Appendix.

00100 CIPHER EQU $3000
00110 ORG $3100
00120 PSHS y

00130 JSR $B3ED
00140 LDX #CIPHER
00150 SUBB #$41
00160 LDA B,X
00170 TFR A,B
00180 CLRA
00190 JSR $B4F4
00200 PULS y

00210 RTS
00220 END

Type P#:*, <repeat> and hit <ENTER>. There are just
a few new things in this listing. Line 100 contains the
notation CIPHER EQU $3000. This line tells the editor/
assembler that the label CIPHER is to mean hex 3000. So
whenever it encounters the label CIPHER, the editor/
assembler knows to work with the value $3000. This is
called an "equate", and it makes life easier for you as a

Leaming the

A+B=D

t Using the previous exaple,
upon a return froa subroutine
lRTS>, Nhat value is placed into
the progras counter <PC>?

t other' than JSR, Nhat
instruction type places a value
on the stack?

Push.

* HoN aany stacks are there in
the 6819?

TNO.

* What are the nnes of the tNO
6819 stacks?

The user stack (U) and the
hardNare stack (S).

t Which stack do subroutines use
autout icall y?

The hardtMre stack.

1 lllat is the mll!IIOnic for the
COMl1'ld to place a value on the
hardNare stack?

Pushstack S, or PSHS.

* Write the saonic for pushing
the X register on the hardN.lre
stack.

PSHS X

* Write the 111lNOnic for pushing
the A accuaulator on the
harc!Nre stack.

PSHS A

* Write the aneaonic for pushing
both the A attUIIUlator and X
register on the hiardware stack.

PSHS A,X

* What is the lfflellOnic for
taking a value off the hardNare
stack?

Pullstack S, or Pll.S.

60CYt 33

Assembly

t Write the .-k for taki~
the X register off the hardware
s1~ack.

Pll.S X

t Write thir Ml!mnic for taking
the A 11C.'C1alator off the
h1rdware stack.

Pll.S A

t Write tht ...-.iic for tlking
the B aocailator, X register
a1rtd Y regi1t11r off the hamtar'I!
shck.

PlllS B, X, Y

* If the value of the X register
i·s $1234 and at address t,1181
the progr• executes JSR SEIJEJ),
Nilat values NOuld be found <In
the stack, froa first in to last
in?

First in is S34, then S12, then
ti9J, then SHI.

t Using the previous example,
111lat NOuld be the result i11fter
t 1hese tNO instructions:
RTS
PLLS Y

The Nin progri1111 NOUld be
rieturned to ($11113 back iri the
!Jl"Ogl"H counter) arid y NOUlcl be
$1234.

t The previous eJtillJ)le u:le Y
equal to the vahie of X. lllat
other instruction could have
■ade Y equal to thE1 value of n

Transfer X to Y <TFR X, Y}

f 'llat don OR6 -~?

ORS lll!iM, origin, the fim
■eaory location used i1n a
■ne■onic listing.

• lllat does ORS t3nl aan?

It aeans the f'irst ll!9D1I')'

location in a •iac:mic listing
is S3F81.

L.esson 4

programmer. You can remember meaningful labels instead
of heaps of numbers.

The other new item is in line 110, reading OFl:G $3100 .. This
means that the origin, or first address, of your program will
be memory locatiion $31 CM:>.

Beyond that and the EWIID statement in line 220, this
program should look exactly like the one you wrote down.
This is the source code for the encryption program -- the
mnemonic representation of the instructions you want the
6809E processor to follow.

Do a few things mechanically now; I want you to tiy the
program, but I'm not ready to explain all about the editor/
assembler. Som<E' of that's for next time. Type NllV[/AO.
I'll repeat that. A/IM/ AO. Hit <ENTER>. A listing should
be scrolling by, and your star prompt will return .. The
editor/ assembler has just turned your mnemonic code into
a group and 6809 instructions, and placed them in memory.
Briefly, A means assemble the program; IM means
assemble it into memory, and AO means absolute origin,
that is, assemble the program exactly where your ORG
statement says to do it.

Now Quit the editor/assembler. Type Q and hit
<ENTER>. You will be in BASIC now, and I have another
short program for you to load.

Program #10, a IBASIC program. Turn on the power of your
Extended Color BASIC computer,. When the cursor appears,
type CLOAD and press ENTER. The computer will search (S)
and find (F). When the curnor reappears, UST this program. If
the program is not similar to the listing, or if an 1/0 error occurs.
rewind to the st21rt of the program and try again. For severe
loading problems. see the Appendix.

10 DEFUSR0=&H3100
20 X=90:FORN=IH3000 TO &H3019:POKEN,X:X=X-1:NEXT
30 A$=INKEY$:lFA$("A" DR A$}"2"THEN30
40 A=ASC(A$l
50 B=USR<A)
60 PRINTCHR$ <BJ:
70 GDT030

You've listed this program. Line 10 defines your USR
program to be ,91t hex 31 <00, the origin you used. Line 20
places the letters of the alphabet in reverse order in
memory starting at s:1000 - where the #CIPHER
encryption table is supposed to be. Line 30 is an ordinary
INKEY$ that picks off an uppercase character as you type
it. Line 40 gets the ASCII value of the letter. So far,
everything is BASIC you probably know, nothing special.

Finally, line 50 transfers the ASCII value to the machine
language progrnm and executes the progrnm. When the
machine language program is done, it returns to BASIC.
Line 60 prints ilhe ASCII character represented by the

value transferred hack from the machine languagf'
program. Line 70 repeats the process.

RUN the program, and begin typing the alphahPt. r11 hr,
with you next time. Be sure to review this lesson before
then.

The Code

1 Ylen using the
editor/asSl!llbll!I", Nhat does the
A coaand ae;in?

A 11eD5 asSNbll! the lll'll!IIOftic
code into a group of 681'3
instructions.

1 Ylen using the
editor/asSl!llbler A co.and, Nhat
does /IM aean?

/IM wans to asSf!llble t~e
lfflNOnic code into 688'3
instructions, and place thea in
lll!IIOry.

1 When using the
editor/asse11bler A (asseab1el
c01111and with /IM (in EtM>ry),

Nhat does /i[I a.n?

/i[I •ans to asseable the
aneaonic code into 6809
instructions and place thea in
lll!IIOrY at the origin specified
in the ORS 1 ine.

f The
$2411.
lilere
source
IIE!IIOry?

source listing says OR6
Vou enter A/IM/AO.

is the first byte of your
listing placed in

At location $2411.

Learning the /::K:J9 35

3l6 Lt!sson 4

•
You've been using mnemonics lately in creating machine
language programs, and I think that's gotten away from the
binary instructions themRelves. lt'R these binary
instructionR which are doing the work; the mnemonicR are
how you and I r0member what the inRtrurtionR are and how
they operate. For example, one of the instruction1- in the
last session was to load the X register with the value lahel0rl
CIPHER. CIPHER in turn waR address hex 3000. Load X
with an immediate value is in fact hex code SSE.

The purpose of the editor/assembler is to make
programmers' lives easier by accepting understandable
mnemonic statements like "Load X immediate CIPHER"
and turning them into machine codes like hex 8 E 30 00. The
mnemonics do make the program look long and
complicated, but in fact, in spite of all the apparent typing,
the entire program consists of 21 bytes!

I'd like you to load that encryption program again.

Program #ll, an EDTASM+ program. Insert the EDTASM+
cartridge, and turn on the power to your computer. When the
cursor appears, type L and press ENTER. The computer will
search (S) and find (F). When the cursor reappears, display the
program. Type P#: • and press ENTER. If the right-hand side of
the program is not similar to the listing, or if an 1/0 error occurs.
rewind to the program's start and try again. For severe loading
problems, see the Appendix.

:),12100 0010121 CIPHER EQU Ji312t00
3100 00110 ORCi $31121~)
31Q10 34 20 00120 PSHS y

311212 BD B3ED 00130 JSR $B3ED
3105 8E 3000 00140 LDX #CIPHER
3108 C0 41 00150 SUBB '1-1$4:l.
31121A A6 B5 012•160 ._DA B. X
3HlC 1F 89 00170 TFR A. B
310E 4F 00180 CLRA
310F BD B4F4 00190 JSR $E<4F4
3112 "';•C:-~..., 20 00200 PULS y'

3114 39 li\'21C·1t2l RTS
0000 00220 END

00000 TOTAL ERRORS
CIPHER 3000

Learning the

Coaing up in this lesson are the
hows and ltlhys of usin9 the
editor/assellbler, and a reminder
that its convenience features
are Just that -- conveniences.
They are in no 1t1ay a l"l!Dlaceaent
for the awareness of Nhat the
aacttine languge is actual i.y
doing.

1 When a NOl"d like CIPHER
a.,..-s il'l a -,nic listing,
Nhat is it calla?

A label.

1 Is a label part of the
oro9ra?

No, it is
listing.

1 Are the
progru?

No, they
listing.

part of the source

nme•mics the

fora the source

1 This is the hex code the
progru?

No, the hex code isn't the
prograa either ••

1 Then if labels nor llnl!IIOnics
nor hex code aren't the prograJ11,
what is?

The binary aachine instructions
and data.

60CJ9 37

IMnemonic code

* If the label CIIJJER is set to
t31N, and the 1mNOnic U)X
IICIPHER is assnbled, Nhat: is
the binary result?

Hex S8E 30 N, that is, 1M11U0
801100N 0M0N0.

t !,,'hat cloes ORG mear,?

t What is the origin?

Tl~e first byte o,f an asSE!llbly
listing.

* What is an orga111ized gro~1p of
l,abels, lll'lNOnics, and ooerands
called'

A1n asse11bly listing or the
sic.1urce code.

f What is the source code uSE!d
t10 oroduce'

, What is ,obJect code?

Binary
data.

instructions

* How is ,obJect code produCE'CI
from souroe code?

By assembling it.

* There a1re four colurtnS in a1n
EDTASM+ S1Jurce code listing.
What is in the first collllffl?

The source reference 1 ire
n11111ber.

t What is :in the Slecond colUlln
of an EDTASM+ source code
l 1lsting?

An optional label.

f What is :in the third col1111n o,f
an EDTASM+ source c,ode listing?

The opcode.,

38

There's the program listing in front of you. Let me refresh
your memory as to what this means. The label CIPHER
was used to indicate a memory location $3000. The origin,
that is the first instruction, of the program itself was set in
memory at $31 OIO. My choices here were arbitrary: and free
memory could have bPen used. Since this program was to
be used in conjunction with BASIC, the first action was to
savP the Y register on th,e stack, as recommended by the
RASIC manual. Next. BASIC's integer-conversion
subroutine was used to transfer the value from the BASIC
USR function to your program; again, this information was
recommended by the manual, a recommendation you have
to trust.

The X register •was indexed to the first entry in a table of
encrypted ASCII values. $41 was subtracted from the B
accumulator - recall that the B register contained the
value after the integer conversion - to provide an offset of
$00 to $19 to the encryption table. In line 160, the A
accumulator loaded from memory indexed by X, with an
offset of B, that encrypted ASCII value. In preparation for
sending this value back to BASIC, it was transferred from A
accumulator to B accumulator, and A accumulator was
cleared to zero. IF'inally, the Y register was retrieved from
the stack, and a return from subroutine landed the program
back in BASIC.

f repeat that this is mnemonic codP - code ·,.vhich serves as
a kind of verbai reminder to you and I as programmers -
but is not in itself something the 6809 processor can use.
The 6809 can only understand simple binary instructions
and data; the editor/assembler converts your mnemonic
code into those binary instructions and data.

In this lesson,][want to guide you in using the editor/
assembler, but first I would like you to see exactly what it's
for. Type A, and hit <ENTER>. You'll see the "READY
CASSETTE" message, meaning it's about to prepare an
object code tape. "Object code" iis the jargon for a set of
binary instructions and data. Don't worry about inserting a
tape now; just hit <ENTER> again. The tape recorder
relay will click on, and after a short pause, the screen will
scroll quickly hy, filled with both your original source code
and with additional hexadecimal numbers.

Reading the short, 82-character screen is tricky, so with all
of these assembled programs. I've provided a printed
listing for reference. Take a glance at the program in your
documentation. It looks much like the original source code
- in fact, it in<"ludes the entire source code --- but there are
several additions to it. All these additions are displayed in
hexadecimal notation.

In the first column, the memory locations, that is the
memory addresses to hold the program, are presented in
hexadecimal. In this case, the program's first instruction
begins at $3100, and the last instruction is found at $3114.
The second and third columns contain the actual
instructions and data that will be placed in memory for the
6809 processor to execute.

!'SW, y

.i.Y,M;'
lolol/JololoJc,lo]

'Vf'"t
;:;1,zc,

?7HS A, 1'>, Y

Jy/2,, 3~f~~h

lo!olt!oJoJ/Jlioj
1Al''I{ h,111N1"{

:::t,u,

\>SH':. X,Y

. <!iJt,
JoJoJ;j;joJoloJoJ

1' 'I''¥~
;:;~¾

-rF~ A, B
A~ /oc,c,
e,, fOO(

I II II I I I
'-'"v----' -------..,-

F l'Dr,\ iO

f!'bMA iO ~
~ ~

j1JojojoJ1JoJoJ1I
;:;f~'7

The second column contains the Opcode (that is, the
operation code or instruction), and the third column
contains the Operand (that is, the data the processor uses).
I'll take each in order.

Opcodes first; follow down the column with me. The
opcode to push a value on the hardware stack is $34. The
opcode to make a subroutine call is $BO. $BE loads the X
register with an immediate value, $CO subtracts an
immediate value from the B accumulator, $AS loads the A
accumulator in an indexed mode, $1 F transfers a value
between registers, and $4F clears the A accumulator to
zero. Another subroutine call follows; that's $BO. The
opcode to pull a value from the stack is $35, and a return
from subroutine is $39.

Each of these opcodes, after interpretation by the
processor's internal instruction decoder, gives the 6809
information about what to do, what data is coming up next,
and how many bytes long the operand will be. The
operands themselves vary according to what the
instruction demands. In lines 130, 140 and 190, for
example, it's clear that the operands $B3EO, $3000 and
$B4F4 are addresses, the first for a subroutine, the second
for loading into the X register, and the last another
subroutine. In line 150, the operand $41 is the immediate
value subtracted from the B accumulator.

Lines 120, 160, 170, and 200 are another matter. Here the
operands are not immediate values, but rather
informational data on how to complete the instmction.
Look at line 120, for example; the mnemonic says
"pushstack Y". As I've said, the opcode for pushstack is
$34. How about that hex 20?

Pull out your MC6809E data booklet, and turn to page 18.
On page 18, find the heading PULU/PULS. There are two
short tables under the heading marked "Pull Order, Push
Order". You are looking at the order in which registers are
placed on the stack, you're also looking at the individual
binary digits within a byte .

The command you used was Push Y. Examine the table,
and find the Y register. The Y register is third from the left,
the position of bit 5. If you write a binary equivalent of this
row of registers, where a binary one indicates which
registers to push, then you would write 0010 0000. That
binary number is hex 20 ... the precise operand assembled
in line 120.

I don't want to browbeat you with bits and bytes, but it's
extremely important to be aware, to keep in the back of
your mind at all times, what these binary codes do. You
don't need to memorize any of them; that's what your data
booklet is for. But knowing how to interpret what you're
seeing is key to effective programming and efficient
debugging.

Let me give you just one more example of these binary
operands. Keep your place on page 18 of the MC6809E

Learning the

Opcodes

• !flat is in the fourth col1111n
of an EDTASM+ source code
listing?

The operand, lilhere required.

• The four col1a1s in an EDTASM+
source code listing are •••

The reference line n1111ber, the
label, the opcode, and the
operand.

• lflen an EDTASM+ source code
listing is asSNbled, Nhat
infortaation is added to the
displayed listing?

The hexadec:iul address and
IN!IIOl"Y contents.

• How uny extra collllfflS of
inforaation are added Nhen an
EDTASM+ source code listing is
assa1bled?

Three colllllrlS are added.

• What is in the first col1111r1 of
the asSNbled listing?

The address, in hexadeciaal.

• !flat is in the second col1111n
of the asse11bled listing?

The opcode, in hexadeciul.

• What is in the third col1111n of
the asSNbled listing?

The operand, in hexadeciul.

• In an EDTASM+ source listing,
hOIII uny colum'IS are displayed?

Four.

• In an as!iellbled EDTASM+
listing, ·hoN uny colla'lS are
displayed?

Seven.

6fD9 39

EDTASM+

• What do the SIM!!'! col wln!i of
an asset11bled EDTASM+ listing
represent:?

The addN!SS in he11adeci11al i the
opcode in he11;1deciul; the
operand in he11;ldeci11al; the
referenc1t l i ne ntlllber; an
optional label; 1:he opcode in
■l'll!IIOrli~;; the operand in
lll'lellOni C'.:,.

1 What Jlil"t of the as54i!llbl ed
EDTASM+ listing i!, the a;IChine
language progra11?

No part of the as!abled EDTASM+
1 isting is the ■ilchine la111guage
progra■•

• What is the 11i1chine la1~guage
progra■?

It is th11 obJect code, or binary
inforaati.on.

t What does the A ~:.and
instruct EDTASM+ 1:o do?

To asse11ble the obJect codt!.

* Where is the fil\al obJec1(code
placed?

On the c.1ssette hpe.

1 What cloes the co.and A/IM
instruct EDTASM+ i;o do?

To asSNble the obJect codt~ into
IIE!IIOry.

t What dices the c~nd A/IM/AO
instruct EDTASM+ to do?

To asSNble the ObJect codl! i111to
■e■ory at the origin spec~ified
in the pr'Ogra11 li!,ting.

* lillat is, the asSE!■bler NOl'd for
origin?

ORG.

f What d~ the lll'lf!IIOfliC llSHS y
■ean?

Push the Y re~1ister 011 •the
hardware stack.

Lesso111 5

data booklet, and look at line 170 in the program - the
instruction is transfer A to B. The transfer opcode, as
noted, is $1 F. On page 18, under the heading TFH/EXG,
you'll see combinations of four binai:y digits.. Each
combination represents a specific register. The "transfer
from" register makes up the left-hand four digits of a byte;
the "transfer to" register makes up the right-hand four
digits. According to the chart, then, transfer from A to B
should put a value of 1000 in the "from" position and 1001
in the "to" position, creating a complete binary 1,ivord of
1000 1001. 1000 1001, you should expect by now, is hex 89
- the same value as the operand assembled in line 170.

Next in this lesson I will he guiding you through the entry
and editing of source code using the editor/assembler
EDTASM+. I recommend you take a break and review
now, and when you are done with your break, turn to page 3
of the EDTASl'vl+ manual, and read the Introducltion.

Read and review the EDT ASM + introduction. The introduc
tion is printed on the facing page; for more detailed information,
continue with the EDTASM + manual. Return to the tap,~ when
you have completed the reading.

Time to start fresh. If you've just come back from reading
the EDTASM+- Introduction, your computer is probably
up and ready to go. Even so, please turn the computer off,
insert the editor/assembler EDTASM+ cartridge in the
slot, pause, and turn it back on. The star prompt will come
up shortly. I'm going to give you some guidance in entering,
editing, and assembling your source and object code with
the EDTASM+ program.

The first thing to remember is that EDTASM + is a
programmer's program. It doesn't have the fanciness and
fussiness of BASIC, and it can't tell you if you've written a
program that will work. Its job is exclusively to translate
mnemonic source code into binary object code, and inform
you if you've typed the source code incorrectly or made an
error in labeling or numerical range, or if you have asked the
processor to perform a function it's incapable of. (Prnother
feature of the EDTASM+ program cartridge is ZBUG, but
that's not for this time.)

To help you achieve your programming ends, the editor
keystrokes are minimal and the editor's commands are few.
If you are using an editor/ assembler other than
EDTASM+ {which you may remember I didn't
recommend) these instructions will apply only in part:
many of the specifics wilI be quite different. What all 6809
editor/ assemblers hav,e in common, however, is the
mnemonic source code.

Time to start. Your most frequent editor commands will be
Insert, Delete, Print, Number, and Edit. Just for reference

----------------■-Dlb•M+
The brain of the Color Computer is the 6809 Micropro
cessor. It is always operating in 6809 machine code, the
only language it knows.

When you program in BASIC, a ROM program called the
BASIC Interpreter "translates" each statement. one at a
time. into 6809 machine code.

The Editor-Assembler+ allows you to write a program in
6809 assembly language and assemble it into a single.
efficient 6809 machine code program. This gives you
two very powerful advantages:
• You are no longer limited to the commands in the BASIC

language.
• Many steps that are necessary to interpret a BASIC

statement into machine code will no longer be needed.
Therefore, the programs you write with the Editor
Assembler + will run much faster, and probably use
less memory.

This manual demonstrates how to use the Editor
Assembler +. It will not teach you how to program in
assembly language. Radio Shack has an excellent book
devoted to the subject. It's Catalog Number is 62-2077.
You can purchase it through any Radio Shack store.

The Editor-Assembler+ contains three systems:
• The Editor, tor writing and editing 6809 assembly lan

guage programs.
• The Assembler, for assembling the programs into

6809 machine code.
• ZBUG, for examining and debugging your machine

code programs.

To use them, all you need is a Color Computer with 16K
RAM and a tape recorder.

How You Will Use
These Systems

1. First you'll write the program in assembly language,
using mnemonics which the Assembler recognizes
and which is fairly easy to use. This is done in the
Editor and the resulting program listing is called TEXT.

2. Then you'll assemble the instructions of TEXT into
machine code which the 6809 Microprocessor can
recognize, but which looks like nonsense to most peo
ple. Thus, you'll create CODE consisting of op codes
and data.

3. You'll use ZBUG to test and debug CODE until it's per
fect. Then you'll store it on tape. Storing CODE is the
final task of the Editor-Assembler+.

4. From BASIC, you'll load CODE (with CLOADM) and
run it. You can either run it as a stand-alone program
(with EXEC) or as a subroutine (with USR).

Learning the 6f!:t:Jt

EDTASM+

41

Inserti11g line11

I lllat is the hexacllecillill ()JICOde
for P9fi?

1 HoN is does the operand for
ofJCO(ie ~1 (P9fi) ildentify 1.tlid-1
registers are to bl! pushed?

Eo/ the order of the binary
digits in the oper;ll'ld.

... The Ordl!r of the binary d:igits
for the push operand is PC, S
(or U>, Y, X, l>P, B, A1, CC.
•lhat is the binari, operand to
push registers A, B, X and Y on
t:he stack'.'

Qlll 11111.

•• What is the hexadeciul 'llalue
for binari, 111111 lir?

ii What i!, the hendeciul value
for the 01x:ode PSHIS?

u What is
he11adecia;:1l
ll,B,X,Y?

$34 36

th!! c:oapl ete
instruction P5HS

if Once a!1ain, th!! order of
binary digits for stack pushing
:is PC, S (or U>, Y.1 X, DP, B, A,
CC. ltl;~t is the operand, in
binary and hexadeciul, for P5HS
JC,B?

Binary 1811111, hexadeci11al
1514.

,. What is the eo11plt>te
:instructi1:>n, in binary ilnd
he11adecia.1l, for PSHS X,B?

l~inary 11111111
hexadecia.al $34 14.

,. What i!s another naae for this
l~incl of operand?

l-esso111 5

as you go along, I'll tell that you can get out of any
EDTASM+ mode by hitting <BREAK> ..

There is no requirement to manually number every line in
EDTASM+, saving you considerable time and energy.
Simply type and enter T. The first available line number,
00100, is presented "'~ith the cursor ready for your
information. You may now type anything you like on this
line. Since renwmbering and block search can be done, and
since the editing commands are identical to BASIC's and
already familiar to you, you might even want to use the
editor as a tow-grade word processor. F'or this lesson,
though, the point is to develop 6809 mnemonic code. To
practice, type something now ... a few letters or numbers,
whatever, and hit <ENTER>. The information in that line
has been stored,. and the next line, 00110, is ready for use.
Type some more characters and hit <ENTER> again.
Line 00120 is in place. At the start of a session, automatic
line insert mode starts at 100 and advances in increments
of ten lines. But you may change that any time. Tap
<BREAK>.

By typing and entering "1917", the editor will begin
numbering lines at 91 7. Type and enter 191 7. The line
0091 7 will be presented together with the cursor. Hit
<ENTER> a few times. Lines continue to be added in
increments of 10, so you should be seeing 00927, 00937,
0094 7, etc. Tap <BREAK> again.

You can change the line increment as well as which lines
you are inserting. Type and enter "!1111,2". Line 01111
will be displayed. Hit <ENTER> a few times, and notice
that the line nu:mbers do indeed increase by two at a time
rather than 10 at a time ... 0111:3, 01115, 01117, and so
on.

That's the essence of using the editor/assembler's
automatic line numbering system.

To look at what you've done, you have to print the
information on the screen. To avoid conflicts in the single
letter command system ofEDTASM+, the letter "P" was
chosen to print to the screen. In EDT ASM -+-, the seemingly
more logical "'L" doesn't mean list; it means load from tape.
So to print a line on the display, simply enter the letter P
followed by the line number; leading zeros aren't
important. For example,. to display line 00110, just enter
Pl rn. The line 1Nill appear. Try that.

There are many convenience features in the editor/
assembler, features which you will find reduces your
programming time. To print the next 16 lines on the screen,
for example, merely enter "P". Even better are the three
symbols for first line, current line,, and last line. First line is
represented by a number sign (also called the crosshatch or
pound symbol. I call it "pound" because it's easier for me to
say than !' crosshatch" and isn't as ambiguous as
"number".). Use a period to indicate current line. The
asterisk (the star) indicates the last line. Together with

n
:-;;;;;---
:,0917

:>0927

'.>0937 ■

~

:;itlTlTT,T
C)I I//

1, / / /?,

CJ/1151 ■

n·-
;~P'il' . ·~--

,,o I 00 A~C.J:>t,.f(,

; ...
I

---·-Ulo~T-
looo,o
!00011

1•000/1,.

10001 3

'1tNI0
1

/0

,><f,it:it

00010

·100=
ooo?oo

those, the colon acts as the from-to delimiter, as in
"PI00:200".

So to print the first line of the program on the screen, just
enter "P#". Print the whole program by entering "P#:*".
Find your last line by entering "P*". Print the first three
lines by entering "P#: 120". Display from your current line
to the end of the listing by entering "P.:*". With the
symbols# for first line,. for current line, and* for last line,
you've got complete control of your position within the
program with the least amount of typing.

The insert mode uses these convenience features, too.
Simply typing "I" requests the editor to insert a line,
starting wherever you are now, at the increment you last
used. "I.,3'' will insert a numbered line at your present
point, with an increment of 3 lines. "I#" will attempt to
insert a line after the first one in your program, again using
the last increment you specified.

Notice that, when you print your text on the display, there
are numbered lines with no information. The editor is quite
respectful of your requests, and, where you have indeed
entered an unused line, it will let it stand. Unlike BASIC,
re-entering a line number alone won't get rid of it. With
EDTASM+, you must specifically delete unwanted lines
with the D command.

Delete also uses the editor's set of convenience features.
You can delete any line by entering D and the line number,
such as Dll0. You can delete the first line using "D#", the
last line using "D*", or the current line using "D." or just
"D''. To delete a group of lines. say ll 11 to 1115, enter
"Dll 11:1115". Try that. Dll 11:1115 <ENTER>. To
delete the entire text so far, simply enter "D#:*". That's
D#:*.

Now attempt to print a listing on your screen ... enter "P."
You'll get one of EDT ASM' s many full messages, built in to
assist your programming without constant reference to the
EDTASM+ manual. This message says, "BUFFER
EMPTY". Since you have deleted the entire text by
entering "D#:*", the editor is giving you the unequivocal
confirmation that the text buffer in fact contains no
lines.

Type ·'II0,l", and press <ENTER>. Line 10 will be
presented. Type a few characters, and enter this line. Do
the same for line 11, line 12, and line 13. Tap <BREAK>,
and print the listing by entering "P#:*". Now insert a line
between ll and 12. Try "111,1" <ENTER>. NO ROOM
BETWEEN LINES, eh? Now try this: enter "NI0,10".
That's "Nl0,10". You're asking it to renumber, starting
from line 10, in increments of 10 lines. Print the listing by
entering "P#:*". You should see lines 10, 20, 30 and 40.

Now try entering "II0", as before. Still NO ROOM
BETWEEN LINES? Don't forget that the last increment
specified is the one the program will use . . . and that

Learning the

Printing lines

t Does the TFR (transfer) opcode
have a postbyte?

Yes.

t Describe the TFR postbyte.

The TFR postbyte is divided in
half; the left (805t
significant> half indicates
•ff'OIII•, the right (least
significant) half indicates
•to•.

t How uny coluans are there in
an asSNbly source listing?

Four.

t What is found in the first
colwm?

The source reference line
n1111ber.

t What EDTASM+ coaand inserts
lines into the source listing?

The I coaand.

* How is line 999 inserted into
the source listing?

By entering 1999

t What does 11011, 5 11ean?

Insert lines into the source
listing, beginning at line 1•
and continuing in incrt!IEflts of
5 lines.

* How do you insert lines,
starting with 511, in irlCN!llel'lts
of 51 lines?

1511,51

t Ill.it co.and displays source
lines on the screen?

The P coaand.

* HoN NOUld you display source
line 40?

By entering P40

43

Convenience ft!atureu

* How NOUld you display the
fil"st sourol! line?

By entering Pl

* How NOUld you display the last:
source lil'II?

By entering Pf

* How NOUld you display sources
li1ries 41 through 181i?

By entering 1>41:1•

* lfloM wuld you display the
errtire sour,ce listing?

By entering Pl:•

* lllhat is the syabol for•
•current line"?

Thi!! period (. l

* lfloM NOUld you ask. to edit the
c111rrent line?

By entering E. !E pe·riod)

* 11-foN NOUld you renumber the
li!sting, Mith the renwaber·in!t
be!ginning at line 1• and
pr<oceeding in increaents CJ1f i:
li111e?

* IW!at are the syabols for first
li1ne, last line, and curnmt;
lhie?

11 *, and • !pound, star and
pe1riod)

* If your source listing Ner'E1 in
increaents of ten lines, holt
NOuld you insert a line half..ay
bet..een your curreriit line and
thi! next line?

By entering I.,5

Lt:!SSOD 5

increment was specified as 10 when you renumbered the
listing. To insert lines between 10 and 20, how about
entering "Il0,2". There you have line 12, ready to go .. Tap
<BREAK> now.

The last of your most-used commands will be "E", the key
letter for edit mode. E can be used only to edit a line at a
time, but the convenience features # . and * are a]ways
available. Within the edit mode you have at your disposal
all the editing features of Extended Color BASIC. These
editing features are quite versatile, but I feel a little outside
the scope of these lessons. There''s lots more to be done
with 6809 assembly language itself.

So here's my proposal. At the end of this lesson, review
what has been done so far: binary and hex code, 6809
processor architecture, understanding mnemonics, and so
forth. Then spend some time with those few EDT ASM +
source programs that have been presented so far. Instead
of loading them from tape, try typing them in; by the way,
use the right arrow to tab between columns rather than
using spaces between columns of source code. Also, turn to
your Extended Color BASIC manual and your EDT ASM +
manual, and get familiar with those editing features. You'll
be using EDT ASM + for the duration of these tapes, and I
won't be pausing as long when I describe commands. You'll
need to know those editor commands, so put in the time
learning its features now to make your work much easier
later.

•
Hello again. Now that you have a firm grounding in using
the editor/assembler, I've got to talk about some things
that don't make me very happy. Those things make up the
jargon of microprocessor programming. It's struck me that
the major barrier to programming in assembly language is
the terminology. The concepts themselves are simple -
sometimes far too simple and endlessly tedious for fun, but
simple nevertheless. But that simplicity also derives out of
the arbitrariness of their origins.

I don't want to sound philosophical, but I've often been
asked the question "why". Why "load" and "store" instead
of something like "input data" and "output data"? Why a
clumsy sounding word like "immediate"? How did the
binary values get chosen for the instructions? The answers
go back to the early days of computers and processors. In
the same way that a "word of eight binary digits" became a
"word of eight bits" and that in turn became known simply
as a "byte", many of the terms involved in assembly
programming are just arbitrary, and sometimes tongue-in
cheek, choices that stuck. Some were chosen because the
alternatives are worse ... "load immediate", for example.
"Load absolute" implies a positive number so that's out;
saying "load this number" or "load what's next" sound too
silly for programming terms, even though a number sign
actually precedes the operand and it is what's next.

The jargon can get overwhelming. If that weren't so, you
probably wouldn't be listening to me now. It's not the
programming that's hard; it's learning the language, from
the descriptive terms through the programming actions.
Yet I believe jargon is really essential to facilitating
communication ... so long as you know the jargon. A friend
of mine once wrote that we're not intimidated by admitting,
in pure, modern jargon, "I took a 7 4 7 non-stop"; we
wouldn't think of saying "I flew inside a big silver bird who
never paused to eat or drink."

There's truth in that comment; in the earlier lessons, some
of you probably got tired hearing me say "American

Learning the

This lesson begins the first of
tNO lessons on the critical
conceot of addressinq IIOdes.
The ter11 sounds dry, the
learninq isn't especially fun,
and the Jargon is trying. Yet
addressing IIOdes give the 6809
processor its poNer. Before you
begin, be sure you kl'IOllf the
basic ter11inology presented ir,
the previous lessons, and how to
use EDTASM+.

t lllat does ASCII aean?

Allerican Standard Code for
Infol"lliltion Interchange.

t lilat is the tena for an
acc1111ulator obtaining
infOl"lliltion frOII E110ry?

Loadinq.

t lilat is the ter11 for an
accuaulator placing inforaation
in B10ry?

Storing.

t lilat is the tena for one
register placing inforaation in
another register?

Transfen-ing.

, lilat is a IIIOl"d of ei~t binary
digits?

A byte.

6f'£:f, 45

Addressing modes

* What is an addressing IIOde?

An addressin~ IIOde is how the
uchine lanquage orogru gets
its inforaatioo.

* In the b889, Mhat is the size
of the data bus?

The data bus is 8 bits wide.

t In the 6889, what is the size
of the address bus?

The address bus is 16 bits
wide.

t When does a lll!IIIOry ce 11 appear
•live"?

lllen it receives its particular
16-bit binary n1111ber from the
orocessor.

t How is the 16-bit binary
nusber sent by the processor?

By sending it on the address
bus.

* How does the IEIIOl"Y respond
when it receives its address
fro11 the processor?

By sending or receiving data.

* How is data sent or received?

Along the data bus,

* What is the size of the 68091 s
data bus?

The &819's data bus is 8 bits
wide.

* What is an addressinq IIOde?

An addressing IIOde is how the
uchine language progra gets
its infOl'llltion.

• Where does the processor get
its data?

F l"OII lll!IIOrY.

46 Lesson 6

Standard Code for Information Interchange". You knew I
meant ASCII, I knew I meant ASCII, so why didn't I say so?
I wanted you to know intuitively that this was a code for the
interchange of information, not just letters.

In a similar way, I was mystified by hockey terminology.
Here were tens of thousands of people understanding the
announcer's every phrase, understanding the motion of the
puck as if it were their own heartbeats. I ate some popcorn,
yelled a little, but mostly read the advertisements on the
sideboards. The game began to take on multiple levels of
excitement only when I began to understand its
language.

There are also are those who consciously attempt to alter a
language to simplify it, even to the point of creating new
languages in the process. BASIC was one of the successes,
Esperanto was one of the failures. The contemporary
Russian alphabet was a success, Chicago school of spelling
was a failure. I have an example relevant to this course. The
creators of the Z80 thought "load" and "store" were really
just directional variants of one concept, so they decided all
such actions would be called "loads". That decision, while
advantageous for learning the Z80 processor, stands in the
way of someone being fluent on several microprocessors. It
has made the Z80 dialect different from the 6809 dialect,
where those variants were even further refined into
"loads", "stores", and "transfers".

I'm not stalling here, I'm just trying to prepare you for this
lesson. The terms I am going to introduce all have specific
meanings, and some are quite elegant summaries of
complicated concepts. You already know one of them -
the indexed addressing mode. There's a lot like that coming
up, so take your time; don't rush. Review when you need to.
You hired me to do this job, after all, and I'll patiently re
explain as often as you like.

The topic is addressing modes. That's how the processor
obtains the data it needs to complete a given instruction.
For this topic, I would like you to follow along with me in the
documentation; these things are often easier to see than to
say, especially when it comes to mnemonics. You'll also
need to open your MC6809E data booklet to page 15, and
have a marker on page 28.

While you're finding your place, and before actually
discussing addressing modes, I'd like to recap the concept
of addressing itself. The 6809 microprocessor has an 8-bit
data bus and a 16-bitaddress bus. This means that it has 24
electrical connections to an external line of memory cells. A
memory cell in this line is activated when it receives its
particular 16-bit binary number from the processor on the
address bus. Each memory cell is electrically connected in
such a way that it - and only it - can respond to that
binary address. When it responds, data is sent from or
received by the 6809 along the 8-bit data bus. 6809 sends

U!b DIAI..E(_T

r~~~~~
LL~-~
~
~

I INHERENT I

the address, memory responds by sending or receiving the
data.

You don't need to know much about this electrical process;
for programming purposes, you take it on faith that the
machine's designers have organized the connections
properly so that when your program wants information
from memory location $1 234, for example, memory
location $1234 will respond appropriately and provide
your program with that information. Later you'll learn a
little more about dealing with computer input and output,
for which a touch of electronics will enter into the
discussion.

As for addressing, you know now that the processor takes
both its program and its data from memory, and stores its
data in memory. Up to this point, I've presented concrete
examples of specific memory uses - to store and execute
the opcodes and operands of a program, and to store a table
of data. I don't feel that learning through concrete example
alone will broaden your programming abilities, so it's on to
the discussion of the addressing modes. If at any point you
get lost in the jargon or feel shaky about this, remember:
AN ADDRESSING MODE IS HOW THE MACHINE
LANGUAGE PROGRAM GETS ITS INFORMATION.

Look at page 15 in the MC6809E data booklet. As noted,
there are seven major categories of addressing modes in
the fi809: inherent, register, immediate, extended, direct,
indexed, and relative. The next two lessons will cover all
seven modes; I'll save for later the three variants called
extended indirect, indexed indirect, and program counter
relative. Throughout this discussion, please remember
that "opcode" means the machine-language instruction,
and that "operand" means its data.

Inherent Addressing

Inherent addressing is the simplest mode. In this mode, all
the information needed to complete the processor
instruction is already present in the instruction itself. In
other words, the address of the data needed to complete
the instruction is inherent in the address of the
instruction's opcode, which the processor's already got.
You've used two of these inherent instructions up to this
point: Clear A Accumulator (mnemonic CLRA, hex code 4F)
and Return from Subroutine (RTS, $39), both of which are
inherent addressing. They have all they need to get the job
done. Other examples of this mode are Multiply A
Accumulator times B Accumulator (MUL, $3D). There's
also Complement A Accumulator - that is, turn all zero
bits to one, and all one bits to zero (mnemonic COMA, $43),
and even No Operation (N-O-P or NOP, $12), which does
nothing but waste time. If this last one sounds funny to you,
you'll later discover how important it can be to waste time,
since machine language actually moves too fast for some

Inherent addressing

* ~ does the Dl"OCeSSOr get
its progrt111?

FrtWEIIOl"Y,

* Hott does the processor
distinguish orogrt111 fr011 data?

By the context.

* What is the term for how a
NChine language orograa gets
its inforutior,?

An addressi n~ IIOde.

* What is the ten11 for a aac~ine
language instruction'

An opcode.

* What is the terM for an
oocode's data?

An operand.

t What addressing IIOde includes
the inforution necessar:, tc,
co.olete the instruction as part
of the instruction itse!f'

Inherent addressing.

* Give exaoles of inhe1"£1nt
addressing.

Any of the followinp wi:l do
(this isn't a eo11olete 1istJ:
Cl.RA, Cl.RB, RTS, ~Ul, COIIH1

CCl!B, NOP, ASL.A, ASLB, ASRA,
ASRB, DECA, DECB, INCA, !t.'CB,
LSLA, LSI..B, LSRA, LSRB, ~EGA,
tESB, nA, RCLB, RORA, ~RB!
TSTA, TSTII.

Inherent addressing is an
addressing IIOde in which the
infOr'Ntion needed to complete
an instruction is part of the
instruction itself.

programming.

Learniag the l:::RJ:J9 47

Register & lmme>cliate addressing

* What is register addressing?

Register addressing is an
addressing IIOde in Milich the
infOl"llation needed by the
orograa is IIOVed fro111 one
register to another.

* Give tNO exaaples of register
addressing.

TFR and EXS. PSH and Pl.I.. can be
considered register addressing.

* lillat addressing IIIOde involves
IIOVl!Ent of data froM register
to register?

Register addressiny.

* What addressing IIOde finds the
data at the address i1111!1ediatel:y
following the instruction
itself?

IIIIIIE!diate addressing.

* Give exaaples of iftlllediate
addressing !make up operands for
your exaaples}.

Any of these will do: LDX
HJa, SUBB #$41, OIPX #~,
LDA 1$12, LDY H1234, CMPY
HCCCC, etc.

* What is illlllediate addressing?

An addressing IIIOde in which the
data to be used is found at the
address iaediatel) followin~,
the instruction itself, ir1
prograa order.

* What is extended addressing?

An addressing IIOde in which the
tNO bytes follONing the opcode
are the addr2ss of the data to,
be used to coaplete the
instruction.

• In the instruction LDX $3456,
Nhere is the data?

The data is found at address
$3456.

48 Lesson 6

Register Addressing

The second mode is Register Addressing. In this case, the
information needed by the program is transferred from one
register to another. For exam.ple, the familiar Transfer
Value from A Accumulator to B Accumulator (TFR A,B) is
Register Addressing. This instruction is two bytes, the
opcode meaning "transfer from register to register" ($1 F)
and the operand - called a "postbyte" - identifying which
goes where ($89 for transferring A to B). Another example
of register addressing that you have used is Push Y and Pull
Y ($34 $20 and $35 $20). New examples include Exchange
Registers (two bytes with an opcode of $1 E), and all the
other Push and Pull instructions (opcodes $34 and $35,
respectively).

Don't be confused by the MC6809E data booklet; Register
Addressing is easy. The data booklet first suggests that
Register Addressing can be thought of as either distinct
from or the same as Inherent Addressing. I leave that up to
you, because the MC6809E data booklet can't make up its
mind, either. The booklet clearly distinguishes between
Register and Inherent Addressing on page 15, but calls
them both "Inherent" on pages 28 and 29. To assist in the
confusion, it even calls one group "Immediate" on page 31 !
I prefer to consider Register Addressing as distinct from
Inherent Addressing. The opcode is all the information in
the Inherent mode, but in Register Addressing, the data
necessary to complete the instruction is described by the
postbyte. If I've just confused you, then you may, as the
judge says, disregard the previous remarks.

To recap: Inherent Addressing is a mode in which the
address of the operand also addresses the data needed to
complete the instruction, since the data is an inherent part
of the instruction itself. Register Addressing is similar to
Inherent addressing, and often includes a second byte
known as a postbyte to furnish additional information
needed to complete the instruction. Inherent and Register
Addressing include Clearing, Incrementing, Decrementing
and other internal single-register commands; Exchanging,
Transfering and other register-to-register commands;
Stack Pushes and Pulls; Subroutine Returns; and one-of-a
kind, specialized arithmetic functions such as Multiply,
Sign Exchange, and Add-B-Register-to-X-Register.

If you wish, review Inherent and Register Addressing in
your documentation. For review, turn the tape off now.

Immediate Addressing

Immediate Addressing is very transparent. The data to he
used is found at the address immediately following the
instruction itself, in program order. Among examples you
have used already are Load X Register with value $3000
(written LDX #$3000), and Subtract the value $41 from B
Accumulator (written SUBS #$41), and Compare X
Register with $0800 (written CMPX #$0800). Other

t~,-~.-.~,~ .. ;··· . }'j_ ;

- ~- /

·= = -✓-

1£)<\E..NDEOI

• ,

::f?6~~--
Cll(A', ~-f-30 ...
u,Mt-~7

~L~ ...
IS 1,3(,a:> ...

LOl4>)(ffllOO\ '$'3Q:JO ...
Mu,

examples include such logical instructions as AND A
Accumulator with an immediate value, ORB Accumulator
with an immediate value, Exclusive OR, and so forth;
arithmetic such as ADD A Accumulator and SUBtract A
Accumulator; and the now-familiar Load A, Load B, Load
X, Load Y, etc., with an immediate value. The mnemonic
notation for Immediate Addressing always includes the
number sign in front of the operand, which tells the editor,
"use this data!"

Extended Addressing

The word "Extended" implies reaching out, and Extended
Addressing is just that. In Extended Addressing, the
information following the opcode (that is, following the
machine-language instruction itself) is not the data. What
follows the opcode is the address in memory where the data
can be found, rather than the actual data to be used. Here's
an example.You have used LDX #$3000, which meant Load
X with the immediate value $3000. In Extended
Addressing, the notation is LDX $3000. Very similar, but
with an entirely different meaning; glance at the
documentation so you can see what I'm describing. LDX
#$3000 is immediate addressing; LOX $3000 does not
contain the number sign in front of the operand. That
means that $3000 is not the data, but is the address in
memory where the processor will find the data to be loaded
into X.

Did a question come to mind? How can the 16-bit X register
load the 8-bit data at address $3000? Since the data at
address $3000 is only an 8-bit word, and since the X
register requires 16 bits, the instruction decoder sees to it
that the process is completed correctly. The information
loaded into Xis in fact all 16 bits. The first byte comes from
the address specified by the operand (in this case $3000),

and the second byte comes from the next address (in this
case $3001), in order.

Extended addressing is used for both 8- and 16-bit
registers. If the command were LOA $3000, then, the
instruction decoder would make sure the 8-bit value at
$3000 was loaded into the 8-bit A Accumulator.

Here are two concrete examples:

• The instruction is LOX $1 234. Address $1 234 contains
$AB, and address $1235 contains $FF. After executing the
instruction LOX $1234, the X register will contain the value
$ABFF.

• The instruction is LOB $8888. Address $8888
contains $10. After executing the instruction LOB $8888,
the B Accumulator will contain the value $1 O.

In all this, the 6809 processor's task is to be smart enough
to place the information found at the specified memory
location into the correct registers, making sure the number

Learning the

Extended addreaaing

* What kind of addressing IIOde
is LDX S3456?

Extended addressing.

* In the instruction LDX "3456,
nre is the data?

The data is iMediately
follONing the instruction; that
is, the data is $3456.

t lilat kind of addressing IIOde
is LDX ff3456?

Iaediate addressing •

* lllat kind of addressing IIOde
is lDA S1234?

Extended addressing.

t The B reqister contains $41;
the A register contains SN;
EIIOl"Y location $1111 contains
S45. lilat are the contents of
the A accUMUlator after each of
the fllONing instructions are
executed?
LDA 1$49
lDA $1111
TFR B,A

S49; $45; $41

1 lilat addressing IIOdes are LDA
"49, lDA $1111 and TFR B,A?

Iaediate, extended and register
addressing.

* lilat is an addressing mode?

How the aachine language ?rogram
gets its information.

* What ASCII characters are
represented by S49, $45 anc
$41'?

I, E and A

6fD9 49

Direct addressing

* lillat is direct addressing?

Direct addressing is an
addressing aclde where the direct
page register and the value
foll01i1ing the opcode are
coabined to for• an address. At
that address is found the data
to ccaolete the instruction.

• The DP f'e!!ister is set to $CC
and the instruction LDA ($00.
ll1ere is the data?

At address sccse.

• The DP f'e!!ister is set to $00
and the instruction is LDA ($CC,

lillere is the data?

At address ssecc.

• For ENlCh of the follo.1ing
tx.-ples, identify the
addressing IIOCle, and tell
specifically where the data is
found. Ass1111e the direct page
register is set to A.

* LilA "41

IIBli!diate; following the opcode
LilA.

* LDX $3456

Extended; at addresses $3456 and
$3457 (X needs t1«1 bytes).

* a.RA

Inherent; as part of the
instruct ion.

* STA ($CC

Direct; at address SAE:.

* TFR X,Y

Register; as described by the
postbyte.

* CMPA t789A

Extended; at address t789A.

50 Lesson 6

of bytes taken from sequential memory locations matches
the size of the register requesting the data.

Direct Addressing

Direct Addressing obtains data for program use with great
speed and memory economy. It depends on the
organization of memory into pages. A "page" is a specific
term in assembly language programming, meaning those
256 contiguous bytes of memory whose most-significant
byte is in common. For example, page $00 contains the 256
addresses $0000 to $DOFF; page $01 contains addresses
$0100 to $01 FF; page $FE contains addresses $FEOO to
$FEFF. The 6809 and other 8-bit processors have a total
256 pages of 256 bytes.

Return to the MC6809E data booklet, and turn to Figure 4
on page 5. That's the 6809 architecture you've been using.
Up to this point, you have been introduced to all registers in
the 6809 except one: the Direct Page register. Into the
Direct Page register is transferred the most-significant
byte of an address. In earlier processors, the direct page
was fixed (usually to page $00), and consequently there was
no Direct Page register. But the 6809 has this Direct Page
register because its Direct Addressing can be done
anywhere in memory.

So what's the point? First of all, each instruction using
Direct Addressing takes one less byte of memory than
Immediate or Extended Addressing. Since the most
significant byte is always ready for use in the Direct Page
register, that byte need not be stored in program memory
as part of the operand. Secondly, since Direct Addressing
fetches one less byte from memory, the instruction can be
completed faster.

The mnemonic notation for Direct Addressing uses the
"less than" sign in front of the operand. For example, with
the Direct Page set to $AA, the instruction LOA <$80 would
load the A accumulator with the value found at memory
location $AA80. Beyond the economy of speed and
memory, however, Direct Addressing is identical in
principle to Extended Addressing: the desired data is not
the operand itself, but at the memory location specified by
the operand.

Examples

To review some examples of immediate, extended and
direct addressing, follow me in your documentation
booklet:

LOX #$1234 is immediate addressing, loading the value
$1234 into the X register.

LOX $1234 is extended addressing, loading the value
found in memory at addresses $1 234 and $1235 into the X
register.

I Pl Rl;:l,T I

,ttt K,!$t,_,
l,.Ol',t:> --, DIRSCT
~ &YTE.+'1'7 ...

0 I 99

IJJ

LOX <$34 is direct addressing; with the direct page set
to $12, the value found at addresses $1234 and $1235 is
loaded into the X register.

TFR Y,X is register addressing; if the value of the Y
register is $1234, then the X register will be loaded with the
value $1234.

LOB #$56 is immediate addressing, loading the value
$56 into the B Accumulator.

LOB $56 is extended addressing, loading the value
found in memory at address $0056 into the B
Accumulator.

LOB <$56 is direct addressing; with the direct page set to
$00, the value found at address $0056 is loaded into the B
Accumulator.

TFR A,B is register addressing; if the value of the A
Accumulator is $56, then the B Accumulator will be loaded
with the value $56.

CMPY #$789A is immediate addressing, comparing the
value of the Y register with the actual value $789A.

CMPY $789A is extended addressing, comparing the
value of the Y register with the value found in memory at
locations $789A and $7898.

CMPY <$9A is direct addressing; with the Direct Page
register set to $78, the values found at $789A and $7898
are compared with the Y register.

CMPA #$BC is immediate addressing, comparing the
value of the A Accumulator with the actual value $BC.

CMPA $BC is extended addressing, comparing the value
of the A Accumulator with the value found in memory at
$00BC.

CMPA <SBC is direct addressing; with the Direct Page
register set to $00, the value found at $00BC is compared
into the A Accumulator.

To review the major points: Addressing is the manner in
which the program obtains the data it needs. An opcode is a
machine language instruction. An operand is the
information needed to complete an instruction.

The Inherent Addressing mode contains only an opcode.
That opcode contains sufficient information to complete
the instruction. Because there is no operand needed to
provide additional data, the data is inherent in the address
of the instruction.

The Register Addressing mode contains an opcode and
usually a postbyte. The opcode tells the processor which
kind of. instruction will be executed, and the post byte

Learning the

Examples of addressing

*LDYHCBA9

I..ec!1ate; the tNO bytes
foll0Mi:1g the opcode LDY.

Direct; at ~ddress SlllW and
SAlll1 <X is - -. bytes>.

Inherent; as o-'"t c,f the
instruction itself.

t What is an addressi~~ 'l!Ode'

An addressing axle 15 - ·'ti! the
.achine language oro~r;i• !Jets
its inforaation.

t What is inherent address1r.o.'l

Inherent addressing is an
addressing axle in lillhic:h the
inforaation l'INded to COIIDlete
an instruction is Pirt of the
instruction itself.

t lllat is register addressing?

Register addressing is an
addressing IIOde in lillhit'h the
infcnation needed by the
progr• is 80W!d ff'OII one
register to another.

t What is i~iate addressing?

An addressing IIOde in tilic:h the
data to be used is found at the
address i.atiately following
the instruction itself, in
prograa order.

* What is ewtended addreuing?

An addressing IIOde in Nhich the
tMO bytes following the t'pcode
are the addreH of the data to
be used to coaolete the
instruction.

6e09 51

Summary

* lttat is direct addressing?

Direct lddressing is 1n

addrening mte Nhlft the direct
page register and the value
follotting the opc:ode iJ"e

c:oabinecl to fort1 an idarftl.. At
that address is fOllld the data
to cmpl..t. the instruction.

* 111,at are the 6819' s 16-bi t
registers?

The X and Y registers, the S ,and
U stack pointers, i1nd the PC
(progru counter). The D
accUMUlator C'Ollbine5 the A and B
accu•ulators into a 16-bit
register.

* What are the 6819's 8-bit
registers?

The A and B aCCU11Ulators, the CC
(condition code) register, and
the DP (direct page) register.

t Where does the processor get
its data?

F roa lll!IIOry.

* illere does the processor get
its progra?

F !"OIi IIE!IIOrY.

* HoN does the processor
distinguish progr• froa data?

By the context.

* What is the ttN'II for hON a
aachine language progra gets
its inforaation?

An addressing aode.

52 Lesson 6

defines which registers will be used to complete the
instruction.

The Immediate Addressing mode contains an opcode and
one or two bytes of data. The opcode tells the processor
which kind of instruction to execute, and the bytes of data
are the specific information that is used by the processor to
complete the instruction.

The Extended Addressing mode contains an opcode and
two bytes of data. The opcode tells the processor which
kind of instruction to execute, and the bytes of data are
combined to create an address. At that address is found the
data used by the processor to complete the·instruction.

The Direct Addressing mode contains an opcode and one
byte of data. The opcode tells the processor which kind of
instruction to execute. The byte of data is used as the least
signficant-byte of an address, and the processor's internal
Direct Page register is used as the most-significant byte. At
the resulting adddress is found the data used by the
processor to complete the instruction.

Please don't consider addressing modes just to be picky
stuff. Virtually all the programming power of the 6809
processor comes from these addressing variants. 1 hope
you will review this lesson several times until each of these
five addressing modes begins to make sense.

•
The topic is once again addressing modes, those ways in
which the program gets the data it needs to complete a
machine-language instruction.

I've described five modes so far: Inherent Addressing, an
instruction which is essentially complete in itself; Register
Addressing, where the opcode describes the instruction,
and the postbyte indicates which registers are used;
Immediate Addressing, where the necessary data
immediately follows the opcode, within the program;
Extended Addressing, in which the two bytes following the
opcode are used to form the address where the data is
located; and Direct Addressing, in which the one byte
following the opcode is combined with the one-byte
contents of the Direct Page register to form a memory
address where the data can be found.

The remaining modes are Indexed and Relative
Addressing, the topics of this lesson. As an aside, I know
these two lessons are a little dry; I promise to do better
soon, when you get back to hands-on programming.

Actually, you've already done Indexed Addressing. It's the
most versatile way of getting data to your program, and it's
quite easy to use. Any apparent complexity arises solely
out of the incredible number of combinations you can make
using this mode, each of which has its own jargon. The one
unequivocal thing you can say about Indexed Addressing is
that the operand in some way identifies the address at
which the processor will locate the data it needs to
complete the instruction. Don't forget during this that
when I say something like "locate the data", I'm talking
about loading, storing, comparing, adding, etc. - any
machine language instruction that uses data to do its
work.

In general, Indexed Addressing allows the processor to get
data from memory by calculation. The memory location for
that data is calculated by combining the value of a 16-bit
register with an offset value. The offset can be either an

You ■ight be losing patience
Mith these orograaed learning
sections. Keep up Mith them.
Noll they bepin to take on more
illpOr'tance as the nu■ber of
concepts you need to re11e111ber
increases. Starting with the
faailiar •••

t What is an addl"f!Ssing mode?

An iddressinp IIOde is how the
■achine language progra11 gets
its infor11ation.

t Nae the addressing IIOdes
represented by these four
instructions: Ct.RB, LDA H99,
LDX SISAA, STB (S33

Imerent; i..ediate; extended;
direct.

• In imerent addressing, lilhere
is the data?

As part of the instruction.

• In i-.diite addressing, lilhere
is the data?

FollONing the opcode in IINOry.

• In extended addressing, lilhere
is the data?

At the address specified by the
opcode.

actual numerical value or the value of an accumulator

Learning the 6e/:Jt 53

Indexed addressing

*Indirect addressing, !llhere is
the data?

At the address soecified by the
direct page concatenated with
the inforaation following the
oocode.

• In all cases, where is the
data?

In lll!IIOrY.

• In inde>1ed addressing, data i!:
found at an address in 11NOry.
What two things are necessary tc,
locate the data?

A 16-bit register and ar1
offset.

* What are the 16-bit registe~
in the 6809 processor?

X, Y, PC (prograM counter), S
(hardware stack), ar,d U (user
stack).

1 lilat are the three kinds of
offsets used in indexed
addressing?

Zero offset, constant offset,
and register offset.

* Given a register and ar,
offset, how are they used?

The value of the offset is added
to the value of the register tci
calculate the address at .tlich
the data can be found.

* If the X register is $3000 and
the A register is $41, where
does the instruction LDB ,X find
its data?

At address $3M.

* What kind of addressing is
this?

Zero-offset indexed.

54 Lesson 7

register. You've seen the usefulness of this method in that
little code encryption program. The X register was set to
the memory location at the start of the encryption table,
and the offset added to pick your way through the table was
in the B register.

These Indexed Addressing methods are called Zero-Offset
Indexed, Constant-Offset Indexed, and Accumulator
Offset Indexed. More jargon. Zero-Offset Indexed means
that what you see is what you get; the value in the register is
the address of the data. Constant-Offset Indexed means
that you're using a fixed constant - that is, a number other
than zero - to add to the register's value in order to locate
the data you need. Accumulator-Offset Indexed means
that you can use the A, B, or combined D accumulator to
give you in effect a variable offset. Add that variable offset
to the register's value and you locate the data in
memory.

Indexed Addressing has other features. One of these is
ostentatiously called Auto Increment/Decrement Indexed.
It means that the register you're using to pinpoint a
memory location may be incremented or decremented as
the instruction is performed. As in the memory-to-screen
message program you worked with earlier, this way of using
Indexed Addressing makes transfer of information very
quick and easy, requiring no additional steps to bump the
register values along to the next byte in memory.

Although that program was used to transfer information
just one byte at a time, in another situation you might want
to use two-byte values. Therefore, the auto increment or
decrement can be by either one byte as you've done, or by
two bytes, further increasing the programming flexibility.
For example, if you had stored a table of 16-bit integers,
you would want to step through the table two bytes at a time
to access its information.

The Auto-Increment/Decrement Indexed mode has one
quirk you have to keep in mind. When your memory pointer
register is to be automatically incremented, that
incrementing is done after the rest of the instruction is
completed. But when a pointer register is decremented,
that is done before the instruction is performed. Say that
the value of the A Accumulator is to be stored at the
memory location pointed to by Y. If an auto-increment is
requested, A is first stored at Y, and then Y is incremented.
However, if auto-decrement is desired, Y is first
decremented, then A is stored at Y. This is a little awkward
at first, but you'll find the programming makes sense to do
that way. More on that later.

Now it's time to talk about mnemonics, which in this case
will help make sense of Indexed Addressing. Please follow
along with me in your documentation, and also have ready
pages 16 and 17 of your MC6809E data booklet.

The format of the operand for Indexed Addressing is
consistent. The offset is identified, followed by a comma,

1~~1
L.DA ,X

and then the pointer register is named. I'm going to
describe some variants on just one possibility, storing the A
Accumulator at memory indexed by X:

Simply to store the A Accumulator at memory indexed by
X, use the zero-offset indexed mode. It is written:

Mnemonic: STA ,X
Read:

Store A, zero-offset to X
Process:
1. Store A in memory location (X)
2. Change N and Z flags, reset V flag
3. Go on to next instruction

To store A at memory indexed by X plus an offset of $1 O

bytes, use the constant-offset indexed mode. It is
written:

Mnemonic: STA $10,X
Read:

Store A, constant offset $10 to X
Process:
1. Calculate X + $10
2. Store A in memory location (X + $10)
3. Change N and Z flags, reset V flag
4. Go on to next instruction

To store A at memory indexed by X, plus an offset of
whatever value is in the B Accumulator, use the
accumulator-offset indexed mode. It is written:

Mnemonic: STA B,X
Read:

Store A, accumulator B offset to X
Process:
1. Calculate X + B
2. Store A in memory location (X + B)
3. Change N and Z flags, reset V flag
4. Go on to next intruction

Learning the

Indexed examples
* If the X register is $38118 and
the A register is $41, Mhere
does the instruction LDB $9C, X
find its data?

At address $319C.

* lflat kind of addressing is
this?

Constant-offset indexed.

• What is the constant in the
previous exaaple?

S9C is the constant.

• If the X register is $3000 and
the A register is $41, where
does the instruction LDB A,X
find its data?

At address $~1.

• What kind of addressing is
this?

AccU11Ul1tor-offset indexed.

• ht happens Mhen LDA ,x is
executed?

The A accu11ulator is loaded with
the value found in 11e1110ry
indexed by X.

f What happens Mhen LDA ,X+ is
executed?

The A acc1111ulator is loaded with
the value found in Me1110ry
indexed by X, and then Xis
autoaatically increaented by
one.

• INt addressing IIOde is this?

Auto-increaent/decre11ent inde>eed
(specifically, auto-increment
accaulator-offset inde>eedl.

f INt happens lllhen LDA , -X is
executed?

The X register is decreaented by
one, and then the A accuaulator
is loaded Mith the value in
-.ory indexed by the X

11b; 55

Indexed examples

t lillat addressing IIOde is
this?

Auto-increaent/dec1eaent indexed
(s!Jl!Cifically, auto,:iecre11ent
accuaulator-offset indexed).

t lillat addressing IIOdes are
represented by these three
instructions?
LDB ,X
LDB t19,X
LDB A,X

Zero-offset indexed, constant
offset indexed, and acc1111u
lator-offset indexed.

t What addressing IIIOdes are
represented by these three
instructions?
lDA ,X+
LDA $19,X+
LDA B1 X+

Zero-offset auto-increment
indexed, constant-offset auto··
incraent indexed, ac:cU11ulator··
offset auto-incre11ent indexed.

t Read the foll01r1ing mnemonics:
t STA ,X

Store A, zero offset to X.

t STA t10,X

Store A, constant offset $10 tc1
x.

t STA B,X

Store A, accuaulator B offset to
x.

t STA ,X+

Store A, zero offset to X,
increEnt X by one.

t STA ,-X

Decre11ent X by one, store A,
zero offset to X.

t STA t9AB,-X

X by one, stort A,
constant offset of tW to X.

56 Lesson 7

To store A at memory indexed by X, and then to
automatically increment X by one byte, use the zero-offset
auto-increment/decrement indexed mode. It is written
simply:

Mnemonic: STA
Read:

Store A, zero offset to X,
increment X by one byte

Process:

'X+

1. Store A in memory location (X)
2. Make X = X + 1
3. Change N and Z flags, reset V flag
4. Go on to next instruction

To store A at memory indexed by X, after automatically
decrementing X by one byte, use the zero-offset auto
increment/ decrement indexed mode. It is also simpler to
write than to describe:

Mnemonic: STA '-X
Read:

Decrement X by one byte, store A,
zero offset to X

Process:
I. Make X = X
2. Store A in memory location (X)
3. Change N and Z flags, reset V flag
4. Go on to next instruction

To store A at memory indexed by X plus an offset of $9AB
bytes, and following that to automatically increment X by
one byte, use the constant-offset auto-increment/
decrement indexed mode. It is written:

Mnemonic: STA $9AB,X+
Read:
Store A, $9AB constant offset to X,

increment X by one byte
Process:
1. Calculate X + $9AB
2. Store A in memory location (X + $9AB)
3. Make X = X + 1
4. Change N and Z flags, reset V flag
5. Go on to next instruction

To store A at memory indexed by X plus an offset of $9AB
bytes, after decrementing X by one byte, use the constant
offset auto-increment/decrement indexed mode. It is
written:

Mnemonic: STA $9AB,-X
Read:
Decrement X by one byte, store A,
$9AB constant offset to X
Process:
1. Make X = X - 1
2. Calculate X + $9AB
3. Store A in memory location (X + $9AB)
4. Change N and Z flags, reset V flag
5. Go on to next instruction

To store A at memory indexed by X plus an offset of
whatever value is in the B accumulator, and to
automatically increment X by two bytes, use the
accumulator-offset auto-increment/decrement mode. It is
written:

Mnemonic: STA B,X++
Read:
Store A, accumulator B offset to X,
increment X by 2 bytes
Process:
1. Calculate X + B
2. Store A in memory location (X + B)
3. Make X = X + 2
4. Change N and Z flags, reset V flag
5. Go on to next instruction

To store A at memory indexed by X plus an offset of
whatever value is in the B accumulator, after automatically
decrementing X by two bytes, use the accumulator-offset
auto-increment/decrement mode. It looks like this:

Mnemonic: STA
Read:
Decrement X by 2 bytes, store A,
accumulator B offset to X
Process:
1. Make X = X - 2
2. Calculate X + B

8,--X

3. Store A in memory location (X + B)
4. Change N and Z flags, reset V flag
5. Go on to next instruction

Indexed examples

1 STA B,X++

Store A, acc1111ulator B offset to
X, increaent X by two.

• STA B,--X

DecrNent X by two bytes! store
A, accu•ulator B offset to X.

* lillat addressing
represented by
instructions:
CLRB
LOB 1$12
LDB $1234
LOB ($34
LOB $12,X

IIIOdes
these

are
five

Inherent, illllediate, extended.
direct, indexed (constant-offset
indexed).

* BRA means branch a1ways. What
kind of addressing does BRA si:o
indicate?

Relative addressing.

* Relative addressing is
relative to what?

The progrc:111 counter (PC) •

* What does the progrilll counter
<PC> indicate?

The 11e1110ry address containing
the next instruction the
processor is to act upon.

* What is the relative position
of the PC?

Since •relative• means relative
to the position of the PC, then
the PC is always relative
position 80.

* What deter11ines a number's
sign (positive or negative) in
binary?

The sign bit.

* Which bit is the sign bit?

The left110st bit.

Learning the 681:Jt 57

Relative addressing

* lflen the left105t bit is a
zero, lllhat is the nllllber's
sign?

Positive.

. * When the left10St bit is a
one, lllhat is the nUllber's sign?

Negative.

* lflat is the binary equivalent
of SC7?

SC7 is binary 11000111.

* Is SC7 positive or negative?
Why?

Negative, because the left110St
bit (the sign bit) is a one.

* What is ~7C in binary. Is S7C
positive or negative? lolly?

$7C is 011111Nl. It is
JX)Sitive, because the left110st
bit (the sign bit) is a zero.

* What is the relative position
of the byte in IINIOr)' directly
preceding the PC?

Relative position -1, or $FF.

* What is the relative position
of the byte in IINOI")' directly
following the PC?

Relative position 01.

* Why does SFF mean -1?

Because the left1110St bit (the
sign bit) is a one.

* What does BRA aean?

Branch alNays.

* The opcode for BRA is S2I.
lllen the instruction $21 FE is
executed, Nhat are the relative
positions of opcode BRA and
operand SFE?

Operand SFE is at relative
position $FF H) and opcode BRA
is at relative position SFE
(-2).

58 Leason 7

As you can see, even storing the accumulator to memory
indexed by X can be done a number of ways. A complete list
would include six more variants that I haven't described;
you'll have a chance to try these modes in your workbook.
This is a good.time to do that if you would like, or just to
take a break and review .

If you've been reviewing this le,;son, you probably have an
idea that indexed addressing is very flexible and not nearly
so difficult as the jargon suggests. And, if you've had a
glance at your MC6809E data booklet, then you know
there's quite a bit more to the subtlety of indexed
addressing. Even so, I would like to leave that topic for now
and turn to Relative Addressing.

Relative Addressing is a good term, one of the best pieces
of jargon you'll encounter. When Relative Addressing is
employed, the data needed to complete an instruction is
found at a location in memory relative to the present
position of the Program Counter. Specifically, Relative
Addressing is used to identify places in memory to which
the program itself will branch.

To use Relative Addressing, though, you have to know
about signs. I've not mentioned negative numbers in
conjunction with binary or hexadecimal notation, and
that's because the representation used is different from
that in the decimal system. In the decimal system, of
course, a negative 10 is simply written with a minus sign, -
10. Computer binary numbers are called signed numbers,
because the sign for positive or negative aspect is in fact a
part of the number itself. That's simpler than it sounds.
Where the sign of a number is unimportant, all the binary
digits have the same meaning, as you've experienced so far.
However, certain programming conditions - Relative
Addressing is just one of them - need to know not only the
length of a branch, but also which direction the branch
goes. That is, how far will the program counter move, and
will it move forward or backward, relative to the current
position in the program?

To sign a number in binary, a unique procedure is used. If
the most signficant bit - that is, the leftmost bit - of the
number in question is zero, then the number is positive; if
the most significant bit is one, then the number is
considered negative. Remember, the sign bit is ignored
except when it is needed.

You have used a signed number in the programming you've
done this far (in fact, a negative signed number), but you
probably haven't noticed. Think back to the program which
moved information from memory to the screen; there was
an instruction that read "Branch if Not Equal" to a part of
the program labeled "LOOP". At the time, I hustled you
past that point, explaining only about the condition code
register, how that branch would take place if the zero flag
was not set, and that this was sort of like a BASIC GOTO. I
didn't mention anything about the operand of that branch
instruction.

r:tW""",

[B~~]

o• = 01
00
Ff
ft
FD

1ottl tl 0 1 tl 0 11 11 I
:,j,1,e,

(~ F""""'.......,,.,
<h.i-1 /07)

[/!1lt!ol1!oltltl
=4=

(11 ""!"1Ne twMb<r,
de,,-.! -ZI)

IOI t IO I I I' I ' IO I 'I O IO IO I t IO I t I' I 0 1
:=. -,i;.s- P I <>

(" po.,-t,;e IU....bu 1 ®MO.I Z:,B?<'.))

[Z]TIN1j t I tlol 1lololol I joj tit jol
,=-1,p P I b

(., ~ ~. c1,,;-1 -8938)

Turn to your documentation. That program is printed with
this text; this time, though, the hex code appears with it.

4000 00100 ORG $4000
4000 BE 0800 00110 LDX #$0800
4003 108E 0400 00120 LDY #$0400
4007 A6 80 00130 LOOP LDA 'X+
400'3 A7 A0 00140 STA 'Y+
400B BC 0800 00150 CMPX #$0800
400E 26 F7 00160 BNE LOOP
4010 3'3 00170 RTS

0000 00180 END
00000 TOTAL ERRORS
LOOP 4007

It should look familiar. Incidentally, the load immediate
instructions in lines 110 and 120, and the zero-offset auto
increment/decrement indexed instructions in lines 130
and 140 should be particularly understandable this time
'round. But my interest is line 160. There's that Branch if
Not Equal to LOOP. Hex $26 is the opcode for Branch if
Not Equal. $F7 is the operand. How does $F7 describe a
program branch?

The answer is to write it in binary. $F7 translates into 1111
0111. The most-significant bit, bit 7, is a one, meaning (for
Relative Addressing purposes), this is a negative number.
This is a backwards branch. Translated into a decimal
number, this is -9. If you don't have a decimal/hex
programmer's calculator, you can refer to the chart at the
end of the documentation, or just count backwards ... $00
is 0. $FF is-1. $FE is-2. $FD is-3. $FC is-4. $FB is-5. $FA
is --6. $F9 is -7. $F8 is -8. $F7 is -9. There it is. -9.

The backwards branch is made from the Program
Counter's present position. Recall that several lessons ago
I said that the Program Counter points to the next
instruction to be executed. Look at the listing again. The
next instruction is in line 170, Return from Subroutine. The
Program Counter is pointing to RTS when the Branch on
Not Equal instruction is in progress. This is the starting
point, relative position $00. You'll be counting backwards
through the second and third columns, containing the
hexadecimal opcodes and operands. Count backwards in
the hex data with your finger. $00 points to Return from
Subroutine, hex code $39. Now start counting. $FF, $FE ...
that's the beginning of the Branch on Not Equal
instruction. $FD, $FC, $FB ... that puts you at the beginning
of the Compare X opcode. $FA, $F9 ... that's the Store A
command. $F8, $F7 ... and there it is, the beginning of the
Load A instruction, right on the line with the label
"LOOP".

Try it again, just to be certain. Start with the instruction
Return from Subroutine as relative position $00, and count
backwards through the bytes of data. $FF, $FE. $FD, $FC,
$FB. $FA, $F9. $F8, $F7. The relative branch brings you
back to the label "LOOP".

There's another way to do this, actually the way that the
6809 itself does it. The 6809 adds the relative branch
operand to the address pointed to by the Program Counter.

Learning the

Branching

* When $20 FE is eKecuted, what
happens to the program counter?

It is 110ved to relative position
SFE, that is, -2.

~ What is found at relative
position SFE <-2)?

The opcode BRA.

* What is the
instruction found
-position SFE?

complete
at relative

Branch altitays to relative
position -2, BRA SFE, or $20

FE.

* Suaarize what haooens lllhen
the progra111 encounters the
instruction BRA SFE.

The prograa branches to relative
position SFE, that is, back to
the instruction BRA SFE. This
is an endless loop.

* What is inherent addressing?

Inherent addressing is an
addressing llOde in lllhich the
information needed to coaolete
an instruction is oart of the
instruction itself.

* What is register addressing'

An addressing mode in lllhich the
inforMation needed by the
prograa is aoved fr011 one
register to another.

* What is iaediate addressing?

An addressing MOde in illhich the
data to be used is found at the
address immediately following
the instruction itself, in
prograa order.

* What is extended addressing'

An addressing mode in which the
two bytes following the opcode
are the address of the data to
be used to complete the
instruction.

60C)9 59

Long and short relative

* lillat is direcl addressing?

An addressing IIOde where the
direct page register and the
value follONing the opcode are
COllbined to fora an address. At
that address is found the data
to c011plete the instruction.

* lillat is indexed addressing?

An addressing IIOde in Nhich a
16-bit register and an offset
are COllbined to produce a 16-bit
result. The 16-bit result is
used as an address; the data is
found at that address.

* lllat is relative addressing?

An addressing IIOde where the
operand is an offset relative to
the current position of the
prograa counter. Depending on
the conditions of the relative
instruction, the progru Nill
branch to this relative
position.

* What is the ter■ for hON a
machine language prograa gets
its inforaation?

An addressing IIIOde,

60 Lesson 7

If the relative branch is positive (bit 7 is zero), then that
result becomes the address of the next instruction the
processor will execute. However, if the relative branch
value is negative, the 6809 decrements the most-signicant
byte of the address, and uses that as the address of the next
instruction. In this case, the Program Counter reads $4010
and the relative branch is $F7.

$4.010
plus $F7

is $4107

But $F7 is negative, so the most signficant byte of the
address ($41) is decremented to $40. The result is $4007.
Glance at the listing. $4007 is the address where you will
find the label "LOOP".

The 6809 has two kinds of Relative Addressing - long and
short. So far I've been describing short addressing. In short
addressing, one byte is used to carry the program 127
addresses forward or 128 addresses backward. Long
Relative Addressing uses two bytes, but the principle is the
same. If the most-significant bit is zero, the long branch is
positive; if the most-signficant bit is one, the long branch is
negative. There are two major differences between the
short and long branch. In the one-byte short branch, bit 7 is
the most-significant bit; in the two-byte long branch, bit 15
is the most-significant bit. Also, the short branch can move
only 127 addresses forward or 128 addresses backward;
the long branch can move 32,767 addresses forward or
32,768 addresses backward in memory - that is, through
the entire memory map of the computer. Long branches
offer position independent programming. Remember the
term "position independent"; I'll be talking quite a bit
about that later.

Relative Addressing, then, is unique in that the operand
does not provide either an immediate value or a specific
address to the processor. Rather, it provides a value which
can be used to calculate a specific address in relationship to
the present position in the program.

Time to summarize. There are seven major ways your
program can obtain the information it needs. These are
called the addressing modes.

1. The information can be implied by the
instruction itself. This is Inherent Addressing.
CLRA (Clear A Accumulator) is an example of
Inherent Addressing.

2. The information can deal with internal
6809 registers. This is Register Addressing.
TFR X, Y (Transfer X Register to Y Register) is
an example of Register Addressing.

~-1

~~
flNI> ,/, '

- ...
-~P"~~

"t
=-,.!,.-.-..J>;

W..!A

:r[~ L+ ~
@ <-f~

\, IND :

cg__
/4

--1-,----.JI
11· "' '\

~fa.,-;+~
[iii.iJ;Jj!f

(

CAL£.&JI.A.~'
';l'C

10

3. The information can be present immedi
ately following the instruction itself. This is
Immediate Addressing. LOA #$80 (Load A
Accumulator with the value $80) is an example
of Immediate Addressing.

4. The information can take the form of a
memory address where data can be found. This
is Extended Addressing.
LOX $1234 (Load X Register with the
information at Address $1234) is an example
of Extended Addressing.

5. The information can take the form of the
least-signficant half of a memory address. This
can be combined with the value of the Direct
Page register to locate the information in
memory. This is Direct Addressing. If the
Direct Page register is $50, then LOY <$CC
(Load Y with the information at addresses
$50CC and $50CO) is an example of Direct
Addressing.

6. The information can take the form of a
register value, which, together with an optional
offset, identifies a memory address where data
can be found. This is Indexed Addressing.
LOX o, Y (Load X with the information at
Address Y plus offset D) is an example of
Indexed Addressing.

7. The information can take the form of a
value to add to the Program Counter to
determine a new position for the Program
Counter. This is Relative Addressing. BRA $40
(Branch Always to Program Counter plus $40)
is an example of Relative Addressing.

Each of these modes is unique, and each contributes to the
speed and economy of the 6809 processor. Please review
thislessonandreadpages 15 through 17 ofyourMC6809E
data booklet. I haven't yet discussed what are called the
Indirect Addressing Modes; if, when you read the data
booklet, the Indirect modes make sense, then you're doing
well indeed. If they're not clear to you, don't worry; that's
for later. Once again, please review all the addressing
modes before moving to the next lesson.

Learning the 6el::J,

Summary

61

•
62 Lesson 7

•
The architecture of the 6809 processor has up to this point
been described piecemeal. Now I'd like to summarize the
6809 processor's architecture, making the description a bit
more formal. Please look once again at Figure 4 on page 5 of
the MC6809E data booklet.

The PROGRAM COUNTER keeps the machine language
program running in order. The Program Counter register
contains the 16-bit address of the next instruction to be
performed in the program sequence. The Program Counter
can be changed directly by the programmer, by jumps and
branches within the program, by subroutines, and by stack
operations. The Program Counter is one of the POINTER
registers.

The two ACCUMULATORS perform simple arithmetic.
The A and B Accumulators are each one byte (8 bits) in
size. For some operations, the two Accumulators are
concatenated, creating a single, 16-bit Accumulator. When
A and B are used together as one 16-bit Accumulator, they
are collectively called the D Accumulator.

There are two INDEX registers, each 16 bits in size, which
can be used to identify memory locations. Although by
themselves they are very limited in capability, the Index
Registers X and Y can be used, together with various
calculated offsets, to load or store data anywhere in
memory. To increase their flexibility, the X and Y registers
can also be automatically incremented or decremented
during the course of a machine language instruction. The
Index Registers are also POINTER registers.

There are also two STACK POINTER registers, each 16
bits in size, and each with a different purpose. The User
Stack Pointer, the U register, is only controlled by the
programmer by pushing and pulling information. This
program control allows information to be transferred easily
between portions of a program. The Hardware Stack
Pointer, the S register, is also used for pushing and pulling
information, but is used automatically by the processor to
save Program Counter address information during

After tm lessons of heavy
abstract leal"Tling, you're back
with !!IOE fuUiar concepts and
practif:e. At tr. end of this
lesson, you' 11 be a third of the
way through the courv - l"Ndy
to Jaap into the prograaing
debils of the co.puter. So
give this lesson lots of tiae,
and practice NCtl instl"ldion
until it's c:oafortable
Nhether or not you kftON Nhat
it's good for!

* Nae the 16-bit Ngisters of
the 6819.

X and Y, pl'Ogl"a counter PC, S
and U stacks, and the D
accaulator.

• Nae the 8-bit registers of
the 6819.

A and 8 ar.ctalators, condition
code register CC, and direct
page register DP.

* lllat is the purpose of the
prograa counter, PC?

It keeps the llit'hinl! language
prograa ruming in order.

* lllat value does the prograa
counter hold?

The 16-bit address of the next
instruction to be perfor.ed.

subroutine calls.

Learning the /:K:fJ 63

Clock cycles

* Ylat is the purpose of the A
and B registers?

To perfor11 si11ple arittatic.

* Ylat is the D registr?

The c::oncattnation of the Hit A
and B registl'f'S into a single
16--bit register.

* Ylat are the ll and Y
registers?

* Holf IN indn registers acl5t
often used?

To identify-y locations.

* Ylat are the S and U
registan?

The S registlll" is the hl1'dNlre
stack point11r, and the U
register is thR user stack
pointl!I".

* Ho. are the Sand U registers
diffennt?

The U register is roeservat for
pushing and pulling progra
infOtWtion; the S rwgistllr is
used for pushing .t pulling as
well as for subroati• calls.

* ht is the purpo111t of the
condition code register?

The condition code register
provides inhnltion abM the
-,st recent innnction..,...
by the prac.'11'..,,..

• llt&t is MOttlllr' naa for the
conditim code regism-?

The flags.

* INt does the direri pap
registr store?

The direct pip register stores
the MJSt-significant half of an
address.

64 Lesson 8

The CONDITION CODE register, or flags, is an 8-bit
register wherein each bit has a meaning and can be used to
make simple judgments (such as greater than, less than,
equal to, positive, negative, carry, borrow, etc.) within a
program. The Condition Code Register is automatically
modified by the results of machine language instructions,
or can be changed directly by the programmer.

The DIRECT PAGE register, 8 bits wide, is given the
most-significant byte of an address. During Direct
Addressing, the Direct Page register provides this half of
the address, and the program provides the least-significant
half of the address. The result is a complete address which
can be used to access data in memory.

Please read pages 4 and 5, and the first portion of page 6, in the
MC6809E data booklet. This section describes the architecture
of the 6809 processor. Return to the tape when you have com
pleted the reading.

I wanted you to read that to get a firm idea of the 6809's
innards. The next step is getting a handle on some of the
6809' s instructions, and for this I'll return to your computer
and to a BASIC program. Turn back to your MC6809E
data booklet, pages 30 and 31. These pages contain an
alphabetical list of the 6809 proc~ssor instructions, and are
chock full of information.

In the first column is the generalized mnemonic, such as
ADD, DECrement, LoaD, etc. The second column shows
the specific editor/assembler forms it can take, meaning
how to indicate the registers or memory the instruction can
use. The next block of information is entitled" Addressing
Modes", and provides detailed information on each
instruction in that mode, its specific opcode in
hexadecimal, the number of bytes the instruction requires
for completion, and the number of clock cycles needed for
the process.

I haven't mentioned clock cycles before; they are vital to
understand when your programming begins to get
sophisticated. You've probably heard that the Color
Computer runs at .89 MHz. Actually, the precise figure for
the computer's speed is .894886 MHz, that is, 894,886'
clock pulses per second. Any action taken by the 6809
processor is triggered by one clock pulse; at 894,886 clock
pulses per second, that means that the Color Computer's
6809 can't do anything in a shorter time than .00000112
seconds .. 00000112 seconds is 1.12 microseconds, slightly
longer than a millionth of a second. Knowing this timing is
important when writing programs that transfer information
properly to the printer port, the RS-232, the cassette, the
disk and other devices. Later, when you begin producing
audio from your computer, knowing the clock cycles
required for each 6809 instruction will be essential.

C'.l.CGK
-,1~,-...,..,

.OOOCIOUZ. -

~
~

AWA
. ()0000-Z.,.'f
~

1 CLS

Back to the booklet, page 30. The description column,
toward the right, gives in abbreviated notation the function
of each machine language instruction. The symbols and
abbreviations are explained at the bottom of the page;
glance at the ADD instruction. You will discover that
addition using the A Accumulator, mnemonic ADDA, is
valid in four addressing modes. In the immediate mode, for
example, you find that the hexadecimal opcode for this
instruction is 88, that the complete instruction consists of2
bytes, and that it takes 2 clock cycles (that is, 2.24
microseconds) to execute. The description column says
that the result of A Accumulator plus a value from memory
is transferred into the A Accumulator.

The last group of columns provides detailed information
about the condition code register - how each flag is
affected by the instruction. In the case of the ADDA

instruction, all five condition code bits are affected (either
set or reset) by the results of that command.

These are pretty dense pages. In order to simplify them a
little, I've put together a program in BASIC. It's fairly long,
so while it's loading, start to get familiar with pages 30 and
31. By the way, there are two program dumps on the tape,
just to make certain you've got a good one.

Program #13, a BASIC program. Turn on the power of your
Extended Color BASIC computer. When the cursor appears,
type CLOAD and press ENTER. The computer will search (S)
and find (F). When the cursor reappears, LIST this program. !f
the program is not similar to the listing, or if an- 1/0 error occurs,
rewind to the start of the program and try again. For severe
loading problems, see the Appendix.

2 PRINTSTRING$(32,45l;
3 PRINTSTRINGS<5,191)" INSTRUCTION EXAMPLES "STRINGSC5,1911;
4 PRINTSTRING$(32,45);
5 PRlNT"-<1> ADD <ADD>

<LOGICAL AND>
(ARITHMETIC SHIFT>

<COMPLEMENT)
<DECREMENT)

<EXCLUSIVE OR>
< INCREMENT>

<LOGICAL SHIFT)
(NEGATIVE>

(LOGICAL ORI
<ROTATE>

(SUBTRACT>

6 PRINT" (2) AND
7 PRINT"(3) ASL/ASR
8 PRINT" (4> COM
9 PRINT" <5> DEC
10 PRINT"C6> EOR
11 PRINT"(7) INC
12 PRINT"CB> LSL/LSR
13 PRINT" <9> NEG
14 PRINT" <A> OR
15 PRINT" CB> ROL/ROR
16 PRINT"<C> SUB
17 PRINTCHRSC191)" TOUCH 1
18 A$=INKEYS:IFAS=""THEN18

- C TO DEMONSTRATE

19 A=ASC(A$l:A=A-48:IFA<l OR A>19 THEN18

";:POKE1535, 191

20 ONA GOSUB23,37,50,76,86,97,112,122,138,18,18,18,18, 18,18,18,1
49,163,192
21 RUN
22 GOTO22
23 CLS:NF=0:ZF=0:CF=0
24 PRINT"------> ADD TWO NUMBERS <------"
25 GOSUB225:IFQQ=1THEN23
26 INPUT"VALUE TO ADD FROM MEMORY OR FROMOTHER REGISTER <HEX>";A
2$:AS=A2$
27 Q=0:GOSUB210:IFQ=1THEN23
28 X=A:A2=A:GOSUB212:Q2$=Q$
29 X=Al+A2:A3=X
30 IFXJ255THENX=X-256:CF=1:A3=X
31 IFX=0THENZF=l

Execution time

* HoN is tt. direct page
retister Ulllld?

In the dirwct addrls&ing _,.,
the retistt!I" is used to cnate •
et111plete address.

* ht is i1n addreuing IIIXle?

HoN the lllldline langU1gR prap•
gets its inforwltian.

, IIJat do y. call the verbal
description of a processor
l'Oalnd?

A aneaonic.

• lllat is the proper ME for a
processor~?

An opcode.

* IIJat is the clock speed of the
Color Cc!llputer?

.89 .eiz (.894886 tlfz or a,&
pulses per second) •

* HoN long is OM clock pulse on
the Color C(wputlt"?

ApproxiNtely .IINIU2 5el'Ol'lds
or 1.12 ■iCl"O!ieCOnds. (More
accurately, 1.11746
■icroseconds).

f HoN long is a ■icrosecond?

One ■illionth of • second.

t The tU. <•ltiply) instruction
takes 11 cl,Dclc cycles. HoN long
is this on the Color CclllpiW?

11 ti■es 1. 11746 lticroset'Oftds,
or 12.29el6 ■io'OSKOllds.

• LDA illlll!diate and
ia!diate Nl'h tilke 2
cycles. iHDlf long is
instl"attion on the
Co■putlt"?

LDB
clock
NCh

Color

2 ti■es 1.11746 ■icroseconds, or
2.23492 ■iC!r'O!N!t'Oftds

Learning the /:i!l:::fJ 65

Program #13

* STD extended takes 6 clock
cycles. How long is this?

6 tiES 1. 11746 ■icro!il!COllds, or
6.78476 ■icroseconds.

* ltl.tiply is A tias B, with
the result in D. If a
■ultiplication progras COl'ISists
of LDA and LD8 i1■1tliate (each 2
clock cycles), 111.tiply (11
clock cycles>, ind STD extended
(6 clock cycles>, hoe, long is
this?

(2+2+11~} tilleS
■it'l"Oseconds, or
■icroseconds).

1.11746
23.46666

* At 23. 46666 ■icroseconds per
■ultiplication progr-, hoe, INffl)'

co■plete ■ultiplication progrM!lt
can the Color Collputer do ift OM

second?

The Color CGl!pn.- Clft parfortl
~,613 1Ultiplic:atiC11t pragraa
per SKONI.

* ht is the purpose of the
eotldition code register?

The condition code registB'
proYida infOl"Ntion ilbout the
.st Nl't!nt instruction executed
by the processor.

* In the folloeeing exercises,
give the results of the
instruction, Nhere the result is
found, and the effect on the
three flags N, Z and C
(condition codes negative, zero
and carry>. For exaple, the
proble■: A contains t41.
Execute ADDA ltCC. The ilnliNl!I":
A contains SIii. Carry flag .t.
Zero and neptiw flip retet.

• Probla: A contains SM.
Execute ADDA ffFB.

AnsNer: A cont1ins tFF.
Negit ive flag set. Zero and
carry fl• reset.

66 Lesson 8

32 GOSUB212:Q3$=Q$
33 PRINT
34 PRINTTABC5)Q1$" "A1$:PRINTTAB(5lQ2$" "A2$:PRINTTABC5lSTRI
NG$C20,45) :PRINTTABC51Q3$" ";:IFA3C16THENPRINT"0"+HEX$CA3l ELS
EPRINTHEX$(A3l
35 GOSUB224
36 GOSUB222:RETURN
37 CLS:NF=0:ZF=0:CF=0
38 PRINT"--> LOGICAL AND TWO NUMBERS (--";
39 GOSUB225:IFQQ=1THEN37
40 INPUT"VALUE TO AND FROM MEMORY OR FROMOTHER REGISTER <HEX)":A
2$:A$=A2$
41 Q=0:GOSUB210:IFQ=1THEN37
42 X=A:A2=A:GOSUB212:Q2$=Q$
43 X= Al AND A2: A3=X
44 IFX=0THENZF=1
45 GOSUB212:Q3$=Q$
46 PRINT
47 PRINTTAB(5)Q1$" "A1$:PRINTTAB15lQ2$" "A2$:PRINTTABl5lSTRI
NG$120,45l:PRINTTABl5lQ3$" ";:IFA3116THENPRINT"0"+HEX$1A3JELSE
PRINTHE~$CA3l
48 GOSUB224
49 GOSUB222:RETURN
50 CLS:NF=0:ZF=0:CF=0
51 PRINT"ARITHMETlC SHIFT LEFT OR RIGHT":PRINT"TOUCH LORR"
52 A$=INKEY$:IFA$="L"ORA$="l"THEN53ELSEIFA$="R"ORA$="r"THEN63ELS
E52
53 CLS:PRINT"---> ARITHMETIC SHIFT LEFT (---"
54 GOSUB225:IFQQ=1THEN53
55 X=A*2:A2=X
56 IFX)255THENX=X-256:CF=l:A2=X
57 IFX=0THENZF=l
58 GOSUB212:Q2$=Q$
59 PRINT
60 PRINTTAB(5)Q1$" "A1$:PRINTTABl5J"<---- SHIFT ----":PRINTTAB
15) Q2$" ":: IFA2 C 16THENPRINT"0"+HEX$ (A2) ELSEPRINTHEX$ <A2l
E,1 GOSUB224
62 GOSUB222:RETURN
63 CLS:PRINT"---> ARITHMETIC SHIFT RIGHT <---";
64 GOSUB225,1FQQ=1THEN63
65 IFA>127THENNF=1
66 X=FIXIA/2l:IFX>63THENX=X OR128:A2=X:ELSEA2=X
67 IF(A/2) ()FIX(A/2)THENCF=1
68 IFX=0THENZF=1
69 GOSUB212:Q2$=Q$
70 PRINT
71 PRINTTAB<5lQ1$" "A1$:PRINTTABC5l"---- SHIFT ---->":PRINTTAB
(5JQ2$" ";:IFA2i16THENPRINT"0"+HEX$(A2) ELSEPRINTHEX$1A2)
72 GOSUB224
73 IFNF=l THEN PRINT:PR!NT"NOTE BIT 7; SEE DATA BOOKLET.":GOT075
74 IFCF=l AND NF=0 THEN PRINT:PRINT"NOTE CARRY FLAG; SEE DATA BO
OK."
75 GOSUB222:RETURN
76 CLS:NF=0:ZF=0:CF=1
77 PRINT"----> COMPLEMENT A NUMBER <----"
78 GOSUB225:IFQQ=1THEN76
79 X=NOTA AND 255:A2=X:GOSUB212:Q2$=Q$
80 IFX=0THENZF=1
81 !FX>127THENNF=1
82 PRINT:PRINTTABl5lQ1$" "Al$:PRINTTA8(51"** COMPLEMENT **":PR
INTTA8(5)Q2$" ";:IFA2(16THENPRINT"0"+HEX$(A2l ELSEPRINTHEX$(A2
)

83 GOSUB224
84 PRINT:PRINT"NOTE CARRY FLAG; SEE DATA BOOK."
85 GOSUB222:RETURN
86 CLS:NF=0:ZF=0:CF=0
87 PRINT"----> DECREMENT A NUMBER (----"
88 GOSUB225:IFQQ=1THEN86
89 X=A-1:A2=X:IFXC0THENX=255:A2=X:NF=1
90 IFX=0THENZF=1
91 IFX>127THENNF=1
92 GOSUB212:Q2$=Q$
93 PRINT
94 PRINTTAB(5)Q1$" "A1$:PRINTTAB!5l"** DECREMENT **":PRINTTAB<
5)Q2$" ";:IFA2116THENPRINT"0"+HEX$CA21 ELSEPRINTHEX$CA2l
95 GOSUB224
96 GOSUB222:RETURN
97 CLS:NF=0:ZF=0:C.F=0
98 PRINT"LOGICAL i::XCLUSIVE-OR TWO NUMBERS":
99 GOSUB225:IFQQ=1THEN97
100 INPUT"VALUE TO EXCLUSIVE-OR, TAKE~ FROM MEMORY OR FROM AN
OTHER . REGISTER";A2$:A$=A2$
101 QQ=0:GOSUB210:IFQQ=1THEN97

102 X=A:A2=A:GOSUB212:Q2$=Q$
103 X=CAl AND NOTCA2ll OR CNOT(Atl AND A2l :A3=X
104 IFX=0THENZF=1
105 IFX}127THENNF=1
106 GOSUB212:Q3$=Q$
107 PRII\/T
108 PRINTTABl5lQ1$" "A1$:PRINTTAB(5)Q2$" "A2$:iJRINTTAB(5)ST~
ING$ 120,451: PRII\/TTAB (51 Q3$" ":: IFA3 <16THENPRINT"0"+HEX$ (A3l CL
SEPRINTHEX$1A3l
109 GOSUB224
110 GOSUB222:RETURN
111 RETURN
112 CLS:NF=0:ZF=0:CF=0
113 PRINT"-----> INCREMENT A NUMBER <----"
114 GOSUB225:IFQQ=1THEN112
115 X=A+1:A2=X:IFX>255THENX=0:A2=X:ZF=1:NF=0
116 IFX>l27THENNF=l
117 GOSUB212:Q2$=Q$
118 PRINT
119 PRINTTAB(5)Q1$" "A1$:PRINTTABC5}"** INCREMENT **":PRINTTAB
(5)Q2$" ";:IFA2(16THENPRINT"0"+HEX$(A2) ELSEPRINTHEX$(A2)
120 GOSUB224
121 GOSUB222:RETURN
122 CLS:NF=0:ZF=0:CF=0
123 PRINT"> LOGICAL SHIFT LEFT OR RIGHT ("
124 PRINT"TOUCH LORR"
125 A$=INKEY$:IFA$="L"ORA$="l"THEN12E.ELSEIFA$="R"ORA$="r"THEN129
ELSE125
126 CLS:PRINT"----1 LOGICAL SHIFT LEFT (----"
127 GOSUB225:IFQQ=1THEN126
128 GOTO55
129 CLS:PRINT"----> LOGICAL SHIFT RIGHT <----"
130 GOSUB225:IFQQ=1THEN129
131 X=FIX(A/2):A2=X:IFA/2()FIX(A/2)THENCF=l
132 IFX=0THENZF=1
133 GOSUB212:Q2$=Q$
134 PRINT
135 PRINTTABl51Ql$" "A1$:PRINTTAB(5)"---- SHIFT ---->":PRINTTA
B(5)Q2$" ";:IFA2C16THENPRINT"0"+HEX$(A2l ELSEPRINTHEX$(A2l
136 GOSUB224
137 GOSUB222:RETURN
138 CLS:NF=0:ZF=0:CF=0
139 PRINT"------> NEGATE A NUMBER (------"
140 GOSUB225:IFQQ=1THEN138
141 REM
142 REM
143 X=(NOTA AND 2551+1:A2=X:GOSUB212:Q2$=Q$
144 IFX=0THENZF=1:CF=1
145 IFX>127THENNF=1
146 PRINT:PRINTTAB(5JQ1$" "A1$:PRINTTABC5l"** NEGATIVE **":PRI
NTTABl5)Q2$" ";:IFA2(16THENPRINT"0"+HEX$(A2l ELSEPRINTHEX$(A2>
147 GOSUB224
148
149
150
151
152

GOSUB222:RETURN
CLS:NF=0:ZF=0:CF=0
PRINT"---} LOGICAL OR TWO NUMBERS <---";
GOSUB225:IFQQ=1THEN149
INPUT"VALUE TO OR FROM MEMORY OR FROM ANOTHER REGISTER (HEX)

":A2$:A$=A2$
153 QQ=0:GOSUB210:IFQQ=1THEN149
154 X=A:A2=A:GOSUB212:Q2$=Q$
155 X=Al OR A2: A3=X
156 IFX=0THENZF=1
157 IFX}127THENNF=1
158 GOSUB212:Q3$=Q$
159 PRINT
160 PRINTTAB(5JQ1$" "A1$:PRINTTAB<5><;12$" "A2$:PRINTTAB(5)STR
ING$(20.45l :PRINTTABl5)Q3$" ";:IFA3(16THENPRINT"0"+HEX$(A31 EL
SEPRINTHEX$(A3l
161 GOSUB224
162 GOSUB222:RETURN
163 CLS:NF=0:ZF=0:CF=0
164 PRINT"----> ROTATE LEFT OR RIGHT <----";
165 PRINT"TOUCH LORR"
166 A$=INKEY$:IFA$="L"ORA$7"1"THEN167ELSEIFA$="R"ORA$="r"THEN180
ELSE166
167 CLS: PRINT"STATE OF CARRY FLAG? (0 OR 1) ";
168 A$=INKEY$:IFA$="0" OR A$="l"THENPRINTA$:CF=VAL(A$l:ELSE168
169 GOSUB225:IFQQ=1THEN167
170 X=A*2:A2=X
171 IFX(256THENX=X ORCF:A2=X:CF=0:GOTO173:ELSE172
172 X=X-256:X=X ORCF:CF=1:A2=X
173 IFX=0THENZF=1

Program #13

-t ProblaJ 8 colltliM tAA..
£xecutelN)Btm

Anslarr I l'Ollt1ins • Zero
flag wt. Nlgltive flag reset.
Carry flag unaffected.

-t Probl•1 B contains tM.
Execute INS l«F.

Ans.er, B contains NA.
and negative flags reset.
flag UNfflrtl!d.

Zero
Carry

tFF.

Anseer: A colltaiM tFF.
Nlgat:iw 1F111 set. Zwo flag
reset. Cirry flag unaffected.

• Probla: A contains SAA.
Execute OM "55.

Ansle-: A contains SFF.
Negative flag set. Zero flag
reset. Carry flag Ul'lifferied.

-t Proble11: A contain& -.
Execute Dfli .-.

AnsNer: A t'Ontains • Zero
flag set. Negative flag r'ftlK.
Carry flag UMfferted.

• Probll!III B CC!lltains tFt..
Execute ORB ttlf.

AnsNer: B contains tFF.
Negative fl.ag set. Zero flag
reset. Carry flag umfftdl!d.

·* Probla: tFF.
Execute all.

Anaar: B c:anbins • Zero
flag set. Neptive fllf reat.
Carry flag alwys wt by aJI
ilwtructiori.

-t Probla:
Execute aJA.

Araer: A contains t55.
and negat i 'il'e flags reset.
flag always set by
instructim.

SAA.

Zero
Carry

aJI

174 IFX}127THENNF=l

Learning the bel::ft 67

Flags

* Problea: A contains tl4.
Execute ADDA WC.

AnsM!r: A contains• Zero
aftd carry flags set. Nlgative
flag reset.

* Problea: A contain& $14.
Execute ADDA WD.

A contains 901. Carry
Negative and zwo flag set.

flags reset.

• Probler. 8 c:ontaiM -.
Execute SR ltll.

Anserler: B c:ontains t7F. All
flags reset.

* Proble1tt B contains tll.
Execute SUBB "81.

AnsNer: B contains W.
Negative flag set. Zero and
carry flags reset.

* Problea: B contains W.
Execute SUBB "81.

AnsNer: B contains -. Zero
flag set. Negative Ind c.,.,,.,
flags reset.

* Problea: B contains •
Execute SUBB 1$81.

AnsNer: B contains ff.
Negative and carry flip set.
Zero flag reset.

* Problnn A contains ff.
Execute 1111A ISFF.

AnsNer: A contains ff.
Negative flag set. Zl!l"O flag
reset. Carry flag unaffected.

* Probll!IU A conhiM ff.
Execute INIAltA\5.

AnsNl!t-: A conhiM A
Neptive flag wt. Zero flll
reset. Carry fllg _,,..._

68 Lesson 8

175 GOSUB212:Q2$=Q$
17E, PRINT
177 PRINTTAB(5)Q1$" "A1$:PRINTTAB<5l"(--- ROTATE ---":PR!NTTAB
(5)02$" "::IFA2(1E,THENPRINT"0"+HEX$(A2l ELSEPRINTHEX$CA2)
178 GOSUB224
179 GOS~B222:RETURN
180 CLS:PRINT"STATE OF CARRY FLAG? (0 OR 1) ";
181 A$=INKEY$: IFA$="0" OR A$=" 1 "THENPRINTA$:CF=VAL CA$l•:ELSE181
182 GOSUB225:IFQQ=1THEN180
183 X=<FIXCA/2))0RCCF*128):A2=X
184 IFFIXCA/21 C)A/2THENCF=1ELSECF=0
185 IFX=0THENZF=l
186 IFX)127THENNF=1
187 GOSUB212:Q2$=Q$
188 PRINT
189 PRINTTAB(51Q1$'' "A1$:PRINTTABl5J"--- ROTATE ---)":PRINTTAB
<5>Q2$" ";:IFA2C16THENPRINT"0"+HEX$CA21 ELSEPRINTHEX$(A2}
190 GOSUB224
191 GOSUB222:RETURN
192 CLS:NF=0:ZF=0:CF=0
193 PRINT"----> SUBTRACT TWO NUMBERS C----";
194 GOSUB225:IFQQ=1THEN192
195 REM
196 REM
197 INPUT"VALUE TO SUBTRACT, TAKEN FROM MEMORY OR OTHER HEGIST
ER CHEX>":A2$:A$=A2$
198 QQ=0:GOSUB210:IFQQ=lThEN192
199 X=A:A2=A:GOSUB212:Q2$=Q$
200 x=A1-A2:A3=X
201 IFXC0THENCF=l:X=X+256:A3=X
202 iFX=0THENZF=l
203 IFX)127THENNF=1
204 GOSUB212:Q3$=Q$
205 PRINT
206 PRINTTAB(5)Q1$" "A1$:PRINTTAB<5lQ2$" "A2$:PRINTTAB(5)STR
ING$120,45l :PRINTTRBl51Q3$"
SEPRINTHEX$ IA3l

";: IFA3 < 16friENPRiNT"0"+HEX$ (.:13) EL

207 GOSUB224
208 GOSUB222:RETURN
209 FORN=iT0.1000:NEXT:RETURN
210 A=VAL("&H"-+-A$l:IFA(0 OR A}255 THEN PRINT"VALUE OUT OF F!ANGE"
:GOSUB209:QQ=1:RETURN
211 QQ=0:RETURN
212 C=INTIX/128) :D=C*128
213 E=INTl(X-D)/E,4l :F=E*E,4
214 G=INT((X-D-Fl/32) :H=G*32
215 I=INT(CX-D-F-Hl/161:J=I*15
21E, K=INTCIX-D-F-H-J)/8):L=K*8
217 M=INT<CX-D-F-H-J-Ll/4l:N=M*4
218 O=INT(CX-D-F-H-J-L-Nl/2l:P=0*2
219 Q=INTCX-D-F-H-J-L-N-Pl
22121 Q$=STR$(Cl+STR$(E)+STR$(G)+STR$Cll+STR$(Kl+STR$(M)+STR$(0)+S
TR$ (QJ
221 RETURN
222 PRINT"PRESS ENTER TO CONTINUE";
223 AS=INKEY$:IFA$()CHR$C131THEN223ELSERETURN
224 PRINT:PRINT"FLAGS:":PRINTTAB(7)"N 2 C":PRINTTAB(E,JC;ZF;CF:
PRINT:RETURN
225 INPUT"VALUE IN ACCUMULATOR IHEXl";A1$:A$=A1$
22E, QQ=0:GOSUB210:IFQQ=1THENRETURN
227 X=A:A1=A:GOSUB212:01$=Q$
228 RETURN

RUN this program. On the screen are 12 common
instructions selected from the total of 59 that the 6809
processor can execute. For your amusement, I've
numbered them in hexadecimal.

Some of the instructions will already be familiar, but I'd like
you to get a detailed idea of how each one works, and what
its results are. Here's how it goes. You will input all values
in hexadecimal, hut the display will be done in both hex and
binary, so that the inner workings of each instruction will be
evident. Although there are five flags, I've chosen only the
most used ones (negative, zero, and carry) to display in
these examples.

Al?P'

0000 000/ -,j:0/

f 0000 OCO/ t1'0 I

oooc, 0010 ~oz

ADD
/000 <X>0I ~I

+1ooc, 0001 +f8I
000 O OC/0 $0.l

,_,i,4,,.
-"C,;'c
7'/•Wi,-

000I 0000 :f./0
-00001100 --fO'I

00000/00 ,i;oc..

AND

You can start with a familiar instruction, selection #1,
ADD. Touch 1 on the keyboard.

As you can see, for simplicity·I'm making the assumption
that the initial value will always be in an accumulator, and
that all values will be 8 bits. Enter hex number 01 as the
accumulator value. The second prompt appears. To the
accumulator value will be added a value from memory or
from another register in the processor. You'll add 1 to this.
Type $01 and hit <ENTER>.

On your display are the two numbers being added, and the
result, which is $02. All three are displayed in both binary
and hexadecimal. The flags reveal three pieces of
information: that the resulting number is not negative, it is
not zero, and there was no carry generated by the
calculation.

Hit <ENTER>, and touch 1 again. This time, enter hex
$81 into the accumulator. Add to this the value hex $81.
The result is the same as before - $02. But the carry flag
reveals something very important. It tells you that,
although the apparent 8-bit result is $02, the addition
actually produced a number larger than 8 bits.

Now some subtraction. Hit <ENTER>, and touch
selection C. Enter $10 into the accumulator. From this,
subtract the value, say, $04. The result is $0C, a non-zero
positive number, as the flags indicate. Hit <ENTER> and
touch C again. Enter $1 0 into the accumulator again, but
this time subtract $11. The result is $FF. The flags tell the
story. It is a negative number, and the carry/borrow flag
shows that a borrow was required to complete it. That
carry/borrow flag is vital to recognize.

Add and subtract are straightforward. Try each of them a
few times at the end of this lesson. I'll go through the rest of
the instructions in this group. When I'm done, you're on
your own for a while. Let me walk over to the kitchen ...

Hit <ENTER> to get back to the menu. You've tried ADD
and SUBtract, so now touch 2 for logical AND. This is the
first of the logical instructions (also called Boolean
Algebra, but we'll forget that term). Logical AND requires
both statements of a pair to be true for the result to be true.
For example, this statement demonstrates logical AND: "If
I break this plate AND Claire sees the broken plate, then
she will scream at me". If either statement is not true -
that is, if either I didn't break the plate, or if Claire didn't
see the broken plate - then I'll get off. Here comes Claire
now. <Bre-aking plate. "Look, you broke that plate!
Arrrggh!!" etc.> Likewise, in binary arithmetic, both bits
must be ones - that is, both bits must be true - for the
result to be true. Enter $FF into the accumulator, and $00
into memory. Each bit of the accumulator is ANDed with
each corresponding bit in the operand. The results here are

ADD, SUBtract, AND

* Problw: A cont.ins SEC.
Execute~

Answr: A contains t1l.
and negati w flags reset.
flag always set by
instr'Ctio,i.

* Problaa A contains
Execute EDA.

Zero
Carry

me

AnlNlr: A contains B.
Negniw flag set. Zero flag
reset. Can-y flag alNys set by
me iMtruction.

* Probl•: B contains MF.
Execute me.

Anster: B contains tFL
Negative flag set. Zero flat
reset. Carry flag always set by
me instruction.

* Problea: A contains SAA.
Execute EDRA INL

AnlNr: A still contains SAA.
Negative flag set. Zero flag
reset. Carry flag not
affected.

* Probla: A contaiM $AA.
Execute EDRA ISM.

AnsNer: A contains Ml. Zero
flag set. Nlgat i ve flag reset.
Carry flag not affected.

* Problee: A CCJMaiM $AA.
Execute EllM HFF.

AnsNa-: A contains $55.
Negative arm nro flag reset.
Carry flq not affected. HIS
effect of !DIA ncept does not
affect Clt"l"y flag.

* ProblNr B contains
Execute EDll!9 HC&.

AnsNer:
Nlgative
reset.
affected.

B contains ffC8.
flag set. Zero flag

Carry flag not

all zeros. The zero flag goes on.

Learning the 6e/::Jt 69

OR, Exclusive OR

* Pl"obla: A contains
Execute ASLA.

An!N!t-: A contains S!E.
flags reset.

* Probl•: A contains
Execute ASRA.

AnsNer: A com1i ns $fll.

flags l"P.let.

* Proble11:
Execute A!lA

All

MIF.

All

AnsNl!r: A contaiM $11. Carry
flag set n bit drops into
•bucket•. Neptive and zero
fl1gs reset.

* Problea: A contains SM.
Execute ASAA.

AnsNer: A cont1ins $C4 (bit 7
duplic1ted at left). Ntgatiw
flag set. Zero and ca.rry flags
reset.

* Proble11:
Carry flag
111.B.

B contains $88.
is set. Execute

Answr: B contains $11. Carry
Zero and negative flag set.

flags reset.

* Probla: B contains $88.
Carry flag is set. Execute
RORB.

An!iller: B contains SC4.
Negative flag is Rt. Carry and
zero flags are reset.

* Proble11: A contains $12.
Execute DECA.

AnsNer: A contains $81.
Ntgative and ffl'O flags reset.
Carry fl1g not affected.

* Problea: A contains $81.
Execute DECA.

Answr: A contains tee. Zero
flag set. Negative flag reset.
Carry flag not affected.

70 Lesson 8

Hit <ENTER>, and touch 2. Again enter $FF into the
accumulator. This time try $AA as the memory contents,
and hit <ENTER>. Each bit of the pair is ANDed, and the
result is $AA. The negative flag flips on.

Contrast this with logical OR Hit <ENTER>, and touch
A. Logical OR states that if either or both of two conditions
is true, then the result will be true. For example, this
statement describes logical OR: "If I eat this pie OR I eat
this ice cream, then I will be pleased." Binary numbers
can't measure my level of pleasure, but they can report that
<mouth full> I will be pleased if I eat either the pie or the
ice cream, or ifI eat both. Likewise, in binary arithmetic, if
either number is a one - that is, if either number is true -
the result will be true.

Enter $FF into the accumulator. Then enter $00 as the
operand. You can see two things: first, you find that since
all bits in the accumulator are one, all bits in the result will
be one, regardless of the operand; second, the negative flag
flips on because bit 7 is a one. Hit <ENTER>, touch A,
and put $55 in the accumulator this time. As the operand,
enter $AA. The numbers I chose here have alternating bits,
just to demonstrate that neither byte need have bits in
common -- it is truly an either/or situation. Note the
negative flag is on.

Just one more OR. Hit <ENTER>, and touch A. Put $0C

in the accumulator, and $CO into the operand. In this
example, you can see that where neither bit is true, zeros do
result from the logical OR process. Again, you'll want to try
examples of logical OR at the end of the lesson.

Move on to COMplement, selection 4. Hit <ENTER>,
and touch 4. A number'::; complement is created by
reversing all the binary digits in that number; it's the
equivalent of a logical NOT. For example, enter $A5. All the
zeros become ones, all the ones become zeros. The result
after the complement is $5A. Hit <ENTER>, touch 4, and
place $FF in the accumulator. The complement of $FF is
$00. The zero flag flips on. Notice that in this instruction,
the carry flag always turns on, regardless of the result,
merely to indicate the completion of the instruction.

The logical Exclusive-OR instruction is next. This is a
command used to "'toggle" individual bits. You understand
how logical AND, OR and NOT work. Just for review, two
binary values ANDed together give a one result only if both
values are one, as I mentioned above. Two binary values
ORed together give a one result if either value is a one.
Logical NOT simply flips one bits to zero, and zero bits to
one, as in the COMplement statement you've already
tried.

Logical Exclusive-OR gives a true result if either, but not
both, of the premises are true. That's a little hard to
analogize to real life, but since I'm still here in the kitchen, it
might go something like this: "If I eat this full-course
Chinese dinner Exclusive-OR ifI eat this full-course Italian

Alllt:>
I..C6ll'AI-

~
AS X/\Y

OR.

CR,

OR.
~

w
16 AVP,

CC1-\Pl.£MENT

<'lt.m
'<ffr

Q)l,W /0/0 010I ~p $A,!,

0/01 0/C>I !f'9'.

~

COf,\P Ill/ /Ill <!OMV~FF

oooo = m
,i,,J,r,,-jz,

~,//'If

C:>MPL.EMENT
~

S(M~I-

~
Hi, A (,t:,rA')

1:Xa.USIYE. OR.

/000 ==
cDl<./OC>C> OCOC>

0000 0000
,',l,/,,_

.-z" J,1,tt.'~

EX(l...L\5,11/E.. CR

Oo:JO CCIO:'.)

fi::lR./000 0:,00

I cxx::, oa:io
,.i.,J"h

~Nt
"'>11\;,-.:

~O I 0//C,

00/0 0000

l.~,

dinner, then I will be content." If I eat neither, I won't be
content; if I eat both, I'll probably explode. Logical
Exclusive-OR is the equivalent of the quantity (A and NOT
B) ORed with the quantity (NOT A and B) ... but that's not
very revealing either.

Try it this way: if two bits are different, the result will be
one. If the bits are the same, the result will be zero. What
makes this idea useful is that information can be "toggled"
back and forth between numbers. Turn to the program for a
visual example.

Hit <ENTER> and touch 6. You're going to toggle
between, say, $80 and $00. Enter $80 into the accumulator.
Pause here and think about hex $80 and $00. In binary, $80
is 1000 0000, and $00 is 0000 0000. Only bit 7 is different
here. You need to find a value that, when Ex-ORed with
1000 0000, gives 0000 0000. Recall how Exclusive-OR
works: to get a zero result, the two bits being Ex-ORed
must be the same. That suggests that 1000 0000 Ex-ORed
with 1000 0000 should give an all-zero result. So the hex
equivalent of 1000 0000 is what you want ... and that's $80.
Enter $80, and look at the binary display. Incidentally, the
zero flag flipped on.

Hit <ENTER> and touch 6 again. This time, enter the
result from the Ex-OR you just did. Enter $00 into the
accumulator. And enter $80 as the operand. The result is
$80. Here's why Exclusive-OR is called a toggle function.
When value Xis Ex-ORed with value Q, the result is value
Y. When value Y is Ex-ORed with value Q, the result is
value X. Under the Exclusive-OR function, value Q
becomes a toggle, flipping back and forth between values X
and Y.

Remember the flashing "F" at the top of the screen when
you load cassettes into the Color Computer? This
alternates value $46 with value $66. Hit <ENTER> and
touch 6 again. Enter $46 into the accumulator, and $66 as
the operand. The result should be $20. $20 can then be
used in a program as a toggling value. $46 Exclusive OR
$20 is $66, $66 EOR $20 is $46. Uppercase F becomes
lowercase F, and vice versa. And the advantage to a
toggling value is this: you don't have to know which state
the original value is in to toggle it. That's ideal, because in
this example, the tape-loading program doesn't have to
keep track of which "F" it's displayed.

Exclusive OR

* Proble11: A contains $18.
Execute DECA.

Answer: A contains $FF.
Negative f'lag is set. Zero flag
is reset. Carry flag not
affected.

* Probla: B contains $FE.
Execute UD.

AnsNer: B contains $FF.
Negative flag is set. Zero flag
is reset. Carry flag not
affected.

* Probla: B contains $FF.
Execute INCB.

Ansliler: B contains $18. Zero
flag is set. Negative flag is
reset. Carry flag not
affected.

* ProblN: B contains ..
Execute IN:B.

AnsNer: B contains $01.
Negative ;1nd zero flags are
reset. Carry flag not
affected .

* Probll!lt: B contains 501.
Execute !'£GB.

Answr: B contains $FF.
Negative and carry flags are
set. Zero flag is reset.

* Probla: B contains see.
Execute 1'£68.

Ans.r: B contains•· Zero
flag is set:. Negative and carry
flags are roeset.

* Probla: B contains W.
But enough of Exclusive-OR. You can try it at the end of Execute t£EI.
this lesson.

Shifts and rotates are interesting commands. Essentially,
they are binary multiplication or division by two. In the
decimal system, a left shift is multiplication by ten, a right
shift is division by ten. If that doesn't make immediate
sense, consider the number 247. Shift it to the left and it
becomes 24 70; shift 24 7 to the right and it becomes 24. 7 ...
multiplication and division by ten. The difference between
types of binary shifts in the 6809 has to do with what

AnsNet-: B contains
Ntgative and carry flags
set. Zero flag is reset.

* Probl f!II: A contains
Execute tE6A.

AnsM!r: A contains $56.
flags are reset.

happens to the bits on either end of the byte ..

Learning the 6f!l::fJ

w.
are

All

71

Left and right shifts

• ht is the purpose of the
condition code register?

The condition code register
provides infcnation about the
.,.t recent instruction executed
by the processor.

72 Lesson 8

An arithmetic shift to the left puts a zero into the rightmost
position; a similar shift to the right leaves a trail of the value
of the leftmost bit. The bit that is shifted out the end of the
byte falls into the carry flag; in a situation like this, the carry
flag is sometimes called a "bit bucket". A logical shift left is
identical to an arithmetic shift, but a logical shift right
leaves a zero in the leftmost position. Again, the bit falling
off the end drops into the carry flag. Finally, a rotate
command is circular, as the bits move left or right through
the carry flag. Try the arithmetic shift here.

Hit <ENTER>, and touch 3. You've got a prompt for an
arithmetic shift. Do the left shift first; touch L. Put a hex
value $FF into the accumulator. The row of bits is shifted
left, a zero follows from the right, and the leftmost bit ends
up in the carry flag. Notice that since bit 7 is high, the
negative flag also goes up.

~~
LEFT "SHIFf

Hit <ENTER>, and touch 3. Touch L again. Put $55 into
the accumulator. Notice how the bits all move left. This
number turns negative (becoming $AA), but the carry flag is
zero. You can explore all those details later; try a right shift
now.

LffT~IFf

Hit <ENTER>, touch 3, and touch R. Put $80 into the
accumulator. This time observe bit 7, the leftmost bit. It
begins to leave a trail of ones behind it; the value after
shifting is $CO. Hit <ENTER>, touch 3, touch R, and
enter $CO. The trail of ones continues to follow.

~IC.
-R!OOSJITT

lJ.f7
¢·V·t70¢]

V/-7
ct> Z'f.7Cj>

~

t;6!. /000 000/

/000 0C00
i--'',,t,-

~Nt r-r

~!=NT

00:.. /bOO 0000

01/1 /II/

~

~ 0000 0000
/Ill (///

~"1:-_
_}, NF

V,,'{

l~ENT

I~ O<X>O 0/ / /

0000 /COD

I~

1111::. 011 / I// I

/000 0000
hi.ii,,.

1NF
'1,1•'f

I~

llJ<.. II I I I II I

0000 OOoO
,t,_,/t,,,.,c,,.,..

-jzic
/,,.v~

N~

Ne{,, 0000 000/
I I I I /II I

,1,l"t,
'~/ ~N-~, l ;;,t'i''"

NUJ,.7t:..

~ /OOOOOC(}

;oao 0000

,Yt,,- ~J,C
;tNC -_('.. 'c

;., " ~1•f

'$81

-$00

$8'
,$]I=-

~
~ff'

IN<...:f:07

$ce

l1JC.$,7F

~

j>J<:.,{.fF

w

Nr,r,,$¢1

$FF

NE£.<$&'.'.>

$M

INCrement, DEC:rement, NEGate

I'm going to skip doing the Logical Shifts and Rotates in
this explanation; you can check out selection 8 and
selection B on your own at the end of the lesson.

Move on to the next 6809 processor command. Hit
<ENTER>, and touch 5. This is a decrement by one
command. Enter $81 into the accumulator. $81 minus one
is $80. The negative flag is on. Decrement it one more time;
hit <ENTER>, touch 5, and put $80 into the accumulator.
The value becomes $7F; the negative flag is off. One more
thing to notice with the decrement command. Hit
<ENTER>, touch 5, and put $00 into the accumulator.
$00 minus 1 is $FF. The negative flag flips on.

The opposite of the decrement is the increment, also a
straightforward command. Hit <ENTER>, and touch 7.
Enter $07 into the accumulator. The value is incremented
by one to $08. Not much there; all flags are off. Hit
<ENTER>, and touch 7. This time put $7F into the
accumulator. The value increments from $7F to $80. The
negative flag flips on. Finally, hit <ENTER> and touch 7
again. Enter $FF into the accumulator. The number
increments with the result being $00.

There's just one selection left, and that's NEGate,
selection 9. Hit <ENTER>, and touch 9. Enter $01 into
the accumulator. The negative of $01 is $FF. If you recall
from an earlier lesson, you counted backwards from zero in
one programming example, and it makes sense that one
less than zero, -1 in decimal, would by $FF in 8-bit data.

Hit <ENTER> and touch 9. Put$80 into the accumulator.
The result is - $80! I'll leave you to check the flags and
ponder that result.

Please review this lesson, spend some time with pages 30
and 31 of the MC6809E data booklet, and- most of all
keep using this program. Try every example; work the
results out on paper, and see if you agree with the final
display. Examine how the binary data works, how the
instructions perform, and what the flags mean.

Learning the 6f!l::fJ 73

74 Lesson 8

•
Making things happen on your 6809-based Color
Computer is the point of all this. I've created this series
because your computer is a special machine - not just an
isolated microprocessor, but an interrelated group of
components capable of video, sound, storage and
communication, with add-ons like joysticks and disks and
printers. So while you're making your way through the
intricacies of the 6809 itself, I'm also going to provide you
with the information you need to use the whole
computer.

That means I've got to talk about two things specific to the
Color Computer: memory maps and smart components.

The memory map of your computer describes the way its
65,536 individual addresses are organized ... what goes
where. Simplicity is always important in laying out a
memory map, and that holds true for the Color Computer.
I've reproduced the Color Computer memory maps in the
documentation so you can follow along.

There are a few special considerations in this machine, but
the memory map I'll describe is what's set up when you tum
the power on. Read/write memory - also known as
random-access memory, or RAM - is located (talking in
hexadecimal now) from address $0000 to $7FFF. That's
32K of memory; if you have a 16K computer, your RAM
ends at $3FFF. $4000 to $7FFF remains unused until you
fill it.

The BASIC language is made up of machine-language
instructions and data, so it too occupies part of the memory
map. BASIC is broken up into two halves, each half 8K
long. From hex $8000 to $9FFF you will find Extended
Color BASIC, and from hex $A0OO to $BFFF you will find
Color BASIC.

Starting at $C0OO is a blank space. As far as the processor is
concerned, no memory is "blank" per se, but an off-the
shelf Color Computer doesn't have anything connected at
$COO0. However, when you plug in a ROMpack cartridge,

Learning the

Practical application of your
6819 learning 1Nns lmoMing
S<JEthing about this particular
6819 envil"Ol'Ent. And that
IINnS knowing the Color Coaputer
better. It's not the only 6819
.eltine there is, so you'll need
to lNl"ft all new details if you
purchase a lllltzit-99 or the
Collpl&lob.

• lllit do you call the
description of hON the
c:oaputer's designers haw
arranged its-y?

• HoN aany lll!aOl"Y locations are
there in the Color Coaputer?

65,536 locations.

• lllat is the address range of
the Color !Coaputer, in hex?

- to SIFFFF.

* HoN •~f •K• is the address
range of the Color Cmputer?

641<.

• lllere in the ll!IIOry aap is
read-..ite (randm-access>
-.cry, or RAM, in the Color
Coaputer on a 161< NChine?

RAM is loc:atl!d
SJFFF.

60C)9
froa S8lllll to

75

Map and vectors

76

FF00

C00Q

A000

80(1(6

411!10

30!10

2!100

1!100

0000

HEX
ADDRESS

Lesson 9

COLOR COMPUTER MEMORY MAP

CARTRIDGE
ROM

t BASIC
ROM

t EXPANSION

I ROM

I 4K RAM

COLOR COMPUTER
USAGE

FFFF OR BFFF "1.7
FFFE OR BFFE AO
FFFD OR BFFD 09
FFFC OR BFFC (j/
FFFB OR BFFB <'b
FFFAOR BFFA 0/
FFF9 OR BFF9 oc.
FFFB OR BFFB 0/
FFF7 OR BFF7 OF
FFF6 OR BFF6 0/
FFF5 OR BFF5 ()"
FFF4 OR BFF4 CJ/
FFF3 OR BFF3 e,o
FFF2 OR BFF2 0/

32K RAM

16K RAM

0600
iNORMAL VIDEO

13400 I DISPLAY

RESET VECTOR LSB
RESET VECTOR MSB
NMI VECTOR LSB
NMI VECTOR MSB
SWl1 VECTOR LSB
SWl1 VECTOR MSB
IRO VECTOR LSB
IRO VECTOR MSB
FIRO VECTOR LSB
FIRO VECTOR MSB
SWl2 VECTOR LSB
SWl2 VECTOR MSB
SWl3 VECTOR LSB
SWl3 VECTOR MSB

Memory Map

COURSE

MC6809E
MC6809E --. 8 - Address
Vectors, Bits t

SAM ~~==~$FFFF
Control,

1/0 $FF00

ROM2**

(S=3l

$COOO

ROM1**

(S=2l

$AOOO

ROMO**

(S.,_ 1)

$8000

MEMORY MAP

S2,
S1, SO MC6809E
Value Address Label

t t ~'
RESET

NMI

SWI

IRQ

FIRQ

SWl2

SWl3

Reserved
for future

MPU
enhancements.

Do not use'

MPU
Rate

Page #1

FINE

Definitions
~---

0

MPU Addresses from $0000 to $7FFF
Apply to page #1 if Pl = '1.'

Address of "Upper-Left-Most

(Transparent
I Refresh

Display Element = $0000 + l½K• Offset)

I
RAM

(S=O if R/W 1)
(S=7ifR;W 0)

I
I
I
I
I
I
I

i-T
: 16K
I
I
I
I
I
I ,--
1
I
I

$4000

$1000

F1

FO

V2

V1

VO

Display
Offset

(Binary)

VDG
Mode
(SAM)

Reserved
Do not usel

liOQ(Slow)

G3R
G3C I

DM'i,6R, G6C

I I 11 r ,o;c.~: ... "
G2R

G2C

0 0 0 0

0 0 0 0

0 0 0

Reserved for Future
Control Registers or Special l/O

~~----~-'--'---'~$0000

Page 1

*Note:
M.S. "' Most Significant
L.S. es Least Significant

S "' Set Bit
8

_ ((All bits are cleared when SAM is reset.)
C "' Clear 1t I
S = Device Select value = 4 x S2 + 2 x S1 + 1 x SO

Learning

•*May also be HAM

the60C:.1J 77

Port map

78

COLOR COMPUTER MEMORY MAP (cont'd)

FF00 - FF03 PIA US

FF00

FF01

FF02

FF03

BIT 0 = KEYBOARD ROW 1 and right joystick switch
BIT 1 = KEYBOARD ROW 2 and left joystick switch
BIT 2 = KEYBOARD ROW 3
BIT 3 = KEYBOARD ROW 4
BIT 4 = KEYBOARD ROW 5
BIT 5 = KEYBOARD ROW 6
BIT 6 = KEYBOARD ROW 7
BIT 7 = JOYSTICK COMPARISON INPUT

sync clock (63.5 microseconds)

0=IRQ* to CPU Disabled
1=IRO* to CPU Enabled I

Control of the Horizontal

0=Flag set on the falling edge of HS
Interrupt Input 1 =Flag set on the rising edge of HS

BIT 2 = Normally 1: 0=Changes FF00 to the data direction register
BIT 3 = SEL 1: LSB of the two analog MUX select lines
BIT 4 = 1 Always
BIT 5 = 1 Always
BIT 6 Not Used
BIT 7 = Horizontal sync interrupt flag

BIT 0= KEYBOARD COLUMN 1
BIT 1= KEYBOARD COLUMN 2
BIT 2= KEYBOARD COLUMN 3
BIT 3= KEYBOARD COLUMN 4
BIT 4= KEYBOARD COLUMN 5
BIT 5= KEYBOARD COLUMN 6
BIT 6= KEYBOARD COLUMN 7

BIT 7= KEYBOARD COLUMN 8

Control of the field sync clock BIT 0 l .
BIT

1
16.667 Ms Interrupt Input l

0=IRO* to CPU Disabled
1=IRQ* to CPU Enabled

0= sets flag on falling edge FS
1 = sets flag on rising edge FS

0= changes F F02 to the data direction register
MSB of the two analog MUX select lines

BIT 2 = NORMALLY 1:
BIT3=SEL2:
BIT 4 = 1 Always
BIT 5 = 1 Always
BIT 6 Not Used
BIT 7 = Field sync interrupt flag

Lesson 9

FF20 - FF23

FF20

FF21

FF22

FF23

Port map

COLOR COMPUTER MEMORY MAP (Cont'd)

PIA U4

BIT 0 = CASSETTE DATA INPUT
BIT 1 = RS-232 DATA OUTPUT
BIT 2 = 6 BIT D/A LSB
BIT 3 = 6 BIT D/A
BIT 4 = 6 BIT D/A
BIT 5 = 6 BIT D/A
BIT 6 = 6 BIT D/A
BIT 7 = 6 BIT D/A MSB

BIT 0 l Control of the CD

BIT 1 RS-232 status Input l
0= FIRO*to CPU Disabled
1 = FIRQ* to CPU Enabled
0 = set flag on falling edge CD
1 = set flag on rising Eidge CD

BIT 2 = Normally 1: 0 = changes FF20to the data direction register
BIT 3 = Cassette Motor Control: 0 = OFF 1 = ON
BIT 4 = 1 Always
BIT 5 = 1 Always
BIT 6 Not Used
BIT 7 = CD Interrupt Flag

BIT 0 = RS-232 DATA INPUT
BIT 1 = SINGLE BIT SOUND OUTPUT
BIT 2 = RAM SIZE INPUT LOW= 4K
BIT 3 = VDG CONTROL OUTPUT
BIT 4 = VDG CONTROL OUTPUT
BIT 5 = VDG CONTROL OUTPUT
BIT 6 = VDG CONTROL OUTPUT
BIT 7 = VDG CONTROL OUTPUT

BIT0 l Control of the Cartridge
BIT 1 Interrupt Input

HIGH=16K
css
GM0 & INT/EXT
GM1
GM2
A/G

1

0 = FIRQ* to CPU Disabled
1 = FIRQ* to CPU Enabled

0 = sets flag on fallin~1 edge CART*
1 = sets flag on rising edge CART*

BIT 2 = Normally 1: 0 = changes FF22 to the data direction regist1~r
BIT 3 = Six BIT Sound Enable
BIT 4 = 1 Always
BIT 5 = 1 Always
BIT 6 = Not Used
BIT 7 = Cartridge Interrupt Flag

Learning the 6et:fJ 79

The SAM

* lllat is the range of RAN on a
32t< aachi ne?

RAN is located frm MINI to
t7FFF.

* The Color Collputer's operating
language is located in what kind
of anory?

Read-only RBOry, or RtJI.

* The Color eo.puter's operating
language is in tNO linked parts.
lllat are they called?

Color BASIC and Extended Color
BASIC.

* lllere is Color BASIC in the
anory aap?

Fr011 $AM to tBFFF.

* lllere is Extended Color BASIC
in the aeaory 11ap?

From $8IN to $9FFF.

* lllat is located from tC0III to
tFEFF on an off-the-shelf the
Color eo.puter?

Nothing; the space is reserved.

* What is the space froa sea
to tFEFF reserved for?

For µlug-in cartridge RIJI, also
called Rl)lpacks or progra11
cartridges.

* lllat is located in the 1E110ry
Np frOM SFFN to SFFFF?

l'C6809E vectors, SAM control and
I/0.

* lllat is the SAM?

The Synchronous
Multiplexer.

* What does I/0 aean?

I/0 aeans input/output.

Address

80 Lesson 9

the addresses from $COOO to SFEFF are decoded for use by
the ROMpack. Notice I said $COOO to SFEFF.

There is a block of memory from $FFOO to $FFFF that is
very special. In the back of your documentation, find the
data booklet entitled MC6883, and turn to page 17. Here is
a table marked Memory Map Type #0. Look at the left half,
marked "course" (meaning a course breakdown of the
memory map). You can see the layout of the address blocks
I've described so far, and at the very top, a small block
called ''MC6809E vectors, SAM control, I/0". A blowup of
this tiny block is shown on the right side of the figure,
marked "fine".

Before looking at the detailed map, I want to tell you about
the SAM. You may have heard this term before; I was
mystified the first time I encountered it.You're holding the
SAM's data booklet now. SAM means "Synchonous
Address Multiplexer", a mouthful that breaks down to
three simple concepts. It's synchronous because it is
completely synchronized with the operation of the 6809
processor itself, as well as with the video display, memory,
and so forth. It deals with addresses, its main task. And it is
a multiplexer because it is the traffic cop, sending the
proper addresses to the correct memory blocks. If that
doesn't interest you, then let me say that, all because of the
SAM, your Color Computer is a 96K computer.

On to the map. Start from the bottom of the "fine" map.
You'll see three blocks from $FFOO to $FF5F marked 1/0,
meaning input/output. At these addresses - and more on
this later - are found the keyboard, joystick inputs,
cassette input and output, printer input and output,
cassette motor control, various high-resolution color
modes, and other computer control information. Also, the
plug-in disk pack and different peripheral devices use
these input/output addresses. That's a lot to know about,
but the many capabilities of the Color Computer are found
in these input/output blocks.

Next up on the map is a group of addresses ($FF60 to
$FFBF) which are not defined yet by the manufacturer of
the Synchronous Address Multiplexer, the SAM.

Up from there at address $FFCO begin a unique series of
SAM registers. There was a standard joke among memory
engineers that they'd developed the read/write memory
where information could be stored and retrieved - and the
read-only memory, where information was permanently
fixed and could only be retrieved - but hadn't developed
the write-only memory, where information could be stored
but couldn't be retrieved. Well, the SAM's got it. Actually,
these memory locations are called write-only registers, and
their job is to perform computer control functions. Your
program keeps track of what's been done, since these are
infrequently accessed items. Interestingly, what data you
store in these registers is completely irrelevant ... all that
matters is that you store something there.

Included in the write-only registers are six addresses to set
and reset the eight graphics display modes; 14 addresses to
define the area of memory to be displayed on the screen;
and 12 addresses to definewhich32K block or RAM will be
used in a 96K machine, what processor speed will be used,
how much memory is available, and which memory map
arrangement will be used.

All of these registers are set up by Color BASIC when the
power is turned on, but you can change them at any time.
I've got a little BASIC program to play around with the
video graphics modes. Get it loaded, and then I'll tell you
about it.

Program #14, a BASIC program. Turn on the power of your
Extended Color BASIC computer. When the cursor appears.
type CLOAD and press ENTER. The computer will search (S)
and find (F). When the cursor reappears, LIST this program. If
the program is not similar to the listing, or if an 1/0 error occurs,
rewind to the start of the program and try again. For severe
loading problems, see the Appendix.

1 REM* USING ALL VIDEO MODES
2 REM* PORT $FF22 SELECTS VIDEO
3 FORX=8TO128STEPS
4 POKE&HFF22, CX OR 4)
5 REM* ADDRESSES TO CLEAR MODE
6 Cl=&HFFC0:C2=&HFFC2:C3=&HFFC4
7 REM* ADDRESSES TO SET MODE
S S1=&HFFC1:S2=&HFFC3:S3=&HFFC5
9 REM ************************
10 REM* BEGIN CHANGING MODES*
11 REM************************
12 POKEC1,0:POKEC2,0:POKEC3,0
13 GOSUB30
14 POKES1,0:POKEC2,0:POKEC3,0
15 GOSUB30
16 POKEC1,0:POKES2,0:POKEC3,0
17 GOSUB30
18 POKES1,0:POKES2,0:POKEC3,0
19 GOSUB30
20 POKEC1,0:POKEC2,0:POKES3,0
21 GOSUB30
22 POKES1,0:POKEC2,0:POKES3,0
23 GOSUB30
24 POKEC1,0:POKES2,0:POKES3,0
25 GOSUB30
26 POKES1,0:POKES2,0:POKES3,0
27 GOSUB30
28 NEXT
29 END
30 FORN=1TO300:NEXT
31 RETURN

LIST lines 1 to 4. Line 2 says "Port $FF22 selects video".
What's port $FF22? This is another bit of jargon. The
electronic circuits which allow the 6809 processor in the
Color Computer to use its keyboard, cassette, video, etc.,
are called "peripheral interface adaptors". There are two

Ports

* lllat are the I/0
(input/oatput) addreses?

SFFII to SFFSF.

* Nae SOiie of the input/output
devices located at the I/0
addres!lie'.s fro11 SFFII to SFFSF.

Keyboard1, Joystick inputs,
cassette input and output,
printer input and output,
cassette IICltor control, sound
output, high-resolution color
axle cont:rol, and other coaputer
control inforNtion.

Synchronous
Multiplexer.

Address

* The SAN contains EIOI")'

locations reserved for control;
Nhat kind of registers are
these?

Wt-ite-only registers.

* Nue SOE of the purposes of
these Nrite-only registl!f'S.

To set or reset eight graphics
display IIOdes; to define the
area of aeaory to be displayed
on the screen; to define Nhich
32K block of RAM .,ill be used in
a 96K Ndline; to determine Nhat
processor speed .. in be used; to
indkate hON IIUCh ~ is
available; to specify Nhich
....-y mp an-angl!alnt is to be
u!ed.

Synchronoos
Nultiph~xer.

* 11m does PIA aean?

Address

Peripheral Interface Adaptor.

* 11m is the proper tent for
•setting up• a ccaputer device.

Configuring.

peripheral interface adaptors, or PIAs, built into the L Q~
Learning the oc:::k-17 81

PIA, VDG and graphics

* "'at is the tffll for ~
iddresses that open to the
outside NOrld?

Ports.

* Holt NftY ports does the Color
Cmputer have?

Four.

* 11m are tlw Color Ccaputer
port addl-esses?

ffll, SFFl2, ff21 and SFF22.

* "'at is the terw for •setting
up• a coaputer device?

Configuring.

* "'•t four PIA
configure the
addlesses?

addresses
four port

SFFl1, tFF13, ff21 and SFF23.

* "'it IN the port addresses
configured as?

Input or output.

* How does the processor send or
receive infOl"llltion (input or
output infOl"ltltion) with respect
to the outside world?

By loading or storing data at
the port ~ addresses.

* At port SFF22, tlhat is the
purpose of bit 3?

To choose one of tNO color
sets.

82 Lesson 9

computer, and each is given four memory addresses. The
first PIA, for example, uses addresses $FFOO through
$FF03. These addresses - and I won't spend a lot of time
on this right now - have two functions. $FF01 and $FF03
- the odd-numbered registers - are called "control
registers", and are used for setting up (the word for that is
"configuring") the PIAs. The even-numbered addresses
$FFOO and $FF02 open to the outside world. They are
called "ports".

What this means is that ports $FFOO and $FF02 of the first
PIA are configured by addresses $FF01 and $FF03. They
are configured as input or output. That way the processor
can receive or send information to the outside world when it
executes machine-language instructions which load or
store data at those memory addresses.

In this example, the processor can address the second PIA
at $FF20, $FF21, $FF22, and $FF23. The PIA
configuration using $FF21 and $FF23 has already been
done at power-up, -;o that's not your concern for the
moment. What you need to know is this: in address $FF22
are the video graphics modes. One of the two color sets is
selected by bit 3; graphics mode zero is turned on or off by
bit 4; graphics mode one is turned on or off by bit 5;
graphics mode two is turned on or off by bit 6; and the
alphanumeric or graphic choice is made by bit 7. So each of
the most-signficant 6 bits of address $FF22 has a different
purpose in setting up the video display.

Unless you've spent a lot of time cracking your brains over
your BASIC manuals, I probably just dropped another
bucket of unknowns in your lap - the graphics modes. It
turns out that the Color Computer is a chain of "smart"
circuits - the 6809E processor connects to the 6883
synchronous address multiplexer which in turn connects to
the 684 7 video display generator and the 6821 peripheral
interface adaptors. Forget all those numbers. Just dig out
your old COLOR BASIC manual - that's the COLOR
BASIC manual, not the Extended Color one - and turn to
page 256. RUN the program you've got in your computer
now, and while it's running, read pages 256 through 266. If
you've been spoiled by the Extended Color BASIC
graphics modes, then you probably forgot all about these
pages in that old Color BASIC manual. So dig in now.

~
~
CfilJ\;?

DO

'5f"EW

65"t97

~

By now I expect that the use of decimal numbers in the
Color BASIC manual obscures rather than illuminates how
all this works. You'd probably like to take a break, but don't
do it yet. While this information is still fresh, I'd like you to
RUN once again the program in the computer.

What you see when you run the program are all the possible
combinations of alphanumeric and graphic modes that can
be created by the combination of the synchronous address
multiplexer (that is, the SAM) and the video display
generator (that is, the VDG). I've already mentioned about
port $FF22 in the memory map. Just to review, bits 3
through 7 of that byte can be used to select one of two color
sets; turn graphic modes one, two and three on or off; and
select between alphanumerics and graphics.

The choice of bits you turn on or off at port $FF22 can then
be combined with the SAM's video registers to offer
additional possibilities for display. To get at them, though,
you have to understand how the SAM's peculiar "write
only" registers work. You still have that BASIC program in
place. LIST lines 5 through 8. I've defined six variables
here. Cl, C2 and C3 mean clear 1, clear 2 and clear 3, and
are defined as the three even-numbered addresses $FFCO,
$FFC2 and $FFC4. Sl, S2 and S3 mean set 1, set 2, and set
3, and are defined as the three odd-numbered addresses
$FFC1, $FFC3 and $FFC5. It turns out that writing to an
address, no matter what the data stored, either sets or
resets a condition within the SAM.

Some of you may have used the high-speed mode on your
Color Computer, sometimes called the Vitamin Q poke.
You probably wrote it, POKE65495,0 and to get normal
speed, POKE 65494,0. When you did that POKE, you were
actually executing a Store Accumulator to memory location
$FFD7 for high speed and $FFD6 for normal speed.

Flip to the SAM data booklet (the booklet marked
MC6883), and return to page 17. Locate addresses $FFCO
through $FFC5. These are the video display modes, the
VDG modes. At the right of the addresses, the mode
combinations are shown in binary. To turn on any of these
modes, the binary data has to be expressed as a trio of
addresses - either the clear address (the even ones) or the
set addresses (the odd ·ones).

Likewise, locate addresses $FFD6 and $FFD7. They are
part of a group of addresses that affect speed of the
computer. At power up, your computer is in the "slow"
mode. By writing to $FFD7, you set the "A.D. ", or address
dependent, mode. In that mode, your BASIC ROM zipped
along at double speed, and your RAM just stayed the way it
was. Had you poked $FFD9, you would have gone into the
"fast RAM" mode, losing both the video display and the
refresh your memory needs to keep its information.

Vitamin Q

* lllat is the purpose of bi ts 4
through 6?

To select aiong the graJilics
mies.,

* lllat is the purpose of bit 7?

To select either alphealrics
or graJilics.

* lllat does PIA .an?

Peripheral Interface Adaptor.

• lllat i!S the tert1 for MNOl"Y
addreHH Nhich open to the
outside ltOl"ld?

Ports.

* lllat does SAN .an?

Synchronoos
NaltipleXl!I".

Address

* lllat sets or resets a
condition itithin the SAN?

Writing to a SAN address
!registerJ.

* lllat sets or mets video
display mtes?

Writing t,:, the SAN video display
addresses <registers).

* lllat are the SAN video display
registers?

SFFCI through SFFC5.

* lllat cllanges the coaputer's
processi,. speed?

Writing ·to the SAN clock rate
addresses (registers>.

+ lllat are the SAN clock rate
registers?

SFFD6 through SFFD9.

You don't need the BASIC program now, so <BREAK>
out of it if it's still running. I want to show you what happens
when you use the "fast RAM" mode at address $FFD9.

Learning the l:Rl::fJ 83

Display offset

* lht is the norul speed of
the Color eo.puter-?

.89 llt.z (894,886 pul&es per
Sl!m'ld).

* IIN!r'tP is the l'IOl"IMl video
display screen on the Color
Cc,aputer (in deciaal and hex>?

At 1824 ($MIi hex).

* lflat does VD6 aean?

Video Display Bet,erator.

* lflat detenlines the screen
being displayed?

The SAM display offset addresses
(registers).

* lflat are the display offset
registers?

SFFC'.6 through SFFDJ.

• HoN uny bits of the 16-bit
address are selected by the
display offset registers?

Seven.

* Holt aany ccabinations of 7
bits are possible?

128.

• HoN 11any display screens are
possible by using the SAM's
display offset addressing
technique?

128.

* HoN do you create a display
offset address?

By riting to the SAM display
offset registers.

* HoN do you crNte the offset
address -?

By Nl"iting to all the
~ SAM display offset
addresses (registers).

84 Lesson 9

$FFD9 is 65497 decimal. So type POKE 65497 ,0 and hit
<ENTER>. POKE 65497,0.

Screen freaked out, right? Hit your Reset button on the
back right to get back your screen. Whether or not the
program is still intact depends, for technical reasons, on
whether you have a 16K, 32K or 64K machine.

There's some more to find out about the SAM, so I have
another program for you.

Program #15, a BASIC program. Turn on the power of your
Extended Color BASIC computer. When the cursor appears,
type CLOAD and press ENTER. The computer will search (S)
and find (F). When the cursor reappears, UST this program. If
the program is not similar to the listing, or if an 1/0 error occurs,
rewind to the start and try again. For severe loading problems,
see the Appendix.

1 CLS
2 PRINT" REDIRECTING THE 'JIDEO DISPLAY":PRI,"_i_
3 C0=&HFFC6:C1=&HFFC8:C2=&HFFCA:C3=&HFFCC:C4=&HFFCE:C5=&HFFD0:C6
=&HFFD2
4 S0=&HFFC7:S1=&HFFC9:S2=&HFFCB:S3=&HFFCD:S4=&HFFCF:S5=&HcFD1:S6
=&HFFD3
5 INPUT"THE NORMAL SCREEN IS LOCATED AT $0400 TO $05F'-. THE SAM

ALLOWS THE SCREEN TO POINT TO ANY PLACEIN MEMORY. THERE ARE 12
8 SCREENSIN ALL. ENTER A NUMBER FROM 0 TO 127 TO DISPLAY A SCRE
EN";A$
E, A=VAL(A$l :1FA<00RA}127THENCLS:GOT05
7 B6=FIX <A/64)
8 B5=FIXICA-IB&•64ll/32l
9 B4=FIXl(A-CB6•64l-lB5•32l)/16)
10 B3=FIXIIA-IB6•64l-lB5•32)-IB4•i6ll/8l
11 B2=FIXC<A-(B6•64l-(B5•32l-CB4*16l-lB3*8ll/41
12 B1=FIX<<A-IB6*64l-(B5*321-(B4*16l-lB3•8l-(B2*~ll/2)
13 B0=FIX(A-CB6*64)-CB5*32l-lB4*161-<B3*8l-CB2•4l-lB1*2ll
14 IFB0=0THENPOKEC0,0ELSEPOKES0,0
15 IFB1=0THENPOKEC1,0ELSEPOKES1,0
16 IFB2=0THENPOKEC2,0ELSEPOKES2,0
17 IFB3=0THENPOKEC3,0ELSEPOKES3,0
18 IFB4=0THENPOKEC4,0ELSEPOKES4,0
19 IFB5=0THENPOKEC5,0ELSEPOKES5,0
20 IFB6=0THENPOKEC6,0ELSEPOKES6,0
21 FORN=1T02000:NEXT
22 GOT01

The object of this program is to manipulate the SAM
"display offset" registers. This nifty technique makes it
possible to display 128 entirely different screens of
information, each 512 (hex $200) bytes long.

RUN this program, and enter 2 in response to the prompt.
There is a pause, and the cursor is back. Of the 128 possible
screens, the one you normally look at the screen #2. Now
enter 0. Aha. A screen full of garbage and wiggly characters
appears before you. Try that again; enter 0. Screen #0 is
what you see, and screen #0 reveals pages $00 and $01 of
your memory. Remember the Direct Page register? The
Color Computer's BASIC sets the DP register to $00,
meaning what you're seeing is all the down-and-dirty work
BASIC does to count, calculate, delay, and so on.

Now I'll show you what's happening there. Turn once again
to page 17 of the SAM data booklet, where the detailed

memory map is shown. Addresses $FFC6 to $FFD3 are
called a display offset value, and a strange formula is given,
reading "Address of upper-left-most display element =
$0000 + (1/2K * offset)". Obscurity won't triumph, I'll tell
you. What this means is that you can display any area of
memory directly on the screen, in even 512-byte blocks.

Addresses $FFC6 to $FFD3 are those write-only SAM
registers again, used here to create the most-significant 7
bits of an address. Writing to the even-numbered registers
starting with $FFC6 clears bits to zero; writing to the odd
numbered registers sets bits to one. So if you store
information in all the even-numbered registers, you create
the binary number 0000 000 ... 7 bits long. If you store
information in all the even-numbered registers except
$FFC8, but store information in the odd-numbered register
$FFC9, and you create the binary number 0000 010. Those
are the most significant seven bits of addresses 0000 0100
0000 0000 through 0000 01 01 1111 1111 . Those binary
addresses translate into $0400 to $05FF - the address of
the normal video screen.

That's all I have for you this time. I would like you to LIST
this program, and get an idea of how to manipulate the
addresses. Take a break, play with the program, and then
come back for the next session; you'll be translating these
concepts into an assembly-language subroutine.

To review: the Color Computer is more than a smart 6809
processor, and so effective programming on this machine
requires knowing the rest of the smart devices inside it.
These devices include a video display generator (VDG) to
provide alphanumeric and graphic displays in several
colors; a synchronous address multiplexer (SAM) to
coordinate and synchronize events involving input/output,
display, and memory addressing; and two peripheral
interface adapters (PIAs) to provide input and output for
keyboard, cassette, printer, video, sound, and other
computer control functions.

These smart devices all have control signals which are
connected into the memory map and given specific
addresses. By storing information at these addresses, your
programs can have control of all the computer's
functions.

Please review this lesson, and familiarize yourself with the
programming aspects presented in the data booklets for
the MC688:i SAM, the MC6847 VDG, and the_ MC6821
PIA.

After you've finished trying out and exammmg this
program, there's one more at the end of the lesson. Load,
LIST and RUN it. It should give you some ideas.

Summary

• lllat are the IMfHIUllbered
display offset registers?

$FFC6, ffFC8, $FFCA, tFFCC,
SFFCE, SFFDI and SFFD2.

• Im do you create the display
offset address 1111111?

By riting to all the
~ SAM display offset
registers.

• lllat are the odd-nabered SIIM
display offset registers?

$FFC7, $1--"FC9, $FFCB, SFFCD,
SFFCF, $FFD1 and $FFD3.

• HoN do you create the diplay
offset address 1111118?

By Nl"'iting to a combination of
odd and IM!l'I addr't!Sses: SFFC6,
SFFC9, SffCB, SFFa:, SFFCF,
$FFD1 and SFFD2.

• lllat is the address of the
first b)te displayed on the
screen with the offset address
8118118?

The first byte (the
upper-left-.ost byte) displayed
is t6C88.

• lllat does VD6 11ean?

Video Display Generator.

• lllat does PIA .an?

Peri~al Interface Adaptor.

• lllat does SAM aean?

Synchronous
Multiplexer.

• lllat is located in
half of the Color
IINOI")' up !froa
$7FFF)?

Address

the lONer
Co.puter's
SIIN to

Read/write lll!80f')' (randos-access
IINOI")' > , or RAM.

Learning the 6f!/:)9 85

Program #16

* ht is located frw $8111 to
t9FFF?

Extended ColOI" BASIC in
read-only ...-y noo.

* 111at is located frw.,.. to
$11FFF?

ColOI" BASIC in l"eld-only _,..,.
(IOI).

* littat is located froa $CM to
SFEFF?

Nothing unless
read-only _,..,.
plugged in.

a cartridge
(IOI) pack is

* lllat is l~ated froa fflll to
SFFFF?

IOi.ee9E vectors, SAN control,
and I/0.

* littat do you call the
description of hON the
c:mput:et"'s desigl'll!l"S have
arranged its ..-y?

ThelNOr')'llilp.

86 Lesson 9

Program #16, a BASIC program. Turn on the power of your
Extended Color BASIC computer. When the cursor appears,
type CLOAD and press ENTER. The computer will search (S)
and find (F). When the cursor reappears, LIST this program. If
the program is not similar to the listing, or if an 1/0 error occurs,
rewind to the start of the program and try again. For severe
loading problems, see the Appendix.

CLS:CLEAR200.16292:~C~EAR4:X=&ri0400
2 GOSUB43:GOSUB86:GOSUB99
3 GOSUB55:GOSUBB6:GOSUB99
4 GOSUB65:GOSUBB6:GOSUB94:GOSUB99
5 GOSUB76:GOSUBB6:GOSLIB94:GOSUB99
6 GOSUB86:GOSUB99
7 GOSUB94:GOSUB99
8 GOSUB97:GOSUB99
9 DATA B7,FF,C7,B7,FF,C9,B7,FF,CA,B7.FF,CC,33
10 DATA B7,FF,C6,B7,FF,C8,B7,FF,CB,B7,FF,CC,39
11 DATA B7,FF,C7,B7,FF,C8,B7,FF,CB,B7,FF,CC,39
12 DATA B7,FF.C6,B7,FF,C9,B7,FF,CB,B7,FF,CC,39
13 DATA B7,FF,C7,B7,FF,C9,B7,FF,CB,B7,FF,CC,39
14 DATA B7,FF,C6,B7,FF,C8,B7,FF,CA,B7,FF,CD,39
15 DATA B7,FF,C7,B7,FF,C8,B7,FF,CA,B7,FF,CD,39
16 FORX=16293 TO 16383: READA$: A=VAL ("&H"+A$) : POKEX, 1::;: :\lEX-:-.
i7 DEFUSR1=16293
18 DEFUSR2=i6306
19
20
21
-,.-,
i::..c.

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

DEFUSR3=16319
DEFUSR4=16332
DEFUSR5=16345
DEFUSR6=16358
DEFUSR7=16371
FORA=1T040
GOSUB100:GOSUB108
GOSUB101:GOSUB10B
GOSUB102:GOSUB108
GOSUB103:GOSUB108
NEXT
FDRA=1TD20
GOSUB103:GOSUB10B
GOSUB104:GOSUB108
NEXT
FORA=1TD20
GOSUB104:GOSUB108
GOSUB105:GOSUB108
NEXT
FORA=1TD20
GOSUB105:GOSUB108
GOSUB106:GOSUB108
NEXT
GOT024
REM
PRINT@0,"* * * * *
PRINTSTRING$(31,32)"*";
PRINT:PRINT:PRINT"*"
PRINTSTRING$(31,32)"*";
PRINT:PRINT:PRINT"*"
PRINTSTRING$(31,32)"*";
PRINT:PRINT:PRINT"*"
PRINTSTRING$(31,32)"*";
PRINTSTRING$(32,32>;
PRINT"* * * * *
RETURN

*

*
PRINT@0," * * * * * *
PRINT:PRINTSTRING$(31,32)"*";
PRINT"*":PRINT:PRINT
PRINTSTRING$(31,32)"*";
PRINT"*":PRINT:PRINT
PRINTSTRING$(31,32)"*";

*

*

*

*

* "• '
*"

".
'

Program #16

6:l PRINT"N-":PRINT:PRINT
62 PRINTSTRING$(31,32)"*":
63 PRH~T"* IE- * * ·M·

EA RETURN
65 PRINT@0," * * * *
6E, PRINT:PRINT"*"
67 PRINTSTRING$(31,32)"*":
68 PRINT:PRINT:PRINT"*"
69 PRINTSTRING$(31,32)"*";
70 PRINT:PRINT:PRINT"*"
71 PRINTSTRING$(31,32)"*";
72 PRINT:PRINT:PRINT"*"
73 PRINT" * * * * *
74
75
76
77
78
79
80
81
82
83
84
85

POKE1535,106
RETURN
PRINT@0, " * * *
PRINT"*":PRINT:PRINT
PRINTSTRING$(31,32)"*";
PRINT"*":PRINT:PRINT
PRINTSTRING$(31,32)"*";
PRINT"*":PRINT:PRINT
PRINTSTRING$(31,32)"*";
PRINT"*":PRINT
PRINT" * * * *
RETURN

*

*

* *

*

* ·IE-

* *

86 PRINT@6B, "the message car, be made";
87 PRINT@132," TO FLICKER AND FLASH";
BB PRINT@196,STRING$(23,191);
89 PR I NT@260, " GREEN < <";
90 PRINT@292," MOUNTAIN";
91 PRINT@324," > > MICRO";
92 PRINT@388,STRING$(23,191);
93 RETURN
94 PRINT@196,STRING$(23,207);
95 PRINT@388,STRING$(23,207);
96 RETURN
97 PRINT@132," TO flicker AND flash";
98 RETURN

* *"

".
'

* iE·tl.

'

*";:POKE1535,96

99 X=X+&H200:Y=&H0400:FORQ=X TO X+512:PDKEQ,PEEK(Y):Y=Y+1:NEXT:R
ETURN
100 M=USR1(0):RETURN
101 M=USR2(0):RETURN
102 M=USR3(0):RETURN
103 M=USR4(0):RETURN
104 M=USR5(0):RETURN
105 M=USR6(0) :RETURN
106 M=USR7(0):RETURN
107 FORN=1T0500:NEXT:RETURN
108 FORN=1TD4:NEXT:RETURN

Learning the l:K:fJ 87

88 Lesson 9

P GLEAR 1

t;A~IC..

f~rnmv~
E.XT Uo!C

~---~

CiJI.CR EA1C

(Jf:,R: [)(,[
-----~
NOT U:':EJ)

p Ll..£AR 3

E-XT r:ASiC

([)LOR. 54:JC

CAR.TR.I De-£.

NOT U'H>

PC.L...E.AA Z

ffiIMWm
EXT !'ASIC

(DL:RBA"JC

CARTPUCGE

NOT U:£D

l'CLUP 8

flltl MEMORY

[XT EA'IC

(ARlKICASE

i'-JOT U'SE.tJ

•
Welcome back. I hope you've had a little fun with the final
program in the last session. If you took the time to contrast
the listing of that program with the previous one, you may
have noticed a group of hexadecimal numbers and a series
ofUSR routines in place of the BASIC POKEs. Remember
that the synchronous address multiplexer - the SAM -
uses write-only registers that are located in the upper area
of memory. Fourteen of those addresses are used to set or
reset the individual binary digits of a 7-bit video display
address.

Turn back to the last program listing. PCLEAR4 in the first
Hne is intended to release memory for Extended BASIC's
high-resolution graphics. What it actually does is move the
BASIC program itself in memory, freeing a large block
memory space between $0600 and the start of the BASIC
program. The way I've arranged the screens is first to print
them on the screen, meaning they appear in memory at
$0400 to $05FF, the usual address of screen memory when
you turn the computer on. The info is printed on the screen
by seven subroutines, and then, byte by byte, POKEd into
memory at $0600, $0800, $0AOO, etc., in blocks of 512
bytes.

The screens are then prepared. All that remains is to
redirect the videq display by changing the video address in
the SAM. My earlier program POKEd the changes in place,
but the changes happen too slowly in BASIC. The results
are illegible, with unwanted screens flickering by between
POKEs. So I've set up some simple machine-language
subroutines, which you can see in raw form in lines 9
through 15.

I'd like you to read these. Turn to your MC6809E data
booklet, and open to pages 28 and 29. The first
hexadecimal byte in the program is $B7. Look through the
data booklet's numerical listing, and you find that B7
corresponds to ST A, or Store A Accumulator, in the
extended addressing mode. The extended addressing
mode, as you know, means that the two bytes following the

Coaing into this lesson with
COl'lt'l!pts securely in your ■ind,
you' 11 be solving a proble■ by
structuring and progra.ing a
useful piece of software.
Aevi• coaes first, then you' 11
get right into it.

t lllat does the BASIC PCl<E
stataent do?

It directly ■anipulates lll!■Ory.

• What is the purpose of BASIC's
PCLEAR stateaent'

To release Ea>ry for
high-resolution graphics.

• lltat controls the video
display address?

SAM registers.

f lltere is the video screen
located ii11 the ntll"IMl Color
to.puter?

tHoN is the address
detl!l"lliftld?

By writing to the SAM display
off.t registers.

opcode form an address where the data is loaded from or

Learning the 6f!l::Jt 89

BASIC and speed

* lltat is extended addressing?

An addrening acJde Nhere the tNO
bytes following the opcode fOl"II
an addNss Nl'N!re the data can be
found.

* lltat addressing aode is
utilized by STA SFFC7?

Extended addressing.

* Re•llber that it's the act of
storing - not the infOl"lliltion
stored - into the SM registers
that deteraines the result.
With that in ■ind, Nhat action
is taken by:
STA $FFC7
STA $FFC9
STA SFF~
STA SFFCC
STA SFFCE
STA SFFDI
STA SFFD2

The video display offset address
811N11 is selected.

* lltat ■-:,ry address is this?

* The hex opcode for store A
amalator extended is $ff7.
lltat don $ff7 16 II indicate?

store A ac:ccmulator at ■-ory
address tl6II (STA t1611).

• lltat is the clock spNd of the
Color CIJllfMater?

• 89 llfz (894, 886 clock cycles or
pulses per SKONI).

* How lot1g is one clock cycle?

1.11746 ■iCl"Olll!l'Onds C■illionths
of a second).

•How_,,., clock cyclts dots a
STA extended a.and take Ctlw
infor■ation is in tt. data
booklet>.

90 Lesson 10

stored. The next two hex numbers in the program are $FF
and $C7. Your SAM data booklet will tell you that $FFC7 is
the address to set the least-significant bit of the video
display address.

Follow the remaining hex bytes in the listing. You'll see 87
FF C9, meaning Store A Accumulator at $FFC9; 87 FF CA,
Store A Accumulator at $FFCA; 87 FF CC, Store A
Accumulator at $FFCC; and 39. Check $39 in the numerical
instruction list on page 28 of the MC6809E data booklet.
It's an opcode that will become very familiar - it is RTS,
Return from Subroutine.

So the first group of bytes in line 9 of the BASIC program
store the A Accumulator at $FFC7, $FFC9, $FFCA and
$FFCC. A check of the SAM registers will show that these
actions will place the binary value 0011 in bits 9, 10, 11 and
12 of the video address. Bits 13, 14, and 15 (the most
signficant bits) are all zero, because that's where they were
established when the computer was turned on. The full
result of this short subroutine, then is to create the video
address 0000 0110 0000 0000. I'll translate that for you.
It's address $0600, the address of the first screen the
BASIC program POKEd into memory. By analyzing each
of lines 9 through 15, you will see that the video display
addresses created are $0600, $0800, $0A00, and so
forth.

These seven short machine-language subroutines, then,
are a quick version of the BASIC POKEs that were used to
redirect the screen in the previous program. The speed
here, however, is too fast to see. How fast is it? Glad I asked
that. Flip to page 31 in the MC6809E data booklet, and
look up the mnemonic STA. Under the heading
"Extended", you'll find the opcode $87. The next column
tells you that a Store A Accumulator Extended takes five
clock cycles. There are four Store A Accumulator
instructions in each video display switching subroutine,
meaning a total of 20 clock cycles. The RTS (Return from
Subroutine) takes 5 clock cycles. The whole subroutine
takes 25 clock cycles. At your Color Computer clock rate of
894,886 clock cycles per second, that means the
subroutine is finished with its work in .00002794 seconds
- 30 millionths of a second, about the time it takes the
electron beam to sweep halfway across the TV screen.

I want to close a knowledge gap now. Obviously I've been
talking about machine language subroutines in this BASIC
program. BASIC puts those subroutines into memory in a
very clumsy way. Look at the program listing. In lines 9
through 15 are a series of BASIC DATA statements in
which the hexadecimal numbers are treated as strings. In
line 16, I have variable X select the memory area to be used;
in this case it's 16293 to 16383, hexadecimal addresses
$3FA5 to $3FFF.

The next step has the hexadecimal byte masquerading as a
two-character ASCII string read as variable A$. BASIC
identifies hexadecimal by the symbol "&H", so "&H" is

I.er A'$a •c.~"
lz:r!,o

HMN+b\t
(~ ~ & vc.:~)

V~(t>~);. VAL.@11'-3)
YN..(U)=-

~fi

u~ :!'~A.
\]$,It.I St'>'I'/,\

Uf,ji:.Z. $15,'!'IA.

I.R.3 .$11'1'-IA,
l./51<.4 lff'>'i'/A
(J!,R 5 S&'l"'-
~ $1Yt'I,<\.

'>£7 ~
lM:e, 'f&'f'-IA.
Of,£9 U'i'b\

\/!11<.lll '!$,-...

\/5k 1 [$?,f~.£ .:¥ v~ z 16</'tA

IUt' '&&'l'fA.
IJ!,lt.'f 1>~<i<IA..
U5lt $ $~'/'tA
1.$.(, IJ.r:,'/'fA.
us,,_ 7 $a'l'tA
us.e.a $?>'t4A.
U5t. 'f $6'/'fA.

IC..~

~ !.:H><t<tA
It. 1 i $ 3FAS- -~

/ i'.2.1$?Ff',Z " ..
,,. 0$1'. ~ i li&~"/A \~

U51'. I. I f, &'l'I"

l/5£ e i ~Bli'iA
(.)Sjl.'f $15,'i'jA,

concatenated with each two-character ASCII string. In this
way, BASIC can be tricked into taking the value of the
string, and that value can then be POKEd into memory. All
that happens in line 16. Seven machine-language
subroutine entry points are established in lines 17 through
23. Extended Color BASIC allows ten entry points
altogether named USR0 through USR9; this program
defines USRl through USR7 for the seven screens to be
displayed. Finally, lines 24 through 41 execute these
subroutines in a fancy series of FOR-NEXT loops, and
delay appropriately. By changing the order of the loops,
you can make the seven messages flicker and flash in a
variety of ways.

Here's a recap: Seven 512-byte screens are created in the
memory below the BASIC program, allocated by
PCLEAR4. These screens are displayed by machine
language subroutines that switch the video display
registers in the SAM. I hope this hybrid BASIC/ machine
language program gives you some ideas for effective but
simple program displays.

As for the knowledge gap, the technique for creating short
machine-language programs and POKEing them into
memory via BASIC is something you can use often. Write
the program, either byte-by-byte or using an editor/
assembler. Take the hexadecimal opcodes and operands in
the order they will appear in memory, and put the values
into a bunch of BASIC DAT A statements. Read each
value, convert it to a number BASIC can use, and POKE it
into memory. By using the DEFUSR command, define
where your program will begin execution. From that point
on, it only takes a USR command to execute your machine
language program. Review the program you've just run
until you understand how that's done.

Before I leave this program, please load the mnemonic
source code that follows.

Program #17, an EDTASM+ program. Insert the EDTASM+
cartridge, and tum on the power to your computer. When the
cursor appears, type L and press ENTER. The computer will
search (S) and find (F). When the cursor reappears, display the
program. Type P#: • and press ENTER. If the right-hand side of
the program is not similar to the listing, or if an 1/0 error occurs,
rewind to the program's start and try again. For severe loading
problems, see the Appendix.

3FA5 00100 ORG $3FA5
3FA5 B7 FFC7 00110 SCRNl STA $FFC7
3FA8 B7 FFC9 00120 STA $FFC9
3FAB B7 FFCA 00130 STA $FFCA
3FAE B7 FFCC 00140 STA $FFCC
3FB1 39 00150 RTS
3FB2 B7 FFC6 00160 SCRN2 STA $FFC6
3FB5 B7 FFC8 00170 STA $FFC8
3FB8 B7 FFCB 00180 STA $FFCB
3FBB B7 FFCC 00190 STA $FFCC
3FBE 39 00200 RTS
3FBF B7 FFC7 00210 SCRN3 STA $FFC7
3FC2 B7 FFC8 00220 STA $FFC8

Learning the

Video ecreene

• Holt long is that?

5 tias 1.11746, or 5. 5873
■icroseccmds.

• Holt llln)' STA extendeds is that
per second?

1111111 ■icrosecortds divided by
5.5873 per STA extended
instruction, or roughly 179,•
per second.

• RIC can perfol"II roughly 68
PO<Es per Sl!l'Ond. Holt ■uch

faster is the uchine language
equivalent of STA extended?

179,• divided by 68, or about
2,632 ti.es faster.

• lllat is the standard sy■bol
for hexadleci■al?

The dollar sign (S).

* lllat is the RIC sy■bol for
hexadeciul?

The sy■bol aapsersand plus the
letter H (IH).

* ht co■und is used for a
RIC lilChine language entry
point?

USR.

* RIC needs to knoN the
starting point of a uchine
language progra. Holt does it
get it?

With the DEFUSR coamd.

does DEFUSJIJ=&HJFBF

It ■eans that the entry point
(execution address) for USR
routine IIMlllber 3 is at location
SJFBF.

* Write a state■ent that infor115
RIC that ■achine language
progr• 1"7 begins at SJFF3.

DEFUSR7=&HJFF3.

60C'fJ 91

Hand assembly

* What is MSIC' s representation
of hexadeciaal?

Allpersand plus H (&H).

* If variable C$ is A9, Nrite a
stateant to aake C equal to the
hexadeciaal villue of CS.

* lillat is hand asseably?

Figur1n~ the hex (binary} coele
byte by byte fro. the lll'lellonic
(source) code.

• * Hand assable STA $FFC7 into
hex, and then binary, code.

STA $FFC7 becoEs $87 FF C7,
Nhich becoEs 11111111 11111111
11M111.

* What addressing IIOde is this?

Extended addressing.

* Holll aany bits represent an
address?

16 bits.

* Holll runy hexadeciaal
characters is this?

4 hex characters.

* Holll aany bits represent the
EIIDl"Y contents at an address
(the data)?

8 bits.

* Holll aany hex characters is
this?

2 hex characters.

* lillat is the value •11111 in
hexadecillill?

$12

* lillat are the ASCII values for
•1• and •2•?

f31 and S32.

92 Lesson 10

3FC5 B7 FFCB 00230 STA $FFCB
3FC8 87 FFCC 00240 STA $FFCC
3FCB 3'3 00250 RTS
3FCC 87 FFC5 00250 SCRN4 STA $FFC5
3FCF B7 FFC'3 00270 STA $FFC'3
3FD2 87 FFCB 00280 STA $FFC8
3FD5 B7 FFCC 002'30 STA $FFCC
3FD8 3'3 00300 RTS
3FD'3 87 FFC7 00310 SCRN5 STA $FFC7
3FDC 87 FFC'3 00320 STA $FFC'3
3FDF 87 FFCB 00330 STA $FFCB
3FE2 87 FFCC 00340 STA $FFCC
3FE5 3'3 00350 RTS
3FE5 87 FFCE. 00350 SCRNE. STA $FFC5
3FE9 87 FFC8 00370 STA $FFC8
3FEC 87 FFCA 00380 STA $FFCA
3FEF 87 FFCD 003'30 STA $FFCD
3FF2 3'3 00400 RTS
3FF3 87 FFC7 00410 SCRN7 STA $FFC7
3FF5 87 FFC8 00420 STA $FFC8
3FF'3 87 FFCA 00430 STA $FFCA
3FFC B7 FFCD 00440 STA $FFCD
3FFF 39 00450 RTS

0000 00450 END
00000 TOTAL ERRORS
SCRN1 3FA5
SCRN2 3FB2
SCRN3 3FBF
SCRN4 3FCC
SCRN5 3FD'3
SCRNE. 3FEE,
SCRN7 3FF3

Type A/NO and hit <ENTER>. Lines of information
scroll by. The incredible thing about this mnemo:iic source
code - and most mnemonic source code - is that it looks
so massive. Here are 36 lines of typing, 7 labels, 8 columns
wide, practically filling a page. And yet all this resolves into
a mere 91 bytes of actual program, little more than a third of
what a BASIC program line can hold.

Since I knew precisely what I wanted, and since this
program was so short and consistent, I actually figured out
the hex code byte by byte using the MC6809E data
booklet. Later I typed this source code for you. But in doing
the hand programming, I had to keep track of where each
subroutine began. The nice part about an editor/assembler
is that whatever you have in mind can be typed and
examined easily, even if it seems long. The editor/
assembler picks up typing errors, whereas hand
assembling each byte can be a highly error-prone
procedure. Plus, by liberally scattering labels in the code,
critical addresses can be identified; in fact, the assembler
provides a complete display of all labels at the end of the
assembled listing. Which teaches you more? My vote is for
hand assembly. I'll help you with some of that.

For hand assembly you'll need paper and pencil, plus your
MC6809E data booklet open to pages 30 and 31. The
problem will turn away from flashy video displays for
awhile; here it is:

Given an address transferred from a BASIC program,
create a display which will present eight lines of
information. The first line will contain the address and
eight hexadecimal bytes of memory contents separated by
spaces. If the address is $2000, for example, the display

(.)S.R, pl $&'1'1A

thl'..I $~FAS

Uf.~1- i, '3,f&Z,.

USI<- ~ I $'3-l'SF

U'>"-'t .S 6'!'/A
Ul>rt-, f, &'1'-tA.
US4 SB<!'IA

USR.7 $6'1'1<\
USR.8 ~6't'tA
USR.'f f>f>'t'l,f,.

L/Sf'.<1 $81/'IA
IJSI'-. I f>~S

USli:.Z. $3fe,z.
USli:.'3, 53FBf
IJSl'.'t $3t'eC-
OSI'-> $&'t'+A
lJSl'--b $1!,4l'IA

U$rt-7 f,8'/'/A
u~R.8 $f!>'/'14.
US.fe.9 $9</'IA,

l)';.R,t; $6'1'/A
oS,it.l l>3FAS-
IY.>R.2 $3Ft!>Z.

()~~ £3F~
U'.>11:.'1 $~f(L.,
\.)S,R,, S3Fi>'?
USRh $6'/'IA
I.M!.7 $6'{'1A.
use& f>&'t'IA
u~~ i;.8'1'/A.

...-.
U$R.¢ $fW4A I
USlt.l S3'FAS'

\J',R.Z. S3F&2.
U',lt.~ I S~f'&F-
U>lt.'i $~Fc.c.

J ~RS- $"-f'D9
~ $~FE.(..

1'· USR7 $f't'14.
lJ!.2a $iiWtA
Vl,R.'7 $&'t'L<l

U'>lt.~ t,~~
lX.lt.1 $3f'AS
0$t.Z 1S.W:z.
IJ,R~ S->f&F
(H(.'/ $ '5f<.<.
US~S" S,ft>f
~ $?Ff:'-
ll!.R'7 $'3ff3
U$l8 ~'l'tA.
~r $&'f'tl,

$5'HA ??
£xt:G &~ 'IS't'-IA.

'(~{/,
~\,1/, I ,,\I A';t/fi,,,1

--z FG E~;c:
/"'I u"\f.>l!'\'--.J\J \f'~

V i '

should print $2000 followed by the data found in memory
locations $2000, $2001, $2002, etc., up to $2007. In the
next line, the address $2008 would be displayed, together
with the memory data found at $2008 through $200F. And
on down for a total of eight lines. Ready?

tooo * f F ? II. 1-, '/Z. 6!f M AA 01
2.ooe Jt 6:Z. 9, 'II 'IIJ IJ7 AZ. IU, !JI

z_oro * 95 "6 oo oo oo oo oo oo

Know how to tell if you're ready~• Think about Session 8,
where I presented a dozen machine language instructions
and showed how they worked, including how flags were
affected. If that's not clear and reasonably fresh in your
mind, review it now. When those instructions make sense to
you, you're ready to move on.

The problem at hand is to transfer an integer from BASIC
which represents an address in memory you'd like to
examine. That examination will display 8 lines, each line
containing one address and 8 consecutive bytes of memory
data. In all, 64 bytes of data will be displayed. First,
conceptualize the problem. Information in integer form is
to be transferred to the machine-language program. That
part is easy; the USR function is used, with the target
address being the operand in parentheses. You've already
used the integer-conversion routine from the BASIC ROM
in order to retrieve a value from BASIC for your machine
language program's use, so that's easy.

Once you've got the integer value in your own program, two
things need to be done. First, it has to be treated as
displayable information. The address must be converted to
four ASCII characters for presentation as a hexadecimal
display. Second, the integer has to be treated as the
address itself in o;·der to retrieve the memory information
for display.

How about an integer-to-ASCII conversion routine, then?
You'll want to break it down into simple modules, if
possible. Start by looking for modularity, small consistent
units that you can program. What you know you have are 16
binary digits which you want to represent on the screen as
four ASCII characters in hexadecimal notation. There's a
clue there. 16 binary digits. Four ASCII characters. You
already know that a single hexadecimal number represents
four binary digits. The solution lies in that knowledge: treat
each four-bit group as an identical task. A single
subroutine.

Learning the

Integer to ASCII

* ht is the value of 11ae11e1
in hexadec:iaal?

SC)

* lllat are the ASCII values for
•c· and ·o·?

S43 and M4.

* lllat is the value 1•1111 in
hexadeciul?

* What al"E' the ASCII values for
·a· and ·e:■?

S38 and M5.

* An address is SAID7. lllat are
the fOW" ASCII values CA, 8, D
and 7>?

M 1, SJI, $44 ind S37.

* lllat is the ASCII value for a
spac:e?

* To display the address SAID7,
a sp!ICe, and the contents of
SAI07 h1hich is SIEl, NIIU ASCII
values 1111st be used?

S41 38 .\4 ;r, 28 38 45

* lllere aire these ASCII values
placed?

In display lll!!aOl"Y•

* Iller@ is display E110ry on the
nol"'Nl Colc:lr Coaputer?

Fl"OII Sl4Nto Sl5FF.

* Holt uny bytes is the value
$SE?

One byte, 1i8E.

* Holt uny bytes are the ASCII
values needed to rep, esent the
value $SE?

TNO bytes, S38 and S45.

6el:J9 93

Entry and exit

* Hoe, 111ny bytes is the address
SAID7?

Tt«> bytes, tAI and $1>7.

* Hott llilny bytes are the ASCII
values l'lll!ded to represent the
value tAID7?

Four bytes, Ml, $31, S44 and
$37.

* 61,at are the ASCII values for
the characters••• through •9•?

$31 through S39.

* Ytat are the ASCII values for
the characters •A• through •p?

Mt through~

* ltlat is the nllllber $8E in
binary?

SSE in bil'llry is 1• 1111.

* In the nualleY' $SE, Nhich bits
represent the nuabl!r 8?

The leftaost four bits.

* In the 1IUlltJe,- SSE, Nhich bits
ant the nuaer- E?

The rightaost four bits.

* lllit are the leftmst and
rightllDlt four bits of t8E?

1• and 1111

* Ytat are the binary values for
8 and E?

-t•and .. 1111.

* 61,at are the binary values for
ASCII ·a· and ASCII ·E·?

eeu 1• 1nd ••• 1111.

* 61,at is the difference bitten
binary 8 and ASCII ·a·?

Binary 8 is 11111 1M and ASCII
•a• is NU 1M; the difference
is NU ..., or $JI.

94

That line of thinking brings you one step closer to a
modular approach. Each time you have four bits in hand,
you can call the subroutine that creates an ASCII character
from them. Now you need only sketch out that subroutine.
Recall a few sessions ago how, in order to access a table of
encrypted codes, a constant value had to be subtracted
from the ASCII characters to obtain numbers starting from
zero. In this case, you have a complementary situation. You
have four binary digits equivalent to the hexadecimal
numbers 0 through F. In order to produce ASCII
characters, then, it's necessary to add a constant value. To
display the number zero as the character 0 with the ASCII
value of hex $30, you would add hex $30. To display the
number one as the character 1 with the ASCII value $31,
again you would add $30. You would do that right up
through number nine which is displayed as the character 9,
ASCII value $39. The constant you add is $30.

So far so good. But when you get to number A, you're in a
little trouble. Binary 1010 is number A. Character A is
ASCII value hex $41. The constant you must add to
number A to get character A is hex$37. It's consistent from
A through F - add $37 to the value and you get the ASCII
character.

How do you reconcile the two different constants? The
answer is simple: you don't. You find out whether the value
is 0 through 9 or A through F, and add the constant $30 or
$37 accordingly.

That looks like enough information for a subroutine. The
"entry condition", as it's called, is a group of four binary
digits. That four-bit number is checked to see whether it is
greater or less than 9. If it's greater than 9, you add the
constant$37; if it's 9 or less, you add the constant$3O. The
result is an ASCII character which, when displayed,
represents the hexadecimal numerical value. The ASCII
character is the subroutine's "exit condition". The nice
part about a subroutine like this is its versatility- not only
can it be used to display the digits of an address, it's just as
good for displaying the bytes of memory data.

Mnemonically speaking, that would operate like this. The
A Accumulator enters with the four-bit number. It's
compared immediate with $0A. If the number is greater
than nine, the carry/borrow flag would not be set. The
program would Branch on Carry Clear to an instruction to
add $37 and then return from subroutine; otherwise it
would add $30 and return from subroutine. The A
Accumulator enters with the number and exits with the
ASCII character. Pretty slick.

It would look like this, assuming the A Accumulator holds
the four-bit number:

CONVRT CMPA
BCC
ADDA
RTS

#$0A
LETTER
#$30

LETTER ADDA #$37
RTS

CIIP -¢A
(tf,r.-¢,A.<.~p)
(sef c.arry)
St':h ~
J.DDAff-'O

:$¢'-~

A$C.II

&

~
CMP 'ft$¢A

(¢e.-pSAe!f!f>)
(~CNt'j)

~~r
l,.rme,t.~+$57
$¢E-+S37"'f'tr

~

00/ I //00

/!NP 0000/ I/ I

0000//00

•$¢C

Now there's the task of breaking the 16-bit address into
four 4-bit groups. Half of that's done already, since the 16-
bit address is split into two 8-bit bytes. Creating this
subroutine from there demands just a little convoluted
thinking.

You have 8 bits. Youonlywanttousefour bits at a time, and
these four bits have to be in the least-significant positions.
In other words, if the number is $3C, you want to convert
the four bits 0011 into a 3, and the four bits 11 00 into a C.
The least-signficant four bits of the byte are just about
ready to use. All that remains is to temporarily get rid of the
most-significant four bits. The term is "mask" the bits,
meaning create a mask so that only the bits you need show
through.

The mask here is AND. Recall how the AND instruction
works. Both conditions must be a one for the result to be a
one. To mask out the four leftmost bits of the byte, then,
you would AND each of those four bits with zero. To mask
IN the four rightmost bits you would AND each of those
four bits to one. I'll repeat that a different way. If the
leftmost four bits are ANDed with zero, no matter what
those bits are, the result of the ANDing will be zero. If the
rightmost four bits and ANDed with one, no matter what
those bits are, they will effectively remain the same.

Scratch it out on paper and look at it. Use the example $3C
that I just mentioned. Write down the binary equivalent:
0011 1100. Underneath it, write .down the mask: 0000
1111. Now use the AND function:

0 AND 0 is 0
0 AND 0 is 0
I AND 0 is 0
1 AND 0 is 0

That's the leftmost four bits. Now the rightmost:

1 AND 1 is 1
1 AND 1 is 1
0 AND I is 0
0 AND 1 is 0

There are the rightmost four bits. The mask to use here is
$OF. To recap: to retrieve the least-signficant four bits of a
byte, use the mask $OF.

You can pause here to review that section if you like.

The next task is to retrieve the leftmost four bits. If logic
holds, then you can again use a mask. Since the bits you
want are to the left, then the mask 1111 0000 should
suffice. That's $FO; it will result in the four leftmost bits
being masked in, and the four rightmost bits being masked
out.

Maaking

• lttat is the di ff~ bttwen
binary E and ASCII •E•?

Binary E is NN 1111 and ASCII
•E• is 11N 1111; the difference
is 1111 NN, or $37.

f "1at is the constant
difference bet.en binary values
e through 9 and ASCII values •e•
through •g•?

The constant difference is $38.

• lihat is the constant
diffmmce betllll!erl binary values
A through F and ASCII values •A•
through •p?

The constant differl!nce is $37.

• lihat logical function states:
both of tNO conditions IIIISt be
true for the result to be true?

The N function.

• HcM are the rightaost four
bits retrieved froa the nuabel"
t8E (1- 111t)?

By NSking the leftllOSt four
bits.

* 11\it M6k is Ull!d?

AND 11111111.

• If A contains ME, Nhat
aac,nic coaand is used to
retrieve the rightaoat four
bits?

~ IMF UN> A ICCUIMtlator
i..ediite with W, binary
11111111).

• lihat l'OIIIStant is added to tlE
to pnxluce the ASCII character
•p?

$37.

There's a problem, though. Although it masks in the bits
you want, they're not in the correct place.You need them on
the right side of the byte to represent the 4-bit numbers $0

through $F. You have to get those bits from left to right.

Learning the 6f!/:_Y9 95

Logical Shift

* How are the leftaost four bits
retrieved frm the nllllbl!r SSE
(1- 1118}?

By shifting the bits right four
ti.es.

* lillen t8E is shifted right
once, Mhat is the result (in hex
and binary>?

••• 1111 ($47}.

* Ihm SSE is shifted right
twice, three tilll!S, and four
tiaes, Mhat are the results !in
hex and binary)?

18181111 ($23), 1111 •1 ($11)
and 0111 1111 ($18).

* lillat constant is added to $18
to produce the ASCII character
·a·?

* lillat is necessary to convert
the least significant half of a
byte to a 4-bit nllllber?

Masking Nith ••

* lillat is necessary to convert
the aost significant half of a
byte to a 4-bit n1.111ber?

Rotating right four tilll!S.

* lillat is necessary to convert a
4-bit binary nllllber to a
hexadeciaal ASCII character?

The addition of a cot1Stant.

96 Lesson 10

Recall the various rotate and shift commands from an
earlier session. You'll need to refer to your MC6809E data
sheet to choose the particular rotate or shift you want; open
to pages 30 and 31.

You know that you need to move these bits to the right.
Your choices are ASR (arithmetic shift right), LSR (logical
shift right), and ROR (rotate right). Look at each one. ASR
reproduces the leftmost bit each time you shift, so this
doesn't look very good. If you shifted first and masked
second, it would work. How about LSR? It shifts right and
brings zeros in from the left as it shifts. That one looks
good. Finally, ROR swings the bits 'round from the other
side of the byte, so you would need to mask the results
afterward.

The logical shift right (LSR) looks the best. In fact, it looks
excellent. Since the bits shifted out the right side end up in
the bit bucket, and zeros come in from the left, you don't
even have to bother masking this before you use it. The
process of shifting it right gives you not only the four bits
you need, but eliminates those you don't want.

Here's a summaiy of these two program segments: the byte
is to be displayed as two hexadecimal ASCII characters.
The leftmost four bits are obtained by logically shifting the
byte right four times. The rightmost four bits are obtained
by masking the original byte with $OF. All that remains is to
make sure the original ,value is saved before modifying it.
Push A Accumulator will take care of saving the byte, and
Pull A Accumulator will get it back when it's needed. In
terms of mnemonics, and assuming the value to be
displayed is in the A Accumulator, the complete routine
would look like this:

BYTBIT PSHS A Push A Accumulator onto stack
LSRA Logical Shift Right A Accumulator
LSRA Logical Shift Right A Accumulator
LSRA Logical Shift Right A Accumulator
LSRA Logical Shift Right A Accumulator
JSR CONVRT Jump to ASCII conversion subroutine
JSR DISPLY Jump to screen display subroutine
PULS A Pull A Accumulator from stack
ANDA #$0F AND A Accumulator immediate with $0F
JSR CONVRT Jump to ASCII conversion subroutine
JSR DISPLY Jump to screen display subroutine

At this point, two major portions of the problem have been
solved: the 8-bit byte has been converted to two 4-bit
numbers, and those 4-bit numbers have been converted to
ASCII characters. The screen display routine has yet to be
done. I'll leave you with these considerations: your program
has to know where to start the screen display in memory,
that is, it has to be initialized. The current screen display
position has to be updated so that the next character
displayed will appear in the next available position.

Review this lesson, and consider those problems for next
time.

$~'=' 1°1°1 ✓ 1,1 ✓ 1 tlolcl
j.,,,i,

000000//:.

,~¢~]
!:ND

•
The topic is hand assembly. Last time I started you working
on a program to display memory locations and their
contents. At the end of the session, you had produced two
pieces of that program: the byte-to-nybble conversion
routine (a nybble is four bits), and the hexadecimal-to
ASCII conversion routine. The byte-to-nybble conversion
was made up of two steps. To move the most-significant
nybble into the righthand portion of the byte, the byte was
logically shifted right four times. To obtain the least
significant nybble, a mask ofSOF was ANDed with the value
of the byte.

The problem I posed at the end of the session was this one:
create a single-character display subroutine that, when
called, places a character in the correct location on the
screen and updates the program to point to the next
available screen location.

To help solve this, I hope you thought back to the message
display program you created in the third session. There
wasn't much to that display routine, and there isn't much to
this one either. At the beginning of this program, then, you
would initialize the first screen location, perhaps in the Y
register. Each Color Computer screen line is 32 characters
long - that's hex $20. So to start on the fourth line of the
screen, you would load the Y register with the immediate
value of $0480 at the start of the program:

LOY #$0480

is the mnemonic. If the ASCII value to be displayed is the A
Accumulator, and the Y register points to the current
location on the screen, then you would store the- A
Accumulator in memory - display memory, that is -
indexed by Y. To update that location, choose the auto
increment/ decrement zero-offset indexed mode. You
remember that mouthful. That's Store A Accumulator at
memory indexed simply by Y, auto-increment Y by one,
and then return from subroutine. Label it DISPL Y:

Hand as!iil!llbly really hasn't
gotten undmay yet. At this
POint, the progra■ is still
being structured and converted
into 111'11!90ftic source code. So
far, a co■plete byte-to-ASCII
conversion syste■ has been
cleveloPl!d, lllat's to COIII!' is a
diSPlay routine, plus a kind of
executive structure.

* lllat is the location of the
noraal display screen on the
Color COll!Puter?

f04l8 to ta=F.

* Each li111e of the display is 32
characters long. lllat line
starts at $8488?

If S04l8 is the start of the
first line, then SM80 is the
start of the fifth line.

* If the 'i register Points to
screen location SIM8I and the A
registw contains the ASCII
value, Nhoat ■raonic instruction
NOUld place the ASCII value on
the set"el!n?

STA ,Y

* lllat lll'll!■Onic instruction
IIIOUld place the ASCII value on
the sa-een, and auto.atically
■ove the Y POinter register to
the next !SC1'l!l!l'I POSition?

STA , Y+

* Write tNO instructions that,
given the conditions Just used,
create a coaplete ASCII diSPlay
and screen update routine.

STA , Y+
RTS

DISPLY STA ,Y+
RTS

Learning the /::Rl:1J 97

A mnemonic program

t lllat does STA , V+ aean?

Store A accuaulator to ..,..Y
indexed by the V retistt!t', with
no offset, and autoaatically
inc, e•1it V.

t Given th.It A contains t2A and
B contains t2t, Nhat do the
following four instructions do?
STB ,V+
STA , V+
STA , V+
STB ,V+

The four instructions diSPlay
space, star, star, S?aee.

t lllat does JSR SBJED identify
on the Color C:C.Uter?

An integer conversion subroutine
in the BASIC D.

• lllat are the results of JSR
SBJED?

A 16-bit signed integer is found
in the D register.

• What does integer •,m?

A nutlber without a fractional
(or deciul) part; a Nhole
nuaber'.

• What does •signed intner•
aean?

It aeans the nullber is POSitive
or negative.

• HoN is the sign indicated?

By the leftaost bit; i is
POSitive, l is negative.

t In the diSPlay prograa, how is
the sign inforution used?

It isn't. The nUllber is treated
as a 16--bit unsigned integer.

t In the progra, the
in&truclion STA (SIN! apPNf'S
lllat addressing IKJde is this?

Direct addressing.

* In the Pl"09l"illt the
instruction LDA · "2A appears.
lllat addressing m:le is this?

Iaediate addressing.

t In the prograa, the
instruction JSR $83ED appears.
lllat addrftsing aode is this?

Extended addreuing.

t In the progrilllt the
instruction IN: LLOOP appears.
lllat do& BtE LLOOP aNn?

It aeans Branch Not Equal to the
instruction labeled in the
source listing •LLOOP•.

98 Lesson 11

That should do the trick. A short, sweet 3-byte subroutine
that illustrates the power of the 6809 processor.

That seems to cover the necessary subroutines
conversion and display. What's left to create is a kind of
executive program which accepts the address from BASIC,
searches for the memory data, and calls the subroutines
you've just created. This executive's job would be to call for
the value from BASIC, initialize the screen parameters, do
the screen line and screen character counting, call the
convert and display subroutines, and return to BASIC
when all is done.

The sequence as I see it comes out to 15 steps:

1. Get the target address from BASIC
2. Initialize the screen starting position
3. Initialize the line and character counts - 8
lines, memory bytes per line
4. Convert and display the most-significant
byte of the memory address
5. Convert and display the least-significant
byte of the memory address
6. Display a space as a separator
7. Display two stars or other separators
8. Display another space as another separator
9. Get the memory contents of the address
10. Convert and display that memory byte
11. Display another space as a divider
12. Increment the target address
13. Loop for 7 more memory bytes, for a total
of 8
14. Loop for 7 more lines of address, for a
total of 8
15. And finally, return to BASIC

I've prepared a program that follows these steps; open to
your documentation and follow along. The program is in
mnemonics, which you will be hand-assembling. I'll explain
each line briefly; those which you haven't already written
should fall into place.

--
JSR $B3ED BASIC INTEGER-CONVERT ROUTINE
LDY #$ll48ll FIRST SCREEN LOCATION TO USE
TFR D,X GIVE INT-CONV RESULT TO X REG
LDA #8 PUT 8 LINES INTO ACCUMULATOR
STA <lllllll LINE COUNT INTO DIR. PAGE Ill
.. ' '

LLOOP LDA #8 PUT 8 BYTES INTO ACCUMULATOR
STA <llllllll BYTE COUNT INTO DIR. PAGE llll
TFR X,D INT-CONV RESULT BACK TOD REG
JSR BYTBIT BYTE-TQ-ASCII CONV. & DISPLAY
TFR B,A MOST SIGN. BYTE INTO A ACCUM.
JSR BYTBIT BYTE-TO-ASCII CONV. & DISPLAY
LDA #$2A PUT ASCII FOR"*" INTO A ACC.
LDB #$2ll ASCII FOR SPACE INTO B ACCUM.
STB ,Y+ DISPLAY SPACE, GET NEXT POSN.
STA 'Y+ DISPLAY STAR, GET NEXT POSN.
STA ,Y+ DISPLAY STAR, GET NEXT POSN.
STB ,Y+ DISPLAY SPACE, GET NEXT POSN.

E,YlE· T0 -NYB£3LE.
-.rr1~(5YTINT)

Dl':fl.AY
ROtmNE.
(l>tSPLY)

BLOOP LDA ,X+ GET MEMORY CONTENTS X-INDEXED
JSR BYTBIT BYTE-TO-ASCII CONV. & DISPLAY
STB ,Y+ DISPLAY SPACE, GET NEXT POSN.
DEC <00.01 DECREMENT NUMBER OF BYTES
BNE BLOOP REPEAT UNTIL ALL 8 DISPLAYED
DEC <0000 DEC. NUMBER OF DISPLAY LINES
BNE LLOOP REPEAT UNTIL ALL 8 DISPLAYED
RTS BACK TO BASIC WHEN ALL DONE

- - - - - - - - - - - - - ~ - - - - - - - - . - - - - - - - - - - - - - - - - -- - - -- - - - - - - - - - - - - - - --

BYTBIT PSHS A
LSRA
LSRA
LSRA
LSRA
JSR CONVRT
JSR DISPLY
PULS A
ANDA #$0F
JSR CONVRT
JSR DISPLY
RTS

CONVRT CMPA #$0A
BCC LETTER
ADDA #$30
RTS

LETTER ADDA #$37
RTS

DISPLY STA
RTS

'Y+

SAVE BYTE STORED IN A ACCUM.
SHIFT TO RIGHT ONE BIT

AND SHIFT ONE MORE
.... AND SHIFT ONE HORE ...
.... TIL 4 BITS ARE AT RIGHT
NYBBLE-TO-ASCII CONVERSION
DISPLAY ASCII CHAR. & UPDATE
RECOVER ORIGINAL BYTE STORED
MASK IN RIGHT-HAND NYBBLE
NYBBLE-TO-ASCII CONVERSION
DISPLAY ASCII CHAR. & UPDATE
TWO CHARS. CONV'D & DIPLAYED

COMPARE NYBBLE AGAINST $0A
IF CARRY CLEAR, A ACC. >= $0A
ELSE IS A NUMBER, SO ADD $30
CONVERSION COMPLETE; RETURN

IT IS A LETTER, SO ADD $37
CONVERSION COMPLETE; RETURN

DISPLAY ASCII, UPDATE SCREEN
DIPLAYED & UPDATED; RETURN

Now comes the time-consuming part. I want you to
translate each one of these mnemonics into the binary
opcodes and operands the computer will need to execute
the program. I'm confident this program works - there are
some anomalies, but you'll discover them soon enough -
so open your MC6809E data booklet to pages 30 through
33.

Assume that the program will be stored in memory
beginning at $3FOO. Since some of you have 16K machines
whose uppermost RAM address is $3FFF, this gives you
256 bytes of room for the program. I can tell you now that
this program will occupy less than 100 bytes, and with some
experience you'll be able to scope out program lengths like
this one. One other assumption to make is the address of
the Direct Page, which is $00; that information is provided
in your EDTASM+ manual, in the memory map appendix,
which also informs you that direct page addresses $00
through $7F are free for your use.

For the hand assembly, you'll need several sheets of lined
notebook paper, with the addresses $3FOO through $3F60
in a column down the left side. This is a good time to take a
break for a review, and also to get the paper ready.

Translating mnemonics

* lltat addressing aide is M
LLOOP?

Relative addressing.

-1 In the prograa, the
instructiton STB , Y+ appeal"S.
lltat addressing IIOde is this?

Indexed
(specifit:ally,
indexed).

addressing
zero-offset

* In the progra, the
instruction LSRA appears. lltat
addressir19 aide is this?

Il'lhere,t addressing.

* lltat i~; hand aSSNbly?

Figuring the hex (binary) code
byte by byte fro. the lll'll!aOl'liC
<source) code.

* The following inherent
instl"UCtions appear in the
prograa. Hand asSl!llble each:

* Hand asseable LSRA.

$44

* Hand asseable RTS.

S39

• The following ia.ediate
instructions appear in the
progrilll. Hand assellble each
one:

* Hand asse11ble LDY "8481.

S11 SE 14 88

* Hand assellble LDA "88.

S86 18

-t Hand asSNble LDB "21.

SC6 21

* Hand asSNble ANDA MIF.

S84 If

-1 Hand aSSf!llble ADDA "31.

S8B 31

* The direct instruction STA
(SIii! appeal"S in the Pl"Ogra.
Hand asSl!llble it.

S97 11

• The following register
instructions appear in the
Pl"09l"ilL Hand aSsetlble each
one:

-t Hand ISSiellble TFR D, X.

S1F 11

Learning the 6e/::fJ 99

JSR,LDY,TFR,LDA,STA

* Hanel asSNble TFR B,A.

SlF 98

* Hanel assellble PSHS A.

$34 82

* Hanel asseable PU..S A.

t35 82

* The follONing indexed
instructions 1ppear in the
progr-. Hanel as!il!llble Heh
one:

* Hanel as!il!llble STB ,Y+

EAi

* Hand as5Nble STA , Y+

tA7 Al

* Hanel as!il!llble LDA ,X+

SA688

• The following i...idiate
instructions do not appear in
the progru. Hana asSl!llble each
one.

* Hanel 1Slil!llble ADDD HC3C3

SC3 C3 C3

* Hanel aSSHble ANOCC ltAF

S1C AF

• Hanel as!iellble CMPX "85FF

SSC 85 FF

* Hanel asse11ble OIPA WF

$81 FF

* Hanel asse11ble EDRA "20

$8828

* Hanel as!IE!llble lDD ffBBM

$CC BB AA

• Hanel asse11ble ORB ffAC

* The following extended
instructions do not appear in
the prograa. Hanel asSNble eadl
one.

• Hanel asSNble ADDA tt•

SBB 11 II

100 Lesson 11

You should have your notebook paper ready, and your
MC6809E data booklet open to page 30.

Start with the first instruction, JSR $83ED. Find JSR on
page 30. This is an extended addressing mode; the opcode
you should find is $8D. On your paper, next to address
$3F00, write $8D. At address $3F01, write the first byte of
the operand, which is $83. At address $3F02, write the
second byte, $ED. You have hand-assembled the first
instruction, JSR $83ED, into three binary bytes,
$8D 83 ED.

Your pencil should be poised above address $3F03, ready
to assemble the instruction LDY immediate #$0480. Find
mnemonic LD on page 30, and follow in the second column
until you find LDY. This is one of a limited number oftwo
byte opcodes, and its hex representation is $10 BE. The
6809 is a newcomer, based on the 6800 microprocessor.
Opcodes like LDY are additions to the original 6800
instructions; where there's no room to fit an opcode in the
binary instruction set, certain bytes are set aside as
doorways into further instructions. The hex codes $10 and
$11 serve that purpose; later on, check page 29 for a list of
these.

Back to the program. The opcode for LDY, then, is $10 BE.
So across from address $3F03, write $10, and across from
address $3F04, write $BE. Since this is an immediate
instruction, the next two bytes are the operand. Next to
addresses $3F05 and $3F06, 'Yrite the bytes $04 and $80,
respectively. You have now assembled the second program
command.

Those two were easy. The next instruction is TFR D,X
(transfer D to X), which you can find on page 31. You'll find
this in the immediate column, although that's stretching
the point. The opcode is $1 F, so write that next to address
$3F07. The operand is D,X. Turn to page 34, where you'll
find a block labeled "Transfer/Exchange Post Byte". This
byte is divided into two four-bit blocks, that is, into two
nybbles. The left-hand nybble is the source register, and
the right-hand nybble is the destination register. The
binary information below names the registers. Your
program is transferring D to X. The source register is D, the
destination register is X. Checking the table, you find that
D is value 0000 and X is value 0001. The combined byte is
therefore 0000 0001, or hex $01. Across from memory
location $3F08, write $01. The opcode and operand for
TFR D,X assemble to $1 F 01.

Next. LDA immediate with 8. Back on page 30, under the
LD instruction, you can find LDA. Since this is an
immediate instruction, the opcode is $86. Next to address
$3F09, write $86. The instruction is immediate, so the data
is 8. Write $08 across from address $3F0A. Things are
moving now.

The instruction is STA Direct Page <0001. STA is found
on page 31 under the instruction ST. This is a direct

~ D\TA

!JfC:,6 ?.,,p ~
11"> (

~~-g,___ <_
DY z

1-7--~---=--,~--i,(Yf-&::) s
------~---)

'i
!-------------~

WD<,E:h DICTA ,_
~FCO E-1? ! 7FD 1 g~
~fO 2--- EP
3F-03 \C
3-FO'i- ~E -
3FOS'

~i (~Fob
~f'07 IFl. TFR

2!:0~ 01:, !),)(

l ---

-------~s
s--

~-S""

AWJ<E.SS P.,7"A -5 3,f·C>O __Js£___
!,FO I -~
!>FD Z. ED
~fD ~ ID

~FO 'f ----~ ~OS"-- - O'f

3F_""' 80
3F07 IF
3F08 0/

3F0'9' 8'- 5 LDA.
~_Q o& '#:f,C/:',

5;;5
_ __:, _______ :>

I\/ - -
3!'09 86
3FOA 08
~l"Oe. '17 }.:: 3P'OC.. 01

""__/'v~~ J

A'-../',,/"

3fll IF --rFfi:.
3-FIZ

3FI~ '
'51"14 ,.,,.?
u.. 1:
~-~--J

addressing mode, so the operand under the direct heading
is $97. Write $97 across from address $3F0B. In a direct
instruction, the page is known, so only the least-significant
byte is used as the operand. The address is $0001 on page
$00, so the least-significant byte is $01. That's the
operand; write $01 next to address $3F0C.

The next two instructions are virtually identical. LDA
immediate 8 is again $86 08. Write $86 next to $3F0D, and
$08 next to $3FOE. STA Direct Page <0000 is also very
similar, assembling to $97 00. Write $97 next to $3F0F,
and write $00 next to $3F10. The only thing to keep in mind
is the label LLOOP, an abbreviation for Line Loop. Your
program needs to come back to that address $3FOD each
time it has to display a new line, so mark that label down on
the bottom of the last page of your papers: write LLOOP,
and across from it write the address $3F0D.

You're only 16 bytes into the program. I've already told you
it will run nearly 100 bytes, so you're probably beginning to
conclude that this assembly language stuff isn't for you.
Hang on! The editor/assembler will do this all for you in
seconds, but I'm convinced it won't do you any good to
assemble everything by machine. There are two
advantages to hand assembly: first, by the time you've hand
assembled a program, you know it intimately. Second, if
you're ever in a bind and need a quick diagnostic program,
POKEing values into place may be the on_ly solution. You
have to be able to assemble a program from the data
booklet, or you're wasting your time learning about this
powerful 6809 processor.

Back to work. Transfer X to D - TFR X,D. The opcode
you've used. Next to address $3F11 write $1 F, the transfer
opcode. This time the source register is X and the
destination register is D. If you've forgotten, turn to page
34. X register is binary 0001, D register is binary 0000. The
composite byte made from these two nybbles is 0001 0000,
or hexadecimal $1 o. That's the operand. Next to address
$3F12, write $10.

The next instruction is JSR BYTBIT. You've used the
opcode for Jump to Subroutine (JSR) - that's SBD. Write
SBD next to address $3F1 3. But how do you deal with the
operand? You know it's an extended operand, which means
it's two bytes. The subroutine BYTBIT is within the
program you're writing, but you don't know its address yet.
What you do now is leave two blank spaces at addresses
$3F14 and $3F15. You'll fill them in later when you know
what they are. There are two pass-throughs to any
assembly process, and this is the first pass.

The next free address is $3F16. The command is transfer,
$1 F. Write that next to $3F16. The transfer is from B to A.
Again, turn to page 34. The source register is B, binary
nybble 1001; the destination register is A, binary nybble
1000. The combined byte is 10011000, or hex $98. Next to

Direct page

* Hand asseable CMPB SFFFF

$Fl FF FF

* Hand assetlble EORB $11111

$F8 8111

* Hand aSSNble JNP SB3ED

S7E BJ ED

* Hind HSNble LDX $7FFF

$BE 7F FF

* Hand asseable LDY $7FFF

t11 BE 7F FF

* Hind a55ellble LSR $1111

$74 11 81

* Hand asseltble STD MDDC

$FD ID DC

* The follONing inherent
instructions do not appear in
the Pl"O!P"& Hand asSNble each
one.

* Hand asseable ASHA

$47

* Hand asSl!llble Ct.RB

$5F

* Hand asse11ble CIJIA

$43

* Hand asseable IO

t5C

* Hand asSNble LSLB

$58

* Hand asSl!llble NESA

$48

* Hand asSl!llble RORA

$46

* Hand a!;SNble RTS

$39

* The follONing register
instructions do not appear 1n
the prograa. Hand assable each
one.

* Hand asSNble Pll.S A,CC,X, Y

$35 35

address $3F1 7, write $98.

Learning the /K:J9 101

STB, Postbytes

* Hand asseable
A,B, X, Y,CCtU,DP, PC

$J6 FF

* Hand assellble TFR DP,B

•1F B9

PSHS

* The foll01ting indexed
instructions do not appear in
the progra. Hand asseable each
one.

* Hand asseable OIPA ,Y

SA1 A4

* Hand asseable CMPA ,Y+

SA1 Al

* Hand asseable CMPA S, Y

SA1 25

* Hand assellble CMPA S7F,Y

SAl A8 7F

* Hand assellble CMPA $1234,Y

SA1 A9 12 34

* lihat does CMPA , Y+ •an?

Co.pare A accU11Ulator to IEIIOr'Y
indexed by the Y register, Mith
no offset, and aut0111tically
i nc:r eae"t Y.

* What is hand assellbly?

Figuring the hex (binary) code
byte by byte fl"1:a the llll'l!IIOnic
(source) code.

102 Lesson 11

Another JSR to BYTBIT is next. Write the opcode for JSR,
hex $BO, next to address $3F18, and leave blank spaces at
$3F19 and $3F1 A. Again, when you find out where the
subroutine BYTBIT is, you'll fill those in.

ALDA immediate is next. That instruction's been used
before; the opcode is $86, the operand here is an immediate
value, $2A. Write $86 and 2A next to addresses $3F1 Band
$3F1 C, respectively.

LDB is a similar opcode to LDA. You'll find it right below;
LDB immediate is $C6. Write $C6 next to address $3F1 D,
and write its immediate operand, $20, next to address
$3F1 E.

On to STB ,Y+. Find the ST instructioon on page 31, and
locate STB in the indexed addressing mode. The opcode is
$E7. Next to address $3F1 F, write $E7. In the column
labeled "number of bytes", it says "2+", meaning this
instruction requires a total of 2 or more bytes to complete.
You have to determine how many and what they mean.
Hand-assembling indexed addressing is the -'-"ickiest, but
zero-offset indexed isn't bad. That's what you have here.

Turn to page 33. Find the table entitled "Indexed
Addressing Post byte Register Bit Assignments". This one
byte contains a bucketful of information. It identifies the
register, what kind of addressing mode is used with that
register, and whether the addressing is non-indirect or
indirect. I haven't talked about indirect addressing, so
don't worry about that yet. In the right-hand column of this
table is a description of each addressing mode; "EA"
means effective address, that is, the address the
instruction will calculate and use. The mode used in this
instruction is auto-increment, zero-offset. That's the
second mode down. The definition of "RR" is shown below
the table. Your instruction uses the Y register, so RR is O 1.
Plug 01 into the binary digits shown, and the resulting
number is 10100000. The postbyte for the Y register in
zero-offset indexed, auto-increment mode is hex $AO.
There's your operand. Next to address $3F20, write $AO.

Between now and the next session, use your MC6809E
data booklet to complete the rest of the program. If the
process is still unclear, review the session up to this point.
Don't cheat on me, now. When you can do this hand
assembly without your hand held by me, then you're ready
to go on. Talk to you then.

•
Hello again. I hope you have been successful in your hand
assembly of the remainder of the program. Here's a
summary of what you should have been doing ...

The next three instructions are easy. STA indexed is $A7.
Write $A7 next to address $3F21. The operand is zero
offset indexed; auto-increment Y register is the same as
before. Across from address $3F22, write $AO. The
following instruction is the same, $A7 AO. Write $A7 AO
next to $3F23 and $3F24, respectively. Finally, STB ,Y+
comes around again. You know that's $E7 AO, so write
$E7 AO next to $3F25 and $3F26 in turn.

Since you can use the table on page 33, the next instruction
should strike no fear. It's LOA ,X+. Load A indexed, from
page 30, is $A6. Write $A6 next to address $3F27. Now
glance at the chart on page 33. This is still auto-increment
indexed, which is the second line of the table. The register
is X, meaning the value for "RR" is 00. Plug 00 into the
blank, and the binary byte becomes 1 000 0000. That's hex
$80, and that's your operand. Next to address $3F28, write
$80. And be sure to note the label BLOOP here at address
$3F27. You've got to get back there later.

There's nothing really new in the rest of the main program,
just tedious hand assembly. The next instruction is a JSR.
That's hex code $8D. Write $8D next to address $3F29,
and leave the next two addresses blank. Still don't know
where the subroutine will be.

STB ,Y+ is next, and you can steal that information from
earlier. STB indexed is $E7; write that at address $3F2C.
Auto-increment zero-offset indexed Y is $AO; write that at
address $3F2D.

The decrement instruction is next. Find that on page 30.
This is decrement a direct page memory location you're
dealing with, opcode SOA. Next to $3F2E write $0A. The
location to decrement is $00, so that's your operand. Write
$00 next to address $3F2F.

Learning the

Hand asseably is tiresoae and
troublesme. But it teaches
you, giving you a level of
intillilCy with the •achine that
you can't achieve with lll'll!IIOnics
alone. If this kind of detail
bothers you, consider that
understanding SOlll!Ol'le else's
progru - without recourse to
coaented source code -- can
only be achieved by
disaSSNbling and exuining the
binary inforution. Knowing it
both Nays is your key to
c,rograaing versatility.

* What is hand asseably?

Figuring the hex (binary) code
byte by byte froa the llnl!IIOniC

(source) code.

* lillat are the bytes in an
indexed instruction?

The opcode, the postbyte, and
additional bytes of OJJl!l"lnd if
necessary.

* Hand asll!llble UlA , X+

* lllat is UlA ,X+ in binary?

181N111 1-
* Hand asSl!llble UlA •1234,X

$A6 89 12 34

60CY9 103

Conditional branches

* What indexed addressing axle
is LOO $1234,X?

lfrbit constant-offset indexed.

* If the label BLOOP is found at
address SJF27, hand assaible
this instruction, found at
dddress SJFJI: It£ BLOOP

* What addressing axle is this?

Relative addressing.

* Relative addressing is
relative to lllhat'

The progra■ counter (PC).

* In the asSNbly of It£ BLOOP
,$26 FS), lllhat does the value
SF5 signify?

An offset re:ative to the
orograa ccunter.

* What is the offset in binary?

In binary, 11110101

* What is the offset
deciaal?

In deci■al, -11.

* What ■akes SFS negative?

in

The fact that in SFS l11110101),
the left■ost bit is a one.

* The following exercises are
hand disasse■bly, that is, the
translation frca hexadeciaal (or
binary) code into ■ne■onic code.
This is done with unknown
orograas for purooses of
exa11ining the operation of the
oroqra■• Use the chart in the
liC6809E data booklet on pages 28
and 29 for help. DisasSNble,
describe and give the nme■onic

for each of the foll01i1ing groups
of bytes.

104 Lesson 12

Finally a branch instruction. Branch on Not Equal can be
found on page 32. Find the table at the bottom right labeled
"Simple Conditional Branches". Under "false", second
mnemonic down, is BNE. The opcode shown is $26. So
next to address $3F30, write $26. At this point in the
program, the Program Counter is pointing to the next
instruction in line after this one ... meaning the Program
Counter is pointing to address $3F32. Now locate your
label BLOOP. This is where the branch is going. If$3F32 is
relative position 00, count backwards to the address
BLOOP, which is $3F27. FF, FE; FD, FC; FB, FA;
F9, Fa, F7; F6, F5. $F5 is the position of BLOOP relative
to the Program Counter. That makes $F5 your operand for
the relative branch BNE. Next to address $3F31. then,
write $F5.

Decrement direct page you know already. The opcode is
$QA, and should be written next to address $3F32. The
operand for direct page $00, least significant byte $01, is
$01. Next to address $3F33, write $01.

Another relative branch follows. This is BNE again, opcode
$26. Write that dovvn next to address $3F34. Now comes
the' counting backwards from the Program Counter, which
is pointing to $3F36. You've got to get all the way back to
LLOOP at address $3FOD. If you subtract it instead of
counting backwards, you'll get the value $D7. I won't put
you through it this time. Just write your relative branch
operand $D7 at address $3F35.

All that remains of the main program now is the return from
subroutine. Find that on page 31 if you need to. It's opcode
$39. Next to address $3F36, write $39. The main program
is complete. Only the subroutines remain; the subroutine
BYTBIT is coming up next, and its address is $3F37.

The subroutine BYTBIT begins at $3F37, meaning your
three blank operands earlier in the program were filled with
that address. The first action of the subroutine was to push
the A Accumulator on the stack. $34 is the opcode, and
using the push/pull order chart, you found that $02 is the
operand. Four logical shift right A accumulator commands
followed; each of these is $44.

Two more subroutine calls follow, $8D being the opcode for
jump to subroutine. The addresses, which you had to
calculate on your second assembly pass, are respectively
$3F4E and $3F58.

Pull accumulator is $35 02, the operand calculated in the
same manner as for the push command. And A immediate
with $OF is represented $84 OF.

A familiar pair of subroutine ca!ls follows - $8D 3F 4E

and $8D 3F 58 - and the convert and display subroutine
finishes with the return from subroutine, $39.

The short CONVRT subroutine compares A immediate
with $0A - that's $81 OA. It branches on carry clear (or

BHS ... branch on high or same, meaning greater or equal)
to the label LETTER. You calculated that relative branch
to be $03, giving an instruction of $24 03. Add A
immediate with $30 is $88 30, and return from subroutine
is again $39.

At the label LETTER, add A immediate with $37 is
$8B 37, followed by RTS, $39.

Finally, the short display and update routine is made up of
STA , Y+ ... store A at Y, zero-offset, auto-increment. That
pattern is familiar enough to copy the information from
earlier in the program - $A7 AO. And, at last, the final
return from subroutine, $39.

Your program should run from address $3FOO to $3FSA, a
total of 91 bytes. Look in your documentation, and see if
your hand-assembled hexadecimal code agrees with
mine:

3F00 ** BO 83 ED 10 8E 04 80 lF
3F08 ** 01 86 08 97 01 86 08 97
3Fl0 ** 00 IF 10 BD 3F 37 IF 98
3Fl8 ** BD 3F 37 86 2A C6 20 El
3F20 ** A0 A7 A0 A7 A0 E7 A0 A6
3F28 ** 80 BD 3F 37 E7 A0 0A 00
3F30 ** 26 F5 0A 01 26 D7 39 34
3F38 ** 02 44 44 44 44 BD 3F 4E
3F40 ** 8D 3F 58 35 02 84 0F BD
3F48 ** 3F 4E BD 3F 58 39 81 0A
3F50 ** 24 03 88 30 39 88 37 39
3F58 ** A? A0 39

Time to get it running. I've got this batch of hexadecimal
code prepared for you as a series of BASIC DATA
statements.

Program #18, a BASIC program. Turn on the power of your
Extended Color BASIC computer. When the cursor appears,
type CLOAD and press ENTER. The computer will search (S)
and find (F). When the cursor reappears, LIST this program. If
the program is not similar to the listing, or if an 1/0 error occurs,
rewind to the start of the program and try again. For severe
loading problems, see the Appendix.

10 DATA BD,83,ED, 10,8E,04,80,1F
15 DATA 01,86,08,97,01,86,08,97
20 DATA 00, lF, 10,BD,3F,37, lF,98
25 DATA BD,3F,37,86,2A,C6,20,E7
30 DATA A0,A7,A0,A7,A0,E7,A0,A6
35 DATA 80,BD,3F,37,E7,A0,0A,00
40 DATA 26.F5,0A,01,26,D7,39,34
45 DATA 02,44,44,44,44,BD,3F,4E
50 DATA BD,3F,58,35,02,84,0F.BD
55 DATA 3F,4E,BD,3F,58,39,81,0A
60 DATA 24,03,8B,30,39,8B,37,39
65 DATA A7,A0,39
70 FORX=&H3F00 TO &H3F5A
75 READA$:A=VAL("&H"+A$)
80 POKEX,A:NEXT:DEFUSR0=&H3F00
85 CLS:PRINT"TEST ADDRESS 3F00:"
90 M=USR0(&H3F00)

Leaming the

BHS, labels

• Disasseable $BD B3 ED

$81) is Jllllp to subl"OUtine,
extended addressing IIOde;
therefore, $BD B3 ED is JSR
$B3ED.

• Disassatble $86 6A

S86 is load A attU11Ulator
iaediate; therefore, S86 6A is
I.DA "6A,

• DisasSNble $44

$44 is an inherent instruction,
logical shift right A
accuaulator: LSRA.

* DisasSNble $35 02

S35 is pull from the hardtilare
stack; $12 is binary NNN10,
indicating the A attUIIUlator.
Therefore, the instruction is
Pll.S A,

• Disasseable S1F 01

$1F is transfer from register to
register; 81 is binary 0100
8N1. The transfer-fl"OIII
register is D <NN> and the
transfer-to register is X
(BH. Therefore the
instruction is TFR D,X.

• Disassemble $10 8E 0't 81

$18 8E is a tNO-byte opcode for
load Y register illlli!diate; the Y
register is 16 bits, so $04 80
is the 16-bit operand.
Therefore, the instruction is
LDY "8481.

• DisasSNble $81 M

$81 is coapare A register
iaediate; therefore the
instruction is 01PA "8A.

* Disassetlble $8A 01

$IA is the opcode for decreaent
EIIOI")' direct; therefore the
instruction is DEC (SN1, where
~ is the direct page register.

60CYt 105

Reverse video

* Disassable $86 6A C6 68

$86 is load A accu■ulator
i■■ediate, so $86 6A is LDA
"6A. That ■eans $C6 68 ■ust be
another instruction. $C6 is
load B aCCU11Ulator illllediate, so
$C6 68 is LDB "61. You can't
fool ■e.

* Disasse■ble SA7 Al

SA7 is store A accu■ulator

indexed; Al is binary 10108M.
Referring to the chart, the only
postbyte that ends in 0088 is
,R+. 1RR0 applied to 1818 makes
RR::01. 01 is the Y regist,r.
Therefore, SA7 Al is STA I Y+.

* Disasse■ble SA6 80

SA6 is load A accu■ulator
indexed. $88 is 100N000. This
is again ,R+ indexed ■ode, with
1RR0 = 181 RR = 00 = X
register. Therefore, SA6 80 is
LDA , X+.

* What does &H ■ean in BASIC?

Hexadeci■al.

* If AS=•BD", Khat is the value
of A after this state■ent:
~VAL (• &H" +A$ l?

A equals deci■al 189 !hex SBD).

* What
mean?

does DEFUSR8'=&H3F00

Define the BASIC user entry
point nu■ber 0 to be at S3F00.

* HoN ■any characters (letters,
nu■bers and syllbols) does the
Color Collputer display using
PRINT?

96.

* HoN ■any characters is the
Color Co■puter capable of
displaying using POKE?

128.

106 Lesson 12

So there it is. A reasonably painful first hand-assembly,
resolved into a mere 12 lines of BASIC DATA statements,
POKEd in place and used as a subroutine via the USR
command. In this test program, the address transferred for
display is $3F00 - so you can look at the machine language
program itself. Will it work? No, it won't. That is, not exactly
as you expect. RUN the program.

Well, you are looking at your own hand-assembly, but
something's amiss. The letters are okay, but the numbers
are shown in reverse video.

A peculiarity like this is one of my reasons for preparing
these lessons with the Color Computer in mind. If you've
been using your Color Computer for a while, you know that
upper case characters, plus numbers and symbols, are
presented normally, but that lowercase characters are
represented by reverse video. What you're running into
here is the video display generator, the VDG. There's a
software shuffle done by BASIC to accept your ASCII
information and translate it into VDG codes.

It's bit time again. The video display generator contains
only 64 letters, numbers and symbols, all standard
uppercase characters. No lowercase or control characters
were included in the design and manufacture of this part.
To display any character in this set, then, only bits 0
through 5 in a byte are used. However, bits 6 and 7 are
connected to the VDG. Bit 7 turns on the low-resolution
color graphics, which BASIC calls CHR${128) through
CHR$(255) - hexadecimal $80 through $FF. Bit 6 is the
tricky one. It is used to turn on the inverse-video mode for
the alphanumeric characters. When bit 6 is a one, normal
characters are seen; when bit 6 is a zero, reverse characters
are displayed.

Think back to my example of POKEing vs. PRINTing the
screen, way back in the first session. PRINTing the
characters resulted in their appearance in normal ASCII
order - control characters from $00 to $1 F were not
displayed, $20 through $3F were numbers and symbols,
$40 through $SF was uppercase, and $60 through $7F was
reverse-video-style lowercase.

But POKEing the values to the screen resulted in
something different. Values $00 through $1 F revealed
reverse-video-style lowercase, $20 through $3F displayed
a not-before-seen group of reverse-video numbers and
symbols, $40 through $SF showed the uppercase
characters in their proper ASCII position, and $60 through
$7F displayed the normal set of numbers and symbols.

The reasons should begin to come clear. If bit 7 is zero, then
alphanumerics are displayed instead of graphics. If bit 6 is
zero, all characters are displayed in reverse video mode. In
other words, the hardware of the Color Computer
understands that all characters from 00 00 0000 to
00 11 1111 - that is, from hex $00 to $3F - are reverse
characters. Conversely, if bit 6 is one, all characters are

A5CI I

Al

+-+
I

-i---
i

-l--
WAA.

$ZA" C0/0 /0/0

.:$6A.= <f/'10 16/0
"7,,'-\

~3z_=oo11 0010

4,7e=df1t OD/()
1'-"t

displayed in normal video mode. The Color Computer
hardware then understands that all characters from
01 00 ooooto01 11 1111-thatis,fromhex$40to$7F
- are normal characters.

The BASIC language works with ASCII, so this hardware
business is a pain. BASIC is forced to translate ASCII to
hardware and hardware to ASCII every time it does a
screen display! So whenever you write software in machine
language, you will also have to provide some sort of
translation. Here's a summary:

If you want: You have to use·

ASCII $00 to $IF, control functions Control software
without display.

ASCII $2ll to $3F, numbers and symbols Hardware $60 to $7F

ASCII $40 to $5F, normal uppercase Hardware $40 to $5F
(no change).

ASCII $60 to $7F, normal lowercase Hardware $00 to $IF

In normal display (such as BASIC), hardware values $20 to
$3F are not used; these are the reverse numbers and
symbols. The program you just created, in attempting to
use legitimate ASCII values, used the hardware values for
reverse characters. That accounts for the funky screen
display.

Now you have enough information to get out of that
dilemma. Turn back to your hand-assembled listing and
locate the spots where a display character is established.
You'll find address $3F1 C is supposed to be a star, hex $2A.
Glance at your documentation where the summary I just
gave you is printed. If you want to display $2A, then, you
actually need to use the hardware value $6A. Put that in
place. Type POKE &H3FlC,&H6A and hit <ENTER>.
That's POKE &H3F1C,&H6A <ENTER>. That should
give you a proper star; try it. Type GOTO85 and hit
<ENTER>.

The stars are okay now. The spaces are next. A space is $20,
which means the hardware req:.iires a $60. In your hand
assembly, you'll find that space at address $3F1 E. Change
it now. Type POKE &H3FlE,&H60 and hit <ENTER>.
That's POKE &H3F1E,&H60 <ENTER>. The spaces
should be cleared up. Type GOTO85 and hit
<ENTER>.
Only the reverse numbers remain to cure. This happened in
the ASCII conversion subroutine that began at address
$3F4E. Find that subroutine. At address $3F52, an offset of
$30 was added to convert from the number O through 9 to
ASCII CHARACTERS "O" through "9". Hex values for
these are $30 through $39, meaning the hardware needs

ASCII to VDG

* What does VD6 aean?

Video display generator.

* How uny unique characters is
the VD6 capable of displaying?

64.

* Illy can the VD6 display 64
characters, Nhereas the Color
Coaputer can display 128?

Because the Color Calputer
displays 64 l'IOl"llal characters
and 64 ~verse-video
characters.

* lllat do the ASCII codes fro11
SN to S1F represent?

Control codes !carriage return,
backs~, tab, etc.)

* What do tbe ASCII codes fro11
S28 to $3F represent?

Nuabers, S}'llbols and
punctuation.

* Ylat do the ASCII codes fro11
S4I to $SF represent?

Uppercase (capital) letters.

* Ylat do the ASCII codes from
S6I to S7F represent'

LONe!"Case (511all) letters.

* lllat do VD6 codes $08 to SlF
represent?

LONel"Case (reverse> lettl'l"S.

* lllat do VD6 codes S28 to S3F
represent?

Reverse-video numiers, s}'llbols
and punctuation.

* lllat do VD6 codes S4I to SSF
represent?

Uppercase letters.

$70 through $79 to present the numbers correctly. So the

Learning the 6f!l::JJ 107

Program #19

t INt do YD& codN t6I to t7F
represent?

Nubers, syabols and
punctuation.

* To create the display •A1D1
ff SP in ASCII, Nhat ten bytes
!itOUld be used?

S41 38 44 37 29 2A 2A 21 38 45

* To create the display •All)7
ff SP in \JD6 tert1S, Nhat ten
bytes NOUld be used?

S41784477686A 6A 68 78 45

108 Lesson 12

offset at address S3F53 has to be changed from a proper
ASCII $30 to the hardware's demand of$70. Do it. POKE
&H3F53,&H70 and hit <ENTER>. That's POKE
&H3F53,&H70 <ENTER>. That should cure the
numbers. Type GOTO85 and hit <ENTER>.

That did it. The address and data display is complete. That
video hardware shuffle is a little tricky, so if it's not clear to
you at this point, please review from the start of this
session. You can break now. Otherwise, I have a program
for you to load.

Program #19, an EDTASM+ program. Insert the EDTASM+
cartridge, and turn on the power to your computer. When the
cursor appears, type L and press ENTER. The computer will
search (S) and find (F). When the cursor reappears, display
the program. Type P#: • and press ENTER. If the right-hand
side of the program is not similar to the listing, or if an 1/0 error
occurs, rewind to the program's start and try again. For severe
loading problems, see the Appendix.

B3EO 00100 INTCNV EQU $B3ED
0000 00110 BYTES EQU $0000
0001 00120 LINES EQU $0001

00130 * 3F00 00140 ORG $3F00
00150 *

3F00 BO B3EO 00160 JSR INTCNV
3F03 108E 0480 00170 LDY #$0480
3F07 1F 01 00180 TFR O,X
3F09 86 08 001'30 LOA #8
3F0B 97 01 00200 STA <LINES
3F00 86 08 00210 LLOOP LOA #8
3F0F 97 00 00220 STA <BYTES
3F11 1F 10 00230 TFR X, 0
3F13 BD 3F37 00240 JSR BYTBIT
3F16 lF 98 00250 TFR B,A
3F18 BO 3F37 00260 JSR BYTBIT
3F1B 86 6A 00270 LOA #$6A
3F10 C6 60 00280 LDB #$60
3F1F E7 A0 00290 STB • Y+
3F21 A7 A0 00300 STA 'Y+
3F23 A7 A0 00310 STA ,Y+
3F25 E7 A0 00320 STB , Y+
3F27 A6 80 00330 BLOOP LDA • X+
3F29 BD 3F37 00340 JSR BYTBIT
3F2C E7 A0 00350 STB 'Y+
3F2E 0A 00 00360 DEC <BYTES
3F30 26 F5 00370 BNE BLOOP
3F32 0A 01 00380 DEC <LINES
3F34 26 D7 00390 BNE LLOOP
3F36 39 00400 RTS

00410 * 3F37 34 02 00420 BYTBIT PSHS A
3F39 44 00430 LSRA
3F3A 44 00440 LSRA
3F3B 44 00450 LSRA
3F3C 44 00460 LSRA
3F3D BO 3F4E 00470 JSR CONVRT
3F40 BD 3F58 00480 JSR DISPLY
3F43 35 02 00490 PULS A
3F45 84 0F 00500 ANDA #$0F
3F47 BD 3F4E 00510 JSR CONVRT
3F4A BD 3F58 00520 JSR DISPLY
3F4D 39 00530 RTS

00540 *
3F4E 81 0A 00550 CONVRT CMPA #$0A
3F50 24 03 00560 BCC LETTER
3F52 BB 70 00570 ADDA #$70
3F54 39 00580 RTS
3F55 BB 37 00590 LETTER ADDA #$37
3F57 39 00600 RTS
3F58 A7 A0 00620 DISPLY STA 'Y+
3F5A 39 00630 RTS

0000 00640 END
00000 TOTAL ERRORS
BLOOP 3F27
BYTBIT 3F37
BYTES 0000
CONVRT 3F4E
DrBPLY 3F58
INTCNV B3ED
LETTER 3F55
LlNES 0001
LLOOP 3F0D

Here's the complete program you just created. You have
the entire mnemonic listing available, which the assembler
can convert to machine language very quickly.

You'll assemble this, go right into BASIC, and load the next
program on the tape. Here's how it goes. Type A/IM/ AO
and hit <ENTER>. The listing will scroll by, and the
program will be assembled at $3FOO. When the star prompt
and cursor return, quit the editor/assembler: Type Q
<ENTER>. In a fe.w seconds, the Extended Color BASIC
message will appear. You know the program is at $3 FOO, so
protect memory.

If you've never protected memory before, the purpose is to
tell BASIC that a certain area is off-limits. BASIC will
make no attempt to use protected memory, except through
PEEK, POKE andDM statements. You can refer to your
BASIC manual for details. Type CLEAR 200,&H3F00 and
hit <ENTER>. That's CLEAR 200,&H3F00. Now you
can load the next program.

Program #20, a BASIC program. Turn on the power of your
Extended Color BASIC computer. When the cursor appears,
type CLOAD and press ENTER. The computer will search (S)
and find (F). When the cursor reappears, LIST this program. If
the program is not similar to the listing, or if an 1/0 error occurs,
rewind to the start of the program and try again. For sever load
ing problems, see the Appendix.

10 DEFUSR0=&H3F00
20 CLS
30 PRINT@0, 11

": PRINT(!!0. 11
";

40 INPUT"ADDRESS";A$
50 A=VAL("&H"+A$)
60 IFA}32767THENA=A-65536
70 M=USR<A)
80 GOTO30

Learning the

In-memory assembly

* What is the process of
translating lffll!IIOnic (source)

code into binary (obJectl code
called?

Asseably.

* What is the process of
translating binary (obJect) code
into llnNOrlic (source) code
called?

* lil,at is the ter11 for binary
digit?

Bit.

* What is the t£11"11 for eight
binary digits (bits}?

A byte.

* What is the t£11"11 for four
binary digits?

A nybble (also spelled nibble).

* What n1111ber systea represents
binary digits?

The bi nary systea.

* What mHlber systea organizes
the binary nllllbers into
convenient size?

The hexadeci11al systa.

60C:ft 109

Summary: Architecture

* liltat does ASCII aean?

The AErican Standard Code for
InfOl"llation Intert'hange.

* liltat are the ASCII codes?

Control codes; nllllbers, syabols,
and purrtution; and upper and
lONerease letters.

* What is the tera for a
c:oaputer instruction?

An opcode.

* liltat is the tera for an
opcode's data?

An operand.

* liltat is
design and
processor?

the tertt for the
purpose of a

Its architecture.

* What is the architecture of
the 6809 processor?

Accuaulators A and B; index
registers X and Y; stack
pointers S and U; direct page
register DP; condition code
register CC; progrilll counter PC;
65,536 bytes of 11e110ry.

* What is an addressing IIOde?

The Nay in Nhich a uchine
language prograt1 gets its
inforaation.

* lllat are the 6809's addressing
IIOdes?

Inherent, register, iaaediate,
extended, direct, and indexed.

110 Lesson 12

If you LIST this program, you can see that it is simply a
little BASIC input routine which subsequently calls your
machine-language subroutine. Since the value transferred
is an integer, the range is -32768 to +32767. To get at
addresses higher than 32767 (that's hex $7FFF), there has
to be a conversion. Line 60 is a little trick that's good to
know. So assuming the assembly went well, then your
program should reside at $3FOO right now. RUN the
program.

Enter any address from $0000 to $FFFF. There's memory,
64 bytes of it. Play around with this program for a little bit,
and then come back to this tape for a summary.

Please examine a number of areas of memory using this BASIC
program. When you are confident of the significance and appli
cation of this process, return to the tape.

This course is halfway now. If you're a newcomer to
assembly language, you're probably just a little
overwhelmed. The jargon and the concepts take do some
time to settle. On the other hand, if you're an experienced
programmer here just to learn the specifics of the 6809,
then I know you're itching to get on with it. In either case, I
would like you to stay with me for a summary of the main
points from these past twelve sessions. A fR!f{l"j

Assembly language is not BASIC, but forms a perfect 17 ~
companion to BASIC, as you have seen with the programs ~~ J
so far. It is capable of easy access to functions not easily ~
available via BASIC, such as reverse numbers anill~~
symbols, and is fast and flexible. From assembly language . v~ \
is built the language of BASIC itself. , ~

Assembly language represents computer instructions.
Computer instructions are actually electronic signal
patterns best represented by the binary number system.
Binary numbers are difficult to recognize, so binary
patterns are visually organized by using a single symbol for
each group of four bits. This is the purpose of the
hexadecimal numbering system 1 through 9 and A through
F. Logical arrangements and patterns of binary digits were
used in the creation of the American Standard Code for
Information Interchange, ASCII.

A processor can interpret binary patterns as either
instructions or data. The instruction pattern is known as
the opcode, and the data pattern is called the operand. All
binary patterns in a program are found in memory, and it is
only the order and context which differentiate opcodes
from operands.

Each processor has a unique design and purpose. This

design and purpose is known as the processor's
architecture. The architecture of the 6809 is particularly
strong in the way it accesses information. The architecture
of the 6809 consists of a program counter PC, two
arithmetic-performing accumulators A and B, two index
registers X and Y, two stack pointers Sand U, a condition
code register CC (also called the flags), and a direct page
register DP.

To manipulate these registers through a program, the
binary code must be presented to the instruction decoder.
Because binary and hexadecimal representations are
machine-level instructions with little value for the human
programmer, instruction names are used to ease the
programming process. They are called mnemonics. A
program written in mnemonics cannot be executed; only
the machine code the mnemonics represent can be
executed. The process of translating mnemonics into
machine code is called assembly. The program that
permits editing mnemonic code, also called source code, is
an editor. The program that translates this source code into
machine code, also called object code, is an assembler.
Usually these are combined in a single program known as
an editor/assember; this series uses the program
EDTASM+ as its editor/assembler.

A machine language program must access information. The
way it finds this information in memory is called an
addressing mode. There are several major addressing
modes in the 6809 processor. Inherent addressing has the
data implied as part of the opcode itself. Register
addressing has the data available in one of the 6809
registers. Immediate addressing presents the data in the
program memory immediately following the opcode.
Extended addressing presents a complete 16-bit memory
address at which the data can be found. Direct addressing
presents an 8-bit address which is combined with the DP
register to locate the data in memory.

Indexed addressing uses registers and offsets to calculate
the address in memory at which data can be found. This
mode is complex and flexible, with automatic incrementing
and decrementing of registers as the instruction is
executed. Relative addressing presents a value which
directs the program to a position in memory relative to the
current position of the program counter.

Information is accessed by processor instructions. Among
these are store and load, which save and retrieve
information in memory; arithmetic instructions such as
add, subtract, decrement, increment, and negate; logical
instructions such as AND, OR, complement, and
Exclusive-OR; bit shift and rotation instructions; jumps
and branches to other program locations or subroutines.

Programs and information are stored in memory. The
organization of memory is called a memory map, which can
contain read-write memory, read-only memory, special-

Summary: Addressing

* What do RAM, O, CPU, SM,
PIA, and YD6 11ean?

RAM Eans read/wite lll!IIOl"Y,
also kl'IOlffl as rand<lll-access
111!1101")'; RtJt •ans read-only
11e110ry; CPU aeans central
processing unit; SM .ans
synchronous address 11Ultiplexer;
PIA •ans periJi)eral interface
adapter; and YD6 aeans video
display generator.

* lillat is the process of
translating lll'lellOnic !source)
code into binary (obJect) code
called?

AsSl!llbly.

* lllat prograaing tool perfortis
this task?

An asseabler.

* HoN aany topics aust you know
to continue this course?

Six topics.

* lliat is the first topic you
need to know to continue this
course?

HoN to use the lll:6889E data
booklet.

* lliat is the second topic you
need to know?

HoN to enter and edit prograas
using EDTASM+.

* lliat is the third topic you
need to know?

HoN to c'OUnt in binary
hexadeciul.

and

* What is the fourth necessary
topic?

HoN to create BASIC prograas
Nhich PCl<E NChine language into
aeaory.

purpose memory registers, and input/output ports.

Learning the 6f!:l:::Jt 111

Summary: Special devices

• Ylat is the fifth i ta you
need to know?

All the
presented
session.

6889 instructions
up to the 12.'th

• What is the final topic?

The addressing IIOdes presented
up to the 12.'th session.

• HoN uny questions have you
ansNl!l"ed so far in this course?

895. Bet you didn't kl'ION that.

112 Lesson 12

The Color Computer has a specific memory map and
several hardware devices. Read-write memory, or RAM, is
located in the bottom two quarters of the memory map; the
BASIC language in read-only-memory (or ROM) occupies
the third quarter; most of the upper quarter is occupied by
cartridge ROM when it is plugged in.

The top 256 bytes of memory have a special purpose, and
are used by Peripheral Interface Adaptors (the PIAs) as
input/ output ports for the keyboard, cassette, printer,
video display, and other reserved purposes. In the Color
Computer, the most sophisticated of these functions is
performed by the Synchronous Address Multiplexer (the
SAM), which controls the memory circuitry, the processor
speed, and the Video Display Generator (the VDG). By
using a combination of the PIAs and the SAM, the VDG can
be placed into several modes of alphanumerics and low
and high-resolution color graphics, and can be made to
display any area of memory. Machine-language programs
most easily control these devices.

Machine-language programs for control, display or any
type of programming can be assembled using a tool such as
the editor/ assembler, or can be assembled by hand using a
list of commands and their respective binary codes. Hand
assembly is tedious, but is valuable for learning to create
compact and efficient programs, and for understanding the
specific actions taken by the processor. Confident hand
assembly can reveal peculiarities in a computer, such as the
alphanumeric display method in the Color Computer.

So that's a very fast trip through the past twelve sessions. I
recommend that you take a breather now and review these
lessons, because I plan to pick up the pace from here on.
Things you must know to continue are: how to use the
MC6809E data booklet; how to enter and edit programs
using EDT ASM +; how to count in binary and
hexadecimal; and how to create BASIC programs which
POKE machine-language information into memory. You
must also know the 6809 instructions that have been
presented so far, and all the addressing modes which I've
explained.

I won't have time to summarize all of this again, so if you
think you need to, please review now. I can't emphasize
enough the need to review, because I can tell you from
experience that if you get in to this too deeply and your
background is not secure, the new information will muddy
the old information so badly it will all become useless.

Now that I've issued my dire warnings, I hope you will
continue this series. I'll be presenting graphics and sound
software soon, and giving you pointers on making your
programs short, be quick, and run bug-free. Speak to you
next time.

1-W-lDX->~Y

~
~

/00,> tJ//0 1000 0//0

•
Hello and welcome back to the final half of "Learning the
6809." The pace will quicken somewhat, so I hope you've
given yourself a solid foundation in the essentials of
machine language programming that I presented in the first
half of this course.

The topic this session is timing: that's the careful
organization of computer instructions to perform tasks at a
known speed. Unlike mechanical timers or ordinary clocks,
the computer operations you can be certain of actually
simplify this task. You are certain of the clock speed, that is,
the number of fixed pulses per second by which the
processor completes its instructions. And, you can identify
the specific number of those clock cycles each instruction
requires, since this is consistent ... and the full information
is provided with the data booklet.

You may not be as impressed as I am with this concept. But
consider that all the real-world interfacing of the computer
depends on some sort of timing. Here are just a few of those
interfacing tasks:

1. Communication with a printer is timed. A
printer connected to the Color Computer
expects precisely 600 binary digits per second.

2. Cassette input and output is astoundingly
precise. Not only is the timing of the binary
digits critical, but the shape of the sound's
wave recorded on the tape is important. Care
in these timings overcomes the inherently poor
quality of portable cassette recorders.

3. Keyboard input even uses timing. As the
metal contacts of the keys close, a little
electromechanical bouncing takes place. This
bounce must be timed through so as not to
produce unwanted double or triple characters.

4. BASIC sound commands need frequency

The very speed that ukes
llilChine language a progra.ing
delight also 11akes it difficult
Nherl dealing Mith a real i«>rld
operating in huun tt!f'IIS. You
start Mishing for BASIC after a
few hours of •ticulously tiaed
progra actions. But you'll
never be able to create sound or
gaaes Mith real punch and
clarity froa BASIC, so
aachine-lanquage bit tMiddling
is the solution. OnMard!

* 111at is the clock speed of the
Color Co.puter?

.89 MHz <894,886 clock pulses
per second).

* If a printer expects
inforution at 611 binary digits
per second, hoN uny clock
pulses is that?

Approxiutely
pulses.

1,492 clock

* If a given ca1puter activity
had to take place 1• tias per
second, hoN aany clock cycles
NOUld that be?

Approxiaately
cycles.

89,489 clock

Learning the ~ 113

Timing

* At 1,• activities
second?

per

Approxi11ately 8,949 clock
cycles.

* At 18,018 activities per
second?

Approxi111tely 895 clock cycles.

* lillat does Hz .an?

Hz aeans Hertz, or cycles
(pulses> per second.

* lillat does tliz aean?

~ aeans agaHertz, or ■illion
cycles per second.

* Illich of the follONing require
consideration of ti■ing:

cassette input and output;
serial printer output; keyboard
input; sound output.

All require consideration of
ti■ing.

* lily does cassette input and
output require ti■ing?

Because the data ■ust be
recorded and received at a kl'IONft
rate.

* lilly does serial printer output
require ti■ing?

Because a serial printer 1111st
receive data at a kl'llllffl rate.

* lilly does keyboard input
require ti■ing?

Because Echanical contact
bounce ■ust be igJ'IOl"t!d (tilled
through).

• lily does sound output require
ti■ing?

Because sound is ■ade up of
specific frequencies, and
frequencies are inherently
ti.-based.

114 Lesson 13

information in order to produce proper musical
pitches.

These four examples are only the most obvious. Subtle
kinds of timing permeate machine language pro
gramming.

I'd like to start with the simplest kind of timing, the delay
loop. No doubt you've used FOR-NEXT loops in BASIC to
time such things as screen presentations and Inkey$ input.
Another interesting use of delay loops is for simplified
communications timing ... in the example I've got for you,
it's used for sending fast and accurate Morse Code. Now
Morse Code might be a little bit of an anachronism in this
computer era, but it's interesting and I think quite a lot of
fun.

First, conceptualize the problem and establish some
parameters. Morse code is that pattern of long and short
beeps that has been used for over a century to
communicate across telegraph wires and via radio. In this
example, the code might be sent from the keyboard, or it
might be sent from a prepared, edited message. Also,
you've got to establish the speed of code transmission and
choose the pitch of the beep. Finally, the character set to be
used must be selected (that is, the whole set or just the
alphabetic characters).

Let's take the last first, and say that-the entire 6-bit ASCII
character set should be used. Those are numbers and
uppercase letters. Let's set the beep at a clear 1,000 Hz -
1,000 cycles or vibrations per second. And finally, establish
the transmission speed at about 10 words per minute.
Before actually programming these last two items, keep in
mind that it might be wise to make both the beep frequency
and the transmission speed flexible, so they can be changed
by the operator to match the circumstances.

Now to the concept. It seems to break down into a few
simple steps coupled with a some ,crucial subroutines. It
looks like this. A message is found somewhere in memory.
The code for each character is located in a table of Morse
codes. After the code is identified, it is used in conjunction
with two or three subroutines to produce beeps and
silences of the proper timing.

Now I don't know very much about Morse Code, but from
what I'm told, it consists of short and long beeps known as
"dits" and" dahs." A" dah" is roughly three times as long as
a "dit," and all beeps are separated by "dit"-length
silences. Letters are separated by "dah" -length silences,
and words, when separated at all, are separated by about
two "dahs."

Before I get too far ahead, let me play for you a little bit of
professional Morse Code ...

Ao=
~ =ooo
C, i::::ioc::io

l7 t:::tOO

e- 0

f" oot:::::10

G, c::ic::::io

r\ 0600

J: oo

.:r O c::l c:::::a c::::I

/< r=o=

L or.:::::::100

M =-=
N =o
C==t::1
f o=c::10

Q, c::11::::JO=

-R C>c:::JO

$ 000

i c::::,

U 001::::f

Y oooc:::r

woc:::ao
)(c:,oo=

Y c::ioqc::i

Z==oo

/ 0c:::7C:::IC::,C

'],.. ooc:::::ric::1c::a

~ oooc:r~

1' 00001::.1

5 GOOOO

b t:=oooo

7 c::=:l!C2,000

8 c=.:r&:::10C!I>

9 c:::lt:::l'~t:::10

~ =====
~ • oc=-•~oc:::a

~, c::::1c:::aoo,:=ic::1

o::1.0,j; c::rc::ic::iooo

? oc,c::Jc:ioo

~'\ oc::::::n·===o

K'ff'ttf.N- s:::::::ilOOOOt:::2'

~ / c=,oo=-

() =o=.c:,oc:::,

e;;." oc:::::1001:::10

What you just heard was the message "Hello how are you."
It's a series of pure, regular beeping tones and silences. You
might think that Extended Color BASIC has a perfectly
adequate group of SOUND and PLAY commands, tailored
to this kind of task. Unfortunately, they won't do for a
number of reasons. First, the beep length is a fixed multiple
of the shortest length. Morse Code speeds often fall in
between these fixed lengths. Next, the BASIC
programming is very clumsy, using a long array,
substantive error-checking, and various loops. But worst of
all is the slight but distinguishable "gargling" in the sound,
an adulteration of the pure tone with pops and burbles. At
first - and especially if you are listening on an inexpensive
television - that impurity may be obscured by the limited
TV sound. But if you listen through a separate amplifier
hooked to the cassette output, the unevenness of the sound
becomes distinct. Think about those things as you load and
run the following BASIC program.

Program #21, a BASIC program. Turn on the power of your
Extended Color BASIC computer. Whe the cursor appears,
type CLOAD and press ENTER. The computer will search (S)
and find (F). When the cursor reappears, LIST this program. If
the program is not similar to the listing, or if an 1/0 error occurs.
rewind to the start of the program eynd try again. For severe
loading problems. see the Appendix.

1 CLEAR500:DIMA$(60)
2 FORX=32 TO 90
3 READAS<X-32>
4 NEXT
5 CLS
6 PRINT"TYPE YOUR MESSAGE"
7 PRINT"(MAXIMUM 255 CHARACTERS>"
8 LINEINPUTBS
9 PRINT:PRINT"SENDING MESSAGE .•. "
10 FORX=lTO LEN<BS>
11 A=ASC(MIDS<BS,X,lll
12 A=A-32:PRINTMIOS(B$,X,1l;
13 CS=AS(Al
14 IFCS="SP"THEN22
15 PRINTC$" ";
16 FORY=1TOLEN(C$)
17 Q$.=MlO$(C$,Y, 1)
18 IFQS=". "THENSOUND240,1
19 IFQ$="-"THENSOUND240,3
20 FORZ=1TO50:NEXT
21 NEXT
22 FORZ=1TO100:NEXT
23 NEXT
24 GOTO5

BASIC Morse

* ls ti■ing required for Morse
Code?

Yes.

* Na■e the ti■ing considerations
needed for Norse Code.

The length of the •dit•, the
length of the •dah•, the length
of silences, and the frequency
of the beep.

* HoN long is a •dat,• Nith
respect to a •dit•?

Three tiE!i as long.

* Ylat cc:aands produce sound in
BASIC?

scum and PLAY.

• HoN long is the shortest BASIC
beep (using SON> X,1>?

Approxiutely 1/14 of a second.
(You Neren't told that in the
text>.

* If a looo contail'IS tNO load A
i.atdiates, tNO store A
extendeds, and one branch to
uke a C011plete loop, hON uny
clock cycles are required for
this loop?

2 tilll!S 2 cycles, plus 2 tiHS S
cycles, plus 2 cycles • • • a
total of 16 cycles.

• At 894,886 clock cycles per
second, hON uny loops is this?

894,886 divided by 16, or 55,931
cycles.

25 DATASP,SP,.- .. -.,SP,SP,SP,SP,.----.,-.--.-,-.--.-,SP,SP,--•. -
, -, . -. -. -, - .. - ..

26 DATA------,.----, .• ---, .•. --, •••• -, .••.. ,-..•. ,--•.• ,----.. , --
--., ---... , SP, SP, SP, SP, .• -- •.
27 DATASP,. -, - ••• , -. -. , - •• , • , •• -. , --. , •••• , •• , • ---, -. -, • - •• , --, -

. '
28 DATA.--.,--.-,.-., •.. ,-, .. -, ... -,.--,-.• -,-.--,--.•

You've just heard a BASIC solution to the problem of
transmitting Morse Code. For the simplest of purposes,
this kind of code transmission might be adequate. But we
can do far better in machine language. The timing and

Learning the 6f!l:1t 115

Sam's Roadside Kitchen

* illat is the 11ain disadvantage
of producing sound using BASIC?

The •gargling• or unevenness of
the sound.

* What causes the •gargling• of
the sound?

An interrupt.

* Three things happen wien an
interrupt occurs. illat are
they?

The 111icroorocessor finishes its
current instruction, saves
i■portant inforaation, and
follows prograaing instructions
in reponse to the interrupt.

* What is the process of acting
on an interrupt called?

Servicing the interrupt.

* lllat causes an interrupt?

When an external signal line
changes fr011 one to zero.

* What three things happen Wilm
an interruot occurs?

The ■icroprocessor finishes its
current instruction, saves
iaportant inforaation, and
follONS prograaing instructions
in reponse to the interrupt.

* Can ■ore than one interrupt
occur?

Yes.

* Which interrupt gets taken
care of?

The one with higher priority.

* What is the Dt"OCeSS of taking
care of the interrupt called?

Servicing the interrupt.

116 Lesson 13

control of the sound can be intimately precise, and that
annoying gargle will disappear.

What, then, do you suppose causes that gargling sound? It
seems to be a regularly recurring group of little hiccups as
the tone proceeds. In fact, those hiccups are the time it
takes the computer to briefly abandon the sound program
in progress and perform other tasks. It is responding to an
interrupt.

Practically all microprocessors are provided with electrical
connections known as interrupt lines. When these
interrupt lines are made to change from one to zero by some
external happening, the microprocessor finishes its current
instruction, saves important information, and follows
special programming instructions in response to that
interrupt.

It's like one of those drive-up fast-food places. We take you
now to Sam's Roadside Kitchen in Roadside, New Jersey,
where the sign reads "Honk for Sam's roadside drive-up
service noon to 6 only. Other times honkatyourownrisk" ..

Marge the Waitress: < indoors, talking to cook> One fries,
two BLTs, three chili dogs ... <honk> Alright, alright.
<back to cook> ... and one onion rings. Get those ready.
There's a guy out honkin' that thing like Little Richard.
<going outdoors> Yeah, what'll you have?

Car one: Three burgers, two fries, a shake.

Marge: Ya want bunny burgers or buddy burgers?

Car one: One bunny burger, two buddy burgers.

Marge: <indoors again>. One bunny, two buddies, fries.
Where's my order? < to counter> Anything else, Joe? How
'bout you, Mac?

Mac: Yeah, gimme another dog, will ya Marge? With onions
an' cheese, too.

Marge: < to cook> Cheese dog onions.

Kitchen: Orders up.

Marge: < to cook> Hey where's my steak? And what about.
. . <honking> ... the chili dog. Damn. Gotta get that.
<outside again, honking continues> Yeah, yeah,
whaddaya want?

Car two: Gimme three bunnies and ... <honking from third
car>

Marge: < to third car> Hey fella I'm busy. Sit on it till I get
to ya. <back to car> Three bunnies. What else, and make it
quick.

al ON ON OM

~
Off' Cff O'F Off'

Car 2: How about filet mignon and truffles and leeks
vinaigrette ...

In this example, the restaurant was the computer, and
Marge its microprocessor. The cook and customers served
as program and storage memory. The car horn was the
interrupt. Recall how Marge finished only the immediate
task, and then went out to take care of the drive-up
customn. In computer terms, that process is called
"servicing the interrupt." When servicing an interrupt, the
computer saves program counter and registers so that all
information is intact when it returns from the interrupt
service routine to finish its previous task. Interestingly,
Marge chose to put the third honking customer on hold
while she finished with the second. In that case, the
interrupt in progress had a higher priority. Had the third
car been an old favorite customer, however, Marge might
have serviced that interrupt first, leaving the current task
incomplete until the interrupt service routine was done.

Finally, Sam's sign said that drive-up service was from
noon to six only. Other times, honking customers would be
ignored. That process is known as masking an interrupt.
They'll be much more talk about interrupts and how they
are used later; right now, we only want to know how to get
them out of the Morse Code beep. To do that, you have a
little reading ahead.

Please read the information on interrupts in the MC6809E data
booklet. The condition codes are described at the top of page 6,
the vectors are shown in Table 1 on page 6, and an explanation
is presented in the first column on page 9. Return to the tape
when you have completed the reading.

The most important thing you've discovered about
interrupts, at least with respect to the Morse Code
program, is that the interrupts can be turned off - masked,
that is - by using the condition code register. Bits 4 and 6
are responsible for interrupts; there must be some way to
use logical functions AND and OR with the condition code
register to mask bits 4 and 6 in or out at will. There is.

Turn to the MC6809E data booklet, pages 30 and 31.
You'll find that ANDCC is a special-purpose instruction
available only in the immediate addressing mode; so is
ORCC on the next page. You might want to check me on
paper for what follows. If you wish to set bits 4 and 6 to one
- that is, turn the interrupts off - you would OR the byte
with binary 0101 0000. Bits O through 3, 5 and would
remain unaffected. To turn the interrupts on you need to
set bits 4 and 6 to zero; to do that, you would AND the
condition code register byte with 10101111. In either case,
the original condition codes for carry, negative, zero, half-

Learning the

Interrupts

* Can interrupts be ignored?

Yes.

* What peraits the processor to
ignore an interrupt?

Masking the interrupt.

* Is there an interrupt taking
olace when BASIC is running?

Yes.

* What is one effect of the
interrupt?

A •gargling• in the SCUii)

co.and.

* What causes the gargling?

The tiae taken to service the
interrupt; the interrupt service
routine.

* Can sound be oroduced Nithout
"gargling"?

Yes.

* How can sound be produced
without gargling?

By producing it in aac:hine
language.

* How can uchine language stop
the gargling?

By turning off the interrupt.

* What is the proper terai for
turning off an interrupt?

Masking the interrupt.

* What deter11ines Nhether an
interrupt is 11asked or enabled?

The condition code register.

* lillat part of the condition
code register deteraiines Nhether
an interrupt is Nsked or
enabled?

Bits 4 and 6.

60C:ft 117

Encoding Morse
* What asks an interrupt?

Setting its condition code bit
to a one.

1 What etaands can be used to
affect the condition code
register directly?

ANDCC and DRCC, both ia.ediate
instructions.

* What condition code bits
deter11ine Nhether interrupts are
aasked or enabled?

Bits 4 and 6.

11asks out (turns
interrupts?

specifically
off> both

DRCC 1$58 (binary 1111.,.).

1 What coaand specifically
enables !turns on> both
interrupts?

ANDCC ISAF !binary 11111111).

* Three things happen Nhen an
interrupt occurs. What are
they?

The ■icroprocessor finishes its
current instruction, saves
i■portant infol"lliltion, and
follows progra.ing instructions
in reponse to the interrupt.

1 For purPoSeS of clarity and
simplicity, this session asSlaS
that Norse Code is a uxi111111 of
5 beeps long. FOi" letters and
n1111bers this is true, but
punctuation requires 6 beeps.
These exceptions Mill be handled
by IIOdifications to the progra■

in the next session. Five beeps
are asslllled to dellonstrate the
drautic simplicity of code
translation. Since code
translation !ASCII to IBM's
EIICDIC, Baudot to ASCII, printer
translations, etc.> is an
i■portant part of
llilChine-language progra.ing,
learning to do it the siaplest
May is illpol"tant.
118 Lesson 13

carry, overflow and "entire flag" would be preserved, but
bits 4 and 6, the IRQ and fast IRQ interrupts, would be
changed. To set interrupts on, then, AND with hex $AF; to
turn interrupts off, OR with hex $50. Much more later.

Discussing interrupts has taken this lesson well out of its
way. The topic was timing, and specifically, the timing
necessary to produce pulses of sound in a known order,
with a known pitch, and at a known speed. I'll turn back to
that now.

Morse Code was a brilliant invention. It provided a
compact method of transmitting letters. It was fast,
because the most-used letters contained less beeps than
the least-used letters. It accommodated all physical talents
because trained operators could send and receive at high
speed, whereas novices could still be understood at only a
few words per minute. The compactness of Morse Code,
however, increases the programming difficulty for us. The
letter E, a single dit, contrasts with the letter Z, dah dah dit
dit.

For this program, the cross-listing of ASCII codes and
Morse Code has to provide two kinds of information: the
pattern of dits and dahs, and also the total number of beeps
in the letter. The longest character has five beeps, which
could be stored as five bits in a byte . . . <lits could be
represented by zeros and dahs by ones. The remaining
three bits could be used to indicate the length of the Morse
character. One byte might do the job.

The next question is how to arrange those bits •within the
byte. The dit-dah pattern could go on either side of the
byte, as could the number of beeps. But one arrangement
makes special sense. Recall that in an earlier lesson, a
binary-to-ASCII conversion was performed. It was always
necessary to make sure the nybble was to the right side of
the byte to be in the proper form. That's the case here, too.
By keeping the rightmost three bits reserved for the length
of the Morse Code, the only work you need do is mask the
leftmost five bits to retrieve the original number.

Follow me in the book for this. The letter S is dit-dit-dit.
According to my suggestion, dit-dit-dit becomes binary
000. The length is three beeps, so the length is binary 011.
Place the beeps at the left and the length at the right and
you've got the composite byte 000 00 011. By contrast,
the letter O is dah-dah-dah. It translates into 111 for the
code, and again to 011 for the length. The composite code is
111 00 011.

But even better is what you can do with the encoded beep
information at the left of the byte. By rotating the byte to
the left, the beep bits drop into the carry flag in head-first
order. Dit-dah-dah-dit, represented by 0110, rotates left
and falls into the carry flag in the precise order0-1 -1-0, or
dit-dah-dah-dit. By using the carry flag as a condition for
program branching, the process is assured. The program
can branch-on-no-carry to a" dit" -length beep, and branch-

l!ci FI H!J. IN jz Iv I~ I
Cf'- [oi1loj1jololojoj C+~

al(OOB;,R::R_~ F;?o7
f GODE ~
{ N?t.. A=O'f

.~1.,t,, Nt... B =:. "f8

-~[Q]¢=:J jo ! 1j o I ol I jojojol
-VJ,,~-f

' AeL. A~ o 3

Z: /, ,t. ~. 5 "' 'i' 0

-j~ jt lojoj1lolo!olol ,yr:,,,,-o.
k.L. A"' o "J..

Jb,I,, ~- 13-c=- 2. o
jf7'l,¢::J jojoj1lololojojol F~·

Au,, A =' 0 /

~ I, '1)l:.L. ~ = "I I
--cc@l1::J jol 1jojojojoj1!oj
~i'N Aa..-. A = 00

1~e.1

'i!.
~

¥<!5

~

r;-i
I

I~

' 'I
i 1i1 '
' '

on-carry to a "dah" length beep.

In actual program form, the message SOS might be
encoded like this:

ASCII Morse ASCII Morse Morse
Letter Code Code

s
0
s

$53
$4F
$53

Binary Hex

0.0.000011 $03
11100011 $E3
00000011 $03

I'd like you to take a break now and draw up a chart of all the
ASCII characters and their Morse Code equivalents, as
shown in the sample above. This will give you an intimate
sense for the way in which this code is being assembled.

On a sheet of paper, list the characters in ASCII order, their
Morse Code equivalents, their ASCII codes, their Morse binary
encoding, and their encoded Morse hexadecimal representa
tion. When you have completed the sheet, return to the tape,

Now you've got a complete cross-reference table in hand,
and you understand the general workings of the program
you've got to create. Let me review the structure so far.

1. Pluck an ASCII value from the message.

2. Find the encoded Morse equivalent in the
table.

3. Use the length information in the rightmost
three bits as a counter.

4. Shift the leftmost five bits into the carry
flag.

5. Transmit dits or dahs based on the carry
flag, and for the number of beeps held by the
counter.

6. Pick up the next letter and continue.

This looks like a reasonable structure; it should resolve into
this simplified program (follow me in the book):

START LDX MORSE * Encoded Morse in memory
LDY TEXT * ASCII message in memory

AGAIN LOB 'Y+ * Get ASCII, point to next
SUBB OFFSET * Strip ASCII offset
LOA B,X * B+X = Morse table position
TFR A,B * Save encoded Horse
ANDA $07 * Keep the code length

Learning the

Transmitting beeps

* lillat do ASCII codes S28
through S3F represent?

Nuabers, syabols and
punctuation.

* lillat do ASCII codes $48

through S5F represent?

Uppercase letters.

* The follOMing questions deal
Mith the soecific progru being
created in this session.

* In the structure chosen for
this exuple, tolhere is the Morse
Code length infol"llition stored?

In the right110St three bits of a
byte.

* Where is the actual Morse Code
oattern stored?

In the left110St five bits of a
byte.

* HoN is the le~th information
retrieved?

By llilSking the byte Mith binary
0Ml111.

* If the byte is in the A
acccmulator, tolhat instruction is
used to 11ask in the right three
bits?

ANDA "87

* •Dit• and
represented
infor11ation?

"dah•
by

are
tolhat

* lillere is the 1 dit• and 1 dah•
infor11ation stored?

In the left110St five bits of a
byte.

f HoN is
retrieved?

the inforution

By rotating the bits leftNard
into the carry flag.

6e(y:; 119

Quiet
* I.hat is the advantage to
having the code length on the
right side of the byte?

It only needs to be usked, not
shifted, to becOlle the correct
value.

* What is the advantage to
having the code beeps on the
left side of the byte?

There are tNO advantages: they
are in place to be rotated left
into the carry flag, and they
are in the correct order fnw
first to last as they are
rotated into the carry flag.

* The letter S is dit-dit-dit.
What is its length in binary?

Its length is three beeps, 811
binary.

* The letter Sis dit-dit-dit.
What is the binary equivalent of
its beeps?

The binary equivalent of the
beeps is••

* What is the COllf)lete encoded
byte for letter S, pattern
dit-dit-dit?

Pattern M plus tNO unused bits
(81) plus the length 811. The
result is MNIU.

* What is the hex equivalent of
binary -11?

Binary _.11 is hex NJ.

l Nae the ti■ing considerations
needed for Morse Code.

The length of the •dit•, the
length of the •dah", the length
of si lenr:es, and the frequency
of the beep.

120 Lesson 13

NEWBIT ROLB * Drop into carry
BCS JUMPI * On C=l, do dah, do dah
JSR DIT * On C=0, go do the dit
BRA NEXT * .. and go past

JUMPI JSR DAH * Here's the dah to play
NEXT DECA *Length= Length-I

BNE NEWBIT * Next bit if Length<> 0
JMP AGAIN * Back for next character

There are a few things missing from this structure. As
shown, there are no spaces obvious between letters or
words. Even if silences were included in the beep routines,
there wouldn't be any break between streams of beeps. So
silence must be added. And then there's the question of
what to do when the message is finished. In my example, the
transmission continues right through memory. It's got to be
made to stop. To achieve a pause, I've selected ayet-to-be
written subroutine called QUIET. As for the message end,
the greater-than and less-than characters aren't present in
the Morse Code system. I've decided to use the greater
than sign to indicate "end of message," and the less-than
sign to mean "repeat message." With that in mind, I've got a
program for you to load.

Program H22, an EDTASM+ program. Insert the EDTASM+
cartridge, and turn on the power to your computer. When the
cursor appears. type L and press ENTER. The computer will
search (S) and find (F). When the cursor reappears, display the
program. Type PH:• and press ENTER. IF the right-hand side of
the program is not similar to the listing, or if an 1/0 error occurs,
rewind to the program's start and try again. For severe loading
problems, see the Appendix.

List this program screen by screen using the P command.
You'll find that! put the message at $3000, the Morse Code
table at $2F00, and the program itself at $2E00. Examine
this program carefully, and see if its compactness makes
sense. Also, check your handwritten Morse table against
mine. All that's left to write are the dit, dah, and silence
subroutines. Till next time.

•
I hope that you've had good luck creating the program to
take an ASCil message and translate it into a series of
subroutine calls, calls that would, once the final beeping
routines are created, transmit Morse Code.

Just to review, you'll remember that the structure of the
program was set up to read an ASCil message, character hy
character. It would then locate an encoded version of the
Morse Code from an in-memory table, and use that
information to produce a pattern of dits and dahs. The
program you've created up to this point should look
something like the one I have for you next.

Program #23, an EDTASM + program. Insert the EDTASM +
cartridge, and turn on the power to your computer. When the
cursor appears, type L and press ENTER. The computer will
search (S) and find (F). When the cursor reappears, display the
program. Type P#: • and press ENTER. If the right-hand side of
the program is not similar to the listing, or If an 1/0 error occurs,
rewind to the program's start and try again. For severe loading
problems, see the Appendix.

Let me take you through my program. I know that without
real person-to-person interaction the things I've done and
the things you've done won't match. You might feel like the
work you have just finished is somewhat in vain. Not true.
This is really the first program I've left you alone to
structure, and it's invaluable that you contrast the two.

Last session I told you that some characters which didn't
exist in the traditional Morse Code set might he ideal for
using as end-of-message markers, to tell your program that
the message was complete, and should either be ended or
repeated. I chose to use the greater-than sign for end of
message, and the less than sign for a continuous repeat of
the message. Recall that the message itself would be stored
beginning at $3000. As for the program, I suggested you
put that at $2EOO, leaving plenty of room for the program

Keep in ■ind that as this
progra is developed,
translating codes and pr":lducing
sound is the obJect. lllether it
is Morse Code or any code isn't
critical, and whether it's a
beep or an entire 11Usical tul'II!!
isn't the point. You are
finding out how to ■anipulate

sound and 11ake translations.
Also, reMllber that the final
progra is going to ■ake

adJustwnts for that Norse Code
ounctuation Mhich is six beeps
long; these are exceptions Milich
don't affect the heart of the
prograa and its inherent
si11131ici ty.

* Halle the ti■ing considef-ations
needed for Morse Code.

The length of the •dit•, the
length of the •dah•, the length
of silences, and the frequency
of the beep.

* The letter
dah-dit-dah-dah.
length in binary?

Y is
lllat is its

Its length is four, binary 111.

* The letter Y
dah-di t-dah-dah. lllat
binary beep pattern?

Its beep pattern is 1111.

is
is its

Learning the 6ef::J9 121

Creating a beep

* lflat is the coaplete ef£Odect
value for Y, pattern
dah-dit-dah-dah?

Beep pattern 1811 plus one
unused bit Cl) plus a length of
118. The i"HUlt is 18118118.

* lillat is
hexadf!Ciul?

181181N

18118118 is hexadf!Ciaal SB4.

in

* If the A acc1111Ulator contains
SB4, and you exf!CUte ANDA "87,
Nhat is the i"HUlt?

The result is *·
* If the B ilCCUIIUlator contains
SB4, and you exf!Cute RllB four
tiaes, Nhat is the condition of
the carry flag after each Rll.B?

C=l, C=e, C=1, C=1.

* HoN long is a ·da11• Nith
respect to a •dit•?

Three tillK as long.

* Th'l"ft things happen Nhtm an
intel"l"upt occurs. lflat il1'I!

they?

The ■icroprocessor finishes it
current instruction, saves
i■portant infmwtion, and
follows progr-ing instructions
in reponse to the interrupt.

* lflat is the process of acting
on an inten-upt called?

Servicing the interrupt.

* lillat is the proper ter11 for
turning off an interrupt?

Masking the interrupt.

* lflat condition code bits
detf!t"lline Nhether intl!rt-upts are
■asked or enabled?

Bits 4 and 6.

122 Lesson 14

and the Morse Code lookup table. I put the table at
$2FOO.

The program itself turns out to be surprisingly simple.
There are three options for producing dits and dahs shown
in my listing. The first option best represents the actual,
expected circumstances - a dah is three times the length
of a dit. Therefore, two separate subroutines, one dit and
one dah, are created for this purpose. The other solutions
might not be immediately obvious.

To understand the second option, consider that the real
world we're dealing with here is lots slower than the
computer world. In this case, the computer operations
involved in determining the difference between dits and
dahs, and the time required to call the dit subroutine, are
minuscule. In fact, these operations are nearly inaudible in
the course of a real-world beep. A jump to subroutine (JSR)
and a return form subroutine (RTS) take only 13 clock
cycles, and the two likely PUSH/PULL combinations used
to save information before performing the beep subroutine
itself add 28 more cycles. The total clock cycles, 41,
demand under 50 microseconds for completion. Recall
that I suggested a beep frequency of 1,000 Hz. That
frequency means that each pulse that makes up this beep
frequency is 1,000 microseconds - so these additional
jumps and returns add only about 5 percent to the time it
takes to create one single pulse of the beep. So you can see
that in a case where the computer is much faster than a real
world event, alternative approaches such as this can
simplify the actual machine code you must write.

The third method is a favorite of programmers because it
allows a subroutine to be an all-purpose building block. In
this method, a value is given to the accumulator, a value
which indicates a dit or a dah. The beeping routine then
uses this value to calculate the overall loop length of dit or
dah. In a different and more precise way, this subroutine
performs s similarly efficient function to the previous
one.

More on all of these when the actual beep-creation routines
are assembled.

First, I'd like to turn to the problem of creating the beep
itself. What is a beep? A beep is a tone, or a pitch- a rapid,
consistent and regular fluctuation of air molecules. This
isn't a lesson on acoustics, so I'll make it short. A rapid,
consistent and regular compression and decompression of
the air is perceived as a tone or pitch. A loudspeaker which
is pushed forward and back rapidly, consistently and
regularly will compress and decompress the air in a similar
way. Electrical impulses which alternate between two
voltage levels can create the necessary speaker motion. A
computer program can provide those impulses.

So that reveals the structure of the computer program, and
also gets us - the long way 'round - to the question of time

I.DA O!'("A f;,Nf.

~
'--'--' ,..s., rs
~~

5,e,.,- * 85" =- '197. Zr;
85 J..CCP;,

delays. Alternating between a one anrl. a zero is a simple
task, something you've done alrPady. The task of the
bePping program is to alternate between one and zero at a
predictable rate - in this case, 1.000 Hz. or 1,000
altPrnatiom, per second.

A simple delay loop in machine language might look like
this (and you can follow along with me in the book):

LOA DLYVAL
LOOP DECA

BNE LOOP

The A accumulator contains the delay value. The BNE
instruction loops back until A equals zero. This simple
delay allows a maximum loop of 256 iterations - the
largest 8-bit number the A accumulator can hold.
According to the MC6809E data book, LDA immediate
requires 2 clock cycles to complete, DECA takes 2 clock
cycles, and BNE needs 3 cycles. The goal of the delay is 500
microseconds total. LDA only happens once, so that leaves
about 497 microseconds to go. The DECA/BNE
combination of 5 clock cycles is 5.85 microseconds on the
Color Computer, meaning a total of 85 loops (497.25
microseconds) does the trick. The value for label DELAY,
then, is 85 decimal. We won't fix this in concrete yet,
though, because certain bits and pieces of the program that
might add extra delay to the process haven't been written
yet. But it's working delay information for now.

You might have picked up on my delay of 500
microseconds. If the beep is 1,000 Hz, then a complete
pulse is 1000 microseconds. A complete pulse. That means
one pulse up for air compression, and one pulse down for air
decompression ... a total of 1,000 microseconds, 500
microseconds for the up pulse, 500 microseconds for the
down pulse.

Now how about the length of the beep? Eventually that's
going to vary, too, but for the moment, let's make a dit one
fifth of a second, and a dab three-fifths of a second. Since
the beep is 1,000 Hz, or 1,000 pulses per second, then one
fifth of a second is just 200 pulses. So the program begins to
look like this (again, follow me in the book):

LOB 20.0 * LENGTH
OUTLP LDA 85 * FREQUENCY
INLPl DECA * DONE YET?

BNE INLPl * WAIT
LOA 85 "FREQUENCY

INLP2 DECA * DONE YET?
BNE INLP2 * WAIT
DECB * BEEP END?
BNE OUTLP * MORE

There's still no actual beeping going on here because I
haven't described how to do it. For this you need to recall
the detailed memory map presented several lessons

Delay values

1 What
11asks out (turns
interr,u,ts?

specifically
off) both

OR[k IS:W (binary 1181 ..).

1 What c~nd soecifically
enables (turns on) both
interrupts?

ANDCC ISAF (binary 11111111).

1 lllat is the clock speed of the
Color Coaputer?

.89 lt-lz (894,886 clock pulses
Del" second).

1 What does Hz Ean?

Hz aeans Hertz, or cycles
(pulses) per second.

1 What does lt-lz •an?

ltiz Eans •gaHertz, or ■illion
cycles per second.

1 Why does sound output reouire
ti■ing?

Because sound is ■ade up of
specific frequencies, and
frequencies are inherently
ti.-based.

1 HoN long is the shortest BASIC
beep (using SllN) X,1>?

Approxi■ately 1/14 of a second.

f If a loop contains tNO load A
i■-diates, tw store A
extendeds, and one branch to
■ake a coaplete loop, how ■any
clock cycles are required for
this loop?

2 ti■es 2 cycles, plus 2 tiaes 5
cycles, plus 3 cycles • • • a
total of 17 cycles.

* At 894,886 clock cycles per
second, how ■any loops is this?

894,886 divided by 17, or 52,641
cycles.

Learning the 6el:J9 123

Single-bit sound

* At 894,996 clock cycles per
second, hoN llilnY clock cycles
are available to produce a
1,M-Hz beep?

earlier. You can turn back to that later; for the moment I'll
tell you that "single bit sound," that is, sound produced by
pulsing on and off one bit in a memory location, is found at
address $FF22. Alternations of one and zero made at bit
one of location $FF22 will be heard on the television
speaker or the cassette output. 894,996 divided by 1,M, or

about 895 clock cycles.

* If a beep frequency is 1,M
Hz, hoN long is each •pulse" of
sound.

So once again you discover that the subroutine becomes
surprisingly simple in its final form. It's coming up next.
After you've got the program loaded, take some time to look
at it, then come back to the tape.

Each pulse is 111088th of a
second (1 ■illisecond or 1,•
■icroseconds).

* How long is one Color Collputer
clock cycle?

Approxi■ately

■icroseconds.

1.11746

* How ■any clock cycles µass by
in 1,M ■icroseconds?

Approxi11ately 895.

* What is a beeo?

A tone; a pitch; a rapid,
consistent and regular
fluctuation of air ■olecules.

* What electrical device
produces a beep?

A loudspeaker.

124 Lesson 14

2E00

2E01Z1

2E02
2E04
2E07
2E09
2E0C
2E0E

2E11
2El3
2E15
2E16
2E18
2E1A
2E10
2E20
2E22
2E23
2E25
2E27
2E2A
2E2D
2E2E
2E30

00000
BEEP
BEGIN
INLPl
INLP2
OUTLP

Program #24, an EDTASM+ program. Insert the EDTASM+
cartridge, and turn on the power to your computer. When the
cursor appears, type L and press ENTER. The computer will
search (S) and find (F). When the cursor reappears, display the
program. Type P#: • and press ENTER. If the right-hand side of
the program is not similar to the listing, or if an 1/0 error occurs,
rewind to the program's start and try again. For severe loading
problems, see the Appendix.

1XNE...
00100 ORG $2E00
00110 *

1A 50 00120 BEGIN ORCC #$50 *TURNOFF BOTH INTERRUPTS
00130 *

86 32 00140 LDA #$32 * 0011 0010 SETS DD REGISTER
B7 FF23 00150 STA $FF23 * ACCESS DATA DIR. REGISTER
86 FA 00160 LDA #$FA * 1111 1010 SETS S. B. OUTPUT
B7 FF22 00170 STA $FF22 * TURN ON SINGLE BIT SOUND
86 36 00180 LOA #$36 * 0011 0110 SETS PD I/0
B7 FF23 00190 STA $FF23 * RESTORE I/0 CONFIGURATION

00200 *
CG 64 00210 BEEP LOB #100 * GET OUTSIDE BEEPWAVE VALUE
86 28 00220 OUTLP LOA #40 * GET INSIDE BEEPWAVE LENGTH
4A 00230 INLP1 DECA * DECREMENT INSIDE DELAY
26 FD 00240 BNE INLP1 * ANO WAIT TO TOTAL LOOPS
86 02 00250 LOA #$02 * GET HIGH PART OF BEEPWAVE
BA FF22 00260 ORA SFF22 * OR WITH PORT OUTPUT STATUS
87 .FF22 00270 STA SFF22 * ANO OUTPUT THE RESULT
86 28 00280 LOA #40 * GET ANOTHER DELAY VALUE
4A 00290 INLP2 DECA * ANO COUNT DOWN THRU DELAY
26 FD 00300 BNE INLP2 * WAIT THROUGH TOTAL LOOPS
86 FD 00310 LOA #$FD * SET LOW PART OF BEEPWAVE
84 FF22 00320 ANDA $FF22 * ANO WITH CURRENT STATUS
87 FF22 00330 STA $FF22 * AND OUTPUT LOW BEEPWAVE
5A 00340 DECB * DECREMENT NUMBER OF WAVES
26 E3 00350 BNE OUTLP * AND GO BACK TILL ALL DONE
39 00360 RTS * ANO BACK TO PROGRAM

2E00 00370 END BEGIN
TOTAL ERRORS

2E11
2E00
2E15
2E22
2E13

As it stands now, this program should be set up to provide a
single beep. First, assemble this program in memory, at the
origin shown. Type A/IM/AO, and hit ENTER. That's A/
IM/ AO. Now quit the editor/assembler. Type Q and hit
enter.

You'll be in BASIC. To produce that beep, you have to
remember the origin of the program. Type three lines:

3E00

3E00 1A

3E02 86
3E04 B7
3E07 86
3E09 B7
3E0C BG
3E0E B7

3E11 BE
3E14 108E
3E18 E6
3E1A Cl
3E1C 27
3E1E Cl
3E20 27
3E22 C0
3E24 AG
3E26 27
3E28 34
3E2A C1
3E2C 23
3E2E Cl
3E30 27
3E32 C1
3E34 26
3E36 84
3E38 48
3E39 20
3E3B 84
3E3D 35
3E3F 59
3E40 25
3E42 8D
3E44 20
3E46 8D
3E48 4A
3E49 26
3E4B C6
3E4D 8D
3E4F 5A
3E50 26

10 EXEC&H2E00
20 FORX=lTO20:NEXT
30 GOT010

Pure beeps

* lilat causes the loudspeaker to
produce a beep?

Electrical iapulses Nhich
Turn up the television volume, and RUN this program. You
should hear a continuous series of beeps. As you listen,
though, you won't hear that old familiar gargle in the sound.
The interrupts have been turned off; the sound is pure. The
routine works. What's left is to combine the beep routine,
the Morse Code table lookup routine, and all the rest into a
complete, usable program.

alternate voltage levels.

*Cana coaputer progra11 provide
electrical iapulses?

Yes.

* How are the electrical
We'll be going on to complete the full program next, so it
would be a good time to take a break if you wish to review.
After that, load the program.

iapul ses represented?

By binary ones and zeros.

50

32

Program #25, an EDTASM+ program. Insert the EDTASM+
cartridge, and turn on the power to your computer. When the
cursor appears, type L and press ENTER. The computer will
search (S) and find (F). When the cursor reappears, display the
program. Type P#: • and press ENTER. If the right-hand side of
the program is not similar to the listing, or if an 1/0 error occurs,
rewind to the program's start and try again. For severe loading
problems, see the Appendix.

00100 ORG $3E00
00110 *
00120 BEGIN ORCC #$50 *TURNOFF BOTH
00130 *

* TNO lDA i.-diates, tNO STA
extendeds, and BtE uke a
16-cycle loop; it ■ight LDA 10
and 11 alternately ands.A to an
address to ■ake the speaker
oroduce sound. If 1,M
■icroseconds is 895 clock
cycles, but the loo!) is only 16
cycles, lllhat else is needed?

A delay.

INTERRUPTS

00140 LDA #$32 * 0011 0010 SETS DD REGISTER
FF23 00150 STA $FF23 * ACCESS DATA DIR. REGISTER
FA 00160 LDA #$FA * 1111 1010 SETS S.B. OUTPUT
FF22 00170 STA $FF22 * TURN ON SINGLE BIT SOUND
3& 00180 LDA #$3& * 0011 0110 SETS PD I/0
FF23 00190 STA $FF23 * RESTORE l/0 CONFIGURATION

00200 *
3E99 00210 START LDX #MORSE * POINT TO MORSE CODE TABLE
3ED4 00220 LDY #TEXT * POINT TO MESSAGE IN MEMORY
A0 00230 AGAIN LDB ,Y+ * GET VALUE FROM THE TEXT
3C 00240 CMPB #$3C * CHECK IF LESS-THAN SIGN
F3 00250 BEQ START *IF"<", THEN REPEAT MESSAGE
3E 00260 CMPB #$3E * CHECK IF GREATER-THAN SIGN
43 00270 BEQ OUT * IF II)", RETURN TO BASIC:
20 00280 SUBB #$20 * STRIP OFFSET <TABLE $20-$5B>
85 00290 LDA B,X * ENCODED MORSE FROM TABLE
2C 00300 BEQ SPACE * IF 00, THEN SEND A SILENCE
02 00310 PSHS A * SAVE ENCODED MORSE VALUE
10 00320 CMPB #$10 * CHECK IF PUNCTUATION
08 00330 BLS EXCEPT * IF SO, GO TO EXCEPTION
1A 00340 CMPB #$1A * CHECK IF A COLON
04 00350 BEQ EXCEPT * IF SO, GO TO :::XCEPTION
1F 00360 CMPB #$1F * CHECK IF A QUESTION MARK
05 00370 BNE NORMAL * IF NOT, PROCEED NORMALLY
03 00380 EXCEPT ANDA #$03 * EXCEPTION USES RIGHT 2 BITS

00390 ASLA * LEFT SHIFT CREATES NUMBER 6
02 00400 BRA GETVAL * NOW READY FOR THE ACTION
07 00410 NORMAL ANDA #$07 * NORMAL USES RIGHT 3 BITS
04 00420 GETVAL PULS B * RESTORE ENCODED MORSE VALUE

00430 NEWBIT ROLB * ROTATE BIT TO CARRY FLAG
04 00440 BCS JUMPl * IF SET, THEN JUMP TO DAH
1D 00450 BSR DIT * OTHERWISE SEND A D!T
02 00460 BRA NEXT * AND GO TO THE NEXT BIT
15 00470 JUMP! BSR DAH * THEN SEND THE DAH

00480 NEXT DECA * SEE IF DONE WITH ALL BEEPS
F4 00490 BNE NEWBIT * IF NOT, THEN GET ANOTHER
04 00500 LDB #$04 * OTHERWISE GET TIMING VALUE
3B 00510 LETRLP BSR QUIET * AND CALL INTER-LETTER PAUSE

00520 DECB * DECREMENT PAUSE COUNTER
FB 00530 BNE LETRLP * AND LOOP BACK TILL DONE

Learning the l::J!l:19 125

Program #25
3E52 20 C4 00540 BRA AGAIN * THEN GO BACK FOR MORE TEXT

00550 *
3E54 C6 08 00560 SPACE LDB #$08 * 8 SILENCES FOR A SPACE
3E56 SD 32 00570 SPCLP BSR QUIET * AND GO SEND THE SILENCE
3E58 5A 00580 DECB * DECREMENT THE SILENCE COUNT
3E59 26 FB 00590 BNE SPCLP * AND LOOP BACK TILL DONE
3E5B 20 BB 00600 BRA AGAIN * AND GO GET NEXT TEXT

00610 *
3E5D SD 07 00620 DAH BSR BEEP * PERFORM FIRST 1/3 BEEP
3E5F 8D 05 00630 BSR BEEP * PERFORM SECOND 1/3 BEEP
3E61 8D 03 00640 DIT BSR BEEP * PERFORM DIT OR LAST 1/3
3E63 SD 25 00650 BSR QUIET * AND PUT IN A SILENCE
3E65 39 00660 OUT RTS * BACK TO PROGRAM <OR BASIC)

00670 *
3E6E. 34 06 00E.80 BEEP PSHS A,B * SAVE COUNT AND MORSE CODE
3EE.8 CE, E,4 00E,90 LDB #100 * GET OUTSIDE BEEPWAVE VALUE
3E6A SE, 28 00700 OUTLP LDA #40 * GET INSIDE BEEPWAVE LENGTH
3EE,C 4A 00710 INLP1 DECA * DECREMENT INSIDE DELAY
3EE.D 2e. FD 00720 BNE INLP1 * AND WAIT TO TOTAL LOOPS
3E6F SE, 02 00730 LDA #$02 * GET HIGH PART OF BEEPWAVE
3E71 BA FF22 00740 ORA SFF22 * OR WITH PORT OUTPUT STATUS
3E74 B7 FF22 00750 STA SFF22 * AND OUTPUT THE RESULT
3E77 86 28 00760 LDA #40 * GET ANOTHER DELAY VALUE
3E79 4A 00770 INLP2 DECA * AND COUNT DOWN THRU DELAY
3E7A 26 FD 00780 BNE INLP2 * WAIT THROUGH TOTAL LOOPS
3E7C 86 FD 00790 LDA #$FD * SET LOW PART OF BEEPWAVE
3E7E B4 FF22 00800 ANDA $FF22 * AND WITH CURRENT STATUS
3E81 B7 FF22 00810 STA $FF22 * AND OUTPUT LOW BEEPWAVE
3E84 5A 00820 DECB * DECREMENT NUMBER OF WAVES
3E85 26 E3 00830 BNE OUTLP * AND GO BACK TILL ALL DONE
3E87 35 06 00840 PULS A,B * RESTORE COUNTER AND MORSE
3E89 39 00850 RTS * AND BACK TO PROGRAM

00860 *
3E8A 34 06 00870 QUIET PSHS A,B * SAVE COUNTER AND MORSE
3E8C C6 64 00880 LDB #100 * GET OUTSIDE DELAY VALUE
3E8E 86 64 00890 QLP1 LDA #100 * GET INSIDE DELAY VALUE
3E90 4A 00900 QLP2 DECA *COUNTDOWN THRU INNER LOOP
3E91 26 FD 00910 BNE QLP2 * AND WAIT FOR THE COUNT
3E93 SA 00920 DECB *COUNTDOWN THRU OUTER LOOP
3E94 26 F8 00930 BNE QLP1 * AND WAIT FOR THE COUNT
3E96 35 06 00940 PULS A,B * RESTORE COUNTER AND MORSE
3E98 39 00950 RTS * BACK TO MAIN PROGRAM

00960 *
3E99 00 00970 MORSE FCB $00 * SPACE
3E9A 00 00980 FCB $00 * I = SPACE
3E9B 4B 00990 FCB $4B * u (. -.. -.) (010010 11) **
3E9C 00 01000 FCB $00 * # SPACE
3E9D 00 01010 FCB $00 * s = SPACE
3E9E 00 01020 FCB $00 * " SPACE
3E9F 00 01030 FCB $00 * & SPACE
3EA0 7B 01040 FCB $7B * ' (.----.) (011110 11 > **
3EA1 B7 01050 FCB $B7 * ((-. --. -) (101101 11) **
3EA2 B7 01060 FCB $87 *) (-. --. -) (101101 11 > **
3EA3 00 01070 FCB $00 **=SPACE
3EA4 00 01080 FCB $00 * + = SPACE
3EA5 CF 01090 FCB $CF * '

(--.. --) (110011 11) **
3EA6 87 01100 FCB $87 * - (-.... -) (100001 11) **
3EA7 57 01110 FCB $57 * (. -. -. -) (010101 11) **
3EA8 93 01120 FCB $93 * I (-.. -..) (100100 11) **
3EA9 FD 01130 FCB $FD * 0 (-----) (11111 101)
3EAA 7D 01140 FCB S7D * 1 (.----) (01111 101)
3EAB 3D 01150 FCB $3D * 2 (.. ---) (00111 101)
3EAC 1D 01160 FCB $1D * 3 (... --) (00011 101)
3EAD 0D 01170 FCB $0D * 4 (.... -) (00001 101 l
3EAE 05 01180 FCB $05 * 5 (.....) (00000 101)
3EAF 85 01190 FCB $85 * E, (-....) (10000 101)
3EB0 C5 01200 FCB $C5 * 7 (--...) < 11000 101)
3EB1 E5 01210 FCB SE5 * 8 (---..) (11100 101)
3EB2 F5 01220 FCB SF5 * 9 (----.) (11110 101)
3EB3 E3 01230 FCB SE3 * : (---...) (111000 11) **
3EB4 00 01240 FCB $00 * ; SPACE
3EB5 00 01250 FCB $00 * (SPACE
3EB6 00 01260 FCB $00 * SPACE
3EB7 00 01270 FCB $00 * > SPACE
3EB8 33 01280 FCB $33 * ? (.. --..) (001100 11) **
3EB9 00 01290 FCB $00 * @ = SPACE
3EBA 41 01300 FCB $41 * A (. -) (01 000 001)
3EBB 84 01310 FCB $84 * B (-...) (1000 0 100)
3EBC A4 01320 FCB $A4 * C (-. -.) < 1010 0 100)
3EBD 83 01330 FCB $83 * D (-..) (100 00 011)
·3EBE 01 01340 FCB $01 * E (.) (0 0000 001 l
3EBF 24 01350 FCB $24 * F (.. -.) (0010 0 100)
3EC0 C3 01360 FCB SC3 * G (--.) (110 00 011)

126 Lesson 14

Program #25

3EC1 04 01370 FCB $04 * H (....) (0000 0 100)
3EC2 02 01380 FCB $02 * I (..) (00 000 010)
3EC3 74 01390 FCB $74 * J (.---) (0111 0 100)
3EC4 A3 01400 FCB SA3 * K (-. -) < 101 00 011)
3EC5 44 01410 FCB $44 * L (. -..) (0100 0 100)
3EC6 C2 01420 FCB SC2 * M (--) (11 000 010)
3EC7 82 01430 FCB $82 * N (-.) (10 000 010)
3EC8 E3 01440 FCB SE3 * 0 (---) (111 00 011)
3EC9 64 01450 FCB $64 * p (.--.) (0110 0 100)
3ECA D4 01460 FCB SD4 * IJ (--.-) (1101 0 100)
3ECB 43 01470 FCB $43 * R (. -.) (010 00 011)
3ECC 03 01480 FCB $03 * s (...) (000 00 011)
3ECD 81 01490 FCB $81 * T (-) (1 0000 001)
3ECE 23 01500 FCB $23 * u (.. -) (001 00 011)
3ECF 14 01510 FCB $14 * V (... -) (0001 0 100)
3ED0 63 01520 FCB $63 * w (. --) (011 00 011)
3ED1 94 01530 FCB $94 * X (-.. -) (1001 0 100)
3ED2 84 01540 FCB $84 * y (-.--) (1011 0 100)
3ED3 C4 01550 FCB SC4 * z (--..) (1100 0 100)

01560 * NOTE:
01570 * THE ITEMS MARKED WITH A DOUBLE ASTERISK (**) ARE
01580 * PROCESSED BY THE EXCEPTION BEEPING ROUTINE.
01590 *

3ED4 59 01600 TEXT FCC /YOU ARE LISTENING TO THE/

3EED 40 01610 FCC /MICRO LANGUAGE LAB, PRESENTED
3F0B 42 01620 FCC /BY GREEN

01630 *
3E00 01640 END BEGIN

00000 TOTAL ERRORS
AGAIN 3E18
BEEP 3E66
BEGIN 3E00
DAH 3E5D
DIT 3E61
EXCEPT 3E36
GETVAL 3E3D
INLP1 3E6C
INLP2 3E79
JUMP1 3E46
LETRLP 3E4D
MORSE 3E99
NEWBIT 3E3F
NEXT 3E48
NORMAL 3E3B
OUT 3E65
OUTLP 3E6A
IJLP1 3E8E
IJLP2 3E90
IJUIET 3E8A
SPACE 3E54
SPCLP 3ES6
START 3E11
TEXT 3ED4

By this point the program should be no surprise. Display it
using the P command. You'll notice little new; the program
has heen structured precisely along the lines of the original
description. Thei:e are just two additions: a comparison is
made to find out if the ASCII value in the message
represents a greater-than sign or a less-than sign. On
greater than, the transmission is completed, the program is
ended and returned to BASIC; on less than, the message is
repeated.

~OUNTAIN MICRO.)/

* If the A accuaulator cor.tains
a delay value, what is the
si■plest DOSSible delay
orocedure?

Decret1ent A accU11ulator, and
branch on not eoual back to
decrt!Erlt A accumulator. lllen A
reaches zero. the looo ends.

* HoN long is this delay loop
(excluding the original load A
accu■ulator)?

2 cycles IDECA) plus 3 cycles
(BNE} is 5 cycles, that is 5
tiaes 1.11746 or 5.5873
■icroseconds. (The less precise
value of 5 tiaes 1.15 gives 5.75
Microseconds)•

The other addition to the program is the comparison for
$20, the ASCII value for a space. There is no space in
Morse Code, but for purposes of clarity in transmission, a
little extra time is traditionally inserted between words. If a
space is found in the ASCII text, then, the QUIET routine

Leaming the l::R/:Jt 127

EDTASM switches

* HoN uny loops IIIOUld be
reouired for a delay of SN
■icroseconds?

see ■icroseconds divided by
5.5873, or approxiutely 89 (not
including the reuinder of the
progra■; 85 is used as a test
value in the exa■ple).

* lilly is a delay of SN
■icroseconds used instead of
l,M

1

■icroseconds?

Because the sound alternates
between 1 and 0, half the ti■e
on and half the ti■e off. 500
■icroseconds delay is needed for
each half.

* lillat are the Color Collputer
port addresses?

SFFN, SFF82, SFF28 and $FF22.

* At port $Ff22, Nhat is the
purpose of bit one?

It is used for sound output.

* What action causes sound?

Alternations of one and zero
ude at bit one of oort $FF22.

* Where is the sound heard?

On the television speaker or
through the cassette output.

* What is the ter■ for •setting
up" a c011puter device?

Configuring.

* What PIA address configures
oort $FF22?

Address SFF23.

* lillat does PIA ■ean?

Peripheral Interface Adapter.

128 Lesson 14

is called to insert a slight pause in the transmission.

Interestingly, this program represents quite closely the
actual human process from which is was derived. A person
reads a message, recalls the code, and transmits it with a
series of accurate, trained muscular movements.
Programming is not always such a parallel to real life; enjoy
it this time.

I'd like to take the remammg time to review editor/
assembler assembly commands. I haven't presented these
before, but you have undoubtedly come across them as you
worked with EDTASM+ while completing this program.

EDTASM's command to assemble your mnemonics into
machine language is "A". The "A" command has a number
of options called "switches". If you enter simply the letter
"A", the assembler will display a scrolling assembled
listing, will provide a table of all labels you've used in the
source code, note any errors you've generated, and -
assuming you have a tape recorder connected and ready -
will prepare a cassette containing the final binary object
code. The object code tape will be called "NONAME", and
will load under BASIC's CLOADM command.

There are many other options that this one. The format of
the ''A" command is A, space, filename, switch. For
example, to assemble and save the resulting machine
language program to tape under the name "DISPLAY",
you would type A DISPLAY <ENTER>.

The switches are two-letter command options separated
by slashes. These are:

/WE

;NO

/NL

/NS

/LP

!IM

/AO

Wait for errors The display stops if you
have made an error in an opcode, an operand,
a range, a typo, etc. The assembler wi 11
display a descriptive error message.
No object code tape is created. I use this
switch until I have eliminated all errors
picked up by the assembler.
No listing is displayed. Especially during
correction of minor errors, or when you only
want to see a list of labels, you can turn
off the long listing.
No symbol table is displayed. The symbol
table is the proper name for a list of all
the labels used in the program, together with
the addresses at which they appear.
Line printer command. Everything that is
displayed on screen is also sent to the
Color Computer's serial printer.
In-memory assembly This is an excellent
debugging tool. The program is not only
assembled into binary code, it is also placed
directly in memory, ready to run.
Absolute origin. If you do an in-memory
assembly, you can let the machine assemble
the program at its predetermined location,

\

jss f"'i~~:::;:~::::~:::5~=3:::,:;.:='f::::A:;?-]1•

I L.PA ,ll.:tl¾

I 0002. IF LO ;.-~-~--- ~-\

/MO

;SS

or at the memory location you specified in
your ORG statement. Absolute origin uses
your ORG.
Manual origin. This permits you to move the
source code, tables, and so forth, that
EDTASM needs to work with, so that your own
program doesn't conflict with it.
This is the short screen option. Finding
your way through an assembling program with
the Color Computer's 32-character screen
can be messy. The short screen places the
assembled hex address, opcodes and operand
on a line by themselves, with the mnemonics
out of the way on the next line.

For details on all these commands, of course, read pages 13
through 16 of your EDTASM+ manual. For the moment, I
want you to try the In-Memory assembly option, at your
own origin, for the Morse Code program and for as many
other programs as you would like to try up to this point.
Next time, a new topic.

EDT ASM switches

* Naae the timing considerations
necessary to produce a beep.

The length of the beep and the
frequency of the beep.

* The following questions refer
to EDTASM+ assembly IA)
coaands.

* What does A/ft[} produce?

An asSNbled listing and syabol
table.

* What does A produce?

An asseabled listing, sy•bol
table, and obJect code sent to
the cassette.

* What does A/Nl/NS/NO produce?

Only a report of errors at the
end of the asse11bly. No listing
appears on the screen.

* What does A/NL/NO oroduce?

A listing of the symbol table.

* What is the syabol table?

A listing of all labels used in
a progru, together with the
addresses at which they appear.

* What does A/NO/LP oroduce?

A coaplete asset1bled listing
send to the orinter.

* What does A/IM/AO oroduce?

A screen listing of the
asseabled prograa and sy•bol
table, as well as an obJect code
placed in IM!IIOry at the origin
specified in the source code.

* What does A/SS produce?

A screen listing in "short
screen• foraat, where lines are
broken up for easier- reading; a
syabol table and obJect code to
~assette are also produced.

Learning the l:R:f:f9 129

* ""1at does A/liE produce?

A listing, syabol table, and
obJect code; it also stops at
any line in Nhich an error
occurs.

* What does A •an?

AsSHble.

* What is asseably?

The translation
hme110nic) code
<obJect) code.

of source
into binary

130 Lesson 14

•
Hands-on programming takes a back seat for this lesson as
the topic once again returns to addressing modes. For this
session, you'll want to have your MC6809E data booklet
out again. Turn to pages 15 through 17. On pages 15
through 17, where you've previously learned about
inherent, immediate, extended, direct, relative, and
indexed addressing, you'll also find information about
additional applications of those modes.

These remaining addressing modes are called indirect
addressing. "Indirect" is an excellent description of this
concept, because the operand is not the data (as in
immediate addressing), nor is the operand the address of
the data (as in extended addressing). No, in the case of
indirect addressing, the operand is an address which points
to an address where the data can be found. Once again. The
operand is an address. That address points to another
address. In turn, that address points to the data.

This is easier to understand through example than
description. In fact, I've already introduced indirect
addressing, but not by name. Recall how I described the
power-up of the 6809 microprocessor. When the power is
turned on, I said, the processor immediately identifies
addresses SFFFE and SFFFF. It concatenates the 8-bit data
found at these addresses, producing a 16-bit number. That
16-bit number becomes the address of the first instruction
the processor is to follow. That's indirect addressing.

I know this method, properly called "indexed indirect",
sounds like a clumsy and roundabout way of getting
information. It's not clumsy, but it is roundabout, and that
roundaboutness is its precise advantage. Let's say you've
got a super-high-speed action game in the writing, and you
need to make moves based on keyboard input. We'll talk
about keyboard input itself later, but imagine for the
moment that the numbers O to 9 are crucial in your game.
Say each number causes an entirely different game action,
such as shooting balls or using flippers in some sort of
arcade pinball. You could, of course, check the value of
each number, and if it fits, jump off to a routine. It might

Leanaingtlae

One cf the most rnioortant
differences among the dozen or
5(1 0011\ilar AliCr(,i)rOCeSSOi'S is
their respectne architectu1·es.
ihe 6809's arch1tect•.1re is
created to facilitate finding
data, and its Myriad addressing
11\0des are key t1., finding data.
Indexed addressing is cart of
your µrogralftl!ling library
already; indirect addressing is
c0111ing uµ, together with
inf'ormatic,n c,n handling and
1anipulating high-resolution
graphics.

·• Where does the
instruction
instructions?

Fr0t1 IN!IIOry.

decoder
6809's

get its

* What Me1110ry locations does the
processor use when the power is
turned on'

It uses SFFFE and SFFFF when the
potrier is turned on.

* What does the processor get
fro1111e110ry location SFFFE'

The 110st significant byte of a
16-bit nu•ber.

* What does the processor get
fro11 A1NOry location SFFFF?

The least significant byte of a
16-bi ": nUllber.

60CY:; 131

Indexed indirect

* What does the processor do
with the two bytes from SFFFE
and SFFFF?

It concatenates them.

* What is the result of
concatenating the bytes from
SFFFE and SFFFF"

A 16-oit number.

* What does the 16-bit number
represent"

The address of the first
instruction the processor will
eKecute.

* The processor obtains the two
bytes at SFFFE and SFFFF,
concatenates them, and uses the
16--oi t result as an address.
What addressing IIIOde is this'

Indirect addressing.

-~ What addressing mode is LDX
#$1234~

:minediate addressir,g.

* What addressing mode 1s LDX
$1234'

E.~tended addressing.

* What addressing mode 1s LDX
'.$1234)'

~r.direct addressing.

* In the illllllediate addressing
mode as represented by LDX
1$12341 where is the data?

Ilallllediately
opcode, that
$1234.

following the
is, the data is

* In t~,e eKtended addressir,g
mode as represented by LDX
$1234, where is the data?

At address $1234 and $1235.

132 Lesson 15

look something like this (follow me in the book here):

CMPA
BNE
JMP

NEXTl CMPA
BNE

$30
NEXTl
FLIP
$31
NEXT2

JMP FLAP
NEXT2 CMPA $32

BNE NEXT3
JMP FLOP

* 2 bytes
* 2 bytes
* 3 bytes

* s~ , -* - .. and so on. This kind of programming would do the job,
1'CL-1/t <}--

and naturally it would be quite fast due to the simple fact of /a\ _,
its being written in machine language. But it grabs lots of /JlJ,.
memory, and, if timing is critical, it is an uneven process; r,2._
that is, getting to the last possible choice in the list takes _0
more machine time than getting to the first choice. ~

There's an entirely different and very powerful technique
available with indexed indirect. Consider this.You can load
an index register X or Y with the zeroeth element of a table
of subroutine addresses, subtract an ASCII offset from
your accumulator, double A, and simply jump to the
address indexed indirectly by X plus A. Look in the
book:

LOX TABLE ·~ Addresses
SUBA $30 * Strip ASCII
ROLA * Double A
JMP A,X * Indexed indirect

TABLE FCB $1234 '' Subroutine #0
FCB $1366 '' Subroutine #1
FCB $1A9C * Subroutine #2
FCB $20EF * etc

The A accumulator is rotated left (that is, doubled) because
it takes two bytes to create an address. The indexing
process needs to skip every two bytes. Observe that the
original compare-branch-or-jump routine takes 70 bytes
for ten choices. This indexed indirect routine has the
advantage of being more regular and much faster, yet it
takes only 29 bytes. For long or fast programs, the savings
in time and memory can be significant, and for timed
programs, the regularity can be meaningful. Let's put it to
work.

The program will be the Game of Life, a nifty set of rules by
which theoretical populations of cells are born, live, and
die. The rules are simple. First, this mythical population
lives in a regular, two-dimensional grid. On this grid, which
can be imagined simply as intersecting horizontal and
vertical lines, any given cell position is surrounded by 8
other cell positions. Three "live" cells will give birth in any
cell they surround; two or three surrounding cells will keep
that cell alive. If the neighborhood population grows over
three cells, or falls under two cells, the cell dies.

(l\X) + (B, X -t 1)

These simple rules can cause an incredible number of
predictable population patterns to arise. Civilizations grow
and shrink, rise and fall. Some stabilize in tiny colonies, or
rise to great empires. On a video screen, these changes can
transform a random population into an astoundngly regular
ebb and flow. It becomes hypnotic.

You don't play the Game of Life. Once you have created an
initial population, it plays itself until the populations have
stabilized in life or death.

And, with such a simple set of rules, it becomes a perfect
computer application. The set of rules by which any
applicaton is completed is called an algorithm. Let me
reiterate the algorithm for the Game of Life.

1. Where three cells surround an empty
position, cell birth takes place.

2. Where two or three cells surround a live
cell, life goes on.

3. When the surrounding population drops
below two, a cell dies.

4. When the surrounding population rises
above three, a cell dies.

I'd first like you to see this in slow motion. I've got a BASIC
program for you.

Problem #26, a BASIC program. Turn on the power of your
Extended Color BASIC computer. When the cursor appears,
type CLOAD and press ENTER. The computer will search (S)
and find (F). When the cursor reappears, UST this program. If
the program is not similar to the listing, or if an 1/0 error occurs,
rewind to the start of the program and try again. For severe
loading problems, see the Appendix.

10 PMODE0:PCLEAR1:DIMA(65,33)
20 FORX=1024TO1535
30 POKEX,127+RND(17):NEXT
40 FORX=1TO62:FORY=1TO30
50 IFPOINT<X,V> <>0THEN60ELSE140
60 A<X-1,V-1)=A<X-1,V-1)+1
70 A(X,V-1>=A(X,V-1>+1
80 A(X+1,V-1>=A(X+1,V-1)+1
90 A(X-1,V>=A(X-1,V)+l
100 A<X+1,V>=A(X+1,V)+1
110 A<X-1,V+1)=A<X-1,V+1)+1
120 A<X,V+1)=A<X,V+1)+1
130 A(X+1,V+1)=A<X+1,V+1)+1
140 NEXT:NEXT
150 FORX=0TO63:FORV=0TO31
160 IFA<X,V) <2THENRESET<X,V>:GOTO190
170 IFA<X,V>=3THENSET<X,V,1):GOTO190
180 IFA<X,V))3THENRESET<X,V)
190 NEXT:NEXT
200 FORX=0TO65:FORV=0TO33
210 A<X,V)=0:NEXT:NEXT:GOTO40

Learning the

Basic Life

* In the indirect addressing
11ode as represented by LDX
($1234) 1 where is the data?

At the address deter~1ined by
t-oncatenat1ng the bytes found at
$1234 and $1235.

* If addresses $1234 and $1235
contain $A0 and $00
respectively, and if addresses

,$A000 and SA001 contain $7F ano
SF0 respectively, what does the
'X register contain after LDX
lt$1234'.1

X contains $1234.

* If addresses $1234 ar~ $1235
contain $A0 ar~ $00
respec·t 1 ve l y I and if addresses
$A000 and SA001 conta,n $7F and

$F0 respectively1 wnat does the
X register c@tarn after LDX
$1234?

X contains SA000.

* If addresses $1234 ar~ $1235
contain SA0 and $00
respectively, anci if addresses
$AM and SA001 contain S7F and
-5;:-0 respectively, what does the
X register contain after LDX
($1234).,

X contair,s $7FF0.

* What specific addressing mode
is LDX $1234'

E~tended addressing.

* What specific addressing mode
is LDX ($1234}'

EKterided indirect addressing.

* What specif1c addressing mode
is LDA ,Y?

Zero-offset indexed.

* What specific addressing IIIOde
is LDA <, Y)?

Zero-offset indexed
addressing.

60C)9
indirect

133

Checking the neighbors

* There are basic rules to the
Game of Life. What is the
general ter111 for a set of
rules?

An algorithM,

* There are four parts to the
Game of Life algorithm, each
involving a cell position on a
grid. How many potential
neighbors are there in a
regular, two-dimensional square
grid'

Eight neighbors.

* What do three neighbors
produce in a dormant cell?

A cell "birth".

• What do two or three neighbors
produce in a live cell'

No change.

• What do less than two
neighbors produce'

A cell "death".

* What do more than three
neighbors produce'

A cell "cleatti".

* What 1s the general term for a
set of l"Ules'

An algorithm.

* what does VDG mean?

Video Display Generator.

* The VDG perforMs what
functions'

The display of alphanumeric
characters, and the display of
several resolutions of color and
rronochrome graphics.

* What does SAM mean?

Synchronous
Multiplexer.

134

Address

Lesson 15

RUN this program. As you watch, a random population is
generated in low-resolution graphics. This is the starting
population, the garden of Eden, if you will. Once the
population has been established, the Game of Life begins.
As you watch, I'll tell you that the Game of Life is now a
traditional computer problem, originally invented and
proposed by British mathematician John Conway. His
proposal delighted computer people at the time, and
continues to be fascinating as more detailed color screens
and more capable computers are developed.

The populations you are watching develop slowly, since
BASIC must make a large number of simple comparisons
and calculations for which it is ill-suited. Doing such
calculations by hand can take hours per generation. Yet the
simple-mindedness of machine language finds this a fertile
area.

The process of moving from generation to generation is
made up of one overall task: check the "neighborhood" of
cells, so to speak, and than maintain the status quo, give
birth to cells, or kill cells. There are many ways of dealing
with that task, however. You might check by neighborhood,
or by cell, or look for the presence of any population in an
area. Statistically, the Game of Life more often results in a
lesser number of live cells - at least after the Garden of
Eden has been created and the generational growth has
begun.

My old friend and teacher Phil approached the algorithm
from this point of view. It complicated the programming
slightly, but sped along the real time required to move from
generation to generation. That's the approach I'm going to
use for this example, so I'd like you to keep it in mind. As
you progress with 6809 assembly language, you might like
to give the Game of Life a try using other approaches.

To begin with the Game of Life on the Color Computer, you
have to know how to establish the degree of screen
resolution you wish to use, and how that mode is
manipulated. This is especially important when using the
684 7 video display generator because each graphics mode
has a different number of colors and a different manner of
dealing with how the bits in a memory byte are reflected on
the screen. In your notebook, find the MC684 7 video
display generator data sheet, and turn to page 19.

These modes should already be familiar to you from an
earlier lesson, but you should review them now. Also, you'll
want to look in the MC6883 data sheet to Appendix A on
pages 20 through 22. Because of the way the SAM and the
VDG are connected, these special modes are also available.
Take time now to read the information on graphic display
modes.

~TlON/

Turn to the MC6847 video display generator (VDG) data book
let and read the information on page 19. Also, open the
MC6883 synchronous address multiplexer (SAM) data booklet
and read Appendix A, pages 20 through 22. Return to the tape
when you have completed the reading.

I'd like to select detailed, regular and square picture
elements. The highest resolution mode offers individual
pixels, but I'd also like color so that different generations
and empty cells are shown in different colors - empty cells
in black, perhaps, births in yellow and established cells in
blue. The mode labeled CG3 offers a 2x2 pixel in four
colors. I'll use it.

Now, rules in hand and video mode selected, I can structure
the neighborhood counting process. To create this screen,
3072 bytes are required to produce 12,288 screen points,
at a resolution of 128 by 96. In the screen memory,
combinations of bit pairs determine the color, and four bit
pairs fill a byte.

By now, you should be able to establish mode CG3 and
select the screen memory using the upper memory address
and the SAM registers. To accomplish this, remember to
refer to both the MC684 7 VDG data booklet and the
memory map in the MC6883 SAM data booklet. I won't
take time for that here; you'll be able to double-check your
results against the program listing in the next lesson.

Among the other things to establish is the color set - that ·
is, which set of four possible colors to display. The sets are
green, yellow, blue and red for set #0; buff, cyan, magenta,
and orange make up set # 1. The choice for color set is
specified in the Color Computer memory map as bit 3 of
output port address $FF22.

Some arbitrary decisions must be made. I've selected
addresses $0000 through $0BFF for the video display; that
address has to be presented to the SAM. Recall that the
SAM contains write-only registers which are set or reset to
produce the 7 -bit upper portion of the display address.
Review the MC6883 data sheet if you need to refresh that
information.

And finally, interrupts must be turned off to speed the
execution of the program. Again, the details of all these
setup routines will be shown in the final program in the next
lesson; you should attempt to do them in the meantime.

Let me give you a summary now of the pre-program
setup:

1. Interrupts must be disabled.

High resolution and Life

* On the Color Computer, ther1:
are t1o10 considerations necessary
to establish VD6 roodes and
colors. ~hat are they~

Port $ff2'2 and the SAt"I video
registers.

* What bit of port $FF22 selects
the wlor set'

Bit 3.

* What are the SAi'! IIIEP.10>'Y

addresses called?

Write-only registers.

* Name the addresses of the SAJII
Ylrite--only registers that
control the video display
offset.

qddresses $FFC6 to $FFD3.

* What is the video display
offset address the address of"

The upper-left-most
element shown on the
display screen.

p1ctur2
video

* what is the term for "picture
eleoient"

Pixel.

* In the 1110st detailed mode,
Nhat is the pixel size of the
video screen (pixels wide by
pixels high)'

256 pixels wide by 192 pixels
high.

* What is the pixel size in mode
CG3 (colc,r graphics 3) 'J

2 piKels by 2 pixels.

* What i5 the size of the screen
in mode C63 (width by height)'

128 wide by 96 high.

Learning the~ 135

Scratchpad memory

* How many different points are
displayed on the screen in IIOde
C63?

12,288 points.

* How many bytes are required
for the screen in mode C63?

3,072 bytes.

* How many colors are available
in mode C63?

Four colors.

* What are the four c-:.1ors of
VDG color set #0?

Green1 yellow, blue and red.

* What are the four colors of
VDG color set #1'

Buff, cyan, 111agenta and orange.

* What bit of what port address
selects the color set to be
displayed'

BI t 3 of ~ort SFF22.

* I!'I the Game of Life algorithm,
what causes cell birth in a
dormant ce1; 1

Three .ililll!ediate nelghbors.

¼ In the Gar11e of Life algorithm,
what causes cell death?

Either less than two or MOre
than three illlllediate neighbors.

* In the Game of Life algorithM1

what causes no change to a
Ii ving cell'?

Either two cir three illllllediate
neighbors.

* What is another name for a
work area of raemory'

A scratchpad.

136 Lesson 15

2. One of two possible color sets must be
selected. This program will use set # 1 for
greatest definition.

3. The display screen memory must be
defined. Screen memory will run 3,072 bytes
from $0000 to $0BFF.

4. The color graphics modes must be
established. Color Graphics 3 will be used,
binary mode 100, to achieve a screen
resolution of 12,288 points in four colors.

The final setup information is actually the Garden of Eden
population itself. Because there's memory garbage and
other information present upon powering up into BASIC or
EDT ASM+, you'll be able to use that residual material as
the Garden of Eden. Creation of random numbers is a
subject for later in this course; so until then, Life begins in
the garbage pile of memory.

I'll be speaking often about scratchpad memory. Also
called a work area, scratchpad memory acts as temporary
storage for calculated information on the way to a final
result. For example, long division on a microprocessor is a
fairly complicated task, and there aren't enough registers
inside the 6809 processor to complete it. All the temporary
quotients, remainders, and so forth, are stored in a working
arithmetic area. When you call for the answer to a
complicated mathematical formula in BASIC, the working
area required can be thirty or forty bytes, in addition to
temporary stack storage of the results from within each and
every set of parentheses.

In this version of the Game of Life, 3072 bytes of display
memory represent 12,288 screen display points. In other
words, each screen display point requires two bits of a byte.
These quarter bytes provide for economical use of
memory, but are more time-consuming to handle in a
program because they have to be shifted left or right, or
masked, or whatever, to retrieve their information. Point
#0 on the screen is byte zero, bits 7 and 6; point #2 is byte
zero, bits 5 and 4; point #12287 on the screen is byte
#3071, bits 1 and 0. The relationship isn't difficult, but
program handling can be.

Exclusively for reasons of speed, then, I chose to set up a
scratch pad memory 12,288 bytes long- one byte for each
point on the screen. Although it's wasteful of memory, it's
very speedy because my "neighbor" information is
immediately accessible in raw form. Since there are from 0
to 8 neighbors for every point, I could have used nybbles,
hut I chose to use the whole byte to avoid the time required
for rotating and masking.

I've also made an arbitrary decision to choose $1000 to
$3FFF for these 12,288 bytes of scratchpad memory.
That's hex $3000 bytes. So the screen display runs from
$0000 to $0BFF and the scratchpad runs from $1000 to

$3FFF. All the memory that's left for the program itself is
$0C00 to $0FFF. I'll put the program at $0C80.

So I'd like you to begin by writing a program beginning at
$0C80 to perform the setup, and to clear scratchpad
memory to zero. Once again, the setup is in four steps:
disable interrupts, select color set # 1, point display
memory to begin at$0000, and choose color graphics mode
3. Scratchpad memory runs from $1000 to $3FFF and must
be filled with zeroes.

Before I leave you with this project, I'd like to suggest that
although there is a simple way to fill memory, there is a
faster but less obvious one. The simple way is to load an
accumulator with the value needed to fill memory, to point
the X or Y register to the start of that memory, and to store
and-increment your way through.

The less obvious method is to use the 6809's fast and
powerful stack instructions. Re-examine the stack
instructions in the MC6809E data book, including their
opcodes and speed, arid - without looking ahead to my
solution in the next lesson - work out both ways of filling
up that scratchpad memory.

Learning the

Filling memory

* In display 1111."lde C63~ how many
display positior,s are
represented by one byte'

Four display positions are
represented by one byte.

* HOtil many bits of a byte are
necessary for each display
:.i,,sition in IIIOde C63?

Tt,j(I bits are necessary for each
display p1)s1 t ion.

* Why two bits'

Because 111etde C63 displays four
colors, and all combinations of
two bits are necessary to
display four colors.

* What addressing fl!Ode 1s LDX
#$1234?

!R1111ediate addressing.

* What addressing mode is LDX
$1234?

Extended addressing.

* What addressing IIIOde is LDX
{$1234)?

Indirect addressing.

* What specific addressing ftlOde
is LDX $1234?

Extended addressing.

* What specific addressing mode
is LDX {$ l234P

Extended indirect addressing.

* What speci fie addressir,g mode
is LDA , Y?

Zero-offset indexed.

* What specific addressing mode
is LDA <,Y>?

Zero-offset indexed indirect
addressing.

6PJ:fl 137

138 Lesson 15

•
Although we're still pretty far from its actual use in this
program, I want to remind you that the current topic is
indexed indirect addressing. Indexed indirect is the mode
where the operand is the address of a memory location, and
the contents of the pair of sequential 8-bit memory
locations make up an address which is the event~! location
of the data. For example, say register X points to memory
location $3000. Say that memory location $3000 contains
byte $AB and memory location $3001 contains byte $99.
Now say finally that memory location $AB99 contains byte
$FF. Load A accumulator zero-offset indexed indirect to X
would result in A containing $FF. I've got some illustrations
of that concept in the book, and the program we're writing
should help understand the usefulness of the technique.

By this session you should have prepared the setup
information and the scratchpad memory clearing. Your
setup should look something like mine. To disable
interrupts, you would ...

ORCC #$50

... which sets bits 4 and 6 of the condition code register.

To choose color set# 1, you need to set bit 3 of port address
$FF22. Furthermore, bits 4, 5 and 6 are the graphics mode
selection bits, and bit 7 is the alphanumeric/graphic
selector. If you hadn't taken a look at all these control bits,
then now's the time. Turn to page 15 of your MC6883 data
booklet (page 15 of the SAM data booklet).

There are 16 different display modes presented on this
page, all but one available in two color sets. That gives you
31 choices. This wide selection is only available in
computers where the 684 7 video display generator and the
6883 SAM are used together; both are smart circuits, and
so they interact in complex and versatile ways. The mode
I've selected for the Game of Life is full color graphics 3. If
you follow down on the chart, you'll see full graphics 3C,
and the required bit conditions. The detailed memory map

Indirect
along.

addressing 1s co11,ir-.~
There's still co~c,r

graf.'l'Hcs MOde details b:i ceal
w1th, and SOBIE' ideas in cuicKly
!IIOVir,g da:a fr~ olace to place.
Cloci, cycles wi L cooie ir,io oia:;
rn the evaluati,:in ;:;f speed -
;;rnce we all want graph1cs 3r~J
s!)eed tc, g,:i haM tr, r,,rnd. 7r!e•·e
are alsv rev1ei,;s ,:,f f,,r~r
1r)format10n to cover, ,;,,, t=1a,;

thi!: pr,:<Q1'at1Ming ooesn' ~ roo-1e
c1,on~ tc.o fast.

1 What. acii:,ressing ftlode 1s ,_Jx
'11234'1

* What addres:rng illC•□e is L.DX
~$1234:>?

Indirect addressing.

* What specific addressing 111Cide
is LDX 1i1234?

C::~terided addressing.

* What soec1fic addressing mc~e
15 LDX {$1234}'1

Extended ind1rect addressing.

shows these bits; I'll remind you that the MC684 7 modes L Q~
Learning the CX>,...,,,17 139

Video modes

* What specific addressing mode
is LDA ,Y?

Zero-offset indexed.

* What specific addressing IIOde
is lDA <, Y>?

Zero-offset indeKed inclirect
addressing.

* What 1s necessary to choose
VDG caJlur" set #1 on the Color
Comouter7

3ettin& bit .3 of port address
iFF22 chooses cc- t .:,r set # 1.

* Which Ji ts ,:,f oort $FF22
select the graphics ~1<;.'lies'

Bits ~. 5 anc 6 select tne
gr~-:ihi-:s mc,des ..

·• :;;~, 1 ,_-r, tn t 0 f oort iFF22
se i ect,; :,~tweer, a 1 ohar,umeri cs
O:/·(i gra?'-iics'

S, ,; 7 ,:,f oort $F;:22 selects
almar,umerics or graphics.

, ilidme i11y three cats.

i '"e• e iH'e ~;as,;: rule:=- t,:i the
.:,arne of Life. what is the

ger.eral tefni fo, a set of
r•.::es"

* There are four- oarts to the
Game of \..1fe algol'ithR1, each
rnvoiving a cell position on a
grid. i-low many pi:,teritial
neighbors are there in a
regular, two-dirtens1onal square
grid"

Eight neighbors.

* What do three neighbors
?roduce in a dormant cell?

A cell "birth".

140 Lesson 16

(the first five columns) are, respectively, bits 7, 6, 5, 4
and 3.

So to achieve mode G3C, bit 7 must be high, bit 6 is high,
bits 5 and 4 are low, and bit 3 is up to you. Bit 3 is high for
color set # 1. So the left five bits of the binary number
created for port $FF22 is 11 001. The rightmost three digits
are powered up to 111 on a 16K machine. So the complete
binary number to select full color graphics mode 3, color set
1, is 11001111, or hex $CF. The instructions are simplicity
itself ...

LDA
STA

#$CF
$FF22

... easily selecting the proper modes.

But in the process, don't forget the SAM. It has to be
properly programmed as well. According to the chart
you've been looking at, mode G3C requires that SAM bits
V2, Vl and VO be programmed binary 100. Turn the page
in the SAM data booklet, and look at the map on page 17.
Addresses $FFC0 through $FFC5 control the SAM modes.
To set mode G3 C, then, set bit V2 and clear bits Vl and VO.
That means, remembering the SAM's write-only register
technique, write to addresses $FFC5, $FFC2, and $FFC0.
So you store any value to $FFC5, $FFC2 and $FFC0 ...

STA $FFC5
STA $FFC2
STA $FFC0

The final setup information is to choose the display
memory starting address, which I've selected to be found at
$0000. The display offset information is provided by the
SAM, so that setup information must be written to the
SAM. That is done - again recalling one of early lessons -
by writing to addresses $FFC6 through $FFD2. To
establish starting address $0000 means that binary values
0000 000 must be put into the severr-SAM address offset
positions. To place a zero in the SAM - that is, to clear?
bit - you write to an even-numbered address. To place a
one in the SAM - to set a bit - you write to an odd
numbered ~ddress. As you've seen, the display memory
calls for binary 0000 000, so that calls for writing to
addresses $FFC6, $FFC8, $FFCA, $FFCC, $FFCE, $FFD0
and $FFD2.

The most straighforward way of doing this might be to store
an accumulator at each location ... STA $FFC6, STA $FFC8,
STA $FFCA, etc. Since all even addresses are being set, I've
chosen this case-specific solution ...

LDB #$07
LDX #$FFC6

VIDEO STA ,X++

L DECB
BNE VIDEO

(ojojo(ojon~ . :., "

CI X++
¢ &•Z
I I-'"-"-"~~)(+t

(If imTT~~,.,,.,.; B>~

I j..LLCL"-LL,= X T"f"

?J 6•"
I ~"'"""''-=A X -t-t
¢ 17,;7,=-c-;;'77"::1 B•S"
I f-'-CL.~L'.lij)(++
¢ 1n-=-~,-,=1 a•~
I fL'~-'-'-'-'-c-.aLt X+1
¢ &•1

... which writes to every other even-numbered address for a
total of seven. The B register does the counting, and the X
register points to the first SAM video address. For
contrast, have a look at the general-purpose example
shown at the bottom of page 16 in the SAM data
booklet.

This completes the pre-program setup; take a break now
and review this process, especially if your solutions are
substantially different from mine.

Last time I suggested you have a look at stack instructions
and see how they might be used to fill memory. First, here's
a standard method of doing a memory fill from $1 000 to
$3FFF (you can follow along in the book):

CLRA * Set A to ,0
LOX #$1000 * Point X to ;b;$ll00

LOOP STA , X+ * Store zero L CMPX #$400.0 * See if finished
BNE LOOP * Go back til done

The main time-consuming part of this routine consists of
the last three instructions, requiring 6, 4 and 3 cycles
respectively. The total of 13 cycles is repeated 12,288
times, for a total of 159,744 cycles. At 894,886 clock cycles
per second, this operation takes a considerable 178.5
milliseconds ... nearly one-fifth of a second. For fast action
games, that isn't.

Consider this solution instead (follow me in the book):

CLRA * Set A to 0
CLRB * Set B to 0
TFR D,X * Set X to 0
TFR D,Y * Set Y to ,0
LDS #$4000 * Point S to top

LOOP PSHS A,B,X,Y * Push 6 bytes
LCMPS #$1000 * See if bottom

BPL LOOP * Back until lower

After clearing A, B, X and Y to zero, the S stack is pointed
to the top of the memory area to be cleared. Remember that
the stack pushes down from the top. A, B. X and Y are then
pushed on the stack using one imitruction. The stack is
compared immediate with $1000, the bottom of
scratchpad memory, and if the result is plus (if Sis greater
than or equal to $1000), the routine is repeated.

The number of clock cycles required for the PSHS
instruction is 5 plus 1 additional for each byte pushed. Six
bytes are pushed in total, meaning that PSHS A,B.X,Y
takes 11 cycles to complete. So the heart of this memory fill
routine requires 11, 5 and 3 cycles ... a total of 19. 19 cycles
is longer than the 13 needed for the previous example. But
remember that in this case, six bytes are pushed at once.

Fast stack use

* What do two or three neighbors
produce in a live cell'

Ne, change.

* What do less than two
neighbors produce?

A cell "death".

• What do Jt10re. than three
neighbors produce?

A cell "death".

* What addresses control the SAM
videc, modes'

Addresses $FFC0 thrCtu~r $FFC5.

• l,lhat addresses control the SAM
video dis:,lay offset acdress~

Addre:::.ses fFFCf, thrc,ugh SFFD3.

.,. what is the video 01solay
offset address the addr-ess Ctf~

7he uppe~-left-most
elerner,t shown i:,n
01s;tlay s.creen.

Jicture
the video

• Wna.t L; the term for "picture
e: eroer,t ·•

• I:, the mc,st detailed l'!k."lde,
what 1s the pi~el size of the
video screen ipixels wide t.Jy
;n ·(els h i ~"I' '

~")£ ~1xeis wide by 152 p1xels
high.

* What is the pixe~ size in mode
CS3 (color graphics 3)'

2 pixels by 2 pixels.

* ~hat is the size of the screen
in mode C63 (width by height)?

128 wide by 96 high.

Learning the l::R:f:J9 141

Joe's neighborhood
* How many different points are
displayed on the screen in M<Xle
C63?

lc\288 points,

* How 11c1ny bytes are required
for the screen in mode C63?

3,072 bytes.

* How many colors are available
in mode C63?

Four colors.

l What are the four colors of
VD6 color set #0'

Greer., yellow, blue and red.

'What are the four colors of
VDG colc,r set #1?

Buff, cyan, magenta and orange.

* The push and pull S stack
coo1111ands require an c,perand,
plus what additional
rnformation7

A postbyte.

* What information is contained
in the postbyte'

Bits 1rld1cating which registers
are to be pushed or pulled.

* How many reg1sters can be
pushed or pulled?

Eight: registers.

* What are the eignt registers
which can be pushed or pulled?

PC, U, Y, X, DP, B, A and CC

* How many bytes are involveo in
pushing all eight registers?

12 bytes (2 each for PC, U, Y
and X, 1 each for DP, B1 A and
CC).

142 Lesson 16

12,288 divided by 6 is 2,048 ... there are only 2,048
repetitions of this routine. 2,048 times 19 is 38,912 clock
cycles; again, at 894,886 clock cycles per second, this
instruction completes in only 43.5 milliseconds. That's
slightly less than one-quarter the time of the previous
method, just one-twentieth of a second.

So where you need to fill blocks of memory very quickly, the
push-stack method is ideal. Don't forget to save the stack
pointer if you need to, and also to replace the stack pointer
when you're done with it. In this program, I put the stack
pointer at $00BF when I'm finished with it:

LDS #$0DBF

If you would like to look through these examples, this is a
good time to stop and do that.

At this point, the Garden of Eden is populated, video
display setbp is complete, interrupts are disabled,
scratchpad memory is cleared, and the stack is in position.
It's time to evaluate the Garden of Eden for the population
of its neighborhoods. I'll summarize the Hooper
technique.

If Joe lives in a house on this regular memory grid, then he's
potentially got a neighbor to the northwest, north, and
northeast; to the west and east; and to the southwest,
south, and southeast. Eight neighbors in all. The screen
grid in this graphics mode is 128 by 96, 128 houses across
by 96 houses down. If ,Joe lives in house #3761, then he's
got potential neighbors in houses 3761 minus 129 (that's
northwest), 3761 minus 128 (that's north), 3761 minus 127
(that's northeast). There's a house to the west at 3761
minus 1, and a house to the east at 3761 plus 1. Finally,
there are houses to the southwest at 3 7 61 plus 12 7, to the
south at 3761 plus 128, and to the southeast at 3761 plus
129.

J-luz_,,
NE I <;:HOOR.HOOD

~ ~ @
~ ~ ~

~ G ~

-81 -80 -7F
-I 0 t/
-+1F +8:) -te,f

¢¢ ~
(Z) I NEW~

I </ ''tie.vwrr"
I I f'l'Al\.RJ:.

I'll convert those to hex. The screen is hex $80 by $60, so
Joe's got neighbors at -$81, -$80, -$7F, -$01, +so1,
+S7F, +S80, and +S81. If the Y index register points to
Joe, then the neighbor offsets would be:

and

-$81,Y
-$80, Y
-$7F,Y

-1, y

l,Y
$7F,Y
$80, Y
$81,Y

The process, then, is really a kind of inverse of this. If those
eight are Joe's potential neighbors, then Joe is the neighbor
of those eight. So instead of going to every cell and
evaluating all eight neighbors, you can go to every cell and
see if it is alive (that's the key). If it's alive, you increment
the neighbor count; if not, you move along to the next.

So instead of making 12,288 checks of 8 neighbors, ,you
make 12,288 checks for life. So only if a cell is live does the
action become:

INC -$81,Y
INC -$80,Y
INC -$7F,Y
INC -1, y
INC l,Y
INC $7F,Y
INC $80,Y
INC $81, Y

This is the heart of the neighborhood scratchpad routine.
But think back to the actual display screen. Only 3,072
bytes are used to display the 1~,288 cells. Somehow you've
got to break these into quarter bytes very quickly, and
evaluate them. You might choose a mask-and-shift
strategy, where each pair of bits is shifted left, then masked
and evaluated. You might choose a mask-and-compare
strategy, where four separate routines are used to evalute
the four separate quarter- bytes. Both methods would
work, but in addition to masking or shifting, each technique
would require saving and restoring the original value,
testing, and branching.

The method I've selected takes advantage of the rotate
instruction, which rotates the bits of a byte around in a
circle - but through the carry flag. You can take a look at
the MC6809E data booklet to see exactly how the ROL and
ROR instructions work. The advantage here is that, by
carefully selecting how I represent live and dormant cells, I
can rotate bits of the display byte through the carry flag and
usi~ the carry to branch to the proper routine. Rather than
spend time explaining the concept, I'll take you right to the
routine itself. Look in your book. As you examine the
program excerpt, keep in mind that I've defined oo as a

Life checking

* How many clock cycles does a
push or pull operand use?

5 cycles.

• How rwany additional clock
cycles are required for each
register pushed or pulled?

1 cycle for each register pushed
or pulled.

* How many cycles are required
to execute the instruction PSHS
PC,U,Y,X,DP,B,A,CC?

17 cycles are reauired.

* Hct111 long is one Colc,r CCtfllputer
clock cycle?

1.11746 Microseconds.

* How 1(:<ng does the rnstruction
PSHS PC1U,Y,X,DP,BiA,CC take 011

the Col,,r Cc,mouter'

About 19 m1croseconds (18.99
m1crc,secor.dsl.

* How long WCIUld it take to fill
61 144 bytes of MeMOry using PSHS
PC,U1 Y,X,DP,B,A,CC at 18.99
microseconds oer instruction?

9723 r~icroseconds (.009723
secc,nds:i, or about 1/100 of a
second.

* How many clock cycles is PSHS
A,B,X,Y?

5 plus 61 or 11.

• How long 1s PSHS A,B,X,Y?

11 times 1.11746, or 12.3
llli croseconds.

• How long would filling 6,144
bytes of f!IE!IIIOry take using PSHS
A,B,X, r

19446 Microseconds
seconds) 1 or aoout
second).

l.019446
1/50 of a

dormant cell, 01 as a newborn cell, and 11 as a mature cell

Learning the 6e/:Jt 143

Rotate to test

* It is theoretically possible
to fill HMOry Merely by
executing a long series of PSHS
A,B,X,Y. HoMever, a eo111parison
and branch would be required,
resulting in a sequence like
this:
LOOP PSHS A,B,X,Y

()!PS H2000
BPL LOOP

HoN long would one iteration of
this sequence take?

11 cycles plus 5 cycles plus 3
cycles, or 19 cycles total; 19
cycles times 1.11746
microseconds is 21.23
111i croseconds.

* How long would it take the
above sequence to fill 6,144
bytes?

(21. 23 Microseconds per loop)
times <6,144 bytes divided by 6
bytes per loop) is about 21,739
microseconds, about • 02
seconds.

* The Gaaie of Life uses 12,288
bytes. How long would it take
to fill 12,288 bytes using this
kind c,f sequence?

About • 043 seconds.

* If the S stack pointer is set
to $1000 and the instruction
PSHS A,B,X,Y is executed, where
will the S stack pointer be at
the conclusion of the
instruction?

At S1000 Minus 61 or sa=-FA.

* Why f0FFA ir1Stead of S1006?

Because the stacks move downward
in IIIE!IIIOry; they are push-down
stacks.

144 Lesson 16

(that is, past the first generation).

LOX #$0000 * Point X to display
LOY #$1000 * Point Y to scratchpad

NXTCEL LOB #4 * Count four quarter bytes
LOA ,X+ * Get video display byte
PSHS cc * Save carry flag info
PULS cc * Restore carry flag info
ROLA * Rotate A through carry
ROLA * And rotate A again
PSHS cc * Save carry (part of byte)
BCC NEXTQ * If C=0, then cell not live
INC -$81,Y * Northwest neighbor
INC -$80,Y * Northern neighbor
INC -$7F,Y * Northeast neighbor
INC -$01, Y * Western neighbor
INC +$01, Y * Eastern neighbor
INC +$7F,Y * Southwest neighbor
INC +$80,Y * Southern neighbor
INC +$81, Y * Southeast neighbor

NEXTQ LEAY 1, y * Get next scratchpad position
OECB *Countdown quarter bytes
BNE QUARTR * Get next quarter byte
PULS cc * Else restore stack info
CMPX #$0C00 * See if at end of display
BNE NXTCEL * Get next value

X and Y are pointed to display and scratchpad,
respectively. The B accumulator serves as a quarter-byte
counter. The A accumulator holds the byte from display to
be evaluated.

Now here's the trick. The value in A is rotated left twice,
through the carry flag. That leaves the rightmost bit of the
display pair sitting in the carry flag, and the leftmost bit of
the pair sitting in the bit O position of the accumulator. If
the carry is clear, the cell is either dormant (00) or defined
as illegal (1 O); in either case, it is not a neighbor, so the
routine moves down to the labelNEXTQ. If the carry is set,
then the cell is either a new born (01) or a mature cell (11),
and the eight neighborhood incrementing instructions are
completed. The label NEXTQ follows. More about the
instruction "Load effective address" later; what you see
effectively increments Y by one. The quarter-byte counter
is decremented, and the rotate-and-branch routine is
repeated until four quarter bytes have been done. The
CMPX #$0C00 tests for the end of the 3,072 byte display
area. That's it. At the end of 3,072 groups of four quarter
byte tests, 12,288 bytes of scratchpad memory will be filled
with neighborhood information.

To understand this process more intimately, take some
time to draw a small grid of display points excerpted from
the screen (say 16 by 16), a corresponding page of memory
bytes (it would be 4 by 16), and a chart of scratchpad
memory. Put some random cells in place on the display
grid, then determine the display bytes. Finally, evaluate the
results in scratchpad memory. In the next lesson, you'll do
the actual neighborhood checking and updating.

~

•
Hello again. I hope you aren't impatient with this step-by
step approach. In this lesson, you'll finally be getting to the
application of indexed indirect addressing, and be
completing the Grune of Life. The result will be surprisingly
short - under 240 bytes - and quite fast.

We left off having performed all the setups: disabling
interrupts, selecting color graphics mode 3 with color set 1
(12,288 points in buff, cyan, magenta, orange), video
display address $0000. 12,288 bytes of scratchpad
memory has been cleared and filled with neighborhood
information, that is, values O to 8.

Once the neighborhood values have been determined, that
information is used to give birth to a cell, to allow a cell to
become dormant, or to leave the cell unchanged. As with all
programming, there are many ways to make this happen.
And, as always, the most obvious solution isn't necessarily
the fastest or the most efficient. The obvious solution is
something like this . . .

LDA ,Y
BEQ DEATH
DECA
BEQ DEATH
DECA
BEQ NO CHANGE
DECA
BEQ BIRTH
DECA

... and so on. Another technique - and a fast one - would
have started by filling the scratchpad memory with $FE
instead of $00. In this circumstance, zero or one neighbors
would result in the scratchpad value being left with $FE or
$FF. Two neighbors would produce $00 in the scratchpad,
three neighbors would yield $01 , and more than three
neighbors would produce $02. A much quicker method, the
final routine would look like this ...

Creating longer prograA1S like
this one can be time-cons1111ing
"up front•, but care taken at
this stage Nill assure a partly
functioning -- if not perfect -
result Nhen you type EXEC. No,
this 6aae of Life didn't NOl"k
for 11e the first tiae. But the
screen shONed proper IIOdes and
colors, and there NaS

generation-to-generation aotion.
It Nasn' t right, but there ..as
enough to begin serious
debugging. If you spend your
first few hours creatil'l!I
structure, then outlining
IIIOdules, and finally stringing
the pieces tc,gether, chances are
yc,ur progra■ will begin to show
evidence of life fl'\.""tlll your first
EXEC.

J What instructions are usea to
turn interrupts on and off?

ORCC and ANDCC.

* Why does ORCC 1$50 turn off
interrupts?

Because setting bits 4 and 6 of
the condition code register
turns off interrupts; lt5e is
01011l100, so ORCC H5e sets bits
4 and 6 without altering the
other six bits.

Learning the 6e/::J9 145

Indexed indirection

* What addressing IIOde is JMP
$3456?

Extended addressing.

* What addressing IIOde is JMP
A,X?

Indexed addressing.

* What addressing mode is JMP
<A,X>?

Indexed indirect addressing.

* X points to $1234. A is set
to 4. The 11e1110ry locations
$1230 through $123F contain Ml
02 45 47 93 96 A2 01 11 F5 36 92
19 5E 22 00. Where is the
program counter after JMP
$1234?

PC is at $1234.

• X points to $1234. A is set
to 4. The MeMOry locations
$1230 through $123F contain $01
02 45 47 33 96 A2 01 11 FS 36 92
13 5£ 22 00. Where is the
program counter after JMP
($1234}?

PC is at $3396.

• X points to $1234. A is set
to 4. The 111eMOry lcicat ic,ns
$1230 through $123F contain Ml
02 45 47 93 96 A2 01 11 FS 36 92
19 5£ 22 00. Where is the
program counter after JMP A,X?

PC .is at $1238.

t X points to $1234. A is set
to 4. The l'lleBIOry locations
$1230 through S123F contain $01
02 45 47 93 96 A2 01 11 FS 36 92
19 SE 22 00.
progrillll counter
(A, X)?

PC is at $11F5.

Where is the
after JMP

146 Lesson 17

LOA ,Y • Get value from scratchpad
BRN DEATH * If negative ($FE or ;b;$FF), then death
BEQ NO CHANGE* If zero ($00), then no change
OECA • Decrement A to set flags
BEQ BIRTH • If zero ($01 minus 1), then birth
BRA DEATH * Otherwise is ;b;$02 or greater

There's a lot in that short routine, and it's very fast. In fact,
in this situation, it's a tossup in speed to the one I've
chosen. Depending on the value in the scratchpad, it can
take three, six, 11 or 14 clock cycles to complete; my
sample method always takes 12 cycles. My guess is that in a
"mature" civilization, the former method would be faster.
But since this is a lesson on indirect indexed addressing,
then indirect indexed addressing it is.

Indexed indirect looks like this ...

ASLA • Double A (two-byte offset)
LOX #TABLE * Point to table of addresses
JMP [A,X] "

*Goto routine at X+A
TABLE FDB DEATH

FOB
FOB

DEATH
NO CHANGE

FOB BIRTH
FOB DEATH

... etc. The A register is shifted left to double its value; this
is true because an address is two bytes long and therefore
requires a two- byte offset. The X register is pointed to the
zeroeth entry in the table of jump addresses. The command
JMP ~,X]causes the sum of A+ X to be calculated, the
data at addresses A+ X and A+ X + 1 to be retrieved and
concatenated, and the result to be given to the Program
Counter. This routine is simple - more transparent than
the earlier one - and demonstrates regularity and
consistency. Take some time to review this routine and
contrast it with the previous one. You'll note that where
things might get complicated (for example, if there were ten
or twenty choices instead of merely eight), the former
routine gets serpentine and sluggish, whereas the indirect
indexed jump is a fast and streamlined 6-byte jewel.

By the way. You see that I've used the notation "FDB" in
the short program excerpt above. This is an assembler
"pseudo-op", an instruction for the assembler to use the
information you've provided and place the equivalent
binary data in memory. The pseudo-op FCB places a single
byte in the program; FDB places two bytes; and FCC
places an ASCII string. Refer to the EDTASM+ manual,
page 35, for details on how to use these.

I would like you to take a break here and examine the way
this indexed indirect mode is used.

ETC.

!V-TH

~-1
~TH

ANDA #$Ff..

~W@H,;mf€J
BIRTH

Wh'@;~iPJ:?Jid
MA-.11JRJTY

The scratchpad is being evaluated, so all that's left to write
is the set of death, birth, and no-change routines. To force a
cell into dormancy, both bits are set to zero; the resulting
color is buff, the same color as the background. Recalling
that the display byte has been rotated through the carry
flag, the routine looks like this ...

ANDA #$FE
ANDCC #$FE
BRA EXIT

'' Set to 0X
'' Set to 00
* Go out

... and you can leave it to a general-purpose exit routine to
complete the rotation and testing.

The no-change routine is slightly more complicated
because it isn't really no change. As you recall, I wanted to
add some visual variety by having newborn cells displayed
in a different color from mature cells. Newborns are color
01 (cyan) and matures are 11 (orange), so "no change" for
these means changing newborns to matures, and leaving
matures as is. On the other hand, dormant cells are left
dormant, and illegal cells present in the Garden of Eden are
made dormant. Dormants are buff (00) and illegals are
magenta (10), so "no change" for these means changing
illegals to dormants, and leaving dormants as is. Here's how
it looks:

BCS HIGH '' Go if C =

* C = 0
ANDA #$FE * Set to 00
BRA EXIT '' Go out

HIGH * C = 1
ORA #$01 * Set to 11
BRA EXIT * Go out

That leaves only the birth routine, which, if a cell is already
alive, can be considered a "no change" routine. It is slightly
more complex than the previous routines because dormant
cells must be changed to newborns (00 to 01); illegal cells
must be changed to newborns (10 to 01); newborns from
the previous generation must be changed to oldsters (01 to
11); and oldsters are left unchanged (11 to 11). Putting it in
chart form helps; look in the book:

Birth Routine

Present cell:
00 (buff) (dormant)
10 (magenta) (illegal)
01 (cyan) (newborn)
11 (orange) (mature)

Changes to:
01 (cyan) (newborn)
01 (cyan) (newborn)
11 (orange) (mature)
11 (orange) (mature)

The carry flag is again the determining factor. If the carry
flag is clear (zero), a newborn is created; if the carry flag is
set, an oldster is created (or maintained). Here's how that
looks ...

Birth routine

* X points to $1234. A is set
to 4. The me100ry locations
*1230 through $123F contain $01
02 45 117 93 96 A2 01 11 F5 36 92
19 SE 22 00.
program counter
$09, X'1

PC is at $1230.

Where is the
after J!IIP

* X points to $1231+. A is set
to 4. The memory locat. ions
·$1230 through $123F contairi $01
02 45 4 7 33 36 A2 01 11 F5 36 92
19 5E 2.:: 00. where is the
program counter after JMP
($09, X>?

PC is at $5£22.

* X points tei $1234. A is set
to 4. The llelllOry locations
$1230 through $123F contain $01
02 45 47 93 96 A2 01 11 FS 36 92
19 SE 22 00. Where is the
.,rogra111 counter after JMP -2,X?

i>C is at 'H232.

* X points to $1234. A is set
to 4. The 111eftKlry locations
$1230 thrc,ugh $123F contain $01
02 45 47 93 96 A2 01 11 F5 36 92
19 SE 22 00. Where is the
program c:c,ur,ter after JMP
·>·21 X)?

PC is at $4547.

~ X ooints to S1234. A is set
to 4. The riiemory locations
$1230 thrc,ugh $123F contain $01
02 45 47 93 96 A2 01 11 FS 36 92
;9 SE 22 00. Where is the
progra1t counter after JMP , X"

PC is at $1234.

* X points to $1234. rl is set
to 4. The memory locations
$1230 through $123F coritain S01
02 45 47 93 96 A2 01 11 FS 36 92
19 5E 22 00. Where 1s the
;irogralll counter after JMP i,X>?

PC is at $9396.

Learning the ~ 147

Scratchpad

* lrllat is the tera for an
instruction for the asse11bler to
use the inforaation you've
provided to place binary data in
IIHO!"y?

A pseudo-op.

• lollat kind of information does
the pseudo-op FCB place in
1Je110ry?

One byte.

• What kind of inforaation does
the pseudo-op FDB place in
Jte110ry?

TIIIO bytes.

1 What kind of inforaation does
the pseudo-op FCC place in
tleMOJ'y?

An ASCII string of characters.

* Hand assetlble the fol10111ing:
LDX $1234
mp WD7
FCB Wi
FDB .W3

$BE 12 34 7E Al D7 A6 90 F3

1 What is another naae for a
work area of uieaory?

A scratchpad.

* What is the scratchpad used
for in this Galle of life?

To store neighborhood
inforaation.

* In this 6aae of life, Nhat bit
pair represents a donlaflt cell?

Bit pair Ii.

* In this Salle of life, Nhat bit
pair represents a neNborn cell?

Bit pair 01.

I In this Galle of Life, Nhat bit
pair represents a 11c1ture cell?

Bit pair 11.

148 LeNOD 17

BCC LOW * Pass it C = .0
* C = 1

ORA #$.01 * Set to 11
BRA EXIT * Go out

LOW * C = .0
ANDA #$FE * Set to .0.0
ORCC #$.01 * Set to .01
BRA EXIT * Go out

So there you have the heart of it. There's some work to do
right at the end. Consider this: if you store the display byte
directly back on the screen, the new generation will swim
down over the previous generation. Since one of the
premises of the Game of Life is that all generational
changes take place simultaneously, this swimming effect
should be avoided. It can be avoided by filling a second area
of memory and switching screens. But with 3,072 bytes
required for display, 12,288 bytes required for the
scratchpad, and about 230 bytes for program and stack,
that leaves less than 700 bytes for a second screen. So what
to do?

My solution lies in using that scratchpad for two purposes.
Think of it this way. Each four-cell display byte is
represented by four bytes of scratchpad memory. Once
four scratchpad bytes have been used to determine the new
display byte, they are no longer needed. After eight
scratchpad bytes are evaluated, two display bytes have
been produced. After all 12,288 scratchpad bytes have
been used, 3,072 display bytes have been produced.

In that pattern lies the opportunity. The new display screen
can be placed in scratchpad memory, because the using up
of the scratchpad memory always outpaces by a ratio of
four to one the production of display memory bytes. When
the new screen has been produced, the video offset address
in the SAM can be switched to that new screen in
scratchpad memory.

Now since scratchpad memory has to he used again for the
next generation, that screen has to be ushered out of that
area of memory. Once the video has been redirected from
$0000 to $1000, the contents beginning at $1000 can be
transferred to memory beginning at $0000. Then, when the
original display memory is filled with the new generation,
the video offset address can be switched back. The
evaluation of the generation, production of the new
generation, screen switching, and display memory
transfers are entirely invisible. Here's how the code looks ..

STA $FFCD * Switch to screen at $1.0.0.0
LOX #$10.0.0 * Point X to new screen
LDY #$0.0.0.0 * Point Y to old screen

TRNSFR LDA ,X+ * Get value from new screen
STA ,Y+ * Store value to former screen
CHPX #$1C.0.0 * See if screen is finished
BNE TRNSFR * Go back to finish screen
STA $FFCC * Redirect video to $.0.0.0.0

JL

~

~R4/:>

"::O.EE,}J
/MME.

'Sa4.1UI·
PAD

0C80

0C80 1A

0C82 86
0C84 B7

0C87 CG
0C89 SE
0C8C A7
0C8E 5A
0C8F 26

0C91 B7
0C94 B7
0C97 B7

50

CF
FF22

07
FFC6
81

FB

FFC5
FFC2
FFC0

Life

And there you have it. All that's really left to do is to put all
the pieces together, keep track of where and how the stack
is used, and organize the automatic repeating process to
keep the generations going. The entire commented
program listing follows on this tape, and is also printed in
the book. You can load and examine this listing, and then
run the object code which is also on the tape. After you're
done reviewing the listing and trying the program, I'll
summarize the programming concepts and ideas from
these past three sessions.

* In this Game of Life, what is
bit pair 10?

An "illegal" or "deviant'' cell.

* Why is bit pair 10 an illegal
or deviant cell?

Because it is present only in
the Garden of Eden, but is not
found in future generations.

* Why are bit pairs used? Program #27 A, an EDT ASM + program. Insert the EDTASM +
cartridge, and tum on the power to your computer. When the
cursor appears, type L and press ENTER. The computer will
search (s) and find (F). When the cursor reappears, display the
program. Type P#: • and press ENTER. If the right-hand side of
the program is not similar to the listing, or it an 1/0 error occurs,
rewind to the program's start and try again. For severe loading
problems, see the Appendix.

iwo provide a four-color
display.

• What vidt!o IIOde is this?

Video MOde CG3.

00100 **
00110 * *
00120 * THE GAME OF LIFE *
00130 * *
00140 * BASED ON THE PASTIME DEVELOPED BY JOHN CONWAY *
00150 * *
00160 * COLOR COMPUTER VERSION 1.0 BY DENNIS BATHORY KITSZ *
00170 * *
00180 **
11.10190 *
00200 ORG $0C80
00210 *
00220 * DISABLE INTERRUPTS BY MASKING I AND F BITS IN CCR *
00230 *
00240 START
00250 *

ORCC #$50 * DISABLE INTERRUPTS

00260 * COLOR SET 0 CHOICES ARE GREEN, YELLOW, BLUE, RED
00270 * COLOR SET 1 CHOICES ARE BUFF, CYAN, MAGENTA, ORANGE
00280 * PORT ADDRESS $FF22 CONTROLS COLOR SETS, OTHER INFO
00290 *
00300
00310
00320 *
00330 *
00340 *
00350 *
00360 *
00370 *
00380
00390

LOA
STA

#$CF
SFF22

* VALUE FOR COLOR SET
* CHOOSE COLOR SET

THE DISPLAY SCREEN MEMORY IS SELECTED TO RUN FROM
$0000 TO $0BF0 <3072 BYTES>, USING COLOR GRAPHICS
MOOE 3. THE FOLLOWING ROUTINE RESETS EVEN ADDRESSES
$FFC6 THROUGH $FFD2 IN THE SAM, SELECTING THE VIDEO.

#$07
#$FFC6

* VIDEO DISPLAY ADDRESSES
* FIRST SAM VIDEO ADDRESS

00400 VIDEO
00410

LOB
LDX
STA
DECB
BNE

'X++ * DO EVERY OTHER ADDRESS
* DONE WITH SETUP YET?

00420
00430 *
00440 *
00450 *
00460 *
00470 *
00480
00490
00500
00510 *
00520 *
00530 *
00540 *
00550 *
00560 *
00570 *
00580 *
00590 *
00600 *
00610 *

VIDEO * DD NEXT DISPLAY ADDRESS

THERE ARE THREE GRAPHICS MODES TO BE SELECTED ~O
ACHIEVE COLOR GRAPHICS MODE 3. SAM ADDRESSES SFFC0
THROUGH $FFC5 SET UP COLOR GRAPHICS MODES.

STA
STA
STA

$FFC5
$FFC2
SFFC0

* SET GRAPHIC MODE 2
* RESET GRAPHIC MODE
* RESET GRAPHIC MODE 0

THE FOLLOWING ROUTINE CLEARS A 12K AREA OF MEMORY
FOR USE AS A SCRATCHPAD WORK AREA WHEN EVALUATING
THE PRESENT GENERATION OF CELLS. THE METHOD CHOSEN
HERE TO CLEAR MEMORY IS VERY FAST. INSTEAD OF A
"STA , X+" STYLE OF MEMORY FILLING, SIX BYTES <THE
TWO ACCUMULATORS PLUS THE X ANDY REGISTERS> ARE
CLEARED TO ZERO. THE STACK IS POINTED TO THE TOP
OF THE MEMORY -~o BE CLEARED, AND THE SIX BYTES ARE
PUSHED ON THE STACK UNTIL THE MEMORY AREA IS FULL.

Leaming the 6f!l:,:y:; 149

Life

150

0C9A 4F
0C9B 5F
0C9C lF 02
0C9E lF 01
0CA0 10CE 4000
0CA4 34 36
0CA6 118C 1000
0CAA 2A FB

0CAC 10CE 0DBF

0CB0 BE 0000
0CB3 108E 1000

0CB7 C6 04
0CB9 A6 80
0CBB 49
0CBC 49
0CBD 24 19

0CBF E,C
0CC3 6C
0CC6 6C
0CC9 E,C
0CCB 6C
0CCD 6C
0CD0 6C
0CD4 E.C

0CDB 31
0CDA 5A
0CDB 26
0CDD BC
0CE0 26

A9 FF7F
AB 80
AB 81
3F
21
AB 7F
A9 0080
A9 0081

21

DE
0C00
D5

0CE2 BE 0000
0CE5 108E 1000

0CE9 CG 04
0CEB A6 84
0CED 34 10
0CEF 34 03
0CF1 35 03
0CF3 49
0CF4 49
0CF5 34 03
0CF7 A6 A0

Lesson 17

00620
00630
00640
00650
00660

AGAIN

00670 NEXTl
00680
00690
00700 *

CLRA
CLRB
TFR

.TFR
LDS
PSHS
CMPS
BPL

D,Y
D,X
#$4000

* SET ACCUMULATOR A= 0
* SET ACCUMULATOR B ~ 0
* SET REGISTER Y = 0
* SET REGISTER X = 0
* STACK TO TOP 0~ SCRATCHPAD

A,B,X,Y * PUSH E, BYTES ON THE STACK
#$1000 • IS STACK UNDER ~$1000 Y~1?
NEXT1 • KEEP GOING :F NOT T~ER~

00710 *
00720 *
00730 *

THE STACI'. IS THEN SET OUT OF THE WAY OF THE
"NEIGHBORHOOD" INCREMENTING ROUTINE WHICH FOLLOWS.

00740
00750 *

LDS #$0DBF

00760 * THE "NEIGHBORHOOD" INCREMENTING ROUTINE USES THE
00770 * HOOPER METHOD. IN MOST CONCEPTUALIZATIONS OF THE
00780 * GAME OF LIFE, EACH CELL POSITION IS CHECKED FOR
00790 * THE NUMBER OF NEIGHBORS WHICH SURROUND IT. IT TURNS
00800 * OUT THAT, AFTER THE FIRST GENERATION (THE GARDEN OF
00B10 * EDEN GENERATION), THERE ARE ALWAYS LESS LIVE CELLS
00820 * THAN DORMANT ONES. SO INSTEAD OF CHECKING FOR THE
00830 * NEIGHBORS OF EACH CELL, IT IS FASTER TO CHECK EACH
00840 * CELL TO DETERMINE WHOSE NEIGHBOR IT IS. WHEN ALL
00850 * CELLS HAVE BEEN CHECKED, A COUNT OF NEIGHBORS HAS
00860 * BEEN CREATED.
00870 *
00880
00890
00900 *
00910 NXTCEL
00920
00930 QUARTR
00940
00950
00960 *

LDX
LDY

LDB
LDA
ROLA
ROLA
BCC

#$0000
#$1000

#$04
'X+

NEXTQ

* POINT XTO DISPLAY
*POINTY TO SCRATCHPAD

* COUNT FOUR QUARTER BYTES
* GET VIDEO DISPLAY BYTE
• ROTATE A THROUGH CARRY
* ROTATE A THROUGH CARRY
• IF C=0, THEN CELL NOT LIVE

00970 * HERE IS THE NEIGHBORHOOD:
00980 * -------------------
00990 * I -81 / -80 / -7F /
01000 * -------------------
01010 * I -01 /JOE/ +01 /
01020 * -------------------
01030 *
01040 *
01050 *
01060
01070
01080
01090
01100
01110
01120
01130
01140 *
01150
01160
01170
01180

NEXTQ

01190
01200 *

/ +7F / +80 / +81 I

INC
INC
INC
INC
INC
INC
INC
INC

LEAY
DECB
BNE
CMPX
BNE

-$81,Y
-$80,Y
-$7F,Y
-$01,Y
$01,Y
$7F,Y
$80,Y
$81,Y

1, y

QUARTR
#$0C00
NXTCEL

* UPPER LEFT NEIGHBOR
* UPPER NEIGHBOR
* UPPER RIGHT NEIGHBOR
* LEFT NEIGHBOR
* RIGHT NEIGHBOR
* LOWER LEFT NEIGHBOR
* LOWER NEIGHBOR
* LOWER RIGHT NEIGHBOR

~ GET NEXT SCRATCHPAD POSITION
*COUNTDOWN BY QUARTER BYTES
* GET NEXT QUARTER BYTE
• SEE IF END OF DISPLAY
* ELSE GET NEXT VALUE

01210 * ONCE THE NEIGHBORHOODS HAVE BEEN DETERMINED, THE
01220 * INFORMATION IS USED TO GIVE BIRTH TO A CELL, ALLOW
01230 * A CELL TD DIE, OR LEAVE THE CELL UNCHANGED. A TEST
01240 * FOR 0 OR 1; 2; 3; 4 OR MORE NEIGHBORS COULD BE DONE
01250 * BY USING THE SCRATCHPAD INFORMATION. IN THIS CASE,
01260 * THE INFORMATION (0 THROUGH 8 NEIGHBORS) IN THE
01270 * SCRATCHPAD IS USED AS AN OFFSET TO A TABLE OF
01280 * ADDRESSES. THE X REGISTER POINTS TO THE ZEROETH
01290 • ENTRY IN THE TABLE, AND THE A REGISTER PROVIDES THE
01300 • OFFSET. X+A IS THE ADDRESS OF THE DEATH, BIRTH AND
01310 * NO CHANGE ROUTINES.
01320 *
01330
01340
01350 *
01360 CIRCLE
01370
01380
01390
01400 HERE
01410
01420
01430
01440

LDX
LDY

LDB
LDA
PSHS
PSHS
PULS
ROLA
ROLA
PSHS
LDA

#$0000
#$1000

#$04
'X
X
A,CC
A,CC

A,CC
'Y+

* POINT XTO VIDEO DISPLAY
*POINTY TO SCRATCHPAD

* COUNT FOUR QUARTER BYTES
* GET VIDEO DISPLAY BYTE
* STASH X REGISTER FOR LATER
* STASH VIDEO, CARRY INFO
* RESTORE VIDEO, CARRY INFO
* ROTATE THROUGH CARRY FLAG
* ROTATE THROUGH CARRY FLAG
* RE-SAVE ROTATING A, CARRY
* GET VALUE FROM SCRATCHPAD

0CF9 48
0CFA 8E
0CFD GE

- 0CFF
0D01
0D03
0D05
0D07
0D09
0D0B
0D0D
0D0F

0D11 35
0D13 84
0D15 lC
0D17 20

0D19 35
0D1B 25
0D1D 84
0D1F 20
0D21 8A
0D23 20

0D25 35
0D27 24
0D29 SA
0D2B 20
0D2D 84
0D2F 1A

0D31 34
0D33 5A
0D34 26
0D36 35
0D38 35
0D3A 49
0D3B A7
0D3F 30
0D41 SC
0044 26

0D46 87

0CFF
96

0D11
0D11
0D19
0D25
0D11
0D11
0D11
0D11
0D11

03
FE
FE
18

03
04
FE
10
01
0C

03
04
01
04
FE
01

03

BB
03
10

89 1000
01
0C00
A3

FFCD

01450
01460
01470
01480 *
01490 ZAP
01500
01510
01520
01530
01540
01550
01560
01570
01580 *

ASLA
LOX
JMP

FOB
FDB
FDB
FDB
FDB
FOB
FOB
FOB
FDB

#ZAP
-t·A, X<-

DEATH
DEATH
NOCHNG
BIRTH
DEATH
DEATH
DEATH
DEATH
DEATH

* DOUBLE IT (2-BYTE OFFSET)
* GET START OF TABLE
* ADD OFFSET & JUMP TO ROUTINE

* ROUTINE NEIGHBORHOOD 0
* ROUTINE NEIGHBORHOOD
* ROUTINE NEIGHBORHOOD 2
* ROUTINE NEIGHBORHOOD 3
* ROUTINE NEIGHBORHOOD 4
* ROUTINE NEIGHBORHOOD 5
* ROUTINE NEIGHBORHOOD 6
* ROUTINE NEIGHBORHOOD 7
* ROUTINE NEIGHBORHOOD 8

01590 * THE DEATH ROUTINE MUST CREATE COLOR VALUE 00 ON THE
01600 * COLOR GRAPHICS DISPLAY SCREEN. HALF OF THIS VALUE
01610 * IS PRESENTLY IN THE A ACCUMULATOR, AND THE OTHER
01620 * HALF IS IN ,HE CARRY FLAG. BOTH ARE SET TO ZERO
01630 * IN THIS ROUTINE.
01640 *
01650 DEATH
01660
01670
01680
01690 *

PULS
ANDA
ANDCC
BRA

A,CC
#$FE
#$FE
OUT

* SAVE DISPLAY, ROTATING BIT
* MASK OUT BIT ZERO
* MASK OUT CARRY BIT
* GO OUT TO ROTATE & DISPLAY

01700 * THE NO-CHANGE ROUTINE IS NOT PRECISELY THAT IN THIS
01710 * CASE. COLORS IN THIS GRAPHICS MODE ARE BUFF, CYAN,
01720 * MAGENTA AND ORANGE, AS REPRESENTED BY PATTERNS 00,
01730 * 01, 10 AND 11. IN THIS PROGRAM, DORMANT CELLS ARE
01740 * SHOWN IN BUFF (00l, NEWBORN CELLS IN CYAN (01>, AND
01750 * CELLS OLDER THAN ONE GENERATION AS ORANGE (11). THE
01760 * VALUE 10 (MAGENTA) IS DEFINED AS ILLEGAL. HOWEVER,
01770 * SHOULD IT OCCUR IN THE "GARDEN OF EDEN", IT MUST BE
01780 * CHANGED TO 00. THIS ROUTINE MAKES THE CHANGE.
01790 *
01800 NOCHNG
01810
01820
01830
01840 HIGH
01850
01860 *

PULS
BCS
ANDA
BRA
ORA
BRA

A,CC
HIGH
#$FE
OUT
#$01
OUT

* RESTORE ROTATED DISPLAY INFO
* IF SET, MEANS BIT ZERO= 1
* MAKE 10 DR 00 BECOME 00
* AND GO OUT, STORE & DISPLAY
* MAKE 01 OR 11 BECOME 11
* AND GO OUT, STORE & DISPLAY

01870 * THE BIRTH ROUTINE IS ALSO A "NO CHANGE" ROUTINE IF
01880 * THE NUMBER OF NEIGHBORS IS PRECISELY THREE AND A
01890 * LIVE CELL ALREADY EXISTS. VALUES FOR NEWBORNS ARE
01900 * GIVEN AS 01 (CYAN), BUT ALREADY EXISTING CELLS MUST
01910 * BE CHANGED TO OLDER CELLS IN ORANGE (11l. ALSO,
01920 * ANY ILLEGALS (10, MAGENTA) MUST BE CHANGED.
01930 *
01940 BIRTH
01950
01960
01970
01980 LOW
01990
02000 *

PULS
BCC
ORA
BRA
ANDA
ORCC

A,CC
LOW
#$01
OUT
#$FE
#$01

* GET ROTATED DISPLAY VALUE
* GO IF CARRY= 0 (00 OR 10)
* IF C=1, MAKE 11 = OLDSTER
* GO OUT, STORE AND DISPLAY
* C = 0; MAKE 00 DR 01 BE 00
* THEN MAKE VALUE BECOME 01

02010 * THE "OUT" ROUTINE IS AN ORDERLY EXIT, TESTING FOR
02020 * THE ROTATED POSITION OF A (THE QUARTER-BYTE COUNT),
02030 * DOING THE FINAL <NINTH> ROTATE TO GET THE BYTE
02040 * BACK IN POSITION IF NECESSARY, STORING THE FINAL
02050 * BYTE IN A TEMPORARY SCREEN, AND BRANCHING BACK IF
02060 * THE ENTIRE 3,072 BYTE BLOCK (12,288 CELLS) HAS NOT
02070 * BEEN DONE.
02080 *
02090 OUT
02100
02110
02120
02130
02140
02150
02160
02170
02180
02190 *

PSHS
DECB
BNE
PULS
PULS
ROLA
STA
LEAX
CMPX
BNE

A,CC

HERE
A,CC
X

$1000,X
1, X
#$0C00
CIRCLE

* STASH ROTATING BIT, VIDEO
* TEST FOR NEXT QUARTER BYTE
* IF NOT DONE, GET NEXT QUARTER
* RESTORE ROTATING BIT, VIDEO
* RECOVER STASHED X REGISTER
* ROTATE TO RESTORE POSITION
* AND STORE BACK INTO DISPLAY
* GET NEXT POSITION IN PLACE
* SEE IF END OF DISPLAY YET
* IF NOT, BACK FOR NEXT BYTE

02200 * THE FOLLOWING ROUTINE REDIRECTS THE SCREEN TO $1000,
02210 * WHERE THE NEW GENERATION HAS BEEN CREATED. IT THEN
02220 * COPIES THAT INFORMATION INTO THE SCREEN STARTING AT
02230 * $0000, AND SWITCHES SCREENS. THIS WORK-AND-SWITCH
02240 * PROCESS PREVENTS THE NEW GENERATION FROM SWIMMING
02250 * DOWNWARD OVER THE PREVIOUS GENERATION AS YOU WATCH.
02260 *
02270 STA $FFCD * SWITCH TO SCREEN AT $1000

Learning the 6f!:/.:J9

Life

151

Life

0D49 8E 1000
0D4C 108E 0000
0D50 A6 80
0052 A7 A0
0D54 ac 1C00
0D57 26 F7

0D59 B7 FFCC

0D5C 7E 0C9A

0C80
00000 TOTAL ERRORS
AGAIN 0C9A
BIRTH 0025
CIRCLE 0CE9
DEATH 0D11
HERE 0CF1
HIGH 0021
LOW 0D2D
NEXT1 0CA4
NEXTQ 0CD8
NOCHNG 0D19
NXTCEL 0CB7
OUT 0D31
QUARTR 0CBB
START 0C80
VIDEO 0C8C
XFER 0D50
ZAP 0CFF

* In this video display, if the
A accu■ulator contains 11110100,
what cells are present'

Mature, mature, newborn arid
dor111ant.

* If the A accumulator contains
10110000, what cells are
present?

Illegal, Mature, dorMant arid
doraant.

* What generation is this?
Why'

The Garden of Eden, because
illegal cells cannot occur in
subsequent generations to the
Garden of Eden.

* A contains 1011001110 in the
Garden of Eden. If the
algorith■ says all cells reaain
unchanged -- in tel"IIIS of this
Game of Life -- what will the A
accu11Ulator contain in the ne~t
generation? Why?

A will contain 01110188 because
illegals are changed to newborns
after the Garden of Eden.

152 Lesson 17

02280 *
02290 LOX #$1000 * POINT X TO NEW SCREEN
02300 LDY #$0000 *POINTY TO OLD SCREEN
02310 XFER LDA 'X+ * GET VALUE FROM NEW SCREEN
02320 STA ,Y+ * TRANSFER VALUE TO OLD SCREEN
02330 CMPX #$1C00 * SEE IF SCREEN IS FINISHED
02340 BNE XFER * GO BACK TO FINISH SCREEN
02350 *
02360 STA $FFCC * REDIRECT VIDEO TO $0000
02370 *
02380 JMP AGAIN * AND REPEAT THE WHOLE PROCESS
02390 *
02400 END START

Program #27B, an object code program. Tum on the power to
your Extended Color BASIC computer. When the cursor ap
pears, type CLOAD and press ENTER. The computer will
search (S) and find (F). When the cursor reappears, type EXEC
and press ENTER. The program will execute automatically, If an
1/0 error occurs, rewind to the program's start and try again. For
severe loading problems, see the Appendix.

Watching the Game of Life is a fascinating experience. A lot
has been written about this pastime, and versions in three
dimensions and many colors have been developed.

My intention with these three lessons was not only to
introduce the concept of indirect indexed addressing, but
also to demonstrate with an apparently complicated
example the idea of compartmentalized or modular
programming. The modules were designed for speed, but
with little modification they could be used as complete
subroutines ... those that select color sets, video display
memory, and graphics modes and the one to fill memory are
complete. The Life routines consist of the evaluation block
and the more complex regeneration section. I've drawn
arrows in the program listing to show the clear program
flow. I'll also tell you that this program wasn't an off-the
cuff creation; it was in fact revised nearly 20 times before it
was ready for you to see. Not that it didn't work until 20
tries, but rather that I used more instructions than I needed
to do some of the work. In looking for economies of speed, I
was able to rethink the details of each routine. You'll do

that too as you attempt larger-scale programs.

Here's a summary of the concepts that you have seen:

1. You should be able to establish video modes by
referring to the SAM and VDG setup charts and the Color
Computer memory map.

2. You should be able to set A, B, X and Y registers and
then use the push stack instructions for fast memory filling
or clearing.

3. You shold be able to set the stack pointer to a specific
place in memory using the LDS instruction.

4. You should understand how to use the rotate
instruction to rotate part of a byte into the carry flag, and
then employ that information for program branching.

5. You should be able to use a fixed pointer plus a variable
.offset to select an address from a table of addresses, and
then access the information at the resulting address. In
other words, you should understand indirect indexed
addressing.

6. You should be able to directly manipulate the
condition codes (in this example, the carry flags and
interrupt masks) using ANDCC and ORCC instructions.

7. You should understand the whys and hows of switching
video display modes to hide manipulation of memory.

8. You should have read about pseudo-ops in the
EDTASM+ manual, and be able to use ORG, EQU, END,
FCB, FCC, FDB and RMB. In summary, these are:

ORG defines the first byte of the program.

EQU identifies the value of a label.

END concludes the assembly process.

FCB identifies a specific byte to be placed in
memory.

FOB identifies a spedific two-byte word to be
placed in memory.

FCC identifies an ASCII string to be placed
in memory.

RMB tells the assembler to reserve - that is,
not to use - a block of memory.

I hope all these concepts are clear to you. If you don't feel
completely confident, please review. Review the written
text for specific items, and review all three lessons if you
don't think you could create a complete body of assembly

Pseudo-ops

* If A is 01110000, what are the
values of A in binary and
he~adeciMal 1 and the value of
the carry flag, Nhen ROLA is
executed four tillleS? (AssUMe
the carry flag is zero to
start}.

Start A= 01110000, 70; C=0
A= 11~, C0; C=l
A= 0111000011, 03; C=l
A= 00001110, 0£; C=0
A= 001110001 38; C=0

If The scratchpad 111e111c,ry ir, this
Gaiwe of Life is used for two
purposes; what are they?

1. To store the neighborhood
count during evaluation •
2. To build a riew screen
containing the next generation.

• What is an algorith111?

A general tertr for a set of
rules.

If What is a pixel?

A oicture eleMenL

, What does VDG mean'l

Video Disolay Generator',

* i-ic,w fllar,y pixels does the Color
Computer's VD6 provide?

256 horizontal by 192 vertical
oixels.

* How mar,y different points are
displayed on the screen in the
mcst detailed graphics IIIOde
!11ode RG&l?

49, 152 points.

* How ■any bytes are required
for the ftlOSt detailed graphics
IWOde ! IIOde RG6)?

61 144 bytes.

Learning the l::Rl:Jt 153

Summary

* Why can 6,144 bytes display
491 152 points"

Because one byte represents
eight display points.

* What addressing IIIOde is JMP
$3456'.:'

Extended addressing.

* What addressing l!!Ode is JMP
A, X'

Indexed addressing.

* What addressing mode is JMP
'.A, X)?

Indexed indirect addressing.

* What does the instruction LDS
11$1000 do'.:'

It loads the hardware stack
pointer iSl with the value
11000.

* What does the instruction ORC.C
ts50 do'.:'

It turns off the interrupts.

* What kind of instruction is
FDB SA0D7'

It 1 s an assembler pseudo-op.

* What does FDB $00D7 do'

It tells the asSe111bler to place
the t1110-byte word $A007 in
111e1110ry.

* What is an addressing mode?

The way in which a ■achine

language instruction gets its
i nfor111at ion.

154 Lesson 17

code to solve a similar programming problem. These three
lessons have offered approach, conceptualization,
decision-making, and programming technique. These
three lessons - in fact, the past five lessons - are the
gateway to the rest of this course. I urge you to understand
them well. Till next time.

•
Have you ever typed in a long assembly language program
listing from a magazine, accepting on faith that it would
work on your Color Computer? And then finding out that
your XYZ disk system or your Apex memory dewormer was
already using that area of memory? Within certain
limitations, that inflexible approach to memory use isn't
necessary any more. Utility programs - especially those in
semi-permanent installations such as the XYZ disk or
Apex dewormer - should be able to be moved to other
areas of memory and still perform their advertised
functions. Until the introduction of the 6809,
microprocessors couldn't offer this as a standard feature ...
a feature known as Position Independent Programming.
Your Color Computer can do it. Position Independent
Programming is the topic of this session.

To understand position independence, :you have to
understand the limitations of position dependence. Have a
look at the program in the book; the mnemonics read:

1000 SE 1234 LOX #$1234
1003 108E 5678 LOY #$5678
1007 B6 FF2,0 LOOP LOA $FF2,0
100A 27 03 L BEQ LATER J
100C 7E 1007 JMP LOOP
100F 7F 0001 LATER CLR $0001

There's nothing especially useful about this program, but
it's good enough code. The A accumulator is being loaded
from what looks like an input port address, and branching
to the label LATER if the loaded value is zero. If it's not, the
program jumps back to the position marked LOOP.

But what if you needed to move this program from address
$1000 to, for example, address $2000? Well, if you were the
programmer, you would simply load the source code into
EDT ASM + and re-assemble it at the new origin. But if you
had purchased the program and you didn't know its
structure or contents, but nevertheless needed to move the
binary code from $1000 to $2000, something unhappy

I sigh at the prospect of having
to disassaible, exaMine and
relocate SOE asse11bly language
applications progra11S
spreadsheets are one example -
faced with their enormous size
and c0111pleMity. This usually
happens when I want to tiptoe
around soae special printer 0r

video driver I've created. With
~ prograas I've had the
chance to be pleasantly
surprised, since SOiie not only
can be located easily in other
areas of 11et110ry, they
autOMatically relocate
thNSelves to respect 11NOry
limits and other configurations
you've set ahead of titlll'.
Machine language prograas which
run independent of their
position in 11e110ry is the
exciting goal of this session.

* What is an addressing IIOde?

The Nay a 11achine language
prograa gets its infort1t1tion.

* What addressing IIIOde is JMl>
$1234?

Extended addressing.

* What addressing IIIOde is BRA
LOOP?

Relative addressing.

Learning the 6f!l:Jt 155

Program counter relative

* Relative addressing is
relative to what?

The µrogras counter (PC).

* How does BRA SFE differ fro11
JMP $3456 if both instructions
begin at address $3456?

They differ in that BRA is 2
bytes and relative addressing,
whereas JMP is 3 bytes and
extended addressing.

* How is BRA $FE si111ilar to JMP
$3456 if both instructions begin
at address $3456?

Both are endless loops.

* Is BRA $FE an endless loop if
it appears at address $3455?

Yes.

* Is JMP $3456 ar1 endless loop
if it appears at address $3455'

No.

* What happens to JMP $3456 if
it is lltOVed to address $3455?

The desired opcode JMP ($7El is
no.. at $3455. The progrillll
counter points to address $3456
illhere it finds $34 56 instead of
$7E. $34 56 isn't an
instruction, but the processor
thinks it is, executing $34 56
-- PSHS u,x,A,B. Crash!

* What do 11ne110nics BEQ and BNE
mean?

Branch if equal to and branch if
not equal to.

* What do llll'lNOnics BCC and BCS
mean?

Branch on carry clear and branch
on carry set.

156 Lesson 18

would occur. Everything in the program would seem
perfect until it reached that jump to label LOOP. As far as
the binary code is concerned, that jump is specifically to
address $1007. $1007 is an absolute, fixed address; with
the program now residing at $2000, trouble would be on the
way. By contrast, the program branch to label LATER is
relative addressing ... the branch is measured from the
current position of the program counter. Do you see that?
JMP goes to a known, numbered, fixed memory location;
BEQ moves to a new position relative to wherever the
program is now.

Now, I did use JMP in this example when I could easily have
used branch always, BRA. But what if the jump were to an
address 5,000 addresses away? An ordinary branch can't
move that far, since it's limited to relative movement
between +127 and -128. And what about subroutines?
The opcode JSR also requires a fixed address. And then
there's always the problem of loading X and Y registers
with the locations of important tables of information found
within the limits of the program. How can these memory
locations be identified if not by their fixed locations? Those
are the frustrating questions of position independence:
how to avoid specifying a fixed, numerical address
anywhere in the program.

Well, you can probably guess that I wouldn't be asking
those rhetorical questions if I didn't already have an
answer. And you're right. The 6809 commands JMP and
,JSR can be cashed in for the 6809's flexible Branch and
Long Branch commands. Not only can you execute long
branches to any relative position throughout all of memory,
but you can perform long branches to subroutines in any
relative position throughout memory. And those load
immediate instructions can be cashed in for what's known
as "program counter relative" indexing.

The price you pay for these relative branches or indexings
is an additional clock cycle or two, plus a slightly different
process of thinking. Everything can become relative to the
program counter, not just short and long branches, but
even loads and stores. Loads and stores can make use of the
special ",PCR" version of the indexed addressing mode.

Before I get carried away with the excitement of
generalities, I want you to do a little reading. Open your
MC6809E data book, turn to page 17, and read the section
headed "Program Counter Relative." Also read page 18,
the heading "LEAX/LEA Y/LEAU/LEAS." Finally, turn
to page 32 and read the summary of the 6809's short and
long branch instructions.

"

fl,strtal,/
INOEPD.JDcJ.IT
C:/<JGIA/4
~

liNZAJ,(o,,
~-~,WJZ
_)

-~
--~

LP)(./000
JD,)< ,,x

~<.AlATl!. /+)(

X 11ECP<1e.s $ta,/
/..OA. ,x

t.u.os A .,,#, ~Isa"
,:fi/00/

! <!-4<,<.vM-re: 1M+Y

y """""'°"" $'ff AA
LDB ,Y

Lo-W5 B
wrllt~~ol°

$11M

''INCREMENT X ~

LEAX 1/

'VECREMt?vT X"

PSI-\S X
PUI.-S Y

Turn to the MC6809E data book. page 17, and read the section
headed "Program Counter Relative." Also turn to page 18, and
read the section headed "LEAX/LEAY /LEAU/LEAS."
Finally, turn to page 32 and read the summary of the 6809's
short and long branch instructions. Return to the tape when
you have completed the reading.

Let me start with the LEA instructions, which are easier to
use than to describe; you can be looking at page 18 as I talk.
LEA (Load Effective Address) is really no mystery, it's just
a highly jargonized name for an old, familiar concept.
Here's how LEA came clear to me: There exist no unique
increment or decrement instructions for the 16-bit X or Y
registers in the 6809. Considering how often I wanted to
move these registers forward or back in memory, I thought
this might be a serious deficiency in the 6809's capability.
Sure, you know that there are automatic increment and
decrement modes, but these require loading or storing
information to get them to work. So I spent some time
cracking my brains over LEAX and LEA Y.

I discovered that Increment X is actually LEAX 1 , X . .. that
is, make X become X with an offset of 1. Decrement X,
then, must be LEAX -1 ,X. It seemed clumsy then, but not
now. Maybe these are a little less easy to think of or use than
a straightforward increment or decrement, but they are
many times more flexible. If LEAX 1 ,X makes X become
X+l, then LEAX 2,X makes X become X+2. You're no
longer limited to simple increments or decrements. LEAX -
40,X makes X equal X-40. LEAY 12345,Y makes Y equal
Y + 12345. That was the key. I began to understand that the
clumsy phrase "load effective address" was a jargon-filled
way of saying the same thing that "LET" says in BASIC.
Whereas BASIC would say LET Y = Y+l50, the 6809
assembly language says LEA Y 150, Y ... load Y with the
effective address 150+ Y.

But there's more. Not only can X=X+lO by writing
LEAX 1 O,X, but X can equal Y + 10 by writing LEAX 1 0, Y . .
. or Y can equal S-50 by writing LEA Y -50,S ... or U can
equal X by writing LEAU O,X. In fact, depending on your
requirements, the 6809 processor offers three different
ways of making one 16-bit register equal another: you've
got TFR X,Y. Then there's PSHS X followed by PULS Y.
And then you can LEAX 0, Y.

Here's more about Load Effective Address. You can use
the A, B or combination D accumulators as variable offsets.
For example, X can be made equal to A plus X by writing
LEAX A,X.

Load effective address

* What is the branching range of
BRA (and other branch
instructions)?

PC-128 to PC+127 <PC-$88 to
PC+i7F).

* What does LBRA mean?

Long branch always.

* What is the branching range of
LBRA !and other long branch
instructions)?

* PC-32768 to PC+32767 !PC-$8000
to PC+S7FFF).

* What addressing mode is BEG
LOOP?

Relative addressing.

* What addressing mode is LBEQ
LOOP?

Relative addressing.

* What does LEA meari?

LEA 111eans Load Effective
Address.

* What is the effect of LEAX
1, X?

X becolles X+l.

* What is the effect of LEAX
$45,X?

X becoMes X+S45 •

* What is the effect of LEAX
1, Y?

X becoMes Y+l.

* What is the effect of LEAX
-5,Y?

X becolles Y-5.

* What is the effect of LEAY
12345,Y?

Y becolles Y+12345 (Y+S:3039).

But by far the most versatile and powerful application of
the LEA instructions is in the writing of position
independent programs. In the programs I've presented so
far, I've always loaded the X or Y registers with specific
values. For example, in the Life program that was

Learning the 6e/:1t 157

Simple branches

* If A is $32 and X is s1•,
Nhat is the effect of LEAX A,X?

X becOlleS X+A, that is, X
becollles $1032.

* If X = $1lW, give the value
of Y after:
TFR X,Y

Y becOES $1018.

* If X = s1a, give the value
of Y after:
PSHS X
Pll.S y

Y becOlleS $1000.

* If X = $1018, give the value
of Y after:
LEAY e,x

* If X = $1010, give the value
of Y after:
LEAY -16,Y

Y becOlleS $1000.

* What does LEA 11ean?

LEA 11eans
Address.

load Effective

* What does ",PCR" mean'

",PCR" means progra11 counter
relative IIIOde.

* If the instruction LDX tARITHl
is found at address $1000, and
label ARITH1 points to $2100,
Nhat is X after the instruction
is executed?

X points to $20110.

* If the instruction LDX
ARITHl,PCR is found at address
SllW, and label ARITH1 points
to $2000, Nhat is X after the
instruction is executed?

X points to $2000,

158 Lesson 18

completed in the last session, you remember that the X
register was pointed to a table of information by loading the
X register with the actual address of the table. I wrote
LDX #TABLE. But there's another way, a position
independent way.

I might instead have written LEAX TABLE,PCR. That's
LEAX TABLE,PCR. And that says "Load X with the
effective address calculated from the distance between the
present position of the program counter and the address of
the table." In other words, I know the distance from here to
where I'm going. By giving that distance to the 6809, it can
calculate the resulting address, and give that result to the X
register.

No longer are you constrained to a fixed address. Instead of
demanding to know, "where is it?", the 6809 need only ask
"how far is it from here?". I'll get back to Load Effective
Address; in the meantime, just remember that when you
seeLEAX, thinkLETX. YouseeLEAY 10,Yandyou think
LET Y be 10 plus Y. Purists might want my head for that,
but I'll risk it. When you see LEA, think LET.

Among the other position-independent commands are the
branches. You've been using the branches since early on in
this course, but I've never given them any formal time. I'll
make up for that now.

Like the program counter relative instructions, the
branches are also based on "how far from here?" rather
than "where?''. In all, there are 62 variations of relative
branches, depending on how you think of them. Turn to
page 32 of the MC6809E data book. You'll see the branch
instructions in four groups: simple, simple conditional,
signed conditional, and unsigned conditional. Some
overlap, serving dual purposes. I'm going to describe the
short branches, hut keep in mind that the long branches are
identical in principle and application. The only difference
is that the short branches reach aspanof256 bytes, and the
long branches reach a span of 65,536 bytes.

Simple branches are just that. When the instruction
decoder finds a simple, it follows the command, calculates
the new address, and hands it to the program counter.
These three are branch always (BRA), branch never (BRN)
and branch to subroutine (BSR). Two of these make sense;
hut what about "branch never"? "Branch never" is one of
those delightful bizarrities of computer logic. "Branch
never" exists as a default of the processor's architecture.
All branches have what are called true and false versions;
branch always is the true version, so "branch never" is the
false version. Branch always makes the branch, very much
like the command JMP. "Branch never" continues with the
main program flow. But keep it in mind; it's surprisingly
useful. Should you be doing critical timing where every
machine byte and clock cycle counts, remember that no
operation (NOP) uses one byte and 2 cycles; "branch
never" has the effect of a NOP, but it uses two bytes and 3
cycles; and long "branch never" also has the effect of a
NOP, but it uses 4 bytes and 5 cycles.

h J1v{. vf
, '! CJ.J..WU. 7E I ~
7 '"1

• 1· Y"'-1" '"',l
OFFSET ~ {ftt'../5

PL ; VO/

.. ''

fCt2

R:.~ I

CT0

-

R.-1 -
R·Z'
pc.-7, ~
re-'! [I

pc t2

F'C-t\

1'v
H>I
PC-2.
P<'. - '> ::(f,Qlc.
PC-'-1 -~

~ Cl!~ EQt.llJ_
(BNE.)

Enough of the simple branches; on to the simple
conditional branches. These are changes of program flow
conceived of as direct responses to the condition codes.

1. Branch on minus and branch on plus are in
response to the state of the negative (N) flag.

2. Branch on equal and branch on not equal
are in response to the state of the zero (Z) flag.

3. Branch on overflow set and branch on
overflow clear respond to the state of the
overflow (V) flag.

4. Finally, branch on carry set and branch on
carry clear respond to the state of the carry (C)
flag.

Those eight conditional branches should make sense to
you, since you've used most of them in programming
already.

The signed and unsigned conditional branches take
account of not only the flags but also the type of arithmetic
being used, in order to produce a composite result and
make a branching decision. The signed conditional
branches assume that you are using signed arithmetic, that
is, where you are thinking in terms of positive and negative,
so that the most significant bit is important to the
calculation. There are three types of signed conditional
branch, arranged five ways:

1. Branch on greater than (BGT), and its
opposite, branch on less than or equal to
(BLE). Remember that in signed arithmetic,
$01 is greater than $FE, that is, 1 is greater
than-1.

2. The complementary instructions to the
previous ones are branch on greater than or
equal to (BGE) and branch on less than (BLT).

3. Signed branches also make use of the
familiar branch on equal (BEQ) and branch on
not equal (BNE).

4 and 5. The final two pairs of branches are
identical to the first to pairs, but are conceived
in reverse. At the end of this lesson, take the
time to examine the four tables at the bottom
of page 32 of the data booklet, and try to
clarify how the pair "branch on greater than"/
"branch on less than or equal to" is different in
conception from "branch on less than or equal
to"/"branch on greater than".

Conditional branches

* What does BSR aean?

BSR 111eans Branch to subroutine.

* What do tmellOflics BGT, BGE,
BLT and BlE 11Nn?

Branch on greater than, branch
on greater than or equal to,
branch on less than, and branch
on less than or equal to.

* What do lmNOl'lics BRA and BRN
111ean?

Branch alt11ays and branch never.

* In unsigned arithlletic, !Jlhich
is the higher nu11ber, $7F or
$00?

S7F is a higher nUA1ber than

••
* In unsigned arithmetic, tihich
is the higher nu■ber, SAA or
$55?

$AA is a higher n1.1111ber than
$55.

* In signed arithaetic, which is
the greater nu111ber, SAA or $55?

$55 (being positive) is greater
than SAA (being negative).

* In signed ari th■etic, tihich is
the greater n1.111ber, SFF or $00?

$00 is greater than $FF (-1).

* What specific
instruction is BST
greater than)?

kind of
(branch on

BGT is a signed conditional
branch.

* What specific kind of
instruction is BHS (branch on
higher than or sa11e asl?

BHS is an unsigned conditional
branch.

The remaining branch types are the unsigned conditional
branches. These are effectively identical to the previous

Learning the 6f!l:YJ 159

Selecting branches

* If A contains SFF and is
COMpared to flNOry containing
8, would the branch B6T be
taken or not? Why?

It NOuld not be taken because
SFF (deciul -1) is less than
$88, and BGT is a signed
conditional branch.

* If A contains SFF and is
COllpared to lll!IIOrY containing
M, would the branch BHS be
taken or not? Why?

The branch NOUld be taken
because SFF (deciaal 255) is
higher than M, and BHS is an
unsigned conditional branch.

* What addressing IIOde are BHS
and BGT?

Relative addressing.

* What addressing mode is JMP
$1234?

Extended addressing.

* What addressing IIOde is JMP
($1234}?

Extended indirect addressing.

* lilat does the llrll!IIOnic LBLO
aean?

Long branch if lower than.

* What addressing IIOde is this?

Relative addressing.

* lillat is the branching range of
BLO?

The range is -128 ($81) to +12'7
($7F) relative to the progru
counter.

* What is the branching range of
LBLO?

The range is -32768 ($SIN) to
+32767 (S7FFF>, relative to the
progru counter.

160 Lesson 18

ones, but negativeness or positiveness do not affect the
result. These branches are:

1. Branch on higher than (BHn, and its
opposite, branch on lower than or same as
(BLS). In unsigned arithmetic, $FE is greater
than $01, that is, 254 is greater than 1.

2. Branch on higher than or same as (BHS),
and its opposite, branch on lower than (BLO).

3. The familiar branch on equal (BEQ) and
branch on not equal (BNE) are also part of the
unsigned set of branches.

4 and 5. Finally, there are the inverse pairs
of the first sets of conditions. Again, examine
these tables at the end of the lesson.

So how do these all fit together? How do you choose among
simple conditional, signed conditional, and unsigned
conditional branches? Here's how:

• If you're using the flags directly, such as
with rotations, yes/no comparisons, etc., use
the simple conditional branches. If you're
thinking about the condition codes per se, then
you want to use simple conditional.

• If you're doing arithmetic, such as creating
mathematical subroutines, or if you're using
numbers transferred from BASIC, use signed
conditional branches. Real numbers are
positive and negative, so use signed conditional
branches when doing that kind of math.

• If you're making a series of value
comparisons or checking table entries, then use
the unsigned conditional branches. These are
similar to the simple conditional branches,
except they allow you a little more flexibility or
programming compactness.

Some experimenting will make the choices clear. I've got a
program I think you'll like. Get your computer on and up in
Extended BASIC. When you're ready, type and enter this
BASIC line; follow in your book:

PCLEAR8:PMODE4,l:PCLS:PMODE4,5:PCLS:CLOADM:EXEC

Your computer will be ready and searching for an object
code program. It's coming up.

IF A=1>Zl,
711£.N ...

ff 1~ &:Q, t
t.Z.

Bf-.lE- t.1 ~"
! }~

'Ml, T }~
f:A:S., Z2.

a,

}::~ £3(.n,
u,

BL-5 l
7F }-,tr_ t¾T, t.

f'.,bE., v...__
f.,I...T,

Bl-E-
~

T 3~
00

l }~

Program 1128, an object code program. Turn on the power to
your Extended Color BASIC computer. When the cursor ap
pears, type CLOAD and press ENTER. The computer will
search (S) and find (F). When the cursor reappears, type EXEC
and press ENTER. The program will execute automatically. If an
1/0 error occurs, rewind to the program's start and try again. For
severe loading problems, see the Appendix.

BASIC started by clearing an area of graphics memory, so
what you should be seeing is a clean high-resolution
graphics screen with a narrow, random-looking band of
colors walking down the screen from top to bottom. At the
same time, a continuous tone is coming from the
loudspeaker. The tone hiccups each time the colored band
moves down the screen.

Before you sigh "so what" to yourself, let me tell you what
you're looking at. The band of random color isn't random at
all. It's the program. The program itself is being displayed
as if it were screen information. That shouldn't be a
surprise, since memory is memory so far as the
microprocessor is concerned. But it can be disconcerting to
actually snoop into the program's private memory lair.

Now to my point. This band of color is MOVING. The
program is producing a tone, then moving itself. erasing its
trail, and re-executing in a new position in memory.
Eventually, the loudspeaker will let out a strangled squawk
and probably return an "OK" to your screen, as the moving
program crashes into the un-writable BASIC ROM.

This is a completely position-independent program. When
you're ready, you can load the assembly source code and
have a look. I'll be back for the next lesson and a complete
walk-through of this program, and a re-explanation and
summary of the process of position-independent code.
Enjoy this one.

Program 1129, an EDTASM+ program. Insert the EDTASM+
cartridge, and tum on the power to your computer. When the
cursor appears, type L and press ENTER. The computer will
search (S) and find (F). When the cursor reappears, display the
program. Type PII: • and press ENTER. If the right-hand side of
the program is not similar to the listing, or if an 1/0 error occurs,
rewind to the program's start and try again. For severe loading
problems, see the Appendix.

11211,w, 00:00 ORG $1000
00110 *

FF20 00120 SPORT EQU $FF20
00AA 00130 DIFFER EQU I_AST-F I RST

00140 *
0015121 * DISABLE THE INTERRUPTS

112100 1A 50 00160 FIRST ORCC #$50
00170 *
00180 * OPEN THE SOUND LATCH

112102 86 3C 00190 LDA #$3C
i1Z104 B7 FF23 00200 STA $FF23

00210 *

Position independence

* HOM aany groups of branches
are there'?

There are four groups of
branches.

* What are the four kinds of
branches?

Simple branches, si■ple

conditional branches, unsigned
conditional branches, and signed
conditional branches.

* What is a position independent
progru'?

A progru designed to run
correctly no matter where it is
located in 11e110ry.

Learning the l::£/::f9 161

Program #29

00220 * SELECT VIDEO ADDRESS
1007 C6 07 00230 LD8 #$07
1009 BE FFC6 00240 LDX #SFFC6
100C A7 81 00250 VIDEO STA ,x++
100E 5A 00260 DECB
100F 26 F8 00270 8NE VIDEO
1011 87 FFCD 00280 STA SFFCD

00290 *
00300 * SELECT GRAPHICS MODE

1014 B7 FFC5 00310 STA $FFC5
1017 B7 FFC3 00320 STA $FFC3
101A 87 FFC0 00330 STA $FFC0

00340 *
00350 * SELECT COLOR SET, MODE

101D 86 C7 00360 LDA #$C7
101F 87 FF22 00370 STA $FF22

00380 *
00390 * ERASE PREVIOUS PROGRAM

1022 C6 AA 00400 ERASE LD8 #DIFFER
1024 30 BC D9 00410 LEAX FIRST,PCR
1027 30 89 FF56 00420 LEAX -DIFFER,X
102B 4F 00430 CLRA
102C A7 80 00440 KLEEN STA 'X+
102E 5A 00450 DECB
102F 26 FB 00460 BNE KLEEN

00470 *
00480 * BEEP FOR ALL TO HEAR

1031 80 12 00490 BSR BEEP
00500 *
00510 * TRANSFER PROGRAM AHEAD

1033 C6 AA 00520 LD8 #DIFFER
1035 30 BC ca 00530 LEAX FIRST,PCR
1038 31 8D 006E 00540 LEAY LAST,PCR
103C A6 80 00550 LOOP LDA , X+
103E A7 A0 00560 STA 'Y+
1040 5A 00570 DECB
1041 26 F9 00580 BNE LOOP

00590 *
00600 * AND GO TO MOVED PROGRAM

1043 20 65 00610 BRA LAST
00620 *

HJ45 86 FF 00630 BEEP LDA #$FF
1047 34 02 00640 REBEEP PSHS A
1049 86 3E 00650 LOA #$3E
1048 30 8D 001C 00660 LEAX WAVES,PCR
104F E6 86 00670 WAVER LDB A, X
1051 58 00680 ASLB
1052 58 00690 ASLB
1053 F7 FF20 00700 STB SPORT
1056 8D 09 00710 BSR DELAY
1058 4A 00720 DECA
1059 26 F4 00730 BNE WAVER
1058 35 02 00740 PULS A
105D 4A 00750 DECA
105E 26 E7 00760 BNE REBEEP
1060 39 00770 RTS

00780 *
1061 34 02 00790 DELAY PSHS A
1063 86 06 00800 LDA #$06
1065 4A 00810 DLOOP DECA
1066 26 FD 00820 BNE DLOOP
1068 35 02 00830 PULS A
106A 39 00840 RTS

00850 *
106B lFlC 00860 WAVES FOB $1F1C
1060 1916 00870 FOB $1916
106F 1310 00880 FOB $1310
1071 0D0B 00890 FOB $0D0B
1073 0806 00900 FDB $0806
1075 0403 00910 FDB $0403
1077 0201 00920 FOB $0201
1079 0000 00930 FDB $0000
107B 0000 00940 FDB $0000
1070 0001 00950 FDB $0001
107F 0204 0096121 FDB $021214
1081 0608 00970 FDB $0608
1083 0A0C 0121980 FDB $0A0C
112185 0F12 00990 FDB $0F12
1087 1417 01000 FDB $1417
1089 1B1E 01010 FDB $1B1E
1088 2124 01020 FDB $2124
108D 272A 01030 FDB S272A
108F 2D30 01040 FDB $2D30

162 Lesson 18

Program #29

1091 3235 01050 FOB $3235
1093 3739 01060 FDB $3739
1095 3A3C 01070 FDB $3A3C
1097 3D3E 01080 FDB $3D3E
1099 3E3E 01090 FDB $3E3E
109B 3E3E 01100 FDB $3E3E
109D 3D3C 01110 FDB $3D3C
109F 3839 01120 FDB $3B39
10A1 3735 01130 FDB $3735
10A3 3330 01140 FDB $3330
10A5 2E2B 01150 FDB $2E2B
10A7 2825 01160 FDB $2825
10A9 22 01170 FCB s-=--=-~~

01180 *
10AA 01190 LAST EQU *

01200 *
1000 01210 END FIRST

00000 TOTAL ERRORS

Learning the l::i!f:.1t 163

164 Lesson 18

•
Welcome back. During this session I want to review the
concept of position independent programming, and to take
you through the self-moving, position-independent
program from the end of the last lesson. Get that source
code loaded again.

Program #29, an EDTASM + program. Insert the EDTASM +
cartridge, and tum on the power to your computer. When the
cursor appears, type L and press ENTER. The computer will
search (S) and find (F) . When the cursor reappears, display the
program. Type P#: • and press ENTER. If the right-hand side of
the program is not similar to the listing, or if an 1/0 error occurs,
rewind to the program's start and try again. For severe loading
problems, see the Appendix.

1000 00100 DRG $1000
00110 *

FF20 00120 SPORT EQU SFF20
00AA 00130 DIFFER EQU LAST-FIRST

00140 *
00150 * DISABLE THE INTERRUPTS

1000 1A 50 00160 FIRST DRCC H50
00170 *
00180 * OPEN THE SOUND LATCH

1002 86 3C 00190 LDA #S3C
i004 B7 FF23 00200 STA SFF23

00210 *
00220 * SELECT VIDEO ADDRESS

111107 C6 07 00230 LDB 41$07
1009 SE FFC6 00240 LDX #$FFC6
100c A7 81 00250 VIDEO STA ,X++
100E :SA 00260 DECB
100F 26 FB 00270 BNE VIDEO
1011 B7 FFCD 00280 STA SFFCD

00290 *
00300 * SELECT GRAPHICS MODE

l014 D7 FFC5 00310 STA SFFC:S
1017 B7 FFC3 00320 STA SFFC3
l01A B7 FFC0 00330 STA SFFC0

00340 *
00350 * SELECT COLOR SET, MODE

101D 86 C7 00360 LDA 41SC7
101F B7 FF22 00370 STA SFF22

00380 *
00390 * ERASE PREVIOUS PROGRAM

1022 C6 AA 00400 ERASE LDB 41DIFFER
11124 30 ec D9 00410 LEAX FIRST,PCR
1027 30 89 FF:56 00420 LEAX -DIFFER,X
1029 4F 00430 CLRA

The position-independent program
really isn't all Just tricks and
gi•icks. Its real purpose is
to uke the aachine code
•transportable". BASIC is
transportable; you don't need to
load it to a specific 1E110ry
location. You Just load and
run. High-level languages have
to NOrk that 111ay, but ■achine

language had a hard time •••
unt i1 the 6809.

* What is a position independent
progra?

A progru designed to run
correctly no utter where it is
located in 111NOry.

Leanaias die 60C:1/ 165

Program #29 reprise

102C A7 80 00440 KLEEN STA • X+
102E SA 00450 DECB
102F 26 FB 00460 BNE KLEEN

00470 * 00480 * BEEP FOR ALL TO HEAR
1031 80 12 00490 BSR BEEP

00500 *
00510 * TRANSFER PROGRAM AHEAD

1033 C6 AA 00520 LDB #DIFFER
1035 30 BC ca 00530 LEAX FIRST,PCR
1038 31 80 006E 00540 LEAY LAST,PCR
103C A6 80 • 00550 LOOP LDA 'X+
103E A7 A0 ~ STA ,Y+
1040 SA 00570 DECB
1041 26 F9 09580 BNE LOOP

.590 *
00600 * AND GO TO MOVED PROGRAM

1043 20 65 00610 ,BRA LAST
00620 *

1045 86 FF 00630 BEEJlt LDA ltSFF
1047 34 02 • 00640 REBEE:'.P PSHS A
1049 86 3E 00650 l!.DA ttS3E
1048 30 80 001C 00660 LEAX WAVES,PCR
104F E6 86 00670 WAVER LOB A, X
1051 58 00680 ASLB
1052 58 00690 ASLB
1053 F7 FF20 00700 STB SPORT
1056 SD 09 00710 BSR DELAY
1058 4A 00720 DECA
1059 26 F4 00730 BNE WAVER
1058 35 02 00740 PULS A
105D 4A 00750 DECA
105E 26 E7 00760 BNE REBEEP
1060 39 00770 RTS

00780 *
1061 34 02 00790 DELAY PSHS A
1063 86 06 00800 LOA lt$06

1065 4A 00810 DLOOP DECA
1066 26 FD 00820 BNE OLOOP
l'l\68 35 02 00830 PULS A
10E>A 3'3 H840 RTB

00850 * 1068 1F1C 00860 WAVES FOB $1F1C
1060 1916 00870 FOB S1916
106F 1310 00880 FOB U310
1071 0008 00890 FOB S0D0B
1073 0806 00900 FOB $0806
1075 0403 00910 FDB $0403
1077 0201 00920 FOB $0201
1079 0000 00930 FOB $0000
1078 0000 00940 FOB $0000
1070 0001 00950 ~DB $0001
107F 0204 00960 FDB $0204
1081 0608 00970 FDB $0608
1083 0A0C 00980 FOB $0A0C
1085 0F12 00990 FDB $0F12
1087 1417 01000 FDB $1417
1089 1B1E 01010 FOB S1B1E
1088 2124 01020 FDB $2124
1080 272A 01030 FDB S272A
108F 2D30 01040 FDB S2D30
1091 3235 01050 FOB $3235
1093 3739 01060 FDB $3739
1095 3A3C 01070 FDB $3A3C
1097 303E 01080 FOB S303E
1099 3E3E 01090 FOB S3E3E
1098 3E3E 01100 FOB S3E3E
1090 303C 01110 FOB $303C
109F 3839 01120 FOB S3B39
10A1 3735 01130 FOB $3735
10A3 3330 01140 FOB $3330
10A5 2E2B 01150 FOB $2E2B
10A7 2825 01160 FOB $2825
10A9 22 01170 FCB S22

01180 *
\0AA 01190 LAST EQU *

01200 *
1000 01210 END FIRST

00000 TOTAL ERRORS

166 Lesson 19

C@@.]
-flliS!' !:QV $!CCC,

DI~ EG)U LASr-Ri:ST

LEAY FIRST, -p-J?__

i.a:ATE I M.SEMBL]
4 j_ !:cAX -$t;9 1 PC..!<-

uu<X.RE ~ELvrlONI
4- 'j.. ~ f'C,-t (-1>·01)

LEAX - DIFft:R 1X

l~ t,_o(.A"f€

4 LEAX -$At\ 1 X
~uun~

(Al,.C.L,\'..,t?E. -

~ X= X-$M
I 1?£50LT i
X = $¢F5b

BEEP 1045
DELAY 1061
DIFFER 00AA
DLOOP 1065
ERASE 1022
FIRST 1000
KLEEN 102C
LAST 10AA
LOOP 103C
REBEEP 1047
SPORT FF20
VIDEO 100C
WAVER 104F
WAVES 106B

The opening lines of the source code should look familiar to
you. Interrupts are disabled to keep the tone pure; the
sound latch is opened (recall that process from the Morse
Code routine); the video address $1000 is selected via the
SAM registers; high-resolution color graphics, color set,
and detail level are selected through an address port. Up to
that point, everything is as it has been.

The real differences begin with the routine labeled
ERASE. The value identified as DIFFER has been
calculated by the assembler from my labels LAST minus
FIRST. The first byte of the program I labeled FIRST, and
one byte after the last byte I labeled LAST. At the start of
the assembly listing, I have the assembler calculate LAST
minus FIRST ... which is, of course, the length of the entire
program. So accumulator B is loaded with the length of the
program.

There follow two significant instructions ...

LEAX
LEAX

FIRST, PCR
-DIFFER,X

LEAX FIRST,PCR requests that the assembler compute
the distance from the program counter to the label FIRST,
and make the resultant address available for use by the X
register. In other words, after LEAX FIRST,PCR, the X
register points to the beginning of the program. Then
comes the instruction LEAX -DIFFER,X. That command
instructs the processor to let X equal the present X value
minus the value DIFFER. So the effect of those two
instructions is to point the X register to a place in memory
one program length before the program. Let me go through
that one more time. LEAX FIRST,PCR is a program-counter
relative instruction that calculates the distance between
the current position of the program counter and the label
FIRST, and assigns the resultant address to register X.
Using this technique, X ends up pointing to the start of the
program, without ever knowing what absolute address that
start actually is until now. After that, ·
LEAX -DIFFER,X provides the X register with the effective
address X offset by -DIFFER. Let X equal X minus
DIFFER. X now points to a location in memory DIFFER
places back from its previous position, still without ever
knowing the absolute address beforehand. Again:
LEAX FIRST,PCR. Let X point to the address FIRST
places from the program counter. LEAX -DIFFER,X. Let X
point to the address -DIFFER places away from its
previous position. No specific addresses involved
position independent ... program-counter relative.

Labled offsets

* How rtany groups of branches
are there?

There are four groups of
branches.

* What are the four kinds of
branches?

Simple branches, simple
conditional branches, unsigned
conditional branches, and signed
conditional branches.

* What is the branching range of
the branch instructions?

The range is -128 i$80l to +127
($7F) relative to the progralll
counter.

* What is the branching range of
the long branch instructions'

The range is -32768 ($8000) to
+32767 ($7FFF), relative to the
progra■ counter.

* What addressing ■ode are all
the branches, both long and
short?

Relative addressing.

* Relative addressing is
relative to Nhat?

The program counter.

* What does ",PCR• aean?

Program counter relative.

* What does LEA aean?

LEA ■eans

Address.
Load Effective

Learning the 6f!l::J9 167

Relocating a program

t What is the effect of LEAX
1, X?

X becoMeS X+l.

* What is the effect of LEAX
$45,X?

X becoOles X +$45.

* What is tne effect of LEAX
1, Y?

* What is the effect of LEAX
-5,Y?

X becomes Y-5.

t If A is $32 and X is $1000,
what is the effect of LEAX A,X?

X becomes X+A, that is, X
becOMeS $1032,

* What is the effect of LEAX
1, X?

X becOMes X+ 1.

* What lS the effect of LEAX
-1,X?

X beco11es X-1.

* The 6809 processor provides an
INCA COlllllland. What is the
equivalent of INCX, a fictitious
cc<111mand?

LEAX 1,X

* The 6809 provides a DECA
cOM&tand. What is the eQuivalent
of DECX, a fictitious coaand?

LEAX -1,X

* If the first byte of a prograg
is labeled START, what is the
effect of LEAX START,PCR if the
progrc1111 is OR6ed at $1000'

X becoaes $1000.

168 Lesson 19

The next four instructions fill up the memory area from -
DIFFER,X to FIRST with zeroes; the B register contains
DIFFER, the total number of bytes in the program. That is,
a block of memory as long as the program from -DIFFER,X
to FIRST will be cleared to zero.

Following those contortions is a relative branch to the
subroutine BEEP. I'll get back to BEEP in a minute.

After the branch to and back from BEEP, the B register is
once more loaded with the program's length. Following that

LEAX FIRST,PCR
LEAY LAST,PCR

Again using the program counter relative technique, the X
register is pointed to the beginning of the program, and the
Y register is pointed to the byte after the last byte in the
program. By means of a standard load-and-store loop -
which should be tiresomely familiar by now - the
information pointed to by X is transferred to memory
pointed to by Y, and both memory pointers are
incremented by one. The loop continues until B is
decremented to zero. In other words, a copy of the program
is made immediately following the end of itself.

The final instruction is the grabber. The program is told to
execute a branch to the label LAST. The LAST has
become the FIRST. The program, having just been copied,
is born again and seemingly begins anew in a fresh area of
memory. It once again sets up the video and sound
parameters - a redundant act I included for effect. At this
point, the reason for the ERASE routine presented earlier
should become clear. ERASE causes the previous program
to be cleared out of memory - the program hides its own
trail as it beeps and copies itself.

So what you see is a screen full of memory, and revealed on
that screen you are watching is a program that beeps,
duplicates itself in a new location, branches into its new
self, and eradicates its old self.

Chances are you wouldn't ever need to write a program like
this. But you might want to write something like the BEEP
subroutine, a routine that you can stuff anywhere you like in
memory. Have a look at it.

Part of its structure should be familiar. The A register is set
up as the length of the beep, and there are values being sent
out the sound port to the television speaker. But there's
something new. LEAX WAVES,PCR (again using program-
counter relative addressing) points the X register to a table
labeled WA VE S. So what's this table?

It might look at first like a table of addresses. It isn't. It's a
63--byte reference table ... these are bytes, not addresses. I
just wanted to save myself some typing by compressing
them the way you see them. So you can read this tablt as a

i

U>e, ~Cit'!"~ ..
l.fAX Fll<!:>T, f'(.,R
LEA y !.,AST' A::R.

p
I<
0 ..
R

" Ge;> "" rn= ¢

!SJ

C,
I..
0
N
f._

EXE.GUT£.
7He

(..t-me-//

,~ '" " IC

IF
u

-ZS ,,

group of 63 bytes: $1 F $1 C $19 $16 $13 $1 0 $OD, etc.
Trans 1 ated back into the form in which I created them, they
read like this:

.0003073

.0995276

. 1983681

.2952265

.3891352

.4791557

.5643887

.6439825

... and so forth. It's actually a table of mathematical sines,
made positive and multiplied by a constant so that the table
falls into the range of positive integers Oto 63. The reason
I've done this is because the Color Computer contains a 6-
bit digital-to-analog converter, a circuit which converts a 6-
bit binary number into an equivalent voltage. That voltage
can be used for a variety of purposes, including the
production of sound.

I described this briefly when you were exploring the Morse
Code examples. This time you'll be putting it to use. Move
back now to the BEEP routine itself. Notice that beginning
with the third instruction, the BEEP program loads the A
accumulator with $3E, points the X register to that table,
and then loads the value found at X indexed by A into the B
accumulator. The value is shifted to the left (from the low 6
bits to the high 6 bits, where the computer's digital-to
analog converter output happens to be wired). That value is
then stored at SPORT, tpe sound output address in the
computer. A brief delay is made, then the next element in
the table is acquired and output to the sound port, until all
63 elements have been used up. The routine then loops
until 255 repetitions of the table have been output.

The sine wave is the simplest of all musical som~ds. By
creating a series of numerical values which outline a sine
shaped wave and subsequently putting those values
through the computer's 6-bit converter, an equivalent
sound wave .is produced through the loudspeaker. It
sounds like the sine wave it represents.

Take a break now, and make some changes in the
subroutine. You can assemble and use the BEEP
subroutine separately, if you like. If you use it separately,
remember to turn off interrupts by using ORCC #$50, and
also to turn on the sound latch by storing $3C at memory
address $FF23. I'd like you to play around with the length of
the beep (found at line 630 being loaded into the A
register), with the frequency of the beep (found in the delay
loop at line 800), and with the quality of the sound (by
changing the values in the wave table beginning at line 860).
When you're comfortable with how these routines work,
thoroughly review both this lesson and the previous one. I'll
be back with a summary of position independent
programming, and then I'll finish up this session by
introducing the remaining 6809E instructions.

Learning the

Waveform table

* If the first byte of a program
is labeled START, Nhat is the
effect of LEAX START,PCR if the
progru is ORSed at $1234?

X becolles $1234 •

* If the first byte of a prograa
is labeled START, llilat is the
effect of LEAX START,PCR if the
progr,111 is ORGed at SAAM?

XbecoaesSAAM.

* What addressing IIOde is LEAX
WAYES,PCR?

Progru-counter relative.

* What is i pseudo-op?

An instruction to the
asse111bler.

* What pseudo-op places a single
byte in IIE!IIOry?

FCB.

* What pseudo-op places two
consecutive bytes in 111e110ry?

FDB.

* What pseudo-op places an ASCII
string of characters in 11e110ry?

FCC.

* Does the Color C011puter have a
digital-to-analog converter?

Yes.

* A digital-to-analog converter
converts Nhat to trihat?

A binary number to an equivalent
voltage.

* At what lllelllOr')' locatior, is the
Color Computer's digital
to-analog converter found?

At location SFF22.

~ 169

Branch ranges; MUL

* How many bi ts can be sent ti:.
the Color Computer's digital
to-analog converter?

6 bits.

l! What is the range <in binary,
hex and decimal) of the Color
Computer's
converter?

digital-to-analog

Binary 000000 to 111111;
hexacJeci11al S00 to $3F; decimal
0 to 63.

* The Color Cclft1puter1 s
digital-to-analog converter
ranges from 0 to 5 vol ts,
divided into 64 steps. Zero
output is 0/64ths, full output
is 64l64ths; that is, it has a
step size or resolution of
1164th of the output. If 000000
is sent to the digital-to-analog
converter, what is the output?

000000 is 0/64ths, or 0 volts.

* If 111111 is sent to the
digital-to-analog converter,
what is the output?

111! 11 is 63/64ths, or 4. 921875
volts.

* If 101010 is sent to the
digital-to-ar.alog converter,
what is the output?

101010 is 42/64ths, or 3.28125
vol ts.

* If all the values frOAI ~
to 111111 and back to 000000 are
sent to the digital-to-analog
converter, what will. a graph of
the frnal voltage output look
like?

A triangle.

* If the Color Computer's
digital-to-analog converter were
7 bits instead of six, what
would be the step size (the
resolution)?

11128th of the output.

170 Lesson 19

Experiment with the length, pitch and sound quality of the beep
in this program. The length of the beep is loaded into the A regi
ster in line 630 of Program 29. The frequency of the beep is
found in the delay loop in line 800. The wavetable begins at line
860. When you are confident you understand the application of
these features, return to the tape.

Position independent programming, then, is the creation of
machine language in a way that allows the final assembled
binary program to execute anywhere in memory. This
quality of position independence is achieved by making all
memory pointers, program branches and subroutines
relative to the position of the program counter. In that way,
the processor never needs to know "where", but only needs
to know "how far from here".

Among the commands used with position independent
programming are the three dozen variants of the branch
(with its 256-byte range) and the long branch (with its
65,536-byte range). Branches come in simple form, where
they are always obeyed; in simple conditional form, where
their actions depend on the state of specific condition
codes; in unsigned conditional form for "higher" and
"lower" judgments; and in signed conditonal form for
"greater than" and "less than" judgments in with positive
and negative arithmetic.

The other commands to achieve position independence are
the LEA, or load effective address, group. When used with
in program-counter relative form, 16-bit registers can be
pointed to any location in memory by virtue of that
location's position relative to the current position of the
program counter. It's almost mandatory to use an editor/
assembler and labels to do this. For the experience, you
might try hand-assembling a few LEAX instructions in the
program-counter-relative mode.

The advantages of position independence are obvious; the
disadvantages are a slight increase in the amount of
programming code required, and a loss in execution speed.
For fast action games and high speed - where position
independence is hardly necessary anyway - compact,
address-specific programming is adequate and desirable.
For utility programs, mathematical subroutines, and other
semi-permanent programs (especially those which will be
used with other machine-language software), position
independence is virtually required.

Only a few commands remain in the 6809 instruction set.
Some you've come across, and some are brand new to this
course. One you've seen is multiply, MUL. When MUL is
executed, the contents of the A accumulator is multiplied
by the contents of the B accumulator, and the result is
placed in the combined D accumulator. This is an unsigned
multiply, meaning the full 8 by 8 bit multiplication is

o oPG.~-,.,,.
~ [@ ",v

(zzzz.z. ... 1)

►tit> B 7!>-r
IMxl

~
~tfill
~

~

0
~

NOP,EXG,ABX,SBC,TST,BIT

completed without reference to it being positive or
negative. Positive integers are assumed for this
multiplication. Although MUL takes 11 machine cycles (it is
the longest 6809 instruction), it saves the several steps
required by other processors, where multiplication is done
by many succeeding steps of shifting and adding.

Another you've already seen is no operation, mnemonic
NOP. The NOP has several uses, most frequently as a time
waster for sound, input/output, communication, or other
timing loops. The NOP takes two cycles to execute, during
which no other aspect of the procesors's operation is
affected.

Another instruction which you haven't specifically used,
but is in a familiar family, is exchange, EXG. Like the
transfer (TFR) command, EXG uses an opcode and a
postbyte to describe the registers needed. TFR replicates
the value in the source register into the destination register.
EXG swaps the values in the two registers. EXG is useful
for organizing A and B registers properly in the 16-bit D
register; for placing information into the more flexible X
register; for temporarily swapping stacks; and so forth.

Since I just mentioned the X register as being more
flexible, I'll present the command ABX. ABX instructs the
processor to add the value of the B register to the X
register. This inherent instruction is very fast, and acts as a
kind of fixed increment for X. If X has to move through a
high resolution graphics screen hex $80 bytes at a time, for
example, it would be most efficient to set B to $80 and
execute ABX. Especially inside a loop, ABX would bump the
X pointer down to the next graphics screen line in a short
time.

Two complementary instructions are add with carry (ADC)
and subtract with borrow (SBC). These are standard add
and subtract commands, except that the carry/borrow flag
is made a part of the computation. I'll talk more about ADC
and SBC when I get to the representation of numbers in a
later lesson.

TST and BIT are related quick testing instructions. BIT
causes the processor to AND the value of an accumulator
with a memory location. Certain flags are affected, but the
original contents of both accumulator and memory remain
unchanged. BIT is particularly useful for locating numbers
or ASCII strings in memory, since the value in the
accumulator isn't affected as it moves and tests byte after
byte.

TST is similar to BIT, but is oriented toward signed
numbers. TST tests the value of the operand - which can
be a memory location or either accumulator - and sets the
negative and zero flags according to what it finds. Signed
conditional branches (BGT, BLE, BGE, BLT, BEQ and
BNE) are usually placed after the TST.

* If the Color Corsputer's
digital-to-analog converter were
8 bits instead of siK, llllhat
would be the step size <the
resolution)'

11256th of the output.

~ lilhat is the step size <the
resolution) of the Color
Cotlputer's
converter'

digital-to-analog

1164th of the output.

* What is the highest resolution
of this table of sine values for
the Color C0111puter1 s
digital-to-analog converter?

1164th of the sine wave shape.

• The following Questions refer
to) the ret11aining 6809
instructions introduced in
Lesson 19.

* lolhat 1s the action of MUL?

The contents of the A
accumulator is multiplied by the
contents of the B accumulator,
and the result is placed in the
D accumulator,

* is the result of MUL signed or
uns;.gned?

Unsigned.

* If A contains S08 and B
contains SC2, what 1s the result
of MUL?

D contains $0610.

* If A contains $55 and B
contains SAA, llllhat is the result
of MIJL?

D contains $3872.

* If A contains SFF and B
contains SFF, what is the result
of MU..?

D contains $FE01.

Learning the 6f!IY:; 171

SEX, DAA

* what is the result after NOP?

No change to any registers or
IE!l!Ory locations; no operation
takes place.

* If A contains $08 and B
contains $C2, what is the result
of EXG A,B?

A contains $C2 arid B contains
$08,

* If X contains SFFEE and Y
contains $01CD, what is the
result of EXG X,Y?

X contains $01CD and Y contains
$FFEE.

* If X contains $01CD and B
.-::ontains $33, what is the result
of ABX?

X contains $0200.

* If X contains $FFFF and B
contains $081 what is the result
of ABX'

X contains $0007.

* If A contains $10 and the
carry flag is set, what is the
result of ADCA #$10'

$10+S10+C = $21

* If B contains $01, what is the
result of SEX?

D contains $0001.

* If B contains SFF, what is the
result of SEX?

D contains SFFFF.

* If B contains $80, what is the
result of SEX?

D cor1tains $FF80.

* A contains $43 and ADDA $99 is
executed. What is the result
after DAA?

A contains $42 and the carry
flag is set.

172 Lesson 19

The next instruction also has to do with signed arithmetic.
Called sign extend (SEX), it results in the sign of the B
accumulator being extended into the A accumulator for a
complete, signed 16-bit number in the D register. In other
words, ifB is a positive number, A will become $00. IfB is
$77, for example, after SEX, the D register will be $0077.
On the other hand, ifB is a negative number, A will become
$FF. That is, if B is $FC (-4 decimal in 8-bit signed
arithmetic), a negative number, its sign is extended so that
the resulting D register is $FFFC - still-4 decimal in 16-
bit arithmetic. If that isn't clear, count backwards, first in 8
bits and then in 16 bits. Startingwith$00, SFFis-1, $FE is-
2, $FD is -3, $FC is -4. Now start with $0000, a 16-bit
number. $FFFF is-1, $FFFE is-2, $FFFD is-3, $FFFC is-4.
Sign extend, mnemonic SEX, sees to it that an 8-bit signed
value is properly transformed into a 16-bit signed value.

All that's left is DAA, the decimal addition adjustment.
Microprocessors are working in binary, base 2, and that
operation is represented by hexidecimal, base 16. As
you've discovered, none of this fits very well with base 10,
the decimal system. Some processors contain a decimal
mode of operation, where adjustments are made
automatically after every computation to compensate for
the base 10 system. In other words, no number larger than
binary 1001 is allowed in a nybble.

Sadly, decimal mode is is one of the few desirable features
not found in the 6809 processor. In its place is the
instruction decimal addition adjust, or DAA. When
executed after and ADD or ADC, the values in the
accumulator are converted from true binary mode to a
decimal version called binary-coded-decimal, or BCD. The
nybbles of the byte are adjusted, and the carry flag set if
necessary, to turn the binary result into BCD.

For example, if I were to LOA #$77 and then ADDA #$77
(note both these are binary-coded-decimal numbers), the
binary result would be hex #$EE. Although I want these to
be decimal representations, the processor treats them as if
they were binary. If I follow those commands with DAA,
however, a series of tests and corrections are made. $54 is
left in the accumulator and the carry flag is set. That's the
number 154 in BCD, the sum of 77 BCD plus 77 BCD.
Review the summary of DAA on page 43 of your
EDTASM+ manual; there will be more on this later.

By the way, it's especially with an operation such as DAA
that the command ADC comes into play. The carry
generated by DAA in the previous example has to be taken
into consideration when doing arithmetic with larger
numbers. Keep that in mind, as I'll be covering that in
Representation of Numbers, the next lesson.

,,...,. io-~o
'-l @e><]

A • p,,..i 'T CAAi:..

6• 1,77 (t!!•t,crfr(7)
SEcX

A e, -~L
etn!HOfD -'L-1

P =-$¢:2177
(1vBrr $77)

~ A•D:>1-l'rUile.
13~ $Fe.. (8·6rr-'I)

'SEX
A 6

r--"----, .,...--A-----.

f+1']:1!! 1/H~
~s.ti

L_:i&!T

D= $FFFC.

(1'-·"SIT -~)

-{e. e,,-

\ TIT]
A =1FC..
--rs,A

ll/ifil'lilio/o!
C;'~/{

>:.,...,.~

1!,11 TES)"

lsrrl
A='$A~

BrTA*$99

A Wi'@qoJl/11
-"'ID ltl<>Jo/llf/a§,j

~w@34441I
~r.'}

1.N.f

A:$A3
MA-#1"-'SE!'>

A f,)oJ,1~331/1!
MD !oi,)~1/1@:jo\

"ta-1P i~~#foij,I
vi .. f.4,.-?

'-cJ_ ":'e
.,lt-,,t~

IN7Eb£RS

3(o-'/J_

Z. I

b

",z_,'ff
,03'1!/

(,,2,/ "-', 05"'?1

/"RACl'IOtl/5

0¾,
3¼

31-

-3½.

/A:ll::,f~f-
NV/1,

3. /"1!572.c'o,,,,

.t>/Fre.ea.lT
NVMBEZ- :5'/S1cMS

/0/00 !Oz.

/732.7 13

'S"lz_ b 9 "1
10

B7G b,,

•
What is a number? I've been wanting to ask you that
question at just about every session, but I think now' s the
time for it. What is a number?

No matter what comes to mind in response to the question,
it's probably right, and that means the computer has to deal
with it. Somehow, the binary data has got to be arranged to
handle all those conceptions. Numbers might include ...

• integers both positive and negative.

• floating-point decimal numbers

• fractions

• irrational numbers and transcendental
functions

• different number systems

• identification or code numbers

• scales or scientific ranges

• money

• very large or very small numbers

Some of these - like floating-point numbers and money -
are just slight conceptual variations. Others - like
transcendental numbers and different number base
systems - are strikingly dissimilar.

Learning the details of handling all these different numbers
in assembly language would require a separate course, so
I'm going to limit the discussion to simple numbers. Once
you've got this session down, you'll be ready for all the rest.
You already understand positive and negative integers, so I
mean to go one step further - to floating point numbers
and how they are represented in binary notation.

Signed and unsigned integers
have been the li■it for the
calculation and conversion
exa■ples so far. NUllbers are
mind-bogglingly 110re than that,
and binary for11at has to be
forced to handle the111 all.
Floating-point notation -- that
is, representation of deci111al
nu•bers - is far and away the
fllOSt obscure topic in asset11bly
language. Even to the
exoerienced, it coaes only Nith
irritation.

* What is an integer?

A whole nu■ber

fractional part.
with no

* !bf does the 6809 represent
signed integers?

By using the MOSt significant
bit (the leftllOSt bit) of a
nullber.

* What is the sign for positive
and negative?

A zero in the 110st significant
bit is positive; a one in the
110st significant bit is
negative •

Learning the 6el::fJ 173

Accuracy and range

* Show $8FC2 in binary; 1s it
positive c,r negative'.' ;,lhy~

$8FC2 is 1000 1111 1100 0010,
af'ld it is negative because the
most significant bit is a ,me.

* What is a floating-pc,int
nu&1ber'

A number with a fractional
oart.

* Can 326 be a floating··point
number? Why?

Yes, oec:ause the fractional part
is zero (. 0000000 . •..)

* What is the accuracy of the
Cc,lor Co111puter~

9 significant digits.

* What is a s:.gmfic:ar!t digit?

Th2 oart of the actual number
used in storage or COl'llputation.

* What are the signfic:ant digits
of 123,456,789,876,543,210 on
the Color C011puter'

The 1110st significant digits are
123456789.

* How would 123,456,789,876,-
543,210 be displayed on the
Color C011puter?

It would be displayed
1. 2345679£+ 17.

* What does the E mean in
1. 2345679E+17?

E means exporient, that is, the
power of 10 by which the number
is multiplied; in other words,
1.2345679 times 10 to the 17th.

f What is 10 to the 17th
(10H7l'

100,000,000,000,000,000

174 Lesson 20

"Floating point" is jargon for numbers in complete form -
positive or negative numbers, with integer and fractional
portions. All numbers in the Color Computer's BASIC are
stored as floating point numbers, whether they look like
integers or not. The number 10, 'for example, is actually
thought of as 10,0000000 with the computer's internal
hexadecimal representation $84 20 00 00 00. One
million is thought of as 1000000.00, with the internal
hexadecimal representation of $94 74 24 00 00. 0.1
becomes 0,100000000 and is represented by hexadecimal
$7D 4C CC CC CD, and one-millionth is 0.0000010 and
is stored as hexadecimal $6D 06 37 BO 06.

Don't expect these hexadecimal patterns to make any
sense as I read them to you. They are, in fact, five-byte
groupings capable of representing any number from -
170,141,173,000,000,000,000,000,000,000,000,000,000
(negative 170 trillion, 141 billion, 173 million billion billion
billion) to +l 70,141,173,000,000,000,000,000,000,000,
000,000,000. The Color BASIC language can handle these
with nine significant digits of accuracy - that is, only the
first nine digits are used for the actual computations. This
is excellent accuracy (far better than my old 4-digit slide
rule), but not always enough for the modern age of high
technology, with its measurements of astronomical
vastness or molecular smallness. By understanding how
floating point numbers are represented, it is possible to
extend the accuracy of numbers to as many digits as you
need. No matter how fast the machine's speed, handling
such large numbers will take time; but handling large and
small numbers will be possible - even via BASIC.

Now to what those numbers mean. The principle is, once
again, disarmingly simple. Let me start the explanation as if
you were using a decimal computer instead of a binary one.
Take the decimal number 1234567.89. Now say this
decimal computer you own has a precision of 10 significant
digits. The number is really 1234567.890 for your
computer. And of course this decimal computer doesn't
have a decimal point inside the number - it can only store
information on where the decimal point is. It won't actually
put one there except for di:,;play.

So the number is 12:34567.89, meaning the decimal point is
between the seventh and eight positions. So by storing 7
followed by 1234567890, you can say that the number
stored in your special decimal computer is 1234567 point
89, with the trailing zero dropped. Simply by changing your
descriptive information you can change the number's
power of 10. By storing 12 followed by 1234567890, you
automatically know that the number you want is
123,456,789,000. By storing 1 plus 1234567890, the
number becomes 1.23456789.

There's no difference in the Color Computer's
representation of numbers from the description of this
imaginary decimal computer. The five bytes used to
describe a floating point number on the Color Computer
are in binary. That's the key. To represent one million as

I D6Vr7 FfCA1'1<1#
/.IUl'-1~

("°3) '1'10 -SIS/

S.S. C!00·"/1- "!OZ.

VT

SCALES, ... ~~ I
sz• - z.12.0 I

I

6 - I /0 di, i
5'5 ,..?1--

Zo Hi! • ZL! /<l-1£

MCWl!-Y

$3.9'1

,i J./3-

3(:)F

/Z7
8.~;,l/()

/,9'1 x lo ""'-S'

l7.-3'-f5(,,72,9
'c,~ ,16

~7 I 2- ~ '(5 {., 7 15 f ¢

~~ <f ¢'

¢7 /Z3'fH,7t!>'lf/ ...,,..,, ~
- 1-1,6.u-r,~~ ...

(to") (.tZ3'15"'-78<f¢)

Sa ..

¢7 / 2 3 'f-S-t. '78''1f
-:;: /Z.3'fSk'4eR~

il /2-3 'f5'47'i/'i'~
~- /23 -'t''i,"t:,,7~'f¢¢¢.

¢1 /Z.3'fS-t;?tYJfll
" /. Z3"11.b781'¢

$94 74 24 00 00 is to store it with one descriptive byte
telling where the point is, plus a string of binary digits.
Here's a case where hexadecimal is pretty useless. Binary is
the only solution to seeing it.

The exponent byte comes first, which is a power of 2 -
essentially a description of where the decimal point goes. In
this case, I'm going to coin a term ... I think this should be
called a binaral point, since this is binary notation. $80 is
the central value around which the binaral point swings.
From $81 to $FF represents from 1 to 127 places to the left
of the binaral point - numbers greater than one; from $01
to $7F represents from 127 to 1 places to the right of the
point.

Back to the number one million, stored as
$94 74 24 00 00. $80 is the pivot point, so $94 minus
$80 is $14. That means that this number has hex $14 -
decimal 20 - digits to the left of the binaral point. I'll write
the remainder of this in binary:

0111 0100 0010 0100 0000 0000 0000 0000

The leftmost bit of these 32 digits is used as the sign bit; as
usual, 0 is the positive sign and 1 is the negative sign. In
numerical terms (exactly why is difficult to explain but will
become clear with experience), this bitis assumed to be a 1
for calculation purposes. That is, since any number's got to
have some digit to multiply by other than zero, at least one 1
will appear ... and that's the case no matter whether the
number is positive or negative. So whether the sign bit is 1
or 0, this bit is included in the calculation as if it were a 1.
Turning back to the string of binary digits, it becomes
(please follow along in the book now):

1111 0100 0010 0100 0000 0000 0000 0000

Since the point is after the 20th position (hex $14), count
over from the left. The left, for one of the rare times in
computer terms, is called the first rather than the zeroeth
position. Putting the point in place makes the number
read:

11110100001001000000.000000000000

Now you do one of two things. The first option is to sum the
powers of two to calculate the result, starting from just left
of the point. Zero times 2 ♦0 plus O times 2 H plus O times
2 ♦ 2, keeping the sum as you move on up to 1 times 2 ♦ 19.

That's actually the sum of 2H9 + 2 ♦18 + 2 ♦17 + 2 ♦16 +
2 ♦14 + 2 ♦9 + 2 ♦ 6, which is 1,000,000.

Or as an alternative you can break the binary into four-bit
groups, again starting from the immediate left of the point,
and convert those to hexadecimal: it becomes $F4240.
According to my hexadecimal calculator, $F4240 is,
indeed, one million in decimal.

Exponent byte

* What is 2 to the zeroeth
(2·t-0)?

1 (any number to the zerc, power
is 1}.

* What is 2 to the 1st (2-t1J'

2

* What is 2 to the 2nd (2-t2i?

4

* What is 2 tv the 3rd (2-t·3)?

8

* What is 2 to the 16th (2+16)?

65536

lf What is 2~ plus 2-1-1 plus 2+2
plus 21'3?

1 +2+4+8, or 15.

* Whal; is 2+0 plus 2•1 plus 2·t2
... up to 2+15'.'

1+2+4 ••• +32768, or 65535.

• In floating-point binary
notation, what is the first
byte?

The exponent byte.

* If the exponent byte is S99,
what does it indicate?

It indicates~ to the power $19
(hexl or 2+25 <decimal).

* If the exoonent byte 1s SB!,
what does 1t indicate?

it iridicates 2 to the poi,,er S01,
or 2.

* What are
following
called?

the four bytes
the exponent byte

The 11anti ssa.

I'm going to take you through a few of these for practice. Let
me hand.you just any five- byte group that comes to mind as
I put this lesson together. I'll keep it positive and large until

Learning the 6f:l::Y; 175

Placing the point

* If the four bytes are SSA 00
00 00, what is the binary
aantissa?

The binary Mantissa is 0101 1010
0080 Mtl0 0B 0000 0000 0000.

* Which bit is the sign bit'

The ieftmost bit is the sign
bit.

* If the mantissa is $5A 00 00
00, what is its sign'

The sign of SSA 00 00 00 is
positive (the leftmost bit is a
zero}.

* What is
mantissa?

a "normalized"

A mantissa in which the leftmost
bit has been set to a one after
1 ts sign is known.

* !f the (normalized) mantissa
is 1101 1010 0000 0000 0000 0000
0000 0000 and the exponent byte
is S88, place t,e point.

1101 1010. 0000 8000 ._ 0000
0000 0000

* What is this number?

2·t1 + 2-t-3 + 21'4 + 2-t-6 + 2t7 =
218

* If the (nor111alized} mantissa
is 110110100000000000000000
0000 0N0 and the exponent byte
is $91! place the point.

1101 1010 0080 0000 0.000 0000
0000 0000

* What is this number?

21'10 + 2t12 + 2t13 + 2t15 + 2t16
= 111!61&

176 Lesson 20

you get the hang of it. Let's say the bytes you see are
$9F 66 7D 80 1 F. Write those bytes down.
$9F 66 7D 80 1 F. The leftmost byte is the power-of-two
exponent, you recall, revolving around the $80 pivot point.
$9F minus $80 is $1 F, so you know that this number is $1 F
(that is, decimal 31) digits long. The digits themselves are
66 7D 80 1 F, which, when translated into binary,
become:

0110 0110 0111 1101 1000 0000 0001 1111

You can follow along in the book or write those down. The
leftmost bit is the sign bit; it's zero, so this is a positive
number. Now you can replace the zero with the
"normalized" one for calculation purposes. Here's the
number:

1110 0110 0111 1101 1000 0000 0001 1111

The binaral point is after the $1 Fth digit ... that's the 31st
digit. So the binary number now is:

1110011001111101100000000001111.1

I'll do the sum with the powers of two method. 2 ♦0 + 2H +
2n + 2 ♦ 3 + 2H4 +2H5 +2 ♦17 + 2 ♦18 + 2 ♦19 +2•20 +
2 ♦21 + 2 ♦24 + 2 ♦25 + 2 ♦28 + 2 ♦29 + 2 ♦ 30 works out to
1,933,492,239. Remember, you start from the immediate
left of the point and sum up the powers of two. The result
once again is 1,933,492,239.

But what about that .1 at the end of the binary string? What
is that and how do you use it?

In decimal, the numbers to the right of the decimal point
represent negative power of 10, or, if you like 1/l0ths, 1/
1 00ths, 1/1 000ths, 1/l0000ths, etc. In binary, the numbers
to the right of the point represent - you guessed it -
negative powers of two. one-halves, one-quarters, one-·
eighths, 1/16ths, 1/32nds, l/64ths, etc. So that ".l" at the
end represents 1/2, or in decimal, 0.5. The resulting
number should therefore be 1,933,492,239.5 on the Color
Computer.

That's both right and wrong. A few minutes ago I said that
the Color Computer BASIC's accuracy is only nine digits.
That's a choice made mostly for reasons of speed and
consistency. If you write X = 1933492239.5 and enter it on
the computer, your PRINT X will reveal 1.9334922
4E+09. That's BASIC's scientific notation for 1.93349224
times 10 the 9th. In other words, not 1,933,492,239.5, but
rather 1,933,492,240. Only nine significant digits are used,
so part of the number gets rounded off and abbreviated.

..,.r. ~
BINARY
C.OMPUrU:.

-,$9F (,,b 7D a::> IF

~C.ll'--t1E~

.$'ff-eo 0
~

f')t.lTl'v&__,..,.,..
C.~ 7D &:> IF

\... ... ,,,

""""11!- IN StNA.e'f:

~," 'fl>!,!11\.lE..

t:,b "'- 0//CJ 0//C,

71>~ OIi/ 1/0I
!!;,0=/000 O:Xx,
/F 0 000I Ill/

1,UIVff 0, '/00 ~".
R$rll\/E. ~='$/ F
~ :!,!,;.\) 1$ fOS,Cfl\A::..

1-14,J.JTISSA /S:

0//0 0110 OIi/ //0/ /000 dOOO 000/ /II/

,0110 0110 OIi/ /IOI /000 0000 000/ I/// -"'11,0 0//0 0/1/ //0/ 1000 0000 000/ ////

~ENT $lFc:coOO///II

• 1110 0//0 0/1/ /IOI /000 0000 000/////

X z_ 00011n, =-
1110 0//0 OIi/ //0/ /000 C1000 000/ I//,/

· • , ••• 0 O O {III. 1------_

/// I\'-"'~-;-----,
O _, 0 + 0 + 2" r 2-1+ ;Z.!-+ 2 + 2.

f'£5»L r IN 0EL.IU4L

/
1

'f3,3 I ,/'!2,1 2.3'7, '5

Another random
$7C 91 32 2F 00.

example. Stay with me.
Write it down to work with.

$7C 91 32 2F 00. $7C in the first position is the
exponent byte, but this time it's less than the $80 pivot.
This is a number with values all to the right of the decimal
point. That is, a number less than 1. $7C is -4 binary
positions, so you know the binary number begins with
.0000.

The hexadecimal for the rest of the number is
$91 32 2F 00, which is, in binary:

1001 0001 0011 0010 0010 1111 0000 0000

The one in the leftmost position means this time we've got a
negative number. Now that you know that, you'll also
remember tpat it is "normalized" to one for purposes of
calculation. So the result is

0001 0001 0011 0010 0010 1111 0000 0000.

With .0000 in front of it, it becomes:

.000010010001001100100010111100000000

Normalized notation

• If the 11antissa 1s 1101 1010
0000 0000 0000 0000 0000 0000
and the exponent byte is $991

place the point,

1101 1010 0008 0000 0000 0000
0.0000000

* What is this nUlllber?

2-t-18 + 2+20 + 2+21 + 2+23 + 2+24
= 28, 573, 696.

·• If the (normalized) mantissa
is 1101 1010 0000 0000 0000 0000
0000 0000 and the exponent byte
is $A01 place the point.

1101 1010 0000 0000 0000 0000
0000 0000 .

* What is this number?

2·t25 + 2+27 + 2·t28 + 2·t30 + 2-t-31
= 3,657,433,088

* What are the two parts of
floating-pc,int
callee!?

represent at i or,

The exponent and the mantissa.

* What is 1 divided by 2·t-1?

1./(2·1'1) is 1/2.

* What is 1 divided by 2·t-2?

1/ (2-t-2) is 1/4,

* What is 1 divided by 2+16?

1/(2+16) is 1/65536.

* If the (nonaalizedl mantissa
is 1110 0000 ~ 0000 0000 0000
0000 0000 and the exponent byte
is $821 place the point.

11.10 0800 0000 0000 0000 0000
0000 0000

• What is this nuraber?

2-t-1 + 2-t-0 + 1/(2+1) = 3 1/2 =
3.5

Learning the l::Rl:J9 177

Negative numbers

* If the ri0rmalized mantissa is
1111 1111 1111 1111 1111 1111
1111 1111 and the exponent byte
is $90, place the point.

1111 1111 1111 1111. 1111 1111
1111 1111

* What is this n1.111ber?

2+0 + 2+1 + 2+2 + 2+3 + 2+4 +
2+5 + 2-1'6 + 2+7 + 2+8 + 2+9 +
2+10 + 2+11 + 2+12 + 2+13 + 2•14
+ 2+15 = 65,535. 1/(2+1) +
1/(2+2) + 1/(2+3) + 1/(2+4) +
1/(2+5) + 1/(2-1'6) + 1/(2+7) +
1/(2+8) + 1/(2+9) + 1/(2+10) +
1/12•11) + 1/12•12) + 1/(2+13) +
1/(2+14) + 1/(2+16) =
.':39998474121094. Therefore, the
m1111ber is 65535. 99998474121094.

* What lflOuld this n1.111ber be in
the Color Collputer's most
significant digits'

65535. 99998 is rounded off (up)
and becolles 65536.

* What are the tNO parts of
floating-point representation
called'

The exponent and the 11antissa.

• What information does BASIC's
VARPTR provide?

The address of a BASIC
variable.

• In the case of floating-point
variable N, llltiat is found at
VARPTR!Nl-2 through
VARPTR(N)+lt?

VARPTR(Nl-2 and VARPTR(Nl-1 are
the na111e of the variable;
VARPTR(N) is the exporient; and
VARPTR(N)+l through VARPTR(N)+lt
eo11prise the ■antissa.

* What does VARPTR aean?

Variable pointer.

178 Lesson 20

These are now fractional powers of two. You must sum 1/2
plus 1/4 plus 1/8, and so on. You can think of this
calculation as: zero times 1/2 Hplus 0 times 1/2♦ 2, etc. In
this case that's 1/2 ♦5 + 1/2 ♦8 + 1/2 ♦12 + 1/2 ♦ 15 + 1/2 ♦ 16

+ 1/2 ♦19 + 1/2 ♦23 + 1/2 ♦ 25 + 1/2♦ 26 + 1/2♦27 + 1/2♦28
... that is, -.035448249429465 . Your Color Computer
would report that as the slightly less precise -
.0354482494. The number stored in the computer as
$7C 91 32 2F 00 becomes -.0354482494.

$4'/ .32.. Zr ¢¢
~

l-i',NTtS54

'/II fMlf:NE,&,tt7?/IE.

'fl: 1001 0001

~'2, ()OIi 0010
U:; 00/0 /II I

00<-<XOQ 0X0

~ ~t,/z.E.:

/00I~/ t:JD//0::YO CQO //// ~ ~

)(2--¥

~ 0000 /OC,/ ca:>I 00// COIO ,X>/0 /II/°"""" a::><>o
~. ,,, t ~

:Z.--" + i• -f z.-~ ..

~ -.o-,,;-'1'182."f'f'I

While we're at it, let me quickly bring back one of the
examples I gave at the start ... I said that 0.1 was
represented as $7D 4C CC CC CD. Have a look. $7D is a
right-of-the-point prefix of .000 and the number
4C CC CC CD translates to binary ...

0100 1100 1100 1100 1100 1100 1100 1101

It's positive; the normalized one changes the number to:

1100 1100 1100 1100 1100 1100 1100 1101

Together with the prefix, it reads:

.00011001100110011001100110011001101

Calling that out in powers of two, it's 1/2 ♦4 + 1/2 ♦ 5 + 1/2 ♦8
+ 1/2♦ 9 + 1/2 ♦ 12 + 1/2 ♦ 13 + 1/2 ♦ 16 + 1/2 ♦ 17 + 1/2♦ 20
+ 1/2 ♦21 + 1/2 ♦24 + 1/2 ♦ 25 + 1/2 ♦ 28 + 1/2♦ 29 + 1/2♦ 32
+ 1/2 ♦33 + 1/2♦ 35 . . . and that calculates to
.10000000000582. Notice that residual .00000000000582
tacked on to the end of the number. That's the tiny binary
error that you've probably experienced creeping into
BASIC calculations.

More on that error and other floating point concepts after a
break. You might be weary of all these calculations. They'll
get both easier and unnecessary later. For the moment, I
would like you to review the lesson up to this point, book in

hand, calculating along with me on paper or on your hand
calculator. There's a lot to this floating point math, and
understanding how to push around those bits is vital if you
wish to work with numbers on your computer.

Please review the concept of floating point numbers. When you
are confident of the theory of floating point binary notation, re
turn to the tape.

Here's a summary of floating point numbers. As stored in
BASIC's variable table, they consist of seven descriptive
bytes. The first two bytes are the variable name; the last
five represent the number itself. The first byte of the group
of five is the binary exponent, from 2+.....127 to 2 ♦+127. The
next four bytes are the mantissa, that is, the number itself,
expressed in binary digits. The leftmost bit of the 32-bit
group is normalized to a one for purposes of calculation,
but as stored it represents the sign of the number.

This complex-sounding process provides, in five bytes, the
ability to store decimal numbers across the range +/-
1.70141176E+38 (2 ♦ 126.9999999) to +/-5.877 47201E-
39 (2♦-126.9999999), with nine digits of accuracy.

There are two ways to access BASIC variables from
machine language. One way is via the USR command, and
the other is by accessing BASIC's variable table. The
variable table storage is the one I've been describing. There
is another slightly different kind of storage when the
variable is transferred via USR. It's described in the
Extended BASIC manual on pages 14 7 and 149, under the
heading "USR Function Arguments". You've already read
part of this, but now it should make more sense; take a few
minutes to re-read that now, and pay special attention to
the description of the "Floating Point Accumulator".

Open the Extended Color BASIC manual and re-read pages
147 through 149, headed "USR Function Arguments," concen
trating on the new information on page 147. Read this
thoroughly, as it now applies to your understanding of binary
floating point representation. Return to the tape when you have
completed the reading.

You haven't been told the whole story in that reading. You
should know that the contents of V ARPTR(X)-2 and
V ARPTR(X)-1 are the variable's name. V ARPTR is an
excellent function, one that machine language programs

USR arguments

* What is an integer?

A whole n1111ber with no
fractional part.

* What is a floating-point
number?

A nu•ber with a fractional
part.

* What are the two parts of
floating-point representation
called?

The exponent and the raantissa.

* The exponent and th~ mantissa
are in what nu•ber system?

The exponent and the mantissa
are in binary (base 2).

can use extensively.

Learning the l::K::ft 179

VARPTR

180 Lesson 20

Just for a taste of the use of V ARPTR, type and enter X = 1.
Simply X=l, and enter. PRINT X will display the number
1. Do it to be certain; PRINT X. Now POKE
VARPTR(X),&HFF. That's POKE V ARPTR(X),&HFF.
PRINT X. The result will be 8.50705918E+37.
V ARPTR(X) is the exponent of the number, which that
POKE with $FF has raised to an enormous power. Now
POKE VARPTR(X),l. That's POKE V ARPTR(X),l. The
result is just the opposite: PRINT X will reveal the
amazingly small value 2.93873588E-39.

Now get things in range. POKE V ARPTR(X),&H88.
That's POKE V ARPTR(X),&H88. Now PRINT X. You've
got 128. Now mess around with the rest of the number.
POKE VARPTR(X)+3,1. POKE VARPTR(X)+3,l. And
then PRINT X. Now it's 128.000015. How about POKE
VARPTR(X)+2,&HAA. Ifs 128.664078. VARPTR(X) is
the power-of- two exponent, V ARPTR(X) + 1 through
VARPTR(X)+4 are the binary digits of the mantissa.
POKE around with the 5-byte descriptor at the end of this
lesson; it should give you additional perspective on how
those numbers are stored. As a real exercise, POKE
VARPTR(X) through V ARPTR(X)+4 with random
numbers, and see if, by knowing the result of PRINT X, you
can determine those four numbers. With the description
I've given you, you should be able to do it.

One more time for that description: five bytes, power-of
two exponent first, 32 binary digits next, with the leftmost
the sign bit, but considered to be a 1 for purposes of
calculation. When you've got a good handle on the floating
point representation, you're ready for the next session.
Give it a try, enjoy it, and I'll talk to you next time.

Program #30, a BASIC program. Turn on the power of your
Extended Color BASIC computer. When the cursor appears,
type CLOAD and press ENTER. The computer will search (S)
and find (F). When the cursor reappears, LIST this program.
If the program is not similar to the listing, or if an 1/0 error
occurs, rewind to the start of the program and try again. For
severe loading problems, see the Appendix.

1 CL.EIIR5ll:DINAISl,AS(5),Bt!16):A=8:B=e:FORI=8T015:RBIDBS(Il:~
2 CLS:INPUT•IIIIIIER TO DJSPUIV";A:PRINT:B=YARPTRIAl:FDRI=1TD5:A!Il=PEEK!B+I-1>:NEXT
3 FORJ=1TD5:ASCI>=l£XS(A(l)l:IFAIJ)C16TJENAS!Il="l•#l$(1)
4 NEXT:PRINT• FLOATING POINT STORASE OF•:PRINTTAB!9)A
5 PRINT:PRINTTABl6)•t ";:FORI=1TD5:PRINTAt(ll" ";:NEXT:PRINT
6 PRINT:PRINT• BJIIAIY REPRESENTATIIJt OF" :PRJNTTABC9)A:PRINT
7 IFAi=ITIEfOo:STRIN6Sl32, •e•> :60T014
8 &=WL(•&H•-tl£Flt!AS(2),tll:C=8DR 6:6=6 AND8:At!2)-t£Xt!Cl+RISHTS(ASl2l,1>
9 FORI=2TD5:C=VALC•&H•-tl£Flt(AS!Il,lll:D=YIL!"&H•+RJSHTS(ASCI>,1))
18 CS=CS+BSIC>+Bt<Dl:NEXT:E=Alll-128:IFE(81lEN11B.SE12
11 E=-E2ct-•.•+STRINBSCE,•8•)+et:60T013
12 JFE (LEJHCS> 'JtEID,,lEFTS(CS, E> +". "+RISHTS !CS, l.EN(CS)-El a.SECS=CS+• ! "+STRINBS IE, •t• l +•. l •
13 IFNTIENSS=" l-l •
14 ct-Sf+Ct:PRINTCS:PRINT:PRINT" TIIDi <ENTER> TO IDITitlf•
15 DATA11N11,•1,■18,■11,81■,8111,811e,1111, 1e■, 1■1, 1111, 1811, 11■, 1181, 1111, uu
16 M=Itl<EVS: IFAS= .. TIEN16EI..SERtJI

DEF...U..T
E.XIS(..~

[t~')M_)

~
~

•
You've arrived. This is the time for putting what you know
about assembly language together with what you know
about BASIC. I'll get right to it by reviewing how BASIC
hands over control to a machine language program: through
the USR function and via the EXEC call.

EXEC is used for execution after a load from cassette, but
EXEC also is the simplest, and probably the best choice
for including in a BASIC driver program for fast program
speed. EXEC is a direct transfer of control to the machine
language subroutine, where no attempt is made to pass
along variable information. EXEC 12288, for example,
departs from the BASIC program in progress and begins
machine language execution at address 12288 (hex $3000).
The Morse Code program, where the start and end of the
message are fixed, and the Game of Life, which simply
begins, need no more information than an execution
address. In the Game of Life, EXEC 3200 provided the
starting address (3200 is $0CBO) and told BASIC to
relinquish control to the machine language program. That
was it.

EXEC stores the address you provide in a memory location
accessible to BASIC, so that the next time you use EXEC,
you need not specify an address; it will automatically use
the last one until you change it. Also, the entire BASIC re
entry information is stored, so - unless you've messed
around things in BASIC's direct page - all will be intact
when your machine language program reaches its final RTS
(return from subroutine).

That does bring up the question of BASIC's direct page,
and in fact, where you can store the machine language
programs you will be writing. The back of your BASIC and
EDTASM+ manuals gives you some information about
how your computer's operating parameters are organized;
turn to page 63 of the EDTASM+ book. Pay careful
attention to the opening information on page 63. The
manual states that when BASIC is in use, the direct page
register is pointed to page00; it notes that BASIC requires

Unless you have high hopes for
creatir,g foll-scale c011111ercial
software, chances are you'll be
using BASIC as your hOIIII? base.
A BASIC driver can be simple or
cCt111ple)(, performing straight
forward prograa e)(ecutions,
transferring variables back and
forth, and creating graphics
fraMet110rks using BASIC1 s
powerful draw1ng c0111111ands. No
matter what your goal, knowing
the relationship between BASIC
and assembly language can speed
your progra111111ing.

* The si■plest co.and to
execute a machine language
progra• fro111 BASIC is what?

EXEC.

* What information does EXEC
require?

The starting address of the
11achine language prograa.

* EXEC&HA0D7 means what? (Try
it~)

Begin executing a aachine
language prograa beginning at
address SA8D7.

certain portions of this page, as well as quite a bit of page L Qr'l")

Learning the CX>.-17 181

Protected memory

* What does "&H" mean in BASIC?

&H 111eans hexadecisal.

* HOM does a aachine language
program get back to BASIC?

By executing RTS (return fro11
subroutine) •

* lillen BASIC is operating, where
is the 6889's direct page
register?

The direct page register is set
to Sl0.

* What is a position independent
progra?

A progr,111 designed to run
correctly no 11atter tollere it is
located in E110ry.

* Which of these is a position
independent cc.and: LBRA TRAK1
or JMP TRAK1?

LBRA TRAKl is position
independent.

* What addressing IIOde is LBRA
TRAK1?

Relative addressing.

* Which of these is a position
independent coaand: LDX
llTABI.E or LEAX TABLE, PCR?

LEAX TABLE,PCR is position
independent.

* What addressing IIOde is LEAX
TABLE,PCR?

Relative addressing
(specifically, progra counter
relative).

* lillat does LEAX -1,X mean?

Let X becOIIE! X-1.

* IM!at does LEAX S45,Y IEin?

Let X becolle Y+S45.

182 Lesson 21

01. Other portions here and there are marked, "can be used
for machine-code programs."

Look at number 6 in the third column. Entitled "User
Memory," this is described as "Total space for user
machine-language routines. No space is reserved for this on
start-up, but this can be reset by the CLEAR
statement."

Now what about all this? How can you be confident that the
program you place in memory will stay there? And that the
program will be accessed as expected? How is memory
protected from BASIC? What does "protected" mean?
And how is your program protected from other machine
language programs?

Frankly, the answers to those questions depend on how you
plan to use your software. If you'.re going to use only your
own software, and use your software with BASIC as you see
it described in these manuals, then you're safe. But ...

... if you plan to use commercial software, such as special
printer drivers or communications programs or math
routines or whatever, you run the risk of having your
program conflict with that program.

... if you plan to use a disk system, especially OS-9, the
memory mapping of these devices may alter the area you
plan to use.

... if you intend to write software to sell, you must expect
that memory conflicts will arise with both other commercial
software and the user's software - somewhat the converse
of what I said earlier.

There are options. I'm not offering any business advice if
you plan to sell your software, but I can recommend that
you make your commercial machine-language programs
position independent. Use the guidelines and approach as
presented in session 19. If your program must be position
dependent for reasons of speed or memory economy, then
provide with it a relocator - a companion machine
language routine that will automatically rework the
program to fit in another area of memory. Beyond those
recommendations, you're on your own as a software
businessperson.

For most important programming, I'll stand by my
position-independence or relocation recommendations.
Let me tell you how to make position independence work
for you on the Color Computer - after you've already
written the position-intependent software, of course.
Here's how:

In your assembly listing, place the origin at $0000. You can
do that by specifically typing ORG $0000 for reference, or
by leaving out the ORG statement. The assembler assumes
$0000 if you don't specify otherwise. Save the source
program to tape, and also assemble and save the object
code.

ON T,',fl:.,·.
~ ¢¢¢¢

jC.LOAPMj

~ ~•r ,oo

=o-to100 w
I C, 1-c.Ap M "NAME'; J f;¼:O l ~s~oo

When you want to load and run this machine language
program, you use the command CLOADM. If the
program's name is "Blurb", for example, you would
normally type
CLOADM"BLURB". With position-independent pro
grams, you need something more. You need an offset
address, an address which is added to the CLOADMed
address to produce a resultant location in memory where
the program i:a: going to be stored. For example, if the
program is to load into memory beginning at 12288 (hex
$3000), you would type CLOADM"BLURB",12288 or
CLOADM"BLURB",&H3000. The program will add up
your origin ($0000) and the offset address ($3000), and
begin loading the program into that area of memory. Since
your origin is $0000, then the offset address turns out to be
the same as the loading address. And since the program is
position-independent, it can start running as soon as you
type EXEC.

I've got a very brief object program coming up. All this
program does is load a short ASCII message into memory.
The source program goes like this (you can glance in the
book):

00100
00110

FCC /THE MESSAGE IS HERE/
END

After I assemble this, I will have nothing but a group of 19
bytes on the resulting tape. The lack of a specified origin
means that the assembler will place these 19 bytes
beginning at address 0000. The program coming up next is
dumped to tape ten times; its name is "TEXT". So if you
want to see this message, what you want to type is
CLOADM"TEXT", 1024. This will load the message to the
first space on the video screen. Then try any location on the
screen and see where the subsequent nine messages come
into view. Remember that the normal screen is mapped
from $0400 to $0600 (1024 to 1535 decimal), so to see the
whole message, your offset addresses should be in that
range. So try these ten messages; I'll be back with a
description of what memory is free and how to use it.

Programs #3lA to 31J, object code programs. Tum on the
power to your Extended Color BASIC computer. When the
cursor appears, type CLOADM and press ENTER. The com
puter will search (S) and find (Fl. When the cursor reappears,
type EXEC and press ENTER. The program will execute auto
matically. If an 1/0 error occurs, rewind to the program's start
and try again. For severe loading problems, see the Appendix.
For additional loading of programs 31B through 31J, refer to
the text.

What you've just done is load blocks of binary information
into memory. Since the binary information was saved to
tape with a loading address of $0000, the offset addresses
you specified in the CLOADM command became the
actual loading addresses for the binary data.

Load offsets

* What cassette cooaand loads
BASIC progrus?

CLOAD.

* What cassette Ci:laland loads
machine language programs
directly into memory?

CLOADM.

* What does ORG mean?

Origin, that is, the first byte
of a source listing.

* If ORG is left out of an
assembly listing, Nhere does the
assembler begin asseably (the
default ORGl?

At address $0000.

* If a .achine language program
named TESTER were OR6ed at
$0000, Nhat BASIC COMand NOuld
load that program?

ClOADl'I or CLOADM"TESTER".

* If a machine language program
nall!I:! TESTER iere ORGed at
SIM, Nhat BASIC co.and 1tOUld
load that progra11 starting at
$2000?

ClOADM•TESTER",&H2111 or
CLOADM•TESTER•,s192

* lllat is the value appended to
the CllJADIII coaand called?

An offset address.

* Where is the nol"flal video
screen in the Color Collputer
lll!IIOry 11ap?

At locations 1124 through 1535
(S8410 through SISFF).

* lllere do the high-resolution
video screens begin on the Color
Cct111puter?

At location 1536 ($0600).

Learning the IK:J:; 183

Low and graphics memory

* How much space does PCl.EARl
reserve?

1536 bytes !S0600 bytes).

* How luch space is reserved by
PCLEAR1 through PCLEAR8?

1536 through 12,288 bytes.

* If high-resolution graphics
will not be used by BASIC, can
Machine language progrilllS be
stored in the area reserved by
PCLEAR1?

Yes.

* How Illich space is reserved by
PCLEAR1, and what are the
addresses?

1536 bytes are reserved from
$0600 to $0C00.

I' What is the purpose of CLEAR?

fo reset all BASIC variables.

* What is the purpose of CLEAR
N, where N is a n1.1t1ber?

To reset all BASIC variables,
and to reserve N bytes for BASIC
string manipulations.

* What is the purpose of CLEAR
N,X where N and X are nllllbers?

To reset all BASIC variables, to
reserve N bytes for BASIC string
Mdnipulations, and to protect
11e10ry fr011 BASIC beginning at
address X.

* What effect does
CLEAR200,16384 have?

It resets BASIC variables, sets
aside 200 bytes for BASIC string
manipulations, and makes 16384
(S4000) the start of protected
memory.

* What is protected Me110ry'

l'letlory that is not available for
BASIC' s use.

184 Lesson 21

Such position-independent programs can, naturally, be
moved as often as you wish. The next question, therefore, is
where do you put the programs?

There are four places in your computer's read/write
memory for convenient storage of machine language
programs. You may store this binary data in low memory as
provided in the memory map; in high memory protected
from BASIC; in high-resolution graphics memory; and
inside a BASIC program line. Each in turn now.

Storing a program in low memory is not safe from $0000 to
$0069. These are 106 bytes called "free", and there is also
so-called free memory at $0115 to $0119 (five bytes), and a
block of 53 bytes from $011 D to $0151. None of this is safe
for program storage; don't use it. The EDTASM book's
phrase "can be used by machine language programs"
means that you can store data here while your machine
language program is underway. When you return to BASIC
(especially if your machine language program is an integral
part of a running BASIC program), the information BASIC
needs in low memory is likely to be altered. However, with
one of the excellent detailed Color Computer memory
maps that have been published, you can learn how and
when low memory is used by BASIC. So for now your rule of
thumb about low memory is: don't.

There are three remaining options, and, with only a few
reservations, all of these options are good ones. They are
high memory, high-resolution graphics memory, and
memory inside a BASIC program.

Storing programs in graphics memory is easy and
reasonably safe. PCLEAR is BASIC's way of reserving
high-resolution graphics memory, and PCLEARl is the
smallest amount of graphics reserved memory allowed.
PCLEARI allows 1,536 bytes of memory from $0600 to
$0BFF to be used for storing a machine language program.
There are two major caveats to this process. Most obvious
is the fact that you can't use high resolution graphics if you
choose this method. Since this memory is intended to be a
graphics screen, using any graphics command risks
damaging the stored program. The other warning is the
POKE often used on memory location 25, where the
PCLEAR number of graphics pages are stored. Since
PCLEAR0 is not allowed, a POKE to that location has
been popularly used to free up some extra memory. But by
doing that, you wipe out the graphics screen and the
machine-language program along with it. So, in summary,
use graphics memory for your program only if you can be
sure BASIC will not be using high-resolution graphics
commands.

The most popular mode of storing binary code is by placing
it in protected high memory. BASIC is specifically set up to
allow this use, and I consider it wisest to follow those
recommendations when all other considerations seem
equal.

"rRE£ ~,
1.1:iw~Y
(IF YOU ee.&,..11!\if.

7WrT ...)

P CLEAR l P<..t..E.AR Z

fmM[~~~ ffHMrn~~
EXT f>ASIC EXT f':AS!C,

,-~--~~

COLCREASIC_ Ca/'R BA'.'JC

CAR.TR i/Y,E_ CARTR_i D.:rE

NOT U>ED NOT '.ffD

P ClEAR 3 I (LUI< B

Fl1ll MfMORr

cacR B'OC

Protecting high memory is an easy task. The BASIC
CLEAR statement is used for this. The CLEAR statement
performs three functions: CLEAR alone resets all BASIC
variables and arrays; CLEAR followed by one number (as
in CLEAR200) sets aside space. for BA SI C's string
functions; and finally, CLEAR followed by two numbers
(as in CLEAR200,14000) sets aside string space as well as
creates a boundary beyond which BASIC may not
trespass.

In the case of CLEAR200, 14000, memory locations 14000
(that's hex $36B0) and above are not used by BASIC. It's as
if your computer only had 14,000 bytes of memory instead
of 16,384 for a 16K machine or 32,768 for a 32K machine.
The only commands that will affect this memory are POKE
(which can change any RAM location or output address)
and CLOADM (which will attempt to load its data to the
specified address whether memory is present there or
not).

Here's how it works. If you have a 400-hyte machine
language program which you want to store in the high
memory of a 16K computer, you first determine if the
program is position independent. If you wrote the program,
then you'll know for sure; otherwise, read the
documentation for help. Assuming you know that the
program will load and run in those top 400 bytes, you then
subtract 400 from the highest memory location in the 16K
computer. 16383 minus 400 is 15983. Then you'll need to
determine if whatever BASIC program you're about to run
will need more or less string space; the space allocated at
power-up is 200 bytes. With that in mind, construct the
CLEAR statement in the form CLEAR string space
comma memory barrier. To protect 400 bytes and have the
normal amount of string space, you would enter
CLEAR200,15983.

Memory is protected and you are ready to CLO ADM your
machine language program or other binary data. For more
information on CLEAR, use your BASIC manuals.

The final method of placing a binary program into memory
is called the in-string or string-packing method. This
technique was first popularized on the classic TRS-80
Model I, and remains a favorite for short, position
independent programs. Keep in mind that this isn't a
universal technique; it expects certain features found only
in Microsoft's dialect of BASIC.

To understand string-packing, you have to do a little
rethinking about BASIC itself. The BASIC you're most
familiar with is a programming language. You don't often
think of a BASIC program as anything but what it
represents. But a BASIC program is something different
from what it represents ... it is something that fills memory.
And something that fills memory is binary information. A
machine-language program is binary information. If both
are binary information, can they coexist in a single

CLEAR

*Cana 11c1chine language prograra
be stored in this protected
11e1110ry?

Yes.

* Once a machine language
progrH is in place, what
coaands are used to execute the
progru?

EXEC or USR.

* In the Color Coaputer, what
essential coaputer "11atter• does
a BASIC progra consist of?

Binary infol"llation.

* What does a ■achine language
progru consist of?

Binary inforaation.

* Microsoft created Color and
Extended Color BASIC. What
technique of storing a machine
language prograa can be used
with Microsoft BASIC?

String-packing.

* What is string-packing?

Placing a machine language
program inside a BASIC string,
within the BASIC program
itself.

* What infor1ation does BASIC's
VARPTR provide?

The address of a BASIC
variable.

* What three pieces of
inforMation does VARPTR provide
about a string?

The variable nue, the ler,gth of
the string, and the address of
the first byte in 111e110ry where
the string is located.

* What is the longest line that
can be typed in BASIC?

240 characters.
listing?

Learning the 6f!l:1J 185

POKEing a string

* If a string variable name
takes tNO bytes, an equal sign
takes one byte, and the
quotation ■arks take twc, bytes,
how ■any bytes are left for the
string itself?

235 bytes.

* What is the longest Machine
language program that can be
stored in a BASIC string?

235 bytes.

* What three BASIC eo1111ands are
essential for string packing?

VARPTR, PEEK and POKE.

* Why is VARPTR necessary for
string packing?

VARPTR is needed to locate the
address of the string's vital
information in 11e110ry.

* Why is PEEK necessary for
string packing?

After VARPTR provides the
address of the string
information, PEEK is used to
deter■ ine the length and address
of the string itself.

* Why is POKE necessary for
string packing?

The instructions and data that
make up the machine language
progru 11ust be POKEd into
111e110ry lllhere the string
currently resides.

* Why are ccaands POl<Ed in
place?

Because all 256 possible
eo11binations fr011 M to SFF
cannot be typed from the
keyboard.

* What t1110 BASIC co.ands are
used to run (access) a ■achine
language progra11?

EXEC and USR.

186 Lesson 21

Don't think about the source code now. Think about the
binary code. And consider that BASIC has at least two
situations in which it does not tamper with or interpret
information as part of a program. In other words, there are
two situations in which BASIC doesn't mess with what you
type: after a remark (REM) statement and inside the
quotation marks of a string variable.

One of these two situations is of special value. Recall the
last session when I talked about floating-point arithmetic. I
mentioned a BASIC command called variable pointer, or
V ARPTR. The command V ARPTR points not only to
floating-point numbers, it points to any variable. So type,
enter and run this one-line program ...

1,0 A$ = "THESE ARE THIRTY-ONE CHARACTERS"

you can then ask for V ARPTR(A$). PRINT
V ARPTR(A$). The computer will report 7726. At memory
location 7726 is information about A$, five bytes of it. In
your reading of the Extended Color BASIC manual for the
last session, you may recall that the first byte is the length
of the string, and the third and fourth bytes are the address
of the first character in the string.

There's the clue. The third and fourth bytes of this
descriptive information are the address of the first
character of the string. If you create a string of the correct
length, and if you know where the string is in memory, and if
you are confident that BASIC won't mess with the strings
as they appear in program lines (it won't), and if- at last
you don't plan to use that variable for any other purpose
within the program ... then you can safely store a machine
language program within those quotation marks.

I wish you could just type such a program right into the
string. You can't, of course. because you might need any
one of the 256 possible bytes for your machine program,
but only about 96 are typable from the keyboard. So you
have to go in the back door.

The key to the back door is right there in the mailbox. You
use the variable pointer V ARPTR to find out where A$ sits
in memory, you take a listing of your program in
hexadecimal bytes, and you POKE them, one at a time, into
the place occupied by A$. You could POKE bytes one at a
time by hand, but there are easier ways. I have a program to.
show you the details; list it, but don't run it until I'm back
with you.

Program #32, a BASIC program. Turn on the power of your
Extended Color BASIC computer. When the cursor appears,
type CLOAD and press ENTER. The computer will search (S)
and find (F). When the cursor reappears, LIST this program. If
the program is not similar to the listing, or if an 1/0 error occurs,
rewind to the start of the program and try again. For severe
loading problems, see the Appendix.

'fi J&lf8
M=&H?>IO"'f

(APPl:.e6SCIFA$)

N =&f-1.l/!
("6GI I ':A'")

~g
lbiz.)(: I To LEN (A~)
rO!'.E. M,N
M~M-t-1
NEXT

¢
1'Jt1l:S

~IA\IYJ@f3@g

t,,b0Wl{£(

BASIC IS Rn LED /

10 A=0:B=0:C=0:D=0:N=0:Q=0:X=0
20 8$=""
30 A$= "14 CHARACTERS'"
40 A= VARPTR(A$)
50 B = PEEK<A+2>
60 C = PEEK(A+3>
70 D = B*&H100 + C
80 DEFUSR0 = D
90 FOR X = 1 TO LEN(A$)
100 READ B$
110 POKE D,VAL("&H"+B$)
120 D = D+l
130 NEXT X
140 DATA BD,B3,ED,8E,04,00,E7
150 DATA 80,8C,06,00,26,F9,39
160 STOP
170 INPUT Q
180 N = USR0 (Q)

190 FOR X = 1 TO 500: NEXT
2:00 GOT0170

LIST this program. Notice that A$ is 14 characters long.
And notice that in lines 140 through 150 are a group of what
look like hexadecimal numbers, presented as DAT A
statements, and following them is a short routine to read,
convert and POKE them in place. The program, which you
can hand-disassemble (that is, convert from hex to source
code), simply fills the screen with any character you input.
Look at these statements:

A = VARPTR(A$)
B = PEEK(A+2)
C = PEEK(A+3)
D = B * &Hl00 + C
DEFUSR0 = D

There are ten USR calls allowed by BASIC, USR0 through
USR9, meaning you can have up to ten different machine
language programs. DEFUSR identifies for BASIC the
starting address of the machine-language program. In this
case, the program is stored in A$, so variable A finds
VARPTR(A$), and variables B and C obtain the two
address bytes where A$ can be found. Since BASIC's
workings are in decimal, you can't just dip in and pull out a
16-bit address; you've got to combine the most-significant
byte with the least-significant byte to get a result. In case
you hadn't thought of it this way before, you'll notice that in
hexadecimal, the most-significant byte is always $100

times the least-significant byte. So the resulting address is
hex $100 times B, plus C.

All of this could be combined into the complicated looking
formula DE FU SRO= &HlO0 * (PEEK(V ARPTR(A$)+2)
+ PEEK(VARPTR(A$)+3). Now matter how you write it,
it defines where the ma-:hine language program starts.

Now RUN the program; it will BREAK in 160. LIST the
progr'1m, and have a look at A$. It looks longer now (it isn't)
and seems to be garbage. Type and enter PRINT A$. A

DEFUSR with strings

* If a machine language program
is at $3000, use EXEC to access
it.

EXEC&H:3000.

* What must be done before a
machine language program car; be
accessed with USR?

The entry point must be
defined.

J What BASIC cOD1B1and is used to
define the USR entry pciint?

DEFUSR.

* How rsany !JSR entry points does
E11tended Color BASIC offer?
What are they?

Teri entry poir,ts, USR0 through
USR9.

* What is the advantage of USR
in certain situations?

USR can transfer information to
the machine language program.

* If the machine language
progra11 begins at $3000, define
the USR0 entry point.

DEFUSR0=&H3N0

peculiar but different result.

Learn!ag the~ 187

String packing

* If the information to be
transferred to the program
beginning at $3000 is 12345,
give the USR0 c011111and to access
the program and transfer the
i nforMat ion.

PRINT USR0(12345l or N =
USR0(12345l

* Give the formula to define a
USR9 entry point to a machine
language program stored in NS.

DEFUSR9 = &H100 *
< PEEK<VARPTR<NSl+2 +
PEEK(VARPiR(N$l+3)

* Ir, string packing, what values
should be avoided if possible'
Why?

$00, because it is BASIC's
er,d-of-1 i ne marker'; and Sa:,
because it is equivalent to dr
ASCII quotation mark.

f How does a machine language
progrtllll get back to BAS!C'i

By e.Kecutir1g RTS !return from
subroutine l.

* What is a position i r1deoer1dent
program?

A program designed to run
correctly no matter where it is
located in memory.

188 Lesson 21

Recall many lessons past when I said that a single 8-bit
word of memory had to serve many purposes. Now you see
them. You have a machine language program stored inside
A$'s quotation marks. When you print it, it looks like
graphics and ASCII characters. When you list it, it looks
like BASIC commands. What is it? It's still your machine
language program, but the PRINT routine doesn't know
that; the BASIC PRINT routine thinks it's a string to print.
The BASIC LIST routine thinks you somehow stuffed
commands inside the quotation marks. You can ponder
that on your own; I'm getting back to the program.

You've already run this program, so just type and enter
CONT for continue. The prompt asks you for a value from 0
to 255. Enter a value. The screen fills with your character
and returns to BASIC; nothing new here. The machine
language program is at work. Try more. Each time, the
screen fills almost instantly.

Now tap BREAK, and LIST this program again. Notice in
line 170 that the program inputs variable Q, and in line 180
the command N = USR0(Q) is encountered. The variable
Q is passed to the machine-language program, which
converts it and uses it to fill the screen.

There you have it: V ARPTR used to find a string in a
BASIC program, the machine-language program packed
into that string, DEFUSR set to point to the start of the
program packed into the string, and USR commanded to
execute the program. One of the slickest methods ever
devised.

,Just a few warnings. First, be careful not to use the variable
over again in the program. It won't erase where the machine
language program is, nor its contents, but at some point
either the BASIC or the machine language might end up
misinformed about where things are.

Second, save the program before running it, and once
you've run the lines containing A$ and all the POKEs, don't
run past them again. Here's why: there are two hexadecimal
values that can't appear in the string. One of them is $22
and the other is $00. $00 is used as BASIC's end-of-line
pointer, so when it sees $00, it thinks it's reached the end of
a BASIC line. Again, the program might end up
misdirected. The value $22 happens to be the ASCII value
for a quotation mark, and more than two quotation marks
will cause a dreaded syntax error.

The value $00 is the opcode negate direct; you won't use
that much. But $22 is, unfortunately, PSHS, and that one's
almost unavoidable. Have a look at this program, and when
you're done, I have one more. Study them both before the
next session.

Program #33

Program #33, a BASIC program. Tum on the power of your
Extended Color BASIC computer. When the cursor appears.
type CLOAD and press ENTER. The computer will search (S)
and find (F). When the cursor reappears, LIST this program. If
the program is not similar to the listing, or if an 1/0 error occurs,
rewind to the start of the program and try again. For severe
loading problems, see the Appendix.

1 A=0:X=0:B=0:C=0
2 A$="THIRTY-FIVE CHARACTERS ARE NEEDED!!"
3 A=VARPTR(A$):C=256*(PEEK<A+2))+PEEK(A+3)
4 FORX=1TOLEN(A$):READB$:B=VAL("&H"+B$)
5 POKEX+C-1,B:NEXT:DEFUSR0=C
6 CLS:PRINT:PRINT"YOUR BORDER CHARACTER"
7 INPUT"ENTER A NUMBER FROM 0 TO 255";A
8 IFA<00RA>255THEN7:ELSEM=USR0(A)
9 FORN=1TD1000:NEXT:GOTD6
10 DATABD,B3,ED,8E,04,00,86,21,E7,80,4A,26,FB,30,1F,86,0E,30
11 DATA88,1F,E7,80,E7,84,4A,26,F6,86,20,E7,80,4A,26,FB,39

Learning the 6f!l::J9 189

190 Lesson 21

•
What was I saying? Oh yes. Interrupts. Let me take you
back to Sam's Kitchen in Roadside, New Jersey, where you
can honk for drive up service from noon to 6. Have another
listen to Marge at work ...

Marge: One fries, two BL Ts, three chili dogs ... <honk>
Alright, alright ... and one onion rings. Get those ready.
There's a guy out there honkin' that thing like Little
Richard. <outdoors> Yeah, what'll you have?

Car one: Three burgers, two fries, a shake.

Marge: Ya want bunny burgers or buddy burgers?

Car one: One bunny burger, two buddy burgers.

Marge: <indoors> One bunny, two buddies, fries. Where's
my order? <at counter> Anything else, Joe? How 'bout
you, Mac?

Mac: Yeah, gimme another dog, will ya Marge? With onions
an' cheese, too.

Marge: Cheese dog onions.

Kitchen: Orders up.

Marge: Hey where's my steak? And what about ...
<honking> ... the chili dog. Damn. Gotta get that. yeah,
yeah, whaddaya want?

Car two: Gimme three bunnies and ... < honking from third
car>

Marge:< to third car> Hey fell I'm busy. Sit on it till I get to
ya. <back to car> Three bunnies. What else, and make it

What was I saying? Oh yes.
Interrupts. Having beer1 tc,
Sa11's Kitchen twice, you should
have an idea that interrupts are
crucial to special kinds of
progra..ing. But what kind of
progra MOuld demand such faricy
footNOrk? If the progralllflling is
so tricky, Nhy bother?

* Three things happen when an
interrupt occurs. w~at are
they?

The ■icroprocessor finishes its
current instruction, saves
i11portant infor■ation, and
follONS prograaing instructions
in response to the interrupt.

* What is the process of acting
on an interrupt called?

Servicing the interrupt.

* What causes an interrupt?

When an external signal line
changes fro11 one to zero.

* Can 110re than one interrupt
occur?

Yes.

* Which interrupt gets taken
care of first?

The one with higher priority.

quick.

Learning the l:i!/:J9 191

NMI, FIRQ, and IRQ

* Can interrupts be ignored?

Yes.

* What perfllits the processor to
ignore an interrupt?

Masking the interrupt.

* What deterMines whether an
interrupt is masked or enabled?

The condition code register.

* What part of the condition
code register determines whether
an interrupt is 1asked or
enabled?

Bits 4 and 6.

* What Masks an interrupt?

Setting its condition code bit
to a one.

* What COllllllands can be used to
affect the condition code
register directly?

ANDCC and ORCC, both illlllediate
instructions.

* What C011111and specifically
masks out (turns off) both
interrupts?

ORCC #$50 !binary 01010808).

* What coaand specifically
enables (turns onl both
interrupts?

ANOCC #$AF (binary 101011111.

* Three things happen when an
interrupt occurs. What are
they?

The microprocessor finishes its
:urrent instruction, saves
important infor■ation, and
follows progra1111ing instructions
in response to the interrupt.

192 Lesson 22

Car two: How about filet mignon and truffles and leeks
vinaigrette ...

The restaurant is the computer, and Marge is the
microprocessor. The cook and customers are program and
storage memory. The car horn was the interrupt. Marge
finished was she was doing, serviced the interrupt, and
returned to finish her previous task. When two interrupts
occurred, car two had a higher priority. Finally, the drive
up interrupt was masked out except from noon to six.

The 6809E processor has one power-up reset signal, three
hardware and three software interrupts, plus two unique
instructions to synchronize itself with hardware interrupts.
All of these 6809 interrupts are possible on the Color
Computer, and some are already in use by BASIC.

The RESET control is used when the power is turned on to
the computer, or when the reset switch is pressed on the
back of the machine. It is a separate electrical connection to
the 6809 processor, and the RESET cannot be masked by
software; it is always accepted.

The most important of the interrupts - that is, the
interrupt with the highest priority - is the NMI, or non
maskable interrupt. It is a separate electrical connection to
the processor and, like RESET, it cannot be turned off by
software. It always commands the attention of the
processor.

Of next highest priority is the fast interrupt request, or
FIRQ. The FIRQ can be turned off in software by setting
bit 6 (the F bit) of the condition code register. ORCC #$40
can be used to set this bit, turning off the interrupt;
ANDCC #$BF can be used to clear bit 6 to turn on the
interrupt. When the FIRQ comes along, the condition code
register and program counter are put on the stack, and the
interrupt service routine is begun. The FIRQ is fast
because it leaves the remainder of the register stacking up
to the interrupt service routine. If a register is not used, it
won't need to be put on the stack. I'll talk about the
requirements for speed later on.

The interrupt with the lowest priority is called simply the
interrupt request, or IRQ. When a zero appears on this
electrical connection to the CPU, all the registers-what's
known as the entire machine state - are saved on the stack.
This interrupt is turned off in software by setting bit4 (the I
bit) of the condition codes, and turned on by clearing bit 4.
ORCC #$10 turns it off; ANDCC #$EF turns it on.

ORCC #$50 turns off both interrupts; AN DCC #$AF turns
on both interrupts.

You'll remember that I described indirect addressing by
explaining how the computer obtained its first instruction
after the power was turned on. The processor went to
addresses SFFFE and SFFFF, concatenated the contents,
and used that as the address of the first instruction. There

~rl
(fo.

are in fact seven such address pairs, called "vectors".
Power-on reset plus each of the six interrupts has its own
vector from $FFF2 to $FFFF.

Here's how these vectors look in the Color Computer:

FUNCTION VECTORS ADDRESS CONTENTS
------------------------- -- --- --- ----
RESET FFFE+FFFF A027 <BOOT>
NMI FFFC+FFFD 0109 --------
SWil FFFA+FFFB ,01,06 ---- ----
IRQ FFF8+FFF9 01,0C JMP 894C
FIRQ FFF6+FFF7 010F JMP A,0F6
SWI2 FFF4+FFF5 ,01,03 ---- ----
SWI3 FFF2+FFF3 ,01,0,0 --------

The power-up RESET goes right to address $A027, a
location in Color BASIC which establishes all the
important parameters of the language.

NMI is not used by Color BASIC or Extended Color
BASIC, but three unfilled bytes in low RAM are reserved
for future use. The future use is provided because the NMI
is wired to connection #4 on the computer's cartridge
slot.

Software interrupts SWil, SWI2 and -SWI3 are also left
undefined with three unfilled bytes at their vector
locations; they are used by debugging programs such as
ZB U G, part of your EDT ASM + cartridge. Yes, we will talk
about debugging ... next time. On to the other
interrupts.

FIRQ, the fast interrupt, is hooked to one of the peripheral
interface adaptors, connecting to both the PIA's interrupt
output lines. The input to the PIA's interrupt control
signals are two: the carrier detection (CD) line of the RS-
232 communications interface, and the cartridge-in-place
(CART) connection, #8 on the computer's cartridge
connector. This interrupt serves a dual purpose. When
FIRQ occurs, the vector concatenated from addresses
$FFF6 and $FFF7 point to address $01 OF; at address 01 OF
is the instruction JMP $AOF6, a location in the Color
BASIC ROM.

The slower interrupt IRQ is connected to the second
peripheral interface adaptor, also to both of its interrupt
outputs. The interrupt control inputs of this PIA are
connected to the horizontal synchronization (HS) and field
or vertical synchronization (FS) outputs of the video
display generator. Again, this interrupt serves a dual
purpose. When IRQ takes place, the address in vectors
FFF8 and FFF9 are concatenated to produce address
$01 OC. At $01 OC is found the instruction JMP $894C, an
address in the Extended Color BASIC ROM.

6809 vectors

* Is there an interrupt that
cannot be reasked (turried off)?

Yes,

* What interrupt cannot be
masked?

The non-maskable interrupt, or
Nltll,

* What interrupt has the highest
priority'

The Nl'll.

* What interrupt has the second
highest priority?

The fast interrupt request, or
FIRQ.

* What bit of the condition code
register masks or enables the
FIRQ?

Bit 6 masks or enables the
FIRO.

* What infort1ation is saved when
the FIRQ occurs'

The condition code register and
progra■ counter are saved on the
stack.

* What is the lowest priority
interrupt?

The interrupt request, or IRO.

* What bit of the condition code
register masks or enables the
IRQ?

Bit 4 usks or enables the IRQ,

* What infor■ation is saved when
the IRQ occurs?

All the registers are saved on
the stack.

* What is the process of acting
on an interrupt called?

Servicing the interrupt.

Learning the 6f!J::J9 193

Synchronization

* How does the progra11 counter
find where to go to service the
interrupt?

Fr0111 a vector, or address, in
the last 16 bytes of 111e1110ry.

* What purpose does ttlI serve on
the Color Collputer?

None; it is not used.

* What purpose does FIRQ serve
on the Color Collputer?

It is used for the RS-232
coaunications carrier detection
line, and for the
cartridge-in-place connection on
the cartridge connector.

* What purpose does the IRQ
serve on the Color Collputer?

It is connected to horizontal
and vertical synchronization
signals fro111 the video display
generator.

* What are the terMS for
vertical and horizontal
synchronization with respect to
the Color Collputer.

Field sync <FSl and horizontal
sync (HS).

* How often does the field sync
<FSl signal occur?

60 times per second.

* How often does the horizontal
sync (HS) signal occur?

15,720 times per second.

* What port address deteniines
which interrupt is fed through
to the 6809 processor?

Port address SFF03.

* What condition code bit masks
or enables the IRQ?

Bit 4 usks or enables the IRQ.

194 Lesson 22

In all these cases, the addresses in low RAM can be
changed or filled in, redirecting the interrupts to any
location in memory. You'll be using those addresses.

Now I've given you a formal description of the vectors and
the hookup, but I expect it doesn't mean a whole lot to you
at this point. I'm going to continue with a detailed
description of how everything fits together into a neat
package, but first I want you to read the technical
information.

Read the MC6809E data booklet page 9 (NM!, FIRQ, IRQ);
read the MC6821 data booklet page 7 (peripheral interface
lines) and page 8 (internal controls), and Figure 18, page 10;
read the MC6847 data booklet page 13 (Field Sync and Hori
zontal Sync). If you have the Color Computer Technical Refer
ence Manual, read Section Ill (Theory of Operation). Return to
the tape when you have completed the reading.

Read the MC6809 data booklet page 9 (NMI, FIRQ, IRQ);
read the MC6821 data booklet page 7 (peripheral interface
lines) and page 8 (internal controls), and Figure 18, page
1 O; read the MC684 7 data booklet page 13 (Field Sync and
Horizontal Sync). If you have the Color Computer
Technical Reference Manual, read Section III (Theory of
Operation).

Now putting it together. By correctly writing data to the
PIAs, you can make it possible for the computer to detect
an RS-232 carrier, to detect the presence of a plug-in
cartridge, or to synchronize your programs to the video
display either horizontally or vertically. All you need to add
is software.

I've got two demonstrations of this. The first is a
continuous on-screen software clock; the second, an
example of synchronizing the video display with
programming changes to the screen.

I'm going to put a clock in the upper right corner of the
video screen. It will be there no matter what else is
displayed on the screen, whether you're listing, entering or
editing a line, or running a BASIC program. It will even
keep running with certain machine language programs that
don't turn off interrupts or change the vectors. I think I'd
like it to count in tenths of a second up to 99 hours, 59
minutes, 59.9 seconds.

You've read the data booklets, so maybe you're ahead of
me. Remember the video display generator's field sync
(FS) signal, which is used for interrupting the processor.
The video display generator's field sync signal occurs at
precisely 60 times each second. By enabling the interrupt
(bit O of port address $FF03), I can get an interrupt to occur
60 times each second. If I keep track of those ticks and

No

No

~ /()MWc,yl!J
C4WTI¥:.

CJ.EN.. /OIO-G
Cot.W11M.,

update my screen with a new time every six interrupts, then
I've got a tenth-of-a-second clock. From a tenth-of-a
second clock I can create a full real-time software clock.

Here's the structure of the setup and interrupt service
routine:

1. Set aside some memory for the clock; it might be an
image of the actual display (such as 12:59:02.2).

2. Enable the 60-per-second interrupts.

3. On an interrupt, increment the sixtieth-of-a-second
counter. If the sixtieth-of-a-second counter passes 5,
increment the tenth-of-a-second counter, and clear the
sixtieth-of-a-second counter to 0. If the tenth-of-a-second
counter passes 9, increment the one-second counter and
clear the tenth-of-a-second counter to 0. If the one-second
counter passes 9, increment the ten-second counter and
clear the one-second counter to 0. If the ten-second counter
passes 5, increment the one-minute counter and clear the
ten-second counter to 0. If the one-minute counter passes
9, increment the ten-minute counter and clear the one
minute counter to 0. If the ten-minute counter passes 5,
increment the one-hour counter and clear the ten-minute
counter to 0. If the one-hour counter passes 9, increment
the ten-hour counter and clear the one-hour counter to O. If
the ten-hour counter passes 9 clear it to 0.

4. Display the new time to the screen; the re-display will
take place every sixtieth of a second, appearing as a
continuous display.

5. Clear the interrupt status at port $FF02.

6. Return from the interrupt.

The setup process has to clear the way for the interrupts
without getting interrupted in the middle of things. So all
interrupts go off right at the start; the address of your own
routine is placed into the RAM vector; the proper interrupt
signal (in this case, the 60-per-second FS) is enabled;
interrupts are re-enabled; and the setup routine returns to
BASIC. Earlier in the book I presented a map of the
computer's input/output port bits. Bit O of control port
$FF03 provides for the FS signal to be latched as an
interrupt. So the whole routine might look like this:

ORCC
LOX
STX
LOA
STA
ANDCC
RTS

#$50
#$START
$0100
#$37
$FF03
#$EF

*Turnoff interrupts
* Service routine start
* Store after "JMP" in vector
* Value to enable FS
* Enable FS through PIA
* Re-enable IRQ interrupt
* Back to BASIC

That's the setup. The interrupt service routine itself is
really quite simple; get the whole thing loaded into
EDTASM+, and then come back for a walk-through.

Learning the

A software clock

* What instruction 11asks the
IRQ?

ORCC H10 masks the IRQ.

* What instruction enables the
IRQ?

ANDCC HEF enables the IRQ.

* What instruction returns to
the progru in progress aftet' an
interrupt has been serviced?

Return fro11 interrupt, RT!.

* When IRQ occurs, Nhere does
the progru counter obtain the
address of the interrupt service
routine?

Fl"OIII a vector in high 11e1110ry.

* What is the !RO vector found?

The IRQ vector is found at SFFF8
and SFFF9.

* On the Color C011puter, Nhere
does the IRQ vector point?

The IRQ vector points to address
S018C.

* Where is S018C in the Color
C011puter 11e110ry aap?

In RAN, on page $01.

* In the Color Collputer running
with BASIC, the service routine
shONn in this exc111ple ends with
JMP $894C. Where is ~94C in
the Color COMputer lllefllOry map?

S894C is in the Color BASIC
ROM.

* Why does this service routine
end Mith JMP S894C instead of
RTI?

Because the interrupt still has
to be used by BASIC for the
cursor flash and the TIMER
cc.and.

6PJ:Jt 195

Program #34

3F00

3F00 1A
3F02 8E
3F05 BF
3F08 86
3F0A B7
3F0D lC
3F0F 39

3F10 8E
3F13 C6
3F15 6C
3F17 A6
3F19 81
3FlB 2D
3F1D 8D
3F1F 81
3F21 2D
3F23 8D
3F25 81
3F27 2D
3F29 8D
3F2B 81
3F2D 2D
3F2F 8D
3F31 81
3F33 2D
3F35 8D
3F37 81
3F39 2D
3F'3B 8D
3F3D 81
3F3F 2D
3F41 8D
3F43 81
3F45 2D
3F47 E7

3F49 108E
3F4D 8E
3F50 C6
3F52 A6
3F54 A7
3F56 5A
3F57 26

3F59 B6
3F5C 7E

3F5F E7
3F61 6C
3F63 A6
3F65 39

3F66 E7
3F68 6C
3F6A A6
3F6C 39

3F6D

50
3F10
010D
37
FF03
EF

3F77
30
84
84
36
2C
40
3A
26
41
3A
20
34
36
1A
35
3A
14
28
36
0E
29
3A
08
1C
3A
02
84

0416
3F6D
0A
80
A0

F9

FF02
894C

84
82
84

84
83
84

30
30
3A
30
30
3A
30

00100
00110 *
00120 INTOFF
00130
00140
00150
00160
00170
00180
00190 *
00200 START
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480 *
0121490 OUT
00500
00510
0~520 LOOP
00530
00540
00550
00560
0121570
00580
00590 *
00600 DEC1
00610
00620
00630
00640 *
00650 DEC2
00660
00670
00680
00690 *
00700 IMAGE

196 Lesson 22

Program #34, an EDTASM+ program. Insert the EDTASM+
cartridge, and turn on the power to your computer. When the
cursor appears, type L and press ENTER. The computer will
search (S) and find (F). When the cursor reappears, display the
program. Type P#: • and press ENTER. If the right-hand side
of the program is not similar to the listing, or if an 1/0 error
occurs, rewind to the program's start and try again. For severe
loading problems, see the Appendix.

ClRG

ORCC
LOX
STX
LDA
STA
ANDCC
RTS

LOX
LDB
INC
LOA
CMPA
BLT
BSR
CMPA
BLT
BSR
CMPA
BLT
BSR
CMPA
BLT
BSR
CMPA
BLT
BSR
CMPA
BLT
BSR
CMPA
BLT
BSR
CMPA
BLT
STB

LOY
LDX
LOB
LDA
STA
DECB
BNE

*
LOA
JMP

STB
INC
LOA
RTS

5TB
INC
LDA
RTS

FCC

$3F00

#$50
#START
$010D
#$37
$FF03
#$EF

* TURN INTERRUPTS OFF
* POINT XTO SERVICE ROUTINE
* STORE ROUTINE TO IRQ VECTOR
* VALUE 00110111 FOR MASKING
* TURN ON VERTICAL SYNC
* TURN INTERRUPTS ON
* AND BACK TO BASIC "OK"

#IMAGE+10 * POINT XTO 1/10 SEC.
#$30 * B BECOMES ASCII OFFSET
,X * INCREMENT 1/10 SECONDS
,X * GET 1/10 SECONDS VALUE
#$36 * IS 6/10 SECONDS COUNTED?
OUT * IF NOT 6/10 SECONDS, OUT
DEC! * ELSE BAC UP 1 MEM. LOCATION
#$3A * IS IT 1 SECOND YET?
OUT * IF NOT 1 SECOND, OUT
DEC2 * ELSE BACK UP 2 MEM. LOCNS.
#$3A * IS IT 10 SECONDS YET?
OUT * IF NOT 10 SECONDS, OUT
DECl *BACKUP 1 MEM. LOCATION
#$36 * IS IT 60 SECONDS YET?
OUT * IF NOT 60 SECONDS, OUT
DEC2 * ELSE BACK UP 2 MEM. LOCNS.
#$3A * IS IT 10 MINUTES YET?
OUT * IF NOT 10 MINUTES, OUT
DEC1 * ELSE BACK UP 1 MEM. LOCATION
#$36 * IS IT 60 MINUTES YET?
OUT * IF NOT 60 MINUTES, OUT
DEC2 * ELSE BACK UP 2 MEM. LOCNS.
#$3A * IS IT 10 HOURS YET?
OUT * IF NOT 10 HOURS, OUT
DEC! * ELSE BACK UP 1 MEM. LOCATION
#$3A * IS IT 100 HOURS YET?
OUT * IF NOT 100 HOURS, OUT
,X * PLACE $30 (ASCII ZERO>

#$0416
#IMAGE
#$0A
,X+
'Y+

LOOP

$FF02
$894C

'X
'-x
'X

'X
'--x
'X

* POINT TD RIGHT SCREEN
* POINT XTO CLOCK IMAGE
* COUNT 10 SCREEN POSITIONS
* GET CHARACTER FROM CLOCK
* AND PLACE IT ON THE SCREEN
* DONE WITH IMAGE YET?
* IF NOT, THEN GET NEXT CHAR.

* CLEAR VERT. SYNC LATCH
* AND TO BASIC TD DD RTI

* PLACE $30 (ASCII ZERO)
*BACKUP ONE MEM. LOCATION
* GET VALUE FROM IMAGE
* BACK TO MAIN PROGRAM

* PLACE $30 <ASCII ZERO)
*BACKUP TWO MEM. LOCATIONS
* GET VALUE FROM IMAGE
* BACK TO MAIN PROGRAM

/00:00:00.00/

30
2E
30
30

00710 *
3F00 00720

00000 TOTAL ERRORS
DECl 3F5F
DEC2 3F66
IMAGE 3F6D
INTOFF 3F00
LOOP 3F52
OUT 3F49
START 3F10

END INTOFF

The opening is the 16-byte setup routine, turning off
interrupts, redirecting the interrupt vector to my interrupt
service routine, passing through the 60-per-second
interrupt, turning on interrupts, and returning to BASIC.

The service routine itself is a strung-out series of
increments and comparisons. The sixtieth-of-a-second
clock image in memory is incremented and tested for $36
(the ASCII value for the character 6). If it's less than six, out
it goes; otherwise, it begins a down-the-line test. Notice in
the DE Cl and DEC2 routines the use of an indexed pre
decrement command; right along you've been seeing the
post-increment commands such as LOA ,X +, but this is the
first time the pre-decrement has turned up. Since this
routine is bumping backwards in memory (from sixtieths of
a second up to tens of hours), a decrement is needed.

Check the sequence in the subroutine:

STB
INC
LDA

,X
'-X
,X

The value in B (an ASCII zero) is stored in memory pointed
to by X. The X pointer is decremented and then its
contents are incremented. Two things of complementary
character are here - the pointer is first decremented, then
its contents are incremented. And finally, the A
accumulator is loaded with the contents bf the memory
location now pointed to by X.

After all the increments, tests and updates are complete,
the memory image of the time is transferred to the screen.
In line 490, Y points to location $0416 on the screen, and X
points to the updated clock. A short loop transfers the
information.

Finally, the command LOA $FF02 resets the latched
interrupt from the PIA. Inyourreadingofthe MC6821 data
booklet, page 8, this was mentioned. I'll read that
paragraph. "The four interrupt flag bits are set by active
transitions of signals on the four interrupt and peripheral
control lines when those lines are programmed to be inputs.
These bits cannot be set directly from the MPU data bus
and are reset indirectly by a read peripheral data operation
on the appropriate section." In other words, flags go up
inside the PIA when an interrupt takes place; by reading
from the PIA, the flag goes down. LOA $FF02 reads from
the PIA and turns off the interrupt flag.

Auto pre-decrement

* lllat happened to the RTI
needed at the end of an
interrupt? lllere is it?

The RTI is found in the BASIC
ROM after it finishes with the
cul"SOr flash and ti11er update.

* When using the IIIC6821 PIA to
cause the interrupt, Nhat is
also necessary at the end of the
service routine?

The PIA's interrupt latch IIUSt
be reset.

* lllat ..ould happen if the latch
were not reset?

No further interrupts would pass
through the PIA to the
processor.

* What two addresses are used by
the PIA that handles the IRQ?

Addresses SFFl2 and SFFl3.

* lllat ccaand resets the
interrupt latch?

Any ccaand that reads fraa port
address SFFl2, such as LDA
$FFl2.

* What does IRQ aean?

IRQ aeans interrupt request.

* lllat does PIA aean?

PIA aeans Peripheral Interface
Adapter.

* lllat do FS and HS IIHII?

FS aeans Field Sync and HS aeans
Horizontal Sync.

Learning the l:Rt::J, 197

Interrupt vectors and BASIC

* What does VOO ean?

VD6 eans Video Display
Generator.

* What does A/IM/AO ean?

Assemble into IINOrY at the
absolute origin specified in the
source listing.

* Three things happen lllhen an
interrupt occurs. lialat are
they?

The 1icroprocessor finishes its
current instruction, saves
important infor■ation, and
follows prograaing instructions
in response to the interrupt.

198 Lesson 22

The last instruction (JMP $894C) might not make sense to
you. You probably expected a return from interrupt
instruction (RTI). Let me explain. You'll recall that the
interrupt vector for IRQ goes to address $0110 in low RAM
for its instruction. At that location is found the instruction
JMP $894C. In order for this time display program to work
properly with BASIC, it must chain itself to BASIC's
vectors. That vector and the subsequent JMP $894C
controls the cursor flashing, among other things. So it's go
to be there. By replacing JMP $894C with the JMP $3F10
that gets the time display routine going, tbe program has
intercepted a vital part of BASIC's operating system. To
keep the link from IRQ vector $0110 to ROM location
$894C, this program intercepts $0110, patches itself in
place, and finishes by jumping to $894C. The chain is
complete; the time is displayed and BASIC has its cursor.
BASIC finishes by executing the return from interrupt
(RTI).

I think it seems simple enough. Give it a try. Assemble this
program in memory at the correct origin. Type A/IM/ AO
and hit enter. The program will assemble into memory.
When it's finished and the cursor has returned, type and
enter Q. You will quit EDTASM+ and return to BASIC.
Protect memory now; this program resides from $3FOO to
$3F77, so protect from $3F00 on up. Type and enter
CLEAR200,&H3F00. That's CLEAR200,&H3F00.

Ready? Type and enter EXEC&H3F00.
There's the clock, ticking away in the upper-right-hand
corner of the screen. You can enter, edit and list and run
BASIC programs. Try a few short programs, and see how it
looks to have the clock in the corner.

When you're done with that, try one more test. Create a
BASIC program and CSA VE it to tape. I don't care what
kind of program it is, and you don't really even need to have
the tape running. I just want you to CSA VE something, and
keep an eye on the screen. Before the next session, figure
out what you see and why it must happen that way. Have
fun.

•
In this lesson, I'm going to turn to video display
synchronization achieved with interrupts. But please keep
something in mind as you review these past two lessons.
This may be the Color Computer you're using, but it's the
6809 processor you're learning to program. Although every
6809 processor is made with these interrupt capabilities
and signals, those interrupt signals might be wired in a
completely different way on another type of computer.
alternative internal wiring might also mean that the vectors
in memory would be changed and that the timing of the
interrupts would be more or less frequent. Chances are -
except for the method used to turn interrupts on and off,
which is a function of the 6809's condition code register
everything would be handled differently. Since you're
learning the 6809 on the Color Computer, I know these
programs will work for you. But if you change computer
systems, you'll have to apply the principles but not
necessarily tht:: actualities of these interrupt sessions.

That said, it's on to video synchronization. There are only
two unique instructions left to talk about on the 6809.
These are SYNC and CWAI.

SYNC and CWAI are similar instructions: both cause the
6809 to stop processing - that is, cease to follow program
instructions - and wait for an interrupt to occur. SYNC (for
synchronize) simply turns the processing off, to the point of
making it electronically invisible to the rest ofthe computer
components. SYNC is especially useful when connecting
multiple computers to the same memory; you can't do that
with the Color Computer because all the necessary
connections aren't there, but SYNC makes it possible for
some other 6809 computers to work as multiple processor
systems.

Like SYNC, CWAI also causes the processor to stop, but not
immediately. CWAI (meiming clear condition code bits
immediate and wait for interrupt) first places all the
registers on the stack and then sets the E flag; the E flag
tells the processor that the entire machine state has been

Dealing with interrupts is no
aore eo11plicated than any
asSE!lllbly prograaing. The only
hitches are getting to the
interrupt service routine and
back from it without any errors,
and, where ti■ing is absolutely
critical, getting it over with
before it's time for 1110re
interrupts. The 60-per-sec:ond
interrupt in the last lesson's
clock prograa was leisure time
at its 110st relaxing C01Wpared
with the progra11 in this
lesson!

* What is the process of acting
on an interrupt called?

Servicing the interrupt.

1 Ho. does the prograa counter
find where to go to service the
interl"Upt?

Fr011 a vector, or address, in
the last 16 bytes of IINOl"y.

1 11\at purpose does the IRQ
serve on the Color Coaputer?

It is connected to horizontal
and vertical synchronization
signals froa the video display
generator.

Learning the /:::Rl::y:J 199

Port bits

* lllat are the teras for
vertical and horizontal
synchronization with respect to
the Color Coatputer?

Field sync IFS) and horizontal
syoc <HSJ.

* How often does the field sync
<FSl signal occur?

60 t iMeS per second.

* How often does the horizontal
sync (HS) signal occur?

15, 728 times per second.

* What port address deter11ines
which interrupt is fed through
to the 6809 processor?

Port address SFF03.

* What condition code bit masks
or enables the IRQ?

Bit 4 masks or enables the IRQ.

* What instruction 11asks the
IRQ?

ORCC 11$10 11c1sks the IRG.

* What instruction enables the
IRG?

ANDCC HEF enables the IRQ.

* What instruction returns to
the progra• in progress after an
interrupt has been serviced?

Return from interrupt, RTI.

* What is the IRQ vector found?

The IRG vector is found at SFfF8
and SFFF9.

* On the Color C011puter, where
does the IRQ vector point?

The IRQ vector points to address
$010C.

200 Lesson 23

saved on the stack. The CWAI instruction also keeps the
processor active with respect to the outside world; there is
no "invisibility" with ·cw Al.

The effective similarity between SYNC and CWAI, then, is
that they both stop the processor's operations and wait for
an interrupt to occur. The effective difference is that SYNC
just stops the operation, whereas CWAI also presets the
condition codes and saves all the registers.

I'll be using SYNC for these demonstrations. You might be
wondering why stopping the processing with SYNC would
be preferable to the straightforward use of an interrupt as I
showed you in the last session. With SYNC, you can
complete all the programming work you need for a change
of video contents, then enter SYNC mode and wait for
further instruction. The amount of time you've got for the
program and the timing of the interrupts becomes more
important as you write the program, but lets the program
work more effectively.

Let me turn back to the peripheral interface adaptors, the
PIAs, and their control registers. Addresses $FF01 and
$FF03 have the important information:

Bit Function

0 0 = disable interrupt, 1 = enable
interrupt request to processor.
0 = falling transition, 1 =

rising transition sets IRQA/B1
output.

2 0 = data direction register, 1
control register; established at
power-up.

3 One of a pair of binary select
signals for control of the analog
multiplexer (see technical manual
for details).

4,5 Establishes CA2/CB2 as output
controlled by bit 3 always
on Color Computer.

6 Interrupt flag when CA2/CB2 is an
input; not used on the Color
Computer.

7 Interrupt flag from CAl/CBl
vertical or horizontal TV
synchronization.

Now that you know, what do you do with it? I've got to get
technical on you. This is one of those times when hardware
meets software, and in order to program what you need,
you've got to understand what's going on.

The television screen display isn't a fixed image of some
kind, but rather the result of a single, constantly moving
electron beam aimed from the back and sweeping across

EJ

the front of a glass tube. As the beam sweeps by, rare-earth
elements known as phosphors are excited by the beam and
glow blue, green or red.

By depending on the mixing of the primary colors of blue,
green or red (technically called cyan, green and magenta),
and also on our eyes' persistence - that is, the ability to
retain an image for a small fraction of a second - a
complete, multi-colored picture seems to be formed.

If you look at the front of the picture tu be with a magnifying
glass, you can see the separate colors. By moving your hand
quickly in front of the screen, you can see the image "break
up" as your hand's outline is strobed by the changing
screen image produced by that moving electron beam.

There's only one electron beam, and it's moving fast. It
sweeps across the screen, changing color and brightness as
it goes, then turns off, sweeps back, turns on, and draws the
next line. It draws 262 lines altogether, all the while keeping
those lines separated by moving slowly down the screen;
one screen full of lines is called a "field". At television
speed, "slowly" is only a comparative term, because the
beam goes from top to bottom of the screen 60 times each
second. On the Color Computer, that's 15,720 lines drawn
every second.

What keeps all this happening at the correct time and keeps
the beam at the correct place on the screen is known as
synchronization. The electrical signal that tells the beam
when to start each line across is called horizontal
synchronization, or horizontal sync. The signal that tells
the beam when to get to the top of the screen and start the
next field is called vertical synchronization, or vertical
sync. Although it would be simpler to call these horizontal
sync and vertical sync, I'm not going to do that. I want to
avoid confusing these sync signals with the 6809 processor
command SYNC.

The MC684 7 video display generator, the VDG, creates
horizontal and vertical synchronization, and also another
signal called field synchronization. Field synchronization is
the time between the end of the active display (the very
bottom right of the green block that makes up the display
screen) and the top of the screen (25 lines before the start of
the green block).

For a complete look at all this, open your MC6847 videc
display generator data booklet, and turn to page 11. On
page 11 of the MC6847 data booklet, you can see the
relationship between the blank areas and the active display
area. Take a few minutes to examine Figures 13 and 14.

Lines, fields and sync

* Where is S010C in the Color
Collputer Me110ry map?

In RAM, on page $01.

* When using the Mc:6821 PIA to
cause the interrupt, Nhat is
also necessary at the end of the
service routine?

The PIA's interrupt latch wst
be reset.

* What tNO addresses are used by
the PIA that handles the JRQ?

Addresses SFF02 and SFF03.

* What coaand resets the
interrupt latch?

Any ca.and that reads fr011 port
address SFF82, such as LDA
SFF02.

* What actions does the SYNC
instruction cause?

It causes the processor to stop
processing instructions and wait
for an interrupt to occur.

* What actions does the CWAI
instruction cause?

It ANDs the condition code bits
with a value, places all the
registers on the stack, sets the
E flag, stops further processing
and waits for an interrupt.

* How are the software actions
of SYNC and OllI alike?

Both stop further processing and
wait for an interrupt.

* How are the software actions
SYNC and CWAI different?

CWAI <Clear and Wait for
Interrupt) perfor'IIS logical and
stack operations, Nhereas SOC
(Synchronize with Interrupt)
does not.

Learning the 6f!l:Jt 201

Using FS and HS interrupts

* How are the hardware actions
el SOC and CIIAI different?

CWAI keeps the processor active
with respect to the outside
NOrld (to the other circuits>;
SYNC Nkes it electronically
invisible (called a tri-state
condi tionl.

* How Ian)' horizontal lines does
the electron beall dr• cm the
video display screen?

262 horizontal lines are dra1,m
on the screen.

* lrllat is one C<lllplete group of
262 lines called?

One group of 262 lines c011prises
a field.

* What is the •green block• in
the center of the video screen?

The "green block" is the active
display area.

* How aany horizontal electron
beu lines co.prise the active
display area?

192 horizontal lines aake up the
active display area.

* How aany fields of 262 lines
are drallffl each second?

68 fields are dra11m each
second.

* How 11any lines are dra• each
second?

262 lines ties 68 fields, or
15,728 lines are drilllffl each
second.

* lrllat controls the horizontal
lines and vertical fields?

The Video Display Generator, the
voo.

202 Lesson 23

Turn to page 11 in the MC684 7 video display generator (VDG)
data booklet and examine Figures 13 and 14, which present the
active display area of the Color Computer. Familiarize yourself
with the number of horizontal lines and their arrangement. Re
turn to the tape when you have completed the reading.

Don't bite your lip; this is all going to fit together very
shortly. When you know about field synchronization and
horizontal synchronization, you know two important
things. The first thing you know is the time when your
processor is free to make its calculations, scan the
keyboard, and so forth. That time falls between the end of
the active display area and the top of the screen. And that
time starts when field synchronization (FS) goes from one
to zero, and that time ends when FS goes from zero to one.
The 6809 processor can find out when FS changes.

The second thing you know is when the beam starts at the
left of the screen and when it ends at the right. It starts
when horizontal synchronization (HS) goes from one to
zero and ends when HS goes from zero to one. The time
when HS is off the screen very short, however (about one
CPU clock cycle), so in effect, the important time is the
start of the HS period, when HS goes from one to zero. The
6809 processor can find out when HS changes.

So here's an outline of the features as they relate to
software.

1. FS goes from high to low. You're out of the
screen and free to calculate and perform other
operations.

2. FS goes from low to high. You've got to
start paying attention to screen lines.

3. HS goes from high to low. The screen has
started.

4. Count 38 HS pulses and you're in the
display area.

5. 192 HS pulses make up one active screen.

6. Repeat it all 60 times and you've got one
full second of programming.

Now it's getting closer. Feed through the vertical or field
synchronization to the processor's interrupt, and execute
the SYNC command. When it occurs, execute a vertical
synchronization service routine. That routine should turn
off that feed-through and turn on the horizontal
synchronization feed-through. Create another interrupt
service routine for the horizontal synchronization. Begin

+l.

\/. SYNC
, END

Sl'NC.ENI>

--

~"To
!'IZ >f IZ~

/flt.Ii /1£5 wa,

1-- - --,

I
I
I
I
I
I
I

I
~ I

1!s
--'

counting until you reach the top of the active display area.
Then you can change the display and count screen lines in
short programming bursts, ending each with SYNC. When
you have counted 192 lines, the screen display area is
completed. You can turn off the horizontal feed-through,
turn back on the vertical synchronization feed-through,
return to the main loop for your calculations and more
sophisticated programming. When that's done, you can
execute the SYNC command and wait for the process to
start all over.

A practical example is the only way of understanding what
this is good for and how to use it. Before that, though,
please review this lesson so far, reread the control register
information in the MC682 l peripheral interface adapator
data booklet, and re-examine the screen outline on page 11
in the MC684 7 data booklet.

Review this lesson. After reviewing, read the control register in
formation in the MC6821 data booklet, pages 7 and 8. Also
continue to become familiar with the screen outlines on page 11
of the MC684 7 VDG data booklet. Return to the tape when you
have completed the reading.

The practical example I've got is about as impractical as
they come in some respects. It shows a bunch of random
colors and shapes on the screen, together with
alphanumerics. There are standard letters and characters
(black on green), high resolution color graphics, more
characters (black on red), medium resolution color
graphics, and more characters. The trick is that all of them
are displayed on the same screen at the same time.

Getting a mix of high-resolution graphics and standard
alphanumerics on the screen at the same time is a simple
function of synchronizing and counting. If you synchronize
to the vertical synchronization pulse, you know where the
screen starts. If you synchronize to the horizontal
synchronization pulse, you know where each of the 192
screen lines is. If you are familiar with your graphics modes,
then you know what character is where on what line.

All that's left is the implementation. My example presents
two rows of alphanumeric characters, a 192 by 48 block of
high resolution color graphics, two more rows of alpha
characters (but in red instead of green), a 64 by 16 block of
medium resolution color graphics, and three rows of alpha
characters. l haven't filled memory with anything in
particular, so it's just random junk. But the junk'll be
moving. Load the source code. I'll take you through it, and
do some explaining.

Mixing graphics modes

* What is FS (Field Synchron
ization) on the VDG?

The ti11e betNeen the end of the
active display area and the top
of the screen.

* When does FS go from high to
low (one to zero)?

When the electron beam leaves
the active display area.

* When does FS go fr0111 low to
high <zero to one)?

When the electron beu reaches
the top of the screen.

* lllen does HS go from one to
zero?

When the electron beam begins
draNi ng a line on the screen.

* When does HS go fro. zero to
one?

When the electon beam finishes
drawing a line on the screen.

* According to the 11:6847 data
booklet, hOIIII aany HS pulses
occur before the "green block"
-- the active display area -
begins?

38 HS pulses occur before the
active display area begins.

* 1-iclN 11any HS pulses occur
during active display (within
the "green block")?

192 HS pulses occur within the
active display.

* According to the IC6847 data
booklet, how uny HS pulses
occur after the active display
area ends?

32 HS pulses occur after the
active display area ends.

Learning the 6f!J::1J 203

Program #35

204 Lesson 23

Program #35, an EDTASM + program. Insert the EDTASM +
cartridge, and tum on the power to your computer. When the
cursor appears, typle L and press ENTER. The computer will
search (S) and find (F). When the cursor reappears, display the
program. Type P#: • and press ENTER. If the right-hand side of
the program is not similar to the listing, or if an 1/0 error occurs,
rewind to the program's start and try again. For severe loading
problems, see the Appendix.

000C
0023
0420
0800
FF00
FF02
FF01
FF03
010D
FFC0
FFC1
FFC2
FFC3
r"FC4
FFC5
FF22

3F00

3F00 1A 50
3F02 BE 010D
3F05 BF 3FC8
3F08 BE 3F7D
3F0B BF 010D

3F0E 86 36
3F10 B7 FF01
3F13 4C
3F14 B7 FF03
3F17 B7 FFC4
3F1A B7 FFC2
3F1D B7 FFC0
3F20 SE 3F7F
3F23 lC EF
3F25 13

3F26 SE 3F94
3F29 C6 3B
3F2B lC EF
3F2D 13
3F2E 5A
3F2F 26 FC
3F31 86 EF
3F33 B7 FF22
3F36 B7 FFC5
3F39 B7 FFC3

3F3C C6 30
3F3E 13
3F3F 5A
3F40 26 FC
3F42 86 0F
3F44 B7 FF22
3F47 B7 FFC4
3F4A B7 FFC2

00100 ROW EQU 12
i21011'21 BORDER EQU 35
00120 HIRES EQU $0420
00130 VIDTOP EQU $0800
00140 CLEARH EQU $FF00
00150 CLEARV EQU $FF02
00160 HSPORT EQU $FF01
00170 VSPORT EQU $FF03
00180 VECTOR EQU $010D
00190 VIDCL0 EQU $FFC0
00200 VIDST0 EQU $FFC1
00;=:10 VIDCLl EQU $FFC2
00220 VIDSTl EQU $FFC3
00230 VIDCL2 EQU $FFC4
00240 VIDST2 EQU $FFC5
1ZIIZIC~50 VIDPRT EQU $FF22
00260 *
00270 ORG $3F00
00280 *
00290 * GET & SAVE BASIC VECTOR
00300 * PLACE THIS VECTOR
00310 BEGIN ORCC #$50
00320 LDX VECTOR
00330 STX STOREV
00340 LDX #INTER
00350 STX VECTOR
00360 *
00370 * INTERRUPTS OFF.
00380 * HORIZONTAL SYNC OFF.
00390 * VERTICAL SYNC ON.
00400 * SELECT ALPHA MODE.
00410 * INTERRUPTS ON.
00420 * WAIT FOR VERTICAL SYNC.
00430 STAR LDA #$36
00440 STA HSPORT
00450 INCA
00460 STA VSPORT
00470 STA VIDCL2
00480 STA VIDCLl
00490 STA VIDCL0
00500 LDX #SCREEN
00510 ANDCC #$EF
00520 SYNC
00530 *
00540 * WAIT FOR HORIZ. SYNC.
00550 * COUNT BORDR + 24 LINES.
00560 * CHANGE TO 128X192 COLOR
00570 LDX #LINE
00580 LDB #BORDER+2*ROW
00590 ANDCC #$EF
00600 LOOP! SYNC
00610 DECB
00620 BNE
00630 LDA
00640 STA
00650 STA
00660 STA
00670 *

LOOP!
#SEF
VIDPRT
VIDST2
VIDSTl

00680 * WAIT FOR HORIZ. SYNC.
00690 * COUNT 48 LINES.
00700 * CHANGE TO ALPHA MODE.
00710 LDB #4*ROW
00720 LOOP2 SYNC
00730 DECB
00740 BNE
00750 LDA
00760 STA
00770 STA
00780 STA

LOOP2
#$0F
VIDPRT
VIDCL2
VIDCLl

Program #35

00790 *
00800 * WAIT FOR HORIZ. SYNC.
00810 * COUNT 24 LINES.
00820 * CHANGE TO 64X64 COLOR.

3F4D C6 18 00830 LDB 4t2*ROW
3F4F 13 00840 LOOP3 SYNC
3F50 5A 00850 DECB
3F51 26 FC 00860 BNE LOOP3
3F53 86 BF 00870 LDA 4t$8F
3F55 B7 FF22 00880 STA VIDPRT
3F58 B7 FFC4 00890 STA VIDCL2
3F5B B7 FFC2 00900 STA VIDCL1
3F5E 87 FFCl 00910 STA VIDST0

00920 *
00930 * WAIT FOR HORIZ. SYNC.
00940 * COUNT 48 LINES.
00950 * CHANGE TO ALPHA MODE.

3F61 C6 30 00960 LDB 4t4*ROW
3F63 13 00970 LOOP4 SYNC
3F64 5A 00980 DECB
3F65 26 FC 00990 BNE LOOP4
3F67 86 07 01000 LDA #$07
3F69 B7 FF22 01010 STA VIDPRT
3F6C B7 FFC0 01020 STA VIDCL0

01030 *
01040 * WAIT FOR HORIZ. SYNC.
01050 * COUNT 48 LINES.

3F6F C6 30 01060 LDB 4t4*ROW
3F71 13 01070 LOOP5 SYNC
3F72 SA 01080 DECB
3F73 26 FC 01090 BNE LOOP5

01100 *
01110 * INTERRUPTS OFF.
01120 * DO BYTE FINAGLE STUFF.
01130 * START IT ALL AGAIN.

3F75 1A 50 01140 STOP ORCC 4t$50
3F77 BD 3F98 01150 JSR INCREM
3F7A 7E 3F0E 01160 JMP ST.AR

01170 *
01180 * SUBROUTINES FOLLOW.
01190 * JUMP OFFSET INDEXED.
01200 * X POINTS TO ROUTINE.

3F7D 6E 84 01210 INTER JMP 'X
01220 *
01230 * CLEAR FIELD SYNC LATCH.
01240 * SELECT PLPHA MODE.
01250 * TURN VERTICAL SYNC OFF.
01260 * TURN HORIZ. SYNC ON.
01270 * CLEAR HOR. SYNC LATCH.
01280 * BACK TO MAIN PROGRAM.

3F7F 86 FF02 01290 SCREEN LDA CLEARV
3F82 86 07 01300 LDA #$07
3F84 87 FF22 01310 STA VIDPRT
3F87 86 36 01320 LDA 4t$36
3F89 87 FF03 01330 STA VSPORT
3F8C 4C 01340 INCA
3F8D 87 FF01 01350 STA HSPORT
3F90 86 FF00 01360 LDA CLEARH
3F93 38 01370 RTI

01380 *
01390 * CLEAR HOR. SYNC LATCH.
01400 * BACK TO MAIN PROGRAM.

3F94 B6 FF00 01410 LINE LDA CLEARH
3F97 3B 01420 RTI

01430 *
01440 * BYTE-FINAGLE ROUTINE.
01450 * BLOCK MOVES $44 BYTES
01460 * AT A TIME, CONTINUING
01470 * UNTIL 4tVIDTOP IS
01480 * REACHED.
01490 * RESETS STORAGE AND
01500 * START LOCATIONS,
01510 * INCREMENTS Y TO NEXT
01520 * BLOCK MOVE POINT.

3F98 BE 3FC2 01530 INCREM LDX XSTORE
3F98 108E 3FC4 01540 LDY YSTORE
3F9F C6 44 01550 LDB 4t$44
3FA1 A6 A0 01560 FILLUP LDA ,Y+
3FA3 A7 80 01570 STA • X+
3FA5 5A 01580 DECB
3FA6 26 F9 01590 8NE FILLUP
3FA8 ac 0800 01600 CMPX 4tVIDTOP
3FAB 2D 0D 01610 BLT VIDMOR

Learning the 60C:ft 205

Program #35

* lillat happens at the end of the
active display area?

FS goes fro. high to low (one to
zero).

* What PIA address handles the
FS interrupt?

Port address SFFl3.

* lillat PIA address resets the FS
interrupt?

Reading port address SFF92.

* What PIA address handles the
HS interrupt?

Port address SFF81.

206 Lesson 23

3FAD SE 0420 01620 LDX #HIRES
3FB0 10BE 3FC6 01630 LDY YHOLD
3FB4 31 21 01640 LEAY 1, y
3FB6 10BF 3FC6 01650 STY YHOLD
3FBA 10BF 3FC4 01660 VIDMOR STY YSTORE
3FBE BF 3FC2 01670 STX XSTORE
3FC1 39 01680 RTS

01690 *
3FC2 0600 01700 XSTORE FDB •0600
3FC4 0000 01710 YSTORE FDB •0000
3FC6 0000 01720 YHOLD FDB •00•
3FC8 01730 STOREV RMB 02

01740 *
3FCA 01750 zzzzzz EQU *

01760 *
3F00 01770 END BEGIN

00000 TOTAL ERRORS
BEGIN 3F00
BORDER 0023
CLEARH FF00
CLEARV FF02
;:JLLUP 3FA1
HIRES 0420
HSPORT FF01
INCREM 3F98
INTER 3F7D
LINE 3F94
LOOP! 3F2D
LOOP2 3F3E
LOOP3 3F4F
LOOP4 3F63
LOOP5 3F71
ROW 000C
SCREEN 3F7F
STAR 3F0E
STOP 3F7S
STOREV 3FC8
VECTOR 010D
VIDCL0 FFC0
VIDCLl FFC2
VIDCL2 FFC4
VIDMOR 3FBA
VIDPRT FF22
VIDST0 FFCl
VIDST1 FFC3
VIDST2 FFC5
VIDTOP 0800
VSPORT FF03
XSTORE 3FC2
YHOLD 3FC6
YSTORE 3FC4
zzzzzz 3FCA

I've prepared this source listing to make full use of labels.
Print the first screenful of lines; start with me at the top.

Internally, the MC684 7 video display generator counts to
12, which is the number of horizontal lines that make up a
single alpha character position; so I label 12 as ROW. The
upper border is defined by the 684 7, so I label that
BORDER I'll be moving some display bytes around for
effect; these moving display bytes will start at memory
labeled HIRES and end at memory labeled VIDTOP.

The remaining are labels of key function addresses in
upper memory; some you've seen before. As you have read
in the MC6821 data booklet, ~he horizontal
synchronization interrupt is cleared by reading $FFOO and
the vertical synchronization interrupt is cleared by reading
$FF02; they are labeled CLEARH and CLEARV. The
actual synchronization interrupts are fed through to the
6809's IRQ line by writing enabling information to ports
$FF01 and $FF03, here labeled HSPORT and VSPORT.

The IRQ vector from high memory finds its commands as
the operand of the JMP at $01 OC, so $01 OD is labeled
VECTOR.

There are six SAM addresses that control the video modes.
The odd addresses clear the mode bit to zero, the even
addresses set the bit to one. You know that. So mode bits 0,
l and 2 are labeled VIDCL0 and VIDST0, VIDCLl and
VIDSTl, VIDCL2 and VIDST2. Finally, the port address
for the remaining video controls is found at $FF22; it's
labeled VIDPRT.

Now display the last few lines of the program; begin at line
I fl00. Pl fl00:*. Labels XSTORE, YSTORE and
STOREY are two-byte groups set aside for temporary
storage of video positions between vertical synchro
nization pulses.

So now you know the pack of labels I've got here. I've tried
not to clutter this listing with lots of comments, so follow
with me now. The first block of code turns off all interrupts
which may have been enabled, and replaces the IRQ vector
at $01 OD in RAM with my interrupt service routine. In the
next block, horizontal synchronization interrupts are
turned off, vertical synchronization interrupts are turned
on, and alphanumeric video mode is selected.

The X register is loaded with a pointer to the vertical
synchronization service routine, interrupts are enabled,
and the processor enters SYNC mode. It now waits for the
vertical synchronization pulse to force an interrupt. When
the vertical synchronization interrupt occurs, the interrupt
service routine is entered.

This routine finds the proper service by performing a zero
offset indexed jump based on the contents of the X
register. Since X was pointed to the routine labeled
SCREEN, this routine is performed. The SCREEN
service routine clears the vertical synchronization latch,
selects alpha mode, turns off the vertical synchronization
feed-through, turns of the horizontal synchronization feed
through, clears the horizontal synchronization latch, and
returns from the interrupt. It returns with everything set up
for being interrupted by the horizontal synchronization
pulse.

In other words, when the program starts, everything sets up
and waits for the SCREEN service routine, which
identifies the top of the screen and sets things up for the
262 horizontal interrupts.

The return from interrupt brings things back in the
program to where the X register is pointed to the LINE
service routine, the B register is set up to count through the
screen border lines and 24 displayed lines. Remember I'm
talking about electron beam lines here, not the usual lines
of text. Interrupts are enabled, and the SYNC wait is on.

SYNC

* What PIA address resets the HS
interrupt?

Reading port address SFF00.

* What t11JO ite!IS control the VDG
modes?

Port SFF22 and the SAM control
the various VDG IIIOdes.

* What is the general tera for
setting up the PIA or the VDG?

Configuring.

* After configuring the PIA for
interrupts and the VD6 for
Modes, the address of the
interrupt service routine is put
in place. How is that address
accessed?

Through the IRQ vector in high
llellOl"y.

* Where is the IRQ vector in
high EMOry, and where does it
point on the Color C-011puter?

The IRG vector is at $FFF8 and
SFFF9, and points to $010C in
RAM.

* What addressing IIIOde is this?

Indirect addressing.

* What does IRQ mean?

Interrupt request.

* How often does the horizontal
interrupt HS occur?

15, 720 tjmes per second.

* According to the JIK:6847 data
booklet, about hON long is
this?

It is approxi■ately 63.5
microseconds.

Learning the~ 207

Servicing SYNC interrupts

* Holil aany 6809 clock cycles is
this on the Color CoMputer?

63.5 divided by 1.11746 is under
57 clock cycles.

* What actions does the SYNC
instruction cause?

It causes the processor to stop
processing instructions and ti1ait
for an interrupt to occur.

* lrllat actions does the CWAI
instruction cause?

It ANDs the conditon code bits
Mith a value, places all the
registers on the stack, sets the
E flag, stops further processing
and Maits for an interrupt.

* How are the softti1are actions
of SYNC and CWAI alike?

Both stop further processing and
1r1ait for an interrupt.

* How are the software actions
SYNC and lllAI different?

CWAI (Clear and Wait for
Interrupt) perforlllS logical and
stack operations, Mhereas SYNC
(SynchrOl'lize Mith Interrupt)
does not.

* How aany horizontal lines does
the electron beu drati1 on the
video display screen?

262 horizontal lines are draliffl
on the screen.

* lrllat is one c011plete group of
262 lines called?

One group of 262 lines COMprises
a field.

* What is the •green block" in
the center of the video screen?

The •green block" is the active
display area.

208 Lesson 23

The LINE service routine, arrived at through the zero
offset-indexedjump, merely clears the horizontal interrupt
and returns. The B register is decremented, and if the
selected number of electron beam lines is not yet counted
through, SYNC is entered again. When the count is finished,
the video mode is changed, the row counter recharged with
a new value, and the SYNC state re-established.

There are five of these horizontal SYNC loops, each
changing the video mode after a specific number of
horizontal lines have been completed.

After the top border plus 192 horizontal lines, the active
display area is complete and interrupts are disabled by the
program. A short byte-move subroutine is called - you can
put anything you like here - which bumps some display
bytes around in the high resolution area. It lets you know
something is happening. After the return from that byte
finagling subroutine, the process of vertical and horizontal
synchronization starts again.

There are some important things to know. First of all, the
horizontal interrupt occurs about ever 63.5 microseconds.
That means you've got just about 57 clock cycles to
perform your horizontal interrupt service routine. LOOP3
is the longest - I'll leave the calculations to you - but it
makes it.

The other critical timing depends on the value of B ($44 in
my example) used to count bytes moved between vertical
synchronization interrupts. In this case, $44 is the highest
number of moves I could fit between pulses.

Now keep in mind that this is a relatively crude
demonstration of the possibilities of video manipulation. If
you're interested in creating fast games or using powerful
graphics capabilities, this method should give you as much
power as any of the famous commercial game machines.

Now try it. Assemble this in memory by typing A/IM/ AO/
NL/NS. Assemble in memory at the absolute origin with no
listing and no symbol table displayed. That's A/IM/AO/
NL/NS. In a few seconds, the prompt and cursor will reture.
Quit the editor/assembler by typing and entering Q. When
the BASIC sign on message appears, you're ready for the
demo. Type and enter EXEC&H3F00. That's where it all
starts. EXEC&H3F00.

There's your mixed-mode display with moving parts. Study
the listing and review this lesson; next time the trials and
tribulations of debugging, hints and ideas, and a summary
of what you have been learning. Till then.

•
Welcome back. Up to this point, you've been walking an
unfamiliar but well-lit path through .assembly language.
When this road ends, though, you'll be staring ahead into a
kind of wilderness. H you know the natural signs, the
footprints in the snow, how to feed and shelter yourself,
then you'll survive to create your own paths. This course
has been your outdoor survival training.

But that country isn't like this city, so you'll need not only
the kit of tools - the editor/ assembler, the data booklets,
and the knowledge - but you'll also need something to cut
a path in the underbrush so you can see through the woods
and ahead to your destination.

That tool is a debugger. Sometimes called a machine
language monitor, the debugger is a program which
displays memory contents, takes memory contents apart
and translates them into mnemonics, does calculations and
even steps through programs an instruction at a time.

The debugger is the "plus" in EDTASM+. This debugger
is called ZBUG; get it ready now. Tum off your computer,
insert the EDTASM+ cartridge, and turn the computer
back on. The usual star prompt and flashing EDT ASM
cursor will appear. Type Z and press ENTER. The star
prompt has changed to a crosshatch. You are in the ZB U G
monitor. Now type E and press ENTER. Your star prompt
returns and you are back in EDTASM.

Start with a program; you'll be doing the typing in this final
lesson. The program is shown in the book. Enter it with the
usual EDTASM insert-line mode (I), and assemble it to
memory at the origin shown (A/IM/AO):

ORG
VIDEO EQU
COUNT EQU
START LOX

LOB
LOA

$3F.0.0
$.048.0
$.0.0.0.0
#VIDEO
#COUNT
#$FF

As I come to the ertd of this
cc,urse, it feels to me like a
great novel should be ending,
tr1i th its sterec,typica1 sunset sf
tears or flouri~es. Rather
than that~ it's Just SOl!le

debugging arid sl.lftllllaries. Maybe
later for 111y Great American
Novel; for now, you finish
learning the 6809.

• What is another name for a
debugging progra111?

A machine language MOnitor.

• What is the name of the
machine language monitvr that 1s
part of EDTASM+?

ZBUG is the debugger.

• What is a breakpoint?

A st-:ipping place in a 11achir1e
language progralll inserted for
debugging purposes.

* What is used as a breakoc•i!'lt
in ZBUG?

ihe software interrupt SW1.

LOOP INCA

Learning the 6PJ::j:J 209

Debugging with ZBUG

* What happens when a program
encounters a software inter
rupt'

All the registers are saved and
the program counter obtains the
SWI vector from high 111eMOry.

* What is another na11e for nall
the registers"?

The machine state.

* When an interrupt saves the
machine state, what flag does it
set?

The E, or entire state, flag.

* What is another name for a
machine language 110nitor?

A debugger.

* The following questions
;;ulllllltlrize the concepts you
should have learned from this
course.

* How are machine language
impulses represented?

By ones are zeros.

* What numbers system consists
only of ones and zeros?

The binary system.

* What is the abbreviation for
binary digit, and what is a
group of four and a group of
eight binary digits called?

A binary digit is a bit; four
binary digits is a nybble
(nibble); eight binary digits is
a byte.

* What nuaber system is used in
progra111111ing for the convenient
representation of binary
nUMbers?

The hexadecimal n1111ber syste11.

210 Lesson 24

STA
DECB
BNE
SW!
END

,X+

LOOP

START

When it's assembled, enter ZBUG by typing Z and
pressing ENTER. Have a look at the assembly; your origin
was $3FOO, so type 3F00 followed by a slash. 3F00/ reveals
LDX #VIDEO. When you do an in-memory assembly,
ZBUG references your labels. Start pressing the down
arrow. The program is being shown to you command by
command, with each labeled as in the program.

Type BREAK. Again type 3FOO, but this time follow it with
a comma. Type a few more commas, and continue tapping
the comma quickly. Watch the screen carefully as you scroll
through the commands. Reverse-video characters begin to
appear and scroll up the screen. Eventually these change to
normal characters, and finally to graphics characters. The
program is executing step by step; the instructions ...

LOOP INCA
STA ,X+
DECB
BNE LOOP

... are passing by and actually performing their functions.
Keep pressing the comma. It takes four taps of the comma
to produce one character, so you can see the repetitive
nature of this program.

The character of the program is already familiar to you. It's
nothing more than a memory fill starting at $0480 and
continuing for 256 loop repetitions.

Now watch it work at full speed; go to the start. Type
G3F00 and tap ENTER. G3F00 ENTER. The screen gets
blasted instantaneously with 256 characters, and ZBUG
prints "8 BRK @ LOOP+6". There's the software
interrupt command at work. Don't remember it? Tap E and
return to EDTASM, and print the source code (P#:*) on
the screen.

Right before the END statement is SWI, the software
interrupt. This is what ZBUG uses for its breakpoints.
More about breakpoints in a minute; back to ZBUG. Type
and enter Z.

You've seen the labels in this listing. Now look at the actual
hex values. Type H and hit ENTER. Now type 3FOO/ and
examine the display. Instead of symbolic notation using the
labels (it used to read LDX #VIDEO) you now see
LDX #480. Oh yes. The default notation in ZBUG is
hexadecimal.

Type S and hit ENTER. Now 3F00/ once again reveals
LDX #VIDEO. Another of these. Type B and ENTER.
3F00/ now shows BE, the hexadecimal value at memory

location $3FOO. Hitting the down arrow reveals labeled
locations with hexadecimal values. And finally, one more to
try. Type and enter A. Tap the down arrow and you see
ASCII characters.

There's some preliminary work with ZBUG. Now you have
reading to do. Chapters 2, 5 and 6 of the EDTASM+
manual have a complete description of the features of
ZBUG. Read all the chapters and try the examples
presented in the manual. Pay particular attention to the use
of breakpoints - stopping places in the program - and the
ways you can examine and change both memory and
register contents. This powerful debugger will make
finding those program glitches and endless loops lots
easier. When you're done with the reading, come back for
some suggestions on using ZBUG, and for a final summary
of this course.

Using ZB U G is time consuming, but worthwhile. You might
get tired of going through a long delay loop, though. In a
case like this, use the register examination mode to change
the loop value so it's almost done. Then you can continue
execution, and the loop will complete.

One type of program that is almost impossible to debug in
this manner is the interrupt-driven program. Enabling and
disabling interrupts can be done, but when it comes to their
actual execution, ZBUG will hang up, waiting for the
interrupts which will never come. So for this kind of
program, try your debugging by changing interrupts to
subroutines in key places, saving and restoring the entire
machine state (all the registers), and simulating the
interrupts.

With the ability to use multiple number systems, to provide
automatic calculations, to single-step your programs, and
to display memory and registers, ZBUG is your most
important tool - other than your own careful thinking and
programming - in completing working, speedy and
efficient assembly language programs. At the end of this
lesson, use ZBUG to examine and execute each of the

....._,_ r. assembly language programs in this course.
€££.3'.9'~ ~Wl
1

........ In this course you have learned that assembly language is a
· 1100\ representation of machine language, a carefully organized

\l"l'U pattern of electronic impulses. These electronic impulses
directly manipulate the actions of the microprocessor, and
are therefore extremely fast and can be organized to
perform any function which the computer's hardware

t permits. As patterns of electronic impulses, this kind of
programming is distinctly different from high-level
languages such as BASIC, languages which are in
themselves constructed from large-scale patterns of
machine commands.

Examination modes

* What does ASCII mean? What is
it used for"

ASCII aieans Allerican Standard
Code for Information
Interchange; ASCII is a binary
pattern of control codes and
characters used for C011puter
c011Munication and display.

the overall * What is
organization
called?

of a processor

The architecture.

* Describe the architecture of
the 6809 processor.

The 6809 consists of an
Arithmetic Logic Unit and an
Instruction Decoder; a progra111
counter PC, accumulators A and
B, index registers X and Y,
stack pointers Sand U, direct
page register DP, and condition
code register CC; A and B can be
combined into accumulator D.

* What are processor coaands
called? lrllat is the data used
by the cot111ands called?

Processor coaanrs are operation
codes, or opcodes; the data used
by the coaands are the
operands.

* What are
descriptions
coaands called?

the verbal
of processor

What is a
progra111 listing containing these
descriptions called?

Verbal descriptions are
mnemonics, and a progra■ listing
containing 111net10nics is called
source code.

* What does an asset1bler do?

An asse111bler translates source
code into obJect, or binary,
code.

Machine language consists of electronic impulses which
are best expressed as one and zero conditions. The binary

Leanling the l::R.l.:Jt 211

Course summary

* What is an addressing mode?

An addressing IIIOde is the way a
machine language progra11 gets
the information it needs to
complete an instruction.

* What are the 6609's addressing
lllOdes?

Inherent, register, i111111ediate,
elitended, direct, indexed and
relative.

* Describe inherent addressing.

The mode in which the opcode
contains all the information the
processor needs to coaplete the
ir,struction.

* Describe register addressing.

The 1110de in which a postbyte
describes the registers which
are used to c0111plete the
instruction.

* Describe
addressing.

iMRlediate

The mode in which the
information to c011plete the
instruction illllllediately follows
the oocode.

1 Describe extended addressing.

The mode in which the
infol'lllation is found at the
address given after the opcode.

* Describe direct addressing.

The MOde in which the
infol"lllation is found at the
address calculated fro111 the
direct page register and the
value fol lowing the opcode.

* Describe indeKed addressing.

The IIIOde in which the
information is found at the
address calculated from a fixed
or variable offset and an index
register.

212 Lesson 24

system is a representation of ones and zeros, so the binary
system counts in powers.of two. The binary digits (the bits)
are organized in groups of eight. These eight-bit groups are
called bytes, and the byte is the word size for the 6809
processor.

6809 words can stand for commands, data, characters, and
can be used for counting and distances. When 6809 words
are used as characters, those words are patterned in
accordance with the American Standard Code for
Information Interchange (ASCII).

All microprocessors have an overall organization known as
architecture. The architecture of the 6809 encompasses its
internal architecture, plus the ability to address 65,536
bytes of external memory. The internal architecture
includes an arithmetic logic unit (ALU), an instruction
decoder (ID), a 16-bit program counter (PC), two 8-bit
accumulators (A and B), two 16-bit index registers (X and
Y), two 16-bit stack points (Sand U), an 8-bit direct page
register (DP), and an 8-bit condition code register holding
the flags (CC). The two 8-bit accumulators A and B can be
combined to produce the 16-bit accumulator D.

Commands to the 6809 processor are electronic impulses,
represented by binary digits, and organized as bytes. The
binary bytes are themselves thought of as two 4-bit groups,
each of which is represented in hexadecimal notation.
Hexadecimal notation, also called hex, counts from O
through F and best expresses the character of 4-bit group.
The 4-bit half of a byte is sometimes called a nybble.

The hexadecimal notation represents the binary patterns,
but the commands themselves are further abstracted into
verbal descriptions. The verbal descriptions are called
mnemonics, and the mnemonics are used for the
construction of source code. Source code is a readable,
quasi-verbal description of the processor actions that
make up a complete program.

Source code is made up of mnemonics for binary machine
commands, called opcodes, and the necessary information
to complete the command, called the operand. Opcodes
and operands - together with labels, origins, ends, byte
descriptions, comments, and other information - make up
the complete source listing. The source listing is entered
and edited using an assembler, and translated from its
source form to machine language by an assembler. The
assembler takes the source code and produces from it the
machine language, called object code.

The most common machine instructions move information
inside the processor, move information from the processor
to memory, and from the memory to the processor. These
are transfers, exchanges, stores and loads. The processor
manipulates this information through arithmetic and
logical functions. The arithmetic includes addition,
subtraction, multiplication, incrementing and decrement
ing. The logic includes AND, OR, Complement, Negation,

$ 5"A ~ ASCII °:£.
$ "SA = c,,..,,,..afl<i DEL B

&rQ]
N~"8U..lr.,..-l o.,.,j,..,,..-, o""'?J

BY1E.@EJ-,r-l i""T/-0(~1~10-~

/000 0//0 1000 01/0

TFR

[~
EXG-

l..OA.D

~
'$TORE-

~

INHERENT

CLRA

TFRX,Y

LPY $123~
DIR.ELT

\MDE>'E.0

LDe $-411 X
INDl,U.,T

L.PA [$19,'0

Pl?SITIVE..

lol 110/ tlo! 111/ol
+

Exclusive-OR. Other processor manipulations of data
include shifting or rotating bits left or right, testing for bits,
comparison with other data, clearing to zero, and special
functions for decimal addition and positive and negative
arithmetic.

The processor obtains its information by providing the
address of the data in external memory. The processor can
determine the address it needs in a variety of simple and
complex ways. These techniques are called addressing
modes.

Among the addressing modes in the 6809 processor are
inherent, register, immediate, extended, direct and
indexed. The inherent mode contains all the information
the processor needs to complete an instruction. The
register mode specifies information which informs the
processor what internal registers to use. The immediate
mode provides the processor with a value to use directly.
The extended mode gives the processor an address at
which it can find the information it needs. The direct mode
combines the special direct page register with information
to locate the data in memory. The indexed mode calculates
a result from register information and fixed or variable
offsets, and uses the results of that calculation to find the
data in memory. Automatic incrementing or decrementing
of certain registers can be specified in the indexed
addressing mode. The relative mode instructs the
processor to find information in relation to its current
position in memory.

One of the features of the 6809 processor which speeds its
operation and makes access of data simpler is the indexed
indirect addressing mode. This mode applies to most of the
previous indexing modes, and permits the processor to
access information through a second level. The data is
found at the address specified by the data found at an
address determined by the processor from the instruction
of the operand. This doesn't lend itself to a summary, so
refer to lessons 15, 16 and 17 for more.

Great program structure is achieved using the indexed
indirect addressing mode. By using an index relative to the
current position of the program counter, complete program
position independence within memory can be achieved.

The information actually received by the processor
through all these adddressing modes is simply one byte at a
time, but that byte can have many purposes. It can be a
simple number; it can be positive or negative (that is, be
signed); it can represent a character, or it can be part of a
memory address.

The memory addresses themselves are (from the
processor's viewpoint) identical. However, their
arrangement within the Color Computer is somewhat
different and quite specific. Because of the synchronous
address multiplexer (the SAM), the memory addresses
(known as the memory map) are organized for special

Learning the

Course summary

* Describe relative addressing.

The IIOde in which the
infor111ation is found relative to
the position of the program
counter.

* What are the levels of
addressing?

Non-indirect and indirect.

* What does SAM aean?

Synchronous
Multiplexer.

Address

* What is found fr011 $0000 to
$7FFF in the Color Collputer
met110ry 11ap?

RAM (read-write 11e110ry).

* What is found from $8080 to
$9FFF in the aap?

The Extended Color BASIC RIJI!
(read-only 11e110ry).

* What is found from SA000 to
$BFFF in the aap?

The Color MSIC ROM.

* What is found from sea to
SFEFF in the aap?

Cartridge ROM, 1«1en plugged in.

* What is found fro11 $FF00 to
$FFFF in the aap?

Vectors and SAM registers,
control, ports, video graphics
display, processor speed, video
addresses, and other functions.

* What is asSNbly?

The process of converting source
code !anNOnics) into obJect
(binary) code.

* What is disasse11bly?

The process of . translating
binary cocle into a source
(lll'll!IIOnic) listing.

6PJ:Jy 213

Course summary

* What does VDG mean, and what
is its purpose on the Color
C<.\lllputer'

VDG 111eans Video Display
Generator; it is used for
alphanumeric, se111igraphic, and
high-resolution graphic and
color display.

* What does Hz mean' What does
it mean when it is said that the
Color Computer has a .89 MHz
clock?

Hz Means Hertz, clock pulses per
secondi a .89 fl!Hz clock means a
master set of pulses occurring
approximately 890,000 times per
secorid.

* ~hat is a position indeoendent
program' What addressing !IIOde
is essential to position
independent programing?

A machine language program
designed to run correctly no
matter where it is located in
l'lleft'IOry is position independent.
Relative addressing is necessary
for position independent
progra11111ing.

* What is an integer?

A nuMber, positive or negative,
which contains no fractional or
decimal part.

* What is a floating point
nu11ber?

A number, positive or negative,
which contains a fractional or
decimal part.

214 Lesson 24

purposes. From the start of memory to address $7FFF is
reserved for read-write memory, or RAM; the next four
blocks of memory (starting at $8000, $AOOO, $COOO and
$EOOO) are reserved for read-only memory, or ROM, and in
the Color Computer are used for Extended BASIC, Color
BASIC, and cartridge ROM. The last block is unused in the
Color Computer. RAM may be substituted for ROM under
certain conditions.

The last 256 bytes of memory are reserved for vectors and
control, ports, video graphics display, processor speed,
video addresses, and other functions. By writing
information to the SAM, these functions can be turned on
or off. Among the most important functions designed into
the Color Computer are: control of the cassette and printer
output; selection of 16 different low-, high-, and medium
resolution color graphics modes; RS-232 communications
input and output; keyboard input; input from joysticks or
other analog devices; control over the processor's clock
speed; output of sound; determination of available memory
and selection of the type of memory arrangement; control
of and storage of vectors for interrupts.

Source code is normally assembled using an editor/
assembler package, but hand assembly can be performed.
For hand assembly, a list of opcodes and their respective
hexadecimal equivalents is necessary. Also, it's essential to
have a description of how each opcode works, the flags it
affects, and how its operands are constructed and used.

Assembly, whether by hand or using an assembler, is a two
pass process. During the first pass, the opcodes are
assembled and put in place, and during the second pass the
operands are created, calculated or otherwise determined
directly from the operand information in the source listing,
or from the labels used in the listing.

During the assembly process, the automatic assembler
detects and reports errors. Hand assembly will reveal those
opcodes or operands which are not permitted according to
the information provided in the processor's data booklet.

Even correct source code can produce incorrect results,
depending on the hardware configuration of the computer.
In the case of the Color Computer, the most obvious
conflict is with the standard ASCII codes and the video
display generator, which uses a different arrangement of
the four groups of 32 characters. These hardware conflicts
are resolved by the programmer through debugging in
combination with a careful reading of the software aspects
of the hardware documentation.

During hand assembly, the timing of instructions may be
extremely critical. Especially during sound or
communications processes, the timing of each instruction
must be calculated. This timing is based on the computer's
master clock frequency, which is specified as Hertz (Hz) or
clock cycles per second. All the timing information is
provided as part of the processor's data booklet. Some

Nor LliED

~
PAGK

c.ou.t
'BASIC
E.!l:r5NDcl>

SASIC..

R
A
M

-

Oe'l'A ~F ~~

oc.9e SF

OC'/'C /F¢Z.
OC.'/'E. /1'{6/

OU/t

$2/ ~ AS.GIi f
'$"Ir VD&/

Course summary

IO//IO/ll.f

c,10110/0, •.

I0///0///./-

0/0//010.,,

~ir,

~ ;s~ tr--
~

/ ·-

timing is consistent with every occurrence of an instruction,
other timing depends on the character of the operand.

The goal of position independent programming - that is,
programs that will load and execute in any area of memory
- can be achieved with the 6809 processor. Position
independence is achieved using program-counter relative
instructions (,PCR instructions), load-effective-address
commands (LEA), long and short subroutine branches, and
long and short program counter branches (simple, simple
conditional, plus signed and unsigned conditional). By
structuring the program around modular subroutines, both
clarity and position independence can result.

Among the less clear aspects of programming is the
handling of floating-point numbers, that is those numbers
consisting of both an integer and fractional part. The
representation in the Color Computer is as a power of two
exponent plus a four- byte mantissa. This achieves an
overall accuracy of ten digits and an overall range of ten to
the plus-or-minus 38th power.

Using these numbers, and using BASIC at all, requires an
understanding of its handling of free memory, how it loads
machine-language programs, and the accessing of machine
language programs via EXEC and USR. BASIC's USR
command permits direct transfer of numerical or text
information to a machine-language subroutine. BASIC's
V ARPTR command permits access to BASIC variables for
use by a machine-language subroutine, and also provides a
unique method of packing a machine-language program
into a BASIC string variable in a program line.

The 6809 processor was created with interrupts in mind.
Interrupts are hardware signals which cause the processor
to set aside its current program and perform an interrupt
service routine. Interrupts are use to provide accurate and
program-independent timing and control functions.
Hardware interrupts IRQ, FIRQ and NMI are used on the
Color Computer; software interrupts SWI, SWI2 and
SWl3 are used in ZBUG and in other kinds of program
debugging, and for fast operating system subroutine calls
on other kinds of computers.

Interrupts may be used for very fast timing, such as for
synchronization with the video display. Video signals are
used for interrupts on the Color Computer, and can be used
as ordinary interrupts or in combination with the SYNC or
CWAI commands for complete synchronization with the
monitor picture.

The process of creating complete assembly language
programs involves thinking the application through,
creating a structure, writing modular subroutines, linking
together the individual pieces, and debugging the whole.

Your Micro Language Lab course in Learning the 6809 is
over, but your facility in programming has just begun. Now
that you've reached this point, many earlier programs will

Learning the

* What BASIC ca.ands are used
for accessing machine language
programs? What does each mean?

EXEC, USR, DEFUSR, VARPTR, POKE
and CLOADPI. EXEC means execute
a machine language prograa at
the given entry point (starting
address). USR aeans execute a
111achine language progra111, and
transfer a variable fr011 BASIC
to it. DEFUSR defines a ■achine
language prograt11 entry point
(starting address). VARPTR
means variable pointer, and is
used to determine the position
of a BASIC variable in IIE!IIOry.
It can be used for packing
Machine language programs into
BASIC string variables. POKE
places a byte directly into
JIIE!IIIOry. CLOAIJII! loads binary
information directly into
memory.

* What are the 6809 interrupts?

Hardware interrupts Nl'II, FIRQ1

IRG and software interrupts SWI,
SWI2, and SWI3.

* What happens when an interrupt
occurs?

The processor completes its
current instruction, saves
important machine information,
and services the interrupt.

* What C011111ands stop processor
operation and wait for an
interrupt?

SYNC and CWAI.

* Your course in learning the
6809 is now COfllplete. I welc011e
your reaction, especially to
this progralllllll!d learning
section. Please send your
C011111ents to 11e, Dennis Kitsz,
Breen Mountain Micro, Roxbury,
Ver110nt 05669.

6f!l:Yt 215

Course summary

216 Lesson 24

begin to make more sense. Please review this course lesson
by lesson, continue to use the question-and-answer
programmed text in the margins, and try each of the
example programs. The ability to program the 6809 - and
all its smart cousins - is now yours.

I'm your programming guide, Dennis Kitsz. Good bye.

When You See It In Memory, What Is It?
This chart is a cross-reference of all Color Computer codes from $00 to $FF.
The codes are presented in binary, hexadecimal and decimal, followed by their
ASCII equivalents. Both the 6809 procesor command mnemonic and BASIC
"tokens" are given. The 10+ and 11 + commands are 6809 processor commands
which use the value $10 or $11 asa prefix to other commands. Forexample,$10
21 is the opcode for long branch never (LBRN). Likewise, there are BASIC
commands which take the prefix $FF. For example, token $82 is REM, whereas
$FF 82 represents ABS.

BINARY 1£X DECIIA.. ASCII COlllND 1ttaNIAND11+aJIIIND BASIC CDltAND FF+aMIAND 10 I IU. t£6 S6N
10NNl1 11 1 !Df INT
8111N11 12 2 STX ABS
... 11 83 3 ETX ID! USR
lfl8llt• 84 4 EDT LSR RND
10N 1111 15 5 BG SIN
INIIUI 16 6 ID< ROR - PEEK
... 1111 J7 7 BEL ASR LEN
1N11• 18 8 BS ASL,LS.. STR$
11111111 19 9 HT ROl. VAL
1f1811111 IA 11 LF DEC ASC
IIN 1111 8B 11 VT OfR$
INIUII ~ 12 FF It«: BF
INl 1111 ID 13 CR TST JOYSTK
... 1111 IE 14 so JMP LEFT$
INIUU IF 15 SI CLR RIGHT$

•1- 11 16 DLE (SEE 1.1+> MID$
•1•1 11 17 DC1 (SEE 11+) POINT
•11111 12 18 DC2 tllP INKEYt
•1 •u 13 19 DC3 SYNC Mal
•11111 14 21 DC4 ATN
•11111 15 21 NAK cos
•11111 16 22 SYN LBRA TAN
•1 1111 17 23 ETB LBSR EXP •11• 18 24 CAN FIX
•11111 19 25 EM DAA LOB
•1 1111 1A 26 SUB ORCC POS
•1 1111 18 27 ~ SQR

•t 1111 1C 28 FS AtO:C 1£X$
•1 1111 1D 29 BS SEX VARPTR
•1 1111 tE 31 RS EXS INSTR
•11111 1F 31 us TFR TIMER

Appendix

217

Appendix

11111iN 21 32 SPACE BM PPOINT
8111 •1 21 33 BRN LBRN STRit8
11111111 22 34 • BHI LBHI
81111111 23 35 I a.s IAS
11111111 24 36 s BHS,BCC LBHS,LBCC
88111111 25 37 j BLO,BCS i.ao,a.cs
11111111 26 38 & BtE LBNE
11111111 cl 39 BEQ LBEQ
11111• 28 40 (BVC lBVC
1111 1111 29 41) B\JS lB\JS
11111111 2A 42 f BPL LBPL
1111 1111 2B 43 + mu LBMI
8811 1188 2C 44 l!6E LB6E
8811 1111 2D 45 BLT IAT
8111 1111 2E 46 B6T LBGT
8111 1111 2F 47 I BLE LBLE

8811 INI 30 ~ I LEAX
8811 •1 31 49 1 LEAY
1111 8111 32 51 2 LEAS
88111111 33 51 3 LBll
11111181 34 52 4 PSHS
1111 1111 35 53 5 Pll.S
111111111 36 54 6 PStlJ
111111111 37 55 7 Pll.U
1111 1NI 38 56 8
8811 11111 39 'S1 9 RTS
11111 1111 3A 58 ABX
1111 1111 3B 59 ; RTI
11111181 JC 61 (MI
11111 1111 3D 61 = n
11111 1111 3E 62
111111111 3F 63 ? SWI SWI2 SWI3

1181 INI 41 64 f t£6A
1111 Ml 41 65 A
1111 8111 42 66 B
11111111 43 67 C ~
11111111 44 68 D LSRA
11811111 45 69 E
11111111 46 71 F RORA
11111111 47 71 6 ASRA
11111• ~ 72 H il.SA,LSLA
1181 1111 49 73 I Rll.A
11111111 4A 74 J DIDI
11111111 4B 75 K
1181 1111 4C 76 L ItCA
1111 1111 4D 77 M TSTA
1111111tl 4E 78 N
111111111 4F 79 0 Cl.RA

218

Appendix

11111111 58 88 p !ESB
8111 •1 51 81 Q

11111811 52 82 R
1111 1811 53 83 s C(JIIB

11111118 54 84 T LSRB
8111 1111 55 as u
1111 1111 56 86 V RORB
1111 1111 57 87 w ASRB
1111 1• 58 88 X ASLB,Ul.B
1111 1181 59 89 y RCU
1111 1111 5A 911 z DECB
8111 1111 SB 91 L.BKT.
8111 1118 5C 92 SLANT no
8111 1111 SD 93 R.BKT. TSTB
1111 1111 5E 94 CARAT
8111 1111 5F 95 L.ARR. CLRB

11111818 68 96 I 1£6
8111 •1 61 97 a
11111811 62 98 b
11111811 63 99 C COM
11111118 64 118 d LSR
11111111 65 111 e
11111111 66 112 f ROR
11111111 67 113 g ASR
11111181 68 114 h ASL,LSL
8111 1181 69 115 i RO.
1111 1111 6A 186 J DEC
8111 1811 6B 117 k
11111118 6C 118 l Ite
8111 1181 6D 119 • TST
1111 1111 6E 111 n JNP
81111111 6F 111 0 CLR

1111 IIN 71 112 p 1£6
8111 •1 71 113 q
1111 1811 72 114 r
8111 1811 73 115 s ct)!

8111 1118 74 116 t LSR
1111 1181 75 117 u
1111 1111 76 118 V ROR
1111 1111 n 119 .. ASR
1111 1• 78 121 X ASL,LSL
8111 1181 79 121 y RO.
1111 1111 7A 122 z DEC
8111 1111 7B 123 L.BRCE. -
1111 1118 7C 124 SEP. Ite
1111 1181 7D 125 R.BRCE. TST
1111 1111 7E 126 11M'. JNP
1111 1111 7F 127 DELETE CLR

219

Appendix

ua11Nilll 81 128 SUBA FOR 5(14

1illl Ml 81 129
I

0IPA 60 INT
1illl 1111 82 138

I
SOCA REM ABS

1•1111 83 131 • SUBD DIPD [)IJIIJ USR
1illl 1111 84 132 I ANDA ELSE RND
1• 8111 85 133 I BITA IF SIN
1• 8118 86 134 I UlA DATA PEEK
1'!111111 87 135

, PRINT LEN

1• 1• 88 136 I EDRA 11' STRS
1• 1111 89 137 .. ADCA INPUT VII.
1• 1811 8A 138 I ORA END ASC
1118 1811 8B 139 • ADDA l'EXT CHRS
1• 1111 8C 140 • DIPX DIPY DIPS DIM ECF
1118 1101 8D 141 Ii BSR READ JDVSTK
1118 1111 8E 142 • LDX LDY ID LEFTS
1118 1111 8F 143 I RESTORE RISHTS

11111110 91 144 SUBA RETURN MIDS
1111 "81 91 145 I OIPA STOP POINT
181111 1010 92 146

I SOCA PIJ<E IN<EYS
11111011 93 147 • SUBD CMPD [)IPIJ m.T MEM
1101 8110 94 148 I ANDA LIST ATN
1081 0101 95 149 I BITA a.EAR cos
1081 8118 96 151 I UlA t£W TAN
1081 0111 97 151

,
STA Cl(R) EXP

1101 1800 98 152 I EDRA CSAYE FIX
1111 1111 99 153 .. ADCA OPEN LOO
1081 1110 9A 154 I ORA ClOSE POS
1081 1011 9B 155 • ADDA LLIST SQR
1081 1108 9C 156 • OIPX OIPV OIPS SET HEXS
1081 1101 9D 157 Ii JSR RESET VARPTR
1081 1111 9E 158 • LDX LDY CLS INSTR
1081 1111 9F 159 I STX STY KITOR TIMER

11111110 Al 161 SUBA SOM> PPOINT
I

1010 •1 Al 161
I

OIPA iu>IO STRINGS
1110 1110 A2 162 SOCA EXEC
1110 0811 A3 163 • SUBD OIPD [)IPIJ SKIPF
HUI 1118 AA 164 I ANDA TAB(
10110111 A5 165 I BITA TO
1111 8118 A6 166 I UlA SUB
1011 8111 A7 167

,
STA TI£N

1110 1• A8 168 I EDRA t«IT
10111181 A9 169 .. ADCA STEP
HUI 1111 AA 171 I ORA (FF

1011 1811 AB 171 • ADDA +
1111 1118 oc 172 • OIPX OIPY OIPS
1111 1111 AD 173 Ii JSR •
1010 1110 AE 174 • LDX LDY I
1010 1111 ~ 175 I STX STY

220

Appendix

UHlNII Bl 176 SUDA AND
1111 8111 • CMPA Bl 177 DR
1111 1111 B2 178

I
~)

1111 1111 B3 179 • SUBD C>IPD OIPU =
1111 1111 B4 181 • ANDA (

1111 1111 B5 181 I BITA DEL
1111 1111 96 182 I LDA EDIT
1111 1111 B7 183 • STA TRCN
1111 1• B8 184 I EDRA TRCFF
1111 1111 B9 185 .. ADCA DEF
1111 1111 BA 186 I ORA LET
1111 nm BB 187 • ADDA LIIE
1111 1111 BC 188 • CNPX CNPY DIPS PCLS
1111 1111 BD 189 • JSR PSET
1111 1111 BE 191 • LDX LDY PRESET
11111111 BF 191 I STX STY SCREEN

HIINII ce 192 SUBB PCLEAR
1111 8111 C1 193

I
CMPB aLDR

11111111 C2 194
I

SD CIRCLE
11111111 C3 195 • ADDD PAINT
1188 1111 C4 196 I ANDB 6ET
11111111 cs 197 I BITB PUT
11111111 C6 198 I LDB DRAW
11111111 C7 199 • PCOPY
11111• C8 211 I EORB MIDE
1111 1111 C9 211 .. AllCB PLAY
1111 1111 r.A 212 I ORB DLIR>
11111111 CB 213 • ADDB REtUI
11111111 cc 214 • LDD FN
1111 1111 CD 215 • USING
1111 1111 CE 216 • UlU lDS
11111111 CF 217 I

1111NII DI 218 SUBB
1111 8111 D1 219 I CMPB
1111 1111 D2 211 I SBCB
1111 8811 D3 211 • ADDD
1111 1111 D4 212 I ANDB
11111111 D5 213 I BITB
11111111 D6 21~ I LDB
1111 1111 D7 215 • STB
1111 1• D8 216 I EORB
1111 1111 D9 217 .. AllC8
1111 1111 DA 218 I ORB
1111 1111 DB 219 • ADDB
1111 1111 DC 221 • LDD
1111 1111 DD 221 It STD
1111 1111 DE 222 • UlU LDS
11111111 DF 223 I STU STS

221

Appendix

222

11111111 El 224
1111 •1 El 225
1111 1111 E2 226
11111111 E3 W
11111111 E4 228
11111111 ES 229
11111111 E6 231
11111111 E7 231
11111• E8 232
11111111 E9 233
11111111 EA 234
11111111 EB 235
11111111 EC 236
11111191 ED 2"I/
11111111 EE 238
1118 1111 EF 239

11111111 Fl 248
1111 •1 Fl 241
11111111 F2 242
11111111 F3 243
11111111 F4 244
11111111 F5 245
11111111 F6 246
11111111 F7 247
1111 1• F8 248
1111 111111 F9 249
1111 1111 FA 251
1111 1111 FB 251
1111 1111 FC 252
1111 1111 FD 253
1111 1111 FE 254
1111 1111 FF 255

I

I

•
I

I
I ,
I ..
I

• • • • I

I

I

•
I

I
I ,
I ..
I

• • • • I

SUJ3B
CNPB
SBCB
ADDD
ANDB
BITB
LDB
STB
EDRB
AOCB
ORB
ADDB
LOO
STD
LDU
STU

SUJ3B
CMPB
SBCB
ADDD
ANDB
BITB
LDB
STB
EDRB
ADCB
ORB
ADDB
LDD
STD
LDU
STU

LDS
STS

LDS
STS

Cassette Loading Problems

(SEE FF+)

The Micro Language Lab tapes contain both audio and programs. Until you get
accustomed to the voice-data sequence, you may experience some loading
problems.

I. Be sure to have the volume adjusted properly for program loading. Our
cassettes load very well with the CTR-80A volume set between 6 and 7,
although this may be too loud for listening to the audio.

2. These are 60-minute cassettes and should be treated as good music tapes.
Your tape recorder must be clean and demagnetized. Obtain cleaning solution
and demagnetizers from a Radio Shack or other hi-fi store.

3. Don't miss the beginning of the program. When you hear "tum the tape off
now", than means now! The program begins within 5 seconds.

4. Should you have continued loading problems with one program or one
tape, you may exchange the defective tape at no charge. Should you have
loading problems with several tapes, suspect your tape player. We use good
tape and excellent mastering and duplication equipment to assure quality.

5. If you find the audio-data combination cumbersome, Green Mountain
Micro can offer you a separate tape containing all the Micro Language Lab
programs. Call or write for price and availability.

	6809_ch01_preface
	6809_ch02
	6809_ch03
	6809_ch04_05
	6809_ch06_07
	6809_ch08_09
	6809_ch10_11
	6809_ch12_13
	6809_ch14_15
	6809_ch16_17
	6809_ch18_19
	6809_ch20_21
	6809_ch22_23_24
	6809_appendix

